Sample records for bacillus licheniformis temperatura

  1. Diversity in the antibacterial potential of probiotic cultures Bacillus licheniformis MCC2514 and Bacillus licheniformis MCC2512.

    PubMed

    Shobharani, Papanna; Padmaja, Radhakrishnan J; Halami, Prakash M

    2015-01-01

    The aim of the present study was to investigate the characteristic diversity and stability of antimicrobial compounds produced by two probiotic strains of Bacillus licheniformis (MCC2514 and MCC2512). Antimicrobial compounds from the two strains notably varied, related to stability and potency. The inhibitory spectrum of B. licheniformis MCC2512 was higher than MCC2514, but, related to the effect on Micrococcus luteus ATCC9341, MCC2514 (LD50 = 450 AU ml(-1)) was more potent than MCC2512 (LD50 = 750 AU ml(-1)). The compounds were thermo-resistant and stable at a wide range of pH and exhibited considerable resistance to digestive enzymes and bile salts (anionic biological detergents), contributing to their appropriate application in various food systems. The isolate B. licheniformis MCC2512 gave a positive response to Bacillus subtilis-based biosensors BSF2470 and BS168.BS2, confirming the mode of action on the cell wall and subtilin-type, respectively. For B. licheniformis MCC2514, the mode of action was characterized by constructing B. subtilis reporters that interfered in five major biosynthetic pathways, i.e., biosynthesis of DNA, RNA, protein, the cell wall and fatty acids. B. licheniformis MCC2514 responded to the yvgS reporter, indicating it as an RNA synthesis inhibitor. Overall, the investigation reveals variability of the antimicrobial compounds from B. licheniformis of different origins and for their possible application as biopreservative agents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Central carbon metabolism influences cellulase production in Bacillus licheniformis.

    PubMed

    Wang, J; Liu, S; Li, Y; Wang, H; Xiao, S; Li, C; Liu, B

    2018-01-01

    Bacillus licheniformis that can produce cellulase including endo glucanase and glucosidase is an important industrial microbe for cellulose degradation. The purpose of this research was to assess the effect of endo glucanase gene bglC and glucosidase gene bglH on the central metabolic flux in B. licheniformis. bglC and bglH were knocked out using homologous recombination method, respectively, and the corresponding knockout strains were obtained for 13 C metabolic flux analysis. A significant change was observed in metabolic fluxes after 13 C metabolic flux ratio analysis. In both of the knockout strains, the increased fluxes of the pentose phosphate pathway and malic enzyme reaction enabled an elevated supply of NADPH which provided enough reducing power for the in vivo synthesis reactions. The fluxes through tricarboxylic acid cycle and anaplerotic reactions increased fast in the two knockout strains, which meant more energy generated. The changed fluxes in central carbon metabolism provided a holistic view of the physiological status in B. licheniformis and possible targets for further strain engineering. Cellulase is very important in the field of agriculture and bioenergy because of its degrading effect on cellulosic biomass. This study presented the effect of central carbon metabolism on cellulase production in Bacillus licheniformis. The study also provided a holistic view of the physiological status in B. licheniformis. The shifted metabolism provided a quantitative evaluation of the biosynthesis of cellulase and a priority ranked target list for further strain engineering. © 2017 The Society for Applied Microbiology.

  3. Toxigenic Strains of Bacillus licheniformis Related to Food Poisoning

    PubMed Central

    Salkinoja-Salonen, M. S.; Vuorio, R.; Andersson, M. A.; Kämpfer, P.; Andersson, M. C.; Honkanen-Buzalski, T.; Scoging, A. C.

    1999-01-01

    Toxin-producing isolates of Bacillus licheniformis were obtained from foods involved in food poisoning incidents, from raw milk, and from industrially produced baby food. The toxin detection method, based on the inhibition of boar spermatozoan motility, has been shown previously to be a sensitive assay for the emetic toxin of Bacillus cereus, cereulide. Cell extracts of the toxigenic B. licheniformis isolates inhibited sperm motility, damaged cell membrane integrity, depleted cellular ATP, and swelled the acrosome, but no mitochondrial damage was observed. The responsible agent from the B. licheniformis isolates was partially purified. It showed physicochemical properties similar to those of cereulide, despite having very different biological activity. The toxic agent was nonproteinaceous; soluble in 50 and 100% methanol; and insensitive to heat, protease, and acid or alkali and of a molecular mass smaller than 10,000 g mol−1. The toxic B. licheniformis isolates inhibited growth of Corynebacterium renale DSM 20688T, but not all inhibitory isolates were sperm toxic. The food poisoning-related isolates were beta-hemolytic, grew anaerobically and at 55°C but not at 10°C, and were nondistinguishable from the type strain of B. licheniformis, DSM 13T, by a broad spectrum of biochemical tests. Ribotyping revealed more diversity; the toxin producers were divided among four ribotypes when cut with PvuII and among six when cut with EcoRI, but many of the ribotypes also contained nontoxigenic isolates. When ribotyped with PvuII, most toxin-producing isolates shared bands at 2.8 ± 0.2, 4.9 ± 0.3, and 11.7 ± 0.5 or 13.1 ± 0.8 kb. PMID:10508100

  4. Inhibition of Bacillus licheniformis LMG 19409 from ropy cider by enterocin AS-48.

    PubMed

    Grande, M J; Lucas, R; Abriouel, H; Valdivia, E; Ben Omar, N; Maqueda, M; Martínez-Cañamero, M; Gálvez, A

    2006-08-01

    To determine the activity of enterocin AS-48 against ropy-forming Bacillus licheniformis from cider. Enterocin AS-48 was tested on B. licheniformis LMG 19409 from ropy cider in MRS-G broth, fresh-made apple juice and in two commercial apple ciders (A and B). Bacillus licheniformis was rapidly inactivated in MRS-G by 0.5 microg ml(-1)AS-48 and in fresh-made apple juice by 3 microg ml(-1). Concentration-dependent inactivation of this bacterium in two commercial apple ciders (A and B) stored at 4, 15 and 30 degrees C for 15 days was also demonstrated. Counts from heat-activated endospores in cider A plus AS-48 decreased very slowly. Application of combined treatments of heat (95 degrees C) and enterocin AS-48 reduced the time required to achieved complete inactivation of intact spores in cider A to 4 min for 6 microg ml(-1) and to 1 min for 12 microg ml(-1). D and z values also decreased as the bacteriocin concentration increased. Enterocin AS-48 can inhibit ropy-forming B. licheniformis in apple cider and increase the heat sensitivity of spores. Results from this study support the potential use of enterocin AS-48 to control B. licheniformis in apple cider.

  5. Bacillus licheniformis in geogenic dust induces inflammation in respiratory epithelium.

    PubMed

    Pickering, Janessa; Teo, Teck Hui; Thornton, Ruth B; Kirkham, Lea-Ann; Zosky, Graeme R; Clifford, Holly D

    2018-07-01

    Exposure to environmental geogenic (or earth-derived) dust can lead to more frequent and severe infections in the human airway. Particulate matter < 10 µm (PM 10 ) is the component of air pollution that is commonly associated with the exacerbation of respiratory diseases. We have previously demonstrated that mice exposed to geogenic dust PM 10 experienced an exacerbation of inflammatory responses to influenza A virus. Whether geogenic dust PM 10 also exacerbates respiratory bacterial infection is not yet known, nor are the components of the dust that drive these responses. We treated airway bronchial epithelial cells (NuLi-1) with UV-irradiated geogenic dust PM 10 from six remote Western Australian towns. High levels of IL-6 and IL-8 production were observed, as well as persistent microbial growth. 16 S rRNA sequencing of the growth identified the microbe as Bacillus licheniformis, a spore-forming, environmentally abundant bacterium. We next investigated the interaction of B. licheniformis with respiratory epithelium in vitro to determine whether this exacerbated infection with a bacterial respiratory pathogen (non-typeable Haemophilus influenzae, NTHi). Heat treatment (100 °C) of all PM 10 samples eliminated B. licheniformis contamination and reduced epithelial inflammatory responses, suggesting that heat-labile and/or microbial factors were involved in the host response to geogenic dust PM 10 . We then exposed NuLi-1 epithelium to increasing doses of the isolated Bacillus licheniformis (multiplicity of infection of 10:1, 1:1 or 0.1:1 bacteria: cells) for 1, 3, and 24 h. B. licheniformis and NTHi infection (association and invasion) was assessed using a standard gentamicin survival assay, and epithelial release of IL-6 and IL-8 was measured using a bead based immunoassay. B. licheniformis was cytotoxic to NuLi-1 cells at 24 h. At 3 h post-challenge, B. licheniformis elicited high IL-6 and IL-8 inflammatory responses from NuLi-1 cells compared with

  6. Fluorescent CdSe QDs containing Bacillus licheniformis bioprobes for Copper (II) detection in water.

    PubMed

    Yan, Zheng-Yu; Du, Qing-Qing; Wan, Dong-Yu; Lv, Hang; Cao, Zhi-Ran; Wu, Sheng-Mei

    2017-12-01

    Quantum dots (QDs) are semiconductor nanoparticles (NPs) that offer valuable functionality for cellular labeling, drug delivery, solar cells and quantum computation. In this study, we reported that CdSe QDs could be bio-synthesized in Bacillus licheniformis. After optimization, the obtained CdSe QDs exhibited a uniform particle size of 3.71±0.04nm with a maximum fluorescence emission wavelength at 550nm and the synthetical positive ratio can reach up to 87%. Spectral properties, constitution, particle sizes and crystalline phases of the CdSe QDs were systematically and integrally investigated. The CdSe QD-containing Bacillus licheniformis cells were further used as whole fluorescent bio-probes to detect copper (II) (Cu 2+ ) in water, which demonstrated a low limit of detection (0.91μM). The assay also showed a good selectivity for Cu 2+ over other ions including Al 3+ , Cd 2+ , Mg 2+ , K + , Na + , NH 4 + , Zn 2+ , CH 3 COO + , Pb 2+ and I - . Our study suggests the fluorescent CdSe QDs-containing Bacillus licheniformis bio-probes as a promising approach for detection of Cu 2+ in complex solution environment. Copyright © 2017. Published by Elsevier Inc.

  7. Proteomics study of extracellular fibrinolytic proteases from Bacillus licheniformis RO3 and Bacillus pumilus 2.g isolated from Indonesian fermented food

    NASA Astrophysics Data System (ADS)

    Nur Afifah, Diana; Rustanti, Ninik; Anjani, Gemala; Syah, Dahrul; Yanti; Suhartono, Maggy T.

    2017-02-01

    This paper presents the proteomics study which includes separation, identification and characterization of proteins. The experiment on Indonesian fermented food such as extracellular fibrinolytic protease from Bacillus licheniformis RO3 and Bacillus pumilus 2.g isolated from red oncom and tempeh gembus was conducted. The experimental works comprise the following steps: (1) a combination of one- and two-dimensional electrophoresis analysis, (2) mass spectrometry analysis using MALDI-TOF-MS and (3) investigation using protein database. The result suggested that there were new two protein fractions of B. licheniformis RO3 and three protein fractions of B. pumilus 2.g. These result has not been previously reported.

  8. [Maxillary sinus infection by Bacillus licheniformis: a case report from Djibouti].

    PubMed

    Garcia Hejl, C; Sanmartin, N; Samson, T; Soler, C; Koeck, J-L

    2015-01-01

    Aerobic, spore-forming gram-positive Bacillus spp infections are rare and reported mainly in immunocompromised hosts. We report a case of acute unilateral maxillary sinusitis, caused by Bacillus licheniformis, in a 35-year-old French soldier stationed in Djibouti. It was easily identifiable due to its typical culture and resistance profile. This case is interesting for two reasons: first, it is, to our knowledge, the first case of sinusitis attributed to this microbe, and second, it has rarely been described in immunocompetent patients without altered skin or mucous membranes.

  9. Stress Responses of the Industrial Workhorse Bacillus licheniformis to Osmotic Challenges

    PubMed Central

    Schroeter, Rebecca; Hoffmann, Tamara; Voigt, Birgit; Meyer, Hanna; Bleisteiner, Monika; Muntel, Jan; Jürgen, Britta; Albrecht, Dirk; Becher, Dörte; Lalk, Michael; Evers, Stefan; Bongaerts, Johannes; Maurer, Karl-Heinz; Putzer, Harald; Hecker, Michael; Schweder, Thomas; Bremer, Erhard

    2013-01-01

    The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress. PMID:24348917

  10. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.

    PubMed

    Li, Kaifeng; Cai, Dongbo; Wang, Zhangqian; He, Zhili; Chen, Shouwen

    2018-03-15

    Bacillus strains are important industrial bacteria that can produce various biochemical products. However, low transformation efficiencies and a lack of effective genome editing tools have hindered its widespread application. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 techniques have been utilized in many organisms as genome editing tools because of their high efficiency and easy manipulation. In this study, an efficient genome editing method was developed for Bacillus licheniformis using a CRISPR-Cas9 nickase integrated into the genome of B. licheniformis DW2 with overexpression driven by the P43 promoter. The yvmC gene was deleted using the CRISPR-Cas9n technique with homology arms of 1.0 kb as a representative example, and an efficiency of 100% was achieved. In addition, two genes were simultaneously disrupted with an efficiency of 11.6%, and the large DNA fragment bacABC (42.7 kb) was deleted with an efficiency of 79.0%. Furthermore, the heterologous reporter gene aprN , which codes for nattokinase in Bacillus subtilis , was inserted into the chromosome of B. licheniformis with an efficiency of 76.5%. The activity of nattokinase in the DWc9nΔ7/pP43SNT-S sacC strain reached 59.7 fibrinolytic units (FU)/ml, which was 25.7% higher than that of DWc9n/pP43SNT-S sacC Finally, the engineered strain DWc9nΔ7 (Δ epr Δ wprA Δ mpr Δ aprE Δ vpr Δ bprA Δ bacABC ), with multiple disrupted genes, was constructed using the CRISPR-Cas9n technique. Taken together, we have developed an efficient genome editing tool based on CRISPR-Cas9n in B. licheniformis This tool could be applied to strain improvement for future research. IMPORTANCE As important industrial bacteria, Bacillus strains have attracted significant attention due to their production of biological products. However, genetic manipulation of these bacteria is difficult. The CRISPR-Cas9 system has been applied to genome editing in some bacteria, and CRISPR-Cas9n was proven to

  11. Effects of High Pressure on Bacillus licheniformis Spore Germination and Inactivation

    PubMed Central

    Borch-Pedersen, Kristina; Mellegård, Hilde; Reineke, Kai; Boysen, Preben; Sevenich, Robert; Lindbäck, Toril

    2017-01-01

    ABSTRACT Bacillus and Clostridium species form spores, which pose a challenge to the food industry due to their ubiquitous nature and extreme resistance. Pressurization at <300 MPa triggers spore germination by activating germination receptors (GRs), while pressurization at >300 MPa likely triggers germination by opening dipicolinic acid (DPA) channels present in the inner membrane of the spores. In this work, we expose spores of Bacillus licheniformis, a species associated with food spoilage and occasionally with food poisoning, to high pressure (HP) for holding times of up to 2 h. By using mutant spores lacking one or several GRs, we dissect the roles of the GerA, Ynd, and GerK GRs in moderately HP (mHP; 150 MPa)-induced spore germination. We show that Ynd alone is sufficient for efficient mHP-induced spore germination. GerK also triggers germination with mHP, although at a reduced germination rate compared to that of Ynd. GerA stimulates mHP-induced germination but only in the presence of either the intact GerK or Ynd GR. These results suggests that the effectiveness of the individual GRs in mHP-induced germination differs from their effectiveness in nutrient-induced germination, where GerA plays an essential role. In contrast to Bacillus subtilis spores, treatment with very HP (vHP) of 550 MPa at 37°C did not promote effective germination of B. licheniformis spores. However, treatment with vHP in combination with elevated temperatures (60°C) gave a synergistic effect on spore germination and inactivation. Together, these results provide novel insights into how HP affects B. licheniformis spore germination and inactivation and the role of individual GRs in this process. IMPORTANCE Bacterial spores are inherently resistant to food-processing regimes, such as high-temperature short-time pasteurization, and may therefore compromise food durability and safety. The induction of spore germination facilitates subsequent inactivation by gentler processing conditions

  12. RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation.

    PubMed

    Wiegand, Sandra; Dietrich, Sascha; Hertel, Robert; Bongaerts, Johannes; Evers, Stefan; Volland, Sonja; Daniel, Rolf; Liesegang, Heiko

    2013-10-01

    The production of enzymes by an industrial strain requires a complex adaption of the bacterial metabolism to the conditions within the fermenter. Regulatory events within the process result in a dynamic change of the transcriptional activity of the genome. This complex network of genes is orchestrated by proteins as well as regulatory RNA elements. Here we present an RNA-Seq based study considering selected phases of an industry-oriented fermentation of Bacillus licheniformis. A detailed analysis of 20 strand-specific RNA-Seq datasets revealed a multitude of transcriptionally active genomic regions. 3314 RNA features encoded by such active loci have been identified and sorted into ten functional classes. The identified sequences include the expected RNA features like housekeeping sRNAs, metabolic riboswitches and RNA switches well known from studies on Bacillus subtilis as well as a multitude of completely new candidates for regulatory RNAs. An unexpectedly high number of 855 RNA features are encoded antisense to annotated protein and RNA genes, in addition to 461 independently transcribed small RNAs. These antisense transcripts contain molecules with a remarkable size range variation from 38 to 6348 base pairs in length. The genome of the type strain B. licheniformis DSM13 was completely reannotated using data obtained from RNA-Seq analyses and from public databases. The hereby generated data-sets represent a solid amount of knowledge on the dynamic transcriptional activities during the investigated fermentation stages. The identified regulatory elements enable research on the understanding and the optimization of crucial metabolic activities during a productive fermentation of Bacillus licheniformis strains.

  13. High-Level Heat Resistance of Spores of Bacillus amyloliquefaciens and Bacillus licheniformis Results from the Presence of a spoVA Operon in a Tn1546 Transposon

    PubMed Central

    Berendsen, Erwin M.; Koning, Rosella A.; Boekhorst, Jos; de Jong, Anne; Kuipers, Oscar P.; Wells-Bennik, Marjon H. J.

    2016-01-01

    Bacterial endospore formers can produce spores that are resistant to many food processing conditions, including heat. Some spores may survive heating processes aimed at production of commercially sterile foods. Recently, it was shown that a spoVA operon, designated spoVA2mob, present on a Tn1546 transposon in Bacillus subtilis, leads to profoundly increased wet heat resistance of B. subtilis spores. Such Tn1546 transposon elements including the spoVA2mob operon were also found in several strains of Bacillus amyloliquefaciens and Bacillus licheniformis, and these strains were shown to produce spores with significantly higher resistances to wet heat than their counterparts lacking this transposon. In this study, the locations and compositions of Tn1546 transposons encompassing the spoVA2mob operons in B. amyloliquefaciens and B. licheniformis were analyzed. Introduction of these spoVA2mob operons into B. subtilis 168 (producing spores that are not highly heat resistant) rendered mutant 168 strains that produced high-level heat resistant spores, demonstrating that these elements in B. amyloliquefaciens and B. licheniformis are responsible for high level heat resistance of spores. Assessment of growth of the nine strains of each species between 5.2°C and 57.7°C showed some differences between strains, especially at lower temperatures, but all strains were able to grow at 57.7°C. Strains of B. amyloliquefaciens and B. licheniformis that contain the Tn1546 elements (and produce high-level heat resistant spores) grew at temperatures similar to those of their Tn1546-negative counterparts that produce low-level heat resistant spores. The findings presented in this study allow for detection of B. amyloliquefaciens and B. licheniformis strains that produce highly heat resistant spores in the food chain. PMID:27994575

  14. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase.

    PubMed

    Cai, D; Wei, X; Qiu, Y; Chen, Y; Chen, J; Wen, Z; Chen, S

    2016-09-01

    Nattokinase is an enzyme produced by Bacillus licheniformis and has potential to be used as a drug for treating cardiovascular disease due to its beneficial effects of preventing fibrin clots etc. However, the low activity and titre of this protein produced by B. licheniformis often hinders its application of commercial production. The aim of this work is to improve the nattokinase production by manipulating signal peptides and signal peptidases in B. licheniformis. The P43 promoter, amyL terminator and AprN target gene were used to form the nattokinase expression vector, pHY-SP-NK, which was transformed into B. licheniformis and nattokinase was expressed successfully. A library containing 81 predicted signal peptides was constructed for nattokinase expression in B. licheniformis, with the maximum activity being obtained under the signal peptide of AprE. Among four type I signal peptidases genes (sipS, sipT, sipV, sipW) in B. licheniformis, the deletion of sipV resulted in a highest decrease in nattokinase activity. Overexpression of sipV in B. licheniformis led to a nattokinase activity of 35·60 FU ml(-1) , a 4·68-fold improvement over activity produced by the initial strain. This work demonstrates the potential of B. licheniformis for industrial production of nattokinase through manipulation of signal peptides and signal peptidases expression. This study has screened the signal peptides of extracellular proteins of B. licheniformis for nattokinase production. Four kinds of Type I signal peptidases genes have been detected respectively in B. licheniformis to identify which one played the vital role for nattokinase production. This study provided a promising strain for industry production of nattokinase. © 2016 The Society for Applied Microbiology.

  15. Nitrous oxide emission by the non-denitrifying, nitrate ammonifier Bacillus licheniformis.

    PubMed

    Sun, Yihua; De Vos, Paul; Heylen, Kim

    2016-01-19

    Firmicutes have the capacity to remove excess nitrate from the environment via either denitrification, dissimilatory nitrate reduction to ammonium or both. The recent renewed interest in their nitrogen metabolism has revealed many interesting features, the most striking being their wide variety of dissimilatory nitrate reduction pathways. In the present study, nitrous oxide production from Bacillus licheniformis, a ubiquitous Gram-positive, spore-forming species with many industrial applications, is investigated. B. licheniformis has long been considered a denitrifier but physiological experiments on three different strains demonstrated that nitrous oxide is not produced from nitrate in stoichiometric amounts, rather ammonium is the most important end-product, produced during fermentation. Significant strain dependency in end-product ratios, attributed to nitrite and ammonium, and medium dependency in nitrous oxide production were also observed. Genome analyses confirmed the lack of a nitrite reductase to nitric oxide, the key enzyme of denitrification. Based on the gene inventory and building on knowledge from other non-denitrifying nitrous oxide emitters, hypothetical pathways for nitrous oxide production, involving NarG, NirB, qNor and Hmp, are proposed. In addition, all publically available genomes of B. licheniformis demonstrated similar gene inventories, with specific duplications of the nar operon, narK and hmp genes as well as NarG phylogeny supporting the evolutionary separation of previously described distinct BALI1 and BALI2 lineages. Using physiological and genomic data we have demonstrated that the common soil bacterium B. licheniformis does not denitrify but is capable of fermentative dissimilatory nitrate/nitrite reduction to ammonium (DNRA) with concomitant production of N2O. Considering its ubiquitous nature and non-fastidious growth in the lab, B. licheniformis is a suitable candidate for further exploration of the actual mechanism of N2O

  16. Purification and characterization of gamma poly glutamic acid from newly Bacillus licheniformis NRC20.

    PubMed

    Tork, Sanaa E; Aly, Magda M; Alakilli, Saleha Y; Al-Seeni, Madeha N

    2015-03-01

    γ-poly glutamic acid (γ-PGA) has received considerable attention for pharmaceutical and biomedical applications. γ-PGA from the newly isolate Bacillus licheniformis NRC20 was purified and characterized using diffusion distance agar plate, mass spectrometry and thin layer chromatography. All analysis indicated that γ-PGA is a homopolymer composed of glutamic acid. Its molecular weight was determined to be 1266 kDa. It was composed of L- and D-glutamic acid residues. An amplicon of 3050 represents the γ-PGA-coding genes was obtained, sequenced and submitted in genbank database. Its amino acid sequence showed high similarity with that obtained from B. licheniformis strains. The bacterium NRC 20 was independent of L-glutamic acid but the polymer production enhanced when cultivated in medium containing L-glutamic acid as the sole nitrogen source. Finally we can conclude that γ-PGA production from B. licheniformis NRC20 has many promised applications in medicine, industry and nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Separation and determination of peptide metabolite of Bacillus licheniformis in a microbial fuel cell by high-speed capillary micellar electrokinetic chromatography.

    PubMed

    Wang, Wei; Bai, Ruiguang; Cai, Xiaoyu; Lin, Ping; Ma, Lihong

    2017-11-01

    A method using high-speed capillary micellar electrokinetic chromatography and a microbial fuel cell was applied to determine the metabolite of the peptides released by Bacillus licheniformis. Two peptides, l-carnosine and l-alanyl-l-glutamine were used as the substrate to feed Bacillus licheniformis in a microbial fuel cell. The metabolism process of the bacterium was monitored by analyzing the voltage outputs of the microbial fuel cell. A home-made spontaneous injection device was applied to perform high-speed capillary micellar electrokinetic chromatography. Under the optimized conditions, tryptophan, glycine, valine, tyrosine and the two peptides could be rapidly separated within 2.5 min with micellar electrokinetic chromatography mode. Then the method was applied to analyze the solutions sampled from the microbial fuel cell. After 92 h running, valine, as the metabolite, was successfully detected with concentration 3.90 × 10 -5 M. The results demonstrated that Bacillus licheniformis could convert l-carnosine and l-alanyl-l-glutamine into valine. The method employed in this work was proved to have great potential in analysis of metabolites, such as amino acids, for microorganisms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enhancement of L-valine production in Bacillus licheniformis by blocking three branched pathways.

    PubMed

    Liang, Chengwen; Huo, Yanli; Qi, Gaofu; Wei, Xuetuan; Wang, Qin; Chen, Shouwen

    2015-06-01

    Bacillus licheniformis WX-02 is used for the production of many valuable chemicals. Here, we have sought to improve L-valine production by blocking the metabolic pathways related to branched-chain amino acids. The synthesis genes of L-leucine (leuA) and L-isoleucine (ilvA) were deleted to obtain mutant strains. L-Valine yields of WX-02ΔleuA and WX-02ΔilvA reached 33.2 and 21.1 mmol/l, respectively, which are 22 and 14 times higher than the wild-type WX-02 (1.53 mmol/l). After further deletion of L-lactate dehydrogenase gene (ldh) from WX-02ΔleuA, the productivity reached 0.47 mmol/l h, an increase of 19 %. We provide a possibility to over-produce L-valine using genetically-modified B. licheniformis using remodeling of the biosynthetic pathway to L-valine.

  19. Production and deactivation of biosurfactant by Bacillus licheniformis JF-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Sungchyr; Sharma, M.M.; Georgiou, G.

    Bacillus licheniformis JF-2 produces a lipopeptide surfactant with excellent interfacial properties (Lin et al., 1990, 1992). An HPLC assay was developed to monitor the concentration of the lipopeptide in the fermentation broth and was employed to determine the effect of the composition of the growth medium on biosurfactant production. A maximum concentration of 110 mg/L lipopeptide was obtained in optimized media with 1.0% (w/v) glucose as the carbon source. The maximum amount of surfactant was obtained in early stationary-phase cultures, but subsequently decreased rapidly and disappeared completely from the fermentation broth within 8 h. It was shown that the surfactantmore » is chemically stable in the culture supernatant but becomes internalized by stationary-phase cells. The apparent rate of surfactant internalization was not inhibited by carbonyl cyanide (m-chlorophenyl)hydrazone (CCCP), an uncoupler of oxidative phosphorylation, suggesting that it is not dependent on the availability of ATP and/or a charged membrane. A variety of physical and chemical treatments failed to release the surfactant from the cells. In minimal media the rate of surfactant internalization could be reduced by optimizing the concentration of phosphate and by increasing the amount of magnesium, whereas the nitrogen source, calcium, and trace salts had no effect. Since a related lipopeptide has been shown to be responsible for DNA transformation competence in certain Bacillus subtilis strains, it is possible that the internalization of the B. licheniformis JF-2 surfactant may be a developmentally important process related to the ability of the cells to take up extraneous DNA. 21 refs., 8 figs.« less

  20. Polygalacturonase: production of pectin depolymerising enzyme from Bacillus licheniformis KIBGE IB-21.

    PubMed

    Rehman, Haneef Ur; Qader, Shah Ali Ul; Aman, Afsheen

    2012-09-01

    Polygalacturonase is an enzyme that hydrolyzes external and internal α (1-4) glycosidic bonds of pectin to decrease the viscosity of fruits juices and vegetable purees. Several bacterial strains were isolated from soil and rotten vegetables and screened for polygalacturonase production. The strain which produced maximum polygalacturonase was identified Bacillus licheniformis on the basis of taxonomic studies and 16S rDNA analysis. The isolated bacterial strain produced maximum polygalacturonase at 37 °C after 48 h of fermentation. Among various carbon sources apple pectin (1.0%) showed maximum enzyme production. Different agro industrial wastes were also used as substrate in batch fermentation and it was found that wheat bran is capable of producing high yield of enzyme. Maximum polygalacturonase production was obtained by using yeast extract (0.3%) as a nitrogen source. It was observed that B. licheniformis KIBGE IB-21 is capable of producing 1015 U/mg of polygalacturonase at neutral pH. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. In vitro Ca(2+)-dependent maturation of milk-clotting recombinant Epr: minor extracellular protease: from Bacillus licheniformis.

    PubMed

    Ageitos, José Manuel; Vallejo, Juan Andrés; Serrat, Manuel; Sánchez-Pérez, Angeles; Villa, Tomás G

    2013-06-01

    The minor extracellular protease (Epr) is secreted into the culture medium during Bacillus licheniformis, strain USC13, stationary phase of growth. Whereas, B. subtilis Epr has been reported to be involved in swarming; the B. licheniformis protease is also involved in milk-clotting as shown by the curd forming ability of culture broths expressing this protein. The objectives of this study are the characterization of recombinant B. licheniformis Epr (minor extracellular protease) and the determination of its calcium-dependent activation process. In this work, we have cloned and expressed B. licheniformis Epr in Escherichia coli. We were also able to construct a tridimensional model for Epr based on its homology to Thermococcus kodakarensis pro-tk-subtilisin 2e1p, fervidolysin from Fervidobacterium pennivorans 1rv6, and B. lentus 1GCI subtilisin. Recombinant Epr was accumulated into inclusion bodies; after protein renaturation, Epr undergoes an in vitro calcium-dependent activation, similar to that described for tk protease. The recombinant Epr is capable of producing milk curds with the same clotting activity previously described for the native B. licheniformis Epr enzyme although further rheological and industrial studies should be carried out to confirm its real applicability. This work represents for the first time that Epr may be successfully expressed in a non-bacilli microorganism.

  2. Chitosanase purified from bacterial isolate Bacillus licheniformis of ruined vegetables displays broad spectrum biofilm inhibition.

    PubMed

    Muslim, Sahira Nsayef; Al-Kadmy, Israa M S; Hussein, Nadheema Hammood; Mohammed Ali, Alaa Naseer; Taha, Buthainah Mohammed; Aziz, Sarah Naji; Kheraif, Abdulaziz Abdullah Al; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar

    2016-11-01

    A number of bacterial species produces chitosanases which has variety of applications because of its high biodegradability, non-toxicity and antimicrobial assets. In the present study chitosanase is purified from new bacterial species Bacillus licheniformis from spoiled vegetable. This novel strain of Bacillus licheniformis isolated from spoilt cucumber and pepper samples has the ability to produce the chitosanase enzyme when grown on chitosan substrate. Study also examined its antibiofilm properties against diverse bacterial species with biofilm forming ability. The purified chitosanase inhibited the biofilm formation ability for all Gram-negative and Gram-positive biofilm-forming bacteria [biofilm producers] tested in this study in congo red agar and microtiter plate's methods. Highly antibiofilm activity of chitosanase was recorded against Pseudomonas aeruginosa followed by Klebsiella pneumoniae with reduction of biofilm formation upto 22 and 29%, respectively compared with [100] % of control. Biofilm formation has multiple role including ability to enhance resistance and self-protection from external stress. This chitosanase has promising benefit as antibiofilm agent against biofilm forming pathogenic bacteria and has promising application as alternative antibiofilm agents to combat the growing number of multidrug resistant pathogen-associated infections, especially in situation where biofilms are involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Structural characterization of Bacillus licheniformis Dahb1 exopolysaccharide-antimicrobial potential and larvicidal activity on malaria and Zika virus mosquito vectors.

    PubMed

    Abinaya, Muthukumar; Vaseeharan, Baskaralingam; Divya, Mani; Vijayakumar, Sekar; Govindarajan, Marimuthu; Alharbi, Naiyf S; Khaled, Jamal M; Al-Anbr, Mohammed N; Benelli, Giovanni

    2018-04-27

    Microbial polysaccharides produced by marine species play a key role in food and cosmetic industry, as they are nontoxic and biodegradable polymers. This investigation reports the isolation of exopolysaccharide from Bacillus licheniformis Dahb1 and its biomedical applications. Bacillus licheniformis Dahb1 exopolysaccharide (Bl-EPS) was extracted using the ethanol precipitation method and structurally characterized. FTIR and 1 H-NMR pointed out the presence of various functional groups and primary aromatic compounds, respectively. Bl-EPS exhibited strong antioxidant potential confirmed via DPPH radical, reducing power and superoxide anion scavenging assays. Microscopic analysis revealed that the antibiofilm activity of Bl-EPS (75 μg/ml) was higher against Gram-negative (Pseudomonas aeruginosa and Proteus vulgaris) bacteria over Gram-positive species (Bacillus subtilis and Bacillus pumilus). Bl-EPS led to biofilm inhibition against Candida albicans when tested at 75 μg/ml. The hemolytic assay showed low cytotoxicity of Bl-EPS at 5 mg/ml. Besides, Bl-EPS achieved LC 50 values < 80 μg/ml against larvae of mosquito vectors Anopheles stephensi and Aedes aegypti. Overall, our findings pointed out the multipurpose bioactivity of Bl-EPS, which deserves further consideration for pharmaceutical, environmental and entomological applications.

  4. The difference in in vivo sensitivity between Bacillus licheniformis PerR and Bacillus subtilis PerR is due to the different cellular environments.

    PubMed

    Kim, Jung-Hoon; Won, Young-Bin; Ji, Chang-Jun; Yang, Yoon-Mo; Ryu, Su-Hyun; Ju, Shin-Yeong; Kwon, Yumi; Lee, Yeh-Eun; Lee, Jin-Won

    2017-02-26

    PerR, a member of Fur family of metal-dependent regulators, is a major peroxide sensor in many Gram positive bacteria, and controls the expression of genes involved in peroxide resistance. Bacillus licheniformis, a close relative to the well-studied model organism Bacillus subtilis, contains three PerR-like proteins (PerR BL , PerR2 and PerR3) in addition to Fur and Zur. In the present study, we characterized the role of PerR BL in B. licheniformis. In vitro and in vivo studies indicate that PerR BL , like PerR BS , uses either Fe 2+ or Mn 2+ as a corepressor and only the Fe 2+ -bound form of PerR BL senses low levels of H 2 O 2 by iron-mediated histidine oxidation. Interestingly, regardless of the difference in H 2 O 2 sensitivity, if any, between PerR BL and PerR BS , B. licheniformis expressing PerR BL or PerR BS could sense lower levels of H 2 O 2 and was more sensitive to H 2 O 2 than B. subtilis expressing PerR BL or PerR BS . This result suggests that the differences in cellular milieu between B. subtilis and B. licheniformis, rather than the intrinsic differences in PerR BS and PerR BL per se, affect the H 2 O 2 sensing ability of PerR inside the cell and the H 2 O 2 resistance of cell. In contrast, B. licheniformis and B. subtilis expressing Staphylococcus aureus PerR (PerR SA ), which is more sensitive to H 2 O 2 than PerR BL and PerR BS , were more resistant to H 2 O 2 than those expressing either PerR BL or PerR BS . This result indicates that the sufficient difference in H 2 O 2 susceptibility of PerR proteins can override the difference in cellular environment and affect the resistance of cell to H 2 O 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Biochemical Characterization of An Arginine-Specific Alkaline Trypsin from Bacillus licheniformis.

    PubMed

    Gong, Jin-Song; Li, Wei; Zhang, Dan-Dan; Xie, Min-Feng; Yang, Biao; Zhang, Rong-Xian; Li, Heng; Lu, Zhen-Ming; Xu, Zheng-Hong; Shi, Jin-Song

    2015-12-17

    In the present study, we isolated a trypsin-producing strain DMN6 from the leather waste and identified it as Bacillus licheniformis through a two-step screening strategy. The trypsin activity was increased up to 140 from 20 U/mL through culture optimization. The enzyme was purified to electrophoretic homogeneity with a molecular mass of 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the specific activity of purified enzyme is 350 U/mg with Nα-Benzoyl-L-arginine ethylester as the substrate. The optimum temperature and pH for the trypsin are 65 °C and pH 9.0, respectively. Also, the enzyme can be significantly activated by Ba(2+). This enzyme is relatively stable in alkaline environment and displays excellent activity at low temperatures. It could retain over 95% of enzyme activity after 180 min of incubation at 45 °C. The distinguished activity under low temperature and prominent stability enhance its catalytic potential. In the current work, the open reading frame was obtained with a length of 1371 nucleotides that encoded a protein of 456 amino acids. These data would warrant the B. licheniformis trypsin as a promising candidate for catalytic application in collagen preparation and leather bating through further protein engineering.

  6. Effect of amino acids on tannase biosynthesis by Bacillus licheniformis KBR6.

    PubMed

    Mohapatra, Pradeep K Das; Pati, Bikas R; Mondal, Keshab C

    2009-04-01

    Microbial tannase (tannin acyl hydrolase, EC 3.1.1.20), a hydrolysable tannin-degrading enzyme, has gained importance in various industrial processes, and is used extensively in the manufacture of instant tea, beer, wine, and gallic acid. Tannase is an inducible enzyme, and hydrolysable tannin, especially tannic acid, is the sole inducer. This study is of the effect of various amino acids and their analogues on tannase biosynthesis by Bacillus licheniformis KBR6 to ascertain the mode of action of these growth factors on tannase biosynthesis from microbial origin. Enzyme production was carried out in enriched tannic acid medium through submerged fermentation for 20 h at 35 degrees C. Different amino acids at a concentration of 0.05 g% (w/v) were added to the culture medium immediately after sterilization. Culture supernatant was used as the source of the enzyme and the quantity of tannase was estimated by the colorimetric assay method. Growth of the organism was estimated according to biomass dry weight. Maximum tannase (2.87-fold that of the control) was synthesized by B. licheniformis KBR6 when alanine was added to the culture medium. Other amino acids, such as DL-serine, L-cystine, glycine, L-ornithine, aspartic acid, L-glutamic acid, DL-valine, L-leucine and L-lysine, also induced tannase synthesis. L-Cysteine monohydrochloride and DL-threonine were the most potent inhibitors. Regulation of tannase biosynthesis by B. licheniformis in the presence of various amino acids is shown. This information will be helpful for formulating an enriched culture medium for industrial-scale tannase production.

  7. Draft Genome Sequence of Bacillus licheniformis Strain YNP1-TSU Isolated from Whiterock Springs in Yellowstone National Park

    PubMed Central

    O'Hair, Joshua A.; Li, Hui; Thapa, Santosh; Scholz, Matthew B.

    2017-01-01

    ABSTRACT Novel cellulolytic microorganisms can potentially influence second-generation biofuel production. This paper reports the draft genome sequence of Bacillus licheniformis strain YNP1-TSU, isolated from hydrothermal-vegetative microbiomes inside Yellowstone National Park. The assembled sequence contigs predicted 4,230 coding genes, 66 tRNAs, and 10 rRNAs through automated annotation. PMID:28254968

  8. Application of Oxygen-Enriched Aeration in the Production of Bacitracin by Bacillus licheniformis

    PubMed Central

    Flickinger, M. C.; Perlman, D.

    1979-01-01

    The physiological effects of controlling the dissolved oxygen tension at 0.01, 0.02, and 0.05 atm by the use of oxygen-enriched aeration were investigated during growth and bacitracin production by Bacillus licheniformis ATCC 10716. Up to a 2.35-fold increase in the final antibiotic yield and a 4-fold increase in the rate of bacitracin synthesis were observed in response to O2-enriched aeration. The increase in antibiotic production was accompanied by increased respiratory activity and an increase in the specific productivity of the culture from 1.3 to 3.6 g of antibiotic per g of cell mass produced. Oxygen enrichment of the aeration decreased medium carbohydrate uptake and the maximum specific growth rate of B. licheniformis from 0.6 h−1 to as low as 0.15 h−1, depending upon the level of enrichment and the conditions of oxygen transfer rate (impeller speed). The response of this culture to O2 enrichment suggests that this method of controlling the dissolved oxygen tension for antibiotic-producing cultures may simulate conditions that would occur if the carbon source were fed slowly, as is often employed to optimize antibiotic production. Analysis of the biologically active bacitracins produced by B. licheniformis ATCC 10716 suggested that the ratio of biologically active peptides was not changed by O2 enrichment, nor were any new biologically active compounds formed. Images PMID:34361

  9. Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making.

    PubMed

    Wang, Peng; Wu, Qun; Jiang, Xuejian; Wang, Zhiqiang; Tang, Jingli; Xu, Yan

    2017-06-05

    Chinese liquor is produced from spontaneous fermentation starter (Daqu) that provides the microbes, enzymes and flavors for liquor fermentation. To improve the flavor character of Daqu, we inoculated Bacillus licheniformis and studied the effect of this strain on the community structure and metabolic profile in Daqu fermentation. The microbial relative abundance changed after the inoculation, including the increase in Bacillus, Clavispora and Aspergillus, and the decrease in Pichia, Saccharomycopsis and some other genera. This variation was also confirmed by pure culture and coculture experiments. Seventy-three metabolites were identified during Daqu fermentation process. After inoculation, the average content of aromatic compounds were significantly enriched from 0.37mg/kg to 0.90mg/kg, and the average content of pyrazines significantly increased from 0.35mg/kg to 5.71mg/kg. The increase in pyrazines was positively associated with the metabolism of the inoculated Bacillus and the native genus Clavispora, because they produced much more pyrazines in their cocultures. Whereas the increase in aromatic compounds might be related to the change of in situ metabolic activity of several native genera, in particular, Aspergillus produced more aromatic compounds in cocultures with B. licheniformis. It indicated that the inoculation of B. licheniformis altered the flavor character of Daqu by both its own metabolic activity and the variation of in situ metabolic activity. Moreover, B. licheniformis inoculation influenced the enzyme activity of Daqu, including the significant increase in amylase activity (from 1.3gstarch/g/h to 1.7gstarch/g/h), and the significant decrease in glucoamylase activity (from 627.6mgglucose/g/h to 445.6mgglucose/g/h) and esterase activity (from 28.1mgethylcaproate/g/100h to 17.2mgethylcaproate/g/100h). These effects of inoculation were important factors for regulating the metabolism of microbial communities, hence for improving the flavor profile

  10. Improving the reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase through stabilizing a long loop in domain B.

    PubMed

    Li, Zhu; Duan, Xuguo; Chen, Sheng; Wu, Jing

    2017-01-01

    The reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase were improved through site-directed mutagenesis. By using multiple sequence alignment and PoPMuSiC algorithm, Ser187 and Asn188, which located within a long loop in Domain B of Bacillus licheniformis α-amylase, were selected for mutation. In addition, Ala269, which is adjacent to Ser187 and Asn188, was also investigated. Seven mutants carrying the mutations S187D, N188T, N188S, A269K, A269K/S187D, S187D/N188T, and A269K/S187D/N188T were generated and characterized. The most thermostable mutant, A269K/S187D/N188T, exhibited a 9-fold improvement in half-life at 95°C and pH 5.5, compared with that of the wild-type enzyme. Mutant A269K/S187D/N188T also exhibited improved catalytic efficiency. The catalytic efficiency of mutant A269K/S187D/N188T reached 5.87×103±0.17 g·L-1·s-1 at pH 5.5, which is 1.84-fold larger than the corresponding value determined for the wild-type enzyme. Furthermore, the structure analysis showed that immobilization of the loop containing Ser187 and Asn188 plays a significant role in developing the properties of Bacillus licheniformis α-amylase.

  11. Improving the reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase through stabilizing a long loop in domain B

    PubMed Central

    Li, Zhu; Duan, Xuguo; Chen, Sheng; Wu, Jing

    2017-01-01

    The reversibility of thermal denaturation and catalytic efficiency of Bacillus licheniformis α-amylase were improved through site-directed mutagenesis. By using multiple sequence alignment and PoPMuSiC algorithm, Ser187 and Asn188, which located within a long loop in Domain B of Bacillus licheniformis α-amylase, were selected for mutation. In addition, Ala269, which is adjacent to Ser187 and Asn188, was also investigated. Seven mutants carrying the mutations S187D, N188T, N188S, A269K, A269K/S187D, S187D/N188T, and A269K/S187D/N188T were generated and characterized. The most thermostable mutant, A269K/S187D/N188T, exhibited a 9-fold improvement in half-life at 95°C and pH 5.5, compared with that of the wild-type enzyme. Mutant A269K/S187D/N188T also exhibited improved catalytic efficiency. The catalytic efficiency of mutant A269K/S187D/N188T reached 5.87×103±0.17 g·L-1·s-1 at pH 5.5, which is 1.84-fold larger than the corresponding value determined for the wild-type enzyme. Furthermore, the structure analysis showed that immobilization of the loop containing Ser187 and Asn188 plays a significant role in developing the properties of Bacillus licheniformis α-amylase. PMID:28253342

  12. Draft Genome Sequence of Bacillus licheniformis Strain GB2, a Hydrocarbon-Degrading and Plant Growth-Promoting Soil Bacterium.

    PubMed

    Gkorezis, Panagiotis; Van Hamme, Jonathan; Bottos, Eric; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Sillen, Wouter; Vangronsveld, Jaco

    2016-06-23

    We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations. Copyright © 2016 Gkorezis et al.

  13. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945.

    PubMed

    Mitsunaga, Hitoshi; Meissner, Lena; Palmen, Thomas; Bamba, Takeshi; Büchs, Jochen; Fukusaki, Eiichiro

    2016-04-01

    Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Modeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH.

    PubMed

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; Leguérinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-05-01

    Although sporulation environmental factors are known to impact on Bacillus spore heat resistance, they are not integrated into predictive models used to calculate the efficiency of heating processes. This work reports the influence of temperature and pH encountered during sporulation on heat resistance of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 spores. A decrease in heat resistance (δ) was observed for spores produced either at low temperature, at high temperature or at acidic pH. Sporulation temperature and pH maximizing the spore heat resistance were identified. Heat sensitivity (z) was not modified whatever the sporulation environmental factors were. A resistance secondary model inspired by the Rosso model was proposed. Sporulation temperatures and pHs minimizing or maximizing the spore heat resistance (T(min(R)), T(opt(R)), T(max(R)), pH(min(R)) and pH(opt(R))) were estimated. The goodness of the model fit was assessed for both studied strains and literature data. The estimation of the sporulation temperature and pH maximizing the spore heat resistance is of great interest to produce spores assessing the spore inactivation in the heating processes applied by the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium

    USDA-ARS?s Scientific Manuscript database

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known abou...

  16. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  17. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  18. Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milk production and young lamb mortality.

    PubMed

    Kritas, S K; Govaris, A; Christodoulopoulos, G; Burriel, A R

    2006-05-01

    The purpose of this pilot study was to evaluate under field conditions the effect of a probiotic containing Bacillus licheniformis and Bacillus subtilis on young lamb mortality and sheep milk production when administered in the late pregnancy and lactation feed of ewes. In a sheep farm, two groups of milking ewes with identical genetic material, management, nutrition, health status and similar production characteristics were formed. One group (46 ewes) served as control, while the other one (48 ewes) served as a probiotic-treated group. Both groups of ewes received a similar feeding regiment, but the ewes of the second group were additionally offered a probiotic product containing B. licheniformis and B. subtilis (BioPlus 2B, Chr. Hansen, Denmark) at the approximate dose of 2.56 x 10(9) viable spores per ewe per day. Lamb mortality during the 1.5 months suckling period, and milk yield during the 2 months of milk collection for commercial purposes have been recorded. In the non-treated control group, 13.1% mortality was observed versus 7.8% in the probiotic-treated group (P = 0.33), with mortality being mainly due to diarrhoea. Microbiological examination of diarrhoeic faeces from some of the dead lambs in both groups revealed the presence of Escherichia coli. The average daily milk yield per ewe was significantly lower in the control group (0.80 l) than that in the probiotic-treated group (0.93 l) (P < 0.05). Fat and protein content of milk in ewes that received probiotics was significantly (P < 0.05) increased compared with untreated ewes. It was concluded that supplementing ewe's feed with probiotics may have beneficial effect on subsequent milk yields, fat and protein content.

  19. Draft Genome Sequences of Three Cellulolytic Bacillus licheniformis Strains Isolated from Imperial Geyser, Amphitheater Springs, and Whiterock Springs inside Yellowstone National Park

    PubMed Central

    O' Hair, Joshua A.; Li, Hui; Thapa, Santosh; Scholz, Matthew

    2017-01-01

    ABSTRACT Novel cellulolytic microorganisms are becoming more important for rapidly growing biofuel industries. This paper reports the draft genome sequences of Bacillus licheniformis strains YNP2-TSU, YNP3-TSU, and YNP5-TSU. These cellulolytic isolates were collected from several hydrothermal features inside Yellowstone National Park. PMID:28360181

  20. The inability of Bacillus licheniformis perR mutant to grow is mainly due to the lack of PerR-mediated fur repression.

    PubMed

    Kim, Jung-Hoon; Yang, Yoon-Mo; Ji, Chang-Jun; Ryu, Su-Hyun; Won, Young-Bin; Ju, Shin-Yeong; Kwon, Yumi; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2017-06-01

    PerR, a member of Fur family protein, is a metal-dependent H 2 O 2 sensing transcription factor that regulates genes involved in peroxide stress response. Industrially important bacterium Bacillus licheniformis contains three PerR-like proteins (PerR BL , PerR2, and PerR3) compared to its close relative Bacillus subtilis. Interestingly, unlike other bacteria including B. subtilis, no authentic perR BL null mutant could be established for B. licheniformis. Thus, we constructed a conditional perR BL mutant using a xylose-inducible promoter, and investigated the genes under the control of PerR BL . PerR BL regulon genes include katA, mrgA, ahpC, pfeT, hemA, fur, and perR as observed for PerR BS . However, there is some variation in the expression levels of fur and hemA genes between B. subtilis and B. licheniformis in the derepressed state. Furthermore, katA, mrgA, and ahpC are strongly induced, whereas the others are only weakly or not induced by H 2 O 2 treatment. In contrast to the B. subtilis perR null mutant which frequently gives rise to large colony phenotype mainly due to the loss of katA, the suppressors of B. licheniformis perR mutant, which can form colonies on LB agar, were all catalase-positive. Instead, many of the suppressors showed increased levels of siderophore production, suggesting that the suppressor mutation is linked to the fur gene. Consistent with this, perR fur double mutant could grow on LB agar without Fe supplementation, whereas perR katA double mutant could only grow on LB agar with Fe supplementation. Taken together, our data suggest that in B. licheniformis, despite the similarity in PerR BL and PerR BS regulon genes, perR is an essential gene required for growth and that the inability of perR null mutant to grow is mainly due to elevated expression of Fur.

  1. Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads.

    PubMed

    Mohapatra, P K D; Mondal, K C; Pati, B R

    2007-06-01

    The present study was aimed at finding the optimal conditions for immobilization of Bacillus licheniformis KBR6 cells in calcium-alginate (Ca-alginate) beads and determining the operational stability during the production of tannin-acyl-hydrolase (tannase) under semicontinous cultivation. The active cells of B. licheniformis KBR6 were immobilized in Ca-alginate and used for the production of tannase. The influence of alginate concentration (5, 10, 20 and 30 g l(-1)) and initial cell loading on enzyme production were studied. The production of tannase increased significantly with increasing alginate concentration and reached a maximum enzyme yield of 0.56 +/- 0.03 U ml(-1) at 20 g l(-1). This was about 1.70-fold higher than that obtained by free cells. The immobilized cells produced tannase consistently over 13 repeated cycles and reached a maximum level at the third cycle. Scanning electron microscope study indicated that the cells in Ca-alginate beads remain in normal shape. The Ca-alginate entrapment is a promising immobilization method of B. licheniformis KBR6 for repeated tannase production. Tannase production by immobilized cells is superior to that of free cells because it leads to higher volumetric activities within the same period of fermentation. This is the first report of tannase production from immobilized bacterial cells. The bacterium under study can produce higher amounts of tannase with respect to other fungal strains within a short cultivation period.

  2. Biotransformation of benzo[a]pyrene by the thermophilic bacterium Bacillus licheniformis M2-7.

    PubMed

    Guevara-Luna, Joseph; Alvarez-Fitz, Patricia; Ríos-Leal, Elvira; Acevedo-Quiroz, Macdiel; Encarnación-Guevara, Sergio; Moreno-Godinez, Ma Elena; Castellanos-Escamilla, Mildred; Toribio-Jiménez, Jeiry; Romero-Ramírez, Yanet

    2018-06-09

    Benzo[a]pyrene (BaP) is recognized as a potentially carcinogenic and mutagenic hydrocarbon, and thus, its removal from the environment is a priority. The use of thermophilic bacteria capable of biodegrading or biotransforming this compound to less toxic forms has been explored in recent decades, since it provides advantages compared to mesophilic organisms. This study assessed the biotransformation of BaP by the thermophilic bacterium Bacillus licheniformis M2-7. Our analysis of the biotransformation process mediated by strain M2-7 on BaP shows that it begins during the first 3 h of culture. The gas chromatogram of the compound produced shows a peak with a retention time of 17.38 min, and the mass spectra shows an approximate molecular ion of m/z 167, which coincides with the molecular weight of the chemical formula C 6 H 4 (COOH) 2 , confirming a chemical structure corresponding to phthalic acid. Catechol 2,3-dioxygenase (C23O) enzyme activity was detected in minimal saline medium supplemented with BaP (0.33 U mg -1 of protein). This finding suggests that B. licheniformis M2-7 uses the meta pathway for biodegrading BaP using the enzyme C23O, thereby generating phthalic acid as an intermediate.

  3. In vitro antagonistic activity and the protective effect of probiotic Bacillus licheniformis Dahb1 in zebrafish challenged with GFP tagged Vibrio parahaemolyticus Dahv2.

    PubMed

    Girija, Vairavan; Malaikozhundan, Balasubramanian; Vaseeharan, Baskaralingam; Vijayakumar, Sekar; Gobi, Narayanan; Del Valle Herrera, Marian; Chen, Jiann-Chu; Santhanam, Perumal

    2018-01-01

    In vitro antagonistic activity and the protective effect of probiotic Bacillus licheniformis Dahb1 in zebrafish (Danio rerio) challenged with GFP tagged Vibrio parahaemolyticus Dahv2 was studied. The cell free extract of probiotic B. licheniformis Dahb1 at 100 μg mL -1 showed growth inhibition of V. parahaemolyticus Dahv2 in vitro. B. licheniformis Dahb1 also inhibited the biofilm growth of GFP tagged V. parahaemolyticus Dahv2 at 100 μg mL -1 in vitro. The growth and survival of zebrafish was tested using probiotic B. licheniformis Dahb1. Weight (1.28 g) of zebrafish that received the cell free extract was much higher than in control (1.04 g). The mortality of zebrafish infected with GFP tagged V. parahaemolyticus Dahv2 at 10 7 Cfu mL -1 (Group IV) was 100%, whereas a complete survival of zebrafish that received the cell free extract of B. licheniformis Dahb1 at 10 7 Cfu mL -1 (Group VII) was observed after 30 days. The number of GFP tagged V. parahaemolyticus Dahv2 colonies in the intestine and gills significantly reduced after treatment with the cell free extract of B. licheniformis Dahb1. Furthermore, a significant decrease in the fluorescent colonies of GFP tagged V. parahaemolyticus Dahv2 was observed after treatment with the cell free extract of B. licheniformis Dahb1 under confocal laser scanning microscopy (CLSM). In conclusion, the cell free extract of B. licheniformis Dahb1 could prevent Vibrio infection by enhancing the growth and survival of zebrafish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.

    PubMed

    Tian, Guangming; Wang, Qin; Wei, Xuetuan; Ma, Xin; Chen, Shouwen

    2017-04-01

    Poly-γ-glutamic acid (γ-PGA), a natural biopolymer, is widely used in cosmetics, medicine, food, water treatment, and agriculture owing to its features of moisture sequestration, cation chelation, non-toxicity and biodegradability. Intracellular glutamic acid, the substrate of γ-PGA, is a limiting factor for high yield in γ-PGA production. Bacillus subtilis and Bacillus licheniformis are both important γ-PGA producing strains, and B. subtilis synthesizes glutamic acid in vivo using the unique GOGAT/GS pathway. However, little is known about the glutamate synthesis pathway in B. licheniformis. The aim of this work was to characterize the glutamate dehydrogenase (RocG) in glutamic acid synthesis from B. licheniformis with both in vivo and in vitro experiments. By re-directing the carbon flux distribution, the rocG gene deletion mutant WX-02ΔrocG produced intracellular glutamic acid with a concentration of 90ng/log(CFU), which was only 23.7% that of the wild-type WX-02 (380ng/log(CFU)). Furthermore, the γ-PGA yield of mutant WX-02ΔrocG was 5.37g/L, a decrease of 45.3% compared to the wild type (9.82g/L). In vitro enzymatic assays of RocG showed that RocG has higher affinity for 2-oxoglutarate than glutamate, and the glutamate synthesis rate was far above degradation. This is probably the first study to reveal the glutamic acid synthesis pathway and the specific functions of RocG in B. licheniformis. The results indicate that γ-PGA production can be enhanced through improving intracellular glutamic acid synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Optimization of novel and greener approach for the coproduction of uricase and alkaline protease in Bacillus licheniformis by Box-Behnken model.

    PubMed

    Pawar, Shweta V; Rathod, Virendra K

    2018-01-02

    This study explores a novel concept of coproduction of uricase and alkaline protease by Bacillus licheniformis using single substrate in single step. Seven local bacterial strains were screened for uricase production, amongst which B. licheniformis is found to produce highest uricase along with alkaline protease. Optimization of various factors influencing maximum enzyme coproduction by B. licheniformis is performed. Maximum enzyme productivity of 0.386 U/mL uricase and 0.507 U/mL alkaline protease is obtained at 8 hr of incubation period, 1% (v/v) inoculum, and at 0.2% (w/v) uric acid when the organism is cultivated at 25°C, 180 rpm, in a media containing xylose as a carbon source, urea as a nitrogen source, and initial pH of 9.5. The statistical experimental design method of Box-Behnken was further applied to obtain optimal concentration of significant parameters such as pH (9.5), uric acid concentration (0.1%), and urea concentration (0.05%). The maximum uricase and alkaline protease production by B. licheniformis using Box-Behnken design was 0.616 and 0.582 U/mL, respectively, with 1.6- and 1.13-fold increase as compared to one factor at a time optimized media. This study will be useful to develop an economic, commercially viable, and scalable process for simultaneous production of uricase and protease enzymes.

  6. Hyperproduction of γ-glutamyl transpeptidase from Bacillus licheniformis ER15 in the presence of high salt concentration.

    PubMed

    Bindal, Shruti; Gupta, Rani

    2017-02-07

    Microbial γ-glutamyl transpeptidases (GGTs) have been exploited in biotechnological, pharmaceutical, and food sectors for the synthesis of various γ-glutamyl compounds. But, till date, no bacterial GGTs are commercially available in the market because of lower levels of production from various sources. In the current study, production of GGT from Bacillus licheniformis ER15 was investigated to achieve high GGT titers. Hyperproduction of GGT from B. licheniformis ER15 was achieved with 6.4-fold enhancement (7921.2 ± 198.7 U/L) by optimization of culture medium following one-variable-at-a-time strategy and statistical approaches. Medium consisting of Na 2 HPO 4 : 0.32% (w/v); KH 2 PO 4 : 0.15% (w/v); starch: 0.1% (w/v); soybean meal: 0.5% (w/v); NaCl: 4.0% (w/v), and MgCl 2 : 5 mM was found to be optimal for maximum GGT titers. Maximum GGT titers were obtained, in the optimized medium at 37°C and 200 rpm, after 40 h. It was noteworthy that GGT production was a linear function of sodium chloride concentration, as observed during response surface methodology. While investigating the role of NaCl on GGT production, it was found that NaCl drastically decreased subtilisin concentration and indirectly increasing GGT recovery. B. licheniformis ER15 is proved to be a potential candidate for large-scale production of GGT enzyme and its commercialization.

  7. GFP tagged Vibrio parahaemolyticus Dahv2 infection and the protective effects of the probiotic Bacillus licheniformis Dahb1 on the growth, immune and antioxidant responses in Pangasius hypophthalmus.

    PubMed

    Gobi, Narayanan; Malaikozhundan, Balasubramanian; Sekar, Vijayakumar; Shanthi, Sathappan; Vaseeharan, Baskaralingam; Jayakumar, Rengarajan; Khudus Nazar, Abdul

    2016-05-01

    In this study, the pathogenicity of GFP tagged Vibrio parahaemolyticus Dahv2 and the protective effect of the probiotic strain, Bacillus licheniformis Dahb1 was studied on the Asian catfish, Pangasius hypophthalmus. The experiment was carried out for 24 days with three groups and one group served as the control (without treatment). In the first group, P. hypophthalmus was orally infected with 1 mL of GFP tagged V. parahaemolyticus Dahv2 at two different doses (10(5) and 10(7) cfu mL(-1)). In the second group, P. hypophthalmus was orally administrated with 1 ml of the probiotic B. licheniformis Dahb1 at two different doses (10(5) and 10(7) cfu mL(-1)). In the third group, P. hypophthalmus was orally infected first with 1 mL of GFP tagged V. parahaemolyticus Dahv2 followed by the administration of 1 mL of B. licheniformis Dahb1 (combined treatment) at two different doses (10(5) and 10(7) cfu mL(-1)). The growth, immune (myeloperoxidase, respiratory burst, natural complement haemolytic and lysozyme activity) and antioxidant (glutathione-S-transferase, reduced glutathione and total glutathione) responses of P. hypophthalmus were reduced after post infection of GFP tagged V. parahaemolyticus Dahv2 compared to control. However, after administration with the probiotic B. licheniformis Dahb1 at 10(5) cfu mL(-1), P. hypophthalmus showed significant increase in the growth, immune and antioxidant responses compared to 10(7) cfu mL(-1). On the otherhand, the growth, immune and antioxidant responses of P. hypophthalmus infected and administrated with combined GFP tagged Vibrio + Bacillus at 10(5) cfu mL(-1) were relatively higher than that of GFP tagged V. parahaemolyticus Dahv2 and control groups but lower than that of probiotic B. licheniformis Dahb1 groups. The results of the present study conclude that the probiotic B. licheniformis Dahb1 at 10(5) cfu mL(-1) has the potential to protect the P. hypophthalmus against V. parahaemolyticus Dahv2 infection by enhancing the growth

  8. An organic solvent-, detergent-, and thermo-stable alkaline protease from the mesophilic, organic solvent-tolerant Bacillus licheniformis 3C5.

    PubMed

    Rachadech, W; Navacharoen, A; Ruangsit, W; Pongtharangkul, T; Vangnai, A S

    2010-01-01

    Bacillus licheniformis 3C5, isolated as mesophilic bacterium, exhibited tolerance towards a wide range of non-polar and polar organic solvents at 45 degrees C. It produced an extracellular organic solvent-stable protease with an apparent molecular mass of approximately 32 kDa. The inhibitory effect of PMSF and EDTA suggested it is likely to be an alkaline serine protease. The protease was active over abroad range of temperatures (45-70 degrees C) and pH (8-10) range with an optimum activity at pH 10 and 65 degrees C. It was comparatively stable in the presence ofa relatively high concentration (35% (v/v)) of organic solvents and various types of detergents even at a relatively high temperature (45 degrees C). The protease production by B. licheniformis 3C5 was growth-dependent. The optimization of carbon and nitrogen sources for cell growth and protease production revealed that yeast extract was an important medium component to support both cell growth and the protease production. The overall properties of the protease produced by B. licheniformis 3C5 suggested that this thermo-stable, solvent-stable, detergent-stable alkaline protease is a promising potential biocatalyst for industrial and environmental applications.

  9. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis.

    PubMed

    Cai, Dongbo; Wang, Hao; He, Penghui; Zhu, Chengjun; Wang, Qin; Wei, Xuetuan; Nomura, Christopher T; Chen, Shouwen

    2017-04-24

    Signal peptide peptidases play an important role in the removal of remnant signal peptides in the cell membrane, a critical step for extracellular protein production. Although these proteins are likely a central component for extracellular protein production, there has been a lack of research on whether protein secretion could be enhanced via overexpression of signal peptide peptidases. In this study, both nattokinase and α-amylase were employed as prototypical secreted target proteins to evaluate the function of putative signal peptide peptidases (SppA and TepA) in Bacillus licheniformis. We observed dramatic decreases in the concentrations of both target proteins (45 and 49%, respectively) in a sppA deficient strain, while the extracellular protein yields of nattokinase and α-amylase were increased by 30 and 67% respectively in a strain overexpressing SppA. In addition, biomass, specific enzyme activities and the relative gene transcriptional levels were also enhanced due to the overexpression of sppA, while altering the expression levels of tepA had no effect on the concentrations of the secreted target proteins. Our results confirm that SppA, but not TepA, plays an important functional role for protein secretion in B. licheniformis. Our results indicate that the sppA overexpression strain, B. licheniformis BL10GS, could be used as a promising host strain for the industrial production of heterologous secreted proteins.

  10. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues

    PubMed Central

    Ju, Shin-Yeong; Yang, Yoon-Mo; Ryu, Su-Hyun; Kwon, Yumi; Won, Young-Bin; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2016-01-01

    The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur. PMID:27176811

  11. Poly-γ-glutamic acid produced from Bacillus licheniformis CGMCC 2876 as a potential substitute for polyacrylamide in the sugarcane industry.

    PubMed

    Yan, Shan; Yao, Haosheng; Chen, Zhen; Zeng, Shengquan; Xi, Xi; Wang, Yuanpeng; He, Ning; Li, Qingbiao

    2015-01-01

    As an environmentally friendly and industrially useful biopolymer, poly-γ-glutamic acid (γ-PGA) from Bacillus licheniformis CGMCC 2876 was characterized by the high-resolution mass spectrometry and (1)H NMR. A flocculating activity of 11,474.47 U mL(-1) obtained with γ-PGA, and the effects of carbon sources, ions, and chemical properties (D-/L-composition and molecular weight) on the production and flocculating activity of γ-PGA were discussed. Being a bioflocculant in the sugar refinery process, the color and turbidity of the sugarcane juice was IU 1,877.36 and IU 341.41 with 0.8 ppm of γ-PGA, respectively, which was as good as the most widely used chemically synthesized flocculant in the sugarcane industry--polyacrylamide with 1 ppm. The γ-PGA produced from B. licheniformis CGMCC 2876 could be a promising alternate of chemically synthesized flocculants in the sugarcane industry. © 2015 American Institute of Chemical Engineers.

  12. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization.

    PubMed

    Wei, Xuetuan; Zhou, Yinhua; Chen, Jingbang; Cai, Dongbo; Wang, Dan; Qi, Gaofu; Chen, Shouwen

    2015-02-01

    Nattokinase (NK) possesses the potential for prevention and treatment of thrombus-related diseases. In this study, high-level expression of nattokinase was achieved in Bacillus licheniformis WX-02 via host strain construction and signal peptides optimization. First, ten genes (mpr, vpr, aprX, epr, bpr, wprA, aprE, bprA, hag, amyl) encoding for eight extracellular proteases, a flagellin and an amylase were deleted to obtain B. licheniformis BL10, which showed no extracellular proteases activity in gelatin zymography. Second, the gene fragments of P43 promoter, Svpr, nattokinase and TamyL were combined into pHY300PLK to form the expression vector pP43SNT. In BL10 (pP43SNT), the fermentation activity and product activity per unit of biomass of nattokinase reached 14.33 FU/mL and 2,187.71 FU/g respectively, which increased by 39 and 156 % compared to WX-02 (pP43SNT). Last, Svpr was replaced with SsacC and SbprA, and the maximum fermentation activity (33.83 FU/mL) was achieved using SsacC, which was 229 % higher than that of WX-02 (pP43SNT). The maximum NK fermentation activity in this study reaches the commercial production level of solid state fermentation, and this study provides a promising engineered strain for industrial production of nattokinase, as well as a potential platform host for expression of other target proteins.

  13. Characterization of lipopeptides produced by Bacillus licheniformis using liquid chromatography with accurate tandem mass spectrometry.

    PubMed

    Favaro, Gabriella; Bogialli, Sara; Di Gangi, Iole Maria; Nigris, Sebastiano; Baldan, Enrico; Squartini, Andrea; Pastore, Paolo; Baldan, Barbara

    2016-10-30

    The plant endophyte Bacillus licheniformis, isolated from leaves of Vitis vinifera, was studied to individuate and characterize the presence of bioactive lipopeptides having amino acidic structures. Crude extracts of liquid cultures were analyzed by ultra-high-performance liquid chromatography (UHPLC) coupled to a quadrupole time-of-flight (QTOF) mass analyzer. Chromatographic conditions were optimized in order to obtain an efficient separation of the different isobaric lipopeptides, avoiding merged fragmentations of co-eluted isomeric compounds and reducing possible cross-talk phenomena. Composition of the amino acids was outlined through the interpretation of the fragmentation behavior in tandem high-resolution mass spectrometry (HRMS/MS) mode, which showed both common-class and peculiar fragment ions. Both [M + H](+) and [M + Na](+) precursor ions were fragmented in order to differentiate some isobaric amino acids, i.e. Leu/Ile. Neutral losses characteristic of the iso acyl chain were also evidenced. More than 90 compounds belonging to the classes of surfactins and lichenysins, known as biosurfactant molecules, were detected. Sequential LC/HRMS/MS analysis was used to identify linear and cyclic lipopeptides, and to single out the presence of a large number of isomers not previously reported. Some critical issues related to the simultaneous selection of different compounds by the quadrupole filter were highlighted and partially solved, leading to tentative assignments of several structures. Linear lichenysins are described here for the first time. The approach was proved to be useful for the characterization of non-target lipopeptides, and proposes a rationale MS experimental scheme aimed to investigate the difference in amino acid sequence and/or in the acyl chain of the various congeners, when standards are not available. Results expanded the knowledge about production of linear and cyclic bioactive compounds from Bacillus licheniformis, clarifying the

  14. Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation.

    PubMed

    Lin, Yicen; Xu, Shuai; Zeng, Dong; Ni, Xueqin; Zhou, Mengjia; Zeng, Yan; Wang, Hesong; Zhou, Yi; Zhu, Hui; Pan, Kangcheng; Li, Guangyao

    2017-01-01

    Clostridium perfringens can induce necrotic enteritis of chickens, which causes large economic losses every year. Bacillus licheniformis, a probiotic, can inhibit the growth of pathogenic bacteria such as Clostridium perfringens, thereby improving the health status of chickens. However, from a microbial ecology perspective, the mechanisms by which alterations to the gut microbiota improve health remain unknown. In this study, we used Illumina MiSeq sequencing to investigate the cecal microbiota of a negative control group (NC), a C. perfringens and Eimeria challenge group with fishmeal supplementation (PC), a group supplemented with fishmeal and infected with coccidia (FC), and group PC with B. licheniformis supplementation (BL). We found that the health status of C. perfringens-challenged chickens was compromised, and that B. licheniformis improved the growth of the chickens challenged with pathogens. Microbial diversity analysis and taxonomic profiling of groups NC, PC, and FC revealed a disturbed cecal microflora of the birds with C. perfringens. We also characterized the microbiota of the chickens in the BL group using several methods. Principal coordinate analysis demonstrated that, compared with group PC, the bacterial community structure of group BL was more similar to that of group NC. Linear discriminant analysis with effect size revealed less differentially represented bacterial taxa between groups BL and NC than between groups PC and NC. In addition, groups BL and NC appeared to have similar overrepresented microbial taxa (such as Bacteroides, Helicobacter, Megamonas, and Akkermansia) compared with group PC. Finally, a phylogenetic investigation of communities by reconstruction of unobserved states analysis indicated that large differences existed between group PC and groups NC and BL. In conclusion, pre-treatment with B. licheniformis reduced the disturbance of the cecal microbiome induced by challenge with C. perfringens and other factors in broiler

  15. Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation

    PubMed Central

    Ni, Xueqin; Zhou, Mengjia; Zeng, Yan; Wang, Hesong; Zhou, Yi; Zhu, Hui; Pan, Kangcheng; Li, Guangyao

    2017-01-01

    Clostridium perfringens can induce necrotic enteritis of chickens, which causes large economic losses every year. Bacillus licheniformis, a probiotic, can inhibit the growth of pathogenic bacteria such as Clostridium perfringens, thereby improving the health status of chickens. However, from a microbial ecology perspective, the mechanisms by which alterations to the gut microbiota improve health remain unknown. In this study, we used Illumina MiSeq sequencing to investigate the cecal microbiota of a negative control group (NC), a C. perfringens and Eimeria challenge group with fishmeal supplementation (PC), a group supplemented with fishmeal and infected with coccidia (FC), and group PC with B. licheniformis supplementation (BL). We found that the health status of C. perfringens-challenged chickens was compromised, and that B. licheniformis improved the growth of the chickens challenged with pathogens. Microbial diversity analysis and taxonomic profiling of groups NC, PC, and FC revealed a disturbed cecal microflora of the birds with C. perfringens. We also characterized the microbiota of the chickens in the BL group using several methods. Principal coordinate analysis demonstrated that, compared with group PC, the bacterial community structure of group BL was more similar to that of group NC. Linear discriminant analysis with effect size revealed less differentially represented bacterial taxa between groups BL and NC than between groups PC and NC. In addition, groups BL and NC appeared to have similar overrepresented microbial taxa (such as Bacteroides, Helicobacter, Megamonas, and Akkermansia) compared with group PC. Finally, a phylogenetic investigation of communities by reconstruction of unobserved states analysis indicated that large differences existed between group PC and groups NC and BL. In conclusion, pre-treatment with B. licheniformis reduced the disturbance of the cecal microbiome induced by challenge with C. perfringens and other factors in broiler

  16. In vitro antimicrobial effect of Satureja wiedemanniana against Bacillus species isolated from raw meat samples.

    PubMed

    Yucel, Nihal; Aslim, Belma; Ozdoğan, Hakan

    2009-08-01

    In this study a total of 30 raw meat samples obtained from Ankara, Turkey were screened for the presence of Bacillus species. Among the meat samples analyzed, the predominant species isolated was Bacillus circulans; other Bacillus species were identified as Bacillus firmus, Bacillus lentus, Bacillus megaterium, Bacillus licheniformis, Bacillus mycoides, Bacillus sphaericus, and Bacillus cereus. Minced meat samples were more contaminated with Bacillus species than sliced beef sample. From these samples, 242 Bacillus species isolates were obtained, which were investigated for proteolytic and lipolytic activity, associated with meat spoilage. Interestingly, some Bacillus strains produced the highest values of proteolytic/lipolytic activities. Nineteen Bacillus strains were selected among the 242 isolates according to their proteolytic/lipolytic activity with a clear zone diameter of > or =6 mm. The essential oil of Satureja wiedemanniana (Lalem) Velen was also tested against these 19 Bacillus species that had proteolytic and lipolytic activity. The essential oil yield obtained from the aerial parts of the plant was 0.35% (vol/wt). The inhibition zones of the essential oil obtained against all the Bacillus species were in the range of 5.0-12.0 mm. The oil showed high antimicrobial activities against B. licheniformis M 6(26), M 11(16), and M 12(1) strains. B. licheniformis 12(1) showed high lipolytic activity (18.0 mm). Also, B. licheniformis M 6(26) and M 11(16) showed high proteolytic activity (16.0 and 14.0 mm). These results may suggest that an essential oil of S. wiedemanniana can be used as a natural preservative in meat against spoilage bacteria.

  17. Induction of Osmoadaptive Mechanisms and Modulation of Cellular Physiology Help Bacillus licheniformis Strain SSA 61 Adapt to Salt Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Sangeeta; Aggarwal, Chetana; Thakur, Jyoti Kumar

    Bacillus licheniformis strain SSA 61, originally isolated from Sambhar salt lake, was observed to grow even in the presence of 25 % salt stress. Osmoadaptive mechanisms of this halotolerant B. licheniformis strain SSA 61, for long-term survival and growth under salt stress, were determined. Proline was the preferentially accumulated compatible osmolyte. There was also increased accumulation of antioxidants ascorbic acid and glutathione. Among the different antioxidative enzymes assayed, superoxide dismutase played the most crucial role in defense against salt-induced stress in the organism. Adaptation to stress by the organism involved modulation of cellular physiology at various levels. There was enhancedmore » expression of known proteins playing essential roles in stress adaptation, such as chaperones DnaK and GroEL, and general stress protein YfkM and polynucleotide phosphorylase/polyadenylase. Proteins involved in amino acid biosynthetic pathway, ribosome structure, and peptide elongation were also overexpressed. Salt stress-induced modulation of expression of enzymes involved in carbon metabolism was observed. There was up-regulation of a number of enzymes involved in generation of NADH and NADPH, indicating increased cellular demand for both energy and reducing power.« less

  18. Bacillus licheniformis BT5.9 Isolated from Changar Hot Spring, Malang, Indonesia, as a Potential Producer of Thermostable α-amylase

    PubMed Central

    Ibrahim, Darah; Zhu, Han Li; Yusof, Nuraqilah; Isnaeni; Hong, Lim Sheh

    2013-01-01

    A total of 34 bacterial isolates were obtained from soil samples collected from Changar Hot Spring, Malang, Indonesia. Of these, 13 isolates produced a zone of hydrolysis in starch-nutrient agar medium and generated various amylases in liquid medium. One isolate was selected as the best amylase producer and was identified as Bacillus licheniformis BT5.9. The improvement of culture conditions (initial medium pH of 5.0, cultivation temperature of 50°C, agitation speed of 100 rpm and inoculum size of 1.7 × 109 cells/ml) provided the highest amylase production (0.327 U/ml). PMID:24575243

  19. Characterization of Lipopeptide Biosurfactants Produced by Bacillus licheniformis MB01 from Marine Sediments

    PubMed Central

    Chen, Yulin; Liu, Shiliang A.; Mou, Haijin; Ma, Yunxiao; Li, Meng; Hu, Xiaoke

    2017-01-01

    Antibiotic resistance has become one of the world’s most severe problems because of the overuse of antibiotics. Antibiotic-resistant bacteria are more difficult to kill and more expensive to treat. Researchers have been studied on antibiotic alternatives such as antimicrobial peptides and lipopeptides. A functional bacteria MB01 producing lipopeptides which can be used as bacteriostat was isolated from the Bohai Sea sediments, which had been identified as Bacillus licheniformis by the morphological, physiological, and biochemical identification and 16s rDNA sequence. The lipopeptides produced by MB01 were determined to be cyclic surfactin homologs by LC-ESI-MS structural identification after crude extraction and LH-20 chromatography. [M+H]+ m/z 994, 1008, 1022, and 1036 were all the characteristic molecular weight of surfactin homologs. CID analysis revealed that the molecular structure of the lipopeptides was Rn-Glu1-Leu/Ile2-Leu3-Val4-Asp5-Leu6-Leu/Ile7. The lipopeptides showed well resistance to UV light and the change of pH and temperature. PMID:28559889

  20. Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls.

    PubMed

    Kongklom, Nuttawut; Shi, Zhongping; Chisti, Yusuf; Sirisansaneeyakul, Sarote

    2017-07-01

    Bacillus licheniformis TISTR 1010 was used for glutamic acid-independent production of poly-γ-glutamic acid (γ-PGA). A fed-batch production strategy was developed involving feedings of glucose, citric acid, and ammonium chloride at specified stages of the fermentation. With the dissolved oxygen concentration controlled at ≥50% of air saturation and the pH controlled at ~7.4, the fed-batch operation at 37 °C afforded a peak γ-PGA concentration of 39.9 ± 0.3 g L -1 with a productivity of 0.926 ± 0.006 g L -1  h -1 . The observed productivity was nearly threefold greater than previously reported for glutamic acid-independent production using the strain TISTR 1010. The molecular weight of γ-PGA was in the approximate range of 60 to 135 kDa.

  1. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation.

    PubMed

    Mitsunaga, Hitoshi; Meissner, Lena; Büchs, Jochen; Fukusaki, Eiichiro

    2016-10-01

    Poly(γ-glutamic acid) mainly produced by Bacillus spp. is an industrially important compound due to several useful features. Among them, molecular weight is an important characteristic affecting on the physical properties such as viscosities and negative charge densities. However, it is difficult to control the molecular size of PGA since it decreases during fermentation. Previous study reported that PGA produced in the media containing different carbon sources such as glucose and glycerol showed differences in molecular weight. Therefore in this study, the effect of carbon source on the PGA molecular weight was examined; with the aim of developing a strategy to maintain the high molecular weight of PGA during fermentation. Our result showed that the weight average molecular weight (Mw) of PGA of Bacillus licheniformis ATCC 9945 cultivated in the media containing PTS-sugars were higher than the medium containing glycerol (non-PTS). The result of metabolome analysis indicated the possibility of CodY (a global regulator protein) activation in the cells cultivated in the media containing PTS-sugars. To mimic this effect, branched-chain amino acids (BCAAs), which are activators of CodY, were added to a medium containing glycerol. As the result, the Mw of PGA in the BCAAs-supplemented media were maintained and high during the early production phase compared to the non BCAAs-supplemented medium. These results indicate that BCAAs can repress the PGA molecular weight reduction during fermentation in B. licheniformis ATCC 9945. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Influence of nitrogen source and pH value on undesired poly(γ-glutamic acid) formation of a protease producing Bacillus licheniformis strain.

    PubMed

    Meissner, Lena; Kauffmann, Kira; Wengeler, Timo; Mitsunaga, Hitoshi; Fukusaki, Eiichiro; Büchs, Jochen

    2015-09-01

    Bacillus spp. are used for the production of industrial enzymes but are also known to be capable of producing biopolymers such as poly(γ-glutamic acid). Biopolymers increase the viscosity of the fermentation broth, thereby impairing mixing, gas/liquid mass and heat transfer in any bioreactor system. Undesired biopolymer formation has a significant impact on the fermentation and downstream processing performance. This study shows how undesirable poly(γ-glutamic acid) formation of an industrial protease producing Bacillus licheniformis strain was prevented by switching the nitrogen source from ammonium to nitrate. The viscosity was reduced from 32 to 2.5 mPa s. A constant or changing pH value did not influence the poly(γ-glutamic acid) production. Protease production was not affected: protease activities of 38 and 46 U mL(-1) were obtained for ammonium and nitrate, respectively. With the presented results, protease production with industrial Bacillus strains is now possible without the negative impact on fermentation and downstream processing by undesired poly(γ-glutamic acid) formation.

  3. Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-beta-mannosidase from Bacillus licheniformis in Escherichia coli.

    PubMed

    Songsiriritthigul, Chomphunuch; Buranabanyat, Bancha; Haltrich, Dietmar; Yamabhai, Montarop

    2010-04-11

    Mannans are one of the key polymers in hemicellulose, a major component of lignocellulose. The Mannan endo-1,4-beta-mannosidase or 1,4-beta-D-mannanase (EC 3.2.1.78), commonly named beta-mannanase, is an enzyme that can catalyze random hydrolysis of beta-1,4-mannosidic linkages in the main chain of mannans, glucomannans and galactomannans. The enzyme has found a number of applications in different industries, including food, feed, pharmaceutical, pulp/paper industries, as well as gas well stimulation and pretreatment of lignocellulosic biomass for the production of second generation biofuel. Bacillus licheniformis is a Gram-positive endospore-forming microorganism that is generally non-pathogenic and has been used extensively for large-scale industrial production of various enzymes; however, there has been no previous report on the cloning and expression of mannan endo-1,4-beta-mannosidase gene (manB) from B. licheniformis. The mannan endo-1,4-beta-mannosidase gene (manB), commonly known as beta-mannanase, from Bacillus licheniformis strain DSM13 was cloned and overexpressed in Escherichia coli. The enzyme can be harvested from the cell lysate, periplasmic extract, or culture supernatant when using the pFLAG expression system. A total activity of approximately 50,000 units could be obtained from 1-l shake flask cultures. The recombinant enzyme was 6 x His-tagged at its C-terminus, and could be purified by one-step immobilized metal affinity chromatography (IMAC) to apparent homogeneity. The specific activity of the purified enzyme when using locust bean gum as substrate was 1672 +/- 96 units/mg. The optimal pH of the enzyme was between pH 6.0 - 7.0; whereas the optimal temperature was at 50 - 60 degrees C. The recombinant beta-mannanase was stable within pH 5 - 12 after incubation for 30 min at 50 degrees C, and within pH 6 - 9 after incubation at 50 degrees C for 24 h. The enzyme was stable at temperatures up to 50 degrees C with a half-life time of activity (tau1

  4. In situ analysis of Bacillus licheniformis biofilms: amyloid-like polymers and eDNA are involved in the adherence and aggregation of the extracellular matrix.

    PubMed

    Randrianjatovo-Gbalou, I; Rouquette, P; Lefebvre, D; Girbal-Neuhauser, E; Marcato-Romain, C-E

    2017-05-01

    This study attempts to determine which of the exopolymeric substances are involved in the adherence and aggregation of a Bacillus licheniformis biofilm. The involvement of extracellular proteins and eDNA were particularly investigated using DNase and proteinase K treatment. The permeability of the biofilms increased fivefold after DNase I treatment. The quantification of the matrix components showed that, irrespective to the enzyme tested, eDNA and amyloid-like polymers were removed simultaneously. Size-exclusion chromatography analyses supported these observations and revealed the presence of associated nucleic acid and protein complexes in the biofilm lysates. These data suggest that some extracellular DNA and amyloid-like proteins were closely interlaced within the matrix. Finally, confocal laser scanning microscopy imaging gave supplementary clues about the 3D organization of the biofilms, confirming that eDNA and exoproteins were essentially layered under and around the bacterial cells, whereas the amyloid-like fractions were homogeneously distributed within the matrix. These results confirm that some DNA-amyloid complexes play a key role in the modulation of the mechanical resistance of B. licheniformis biofilms. The study highlights the need to consider the whole structure of biofilms and to target the interactions between matrix components. A better understanding of B. licheniformis biofilm physiology and the structural organization of the matrix will strengthen strategies of biofilm control. © 2017 The Society for Applied Microbiology.

  5. An investigation into the preservation of microbial cell banks for α-amylase production during 5 l fed-batch Bacillus licheniformis fermentations.

    PubMed

    Hancocks, Nichola H; Thomas, Colin R; Stocks, Stuart M; Hewitt, Christopher J

    2010-10-01

    Fluorescent staining techniques were used for a systematic examination of methods used to cryopreserve microbial cell banks. The aim of cryopreservation here is to ensure subsequent reproducible fermentation performance rather than just post thaw viability. Bacillus licheniformis cell physiology post-thaw is dependent on the cryopreservant (either Tween 80, glycerol or dimethyl sulphoxide) and whilst this had a profound effect on the length of the lag phase, during subsequent 5 l fed-batch fermentations, it had little effect on maximum specific growth rate, final biomass concentration or α-amylase activity. Tween 80 not only protected the cells during freezing but also helped them recover post-thaw resulting in shorter process times.

  6. Engineering Bacillus licheniformis as a thermophilic platform for the production of l-lactic acid from lignocellulose-derived sugars.

    PubMed

    Li, Chao; Gai, Zhongchao; Wang, Kai; Jin, Liping

    2017-01-01

    Bacillus licheniformis MW3 as a GRAS and thermophilic strain is a promising microorganism for chemical and biofuel production. However, its capacity to co-utilize glucose and xylose, the major sugars found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, a "dual-channel" process was implemented to engineer strain MW3 for simultaneous utilization of glucose and xylose, using l-lactic acid as a target product. A non-phosphotransferase system (PTS) glucose uptake route was activated via deletion of the glucose transporter gene ptsG and introduction of the galactose permease gene galP . After replacing the promoter of glucokinase gene glck with the strong promoter P als , the engineered strain recovered glucose consumption and utilized glucose and xylose simultaneously. Meanwhile, to improve the consumption rate of xylose in this strain, several measures were undertaken, such as relieving the regulation of the xylose repressor XylR, reducing the catabolite-responsive element, and optimizing the rate-limiting step. Knockout of ethanol and acetic acid pathway genes further increased lactic acid yield by 6.2%. The resultant strain, RH15, was capable of producing 121.9 g/L l-lactic acid at high yield (95.3%) after 40 h of fermentation from a mixture of glucose and xylose. When a lignocellulosic hydrolysate was used as the substrate, 99.3 g/L l-lactic acid was produced within 40 h, with a specific productivity of 2.48 g/[L h] and a yield of 94.6%. Our engineered strain B. licheniformis RH15 could thermophilically produced l-lactic acid from lignocellulosic hydrolysate with relatively high concentration and productivity at levels that were competitive with most reported cases of l-lactic acid-producers. Thus, the engineered strain might be used as a platform for the production of other chemicals. In addition to engineering the B. licheniformis strain, the "dual-channel" process might serve as an

  7. Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods.

    PubMed

    Potumarthi, Ravichandra; Subhakar, Ch; Pavani, A; Jetty, Annapurna

    2008-04-01

    Calcium-alginate immobilization method for the production of alkaline protease by Bacillus licheniformis NCIM-2042 was optimized statistically. Four variables, such as sodium-alginate concentration, calcium chloride concentration, inoculum size and agitation speed were optimized by 2(4) full factorial central composite design and subsequent analysis and model validation by a second-order regression equation. Eleven carbon, 11 organic nitrogen and seven inorganic nitrogen sources were screened by two-level Plackett-Burman design for maximum alkaline protease production by using optimized immobilized conditions. The levels of four variables, such as Na-alginate 2.78%; CaCl(2), 2.15%; inoculum size, 8.10% and agitation, 139 rpm were found to be optimum for maximal production of protease. Glucose, soybean meal and ammonium sulfate were resulted in maximum protease production at 644 U/ml, 720 U/ml, and 806 U/ml when screened for carbon, organic nitrogen and inorganic nitrogen sources, respectively, using optimized immobilization conditions. Repeated fed batch mode of operation, using optimized immobilized conditions, resulted in continuous operation for 12 cycles without disintegration of beads. Cross-sectional scanning electron microscope images have shown the growth pattern of B. licheniformis in Ca-alginate immobilized beads.

  8. Increasing the bioflocculant production and identifying the effect of overexpressing epsB on the synthesis of polysaccharide and γ-PGA in Bacillus licheniformis.

    PubMed

    Liu, Peize; Chen, Zhen; Yang, Lijie; Li, Qingbiao; He, Ning

    2017-09-26

    Polysaccharides and poly-γ-glutamic acid (γ-PGA) are biomacromolecules that have been reported as bioflocculants, and they exhibit high flocculating activity in many industrial applications. Bacillus licheniformis CGMCC 2876 can produce polysaccharide and γ-PGA bioflocculants under different culture conditions. Several key genes are involved in the metabolic pathway of polysaccharides in B. licheniformis, but the impacts of the regulation of these genes on the production of polysaccharide bioflocculants have not been illustrated completely. To increase the bioflocculant production and identify the correlation between the synthesis of polysaccharides and γ-PGA in B. licheniformis, a few key genes were investigated to explore their influence on the synthesis of the bioflocculants. Overexpressing epsB from the eps gene cluster not only improved the bioflocculant crude yield by 13.98% but also enhanced the flocculating activity by 117.92%. The composition of the bioflocculant from the epsB recombinant strain was 28.95% total sugar, 3.464% protein and 44.03% γ-PGA, while in the original strain, these components represented 53.67%, 3.246% and 34.13%, respectively. In combination with an analysis of the transcriptional levels of several key genes involved in γ-PGA synthesis in B. licheniformis, we inferred that epsB played a key role in the synthesis of both polysaccharide and γ-PGA. The bioflocculant production of the epsB recombinant strain was further evaluated during batch fermentation in a 2 L fermenter; the flocculating activity reached 9612.75 U/mL, and the bioflocculant yield reached 10.26 g/L after 72 h, representing increases of 224% and 36.62%, respectively, compared with the original strain. Moreover, we found that the tandem expression of phosphoglucomutase (pgcA) and UTP-glucose-1-phosphate uridylyltransferase (gtaB1) could enhance the crude yield of the bioflocculant by 20.77% and that the overexpression of epsA could enhance the bioflocculant

  9. Ultrasound assisted process intensification of uricase and alkaline protease enzyme co-production in Bacillus licheniformis.

    PubMed

    Pawar, Shweta V; Rathod, Virendra K

    2018-07-01

    Low energy ultrasound irradiation was used to enhance co-production of enzymes uricase and alkaline protease using Bacillus licheniformis NRRL 14209. Production of uricase and alkaline protease was evaluated for different ultrasound parameters such as ultrasound power, time of irradiation, duty cycle and growth stage of organisms at which irradiation is carried out. Maximum uricase production of 0.825 U/mL and alkaline protease of 0.646 U/mL have been obtained when fermentation broth was irradiated at 6 h of growth stage with 60 W power for 15 min of duration having 40% of duty cycle. The enzyme yield was found to be enhanced by a factor of 1.9-3.8 and 1.2-2.2 for uricase and alkaline protease respectively. Nevertheless, intracellular uricase was also observed in a fermentation broth after ultrasonic process intensification. The results indicate the effectiveness of low frequency ultrasound in improving enzyme yields with a vision of commercial applicability of the process. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Efficient production of L-asparaginase from Bacillus licheniformis with low-glutaminase activity: optimization, scale up and acrylamide degradation studies.

    PubMed

    Mahajan, Richi V; Saran, Saurabh; Kameswaran, Karthikeya; Kumar, Vinod; Saxena, R K

    2012-12-01

    L-Asparaginase has potential as an anti-cancer drug and for prevention of acrylamide formation in fried and baked foods. Production of the enzyme by Bacillus licheniformis (RAM-8) was optimized by process engineering using a statistical modeling approach and a maximum yield of 32.26 IU/ml was achieved. The L-asparaginase exhibited glutaminase activity of only 0.8 IU/ml and would therefore be less prone to cause the side effects associated with asparaginase therapy compared to enzyme preparations with higher glutaminase activities. When production was carried out in a 30-L bioreactor, enzyme production reached 29.94 IU/ml in 15 h. The enzyme inhibited poly-acrylamide formation in 10% acrylamide solution and reduced acrylamide formation in fried potatoes by 80%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery.

    PubMed

    Suthar, Harish; Nerurkar, Anuradha

    2016-09-01

    Bacillus licheniformis TT42 produced a low-molecular weight anionic biosurfactant that reduced the surface tension of water from 72 to 27 mN/m and the interfacial tension from 12 to 0.05 mN/m against crude oil. We have earlier reported significant enhancement in oil recovery in laboratory sand pack columns and core flood studies, by biosurfactant-TT42 compared to standard strain, Bacillus mojavensis JF2. In the context of this application of the biosurfactant-TT42, its characterization was deemed important. In the preliminary studies, the biosurfactant-TT42 was found to be functionally stable at under conditions of temperature, pH, and salinity generally prevalent in oil reservoirs. Furthermore, the purified biosurfactant-TT42 was found to have a CMC of 22 mg/l. A newly developed activity staining TLC method was used for the purification of biosurfactant-TT42. Structural characterization of biosurfactant-TT42 using TLC, Fourier transform infrared spectroscopy (FTIR), GC-MS, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF)/TOF suggested that it was a mixture of lipopeptide species, all having a common hydrophilic cyclic heptapeptide head with the sequence, Gln-Leu/Ileu-Leu/Ileu-Val-Asp-Leu/Ileu-Leu/Ileu linked to hydrophobic tails of different lengths of 3β-OH-fatty acids bearing 1043, 1057 and 1071 Da molecular weight, where 3β-OH-C19 fatty acid was predominant. This is the longest chain length of fatty acids reported in a lipopeptide.

  12. Utilization of Industrial Waste for the Production of Bio-Preservative from Bacillus licheniformis Me1 and Its Application in Milk and Milk-Based Food Products.

    PubMed

    Nithya, Vadakedath; Prakash, Maya; Halami, Prakash M

    2018-06-01

    The bio-preservative efficacy of a partially purified antibacterial peptide (ppABP) produced by Bacillus licheniformis Me1 in an economical medium developed using agro-industry waste was evaluated by direct application in milk and milk-based food products. The addition of ppABP in milk samples stored at 4 ± 2 °C and 28 ± 2 °C resulted in the growth inhibition of pathogens Listeria monocytogenes Scott A, Micrococcus luteus ATCC 9341, and Staphylococcus aureus FRI 722. The shelf life of milk samples with added ppABP increased to 4 days at 28 ± 2 °C, whereas curdling and off-odor were noticed in samples without ppABP. Furthermore, the milk samples with ppABP were sensorily acceptable. Antilisterial effect was also observed in cheese and paneer samples treated with ppABP. These results clearly indicate that the ppABP of B. licheniformis Me1 can be utilized as a bio-preservative to control the growth of spoilage and pathogenic bacteria, thereby reducing the risk of food-borne diseases.

  13. Immobilization of pectin degrading enzyme from Bacillus licheniformis KIBGE IB-21 using agar-agar as a support.

    PubMed

    Rehman, Haneef Ur; Aman, Afsheen; Zohra, Raheela Rahmat; Qader, Shah Ali Ul

    2014-02-15

    Pectinase from Bacillus licheniformis KIBGE IB-21 was immobilized in agar-agar matrix using entrapment technique. Effect of different concentrations of agar-agar on pectinase immobilization was investigated and it was found that maximum immobilization was achieved at 3.0% agar-agar with 80% enzyme activity. After immobilization, the optimum temperature of enzyme increased from 45 to 50 °C and reaction time from 5 to 10 minutes as compared to free enzyme. Due to the limited diffusion of high molecular weight substrate, K(m) of immobilized enzyme slightly increased from 1.017 to 1.055 mg ml(-1), while Vmax decreased from 23,800 to 19,392 μM min(-1) as compared to free enzyme. After 120 h entrapped pectinase retained their activity up to 82% and 71% at 30 °C and 40 °C, respectively. The entrapped pectinase showed activity until 10th cycle and maintain 69.21% activity even after third cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation.

    PubMed

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na + ) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline-alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline-alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline-alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na + concentrations under saline-alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline-alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline-alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline-alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na + accumulation.

  15. Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059.

    PubMed

    Białkowska, Aneta M; Gromek, Ewa; Krysiak, Joanna; Sikora, Barbara; Kalinowska, Halina; Jędrzejczak-Krzepkowska, Marzena; Kubik, Celina; Lang, Siegmund; Schütt, Fokko; Turkiewicz, Marianna

    2015-12-01

    2,3-Butanediol (2,3-BD) synthesis by a nonpathogenic bacterium Bacillus licheniformis NCIMB 8059 from enzymatic hydrolysate of depectinized apple pomace and its blend with glucose was studied. In shake flasks, the maximum diol concentration in fed-batch fermentations was 113 g/L (in 163 h, from the hydrolysate, feedings with glucose) while in batch processes it was around 27 g/L (in 32 h, from the hydrolysate and glucose blend). Fed-batch fermentations in the 0.75 and 30 L fermenters yielded 87.71 g/L 2,3-BD in 160 h, and 72.39 g/L 2,3-BD in 94 h, respectively (from the hydrolysate and glucose blend, feedings with glucose). The hydrolysate of apple pomace, which was for the first time used for microbial 2,3-BD production is not only a source of sugars but also essential minerals.

  16. Study of HMG-CoA Reductase Inhibition Activity of the Hydrolyzed Product of Snakehead Fish (Channa striata) Skin Collagen with 50 kDa Collagenase from Bacillus licheniformis F11.4

    PubMed Central

    Virginia, Agnes; Rachmawati, Heni; Riani, Catur; Retnoningrum, Debbie S.

    2016-01-01

    Bioactive peptides produced from enzymatic hydrolysis fibrous protein have been proven to have several biological activities. Previous study showed that the hydrolysis product of snakehead fish skin collagen with 26 kDa collagenase from Bacillus licheniformis F11.4 showed HMG-CoA (HMGR) inhibition activity. The aim of this research was to determine the ability of the hydrolysis product produced from snakehead fish skin collagen hydrolysed by 50 kDa collagenase from B. licheniformis F11.4 in inhibiting HMGR activity. Snakehead fish skin collagen was extracted using an acid method and collagenase was produced from B. licheniformis F11.4 using half-strength Luria Bertani (LB) medium containing 5% collagen. Crude collagenase was concentrated and fractionated using the DEAE Sephadex A-25 column eluted with increasing gradient concentrations of NaCl. Collagen, collagenase, and fractions were analyzed using SDS-PAGE and collagenolytic activity was analyzed by the zymography method. Collagenase with 50 kDa molecular weight presented in fraction one was used to hydrolyze the collagen. The reaction was done in 18 hours at 50°C. The hydrolysis product using 3.51 μg collagen and 9 ng collagenase showed 25.8% inhibition activity against pravastatin. This work shows for the first time that the hydrolysis product of snakehead fish skin collagen and 50 kDa collagenase from B. licheniformis F11.4 has potential as an anticholesterol agent. PMID:27110500

  17. Study of HMG-CoA Reductase Inhibition Activity of the Hydrolyzed Product of Snakehead Fish (Channa striata) Skin Collagen with 50 kDa Collagenase from Bacillus licheniformis F11.4.

    PubMed

    Virginia, Agnes; Rachmawati, Heni; Riani, Catur; Retnoningrum, Debbie S

    2016-01-01

    Bioactive peptides produced from enzymatic hydrolysis fibrous protein have been proven to have several biological activities. Previous study showed that the hydrolysis product of snakehead fish skin collagen with 26 kDa collagenase from Bacillus licheniformis F11.4 showed HMG-CoA (HMGR) inhibition activity. The aim of this research was to determine the ability of the hydrolysis product produced from snakehead fish skin collagen hydrolysed by 50 kDa collagenase from B. licheniformis F11.4 in inhibiting HMGR activity. Snakehead fish skin collagen was extracted using an acid method and collagenase was produced from B. licheniformis F11.4 using half-strength Luria Bertani (LB) medium containing 5% collagen. Crude collagenase was concentrated and fractionated using the DEAE Sephadex A-25 column eluted with increasing gradient concentrations of NaCl. Collagen, collagenase, and fractions were analyzed using SDS-PAGE and collagenolytic activity was analyzed by the zymography method. Collagenase with 50 kDa molecular weight presented in fraction one was used to hydrolyze the collagen. The reaction was done in 18 hours at 50°C. The hydrolysis product using 3.51 μg collagen and 9 ng collagenase showed 25.8% inhibition activity against pravastatin. This work shows for the first time that the hydrolysis product of snakehead fish skin collagen and 50 kDa collagenase from B. licheniformis F11.4 has potential as an anticholesterol agent.

  18. [Mechanism of metabolic and ionic germination of "Bacillus licheniformis" spores treated with hydrogen peroxide (author's transl)].

    PubMed

    Cerf, O

    1977-01-01

    Spores of Bacillus licheniformis 109-2A0 lost their refractility and absorbancy at 640 nm in the presence of metabolizable molecules (L-alanine). The same occurred with spores treated with 4.4 mol/1 hydrogen peroxide, pH 2.0, at 65 degrees C, even after 5 min of treatment. In addition, these transformations could be promoted after 2 min of treatment by inorganic ions (KI). This possibility occurs following a kinetics of activation. Thermodynamic parameters showed this activation to be combined with a molecular re-organization. Loss of refractility or absorbancy, induced by L-ala or KI, was inhibited by inhibitors of membrane functions or of L-alanine dehydrogenase, enzyme of which a noticeable activity was demonstrated in treated spores. Only 10% of spore calcium leaked during the treatment. Therefore loss of refractility or absorbancy caused by molecules metabolizable or not seemed to correspond to a physiological germination. The first even of the metabolic, as well as or the ionic germination could well be a modification of the spore membrane proton-motive force.

  19. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery.

    PubMed

    Joshi, Sanket J; Al-Wahaibi, Yahya M; Al-Bahry, Saif N; Elshafie, Abdulkadir E; Al-Bemani, Ali S; Al-Bahri, Asma; Al-Mandhari, Musallam S

    2016-01-01

    The biosurfactant production by Bacillus licheniformis W16 and evaluation of biosurfactant based enhanced oil recovery (EOR) using core-flood under reservoir conditions were investigated. Previously reported nine different production media were screened for biosurfactant production, and two were further optimized with different carbon sources (glucose, sucrose, starch, cane molasses, or date molasses), as well as the strain was screened for biosurfactant production during the growth in different media. The biosurfactant reduced the surface tension and interfacial tension to 24.33 ± 0.57 mN m -1 and 2.47 ± 0.32 mN m -1 respectively within 72 h, at 40°C, and also altered the wettability of a hydrophobic surface by changing the contact angle from 55.67 ± 1.6 to 19.54°± 0.96°. The critical micelle dilution values of 4X were observed. The biosurfactants were characterized by different analytical techniques and identified as lipopeptide, similar to lichenysin-A. The biosurfactant was stable over wide range of extreme environmental conditions. The core flood experiments showed that the biosurfactant was able to enhance the oil recovery by 24-26% over residual oil saturation (S or ). The results highlight the potential application of lipopeptide biosurfactant in wettability alteration and microbial EOR processes.

  20. The Potential Source of B. licheniformis Contamination During Whey Protein Concentrate 80 Manufacture.

    PubMed

    Md Zain, Siti Norbaizura; Bennett, Rod; Flint, Steve

    2017-03-01

    The objective of this study was to determine the possible source of predominant Bacillus licheniformis contamination in a whey protein concentrate (WPC) 80 manufacturing plant. Traditionally, microbial contaminants of WPC were believed to grow on the membrane surfaces of the ultrafiltration plant as this represents the largest surface area in the plant. Changes from hot to cold ultrafiltration have reduced the growth potential for bacteria on the membrane surfaces. Our recent studies of WPCs have shown the predominant microflora B. licheniformis would not grow in the membrane plant because of the low temperature (10 °C) and must be growing elsewhere. Contamination of dairy products is mostly due to bacteria being released from biofilm in the processing plant rather from the farm itself. Three different reconstituted WPC media at 1%, 5%, and 20% were used for biofilm growth and our results showed that B. licheniformis formed the best biofilm at 1% (low solids). Further investigations were done using 3 different media; tryptic soy broth, 1% reconstituted WPC80, and 1% reconstituted WPC80 enriched with lactose and minerals to examine biofilm growth of B. licheniformis on stainless steel. Thirty-three B. licheniformis isolates varied in their ability to form biofilm on stainless steel with stronger biofilm in the presence of minerals. The source of biofilms of thermo-resistant bacteria such as B. licheniformis is believed to be before the ultrafiltration zone represented by the 1% WPC with lactose and minerals where the whey protein concentration is about 0.6%. © 2017 Institute of Food Technologists®.

  1. Bacillus licheniformis SA03 Confers Increased Saline–Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation

    PubMed Central

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na+) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline–alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline–alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline–alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na+ concentrations under saline–alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline–alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline–alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline–alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na+ accumulation. PMID:28706529

  2. Residues Phe103 and Phe149 are critical for the co-chaperone activity of Bacillus licheniformis GrpE.

    PubMed

    Lin, Min-Guan; Chi, Meng-Chun; Chen, Bo-En; Wang, Tzu-Fan; Lo, Huei-Fen; Lin, Long-Liu

    2015-01-01

    A tryptophan-free Bacillus licheniformis nucleotide exchange factor (BlGrpE) and its Trp mutants (F70W, F103W, F149W, F70/103W, F70/149W, F103/149W and F70/103/149W) were over-expressed and purified to near homogeneity. Simultaneous addition of B. licheniformis DnaJ, NR-peptide and individual variants synergistically stimulated the ATPase activity of a recombinant DnaK (BlDnaK) from the same bacterium by 3.1-14.7-fold, which are significantly lower than the synergistic stimulation (18.9-fold) of BlGrpE. Protein-protein interaction analysis revealed that Trp mutants relevant to amino acid positions 103 and 149 lost the ability to bind BlDnaK. Circular dichroism measurements indicate that F70W displayed a comparable level of secondary structure to that of BlGrpE, and the wild-type protein and the Trp mutants as well all experienced a reversible behavior of thermal denaturation. Guanidine hydrochloride (GdnHCl)-induced unfolding transition for BlGrpE was calculated to be 1.25 M corresponding to ΔG(N-U) of 4.29 kcal/mol, whereas the unfolding transitions of mutant proteins were in the range of 0.77-1.31 M equivalent to ΔG(N-U) of 2.41-4.14 kcal/mol. Taken together, the introduction of tryptophan residue, especially at positions 103 and 149, into the primary structure of BlGrpE has been proven to be detrimental to structural integrity and proper function of the protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes.

    PubMed

    Mohammad, Balsam T; Al Daghistani, Hala I; Jaouani, Atef; Abdel-Latif, Saleh; Kennes, Christian

    2017-01-01

    The aim of this study was the isolation and characterization of thermophilic bacteria from hot springs in Jordan. Ten isolates were characterized by morphological, microscopic, biochemical, molecular, and physiological characteristics. Sequencing of the 16S rDNA of the isolates followed by BLAST search revealed that nine strains could be identified as Bacillus licheniformis and one isolate as Thermomonas hydrothermalis . This is the first report on the isolation of Thermomonas species from Jordanian hot springs. The isolates showed an ability to produce some thermostable enzymes such as amylase, protease, cellulose, gelatins, and lecithin. Moreover, the UPGMA dendrogram of the enzymatic characteristics of the ten isolates was constructed; results indicated a high phenotypic diversity, which encourages future studies to explore further industrial and environmental applications.

  4. Distinct differentiation of closely related species of Bacillus subtilis group with industrial importance.

    PubMed

    Jeyaram, Kumaraswamy; Romi, Wahengbam; Singh, Thangjam Anand; Adewumi, Gbenga Adedeji; Basanti, Khundrakpam; Oguntoyinbo, Folarin Anthony

    2011-11-01

    PCR amplification of 16S rRNA gene by universal primers followed by restriction fragment length polymorphism analysis using RsaI, CfoI and HinfI endonucleases, distinctly differentiated closely related Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus from Bacillus subtilis sensu stricto. This simple, economical, rapid and reliable protocol could be an alternative to misleading phenotype-based grouping of these closely related species. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A comparative ecotoxicity analysis of α- and γ-phase aluminium oxide nanoparticles towards a freshwater bacterial isolate Bacillus licheniformis.

    PubMed

    Pakrashi, Sunandan; Kumar, Deepak; Iswarya, V; Bhuvaneshwari, M; Chandrasekaran, N; Mukherjee, Amitava

    2014-12-01

    Crystalline structure of nanoparticles may influence their physicochemical behaviour as well as their toxicological impact on biota. The differences in orientation of the atoms result in the variations in chemical stability. Thus, toxicological impacts of different crystalline phases of aluminium oxide nanoparticles are expected to vary. The present study brings out a comparative toxicity analysis of γ-phase and α-phase aluminium oxide nanoparticles of comparable hydrodynamic size range towards a freshwater bacterial isolate Bacillus licheniformis at low exposure concentrations (5, 1, 0.5 and 0.05 µg/mL). Upon 2-h exposure, the α-aluminium oxide particles showed lower toxicity than the γ-phase aluminium oxide. The lower level of oxidative stress generation and cell membrane damage in case of the α-phase aluminium oxide nanoparticles substantiated the toxicity results. The involvement of protein, lipopolysaccharides in nanoparticle-cell surface interaction, was noted in both the cases. To conclude, the crystallinity of aluminium oxide nanoparticles played an important role in the interaction and the toxicity response.

  6. Solid State Fermentation of a Raw Starch Digesting Alkaline Alpha-Amylase from Bacillus licheniformis RT7PE1 and Its Characteristics.

    PubMed

    Tabassum, Romana; Khaliq, Shazia; Rajoka, Muhammad Ibrahim; Agblevor, Foster

    2014-01-01

    The thermodynamic and kinetic properties of solids state raw starch digesting alpha amylase from newly isolated Bacillus licheniformis RT7PE1 strain were studied. The kinetic values Q p , Y p/s , Y p/X , and q p were proved to be best with 15% wheat bran. The molecular weight of purified enzyme was 112 kDa. The apparent K m and V max values for starch were 3.4 mg mL(-1) and 19.5 IU mg(-1) protein, respectively. The optimum temperature and pH for α -amylase were 55°C, 9.8. The half-life of enzyme at 95°C was 17h. The activation and denaturation activation energies were 45.2 and 41.2 kJ mol(-1), respectively. Both enthalpies (ΔH (∗)) and entropies of activation (ΔS (∗)) for denaturation of α -amylase were lower than those reported for other thermostable α -amylases.

  7. Solid State Fermentation of a Raw Starch Digesting Alkaline Alpha-Amylase from Bacillus licheniformis RT7PE1 and Its Characteristics

    PubMed Central

    Tabassum, Romana; Khaliq, Shazia; Rajoka, Muhammad Ibrahim; Agblevor, Foster

    2014-01-01

    The thermodynamic and kinetic properties of solids state raw starch digesting alpha amylase from newly isolated Bacillus licheniformis RT7PE1 strain were studied. The kinetic values Q p, Y p/s, Y p/X, and q p were proved to be best with 15% wheat bran. The molecular weight of purified enzyme was 112 kDa. The apparent K m and V max values for starch were 3.4 mg mL−1 and 19.5 IU mg−1 protein, respectively. The optimum temperature and pH for α-amylase were 55°C, 9.8. The half-life of enzyme at 95°C was 17h. The activation and denaturation activation energies were 45.2 and 41.2 kJ mol−1, respectively. Both enthalpies (ΔH ∗) and entropies of activation (ΔS ∗) for denaturation of α-amylase were lower than those reported for other thermostable α-amylases. PMID:24587909

  8. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments.

    PubMed

    Ouoba, Labia Irene I; Thorsen, Line; Varnam, Alan H

    2008-06-10

    The ability of various species of Bacillus from fermented seeds of Parkia biglobosa known as African locust bean (Soumbala) and fermented seeds of Hibiscus sabdariffa (Bikalga) was investigated. The study included screening of the isolates by haemolysis on blood agar, detection of toxins in broth and during the fermentation of African locust bean using the Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCET-RPLA) and the Bacillus Diarrhoeal Enterotoxin Visual Immunoassay (BDEVIA). Detection of genes encoding cytotoxin K (CytK), haemolysin BL (Hbl A, Hbl C, Hbl D), non-hemolytic enterotoxin (NheA, NheB, NheC) and EM1 specific of emetic toxin producers was also investigated using PCR with single pair and multiplex primers. Of 41 isolates, 29 Bacillus belonging to the species of B. cereus, Bacillus subtilis, Bacillus licheniformis and Bacillus pumilus showed haemolysis on blood agar. Using RPLA, enterotoxin production was detected for three isolates of B. cereus in broth and all B. cereus (9) in fermented seeds. Using BDEVIA, enterotoxin production was detected in broth as well as in fermented seeds for all B. cereus isolates. None of the isolates belonging to the other Bacillus species was able to produce enterotoxins either by RPLA or BDEVIA. Nhe genes were detected in all B. cereus while Hbl and CytK genes were detected respectively in five and six B. cereus strains. A weak presence of Hbl (A, D) and CytK genes was detected in two isolates of B. subtilis and one of B. licheniformis but results were inconsistent, especially for Hbl genes. The emetic specific gene fragment EM1 was not detected in any of the isolates studied.

  9. A dispersion model for predicting the extent of starch liquefaction by Bacillus licheniformis alpha-amylase during reactive extrusion.

    PubMed

    Komolprasert, V; Ofoli, R Y

    1991-03-25

    A Baker-Perkins corotating twin screw extruder was used as a bioreactor to hydrolyze pregelantinized corn starch by themophilic Bacillus licheniformis alpha-amylase. The extruder was modeled as a tube, and characterized as a closed system. This characterization is not in the thermodynamic sense; rather, it relates to the profile of a tracer fluid upon entry to and exit from the reaction zone. The reaction kinetics were modeled by a modified first-order equation, which allowed the dispersion equation to be solved analytically with the Danckwerts boundary condition. Data from several extrusion runs were super-imposed to obtain a profile to evaluate the model. The dispersion number, determined from the first and second moments of the RTD curve, was primarily a function of the length of the reaction zone. There was good agreement between predictions and experimental data, especially at low dispersion numbers. In general, the axial dispersion model appears to be suitable for analysis of enzymatic reactions of up to 30% conversion. At a fixed flow rate and constant temperature, the extent of starch conversion depends significantly on moisture content, residence time and enzyme dosage, but not on screw speed.

  10. Exploring potential applications of a novel extracellular polymeric substance synthesizing bacterium (Bacillus licheniformis) isolated from gut contents of earthworm (Metaphire posthuma) in environmental remediation.

    PubMed

    Biswas, Jayanta Kumar; Banerjee, Anurupa; Rai, Mahendra Kumar; Rinklebe, Jörg; Shaheen, Sabry M; Sarkar, Santosh Kumar; Dash, Madhab Chandra; Kaviraj, Anilava; Langer, Uwe; Song, Hocheol; Vithanage, Meththika; Mondal, Monojit; Niazi, Nabeel Khan

    2018-05-22

    The aim was to isolate, characterize, and explore potentials of gut bacteria from the earthworm (Metaphire posthuma) and imply these bacteria for remediation of Cu(II) and Zn(II). An extracellular polymeric substance (EPS) producing gut bacteria (Bacillus licheniformis strain KX657843) was isolated and identified based on 16S rRNA sequencing and phylogenetic analysis. The strain showed maximum tolerance of 8 and 6 mM for Cu(II) and Zn(II) respectively. It removed 34.5% of Cu(II) and 54.4% of Zn(II) at 25 mg L -1 after 72 and 96 h incubation respectively. The bacteria possessed a great potential to produce indole acetic acid (38.49 μg mL -1 ) at 5 mg mL -1 L-tryptophan following 12 days incubation. The sterilized seeds of mung beans (Vigna radiata) displayed greater germination and growth under bacterium enriched condition. We observed that the bacterial strain phosphate solubilization ability with a maximum of 204.2 mg L -1 in absence of Cu(II) and Zn(II). Endowed with biosurfactant property the bacterium exhibited 24% emulsification index. The bacterium offered significant potential of plant growth promotion, Cu(II) and Zn(II) removal, and as such this study is the first report on EPS producing B. licheniformis KX657843 from earthworm which can be applied as powerful tool in remediation programs of Cu(II) and Zn(II) contaminated sites.

  11. Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations.

    PubMed

    Sellami-Kamoun, Alya; Haddar, Anissa; Ali, Nedra El-Hadj; Ghorbel-Frikha, Basma; Kanoun, Safia; Nasri, Moncef

    2008-01-01

    The stability of crude extracellular protease produced by Bacillus licheniformis RP1, isolated from polluted water, in various solid laundry detergents was investigated. The enzyme had an optimum pH and temperature at pH 10.0-11.0 and 65-70 degrees C. Enzyme activity was inhibited by PMSF, suggesting that the preparation contains a serine-protease. The alkaline protease showed extreme stability towards non-ionic (5% Tween 20% and 5% Triton X-100) and anionic (0.5% SDS) surfactants, which retained 100% and above 73%, respectively, of its initial activity after preincubation 60 min at 40 degrees C. The RP1 protease showed excellent stability and compatibility with a wide range of commercial solid detergents at temperatures from 40 to 50 degrees C, suggesting its further application in detergent industry. The enzyme retained 95% of its initial activity with Ariel followed by Axion (94%) then Dixan (93.5%) after preincubation 60 min at 40 degrees C in the presence of 7 mg/ml of detergents. In the presence of Nadhif and New Det, the enzyme retained about 83.5% of the original activity. The effects of additives such as maltodextrin, sucrose and PEG 4000 on the stability of the enzyme during spray-drying and during subsequent storage in New Det detergent were also examined. All additives tested enhanced stability of the enzyme.

  12. Kinetic stabilization of Bacillus licheniformis alpha-amylase through introduction of hydrophobic residues at the surface.

    PubMed

    Machius, Mischa; Declerck, Nathalie; Huber, Robert; Wiegand, Georg

    2003-03-28

    It is generally assumed that in proteins hydrophobic residues are not favorable at solvent-exposed sites, and that amino acid substitutions on the surface have little effect on protein thermostability. Contrary to these assumptions, we have identified hyperthermostable variants of Bacillus licheniformis alpha-amylase (BLA) that result from the incorporation of hydrophobic residues at the surface. Under highly destabilizing conditions, a variant combining five stabilizing mutations unfolds 32 times more slowly and at a temperature 13 degrees C higher than the wild-type. Crystal structure analysis at 1.7 A resolution suggests that stabilization is achieved through (a) extension of the concept of increased hydrophobic packing, usually applied to cavities, to surface indentations, (b) introduction of favorable aromatic-aromatic interactions on the surface, (c) specific stabilization of intrinsic metal binding sites, and (d) stabilization of a beta-sheet by introducing a residue with high beta-sheet forming propensity. All mutated residues are involved in forming complex, cooperative interaction networks that extend from the interior of the protein to its surface and which may therefore constitute "weak points" where BLA unfolding is initiated. This might explain the unexpectedly large effect induced by some of the substitutions on the kinetic stability of BLA. Our study shows that substantial protein stabilization can be achieved by stabilizing surface positions that participate in underlying cooperatively formed substructures. At such positions, even the apparently thermodynamically unfavorable introduction of hydrophobic residues should be explored.

  13. Effect of oxygen mass transfer rate on the production of 2,3-butanediol from glucose and agro-industrial byproducts by Bacillus licheniformis ATCC9789.

    PubMed

    Rebecchi, Stefano; Pinelli, Davide; Zanaroli, Giulio; Fava, Fabio; Frascari, Dario

    2018-01-01

    2,3-Butanediol (BD) is a largely used fossil-based platform chemical. The yield and productivity of bio-based BD fermentative production must be increased and cheaper substrates need to be identified, to make bio-based BD production more competitive. As BD bioproduction occurs under microaerobic conditions, a fine tuning and control of the oxygen transfer rate (OTR) is crucial to maximize BD yield and productivity. Very few studies on BD bioproduction focused on the use of non-pathogenic microorganisms and of byproducts as substrate. The goal of this work was to optimize BD bioproduction by the non-pathogenic strain Bacillus licheniformis ATCC9789 by (i) identifying the ranges of volumetric and biomass-specific OTR that maximize BD yield and productivity using standard sugar and protein sources, and (ii) performing a preliminary evaluation of the variation in process performances and cost resulting from the replacement of glucose with molasses, and beef extract/peptone with chicken meat and bone meal, a byproduct of the meat production industry. OTR optimization with an expensive, standard medium containing glucose, beef extract and peptone revealed that OTRs in the 7-15 mmol/L/h range lead to an optimal BD yield (0.43 ± 0.03 g/g) and productivity (0.91 ± 0.05 g/L/h). The corresponding optimal range of biomass-specific OTR was equal to 1.4-7.9 [Formula: see text], whereas the respiratory quotient ranged from 1.8 to 2.5. The switch to an agro-industrial byproduct-based medium containing chicken meat and bone meal and molasses led to a 50% decrease in both BD yield and productivity. A preliminary economic analysis indicated that the use of the byproduct-based medium can reduce by about 45% the BD production cost. A procedure for OTR optimization was developed and implemented, leading to the identification of a range of biomass-specific OTR and respiratory quotient to be used for the scale-up and control of BD bioproduction by Bacillus licheniformis

  14. Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis.

    PubMed

    Singh, Sneha; Vidyarthi, Ambarish Sharan; Nigam, Vinod Kumar; Dev, Abhimanyu

    2014-02-01

    The development of a reliable, eco-friendly process for synthesis of gold nanoparticles (AuNPs) has gained impetus in recent years to counter the drawbacks of chemical and physical methods. This study illustrates simple, green synthesis of AuNPs in vitro using cell lysate supernatant (CLS) of non-pathogenic bacteria and to investigate its potential antimicrobial activity. Gold nanoparticles were synthesized by the reduction of precursor AuCl4- ions using the CLS of Bacillus licheniformis at 37°C upon 24 h of incubation. The nanoparticles were characterized for their morphology, particle size, optical absorption, zeta potential, and stability. Further the antimicrobial activity was assayed using cup-plate method. The process of biosynthesis was extracellular and the gold ions were reduced to stable nanogold of average size 38 nm. However, upon storage of AuNPs for longer duration at room temperature stability was influenced in terms of increase in particle size and decrease in zeta potential with respect to as synthesized nanoparticles. SEM micrographs revealed the spherical shape of AuNPs and EDX analysis confirmed the presence of gold in the sample. Also clear zone of inhibition was observed against Bacilllus subtilis MTCC 8364, Pseudomonas aeruginosa MTCC 7925, and Escherichia coli MTCC 1698 confirming the antimicrobial activity of AuNPs. The bioprocess under study was simple and less time consuming as compared to other methods as the need for harvesting AuNPs from within the microbial cells via downstream process will be eliminated. Nanoparticles exhibited good stability even in absence of external stabilizing agents. AuNPs showed good antimicrobial activity against several Gram-negative and Gram-positive pathogenic bacteria. The extracellular biosynthesis from CLS may serve as a suitable alternative for large scale synthesis of gold nanoparticles in vitro. The synthesis from lysed bacterial cell strongly suggests that exposure of microbial whole cells to the

  15. Characterization of thermostable cellulase produced by Bacillus strains isolated from solid waste of carrageenan

    NASA Astrophysics Data System (ADS)

    Listyaningrum, N. P.; Sutrisno, A.; Wardani, A. K.

    2018-03-01

    Cellulase-producing bacteria was isolated from solid waste of carrageenan and identified as Bacillus licheniformis C55 by 16S rRNA sequencing. The optimum condition for cellulase production was obtained at pH and temperature of 8.0 and 50°C, respectively in a medium containing glucose as carbon source and 1.0% carboxymethyl cellulose (CMC) to stimulate the cellulase production. Most remarkably, the enzyme retained its relative activity over 50% after incubation at 50°C for 90 minutes. Substrate specificity suggested that the enzyme is an endoglucanase. The molecular mass of Bacillus licheniformis C55 crude cellulase was found about 18 kDa by SDS-PAGE analysis. This thermostable enzyme would facilitate development of more efficient and cost-effective forms of the process to convert lignocellulosic biomass into high-value products.

  16. Purification and characterization of alpha-amylase from Bacillus licheniformis CUMC305

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, T.; Chandra, A.K.

    Alpha-amylase produced by Bacillus licheniformis CUMC305 was purified 212-fold with a 42% yield through a series of four steps. The purified enzyme was homogeneous as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and discontinuous gel electrophoresis. The purified enzyme showed maximal activity at 90 degrees C and pH 9.0, and 91% of this activity remained at 100 degrees C. In the presence of substrate (soluble starch), the alpha-amylase enzyme was fully stable after a 4-hour incubation at 100 degrees C. The enzyme showed 100% stability in the pH range 7 to 9; 95% stability at pH 10; and 84, 74,more » 68, and 50% stability at pH values of 6, 5, 4, and 3, respectively, after 18 hours of treatment. The activation energy for this enzyme was calculated as 5.1 x 10 to the power of 5 J/mol. The molecular weight was estimated to be 28,000 by sodium dodecyl sulfate-gel electrophoresis. The relative rates of hydrolysis of soluble starch, amylose, amylopectin, and glycogen were 1.27, 1.8, 1.94, and 2.28 mg/ml, respectively. Vmax values for hydrolysis of these substrates were calculated as 0.738, 1.08, 0.8, and 0.5 mg of maltose/ml per min, respectively. Of the cations, Na+, Ca(2+), and Mg(2+), showed stimulatory effect, wheras Hg(2+), Cu(2+), Ni(2+), Zn(2+), Ag+, Fe(2+), Co(2+), Cd(2+), Al(3+), and Mn(2+) were inhibitory. Of the anions, azide, F-, SO/sub 3/(2-), SO/sub 4/(3-), S/sub 2/O/sub 3/(2-), MoO/sub 4/(2-), and Wo/sub 4/(2-) showed an excitant effect. p-Chloromercuribenzoic acid and sodium iodoacetate were inhibitory, whereas cysteine, reduced glutathione, thiourea, beta-mercaptoethanol, and sodium glycerophosphate afforded protection to enzyme activity. Alpha-amylase was fairly resistant to EDTA treatment at 30 degrees C, but heating at 90 degrees C in presence of EDTA resulted in the complete loss of enzyme activity. (Refs. 32).« less

  17. Development and application of active films for food packaging using antibacterial peptide of Bacillus licheniformis Me1.

    PubMed

    Nithya, V; Murthy, P S K; Halami, P M

    2013-08-01

    An attempt was made to evaluate the effectiveness of partially purified antibacterial peptide (ppABP) produced by Bacillus licheniformis Me1 for food preservation by means of active packaging. The active packaging films containing ppABP were developed using two different packing materials [low-density polyethylene (LDPE) and cellulose films] by two different methods: soaking and spread coating. The activated films showed antibacterial activity against pathogens. The release study of ppABP from coated film showed that the LDPE films liberated ppABP as soon as it comes in contact with water, while gradual release of coated ppABP was observed in case of cellulose films. The activated films showed residual activity in different simulating conditions, such as pH of food and storage temperatures. The activated films demonstrated its biopreservative efficacy in controlling the growth of pathogens in cheese and paneer. The ppABP-activated films were found to be effective for biopreservation. The ppABP from active films got diffused into the food matrix and reduced the growth rate and maximum growth population of the target micro-organism. Both types of ppABP-activated films can be used as a packaging material to control spoilage and pathogenic organisms in food, thereby extending the shelf life of foods. © 2013 The Society for Applied Microbiology.

  18. Identification of Bacillus spp. from Bikalga, fermented seeds of Hibiscus sabdariffa: phenotypic and genotypic characterization.

    PubMed

    Ouoba, L I I; Parkouda, C; Diawara, B; Scotti, C; Varnam, A H

    2008-01-01

    To identify Bacillus spp. responsible of the fermentation of Hibiscus sabdariffa for production of Bikalga, an alkaline fermented food used as a condiment in Burkina Faso. Seventy bacteria were isolated from Bikalga produced in different regions of Burkina Faso and identified by phenotyping and genotyping using PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS-PCR), repetitive sequence-based PCR (rep-PCR) and DNA sequencing. The isolates were characterized as motile, rod-shaped, endospore forming, catalase positive, Gram-positive bacteria. ITS-PCR allowed typing mainly at species level. Rep-PCR was more discriminative and allowed a typing at ssp. level. The DNA sequencing combined with the Blast search program and fermentation profiles using API 50CHB system allowed an identification of the bacteria as Bacillus subtilis, B. licheniformis, B. cereus, B. pumilus, B. badius, Brevibacillus bortelensis, B. sphaericus and B. fusiformis. B. subtilis were the predominant bacterium (42) followed by B. licheniformis (16). Various species and ssp. of Bacillus are involved in fermentation of H. sabdariffa for production of Bikalga. Selection of starter cultures of Bacillus for controlled production of Bikalga, selection of probiotic bacteria.

  19. Degradation of complex carbohydrate: immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support.

    PubMed

    Rehman, Haneef Ur; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio; Ansari, Asma

    2013-08-15

    Pectinases are heterogeneous group of enzymes that catalyse the hydrolysis of pectin substances which is responsible for the turbidity and undesirable cloudiness in fruits juices. In current study, partially purified pectinase from Bacillus licheniformis KIBGE-IB21 was immobilized in calcium alginate beads. The effect of sodium alginate and calcium chloride concentration on immobilization was studied and it was found that the optimal sodium alginate and calcium chloride concentration was 3.0% and 0.2 M, respectively. It was found that immobilization increases the optimal reaction time for pectin degradation from 5 to 10 min and temperature from 45 to 55°C, whereas, the optimal pH remained same with reference to free enzyme. Thermal stability of enzyme increased after immobilization and immobilized pectinase retained more than 80% of its initial activity after 5 days at 30°C as compared with free enzyme which showed only 30% of residual activity. The immobilized enzyme also exhibited good operational stability and 65% of its initial activity was observed during third cycle. In term of pectinase immobilization efficiency and stability, this calcium alginate beads approach seemed to permit good results and can be used to make a bioreactor for various applications in food industries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Identification and Molecular Characterization of Genes Coding Pharmaceutically Important Enzymes from Halo-Thermo Tolerant Bacillus

    PubMed Central

    Safary, Azam; Moniri, Rezvan; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2016-01-01

    Purpose: Robust pharmaceutical and industrial enzymes from extremophile microorganisms are main source of enzymes with tremendous stability under harsh conditions which make them potential tools for commercial and biotechnological applications. Methods: The genome of a Gram-positive halo-thermotolerant Bacillus sp. SL1, new isolate from Saline Lake, was investigated for the presence of genes coding for potentially pharmaceutical enzymes. We determined gene sequences for the enzymes laccase (CotA), l-asparaginase (ansA3, ansA1), glutamate-specific endopeptidase (blaSE), l-arabinose isomerase (araA2), endo-1,4-β mannosidase (gmuG), glutaminase (glsA), pectate lyase (pelA), cellulase (bglC1), aldehyde dehydrogenase (ycbD) and allantoinases (pucH) in the genome of Bacillus sp. SL1. Results: Based on the DNA sequence alignment results, six of the studied enzymes of Bacillus sp. SL-1 showed 100% similarity at the nucleotide level to the same genes of B. licheniformis 14580 demonstrating extensive organizational relationship between these two strains. Despite high similarities between the B. licheniformis and Bacillus sp. SL-1 genomes, there are minor differences in the sequences of some enzyme. Approximately 30% of the enzyme sequences revealed more than 99% identity with some variations in nucleotides leading to amino acid substitution in protein sequences. Conclusion: Molecular characterization of this new isolate provides useful information regarding evolutionary relationship between B. subtilis and B. licheniformis species. Since, the most industrial processes are often performed in harsh conditions, enzymes from such halo-thermotolerant bacteria may provide economically and industrially appealing biocatalysts to be used under specific physicochemical situations in medical, pharmaceutical, chemical and other industries. PMID:28101462

  1. Identification and Molecular Characterization of Genes Coding Pharmaceutically Important Enzymes from Halo-Thermo Tolerant Bacillus.

    PubMed

    Safary, Azam; Moniri, Rezvan; Hamzeh-Mivehroud, Maryam; Dastmalchi, Siavoush

    2016-12-01

    Purpose: Robust pharmaceutical and industrial enzymes from extremophile microorganisms are main source of enzymes with tremendous stability under harsh conditions which make them potential tools for commercial and biotechnological applications. Methods: The genome of a Gram-positive halo-thermotolerant Bacillus sp. SL1, new isolate from Saline Lake, was investigated for the presence of genes coding for potentially pharmaceutical enzymes. We determined gene sequences for the enzymes laccase (CotA), l-asparaginase (ansA3, ansA1), glutamate-specific endopeptidase (blaSE), l-arabinose isomerase (araA2), endo-1,4-β mannosidase (gmuG), glutaminase (glsA), pectate lyase (pelA), cellulase (bglC1), aldehyde dehydrogenase (ycbD) and allantoinases (pucH) in the genome of Bacillus sp. SL1. Results: Based on the DNA sequence alignment results, six of the studied enzymes of Bacillus sp. SL-1 showed 100% similarity at the nucleotide level to the same genes of B. licheniformis 14580 demonstrating extensive organizational relationship between these two strains. Despite high similarities between the B. licheniformis and Bacillus sp. SL-1 genomes, there are minor differences in the sequences of some enzyme. Approximately 30% of the enzyme sequences revealed more than 99% identity with some variations in nucleotides leading to amino acid substitution in protein sequences. Conclusion: Molecular characterization of this new isolate provides useful information regarding evolutionary relationship between B. subtilis and B. licheniformis species. Since, the most industrial processes are often performed in harsh conditions, enzymes from such halo-thermotolerant bacteria may provide economically and industrially appealing biocatalysts to be used under specific physicochemical situations in medical, pharmaceutical, chemical and other industries.

  2. Synthesis and Physicochemical Characterization of D-Tagatose-1-Phosphate: The Substrate of the Tagatose-1-Phosphate Kinase in the Phosphotransferase System-Mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I; Thompson, John; Joris, Bernard; Battistel, Marcos D

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multicomponent phosphoenolpyruvate:sugar phosphotransferase system (PEP-PTS) present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by (31)P and (1)H nuclear magnetic resonance spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-tagatose catabolic pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TF(His6)) of Escherichia coli. The active fusion enzyme was named TagK-TF(His6). Tag-1P and D-fructose-1-phosphate are substrates for the TagK-TF(His6) enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate and D-fructose-6-phosphate are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as the substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific Enzyme II in E. coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and Enzyme I to restore the phosphate transfer is demonstrated. © 2015 S. Karger AG, Basel.

  3. Cloning, expression, purification and characterization of lipase from Bacillus licheniformis, isolated from hot spring of Himachal Pradesh, India.

    PubMed

    Kaur, Gagandeep; Singh, Amninder; Sharma, Rohit; Sharma, Vinay; Verma, Swati; Sharma, Pushpender K

    2016-06-01

    In the present investigation, a gene encoding extracellular lipase was cloned from a Bacillus licheniformis. The recombinant protein containing His-tag was expressed as inclusion bodies in Esherichia coli BL21DE3 cells, using pET-23a as expression vector. Expressed protein purified from the inclusion bodies demonstrated ~22 kDa protein band on 12 % SDS-PAGE. It exhibited specific activity of 0.49 U mg -1 and % yield of 8.58. Interestingly, the lipase displayed activity at wide range of pH and temperature, i.e., 9.0-14.0 pH and 30-80 °C, respectively. It further demonstrated ~100 % enzyme activity in presence of various organic solvents. Enzyme activity was strongly inhibited in the presence of β-ME. Additionally, the serine and histidine modifiers also inhibited the enzyme activities strongly at all concentrations that suggest their role in the catalytic center. Enzyme could retain its activity in presence of various detergents (Triton X-100, Tween 20, Tween 40, SDS). Sequence and structural analysis employing in silico tools revealed that the lipase contained two highly conserved sequences consisting of ITITGCGNDL and NLYNP, arranged as parallel β-sheet in the core of the 3D structure. The function of these conserve sequences have not fully understood.

  4. Some structural features of the teichuronic acid of Bacillus licheniformis N.C.T.C. 6346 cell walls

    PubMed Central

    Hughes, R. C.; Thurman, P. F.

    1970-01-01

    A teichuronic acid, containing glucuronic acid and N-acetylgalactosamine, was purified from acid extracts of Bacillus licheniformis 6346 cell walls as described by Janczura, Perkins & Rogers (1961). After reduction of the carboxyl function of glucuronic acid residues in the polysaccharide the reduced polymer contains equimolar amounts of N-acetylgalactosamine and glucose. Methylation of the reduced polysaccharide by the Hakamori (1964) technique showed the glucose residues to be substituted on C-4. A disaccharide, 3-O-glucuronosylgalactosamine, was isolated from partial acid hydrolysates of teichuronic acid. After N-acetylation the disaccharide produces chromogen readily on heating at pH7, in agreement with C-3 substitution of the reducing N-acetylamino sugar. Teichuronic acid also produces chromogen under the same conditions, with concurrent elimination of a modified polysaccharide from C-3 of reducing terminal N-acetylgalactosamine residues of the teichuronic acid chains. The number-average chain lengths of several preparations of teichuronic acid were estimated from the amounts of chromogen produced in comparison with the N-acetylated disaccharide. The values obtained are in good agreement with the weight-average molecular weight determined by ultracentrifugal analysis. The reducing terminals of teichuronic acid are shown to be exclusively N-acetylgalactosamine by reduction with sodium boro[3H]hydride. The number-average chain lengths of the teichuronic acid preparations were estimated by the extent of in corporation of tritium and are in agreement with values obtained by the other methods. PMID:5419741

  5. Immunoelectron microscopic double labeling of alkaline phosphatase and penicillinase with colloidal gold in frozen thin sections of Bacillus licheniformis 749/C.

    PubMed Central

    Guan, T; Ghosh, A; Ghosh, B K

    1985-01-01

    The subcellular distribution of alkaline phosphatase and penicillinase was determined by double labeling frozen thin sections of Bacillus licheniformis 749/C with colloidal gold-immunoglobulin G (IgG). Antipenicillinase and anti-alkaline phosphatase antibodies were used to prepare complexes with 5- and 15-nm colloidal gold particles, respectively. The character of the labeling of membrane-bound alkaline phosphatase and penicillinase was different: the immunolabels for alkaline phosphatase (15-nm particles) were bound to a few sites at the inner surface of the plasma membrane, and the gold particles formed clusters of various sizes at the binding sites; the immunolabels for penicillinase (5-nm particles), on the other hand, were bound to the plasma membrane in a dispersed and random fashion. In the cytoplasm, immunolabels for both proteins were distributed randomly, and the character of their binding was similar. The labeling was specific: pretreating the frozen thin sections with different concentrations of anti-alkaline phosphatase or penicillinase blocked the binding of the immunolabel prepared with the same antibody. Binding could be fully blocked by pretreatment with 800 micrograms of either antibody per ml. Images PMID:3876329

  6. Antimicrobial Susceptibility of Bacillus Strains Isolated from Primary Starters for African Traditional Bread Production and Characterization of the Bacitracin Operon and Bacitracin Biosynthesis

    PubMed Central

    Sørensen, Kim I.; Thorsen, Line; Stuer-Lauridsen, Birgitte; Abdelgadir, Warda S.; Nielsen, Dennis S.; Derkx, Patrick M. F.; Jespersen, Lene

    2012-01-01

    Bacillus spp. are widely used as feed additives and probiotics. However, there is limited information on their resistance to various antibiotics, and there is a growing concern over the transfer of antibiotic resistance genes. The MIC for 8 antibiotics was determined for 85 Bacillus species strains, Bacillus subtilis subsp. subtilis (n = 29), Bacillus licheniformis (n = 38), and Bacillus sonorensis (n = 18), all of which were isolated from starters for Sudanese bread production. All the strains were sensitive to tetracycline (8.0 mg/liter), vancomycin (4.0 mg/liter), and gentamicin (4.0 mg/liter) but resistant to streptomycin. Sensitivity to clindamycin, chloramphenicol, and kanamycin was species specific. The erythromycin resistance genes ermD and ermK were detected by PCR in all of the erythromycin-resistant (MIC, ≥16.0 mg/liter) B. licheniformis strains and one erythromycin-sensitive (MIC, 4.0 mg/liter) B. licheniformis strain. Several amino acid changes were present in the translated ermD and ermK nucleotide sequences of the erythromycin-sensitive strain, which could indicate ErmD and ErmK protein functionalities different from those of the resistance strains. The ermD and ermK genes were localized on an 11.4-kbp plasmid. All of the B. sonorensis strains harbored the bacitracin synthetase gene, bacA, and the transporter gene bcrA, which correlated with their observed resistance to bacitracin. Bacitracin was produced by all the investigated species strains (28%), as determined by ultra-high-definition quadrupole time-of-flight liquid chromatography-mass spectrometry (UHD-QTOF LC/MS). The present study has revealed species-specific variations in the antimicrobial susceptibilities of Bacillus spp. and provides new information on MIC values, as well as the occurrence of resistance genes in Bacillus spp., including the newly described species B. sonorensis. PMID:22941078

  7. Antimicrobial susceptibility of Bacillus strains isolated from primary starters for African traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis.

    PubMed

    Adimpong, David B; Sørensen, Kim I; Thorsen, Line; Stuer-Lauridsen, Birgitte; Abdelgadir, Warda S; Nielsen, Dennis S; Derkx, Patrick M F; Jespersen, Lene

    2012-11-01

    Bacillus spp. are widely used as feed additives and probiotics. However, there is limited information on their resistance to various antibiotics, and there is a growing concern over the transfer of antibiotic resistance genes. The MIC for 8 antibiotics was determined for 85 Bacillus species strains, Bacillus subtilis subsp. subtilis (n = 29), Bacillus licheniformis (n = 38), and Bacillus sonorensis (n = 18), all of which were isolated from starters for Sudanese bread production. All the strains were sensitive to tetracycline (8.0 mg/liter), vancomycin (4.0 mg/liter), and gentamicin (4.0 mg/liter) but resistant to streptomycin. Sensitivity to clindamycin, chloramphenicol, and kanamycin was species specific. The erythromycin resistance genes ermD and ermK were detected by PCR in all of the erythromycin-resistant (MIC, ≥16.0 mg/liter) B. licheniformis strains and one erythromycin-sensitive (MIC, 4.0 mg/liter) B. licheniformis strain. Several amino acid changes were present in the translated ermD and ermK nucleotide sequences of the erythromycin-sensitive strain, which could indicate ErmD and ErmK protein functionalities different from those of the resistance strains. The ermD and ermK genes were localized on an 11.4-kbp plasmid. All of the B. sonorensis strains harbored the bacitracin synthetase gene, bacA, and the transporter gene bcrA, which correlated with their observed resistance to bacitracin. Bacitracin was produced by all the investigated species strains (28%), as determined by ultra-high-definition quadrupole time-of-flight liquid chromatography-mass spectrometry (UHD-QTOF LC/MS). The present study has revealed species-specific variations in the antimicrobial susceptibilities of Bacillus spp. and provides new information on MIC values, as well as the occurrence of resistance genes in Bacillus spp., including the newly described species B. sonorensis.

  8. Synthesis and Physicochemical Characterization of D-Tagatose-1-phosphate: The Substrate of the Tagatose-1-Phosphate Kinase TagK in the PTS-mediated D-Tagatose Catabolic Pathway of Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Delmarcelle, Michaël; Simon, Patricia; Counson, Melody; Galleni, Moreno; Freedberg, Darón I.; Thompson, John; Joris, Bernard; Battistel, Marcos D.

    2015-01-01

    We report the first enzymatic synthesis of D-tagatose-1-phosphate (Tag-1P) by the multi-component PEP-dependent:tag-PTS present in tagatose-grown cells of Klebsiella pneumoniae. Physicochemical characterization by 31P and 1H NMR spectroscopy reveals that, in solution, this derivative is primarily in the pyranose form. Tag-1P was used to characterize the putative tagatose-1-phosphate kinase (TagK) of the Bacillus licheniformis PTS-mediated D-Tagatose catabolic Pathway (Bli-TagP). For this purpose, a soluble protein fusion was obtained with the 6 His-tagged trigger factor (TFHis6) of Escherichia coli. The active fusion enzyme was named TagK-TFHis6. Tag-1P and D-fructose-1-phosphate (Fru-1P) are substrates for the TagK-TFHis6 enzyme, whereas the isomeric derivatives D-tagatose-6-phosphate (Tag-6P) and D-fructose-6-phosphate (Fru-6P) are inhibitors. Studies of catalytic efficiency (kcat/Km) reveal that the enzyme specificity is markedly in favor of Tag-1P as substrate. Importantly, we show in vivo that the transfer of the phosphate moiety from PEP to the B. licheniformis tagatose-specific enzyme II (EIITag) in E.coli is inefficient. The capability of the PTS general cytoplasmic components of B. subtilis, HPr and EI, to restore the phosphate transfer is demonstrated. PMID:26159072

  9. Induced calcium carbonate precipitation using Bacillus species.

    PubMed

    Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin

    2016-12-01

    Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca 2+ ). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.

  10. Structure, function, and fate of the BlaR signal transducer involved in induction of beta-lactamase in Bacillus licheniformis.

    PubMed Central

    Zhu, Y; Englebert, S; Joris, B; Ghuysen, J M; Kobayashi, T; Lampen, J O

    1992-01-01

    The membrane-spanning protein BlaR is essential for the induction of beta-lactamase in Bacillus licheniformis. Its nature and location were confirmed by the use of an antiserum specific for its carboxy-terminal penicillin sensor, its function was studied by genetic dissection, and the structure of the penicillin sensor was derived from hydrophobic cluster analysis of the amino acid sequence by using, as a reference, the class A beta-lactamases with known three-dimensional structures. During the first 2 h after the addition of the beta-lactam inducer, full-size BlaR, bound to the plasma membrane, is produced, and then beta-lactamase is produced. By 2 h after induction, BlaR is present in various (membrane-bound and cytosolic) forms, and there is a gradual decrease in beta-lactamase production. The penicillin sensors of BlaR and the class D beta-lactamases show strong similarities in primary structures. They appear to have the same basic spatial disposition of secondary structures as that of the class A beta-lactamases, except that they lack several alpha helices and, therefore, have a partially uncovered five-stranded beta sheet and a more readily accessible active site. Alterations of BlaR affecting conserved secondary structures of the penicillin sensor and specific sites of the transducer annihilate beta-lactamase inducibility. Images PMID:1400165

  11. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    PubMed

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Distribution and identification of proteolytic Bacillus spp. in paddy field soil under rice cultivation.

    PubMed

    Watanabe, K; Hayano, K

    1993-07-01

    Proteolytic bacteria in paddy field soils under rice cultivation were characterized and enumerated using azocoll agar plates. Bacillus spp. were the proteolytic bacteria that were most frequently present, comprising 59% of the isolates. They were always the numerically dominant proteolytic bacteria isolated from three kinds of fertilizer treatments (yearly application of rice-straw compost and chemical fertilizer, yearly application of chemical fertilizer, and no fertilizer application) and at three different stages of rice development (vegetative growth stage, maximal tillering stage, and harvest stage). Of the 411 proteolytic bacteria isolated, 124 isolates had stronger proteolytic activity than others on the basis of gelatin liquefaction tests and most of them were Bacillus spp. (100% in 1989 and 92.4% in 1991). Bacillus subtilis and Bacillus cereus were the main bacteria of this group and Bacillus mycoides, Bacillus licheniformis, and Bacillus megaterium were also present. We conclude that these Bacillus spp. are the primary source of soil protease in these paddy fields.

  13. Heavy Metal Detoxification by Different Bacillus Species Isolated from Solar Salterns

    PubMed Central

    Syed, Shameer; Chinthala, Paramageetham

    2015-01-01

    The biosorption mechanism is an alternative for chemical precipitation and ultrafiltration which have been employed to treat heavy metal contamination with a limited success. In the present study, three species of Bacillus which were isolated from solar salterns were screened for their detoxification potential of the heavy metals, lead, chromium, and copper, by biosorption. Biosorption potential of each isolate was determined by Atomic Absorption Spectroscopy (AAS), Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), and Energy Dispersive Spectroscopy (EDS) as the amount of metal present in the medium after the treatment with the isolates. Bacterial isolates, Bacillus licheniformis NSPA5, Bacillus cereus NSPA8, and Bacillus subtilis NSPA13, showed significant level of lead biosorption with maximum of 87–90% by Bacillus cereus NSPA8. The biosorption of copper and chromium was relatively low in comparison with lead. With the obtained results, we have concluded that the bacterial isolates are potential agents to treat metal contamination in more efficient and ecofriendly manner. PMID:26525498

  14. Molten Globule-Like Partially Folded State of Bacillus licheniformis α-Amylase at Low pH Induced by 1,1,1,3,3,3-Hexafluoroisopropanol

    PubMed Central

    Abd Halim, Adyani Azizah; Zaroog, Mohammed Suleiman; Abdul Kadir, Habsah; Tayyab, Saad

    2014-01-01

    Effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) on acid-denatured Bacillus licheniformis α-amylase (BLA) at pH 2.0 was investigated by far-UV CD, intrinsic fluorescence, and ANS fluorescence measurements. Addition of increasing HFIP concentrations led to an increase in the mean residue ellipticity at 222 nm (MRE222 nm) up to 1.5 M HFIP concentration beyond which it sloped off. A small increase in the intrinsic fluorescence and a marked increase in the ANS fluorescence were also observed up to 0.4 M HFIP concentration, both of which decreased thereafter. Far- and near-UV CD spectra of the HFIP-induced state observed at 0.4 M HFIP showed significant retention of the secondary structures closer to native BLA but a disordered tertiary structure. Increase in the ANS fluorescence intensity was also observed with the HFIP-induced state, suggesting exposure of the hydrophobic clusters to the solvent. Furthermore, thermal denaturation of HFIP-induced state showed a non-cooperative transition. Taken together, all these results suggested that HFIP-induced state of BLA represented a molten globule-like state at pH 2.0. PMID:24977228

  15. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta.

    PubMed

    Shanthi, Sathappan; Jayaseelan, Barbanas David; Velusamy, Palaniyandi; Vijayakumar, Sekar; Chih, Cheng Ta; Vaseeharan, Baskaralingam

    2016-04-01

    In the present study, we synthesized and characterized a probiotic Bacillus licheniformis cell free extract (BLCFE) coated silver nanoparticles (BLCFE-AgNPs). These BLCFE-AgNPs were characterized by UV-visible spectrophotometer, XRD, EDX, FTIR, TEM and AFM. A strong surface plasmon resonance centered at 422 nm in UV-visible spectrum indicates the formation of AgNPs. The XRD spectrum of silver nanoparticles exhibited 2θ values corresponding to the silver nanocrystal. TEM and AFM showed the AgNPs were spherical in shape within the range of 18.69-63.42 nm and the presence of silver was confirmed by EDX analysis. Light and Confocal Laser Scanning Microscope (CLSM) images showed a weak adherence and disintegrated biofilm formation of Vibrio parahaemolyticus Dav1 treated with BLCFE-AgNPs compared to control. This result suggests that BLCFE-AgNps may be used for the control of biofilm forming bacterial populations in the biomedical field. In addition, acute toxicity results concluded that BLCFE-AgNPs were less toxic to the fresh water crustacean Ceriodaphnia cornuta (50 μg/ml) when compared to AgNO3 (22 μg/ml). This study also reports a short term analysis (24 h) of uptake and depuration of BLCFE-AgNPs in C. cornuta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Introduction of a unique tryptophan residue into various positions of Bacillus licheniformis DnaK.

    PubMed

    Chen, Bo-En; Lin, Min-Guan; Lo, Huei-Fen; Wang, Tzu-Fan; Chi, Meng-Chun; Lin, Long-Liu

    2013-01-01

    Site-directed mutagenesis together with biochemical and biophysical techniques were used to probe effects of single-tryptophan-incorporated mutations on a bacterial molecular chaperone, Bacillus licheniformis DnaK (BlDnaK). Specifically, five phenylalanine residues (Phe(120), Phe(174), Phe(186), Phe(378) and Phe(396)) of BlDnaK were individually replaced by single tryptophans, thus creating site-specific probes for the fluorescence analysis of the protein. The steady-state ATPase activity for BlDnaK, F120W, F174W, F186W, F378W, and F396W was determined to be 76.01, 52.82, 25.32, 53.31, 58.84, and 47.53 nmol Pi/min/mg, respectively. Complementation test revealed that the single mutation at codons 120, 186, and 378 of the dnaK gene still allowed an Escherichia coli dnaK756-Ts strain to grow at a stringent temperature of 44°C. Simultaneous addition of co-chaperones and NR-peptide did not synergistically stimulate the ATPase activity of F174W and F396W, and these two proteins were unable to assist the refolding of GdnHCl-denatured luciferase. The heat-induced denaturation of all variants could be fitted adequately to a three-state model, in agreement with the observation for the wild-type protein. By CD spectral analysis, GdnHCl-induced unfolding transition for BlDnaK was 1.51 M corresponding to ΔG(N-U) of 1.69 kcal/mol; however, the transitions for mutant proteins were 1.07-1.55 M equivalent to ΔG(N-U) of 0.94-2.93 kcal/mol. The emission maximum of single-tryptophan-incorporated variants was in the range of 333.2-335.8 nm. Acrylamide quenching analysis showed that the mutant proteins had a dynamic quenching constant of 3.0-4.2 M(-1). Taken together, these results suggest that the molecular properties of BlDnaK have been significantly changed upon the individual replacement of selected phenylalanine residues by tryptophan. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Gallic acid-based alkyl esters synthesis in a water-free system by celite-bound lipase of Bacillus licheniformis SCD11501.

    PubMed

    Sharma, Shivika; Kanwar, Shamsher S; Dogra, Priyanka; Chauhan, Ghanshyam S

    2015-01-01

    Gallic acid (3, 4, 5- trihydroxybenzoic acid) is an important antioxidant, anti-inflammatory, and radical scavenging agent. In the present study, a purified thermo-tolerant extra-cellular lipase of Bacillus licheniformis SCD11501 was successfully immobilized by adsorption on Celite 545 gel matrix followed by treatment with a cross-linking agent, glutaraldehyde. The celite-bound lipase treated with glutaraldehyde showed 94.8% binding/retention of enzyme activity (36 U/g; specific activity 16.8 U/g matrix; relative increase in enzyme activity 64.7%) while untreated matrix resulted in 88.1% binding/retention (28.0 U/g matrix; specific activity 8.5 U/g matrix) of lipase. The celite-bound lipase was successfully used to synthesis methyl gallate (58.2%), ethyl gallate (66.9%), n-propyl gallate (72.1%), and n-butyl gallate (63.8%) at 55(o) C in 10 h under shaking (150 g) in a water-free system by sequentially optimizing various reaction parameters. The low conversion of more polar alcohols such as methanol and ethanol into their respective gallate esters might be due to the ability of these alcohols to severely remove water from the protein hydration shell, leading to enzyme inactivation. Molecular sieves added to the reaction mixture resulted in enhanced yield of the alkyl ester(s). The characterization of synthesised esters was done through fourier transform infrared (FTIR) spectroscopy and (1) H NMR spectrum analysis. © 2015 American Institute of Chemical Engineers.

  18. Optimization of Levan Production by Cold-Active Bacillus licheniformis ANT 179 and Fructooligosaccharide Synthesis by Its Levansucrase.

    PubMed

    Xavier, Janifer Raj; Ramana, Karna Venkata

    2017-03-01

    Fructooligosaccharides (FOS) and levan attract much attention due to a wide range of applications in food technology and pharmaceutical and cosmetic industry. Bacillus licheniformis ANT 179, isolated from Antarctica soil, produced levansucrase and levan in a medium containing sucrose as carbon substrate. In this study, characterization of levansucrase and production of short-chain FOS and levan were investigated. Temperature and pH optimum of the enzyme were found to be 60 °C and pH 6.0, respectively. The optimization of fermentation conditions for levan production using sugarcane juice by response surface methodology (RSM) was carried out. Central composite rotatable design was used to study the main and the interactive effects of medium components: sugarcane juice and casein peptone concentration on levan production by the bacterium. The optimized medium with sugarcane juice at 20 % (v/v) and casein peptone at 2 % (w/v) was found to be optimal at an initial pH of 7.0 and incubation temperature of 35 °C for 48 h. Under these conditions, the maximum levan concentration was 50.25 g/L on wet weight basis and 16.35 g/L on dry weight basis. The produced inulin type FOS (kestose and neokestose) and levan were characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) analysis. The study revealed that the levansucrase could form FOS from sucrose. The locally available low-cost substrate such as sugarcane juice in the form of a renewable substrate is proposed to be suitable even for scale-up production of enzyme and FOS for industrial applications. The levan and FOS synthesized by the bacterium are suitable for food applications and biomedical uses as the bacterium has GRAS status and devoid of endotoxin as compared to other Gram-negative bacteria.

  19. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or gamma-polyglutamate.

    PubMed

    Ornek, D; Jayaraman, A; Syrett, B C; Hsu, C-H; Mansfeld, F B; Wood, T K

    2002-04-01

    Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024.

  20. Boosting isoprene production via heterologous expression of the Kudzu isoprene synthase gene (kIspS) into Bacillus spp. cell factory.

    PubMed

    Gomaa, Lamis; Loscar, Michael E; Zein, Haggag S; Abdel-Ghaffar, Nahed; Abdelhadi, Abdelhadi A; Abdelaal, Ali S; Abdallah, Naglaa A

    2017-08-08

    Isoprene represents a key building block for the production of valuable materials such as latex, synthetic rubber or pharmaceutical precursors and serves as basis for advanced biofuel production. To enhance the production of the volatile natural hydrocarbon isoprene, released by plants, animals and bacteria, the Kudzu isoprene synthase (kIspS) gene has been heterologously expressed in Bacillus subtilis DSM 402 and Bacillus licheniformis DSM 13 using the pHT01 vector. As control, the heterologous expression of KIspS in E. coli BL21 (DE3) with the pET28b vector was used. Isoprene production was analyzed using Gas Chromatography Flame Ionization Detector. The highest isoprene production was observed by recombinant B. subtilis harboring the pHT01-kIspS plasmid which produced 1434.3 μg/L (1275 µg/L/OD) isoprene. This is threefold higher than the wild type which produced 388 μg/L (370 μg/L/OD) isoprene, when both incubated at 30 °C for 48 h and induced with 0.1 mM IPTG. Additionally, recombinant B. subtilis produced fivefold higher than the recombinant B. licheniformis, which produced 437.2 μg/L (249 μg/L/OD) isoprene when incubated at 37 °C for 48 h induced with 0.1 mM IPTG. This is the first report of optimized isoprene production in B. licheniformis. However, recombinant B. licheniformis showed less isoprene production. Therefore, recombinant B. subtilis is considered as a versatile host for heterologous production of isoprene.

  1. Isolation and Evaluation of Bacillus Strains for Industrial Production of 2,3-Butanediol.

    PubMed

    Song, Chan Woo; Rathnasingh, Chelladurai; Park, Jong Myoung; Lee, Julia; Song, Hyohak

    2018-03-28

    Biologically produced 2,3-butanediol (2,3-BDO) has diverse industrial applications. In this study, schematic isolation and screening procedures were designed to obtain generally regarded as safe (GRAS) and efficient 2,3-BDO producers. Over 4,000 candidate strains were isolated by pretreatment and enrichment, and the isolated Bacillus strains were further screened by morphological, biochemical, and genomic analyses. The screened strains were then used to test the utilization of the most common carbon (glucose, xylose, fructose, sucrose) and nitrogen (yeast extract, corn steep liquor) sources for the economical production of 2,3-BDO. Two-stage fed-batch fermentation was finally carried out to enhance 2,3-BDO production. In consequence, a newly isolated Bacillus licheniformis GSC3102 strain produced 92.0 g/l of total 2,3-BDO with an overall productivity and yield of 1.40 g/l/h and 0.423 g/g glucose, respectively, using a cheap and abundant nitrogen source. These results strongly suggest that B. licheniformis , which is found widely in nature, can be used as a host strain for the industrial fermentative production of 2,3-BDO.

  2. Expression of Bacillus protease (Protease BYA) from Bacillus sp. Y in Bacillus subtilis and enhancement of its specific activity by site-directed mutagenesis-improvement in productivity of detergent enzyme-.

    PubMed

    Tobe, Seiichi; Shimogaki, Hisao; Ohdera, Motoyasu; Asai, Yoshio; Oba, Kenkichi; Iwama, Masanori; Irie, Masachika

    2006-01-01

    An attempt was made to express protease BYA produced by an alkalophilic Bacillus sp. Y in Bacillus subtilis by gene engineering methods. The gene encoding protease BYA was cloned from Bacillus sp. Y, and expression vector pTA71 was constructed from the amylase promoter of Bacillus licheniformis, DNA fragments encoding the open reading frame of protease BYA, and pUB110. Protease BYA was secreted at an activity level of 5100 APU/ml in the common industrial culture medium of Bacillus subtilis transformed with pTA71. We then attempted to increase the specific activity of protease BYA by site-directed mutagenesis. Amino acid residue Ala29 next to catalytic Asp30 was replaced by one of three uncharged amino acid residues (Val29, Leu29, Ile29), and each mutant enzyme was expressed and isolated from the culture medium. Val29 mutant enzyme was secreted at an activity level of greater than 7000 APU/ml in culture medium, and its specific activity was 1.5-fold higher than that of the wild-type enzyme. Other mutant enzymes had specific activity similar to that of the original one and were less stabile than the wild-type enzyme. It can be thought that the substitution at amino acid residue 29 affects the level of activity and stability of protease BYA.

  3. Purification and DNA binding properties of the blaI gene product, repressor for the beta-lactamase gene, blaP, of Bacillus licheniformis.

    PubMed Central

    Grossman, M J; Lampen, J O

    1987-01-01

    The location of the repressor gene, blaI, for the beta-lactamase gene blaP of Bacillus licheniformis 749, on the 5' side of blaP, was confirmed by sequencing the bla region of the constitutive mutant 749/C. An amber stop codon, likely to result in a nonfunctional truncated repressor, was found at codon 32 of the 128 codon blaI open reading frame (ORF) located 5' to blaP. In order to study the DNA binding activity of the repressor, the structural gene for blaI, from strain 749, with its ribosome binding site was expressed using a two plasmid T7 RNA polymerase/promotor system (S. Tabor and C. C. Richardson. Proc. Natl. Acad. Sci. 82, 1074-1078 (1985). Heat induction of this system in Escherichia coli K38 resulted in the production of BlaI as 5-10% of the soluble cell protein. Repressor protein was then purified by ammonium sulfate fractionation and cation exchange chromatography. The sequence of the N-terminal 28 amino acid residues was determined and was as predicted from the DNA. Binding of BlaI to DNA was detected by the slower migration of protein DNA complexes during polyacrylamide gel electrophoresis. BlaI was shown to selectively bind DNA fragments carrying the promoter regions of blaI and blaP. Images PMID:3498148

  4. Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: a promising alternative for sealing cement-based materials.

    PubMed

    Vahabi, Ali; Ramezanianpour, Ali Akbar; Sharafi, Hakimeh; Zahiri, Hossein Shahbani; Vali, Hojatollah; Noghabi, Kambiz Akbari

    2015-01-01

    The relevant experiments were designed to determine the ability of indigenous bacterial strains isolated from limestone caves, mineral springs, and loamy soils to induce calcium carbonate precipitation. Among all isolates examined in this study, an efficient carbonate-precipitating soil bacterium was selected from among the isolates and identified by 16S rRNA gene sequences as Bacillus licheniformis AK01. The ureolytic isolate was able to grow well on alkaline carbonate-precipitation medium and precipitate calcium carbonate more than 1 g L(-1). Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) examinations were performed in order to confirm the presence of calcium carbonate in the precipitate and to determine which polymorphs were present. The selected isolate was determined to be an appropriate candidate for application in a surface treatment of cement-based material to improve the properties of the mortar. Biodeposition of a layer of calcite on the surface of cement specimens resulted in filling in pore spaces. This could be an alternative method to improve the durability of the mortar. The kind of bacterial culture and medium composition had a profound impact on the resultant CaCO(3) crystal morphology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation.

    PubMed

    Phengnuam, Thanyarat; Suntornsuk, Worapot

    2013-02-01

    Jatropha curcas seed cake is a by-product generated from oil extraction of J. curcas seed. Although it contains a high amount of protein, it has phorbol esters and anti-nutritional factors such as phytate, trypsin inhibitor, lectin and saponin. It cannot be applied directly in the food or animal feed industries. This investigation was aimed at detoxifying the toxic and anti-nutritional compounds in J. curcas seed cake by fermentation with Bacillus spp. Two GRAS (generally recognized as safe) Bacillus strains used in the study were Bacillus subtilis and Bacillus licheniformis with solid-state and submerged fermentations. Solid-state fermentation was done on 10 g of seed cake with a moisture content of 70% for 7 days, while submerged fermentation was carried out on 10 g of seed cake in 100 ml distilled water for 5 days. The fermentations were incubated at the optimum condition of each strain. After fermentation, bacterial growth, pH, toxic and anti-nutritional compounds were determined. Results showed that B. licheniformis with submerged fermentation were the most effective method to degrade toxic and anti-nutritional compounds in the seed cake. After fermentation, phorbol esters, phytate and trypsin inhibitor were reduced by 62%, 42% and 75%, respectively, while lectin could not be eliminated. The reduction of phorbol esters, phytate and trypsin inhibitor was related to esterase, phytase and protease activities, respectively. J. curcas seed cake could be mainly detoxified by bacterial fermentation and the high-protein fermented seed cake could be potentially applied to animal feed. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer.

    PubMed

    Küppers, Tobias; Steffen, Victoria; Hellmuth, Hendrik; O'Connell, Timothy; Bongaerts, Johannes; Maurer, Karl-Heinz; Wiechert, Wolfgang

    2014-03-24

    Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel's industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the

  7. Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila.

    PubMed

    Ramesh, Dharmaraj; Vinothkanna, Annadurai; Rai, Amit Kumar; Vignesh, Venkada Subramanian

    2015-08-01

    Bacillus species isolated from the gut of healthy Labeo rohita (Hamilton) were screened for antibacterial activity against selected fish pathogens. Among the isolates, KADR5 and KADR6 showed antibacterial activity, tolerated low pH and high bile concentrations and were susceptibility to various antibiotics. Based on morphological and biochemical tests and 16S rRNA gene analysis the probiotic strains KADR5 and KADR6 were identified as Bacillus licheniformis and Bacillus pumilus, respectively. The immune stimulatory effect of subcellular components of probiotic Bacillus licheniformis KADR5 and Bacillus pumilus KADR6 in L. rohita against Aeromonas hydrophila infection was studied. Fish were immunized intraperitoneally in case of subcellular components [cell wall proteins (CWPs), extracellular proteins (ECPs), whole cell proteins (WCPs)] and orally in case of live cells (10(8) CFU/g of feed). After 14th day of administration, fishes from each group were challenged intraperitoneally with 0.1 ml of A. hydrophila cell suspension in PBS (10(5) cells ml(-1)). Groups immunized with subcellular components and live cells had significantly lower mortalities of 20-40% and 23-33%, respectively in comparison to control (80% mortality). The non specific immune factors in the cellular components and viable cells of the probiotics increased the expression of lysozyme and respiratory burst. Use of WCPs and CWPs resulted in better protection against A. hydrophila in L. rohita. Our results clearly reflect the potential of cellular components of the probiotics Bacillus species for the protection of fish against A. hydrophila infection by enhancing the immune response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Isolation and characterization of a novel analyte from Bacillus subtilis SC-8 antagonistic to Bacillus cereus.

    PubMed

    Lee, Nam Keun; Yeo, In-Cheol; Park, Joung Whan; Kang, Byung-Sun; Hahm, Young Tae

    2010-09-01

    In this study, an effective substance was isolated from Bacillus subtilis SC-8, which was obtained from traditionally fermented soybean paste, cheonggukjang. The substance was purified by HPLC, and its properties were analyzed. It had an adequate antagonistic effect on Bacilluscereus, and its spectrum of activity was narrow. When tested on several gram-negative and gram-positive foodborne pathogenic bacteria such as Salmonella enterica, Salmonella enteritidis, Staphylococcus aureus, and Listeria monocytogenes, no antagonistic effect was observed. Applying the derivative from B. subtilis SC-8 within the same genus did not inhibit the growth of major soybean-fermenting bacteria such as Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloquefaciens. The range of pH stability of the purified antagonistic substance was wide (from 4.0 to >10.0), and the substance was thermally stable up to 60 degrees C. In the various enzyme treatments, the antagonistic activity of the purified substance was reduced with proteinase K, protease, and lipase; its activity was partially destroyed with esterase. Spores of B. cereus did not grow at all in the presence of 5mug/mL of the purified antagonistic substance. The isolated antagonistic substance was thought to be an antibiotic-like lipopeptidal compound and was tentatively named BSAP-254 because it absorbed to UV radiation at 254nm. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Role of mechanical vs. chemical action in the removal of adherent Bacillus spores during CIP procedures.

    PubMed

    Faille, C; Bénézech, T; Blel, W; Ronse, A; Ronse, G; Clarisse, M; Slomianny, C

    2013-04-01

    This study was designed to evaluate the respective roles of mechanical and chemical effects on the removal of Bacillus spores during cleaning-in-place. This analysis was performed on 12 strains belonging to the Bacillus cereus group (B. cereus, Bacillus anthracis, Bacillus thuringiensis) or to less related Bacillus species (Bacillus pumilus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus subtilis). Adherent spores were subjected to rinsing-in-place (mechanical action) and cleaning-in-place (mechanical and chemical actions) procedures, the latter involving NaOH 0.5% at 60°C. Results revealed that mechanical action alone only removed between 53 and 89% of the attached spores at a shear stress of 500 Pa. This resistance to shear was not related to spore surface properties. Conversely, in the presence of NaOH at a shear stress of 4 Pa, spores were readily detached, with between 80 and 99% of the adherent spores detached during CIP and the chemical action greatly depended on the strain. This finding suggests that chemical action plays the major role during CIP, whose efficacy is significantly governed by the spore surface chemistry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters.

    PubMed

    Othoum, Ghofran; Bougouffa, Salim; Razali, Rozaimi; Bokhari, Ameerah; Alamoudi, Soha; Antunes, André; Gao, Xin; Hoehndorf, Robert; Arold, Stefan T; Gojobori, Takashi; Hirt, Heribert; Mijakovic, Ivan; Bajic, Vladimir B; Lafi, Feras F; Essack, Magbubah

    2018-05-22

    The increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions. We report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis, revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/polyketide synthase (PKS/ NRPS) cluster in strains of this species. B. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive compounds than other previously characterized species of B. licheniformis, which suggests that these species are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline ecosystems.

  11. In vitro susceptibility of Bacillus spp. to selected antimicrobial agents.

    PubMed Central

    Weber, D J; Saviteer, S M; Rutala, W A; Thomann, C A

    1988-01-01

    Although often dismissed as contaminants when isolated from blood cultures, Bacillus spp. are increasingly recognized as capable of causing serious systemic infections. As part of a clinical-microbiological study, 89 strains of Bacillus spp. isolated from clinical blood cultures between 1981 and 1985 had their species determined and were tested for antimicrobial agent susceptibility to 18 antibiotics. Species of isolates were determined by the API 50CH and API 20E systems. Bacillus cereus (54 strains) was the most common species isolated, followed by B. megaterium (13 strains), B. polymyxa (5 strains), B. pumilus (4 strains), B. subtilis (4 strains), B. circulans (3 strains), B. amyloliquefaciens (2 strains), B. licheniformis (1 strain), and Bacillus spp. (3 strains). Microdilution MIC susceptibility tests revealed all B. cereus strains to be susceptible to imipenem, vancomycin, chloramphenicol, gentamicin, and ciprofloxacin. Non-B. cereus strains were most susceptible to imipenem, vancomycin, LY146032, and ciprofloxacin. Disk susceptibility testing suggested that B. cereus was rarely susceptible to penicillins, semisynthetic penicillins, or cephalosporins with the exception of mezlocillin. In contrast, many non-B. cereus strains were susceptible to penicillins, semisynthetic penicillins, and cephalosporins, but marked variability was noted among species. PMID:3395100

  12. Co-Metabolic Degradation of β-Cypermethrin and 3-Phenoxybenzoic Acid by Co-Culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4.

    PubMed

    Zhao, Jiayuan; Chi, Yuanlong; Xu, Yingchao; Jia, Dongying; Yao, Kai

    2016-01-01

    The degradation efficiency of organic contaminants and their associated metabolites by co-culture of microbes is mainly limited by toxic intermediates from co-metabolic degradation. In this study, we investigated the degradation of β-cypermethrin (β-CY) and 3-phenoxybenzoic acid (3-PBA) by co-culture of Bacillus licheniformis B-1 and Aspergillus oryzae M-4, as well as the influences of β-CY and 3-PBA metabolites on their degradation and the growth of strains B-1 and M-4. Our results indicated that 100 mg/L β-CY was degraded by 78.85%, and 3-PBA concentration was 0.05 mg/L after 72 h. Compared with using only strain B-1, the half-life (t1/2) of β-CY by using the two strains together was shortened from 84.53 h to 38.54 h, and the yield coefficient of 3-PBA was decreased from 0.846 to 0.001. At 100 mg/L of 3-PBA and gallic acid, β-CY and 3-PBA degradation were only 17.68% and 40.45%, respectively. As the toxic intermediate derived from co-metabolic degradation of β-CY by strain B-1, 3-PBA was efficiently degraded by strain M-4, and gallic acid, as the toxic intermediate from co-metabolic degradation of 3-PBA by strain M-4, was efficiently degraded by strain B-1. These results provided a promising approach for efficient biodegradation of β-CY and 3-PBA.

  13. Enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase.

    PubMed

    Chen, Yi-Yu; Lo, Huei-Fen; Wang, Tzu-Fan; Lin, Min-Guan; Lin, Long-Liu; Chi, Meng-Chun

    2015-01-01

    In the practical application of Bacillus licheniformis γ-glutamyltranspeptidase (BlGGT), we describe a straightforward enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine (GSAC), a naturally occurring organosulfur compound found in garlic, based on a transpeptidation reaction involving glutamine as the γ-glutamyl donor and S-allyl-L-cysteine as the acceptor. With the help of thin layer chromatography technique and computer-assisted image analysis, we performed the quantitative determination of GSAC. The optimum conditions for a biocatalyzed synthesis of GSAC were 200 mM glutamine, 200 mM S-allyl-L-cysteine, 50 mM Tris-HCl buffer (pH 9.0), and BlGGT at a final concentration of 1.0 U/mL. After a 15-h incubation of the reaction mixture at 60 °C, the GSAC yield for the free and immobilized enzymes was 19.3% and 18.3%, respectively. The enzymatic synthesis of GSAC was repeated under optimal conditions at 1-mmol preparative level. The reaction products together with the commercially available GSAC were further subjected to an ESI-MS/MS analysis. A significant signal with m/z of 291.1 and the protonated fragments at m/z of 73.0, 130.1, 145.0, and 162.1 were observed in the positive ESI-MS/MS spectrum, which is consistent with those of the standard compound. These results confirm the successful synthesis of GSAC from glutamine and S-allyl-L-cysteine by BlGGT. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Thermostable Fe/Mn superoxide dismutase from Bacillus licheniformis SPB-13 from thermal springs of Himalayan region: Purification, characterization and antioxidative potential.

    PubMed

    Thakur, Abhishek; Kumar, Pradeep; Lata, Jeevan; Devi, Neena; Chand, Duni

    2018-05-01

    Superoxide dismutase (SOD; EC 1.15.1.1) is an enzyme that scavenges free radicals and increases the longevity. In this study, a thermostable superoxide dismutase (SOD) from Bacillus licheniformis SPB-13, from Himalayan region was purified to homogeneity using ion exchange chromatography (DEAE-Sepharose). The SDS and native PAGE analysis showed that SOD is composed of two subunits of 32 kDa each and total molecular mass of the enzyme was estimated as 68 kDa. The specific activity of enzyme was 3965.51 U/mg and was purified to 16.17 folds. The SOD showed maximum activity with 60 mM Tris-HCl buffer at pH 8.0 for 2 min of incubation. Enzyme along with FeCl 3 as metal ion remained active till 70 °C. After reaction variables optimization, enzyme activity increased from 3965.51 to 4015.72 U/mg. Kinetic analysis of SOD showed k m of 1.4 mM of NADH and V max of 10000 U/mg of protein. Turnover number (k cat ) and catalytic efficiency (k cat /K m ) were found to be 11,333 s -1 and 7092.2 s -1 ·mM -1 NADH. The activation energy (E a ) was calculated as 2.67 kJ·mol -1 . After typing, it was found to be a member of Fe/Mn SOD family with IC 50 value of 25 μg/ml, prevented the cell death at a concentration of 30 μg/ml and it increased the cell viability by 30%. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species.

    PubMed

    Pasvolsky, Ronit; Zakin, Varda; Ostrova, Ievgeniia; Shemesh, Moshe

    2014-07-02

    Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enhanced catalysis of L-asparaginase from Bacillus licheniformis by a rational redesign.

    PubMed

    Sudhir, Ankit P; Agarwaal, Viplove V; Dave, Bhaumik R; Patel, Darshan H; Subramanian, R B

    2016-05-01

    L-Asparaginase (3.5.1.1) being antineoplastic in nature are used in the treatment of acute lymphoblastic leukemia (ALL). However glutaminase activity is the cause of various side effects when used as a drug against acute lymphoblastic leukemia (ALL). Therefore, there is a need of a novel L-asparaginase (L-ASNase) with low or no glutaminase activity. Such a property has been observed with L-ASNase from B. licheniformis (BliA). The enzyme being glutaminase free in nature paved the way for its improvement to achieve properties similar to or near to the commercially available L-ASNases. Rational enzyme engineering approach resulted in four mutants: G238N, E232A, D103V and Q112H. Among these the mutant enzyme, D103V, had a specific activity of 597.7IU/mg, which is higher than native (rBliA) (407.65IU/mg). Moreover, when the optimum temperature and in vitro half life were studied and compared with native BliA, D103V mutant BliA was better, showing tolerance to higher temperatures and a 3 fold higher half life. Kinetic studies revealed that the mutant D103V L-ASNase has increased substrate affinity, with Km value of 0.42mM and Vmax of 2778.9μmolmin(-1). Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and a(w).

    PubMed

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; El Jabri, Mohammed; Leguerinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-10-01

    Sporulation niches in the food chain are considered as a source of hazard and are not clearly identified. Determining the sporulation environmental boundaries could contribute to identify potential sporulation niches. Spore formation was determined in a Sporulation Mineral Buffer. The effect of incubation temperature, pH and water activity on time to one spore per mL, maximum sporulation rate and final spore concentration was investigated for a Bacillus weihenstephanensis and a Bacillus licheniformis strain. Sporulation boundaries of B. weihenstephanensis and of B. licheniformis were similar to, or included within, the range of temperatures, pH and water activities supporting growth. For instance, sporulation boundaries of B. weihenstephanensis were evaluated at 5°C, 35°C, pH 5.2 and a(w) 0.960 while growth boundaries were observed at 5°C, 37°C, pH 4.9 and a(w) 0.950. Optimum spore formation was determined at 30°C pH 7.2 for B. weihenstephanensis and at 45°C pH 7.2 for B. licheniformis. Lower temperatures and pH delayed the sporulation process. For instance, the time to one spore per mL was tenfold longer when sporulation occurred at 10°C and 20°C, for each strain respectively, than at optimum sporulation temperature. The relative effect of temperature and pH on sporulation rates and on growth rates is similar. This work suggests that the influence of environmental factors on the quantitative changes in sporulation boundaries and rates was similar to their influence on changes in growth rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates

    PubMed Central

    Celandroni, Francesco; Salvetti, Sara; Gueye, Sokhna Aissatou; Mazzantini, Diletta; Lupetti, Antonella; Senesi, Sonia; Ghelardi, Emilia

    2016-01-01

    The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption—ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance. PMID:27031639

  19. Effect of thymol in heating and recovery media on the isothermal and non-isothermal heat resistance of Bacillus spores.

    PubMed

    Esteban, Maria-Dolores; Conesa, Raquel; Huertas, Juan-Pablo; Palop, Alfredo

    2015-06-01

    Members of the genus Bacillus include important food-borne pathogen and spoilage microorganisms for food industry. Essential oils are natural products extracted from herbs and spices, which can be used as natural preservatives in many foods because of their antibacterial, antifungal, antioxidant and anti-carcinogenic properties. The aim of this research was to explore the effect of the addition of different concentrations of thymol to the heating and recovery media on the thermal resistance of spores of Bacillus cereus, Bacillus licheniformis and Bacillus subtilis at different temperatures. While the heat resistance was hardly reduced when thymol was present in the heating medium, the effect in the recovery medium was greater, reducing the D100 °C values down to one third for B. subtilis and B. cereus when 0.5 mM thymol was added. This effect was dose dependent and was also observed at other heating temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Linamarase activities in Bacillus spp. responsible for thermophilic aerobic digestion of agricultural wastes for animal nutrition.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2007-01-01

    Thermophilic Bacillus spp. isolated from thermophilic aerobic digestion (TAD) of model agricultural slurry were screened for ability to secret linamarase activity and degrade linamarin, a cyanogenic glycoside toxin abundant in cassava. Screening was performed by both linamarin - picrate assay and by p-nitrophenyl beta-D-glucoside (PNPG) degradation, and results of both assays were related. Linamarase positive isolates were identified as Bacillus coagulans, Bacillus licheniformis and Bacillus stearothermophilus. Enzyme production was growth related and peak production was reached in 48 h in B. coagulans and 36 h in B. stearothermophilus. B. coagulans produced over 40 times greater activity than B. stearothermophilus. Enzyme productivity in shake flask was not strictly related to screening assay result. Crude enzyme of B. coagulans was optimally active at 75 degrees C while that of B. stearothermophilus was optimally active at 80 degrees C and both had optimum activity at pH 8.0. The thermophilic and neutrophilic- to marginally alkaline activity of the crude enzymes could be very useful in the detoxification and reprocessing of cyanogens containing cassava wastes by TAD for use in animal nutrition.

  1. Influence of heterologous MreB proteins on cell morphology of Bacillus subtilis.

    PubMed

    Schirner, Kathrin; Errington, Jeff

    2009-11-01

    The prokaryotic cytoskeletal protein MreB is thought to govern cell shape by positioning the cell wall synthetic apparatus at growth sites in the cell. In rod-shaped bacteria it forms helical filaments that run around the periphery of the rod during elongation. Gram-positive bacteria often contain more than one mreB gene. Bacillus subtilis has three mreB-like genes, mreB, mbl and mreBH, the first two of which have been shown to be essential under normal growth conditions. Expression of an mreB homologue from the closely related organism Bacillus licheniformis did not have any effect on cell growth or morphology. In contrast, expression of mreB from the phylogenetically more distant bacterium Clostridium perfringens produced shape defects and ultimately cell death, due to disruption of the endogenous MreB cytoskeleton. However, expression of either mreB(B. licheniformis) (mreB(Bl)) or mreB(C. perfringens) (mreB(Cp)) was sufficient to confer a rod shape to B. subtilis deleted for the three mreB isologues, supporting the idea that the three proteins have largely redundant functions in cell morphogenesis. Expression of mreBCD(Bl) could fully compensate for the loss of mreBCD in B. subtilis and led to the formation of rod-shaped cells. In contrast, expression of mreBCD(Cp) was not sufficient to confer a rod shape to B. subtilis Delta mreBCD, indicating that a complex of these three cell shape determinants is not enough for cell morphogenesis of B. subtilis.

  2. Directed evolution improves the fibrinolytic activity of nattokinase from Bacillus natto.

    PubMed

    Yongjun, Cai; Wei, Bao; Shujun, Jiang; Meizhi, Weng; Yan, Jia; Yan, Yin; Zhongliang, Zheng; Goulin, Zou

    2011-12-01

    Nattokinase (subtilisin NAT, NK) is a relatively effective microbial fibrinolytic enzyme that has been identified and characterized from Bacillus natto. In the current report, DNA family shuffling was used to improve the fibrinolytic activity of nattokinase. Three homologous genes from B. natto AS 1.107, Bacillus amyloliquefaciens CICC 20164 and Bacillus licheniformis CICC 10092 were shuffled to generate a mutant library. A plate-based method was used to screen the mutant libraries for improved activity. After three rounds of DNA shuffling, one desirable mutant with 16 amino acid substitutions was obtained. The mutant enzyme was purified and characterized. The kinetic measurements showed that the catalytic efficiency of the mutant NK was approximately 2.3 times higher than that of the wild-type nattokinase. In addition, the molecular modeling analysis suggested that the mutations affect the enzymatic function by changing the surface conformation of the substrate-binding pocket. The current study shows that the evolution of nattokinase with improved fibrinolytic activity by DNA family shuffling is feasible and provides useful references to facilitate the application of nattokinase in thrombolytic therapy. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Positions of Trp Codons in the Leader Peptide-Coding Region of the at Operon Influence Anti-Trap Synthesis and trp Operon Expression in Bacillus licheniformis▿

    PubMed Central

    Levitin, Anastasia; Yanofsky, Charles

    2010-01-01

    Tryptophan, phenylalanine, tyrosine, and several other metabolites are all synthesized from a common precursor, chorismic acid. Since tryptophan is a product of an energetically expensive biosynthetic pathway, bacteria have developed sensing mechanisms to downregulate synthesis of the enzymes of tryptophan formation when synthesis of the amino acid is not needed. In Bacillus subtilis and some other Gram-positive bacteria, trp operon expression is regulated by two proteins, TRAP (the tryptophan-activated RNA binding protein) and AT (the anti-TRAP protein). TRAP is activated by bound tryptophan, and AT synthesis is increased upon accumulation of uncharged tRNATrp. Tryptophan-activated TRAP binds to trp operon leader RNA, generating a terminator structure that promotes transcription termination. AT binds to tryptophan-activated TRAP, inhibiting its RNA binding ability. In B. subtilis, AT synthesis is upregulated both transcriptionally and translationally in response to the accumulation of uncharged tRNATrp. In this paper, we focus on explaining the differences in organization and regulatory functions of the at operon's leader peptide-coding region, rtpLP, of B. subtilis and Bacillus licheniformis. Our objective was to correlate the greater growth sensitivity of B. licheniformis to tryptophan starvation with the spacing of the three Trp codons in its at operon leader peptide-coding region. Our findings suggest that the Trp codon location in rtpLP of B. licheniformis is designed to allow a mild charged-tRNATrp deficiency to expose the Shine-Dalgarno sequence and start codon for the AT protein, leading to increased AT synthesis. PMID:20061467

  4. Smallpox and pan-Orthodox Virus Detection by Real-Time 3’-Minor Groove Binder TaqMan Assays Oil the Roche LightCycler and the Cepheid Smart Cycler Platforms

    DTIC Science & Technology

    2003-11-08

    Bacillus anthracis BA0068 Ames Sterne SPS 97.13.213 Bacillus cereus Bacillus coagulans Bacillus licheniformis Bacillus macerans Bacillus ...megaterium Bacillus polymyxa Bacillus sphaericus Bacillus stearothermophilus Bacillus subtilis subsp. niger Bacillus thuringiensis Bacillus popilliae...varicella- zoster virus, and Bacillus anthracis DNA by LightCycler polymerase chain reaction after autoclaving:

  5. Use of Probiotic Bacillus spp. in Rotifer (Brachionus plicatilis) and Artemia (Artemia urmiana) Enrichment: Effects on Growth and Survival of Pacific White Shrimp, Litopenaeus vannamei, Larvae.

    PubMed

    Jamali, Hadi; Imani, Ahmad; Abdollahi, Daruosh; Roozbehfar, Reza; Isari, Amin

    2015-06-01

    This study was to evaluate the effect of a preparation of Bacillus probiotic (Bacillus licheniformis and B. subtilis, 1:1) on growth and survival rate of Pacific white shrimp, Litopenaeus vannamei larvae. The larvae were fed on Artemia urmiana nauplii and Brachionus plicatilis enriched with the probiotic preparation at 1 × 10(6) CFU mL(-1) rate. The experimental setup was completely randomized design comprised of six treatments, namely solo Artemia nauplii (A) or rotifer (R), Artemia nauplii and rotifer without any enrichment (A + R), Artemia nauplii enrichment with probiotic bacilli (Bacillus licheniformis and B. subtilis) (A + B), rotifer enrichment with probiotic bacilli (R + B) and enriched Artemia nauplii and rotifer (A + R + B). All treatments were performed in triplicate. Chemical parameters of rearing water viz. pH, salinity and temperature were 7.5-8, 30-31 ppt and 31-32 °C, respectively. Photoperiod was 16L:8D. Shrimp larvae were fed Artemia nauplii and rotifers at 5-20 and 10-40 individuals per shrimp larvae four times a day, respectively. Growth and survival rate of larvae were determined at MII, MIII, PL1, PL4, PL7 and PL10 stages. Larvae in A + R + B treatment showed the highest total length (10.89 ± 0.51 mm), weight (674 ± 73 μg) and survival rate (65% ± 3.5). Lowest total length, weight and survival rate (7.96 ± 0.63 mm, 493 ± 52 μg and 24.5 ± 2.4%, respectively) were recorded in treatment B larvae. We concluded that Bacillus probiotic can improve growth and survival rate of Pacific white shrimp larvae without conceivably undesirable effects.

  6. Specialization of Bacillus in the Geochemically Challenged Environment of Death Valley

    NASA Astrophysics Data System (ADS)

    Kopac, S.

    2014-04-01

    Death Valley is the hottest, driest place in North America, a desert with soils containing toxic elements such as boron and lead. While most organisms are unable to survive under these conditions, a diverse community of bacteria survives here. What has enabled bacteria to adapt and thrive in a plethora of extreme and stressful environments where other organisms are unable to grow? The unique environmental adaptations that distinguish ecologically distinct bacterial groups (ecotypes) remain a mystery, in contrast to many animal species (perhaps most notably Darwin's ecologically distinct finch species). We resolve the ecological factors associated with recently diverged ecotypes of the soil bacteria Bacillus subtilis and Bacillus licheniformis, isolated from the dry, geochemically challenging soils of Death Valley, CA. To investigate speciation associated with challenging environmental parameters, we sampled soil transects along a 400m stretch that parallels a decrease in salinity adjacent to a salt flat; transects also encompass gradients in soil B, Cu, Fe, NO3, and P, all of which were quantified in our soil samples. We demarcated strains using Ecotype Simulation, a sequence-based algorithm. Each ecotype's habitat associations were determined with respect to salinity, B, Cu, Fe, NO3, and P. In addition, our sample strains were tested for tolerance of copper, boron and salinity (all known to inhibit growth at high concentrations) by comparing their growth over a 20 hour period. Ecotypes differed in their habitat associations with salinity, boron, copper, iron, and other ecological factors; these environmental dimensions are likely causing speciation of B. subtilis-licheniformis ecotypes at our sample site. Strains also differed in tolerance of boron and copper, providing evidence that our sequence-based demarcations reflect real differences in metabolism. By better understanding the relationship between bacterial speciation and the environment, we can begin to

  7. An Apple Fruit Fermentation (AFF) Treatment Improves the Composition of the Rhizosphere Microbial Community and Growth of Strawberry (Fragaria × ananassa Duch 'Benihoppe') Seedlings.

    PubMed

    Zhang, Jie; Pang, Hui; Ma, Mengxia; Bu, Yufen; Shao, Wei; Huang, Weijing; Ji, Qianlong; Yao, Yuncong

    2016-01-01

    Plant growth can be promoted by the application of apple fruit fermentation (AFF), despite unclear of the underlying mechanisms, the effects involved in AFF on rhizosphere microorganisms have been hypothesized. We investigated the consequences of applying AFF alone or in combination with Bacillus licheniformis to strawberry tissue culture seedlings in vitro, the analyses of Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rDNA were performed to determine AFF effects on rhizosphere. Moreover, the growth index and antioxidant enzyme activities were determined 30 days after treatments. We identified five dominant bacteria in AFF: Coprinus atramentarius, Bacillus megaterium, Bacillus licheniformis, Weissella and B. subtilis. The greatest number of bacterial species were observed in the rhizosphere of control matrix (water treated), and the lowest diversity appeared in the rhizosphere soil treated with 108 cfu/mL B. licheniformis alone. Combining AFF plus B. licheniformis in one treatment resulted in the largest leaf area, plant height, root length, plant weight, and the markedly higher activities of antioxidant enzymes. We conclude that a combination of AFF plus B. licheniformis treatment to matrix can increase antioxidant enzymes activities in strawberry seedlings, optimize the status of rhizosphere microbial, and promote plant growth.

  8. An Apple Fruit Fermentation (AFF) Treatment Improves the Composition of the Rhizosphere Microbial Community and Growth of Strawberry (Fragaria × ananassa Duch ‘Benihoppe’) Seedlings

    PubMed Central

    Bu, Yufen; Shao, Wei; Huang, Weijing; Ji, Qianlong; Yao, Yuncong

    2016-01-01

    Plant growth can be promoted by the application of apple fruit fermentation (AFF), despite unclear of the underlying mechanisms, the effects involved in AFF on rhizosphere microorganisms have been hypothesized. We investigated the consequences of applying AFF alone or in combination with Bacillus licheniformis to strawberry tissue culture seedlings in vitro, the analyses of Denaturing Gradient Gel Electrophoresis (DGGE) and 16S rDNA were performed to determine AFF effects on rhizosphere. Moreover, the growth index and antioxidant enzyme activities were determined 30 days after treatments. We identified five dominant bacteria in AFF: Coprinus atramentarius, Bacillus megaterium, Bacillus licheniformis, Weissella and B. subtilis. The greatest number of bacterial species were observed in the rhizosphere of control matrix (water treated), and the lowest diversity appeared in the rhizosphere soil treated with 108 cfu/mL B. licheniformis alone. Combining AFF plus B. licheniformis in one treatment resulted in the largest leaf area, plant height, root length, plant weight, and the markedly higher activities of antioxidant enzymes. We conclude that a combination of AFF plus B. licheniformis treatment to matrix can increase antioxidant enzymes activities in strawberry seedlings, optimize the status of rhizosphere microbial, and promote plant growth. PMID:27755580

  9. Purification and Characterization of a Novel and Robust L-Asparaginase Having Low-Glutaminase Activity from Bacillus licheniformis: In Vitro Evaluation of Anti-Cancerous Properties

    PubMed Central

    Mahajan, Richi V.; Kumar, Vinod; Rajendran, Vinoth; Saran, Saurabh; Ghosh, Prahlad C.; Saxena, Rajendra Kumar

    2014-01-01

    L-asparaginase having low glutaminase has been a key therapeutic agent in the treatment of acute lymphpoblastic leukemia (A.L.L). In the present study, an extracellular L-asparaginase with low glutaminase activity, produced by Bacillus licheniformis was purified to homogeneity. Protein was found to be a homotetramer of 134.8 KDa with monomeric size of 33.7 KDa and very specific for its natural substrate i.e. L-asparagine. The activity of purified L-asparaginase enhanced in presence of cations including Na+ and K+, whereas it was moderately inhibited in the presence of divalent cations and thiol group blocking reagents. The purified enzyme was maximally active over the range of pH 6.0 to 10.0 and temperature of 40°C and enzyme was stable maximum at pH 9.0 and −20°C. CD spectra of L-asparaginase predicted the enzyme to consist of 63.05% α- helix and 3.29% β-sheets in its native form with T222 of 58°C. Fluorescent spectroscopy showed the protein to be stable even in the presence of more than 3 M GdHCl. Kinetic parameters Km, Vmax and kcat of purified enzyme were found as 1.4×10−5 M, 4.03 IU and 2.68×103 s−1, respectively. The purified L-asparaginase had cytotoxic activity against various cancerous cell lines viz. Jurkat clone E6-1, MCF-7 and K-562 with IC50 of 0.22 IU, 0.78 IU and 0.153 IU respectively. However the enzyme had no toxic effect on human erythrocytes and CHO cell lines hence should be considered potential candidate for further pharmaceutical use as an anticancer drug. PMID:24905227

  10. Purification and characterization of a novel and robust L-asparaginase having low-glutaminase activity from Bacillus licheniformis: in vitro evaluation of anti-cancerous properties.

    PubMed

    Mahajan, Richi V; Kumar, Vinod; Rajendran, Vinoth; Saran, Saurabh; Ghosh, Prahlad C; Saxena, Rajendra Kumar

    2014-01-01

    L-asparaginase having low glutaminase has been a key therapeutic agent in the treatment of acute lymphpoblastic leukemia (A.L.L). In the present study, an extracellular L-asparaginase with low glutaminase activity, produced by Bacillus licheniformis was purified to homogeneity. Protein was found to be a homotetramer of 134.8 KDa with monomeric size of 33.7 KDa and very specific for its natural substrate i.e. L-asparagine. The activity of purified L-asparaginase enhanced in presence of cations including Na+ and K+, whereas it was moderately inhibited in the presence of divalent cations and thiol group blocking reagents. The purified enzyme was maximally active over the range of pH 6.0 to 10.0 and temperature of 40°C and enzyme was stable maximum at pH 9.0 and -20°C. CD spectra of L-asparaginase predicted the enzyme to consist of 63.05% α-helix and 3.29% β-sheets in its native form with T222 of 58°C. Fluorescent spectroscopy showed the protein to be stable even in the presence of more than 3 M GdHCl. Kinetic parameters Km, Vmax and kcat of purified enzyme were found as 1.4×10(-5) M, 4.03 IU and 2.68×10(3) s(-1), respectively. The purified L-asparaginase had cytotoxic activity against various cancerous cell lines viz. Jurkat clone E6-1, MCF-7 and K-562 with IC50 of 0.22 IU, 0.78 IU and 0.153 IU respectively. However the enzyme had no toxic effect on human erythrocytes and CHO cell lines hence should be considered potential candidate for further pharmaceutical use as an anticancer drug.

  11. Effect of temperature and pH on polygalacturonase production by pectinolytic bacteria Bacillus licheniformis strain GD2a in submerged medium from Raja Nangka (Musa paradisiaca var. formatypica) banana peel waste

    NASA Astrophysics Data System (ADS)

    Widowati, E.; Utami, R.; Mahadjoeno, E.; Saputro, G. P.

    2017-04-01

    The aim of this research were to determine the effect of temperature (45°C, 55°C, 65°C) and pH (5.0; 6.0; 7.0) on the increase of total cell count and polygalacturonase enzyme activity produced from raja nangka banana (Musa paradisiaca var. formatypica) peel waste by pectinolytic bacterial Bacillus licheniformis strain GD2a. This research applied two sample repetition and one analysis repetition. The result showed temperature and pH affect total cell count. The total cell count on 45°C and pH 7 recorded the highest number at 9.469 log cell/ml. Temperature and pH also affected pectin concentration at the end of fermentation. The lowest pectin concentration recorded at 45°C and pH 7 was 0.425 %. The highest enzyme activity recorded at 65°C and pH 7 was 0.204 U/ml. The highest enzyme protein concentration was recorded at 65°C and resulted as 0.310 mg/ml on pH 6. The highest specific activity was 19.527 U/mg at 65°C and pH 7. By this result, could be concluded that optimum condition process on polygalacturonase production was at 65°C and pH 7 because it gave highest enzyme activity result (0,204 U/ml).

  12. Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria.

    PubMed

    Pepe, Olimpia; Blaiotta, Giuseppe; Moschetti, Giancarlo; Greco, Teresa; Villani, Francesco

    2003-04-01

    Two types of white wheat bread (high- and low-type loaves) were investigated for rope spoilage. Thirty of the 56 breads tested developed rope spoilage within 5 days; the high-type loaves were affected by rope spoilage more than the low-type loaves. Sixty-one Bacillus strains were isolated from ropy breads and were characterized on the basis of their phenotypic and genotypic traits. All of the isolates were identified as Bacillus subtilis by biochemical tests, but molecular assays (randomly amplified polymorphic DNA PCR assay, denaturing gradient gel electrophoresis analysis, and sequencing of the V3 region of 16S ribosomal DNA) revealed greater Bacillus species variety in ropy breads. In fact, besides strains of B. subtilis, Bacillus licheniformis, Bacillus cereus, and isolates of Bacillus clausii and Bacillus firmus were also identified. All of the ropy Bacillus isolates exhibited amylase activity, whereas only 32.4% of these isolates were able to produce ropiness in bread slices after treatment at 96 degrees C for 10 min. Strains of lactic acid bacteria previously isolated from sourdough were first selected for antirope activity on bread slices and then used as starters for bread-making experiments. Prevention of growth of approximately 10(4) rope-producing B. subtilis G1 spores per cm(2) on bread slices for more than 15 days was observed when heat-treated cultures of Lactobacillus plantarum E5 and Leuconostoc mesenteroides A27 were added. Growth of B. subtilis G1 occurred after 7 days in breads started with Saccharomyces cerevisiae T22, L. plantarum E5, and L. mesenteroides A27.

  13. Selection and evaluation of Malaysian Bacillus spp. strains as potential probiotics in cultured tiger grouper (Epinephelus fuscoguttatus).

    PubMed

    Yasin, Ina-salwany Md; Razak, Nabilah Fatin; Natrah, F M I; Harmin, Sharr Azni

    2016-07-01

    A total of 58 Gram-positive bacteria strains were isolated from the marine environment and screened for potential probiotics for disease prevention and improving the productivity of tiger grouper Epinephelus fuscoguttatus larvae and juveniles. The bacteria were identified as Bacillus licheniformis, B. subtilis, B. circulans, B. sphaericus, B. cereus, Brevibacillus brevis, Corynebacterium propinquum, Leifsonia aquatica and Paenibacillus macerans. Only 24 strains showed antagonistic activities against four pathogenic strains; Vibrio alginolyticus, V. harveyi, V. parahaemolyticus and Aeromonas hydrophila, where two of the Bacillus strains, B12 and B45 demonstrated intermediate to highest level of inhibitory activity against these pathogenic strains, respectively. Further assessment by co-culture assay showed that Bacillus strain B12 exhibited a total inhibition of V. alginolyticus, while B45 strain displayed no inhibitory activity. Mixed culture of Bacillus B12 and B45 strains to outcompete V. alginolyticus was observed at a cell density of 10(7) CFU ml(-1). Molecular identification and phylogenetic tree analysis have categorized Bacillus strain B12 to the reference strains GQ340480 and JX290193 of? B. amyloliquafaciens, and Bacillus strain B45 with a reference strain JF496522 of B. subtilis. Safety tests of probionts by intraperitoneal administration of B12 and B45 strains at cell densities of 103, 105 and 10(7) CFU ml(-1) revealed no abnormalities and cent percent survival for healthy Epinephelus fuscoguttatus juveniles within 15 days of experimental period. Overall, the study revealed that Bacillus B12 strain possesses tremendous probiotic potential that could be used as a feed supplement in tiger grouper diets. ?

  14. Isolation and characterization of Bacillus subtilis CH16 strain from chicken gastrointestinal tracts for use as a feed supplement to promote weight gain in broilers.

    PubMed

    Nguyen, A T V; Nguyen, D V; Tran, M T; Nguyen, L T; Nguyen, A H; Phan, T-N

    2015-06-01

    Spore-forming bacterial strains were isolated from chicken gastrointestinal tracts to develop a heat-stable feed supplement that promotes weight gain in broilers. Seven Bacillus strains having more than 90% sporulation were screened from the isolates and identified to be closely related with Bacillus subtilis and Bacillus licheniformis. Of the seven strains, B. subtilis CH16 was selected to develop a feed supplement for broilers, because it formed 100% heat-stable spores, grew rapidly at 42°C and quickly formed a biofilm. In large-scale trials in broilers (n ≥ 1150 per group), the group fed CH16 (3 × 10(6) CFU g(-1) pellet) showed higher average daily gain (ADG = 61·16) and lower food conversion ratio (FCR = 1·696) than did the group fed B. licheniformis CH22 (ADG = 57·10 and FCR = 1·792), the group fed B. subtilis HU58 (ADG = 51·90 and FCR = 1·868), BioPlus group (ADG = 59·32 and FCR = 1·807) and the control group (ADG = 56·02 and FCR = 1·880). In conclusion, CH16 spores significantly increased ADG by 9·17% and reduced FCR by 9·79% in broilers. The result supports the use of B. subtilis CH16 of chicken intestinal origin as a feed supplement that promote weight gain in broilers. Significance and impact of the study: This study reports screening of Bacillus strains isolated from chicken gastrointestinal tracts for development of a feed supplement that promote weight gain in broilers. Of the seven Bacillus isolates with high sporulation efficiency (≥90%), Bacillus subtilis CH16 strain showed the best growth and biofilm formation at body temperature of broilers (42°C). In large-scale trials in broilers (n ≥ 1150 per group), CH16 spores induced a 9·17% increase in daily weight gain (ADG) and a 9·79% reduction in FCR while the commercial BioPlus(®) YC induced only a 5·89% increase in ADG and a 3·88% reduction in FCR. © 2015 The Society for Applied Microbiology.

  15. Addition of Bacillus sp. inoculums in bedding for swine on a pilot scale: effect on microbial population and bedding temperature.

    PubMed

    Corrêa, E K; Ulguim, R R; Corrêa, L B; Castilhos, D D; Bianchi, I; Gil-Turnes, C; Lucia, T

    2012-10-01

    Thermal and microbiological characteristics of beddings for swine were compared according to their depth and of addition of inoculums. Bedding was added to boxes at 0.25 (25D) and 0.50 m (50D), with three treatments: control (no inoculums); T1, with 250 g of Bacillus cereus var. toyoii at 8.4 × 10(7) CFU; and T2, with 250 g of a pool of B. subtilis, Bacillus licheniformis and Bacillus polymyxa at 8.4 × 10(7) CFU (250 g for 25D and 500 g for 50D). Mean temperatures were 28.5 ± 3.9 at the surface and 35.2 ± 8.9 inside the beddings. The most probable number (MPN) of thermophilic bacteria was higher for T1 and T2 than for the control (P<0.05). The MPN of thermophilic bacteria and fungi was greater for D50 than for D25 (P<0.05). The use of 25D without inoculums is recommended due to the reduction of thermophilic microbiota. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Putative Virulence Factor Expression by Clinical and Food Isolates of Bacillus spp. after Growth in Reconstituted Infant Milk Formulae

    PubMed Central

    Rowan, Neil J.; Deans, Karen; Anderson, John G.; Gemmell, Curtis G.; Hunter, Iain S.; Chaithong, Thararat

    2001-01-01

    Forty-seven strains representing 14 different Bacillus species isolated from clinical and food samples were grown in reconstituted infant milk formulae (IMF) and subsequently assessed for adherence to, invasion of, and cytotoxicity toward HEp-2 and Caco-2 cells. Cell-free supernatant fluids from 38 strains (81%) were shown to be cytotoxic, 43 strains (91%) adhered to the test cell lines, and 23 strains (49%) demonstrated various levels of invasion. Of the 21 Bacillus cereus strains examined, 5 (24%) were invasive. A larger percentage of clinically derived Bacillus species (20%) than of similar species tested from the food environment were invasive. Increased invasion occurred after growth of selected Bacillus species in reconstituted IMF containing glucose. While PCR primer studies revealed that many different Bacillus species contained DNA sequences encoding the hemolysin BL (HBL) enterotoxin complex and B. cereus enterotoxin T, not all of these isolates expressed these diarrheagenic genes after growth in reconstituted IMF. Of the 47 Bacillus isolates examined, 3 isolates of B. cereus and 1 isolate of B. subtilis produced the HBL enterotoxin after 18 h of growth in brain heart infusion broth. However, eight isolates belonging to the species B. cereus, B. licheniformis, B. circulans, and B. megaterium were found to produce this enterotoxin after growth in reconstituted IMF when assessed with the B. cereus enterotoxin (diarrheal type) reversed passive latex agglutination (RPLA) kit. It is concluded that several Bacillus species occurring occasionally in clinical specimens and food samples are of potential medical significance due to the expression of putative virulence factors. PMID:11525980

  17. Keratinase Production by Three Bacillus spp. Using Feather Meal and Whole Feather as Substrate in a Submerged Fermentation

    PubMed Central

    Mazotto, Ana Maria; Coelho, Rosalie Reed Rodrigues; Cedrola, Sabrina Martins Lage; de Lima, Marcos Fábio; Couri, Sonia; Paraguai de Souza, Edilma; Vermelho, Alane Beatriz

    2011-01-01

    Three Bacillus species (B. subtilis LFB-FIOCRUZ 1270, B. subtilis LFB-FIOCRUZ 1273, and B. licheniformis LFB-FIOCRUZ 1274), isolated from the poultry industry, were evaluated for keratinase production using feathers or feather meal as the sole carbon and nitrogen sources in a submerged fermentation. The three Bacillus spp. produced extracellular keratinases and peptidases after 7 days. Feather meal was the best substrate for keratinase and peptidase production in B. subtilis 1273, with 412 U/mL and 463 U/ml. The three strains were able to degrade feather meal (62–75%) and feather (40–95%) producing 3.9–4.4 mg/ml of soluble protein in feather meal medium and 1.9–3.3 mg/ml when feather medium was used. The three strains produced serine peptidases with keratinase and gelatinase activity. B. subtilis 1273 was the strain which exhibited the highest enzymatic activity. PMID:21822479

  18. Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota composition of growing pigs.

    PubMed

    Kaewtapee, Chanwit; Burbach, Katharina; Tomforde, Georgina; Hartinger, Thomas; Camarinha-Silva, Amélia; Heinritz, Sonja; Seifert, Jana; Wiltafsky, Markus; Mosenthin, Rainer; Rosenfelder-Kuon, Pia

    2017-01-01

    Bacillus spp. seem to be an alternative to antimicrobial growth promoters for improving animals' health and performance. However, there is little information on the effect of Bacillus spp. in combination with different dietary crude protein (CP) levels on the ileal digestibility and microbiota composition. Therefore, the objective of this study was to determine the effect of Bacillus spp. supplementation to low- (LP) and high-protein diets (HP) on ileal CP and amino acid (AA) digestibility and intestinal microbiota composition. Eight ileally cannulated pigs with an initial body weight of 28.5 kg were randomly allocated to a row-column design with 8 pigs and 3 periods of 16 d each. The assay diets were based on wheat-barley-soybean meal with two protein levels: LP (14% CP, as-fed) and HP diet (18% CP, as-fed). The LP and HP diets were supplemented with or without Bacillus spp. at a level of 0.04% (as-fed). The apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of CP and AA was determined. Bacterial community composition from ileal digesta was analyzed by Illumina amplicon sequencing and quantitative real-time PCR. Data were analyzed as a 2 × 2 factorial design using the GLIMMIX procedures of SAS. The supplementation with Bacillus spp. did not affect both AID and SID of CP and AA in growing pigs. Moreover, there was no difference in AID of CP and AA between HP and LP diets, but SID of cystine, glutamic acid, glycine, and proline was lower ( P  < 0.05) in pigs fed the HP diets. The HP diets increased abundance of Bifidobacterium spp. and Lactobacillus spp., ( P  < 0.05) and by amplicon sequencing the latter was identified as predominant genus in microbiota from HP with Bacillus spp., whereas dietary supplementation of Bacillus spp. increased ( P  < 0.05) abundance of Roseburia spp.. The HP diet increased abundance of Lactobacillus spp. and Bifidobacterium spp.. The supplementation of Bacillus spp. resulted in a higher

  19. Role of Bacillus licheniformis VS16-Derived Biosurfactant in Mediating Immune Responses in Carp Rohu and its Application to the Food Industry

    PubMed Central

    Giri, Sib Sankar; Sen, Shib Sankar; Jun, Jin Woo; Sukumaran, V.; Park, Se Chang

    2017-01-01

    Multifarious applications of Bacillus licheniformis VS16-derived biosurfactant were explored. Labeo rohita fingerlings were injected intraperitoneally with 0.1 mL of phosphate-buffered saline (PBS) containing purified biosurfactant at 0 (control), 55 (S55), 110 (S110), 220 (S220), or 330 (S330) μg mL-1 concentrations. Various immunological parameters and the expression of immune-related genes were measured at 7, 14, and 21 days post-administration (dpa). At 21 dpa, fish were challenged with Aeromonas hydrophila and mortality was recorded for 14 days. Immune parameters such as lysozyme levels (39.29 ± 2.14 U mL-1), alternative complement pathway (61.21 ± 2.38 U mL-1), and phagocytic activities (33.37 ± 1.2%) were maximum (P < 0.05) in the S220 group at 14 dpa; but immunoglobulin levels (11.07 ± 0.83 mg mL-1) were highest in the S220 group at 7 dpa, compared to that in controls. Activities of digestive enzymes (amylase, protease, and lipase) were higher (P < 0.05) in the S220 and S330 groups than in the control group. Regarding cytokine gene expression, pro-inflammatory cytokines (TNF-α and IL-1β) were down-regulated (P < 0.05) in the S220 and S330 groups. Expression of IL-10, TGF-β, and IKB-α were up-regulated in the S220 and S330 groups at 14 dpa, with the highest levels in the S220 group. The expression of NF-κB p65 and IKK-β were down-regulated in treatment groups, and were lowest (P < 0.05) in the S220 group. The highest post-challenge survival rate (72.7%) was recorded in S220 group. Further, the potential of this substance to inhibit biofilm formation, and heavy metal removal from vegetables were also evaluated. Biosurfactant was effective in inhibiting biofilm formation up to 54.71 ± 1.27%. Moreover, it efficiently removed cadmium (Cd) from tested vegetables such as carrot, radish, ginger, and potato, with the highest removal efficiency (60.98 ± 1.29%) recorded in ginger contaminated with Cd. Collectively, these results suggest that isolated

  20. Yield and protein quality of thermophilic Bacillus spp. biomass related to thermophilic aerobic digestion of agricultural wastes for animal feed supplementation.

    PubMed

    Ugwuanyi, J Obeta

    2008-05-01

    Bacillus spp. responsible for thermophilic aerobic digestion (TAD) of agricultural wastes were studied for their growth rate, yield and protein quality (amino acid profile) under conditions that approximate full-scale waste digestion as pointers to the capacity of TAD to achieve protein enrichment of wastes for reuse in animal feeding. Specific growth rates of the thermophiles varied with temperature and aeration rates. For Bacillus coagulans, the highest specific growth rate was 1.98 muh(-1); for Bacillus licheniformis 2.56 muh(-1) and for Bacillus stearothermophilus 2.63 muh(-1). Molar yield of B. stearothermophilus on glucose increased with temperature to a peak of 0.404 g g(-1) at 50 degrees C before declining. Peak concentration of overflow metabolite (acetate) increased from 10 mmol at 45 degrees C to 34 mmol at 65 degrees C before declining. Accumulation of biomass in all three isolates decreased with increase in temperature while protein content of biomass increased. Highest biomass protein (79%) was obtained in B. stearothermophilus at 70 degrees C. Content of most essential amino acids of the biomass improved with temperature. Amino acid profile of the biomass was comparable to or superior to the FAO standard for SCP intended for use in animal feeding. Culture condition (waste digestion condition) may be manipulated to optimize protein yield and quality of waste digested by TAD for recycling in animal feed.

  1. Human antibodies against spores of the genus Bacillus: a model study for detection of and protection against anthrax and the bioterrorist threat.

    PubMed

    Zhou, Bin; Wirsching, Peter; Janda, Kim D

    2002-04-16

    A naive, human single-chain Fv (scFv) phage-display library was used in bio-panning against live, native spores of Bacillus subtilis IFO 3336 suspended in solution. A direct in vitro panning and enzyme-linked immunosorbent assay-based selection afforded a panel of nine scFv-phage clones of which two, 5B and 7E, were chosen for further study. These two clones differed in their relative specificity and affinity for spores of B. subtilis IFO 3336 vs. a panel of spores from 11 other Bacillus species/strains. A variety of enzyme-linked immunosorbent assay protocols indicated these scFv-phage clones recognized different spore epitopes. Notably, some spore epitopes markedly changed between the free and microtiter-plate immobilized state as revealed by antibody-phage binding. An additional library selection procedure also was examined by constructing a Fab chain-shuffled sublibrary from the nine positive clones and by using a subtractive panning strategy to remove crossreactivity with B. licheniformis 5A24. The Fab-phage clone 52 was improved compared with 5B and was comparable to 7E in binding B. subtilis IFO 3336 vs. B. licheniformis 5A24, yet showed a distinctive crossreactivity pattern with other spores. We also developed a method to directly detect individual spores by using fluorescently labeled antibody-phage. Finally, a variety of "powders" that might be used in deploying spores of B. anthracis were examined for antibody-phage binding. The strategies described provide a foundation to discover human antibodies specific for native spores of B. anthracis that can be developed as diagnostic and therapeutic reagents.

  2. Adaptation of primocane fruiting raspberry plants to environmental factors under the influence of Bacillus strains in Western Siberia.

    PubMed

    Belyaev, Anatoly A; Shternshis, Margarita V; Chechenina, Nina S; Shpatova, Tatyana V; Lelyak, Anastasya A

    2017-03-01

    In geographical locations with a short vegetative season and continental climate that include Western Siberia, growing primocane fruiting raspberry varieties becomes very important. However, it is necessary to help the plants to overcome the environmental stress factors. This study aimed to evaluate the impact of the pre-planting treatment of primocane fruiting raspberry root system with Bacillus strains on the following plant development under variable environmental conditions. In 2012, Bacillus subtilis RCAM В-10641, Bacillus amyloliquefaciens RCAM В-10642, and Bacillus licheniformis RCAM В-10562 were used for inoculating the root system of primocane fruiting raspberry cultivar Nedosyagaemaya before planting. The test suspensions were 10 5  CFU/ml for each bacterial strains. The effects of this treatment on plant growth and crop productivity were estimated in 2012-2015 growing seasons differed by environmental conditions. The pre-planting treatment by the bacterial strains increased the number of new raspberry canes and the number of plant generative organs as well as crop productivity compared to control. In addition, these bacilli acted as the standard humic fertilizer. Variable environmental factors such as air temperature, relative humidity, and winter and spring frosts seriously influenced the plant biological parameters and crop productivity of control plants. At the same time, the pre-planting primocane fruiting root treatment by Bacillus strains decreased the negative effects of abiotic stresses on plants in all years of the research. Of the three strains studied, B. subtilis was shown to reveal the best results in adaptation of primocane fruiting raspberry plants to environmental factors in Western Siberia. For the first time, the role of Bacillus strains in enhancing frost resistance in primocane fruiting raspberry plants was shown. These bacilli are capable of being the basis of multifunctional biological formulations for effective plant and

  3. The relationship between the structures of four beta-lactamases obtained from Bacillus cereus.

    PubMed

    Cid, H; Carrillo, O; Bunster, M; Martínez, J; Vargas, V

    1988-06-01

    Bacillus cereus has proved to be one of the most interesting microorganisms in the study of beta-lactamases. It secrets these enzymes very efficiently and, frequently, in multiple forms. Three different forms are produced by strain 569/H; mutant 5/B of the same microorganism is constitutive for the secretion of beta-lactamases I and II. The present study, based on secondary structure prediction by two independent methods, states the relationship among the structures of beta-lactamases I, II and III produced by B. cereus 569/H and beta-lactamase I from the strain 5/B of this microorganism. A strong similarity is also established for the enzyme type III of B. cereus and the enzyme type I produced by B. licheniformis which could have an evolutionary explanation. A structural analysis of the leader peptide regions of these enzymes by the method of Mohana and Argos is also reported.

  4. Transmating: conjugative transfer of a new broad host range expression vector to various Bacillus species using a single protocol.

    PubMed

    Heinze, Simon; Kornberger, Petra; Grätz, Christian; Schwarz, Wolfgang H; Zverlov, Vladimir V; Liebl, Wolfgang

    2018-06-08

    The genus Bacillus includes a great variety of species with potential applications in biotechnology. While species such as B. subtilis or B. licheniformis are well-known and used to provide various products at industrial scale, other Bacillus species are less characterized and are not yet used in commercial processes. One reason for this is the fact that genetic manipulation of new isolates is usually complicated with conventional techniques which have to be adapted to each new strain. Even in well-established strains, the available transformation protocols often suffer from low efficiencies. In this paper, we provide a new broad host range E. coli/Bacillus shuttle vector, named pBACOV (Bacillus conjugation vector), that can be efficiently transferred to various Bacillus species using a single protocol. A variant of pBACOV carrying the sfGFP gene was successfully transferred to eight different species from the genus Bacillus and to one Paenibacillus species using triparental conjugation ("transmating"). This was achieved using a single protocol and worked for nine out of eleven tested acceptor species. The transmating procedure was used to test expression of the heterologous reporter gene sfGFP under control of the P aprE -promoter from B. subtilis in several Bacillus species in parallel. Expression of sfGFP was found in eight out of nine transmates. For several of the tested species, this is the first report of a method for genetic modification and heterologous gene expression. The expression level, analyzed by measuring the relative sfGFP-fluorescence normalized to the cell density of the cultures, was highest in B. mojavensis. The new shuttle vector pBACOV can be transferred to many different Bacillus and Paenibacillus species using a simple and efficient transmating protocol. It is a versatile tool facilitating the application of recombinant DNA technology in new as well as established strains, or selection of an ideal host for heterologous gene expression from

  5. Development of a double-antibody sandwich ELISA for rapid detection of Bacillus Cereus in food

    PubMed Central

    Zhu, Longjiao; He, Jing; Cao, Xiaohan; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-01-01

    Bacillus cereus is increasingly recognized as one of the major causes of food poisoning in the industrialized world. In this paper, we describe a sensitive double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) that was developed for rapid detection of B. cereus in food to minimize the risk of contamination. The polyclonal antibody (pAb) and monoclonal antibodies (mAbs) specific to B. cereus were generated from rabbit antiserum and mouse ascites, respectively, using the octanoic acid/saturated ammonium sulfate precipitation method and protein A-sepharose columns. IgG-isotype mAbs were specially developed to undergo a novel peripheral multiple sites immunization for rapid gain of hybridomas and a subtractive screen was used to eliminate cross reactivity with closely related species such as Bacillus thuringiensis, B. subtilis, B. licheniformis and B. perfringens. The linear detection range of the method was approximately 1 × 104–2.8 × 106 cells/mL with a detection limit (LOD) of 0.9 × 103 cells/mL. The assay was able to detect B. cereus when the samples were prepared in meat with various pathogens. The newly developed analytical method provides a rapid method to sensitively detect B. cereus in food specimens. PMID:26976753

  6. The Physiological Bases for Microbial Barotolerance.

    DTIC Science & Technology

    1980-03-31

    cerevisiae, 4 - Lactobacillus plantarum , 5 - Bacillus licheniformis, 6 - Bacillus _ a- teriumKM, 7 - Streptococcus mutans LM-7, 8 - Streptococcus sannuis, 9...E. coli, 10- Serratia marcescens, 1 - S. faecalis lOCI, 12 - S. mutans C-5, 13 - Lactobacillus casei, 14 - Lyt coccus, 15 - S mutans SL-l, 16

  7. Perfis de temperatura eletrônica em regiões HII

    NASA Astrophysics Data System (ADS)

    Copetti, M. V. F.

    2003-08-01

    As flutuações de temperatura eletrônica em regiões HII, inicialmente propostas para explicar as discrepâncias entre os valores de temperatura obtidos por diferentes métodos, têm sido apontadas como a causa mais provável das enormes diferenças encontradas entre as abundâncias químicas medidas através de linhas excitadas colisionalmente e de linhas de recombinação. Recentemente têm sido reportadas tentativas de detecção e quantificação diretas das flutuações de temperatura eletrônica através de medidas ponto a ponto, obtidas por meio de espectroscopia de fenda longa, das razões de linhas [OIII]l4263/l5007 e [NII]l5755/l6584, principais sensores de temperatura. Neste trabalho, utilizamos o código numérico de fotoionização Cloudy para avaliar a confiabilidade desse procedimento. Concluímos que, para valores de densidade eletrônica e de temperatura efetiva da estrela ionizante típicos das regiões HII, os perfis superficiais de temperatura obtidos via medidas do sensor [OIII]l4263/l5007 são bons traçadores dos gradientes internos de temperatura eletrônica. Já os perfis de temperatura eletrônica medidos por meio da razão [NII]l5755/l6584 não reproduzem os gradientes verdadeiros de temperatura.

  8. Biosorption of lead, copper and cadmium using the extracellular polysaccharides (EPS) of Bacillus sp., from solar salterns.

    PubMed

    Shameer, Syed

    2016-12-01

    Extracellular Polysaccharides (EPS) from both prokaryotes and eukaryotes have a great deal of research interest as they protect the producer from different stresses including antibiotics, ionic stress, desiccation and assist in bio-film formation, pathogenesis, adhesion, etc. In this study haloalkaliphilic Bacillus sp., known to cope with osmophilic stress, was selected and screened for EPS production. The EPS were isolated, partially purified and chemical characteristics were documented using liquid FT-IR followed by assessment of heavy metal biosorption (lead, copper and cadmium) using Atomic Absorption Spectroscopy (AAS). The EPS extracted from three isolates B. licheniformis NSPA5, B. cereus NSPA8 and B. subtilis NSPA13 showed maximum biosorption of Lead followed by Copper and Cadmium. Of the tested isolates, the EPS from isolate B. cereus NSPA8 showed maximum (90 %) biosorption of the lead.

  9. Biodegradation of food waste using microbial cultures producing thermostable α-amylase and cellulase under different pH and temperature.

    PubMed

    Awasthi, Mukesh Kumar; Wong, Jonathan W C; Kumar, Sunil; Awasthi, Sanjeev Kumar; Wang, Quan; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Chen, Hongyu; Zhang, Zengqiang

    2018-01-01

    The aim of this work was to study the biodegradation of food waste employing thermostable α-amylase and cellulase enzymes producing bacteria. Four potential isolates were identified which were capable of producing maximum amylase and cellulase and belong to the amylolytic strains, Brevibacillus borstelensis and Bacillus licheniformis; cellulolytic strains, Bacillus thuringiensis and Bacillus licheniformis, respectively. These strains were selected based on its higher cell density, enzymatic activities and stability at a wide range of pH and temperature compared to other strains. The results indicated that 1:1 ratio of pre and post consumed food wastes (FWs) were helpful to facilitate the degradation employing bacterial consortium. In addition, organic matter decomposition and chemical parameters of the end product quality also indicated that bacterial consortium was very effective for 1:1 ratio of FWs degradation as compared to the other treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Production of Poly-γ-Glutamate (PGA) Biopolymer by Batch and Semicontinuous Cultures of Immobilized Bacilluslicheniformis strain-R

    PubMed Central

    Berekaa, Mahmoud M.; El Aassar, Samy A.; El-Sayed, Samia M.; EL Borai, Aliaa M.

    2009-01-01

    Production of Polyglutamate (PGA) biopolymer by immobilized Bacillus licheniformis strain-R was intensively investigated. Preliminary experiments were carried out to address the most suitable immobilization methodology. Entrapment of Bacillus cells in alginate–agar led optimal PGA production (36.75 g/l), with 1.32-and 2.18-fold increase in comparison with alginate-or K-carrageenan-immobilized cells, respectively. During semicontinuous cultivation of agar-alginate gel-cell mixture, production of PGA by 10 ml mixture was increased from 2nd to 3rd run whereas, increased till the 4th run using 15ml mixture. Adsorption was the most suitable immobilization technique for production of PGA and the sponge cubes was the preferred matrix recording 43.2 g/l of PGA with the highest cell adsorption. Furthermore, no PGA was detected when B. licheniformis cells were adsorbed on wood and pumice. Although luffa pulp-adsorbed cells recorded the highest PGA production (50.4 g/l), cell adsorption was the lowest. Semicontinuous cultivation of B. licheniformis cells adsorbed on sponge led to increase of PGA production till the 3rd run and reached 55.5 g/l then slightly decreased in the 4th run. The successful use of fixed-bed bioreactor for semicontinuous cultivation of B. licheniformis cells held on sponge cubes (3 runs, 96 hours/run) provides insight for the potential biotechnological production of PGA by immobilized cells. PMID:24031418

  11. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    NASA Astrophysics Data System (ADS)

    Mahadtanapuk, S.; Teraarusiri, W.; Nanakorn, W.; Yu, L. D.; Thongkumkoon, P.; Anuntalabhochai, S.

    2014-05-01

    This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  12. Prospecting Agro-waste Cocktail: Supplementation for Cellulase Production by a Newly Isolated Thermophilic B. licheniformis 2D55.

    PubMed

    Kazeem, Muinat Olanike; Shah, Umi Kalsom Md; Baharuddin, Azhari Samsu; AbdulRahman, Nor' Aini

    2017-08-01

    Bacteria isolated from thermophilic environment that can produce cellulase as well as utilise agro-waste biomass have a high potential for developing thermostable cellulase required in the biofuel industry. The cost for cellulase represents a significant challenge in converting lignocellulose to fermentable sugars for biofuel production. Among three potential bacteria examined, Bacillus licheniformis 2D55 (accession no. KT799651) was found to produce the highest cellulolytic activity (CMCase 0.33 U/mL and FPase 0.09 U/mL) at 18-24 h fermentation when grown on microcrystalline cellulose (MCC) as a carbon source in shake flask at 50 °C. Cellulase production process was further conducted on the untreated and NaOH pretreated rice straw (RS), rice husk (RH), sugarcane bagasse (BAG) and empty fruit bunch (EFB). Untreated BAG produced the highest FPase (0.160 U/mL), while the highest CMCase (0.150 U/mL) was supported on the pretreated RH. The mixture of untreated BAG and pretreated RH as agro-waste cocktail has remarkably improved CMCase (3.7- and 1.4-fold) and FPase (2.5- and 11.5-fold) compared to the untreated BAG and pretreated RH, respectively. The mechanism of cellulase production explored through SEM analysis and the location of cellulase enzymes of the isolate was also presented. Agro-waste cocktail supplementation provides an alternative method for an efficient production of cellulase.

  13. Probiotics and Probiotic Metabolic Product Improved Intestinal Function and Ameliorated LPS-Induced Injury in Rats.

    PubMed

    Deng, Bo; Wu, Jie; Li, Xiaohui; Men, Xiaoming; Xu, Ziwei

    2017-11-01

    In the present study, we sought to determine the effects of Bacillus subtilis (BAS) and Bacillus licheniformis (BAL) in rats after lipopolysaccharide (LPS)-induced acute intestinal inflammation. We also determined whether the B. subtilis metabolic product (BASM) is as effective as the live-cell probiotic. 60 male SD rats were randomly assigned to five groups and administered a diet containing 0.05% B. licheniformis (BAL group), 0.05% B. subtilis (BAS group), 0.5% B. subtilis metabolic product (BASM group), or a basic diet (PC group and NC group) for 40 days. On day 40, BAL, BAS, BASM, and NC groups were injected with 4 mg/kg body weight LPS. 4 h later, all rats were anesthetized and sacrificed. The results showed that the administration of B. licheniformis and B. subtilis improved intestinal function as evidenced by histology, increased enzyme activity, and mucosal thickness. They also increased the number of intraepithelial lymphocytes and decreased mucosal myeloperoxidase activity and plasma TNF-α. In addition, the cecal content of B. subtilis-treated rats had significantly increased microbial diversity, decreased numbers of Firmicutes, and increased numbers of Bacteroidetes as compared to rats fed basic diets. Similar to BAS group, the cecal content of B. licheniformis-treated rats decreased the number of Firmicutes. Administration of B. subtilis metabolic product had similar effects on intestinal function, inflammation response, and microbial diversity as B. subtilis but these effects were attenuated. In conclusion, administration of probiotic strains B. licheniformis or B. subtilis improved intestinal function, ameliorated the inflammation response, and modulated microflora after LPS-induced acute inflammation in rats. Non-living cells also exerted probiotic properties but live cells tended to function better.

  14. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid

    PubMed Central

    Baxi, Nandita N.

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA. PMID:27379328

  15. Use of Nonspecific, Glutamic Acid-Free, Media and High Glycerol or High Amylase as Inducing Parameters for Screening Bacillus Isolates Having High Yield of Polyglutamic Acid.

    PubMed

    Baxi, Nandita N

    2014-01-01

    Out of fifty-five Bacillus isolates obtained from ten different regional locations and sources, seven showed the ability to consistently produce specific extracellular polymeric substance (EPS) on rich as well as synthetic but nonspecific media which did not contain glutamic acid. The isolates were identified as either Bacillus licheniformis or Bacillus subtilis. The EPS from all isolates was resistant to alpha protease, proteinase K, and was thus of high molecular weight. Further it was detected after SDS-PAGE by methylene blue but not by coomassie blue R staining as in case of proteins with high proportion of acidic amino acids. Cell-free EPS, after acid hydrolysis, showed absence of carbohydrates and presence of only glutamic acid. Thus the native the EPS from all seven isolates was confirmed to be gamma polyglutamic acid (PGA) and not exopolysaccharide. The Bacillus isolate T which produced maximum polymer on all media tested had higher amylase: protease activity as compared to other strains. If inoculum was developed in rich medium as compared to synthetic medium, the PGA produced increased by twofold in the subsequent synthetic production medium. Similarly, use of inoculum consisting of young and vegetative cells also increased the PGA production by twofold though amount of inoculum did not affect yield of PGA. Though PGA was produced in even in the absence of glutamic acid supplementation in the production medium by all isolates, the yield of PGA increased by fourfold in the presence glutamic acid and the maximum yield was 30 g/l for isolate K. The supplementation of glutamine instead of glutamic acid into the medium caused an increase in the viscosity of the non-Newtonian solution of PGA.

  16. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    USDA-ARS?s Scientific Manuscript database

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  17. Identification and Characterization of Psychrotolerant Sporeformers Associated with Fluid Milk Production and Processing

    PubMed Central

    Ivy, Reid A.; Ranieri, Matthew L.; Martin, Nicole H.; den Bakker, Henk C.; Xavier, Bruno M.; Wiedmann, Martin

    2012-01-01

    Psychrotolerant spore-forming bacteria represent a major challenge to the goal of extending the shelf life of pasteurized dairy products. The objective of this study was to identify prominent phylogenetic groups of dairy-associated aerobic sporeformers and to characterize representative isolates for phenotypes relevant to growth in milk. Analysis of sequence data for a 632-nucleotide fragment of rpoB showed that 1,288 dairy-associated isolates (obtained from raw and pasteurized milk and from dairy farm environments) clustered into two major divisions representing (i) the genus Paenibacillus (737 isolates, including the species Paenibacillus odorifer, Paenibacillus graminis, and Paenibacillus amylolyticus sensu lato) and (ii) Bacillus (n = 467) (e.g., Bacillus licheniformis sensu lato, Bacillus pumilus, Bacillus weihenstephanensis) and genera formerly classified as Bacillus (n = 84) (e.g., Viridibacillus spp.). When isolates representing the most common rpoB allelic types (ATs) were tested for growth in skim milk broth at 6°C, 6/9 Paenibacillus isolates, but only 2/8 isolates representing Bacillus subtypes, grew >5 log CFU/ml over 21 days. In addition, 38/40 Paenibacillus isolates but only 3/47 Bacillus isolates tested were positive for β-galactosidase activity (including some isolates representing Bacillus licheniformis sensu lato, a common dairy-associated clade). Our study confirms that Paenibacillus spp. are the predominant psychrotolerant sporeformers in fluid milk and provides 16S rRNA gene and rpoB subtype data and phenotypic characteristics facilitating the identification of aerobic spore-forming spoilage organisms of concern. These data will be critical for the development of detection methods and control strategies that will reduce the introduction of psychrotolerant sporeformers and extend the shelf life of dairy products. PMID:22247129

  18. Purification, characterization, and heterologous expression of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9.

    PubMed

    Mao, Shurui; Lu, Zhaoxin; Zhang, Chong; Lu, Fengxia; Bie, Xiaomei

    2013-02-01

    Purification, characterization, gene cloning, and heterologous expression in Escherichia coli of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9 have been investigated in this paper. The donor strain B. altitudinis YC-9 was isolated from spring silt. The native enzyme was purified by ammonium sulfate precipitation, diethylaminoethyl-cellulose anion exchange chromatography, and Sephadex G-100 gel filtration. The purified β-1,3-1,4-glucanase was observed to be stable at 60 °C and retain more than 90% activity when incubated for 2 h at 60 °C and remain about 75% and 44% activity after incubating at 70 °C and 80 °C for 10 min, respectively. Acidity and temperature optimal for this enzyme was pH 6 and 65 °C. The open reading frame of the enzyme gene was measured to be 732 bp encoding 243 amino acids, with a predicted molecular weight of 27.47 kDa. The gene sequence of β-1,3-1,4-glucanase showed a homology of 98% with that of Bacillus licheniformis. After being expressed in E. coli BL21, active recombinant enzyme was detected both in the supernatants of the culture and the cell lysate, with the activity of 102.7 and 216.7 U/mL, respectively. The supernatants of the culture were used to purify the recombinant enzyme. The purified recombinant enzyme was characterized to show almost the same properties to the wild enzyme, except that the specific activity of the recombinant enzyme reached 5392.7 U/mg, which was higher than those ever reported β-1,3-1,4-glucanase from Bacillus strains. The thermal stability and high activity make this enzyme broad prospect for industry application. This is the first report on β-1,3-1,4-glucanase produced by B. altitudinis.

  19. Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom Archea, Prokaryotes and Eukaryotes.

    PubMed

    Huma, Tayyaba; Maryam, Arooma; Rehman, Shahid Ur; Qamar, Muhammad Tahir Ul; Shaheen, Tayyaba; Haque, Asma; Shaheen, Bushra

    2014-01-01

    Alpha amylase family is generally defined as a group of enzymes that can hydrolyse and transglycosylase α-(1, 4) or α-(1, 6) glycosidic bonds along with the preservation of anomeric configuration. For the comparative analysis of alpha amylase family, nucleotide sequences of seven thermo stable organisms of Kingdom Archea i.e. Pyrococcus furiosus (100-105°C), Kingdom Prokaryotes i.e. Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C), Bacillus amyloliquefaciens (72°C), Bacillus subtilis (70°C) and Bacillus KSM K38 (55°C) and Eukaryotes i.e. Aspergillus oryzae (60°C) were selected from NCBI. Primary structure composition analysis and Conserved sequence analysis were conducted through Bio Edit tools. Results from BioEdit shown only three conserved regions of base pairs and least similarity in MSA of the above mentioned alpha amylases. In Mega 5.1 Phylogeny of thermo stable alpha amylases of Kingdom Archea, Prokaryotes and Eukaryote was handled by Neighbor-Joining (NJ) algorithm. Mega 5.1 phylogenetic results suggested that alpha amylases of thermo stable organisms i.e. Pyrococcus furiosus (100-105°C), Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C) and Bacillus amyloliquefaciens (72°C) are more distantly related as compared to less thermo stable organisms. By keeping in mind the characteristics of most thermo stable alpha amylases novel and improved features can be introduced in less thermo stable alpha amylases so that they become more thermo tolerant and productive for industry.

  20. A COMPARATIVE STUDY OF THE BIOLOGICAL CHARACTERS AND PATHOGENESIS OF BACILLUS X (STERNBERG), BACILLUS ICTEROIDES (SANARELLI), AND THE HOG-CHOLERA BACILLUS (SALMON AND SMITH)

    PubMed Central

    Reed, Walter; Carroll, James

    1900-01-01

    1. Bacillus X (Sternberg) belongs to the colon group. 2. Bacillus icteroides (Sanarelli) is a member of the hog-cholera group. 3. The various channels of infection, the duration of the disease and the gross and microscopical lesions in mice, guinea-pigs and rabbits are the same for Bacillus icteroides and the hog-cholera bacillus. 4. The clinical symptoms and the lesions observed in dogs inoculated intravenously with Bacillus icteroides, are reproduced in these animals by infection with the hog-cholera bacillus. 5. Bacillus icteroides when fed to the domestic pig causes fatal infection, accompanied by diphtheritic, necrotic and ulcerative lesions in the digestive tract, such as are seen in hogs when infected with the hog-cholera bacillus. 6. This disease may be acquired by exposing swine in pens already infected with Bacillus icteroides, or by feeding them with the viscera of infected pigs. 7. Guinea-pigs may be immunized with sterilized cultures ofBacillus icteroides from a fatal dose of the hog-cholera bacillus and vice versa. 8. Rabbits may be rendered immune by gradually increasing doses of a living culture of Bacillus icteroides of weak virulence from a fatal dose of a virulent culture of the hog-cholera bacillus 9. The sera of animals immunized with Bacillus icteroides and with the hog-cholera bacillus, respectively, show a marked reciprocal agglutinative reaction. 10. While the blood of yellow fever practically does not exercise an agglutinative reaction upon Bacillus icteroides, the blood of hog-cholera agglutinates this bacillus in a much more marked degree, thus pointing, we think, to the closer etiological relationship of this bacillus to hog-cholera than to yellow fever. PMID:19866945

  1. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria

    PubMed Central

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  2. Possibility of biological control of primocane fruiting raspberry disease caused by Fusarium sambucinum.

    PubMed

    Shternshis, Margarita V; Belyaev, Anatoly A; Matchenko, Nina S; Shpatova, Tatyana V; Lelyak, Anastasya A

    2015-10-01

    Biological control agents are a promising alternative to chemical pesticides for plant disease suppression. The main advantage of the natural biocontrol agents, such as antagonistic bacteria compared with chemicals, includes environmental pollution prevention and a decrease of chemical residues in fruits. This study is aimed to evaluate the impact of three Bacillus strains on disease of primocane fruiting raspberry canes caused by Fusarium sambucinum under controlled infection load and uncontrolled environmental factors. Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloliquefaciens were used for biocontrol of plant disease in 2013 and 2014 which differed by environmental conditions. The test suspensions were 10(5) CFU/ml for each bacterial strain. To estimate the effect of biological agents on Fusarium disease, canes were cut at the end of vegetation, and the area of outer and internal lesions was measured. In addition to antagonistic effect, the strains revealed the ability to induce plant resistance comparable with chitosan-based formulation. Under variable ways of cane treatment by bacterial strains, the more effective were B. subtilis and B. licheniformis demonstrating dual biocontrol effect. However, environmental factors were shown to impact the strain biocontrol ability; changes in air temperature and humidity led to the enhanced activity of B. amyloliquefaciens. For the first time, the possibility of replacing chemicals with environmentally benign biological agents for ecologically safe control of the raspberry primocane fruiting disease was shown.

  3. Enzymatic synthesis of novel phloretin glucosides.

    PubMed

    Pandey, Ramesh Prasad; Li, Tai Feng; Kim, Eun-Hee; Yamaguchi, Tokutaro; Park, Yong Il; Kim, Joong Su; Sohng, Jae Kyung

    2013-06-01

    A UDP-glycosyltransferase from Bacillus licheniformis was exploited for the glycosylation of phloretin. The in vitro glycosylation reaction confirmed the production of five phloretin glucosides, including three novel glucosides. Consequently, we demonstrated the application of the same glycosyltransferase for the efficient whole-cell biocatalysis of phloretin in engineered Escherichia coli.

  4. Biosurfactant and enhanced oil recovery

    DOEpatents

    McInerney, Michael J.; Jenneman, Gary E.; Knapp, Roy M.; Menzie, Donald E.

    1985-06-11

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  5. Study of mural painting isolates, leading to the transfer of 'Bacillus maroccanus' and 'Bacillus carotarum' to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to 'Bacillus macroides' and description of Bacillus muralis sp. nov.

    PubMed

    Heyrman, Jeroen; Logan, Niall A; Rodríguez-Díaz, Marina; Scheldeman, Patsy; Lebbe, Liesbeth; Swings, Jean; Heyndrickx, Marc; De Vos, Paul

    2005-01-01

    A group of 24 strains was isolated from deteriorated mural paintings situated in Spain (necropolis of Carmona) and Germany (church of Greene-Kreiensen). (GTG)5-PCR genomic fingerprinting was performed on these strains to assess their genomic variability and the strains were delineated into four groups. Representatives were studied by 16S rRNA gene sequencing and were found to be closely related to Bacillus simplex and the species 'Bacillus macroides' (strain NCIMB 8796) and 'Bacillus maroccanus' (names not validly published) according to a fasta search. The close similarity between B. simplex, 'B. macroides' NCIMB 8796, 'B. maroccanus' and the mural painting isolates was confirmed by additional (GTG)5-PCR, ARDRA, FAME and SDS-PAGE analyses. Furthermore, these techniques revealed that strains of 'Bacillus carotarum', another name that has not been validly published, also showed high similarity to this group of organisms. On the other hand, it was shown that the strains labelled 'B. macroides' in different collections do not all belong to the same species. Strain NCIMB 8796 can be allocated to B. simplex, while strain DSM 54 (=ATCC 12905) shares the highest 16S rRNA gene sequence similarity with Bacillus sphaericus and Bacillus fusiformis (both around 98.6 %). On the basis of further DNA-DNA hybridization data and the study of phenotypic characteristics, one group of five mural painting strains was attributed to a novel species in the genus Bacillus, for which the name Bacillus muralis sp. nov. is proposed. Finally, the remaining mural painting strains, one (LMG 18508=NCIMB 8796) of two strains belonging to 'B. macroides' and strains belonging to 'B. maroccanus' and 'B. carotarum' are allocated to the species B. simplex and an emended description of B. simplex is given.

  6. Properties of structural panels fabricated from bioremediated CCA-treated wood: pilot scale

    Treesearch

    Carol A. Clausen; James H. Muehl; Andrzej M. Krzysik

    2006-01-01

    Particleboard and flakeboard panels were fabricated from remediated CCA-treated southern yellow pine. Treated wood, flaked or comminuted into particles, was remediated in 12-kg batches using oxalic acid extraction, followed by bioleaching with the metal-tolerant bacterium Bacillus licheniformis. Remediation resulted in removal of 80 percent Cu, 71 percent Cr, and 89...

  7. Enzymatic Synthesis of Novel Phloretin Glucosides

    PubMed Central

    Pandey, Ramesh Prasad; Li, Tai Feng; Kim, Eun-Hee; Yamaguchi, Tokutaro; Park, Yong Il; Kim, Joong Su

    2013-01-01

    A UDP-glycosyltransferase from Bacillus licheniformis was exploited for the glycosylation of phloretin. The in vitro glycosylation reaction confirmed the production of five phloretin glucosides, including three novel glucosides. Consequently, we demonstrated the application of the same glycosyltransferase for the efficient whole-cell biocatalysis of phloretin in engineered Escherichia coli. PMID:23542617

  8. Properties of particleboard made from recycled CCA-treated wood

    Treesearch

    Carol A. Clausen; S. Nami Kartal; James Muehl

    2000-01-01

    Recovery of chromated copper arsenate (CCA)-treated wood for reuse has been the focus of several international research groups due to the imminent disposal problem created when large quantities of CCA-treated wood ultimately come out of service. Bioleaching with Bacillus licheniformis CC01 and oxalic acid extraction are two methods known to remove significant...

  9. Improving the two-step remediation process for CCA-treated wood. Part I, Evaluating oxalic acid extraction

    Treesearch

    Carol Clausen

    2004-01-01

    In this study, three possible improvements to a remediation process for chromated-copper-arsenate (CCA) treated wood were evaluated. The process involves two steps: oxalic acid extraction of wood fiber followed by bacterial culture with Bacillus licheniformis CC01. The three potential improvements to the oxalic acid extraction step were (1) reusing oxalic acid for...

  10. Surfactant based enhanced oil recovery mediated by naturally occurring microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-01-01

    Oil recovery experiments using Bacillus licheniformis JF-2 and a sucrose based nutrient were performed using Berea sandstone cores ranging in permeability from 85 to 510 md (0.084 to 0.503 {mu}m{sup 2}). Bacillus licheniformis JF-2, a surfactant producing microorganism isolated from an oilfield environment, is nonpathogenic and will not reduce sulfate. Oil recovery efficiencies (E{sub r}) for four different crude oils ranging from 19.1 to 38.1{degrees}API (0.9396 to 0.8343 g/cm{sup 3}) varied from 2.8 to 42.6% of the waterflood residual oil. Injection of cell-free'' supernatants resulted in E{sub r} values from 7.0 to 16.4%. Microbially-mediated systems reduced interfacial tension (IFT) aboutmore » 20 mN/m for four different crude oils. Following microbial flood experimentation microorganisms were distributed throughout the core (110 md (0.109 {mu}m{sup 2}) Berea sandstone) with a predominance of cells located near the outlet end. 34 refs., 6 figs., 7 tabs.« less

  11. Microbial enhanced oil recovery research. [Peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, M.M.; Georgiou, G.

    1992-01-01

    The surface active lipopeptide produced by Bacillus licheniformis JF-2 was isolated to near apparent homogeneity. NMR experiments revealed that this compound consists of a heptapeptide with an amino acid sequence similar to surfactin and a heterogeneous fatty acid consisting of the normal-, anteiso-, and iso- branched isomers. The surface activity of the B. licheniformis JF-2 surfactant was shown to depend on the presence of fermentation products and is strongly affected by the pH. Under conditions of optimal salinity and pH the interfacial tension against decane was 6 [times] 10[sup 3] mN/m which is one of the lowest values ever obtainedmore » with a microbial surfactant. Microbial compounds which exhibit particularly high surface activity are classified as biosurfactants. Microbial biosurfactants include a wide variety of surface and interfacially active compounds, such as glycolipids, lipopeptides polysaccharideprotein complexes, phospholipids, fatty acids and neutral lipids. Biosurfactants are easily biodegradable and thus are particularly suited for environmental applications such as bioremediation and the dispersion of oil spills. Bacillus licheniformis strain JF-2 has been shown to be able to grow and produce a very effective biosurfactant under both aerobic and anaerobic conditions and in the presence of high salt concentrations. The production of biosurfactants in anaerobic, high salt environments is potentially important for a variety of in situ applications such as microbial enhanced oil recovery. As a first step towards evaluating the commercial utility of the B. licheniformis JF-2 surfactant, we isolated t-he active. compound from the culture supernatant, characterized its chemical structure and investigated its phase behavior. We found that the surface activity of the surfactant is strongly dependent on the pH of the aqueous. phase. This may be important for the biological function of the surfactant and is of interest for several applications in

  12. Microbial enhanced oil recovery research. Annex 5, Summary annual report, 1991--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, M.M.; Georgiou, G.

    1992-12-31

    The surface active lipopeptide produced by Bacillus licheniformis JF-2 was isolated to near apparent homogeneity. NMR experiments revealed that this compound consists of a heptapeptide with an amino acid sequence similar to surfactin and a heterogeneous fatty acid consisting of the normal-, anteiso-, and iso- branched isomers. The surface activity of the B. licheniformis JF-2 surfactant was shown to depend on the presence of fermentation products and is strongly affected by the pH. Under conditions of optimal salinity and pH the interfacial tension against decane was 6 {times} 10{sup 3} mN/m which is one of the lowest values ever obtainedmore » with a microbial surfactant. Microbial compounds which exhibit particularly high surface activity are classified as biosurfactants. Microbial biosurfactants include a wide variety of surface and interfacially active compounds, such as glycolipids, lipopeptides polysaccharideprotein complexes, phospholipids, fatty acids and neutral lipids. Biosurfactants are easily biodegradable and thus are particularly suited for environmental applications such as bioremediation and the dispersion of oil spills. Bacillus licheniformis strain JF-2 has been shown to be able to grow and produce a very effective biosurfactant under both aerobic and anaerobic conditions and in the presence of high salt concentrations. The production of biosurfactants in anaerobic, high salt environments is potentially important for a variety of in situ applications such as microbial enhanced oil recovery. As a first step towards evaluating the commercial utility of the B. licheniformis JF-2 surfactant, we isolated t-he active. compound from the culture supernatant, characterized its chemical structure and investigated its phase behavior. We found that the surface activity of the surfactant is strongly dependent on the pH of the aqueous. phase. This may be important for the biological function of the surfactant and is of interest for several applications in

  13. Improving the two-step remediation process for CCA-treated wood. Part II, Evaluating bacterial nutrient sources

    Treesearch

    Carol A. Clausen

    2004-01-01

    Remediation processes for recovery and reuse of chromated-copper-arsenate-(CCA) treated wood are not gaining wide acceptance because they are more expensive than landfill disposal. One reason is the high cost of the nutrient medium used to culture the metal tolerant bacterium, Bacillus licheniformis, which removes 70-100% of the copper, chromium, and arsenic from CCA-...

  14. Particleboard made from remediated CCA-treated wood : evaluation of panel properties

    Treesearch

    Carol A. Clausen; S. Nami Kartal; James Muehl

    2001-01-01

    CCA-treated southern yellow pine (SYP) chips were remediated utilizing acid extraction alone, and using acid extraction followed by bioleaching with the metal-tolerant bacterium Bacillus licheniformis CC01. bCleanedc chips were used to make particleboard (PB) with 10 percent urea-formaldehyde (UF) resin, and the PB samples were evaluated for internal bond (IB), modulus...

  15. Differentiation of Bacillus Anthracis and Other Bacillus Species by Use of Lectins

    DTIC Science & Technology

    1983-07-18

    TITL9 fAnd Subtfitle) S.TypeO REPORT gi PZRCC rvt 4 DIFFERENTIATION OF BACIL-LUSg’ ANTHRAtgACIS D OTHER BACILLUS , SPECIES BY-USE OYLECTINS" Inter[im...Ricinus communis. Some strains of Bacillus cer-eus var. m-ycoides (B. Mycoides) were strongly reactive with the lectin from Helbi pomtia and weakly reacti...ve with the Glycine max lectin. The differential iCnteractions between Bacillus species and lectins af forded a means of distinguishing B. anthracis

  16. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    PubMed Central

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  17. Bacillus infantis sp. nov. and Bacillus idriensis sp. nov., isolated from a patient with neonatal sepsis.

    PubMed

    Ko, Kwan Soo; Oh, Won Sup; Lee, Mi Young; Lee, Jang Ho; Lee, Hyuck; Peck, Kyong Ran; Lee, Nam Yong; Song, Jae-Hoon

    2006-11-01

    Two Gram-positive bacilli, designated as strains SMC 4352-1T and SMC 4352-2T, were isolated sequentially from the blood of a newborn child with sepsis. They could not be identified by using conventional clinical microbiological methods. 16S rRNA gene sequencing and phylogenetic analysis revealed that both strains belonged to the genus Bacillus but clearly diverged from known Bacillus species. Strain SMC 4352-1T and strain SMC 4352-2T were found to be closely related to Bacillus firmus NCIMB 9366T (98.2% sequence similarity) and Bacillus cibi JG-30T (97.1% sequence similarity), respectively. They also displayed low DNA-DNA reassociation values (less than 40%) with respect to the most closely related Bacillus species. On the basis of their polyphasic characteristics, strain SMC 4352-1T and strain SMC 4352-2T represent two novel species of the genus Bacillus, for which the names Bacillus infantis sp. nov. (type strain SMC 4352-1T=KCCM 90025T=JCM 13438T) and Bacillus idriensis sp. nov. (type strain SMC 4352-2T=KCCM 90024T=JCM 13437T) are proposed.

  18. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  19. Comparison of the effects of dietary single and multi-probiotics on growth, non-specific immune responses and disease resistance in starry flounder, Platichthys stellatus.

    PubMed

    Park, Youngjin; Moniruzzaman, Mohammad; Lee, Seunghan; Hong, Jeongwhui; Won, Seonghun; Lee, Jong Min; Yun, Hyeonho; Kim, Kang-Woong; Ko, Daegyun; Bai, Sungchul C

    2016-12-01

    An 8-week feeding trial was conducted to evaluate the effects of dietary probiotics on growth performance and non-specific immune responses in starry flounder, Platichthys stellatus. Fish averaging 46.5 ± 0.65 g (mean ± SD) were fed one of the six experimental diets; one control (Cont), and five other diets were prepared by supplementing single-probiotics 1 (Bacillus subtilis; SP 1 , 2 × 10 9  CFU kg -1 diet), single-probiotics 2 (Bacillus licheniformis; SP 2 , 2 × 10 9  CFU kg -1 diet), multi-probiotics 1 (Bacillus subtilis + Bacillus licheniformis; MP 1 , 2 × 10 9  CFU kg -1 diet), multi-probiotics 2 (commercial probiotics; Bacillus subtills + Bacillus licheniformis + Paenibacillus polymyxa + Aspergillus oryzae + Saccharomyces cerevisiae; MP 2 , 2 × 10 9  CFU kg -1 diet) and oxytetracycline (OTC) at 5 g OTC kg -1 diet. At the end of 8 weeks feeding trial, weight gain (WG) and specific growth rate (SGR) of fish fed SP 1 , MP 1 and MP 2 diets were significantly higher than those of fish fed control diet (P < 0.05). Superoxide dismutase (SOD) activity of fish fed MP 2 diet was significantly higher than those of fish fed OTC diet (P < 0.05). Nitro blue tetrazolium (NBT) activity and lysozyme activity of fish fed SP 1 , MP 1 and MP 2 diets were significantly higher than those of fish fed OTC diet (P < 0.05). However, there was no significant difference among fish fed SP 1 , SP 2 , MP 1 and MP 2 diets. During the Edwardsiella tarda challenge test, the first mortality occurred on day 2. After the 14 days challenge test, cumulative survival rate of fish fed MP 1 and MP 2 diets were significantly higher than those of fish fed control diet (P < 0.05). However, there was no significant difference among fish fed SP 1 , SP 2 , MP 1 , MP 2 and OTC diets in survival rate at the termination of the challenge test. Although there was little advantage in immunological parameters with fish fed MP diets, single and multi-probiotics were

  20. Obtaining edaphic biostimulants/biofertilizers from sewage sludge using fermentative processes. Short-time effects on soil biochemical properties.

    PubMed

    Rodríguez-Morgado, Bruno; Caballero, Pablo; Paneque, Patricia; Gómez, Isidoro; Parrado, Juan; Tejada, Manuel

    2017-10-28

    In this manuscript, we study the manufacture and effect on soils of different edaphic biostimulants/biofertilizers (BS) obtained from sewage sludge using Bacillus licheniformis as biological tool. These BS consist of different combinations of organic matter, bacteria and enzymes that were subjected to several treatments. These BS were applied in soil in order to observe their influence on the biochemical properties (enzymatic activities and ergosterol content). Dehydrogenase, urease, β-glucosidase, phosphatase activities and ergosterol content were measured at different incubation days. Only dehydrogenase activity and ergosterol content were significantly stimulated after the application of BS1 and BS4. Rest of the extracellular activities were not stimulated probably because B. licheniformis practically has digested all organic substrates during fermentation process.

  1. Effects of small peptides, probiotics, prebiotics, and synbiotics on growth performance, digestive enzymes, and oxidative stress in orange-spotted grouper, Epinephelus coioides, juveniles reared in artificial seawater

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Cheng, Yongzhou; Chen, Xiaoyan; Liu, Zhaopu; Long, Xiaohua

    2017-01-01

    Aquaculture production efficiency may increase by using feed additives. This study investigated the effects of different dietary additives [w/w: 2% small peptides, 0.01% probiotics ( Bacillus licheniformis) and 0.2% prebiotics (inulin)] on growth performance, digestive enzyme activities, and oxidative stress in juvenile Epinephelus coioides reared in artificial seawater of two salt concentrations (13.5 vs. 28.5). Weight gain rate was significantly higher in fish fed the diet supplemented with small peptides, B. licheniformis, inulin, or synbiotics than that in fish fed the basal diet; the greatest weight gain rate was found in fish fed the small peptide treatment [56.0% higher than basal diet]. Higher feed efficiency was detected in fish fed the diet supplemented with small peptides than that of fish in the other dietary treatments. Total protease activity in the stomach and intestines was highest in fish fed the small peptide-treated diet, whereas lipase activity was highest in those fed synbiotics (combination of Bacillus licheniformis and inulin) than that in fish fed the other treatments. Antioxidant enzyme (total superoxide dismutase and catalase) activities and hepatic malondialdehyde content were higher in fish receiving the dietary supplements and maintained in artificial seawater containing 13.5 salinity compared with those in the control (28.5). Hepatic catalase activity in grouper fed the diets with small peptides or synbiotics decreased significantly compared with that in control fish. Overall, the three types of additives improved growth rate of juvenile grouper and digestive enzymes activities to varying degrees but did not effectively improve antioxidant capacity under low-salinity stress conditions.

  2. Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423.

    PubMed

    Wu, Xiangrong; Wang, Yuxia; Tong, Bending; Chen, Xianghua; Chen, Jianhua

    2018-04-01

    Novel thermostable amylase need to be continuously explored with the improvement of industrial requirements. A new acidophilic and thermostable amylase producing bacterium isolated from spring was identified as Bacillus strain on the basis of 16S rDNA. The amylase was purified by ammonium sulphate precipitation, gel chromatography and anion exchange chromatography. SDS-PAGE revealed that the enzyme was monomeric with a molecular weight of 58 kDa. The amylase exhibited optimal activity at pH 5.0 and temperature 100 °C. Then the enzyme showed high stability in pH ranges 4.0-10.0 and more than 90% of maximal activity was found from 20 °C to 80 °C. Apart from good stability toward SDS and non-ionic detergent, the purified enzyme exhibited high compatibility with some inhibitors such as urea and EDTA. The results demonstrated the stability of the enzyme in different organic solvents. Moreover, we determined the amylase gene, compared the structure with α-amylase BAA and BLA and found some thermostability determinants in our enzyme. Overall, presenting various properties were including high thermostability, Ca 2+ -independency, broad temperature and pH profiles, organic-solvent tolerance as well as excellent stability with detergents. Such characteristics have not been reported for this type of enzyme, and the α-amylase will be a suitable candidate in industrial fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    PubMed

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  4. Bacillus odysseyi isolate

    NASA Technical Reports Server (NTRS)

    La Duc, Myron Thomas (Inventor); Venkateswaran, Kasthuri (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus odysseyi isolate with high adherence and sterilization resistant properties. B. odysseyi is a round spore forming Bacillus species that produces an exosporium. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and the type strain is 34hs-1.sup.T (=ATCC PTA-4993.sup.T=NRRL B-30641.sup.T=NBRC 100172.sup.T). The GenBank accession number for the 16S rDNA sequence of strain 34hs-1.sup.T is AF526913.

  5. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    PubMed Central

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  6. Purification, Characterization and Comparison between Two New L-asparaginases from Bacillus PG03 and Bacillus PG04

    PubMed Central

    Rahimzadeh, Mahsa; Poodat, Manijeh; Javadpour, Sedigheh; Qeshmi, Fatemeh Izadpanah; Shamsipour, Fereshteh

    2016-01-01

    Background: L-asparaginase has been used as a chemotherapeutic agent in treatment of lymphoblastic leukemia. In the present investigation, Bacillus sp. PG03 and Bacillus sp. PG04 were studied. Methods: L- asparaginases were produced using different culture media and were purified using ion exchange chromatography. Results: Maximum productivity was obtained when asparagine was used as the nitrogen source at pH 7 and 48 h after cultivation. New intracellular L-asparaginases showed an apparent molecular weight of 25 kDa and 30 kDa by SDS-PAGE respectively. These enzymes were active in a wide pH range (3-9) with maximum activity at pH 6 for Bacillus PG03 and pH 7 for Bacillus PG04 L-asparaginase. Bacillus PG03 enzyme was optimally active at 37 ˚C and Bacillus PG04 maximum activity was observed at 40˚C. Kinetic parameters km and Vmax of both enzymes were studied using L-asparagine as the substrate. Thermal inactivation studies of Bacillus PG03 and Bacillus PG04 L-asparaginase exhibited t1/2 of 69.3 min and 34.6 min in 37 ˚C respectively. Also T50 and ∆G of inactivation were measured for both enzymes. Conclusion: The results revealed that both enzymes had appropriate characteristics and thus could be a potential candidate for medical applications. PMID:27999622

  7. Oral Administration of a Select Mixture of Bacillus Probiotics Affects the Gut Microbiota and Goblet Cell Function following Escherichia coli Challenge in Newly Weaned Pigs of Genotype MUC4 That Are Supposed To Be Enterotoxigenic E. coli F4ab/ac Receptor Negative.

    PubMed

    Zhang, Wei; Zhu, Yao-Hong; Zhou, Dong; Wu, Qiong; Song, Dan; Dicksved, Johan; Wang, Jiu-Feng

    2017-02-01

    Structural disruption of the gut microbiota and impaired goblet cell function are collateral etiologic factors in enteric diseases. Low, moderate, or high doses of a Bacillus licheniformis-B. subtilis mixture (BLS mix) were orally administered to piglets of genotype MUC4 that are supposed to be F4-expressing enterotoxigenic Escherichia coli strain (F4 + ETEC) F4ab/ac receptor negative (i.e., MUC4-resistant piglets) for 1 week before F4 + ETEC challenge. The luminal contents were collected from the mucosa of the colon on day 8 after F4 + ETEC challenge. The BLS mix attenuated E. coli-induced expansion of Bacteroides uniformis, Eubacterium eligens, Acetanaerobacterium, and Sporobacter populations. Clostridium and Turicibacter populations increased following F4 + ETEC challenge in pigs pretreated with low-dose BLS mix. Lactobacillus gasseri and Lactobacillus salivarius populations increased after administration of BLS mix during E. coli infection. The beneficial effects of BLS mix were due in part to the expansion of certain Clostridium, Lactobacillus, and Turicibacter populations, with a corresponding increase in the number of goblet cells in the ileum via upregulated Atoh1 expression, in turn increasing MUC2 production and thus preserving the mucus barrier and enhancing host defenses against enteropathogenic bacteria. However, excessive BLS mix consumption may increase the risk for enteritis, partly through disruption of colonic microbial ecology, characterized by expansion of Proteobacteria and impaired goblet cell function in the ileum. Our findings suggest that oral administration of BLS mix reprograms the gut microbiota and enhances goblet cell function to ameliorate enteritis. The present study is important for improving our understanding of the protective role of probiotics against Escherichia coli infection in piglets. Structural disruption of the gut microbiota and impaired goblet cell function are collateral etiologic factors in enteric diseases. In this

  8. Oral Administration of a Select Mixture of Bacillus Probiotics Affects the Gut Microbiota and Goblet Cell Function following Escherichia coli Challenge in Newly Weaned Pigs of Genotype MUC4 That Are Supposed To Be Enterotoxigenic E. coli F4ab/ac Receptor Negative

    PubMed Central

    Zhang, Wei; Zhou, Dong; Wu, Qiong; Song, Dan; Dicksved, Johan; Wang, Jiu-Feng

    2016-01-01

    ABSTRACT Structural disruption of the gut microbiota and impaired goblet cell function are collateral etiologic factors in enteric diseases. Low, moderate, or high doses of a Bacillus licheniformis-B. subtilis mixture (BLS mix) were orally administered to piglets of genotype MUC4 that are supposed to be F4-expressing enterotoxigenic Escherichia coli strain (F4+ ETEC) F4ab/ac receptor negative (i.e., MUC4-resistant piglets) for 1 week before F4+ ETEC challenge. The luminal contents were collected from the mucosa of the colon on day 8 after F4+ ETEC challenge. The BLS mix attenuated E. coli-induced expansion of Bacteroides uniformis, Eubacterium eligens, Acetanaerobacterium, and Sporobacter populations. Clostridium and Turicibacter populations increased following F4+ ETEC challenge in pigs pretreated with low-dose BLS mix. Lactobacillus gasseri and Lactobacillus salivarius populations increased after administration of BLS mix during E. coli infection. The beneficial effects of BLS mix were due in part to the expansion of certain Clostridium, Lactobacillus, and Turicibacter populations, with a corresponding increase in the number of goblet cells in the ileum via upregulated Atoh1 expression, in turn increasing MUC2 production and thus preserving the mucus barrier and enhancing host defenses against enteropathogenic bacteria. However, excessive BLS mix consumption may increase the risk for enteritis, partly through disruption of colonic microbial ecology, characterized by expansion of Proteobacteria and impaired goblet cell function in the ileum. Our findings suggest that oral administration of BLS mix reprograms the gut microbiota and enhances goblet cell function to ameliorate enteritis. IMPORTANCE The present study is important for improving our understanding of the protective role of probiotics against Escherichia coli infection in piglets. Structural disruption of the gut microbiota and impaired goblet cell function are collateral etiologic factors in enteric

  9. Bacillus pumilus SAFR-032 isolate

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J. (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus pumilus SAFR-032 isolate with UV sterilization resistant properties. This novel strain has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus. The GenBank accession number for the 16S rDNA sequence of the Bacillus pumilus SAFR-032 isolate is AY167879.

  10. Nano-Mechanical Properties of Heat Inactivated Bacillus anthracis and Bacillus thuringiensis Spores

    DTIC Science & Technology

    2008-03-01

    Scanner Laser Mirror Cantilever Sample Probe Tip 16 cereus strain 569, and Bacillus globigii var. niger . Zolock determined that there wer...been used to measure the surface elasticities of a variety of microbial organisms including Pseudomonas putida, Bacillus subtilis, Aspergillus ...66:307-311 (2005). Zhao, Liming, David Schaefer, and Mark R. Marten. “Assessment of Elasticity and Topography of Aspergillus nidulans Spores via

  11. Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis.

    PubMed

    Delvecchio, Vito G; Connolly, Joseph P; Alefantis, Timothy G; Walz, Alexander; Quan, Marian A; Patra, Guy; Ashton, John M; Whittington, Jessica T; Chafin, Ryan D; Liang, Xudong; Grewal, Paul; Khan, Akbar S; Mujer, Cesar V

    2006-09-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Delta-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development.

  12. Proteomic Profiling and Identification of Immunodominant Spore Antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis‡

    PubMed Central

    DelVecchio, Vito G.; Connolly, Joseph P.; Alefantis, Timothy G.; Walz, Alexander; Quan, Marian A.; Patra, Guy; Ashton, John M.; Whittington, Jessica T.; Chafin, Ryan D.; Liang, Xudong; Grewal, Paul; Khan, Akbar S.; Mujer, Cesar V.

    2006-01-01

    Differentially expressed and immunogenic spore proteins of the Bacillus cereus group of bacteria, which includes Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis, were identified. Comparative proteomic profiling of their spore proteins distinguished the three species from each other as well as the virulent from the avirulent strains. A total of 458 proteins encoded by 232 open reading frames were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis for all the species. A number of highly expressed proteins, including elongation factor Tu (EF-Tu), elongation factor G, 60-kDa chaperonin, enolase, pyruvate dehydrogenase complex, and others exist as charge variants on two-dimensional gels. These charge variants have similar masses but different isoelectric points. The majority of identified proteins have cellular roles associated with energy production, carbohydrate transport and metabolism, amino acid transport and metabolism, posttranslational modifications, and translation. Novel vaccine candidate proteins were identified using B. anthracis polyclonal antisera from humans postinfected with cutaneous anthrax. Fifteen immunoreactive proteins were identified in B. anthracis spores, whereas 7, 14, and 7 immunoreactive proteins were identified for B. cereus and in the virulent and avirulent strains of B. thuringiensis spores, respectively. Some of the immunodominant antigens include charge variants of EF-Tu, glyceraldehyde-3-phosphate dehydrogenase, dihydrolipoamide acetyltransferase, Δ-1-pyrroline-5-carboxylate dehydrogenase, and a dihydrolipoamide dehydrogenase. Alanine racemase and neutral protease were uniquely immunogenic to B. anthracis. Comparative analysis of the spore immunome will be of significance for further nucleic acid- and immuno-based detection systems as well as next-generation vaccine development. PMID:16957262

  13. The Feasibility of Using Pyrolysis-Mass Spectrometry and Pyrolysis-MS/MS with Pattern Recognition for the Identification of Biological Materials.

    DTIC Science & Technology

    1987-01-07

    Bacillus subtilis (2) (3) Enterobacter aerogenes (3) (3) Providencia alcalifaciens (3) (3) Streptococcus faecalis (0) (3) Streptococcus salivarius (0) (3...licheniformis i 5 10. Enterobacter aerogenes j 5 S 11. Streptococcus lactis k 5 12. Providencia alcalifaciens 1 5 13. Streptococcus faecalis m 5 14. Streptococcus...exclusively. In a study of killing methods, four species of bacteria, P. vulgaris, P. fluorescens, E. coli and E. aerogenes , were each subjected to five

  14. Characterization of the native form and the carboxy-terminally truncated halotolerant form of α-amylases from Bacillus subtilis strain FP-133.

    PubMed

    Takenaka, Shinji; Miyatake, Ayaka; Tanaka, Kosei; Kuntiya, Ampin; Techapun, Charin; Leksawasdi, Noppol; Seesuriyachan, Phisit; Chaiyaso, Thanongsak; Watanabe, Masanori; Yoshida, Ken-ichi

    2015-06-01

    Two amylases, amylase I and amylase II from Bacillus subtilis strain FP-133, were purified to homogeneity and characterized. Their stabilities toward temperature, pH, and organic solvents, and their substrate specificities toward polysaccharides and oligosaccharides were similar. Under moderately high salt conditions, both amylases were more stable than commercial B. licheniformis amylase, and amylase I retained higher amylase activity than amylase II. The N-terminal amino acid sequence, genomic southern blot analysis, and MALDI-TOFF-MS analysis indicated that the halotolerant amylase I was produced by limited carboxy-terminal truncation of the amylase II peptide. The deduced amino acid sequence of amylase II was >95% identical to that of previously reported B. subtilis α-amylases, but their carboxy-terminal truncation points differed. Three recombinant amylases--full-length amylase corresponding to amylase II, an artificially truncated amylase corresponding to amylase I, and an amylase with a larger artificial C-terminal truncation--were expressed in B. subtilis. The artificially truncated recombinant amylases had the same high amylase activity as amylase I under moderately high salt conditions. Sequence comparisons indicated that an increased ratio of Asp/Glu residues in the enzyme may be one factor responsible for increasing halotolerance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bacillus Endospores Isolated from Granite: Close Molecular Relationships to Globally Distributed Bacillus spp. from Endolithic and Extreme Environments

    PubMed Central

    Fajardo-Cavazos, Patricia; Nicholson, Wayne

    2006-01-01

    As part of an ongoing effort to catalog spore-forming bacterial populations in environments conducive to interplanetary transfer by natural impacts or by human spaceflight activities, spores of Bacillus spp. were isolated and characterized from the interior of near-subsurface granite rock collected from the Santa Catalina Mountains, AZ. Granite was found to contain ∼500 cultivable Bacillus spores and ∼104 total cultivable bacteria per gram. Many of the Bacillus isolates produced a previously unreported diffusible blue fluorescent compound. Two strains of eight tested exhibited increased spore UV resistance relative to a standard Bacillus subtilis UV biodosimetry strain. Fifty-six isolates were identified by repetitive extragenic palindromic PCR (rep-PCR) and 16S rRNA gene analysis as most closely related to B. megaterium (15 isolates), B. simplex (23 isolates), B. drentensis (6 isolates), B. niacini (7 isolates), and, likely, a new species related to B. barbaricus (5 isolates). Granite isolates were very closely related to a limited number of Bacillus spp. previously found to inhabit (i) globally distributed endolithic sites such as biodeteriorated murals, stone tombs, underground caverns, and rock concretions and (ii) extreme environments such as Antarctic soils, deep sea floor sediments, and spacecraft assembly facilities. Thus, it appears that the occurrence of Bacillus spp. in endolithic or extreme environments is not accidental but that these environments create unique niches excluding most Bacillus spp. but to which a limited number of Bacillus spp. are specifically adapted. PMID:16597992

  16. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores

    PubMed Central

    Wood, Joseph P.; Meyer, Kathryn M.; Kelly, Thomas J.; Choi, Young W.; Rogers, James V.; Riggs, Karen B.; Willenberg, Zachary J.

    2015-01-01

    There is a lack of data for how the viability of biological agents may degrade over time in different environments. In this study, experiments were conducted to determine the persistence of Bacillus anthracis and Bacillus subtilis spores on outdoor materials with and without exposure to simulated sunlight, using ultraviolet (UV)-A/B radiation. Spores were inoculated onto glass, wood, concrete, and topsoil and recovered after periods of 2, 14, 28, and 56 days. Recovery and inactivation kinetics for the two species were assessed for each surface material and UV exposure condition. Results suggest that with exposure to UV, decay of spore viability for both Bacillus species occurs in two phases, with an initial rapid decay, followed by a slower inactivation period. The exception was with topsoil, in which there was minimal loss of spore viability in soil over 56 days, with or without UV exposure. The greatest loss in viable spore recovery occurred on glass with UV exposure, with nearly a four log10 reduction after just two days. In most cases, B. subtilis had a slower rate of decay than B. anthracis, although less B. subtilis was recovered initially. PMID:26372011

  17. Insight into the bacterial diversity of fermentation woad dye vats as revealed by PCR-DGGE and pyrosequencing.

    PubMed

    Milanović, Vesna; Osimani, Andrea; Taccari, Manuela; Garofalo, Cristiana; Butta, Alessandro; Clementi, Francesca; Aquilanti, Lucia

    2017-07-01

    The bacterial diversity in fermenting dye vats with woad (Isatis tinctoria L.) prepared and maintained in a functional state for approximately 12 months was examined using a combination of culture-dependent and -independent PCR-DGGE analyses and next-generation sequencing of 16S rRNA amplicons. An extremely complex ecosystem including taxa potentially contributing to both indigo reduction and formation, as well as indigo degradation was found. PCR-DGGE analyses revealed the presence of Paenibacillus lactis, Sporosarcina koreensis, Bacillus licheniformis, and Bacillus thermoamylovorans, while Bacillus thermolactis, Bacillus pumilus and Bacillus megaterium were also identified but with sequence identities lower than 97%. Dominant operational taxonomic units (OTUs) identified by pyrosequencing included Clostridium ultunense, Tissierella spp., Alcaligenes faecalis, Erysipelothrix spp., Enterococcus spp., Virgibacillus spp. and Virgibacillus panthothenicus, while sub-dominant OTUs included clostridia, alkaliphiles, halophiles, bacilli, moderately thermophilic bacteria, lactic acid bacteria, Enterobacteriaceae, aerobes, and even photosynthetic bacteria. Based on the current knowledge of indigo-reducing bacteria, it is considered that indigo-reducing bacteria constituted only a small fraction in the unique microcosm detected in the natural indigo dye vats.

  18. Perfil de temperatura dos funis magnetosféricos de estrelas T Tauri com aquecimento alfvênico

    NASA Astrophysics Data System (ADS)

    Vasconcelos, M. J.

    2003-08-01

    Estrelas T Tauri Clássicas são objetos jovens circundados por discos de gás e poeira e que apresentam uma intensa atividade magnética. Seu espectro mostra linhas de emissão alargadas que são razoavelmente reproduzidas nos modelos de acresção magnetosférica. No entanto, o perfil de temperatura dos funis magnéticos é desconhecido. Aquecimento magnético compressional e difusão ambipolar foram considerados para estas estruturas, porém as temperaturas obtidas não são suficientes para explicar as observações. Neste trabalho, examinamos o aquecimento gerado pelo amortecimento de ondas Alfvén através de quatro mecanismos, os amortecimentos não-linear, turbulento, viscoso-resistivo e colisional como função da freqüência da onda. Inicialmente, a temperatura é ajustada para reproduzir as observações e o grau de turbulência requerido para que o mecanismo seja viável é calculado. Os resultados mostram que este é compatível com os dados observacionais. Apresentam-se, também, resultados preliminares do cálculo auto-consistente do perfil de temperatura dos funis, levando-se em conta fontes de aquecimento Alfvênica e fontes de resfriamento.

  19. Bacillus Strains Most Closely Related to Bacillus nealsonii Are Not Effectively Circumscribed within the Taxonomic Species Definition

    PubMed Central

    Peak, K. Kealy; Duncan, Kathleen E.; Luna, Vicki A.; King, Debra S.; McCarthy, Peter J.; Cannons, Andrew C.

    2011-01-01

    Bacillus strains with >99.7% 16S rRNA gene sequence similarity were characterized with DNA:DNA hybridization, cellular fatty acid (CFA) analysis, and testing of 100 phenotypic traits. When paired with the most closely related type strain, percent DNA:DNA similarities (% S) for six Bacillus strains were all far below the recommended 70% threshold value for species circumscription with Bacillus nealsonii. An apparent genomic group of four Bacillus strain pairings with 94%–70% S was contradicted by the failure of the strains to cluster in CFA- and phenotype-based dendrograms as well as by their differentiation with 9–13 species level discriminators such as nitrate reduction, temperature range, and acid production from carbohydrates. The novel Bacillus strains were monophyletic and very closely related based on 16S rRNA gene sequence. Coherent genomic groups were not however supported by similarly organized phenotypic clusters. Therefore, the strains were not effectively circumscribed within the taxonomic species definition. PMID:22046187

  20. Measurement of Metabolic Activity in Dormant Spores of Bacillus Species

    DTIC Science & Technology

    2015-01-14

    SECURITY CLASSIFICATION OF: Spores of Bacillus megaterium and Bacillus subtilis were harvested shortly after release from sporangia, incubated under...Measurement of Metabolic Activity in Dormant Spores of Bacillus Species Report Title Spores of Bacillus megaterium and Bacillus subtilis were...ribosomal RNA when newly harvested Bacillus subtilis spores are incubated at physiological temperatures, as well as some evidence for transcription in

  1. Effect of garlic solution to Bacillus sp. removal

    NASA Astrophysics Data System (ADS)

    Zainol, N.; Rahim, S. R.

    2018-04-01

    Biofilm is a microbial derived sessile community characterized by cells that are irreversibly attached to a substratum or interface to each other, embedded in a matrix of extracellular polymeric substances that they have produced. Bacillus sp. was used as biofilm model in this study. The purpose of this study is to determine the effect of Garlic solution in term of ratio of water and Garlic solution (W/G) and ratio of Garlic solution to Bacillus sp. (GS/B) on Bacillus sp removal. Garlic solution was used to remove Bacillus sp. In this study, Garlic solution was prepared by crushing the garlic and mixed it with water. the Garlic solution was added into Bacillus sp. mixture and mixed well. The mixture then was spread on nutrient agar. The Bacillus sp. weight on agar plate was measured by using dry weight measurement method. In this study, initially Garlic solution volume and Garlic solution concentration were studied using one factor at time (OFAT). Later two-level-factorial analysis was done to determine the most contributing factor in Bacillus sp. removal. Design Expert software (Version 7) was used to construct experimental table where all the factors were randomized. Bacilus sp removal was ranging between 42.13% to 99.6%. The analysis of the results showed that at W/G of 1:1, Bacillus sp. removal increased when more Garlic solution was added to Bacillus sp. Effect of Garlic solution to Bacillus sp. will be understood which in turn may be beneficial for the industrial purpose.

  2. Bacillus odysseyi sp. nov., a round-spore-forming bacillus isolated from the Mars Odyssey spacecraft

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Satomi, Masataka; Venkateswaran, Kasthuri

    2004-01-01

    A round-spore-forming Bacillus species that produces an exosporium was isolated from the surface of the Mars Odyssey spacecraft. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and is a Gram-positive, aerobic, rod-shaped, endospore-forming eubacterium. Ultrathin sections of the spores showed the presence of an exosporium, spore coat, cortex and core. 16S rDNA sequence similarities between this strain, Bacillus fusiformis and Bacillus silvestris were approximately 96% and DNA-DNA reassociation values with these two bacilli were 23 and 17%, respectively. Spores of the novel species were resistant to desiccation, H2O2 and UV and gamma radiation. Of all strains tested, the spores of this strain were the most consistently resistant and survived all of the challenges posed, i.e. exposure to conditions of desiccation (100% survival), H2O2 (26% survival), UV radiation (10% survival at 660 J m(-2)) and gamma radiation (0.4% survival). The name proposed for this novel bacterium is Bacillus odysseyi sp. nov.; the type strain is 34hs-1T (=ATCC PTA-4993T=NRRL B-30641T=NBRC 100172T).

  3. In vitro degradation of linamarin by microorganisms isolated from cassava wastewater treatment lagoons

    PubMed Central

    Vasconcellos, S. P; Cereda, M. P.; Cagnon, J. R.; Foglio, M.A.; Rodrigues, R.A.; Manfio, G. P.; Oliveira, V. M.

    2009-01-01

    This study aimed at isolating and characterizing of microorganisms able to use linamarin as sole carbon source. Thirty one microbial strains were isolated from manipueira, a liquid effluent of cassava processing factories. Among these strains, Bacillus licheniformis (isolate 2_2) and Rhodotorulla glutinis (isolate L1) were able to degrade 71% and 95% of added linamarin, respectively, within 7 days, showing high biodegradation activity and great potential for detoxification of cassava processing wastewaters. PMID:24031436

  4. Genetic map of the Bacillus stearothermophilus NUB36 chromosome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallier, H.; Welker, N.E.

    1990-02-01

    A circular genetic map of Bacillus stearothermophilus NUB36 was constructed by transduction with bacteriophage TP-42C and protoplast fusion. Sixty-four genes were tentatively assigned a cognate Bacillus subtilis gene based on growth response to intermediates or end products of metabolism, cross-feeding, accumulation of intermediates, or their relative order in a linkage group. Although the relative position of many genes on the Bacillus subtilis genetic map appears to be similar, some differences were detected. The tentative order of the genes in the Bacillus stearothermophilus aro region is aspB-aroBAFEC-tyra-hisH-(trp), whereas it is aspB-aroE-tyrA-hisH-(trp)-aroHBF in Bacillus subtilis. The aroA, aroC, and aroG genes inmore » Bacillus subtilis are located in another region. The tentative order of genes in the trp operon of Bacillus stearothermophilus is trpFCDABE, whereas it is trpABFCDE in Bacillus subtilis.« less

  5. Disinfection of Vegetative Cells of Bacillus anthracis

    DTIC Science & Technology

    2016-03-01

    1. INTRODUCTION Disinfection of Bacillus anthracis spores in drinking water is well documented in peer-reviewed literature (Adcock et al., 2004... Disinfection kinetics of vegetative cells of Bacillus anthracis in water with free available chlorine ([FAC] 2 mg/L) and monochloramine ([MC] 2 mg/L) were...anthracis. Bacillus anthracis cells Drinking water Chlorine demand-free (CDF

  6. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    EPA Science Inventory

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  7. Bacillus oryzisoli sp. nov., isolated from rice rhizosphere.

    PubMed

    Zhang, Xiao-Xia; Gao, Ju-Sheng; Zhang, Lei; Zhang, Cai-Wen; Ma, Xiao-Tong; Zhang, Jun

    2016-09-01

    The taxonomy of strain 1DS3-10T, a Gram-staining-positive, endospore-forming bacterium isolated from rice rhizosphere, was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the novel strain was grouped with established members of the genus Bacillus and appeared to be closely related to the type strains Bacillus benzoevorans DSM 5391T (97.9 %), Bacillus circulans DSM 11T (97.7 %), Bacillus novalis JCM 21709T (97.3 %), Bacillus soli JCM 21710T (97.3 %), Bacillus oceanisediminis CGMCC 1.10115T (97.3 %) and BacillusnealsoniiFO-92T (97.1 %). The fatty acid profile of strain 1DS3-10T, which showed a predominance of iso-C15 : 0 and anteiso-C15 : 0, supported the allocation of the strain to the genus Bacillus. The predominant menaquinone was MK-7 (100 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and unknown aminolipids. Cell-wall peptidoglycan contained meso-diaminopimelic acid. DNA-DNA hybridization values between strain 1DS3-10T and the type strains of closely related species were 25-33 %, which supported that 1DS3-10T represented a novel species in the genus Bacillus. The results of some physiological and biochemical tests also allowed the phenotypic differentiation of strain 1DS3-10T from the most closely related recognized species. On the basis of the phylogenetic and phenotypic evidence, strain 1DS3-10T represents a novel species of the genus Bacillus, for which the name Bacillus oryzisoli sp. nov. is proposed. The type strain of the novel species is 1DS3-10T (=ACCC 19781T=DSM 29761T).

  8. Microbiological and chemical characteristics of tarubá, an indigenous beverage produced from solid cassava fermentation.

    PubMed

    Ramos, Cíntia L; de Sousa, Edinaira S O; Ribeiro, Jessimara; Almeida, Tayanny M M; Santos, Claudia Cristina A do A; Abegg, Maxwel A; Schwan, Rosane F

    2015-08-01

    The aim of this work was to identify and characterize the microbiota present during fermentation and in the final beverage, tarubá, by culture-dependent and -independent methods. In addition, target chemical compounds (carbohydrates, organic acids, and ethanol) were evaluated. Lactic acid bacteria (LAB) and mesophilic bacteria were the predominant microorganisms. Among them, Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc mesenteroides, and Bacillus subtilis were frequently isolated and detected by DGGE analysis. Torulaspora delbrueckii was the dominant yeast species. Yeast isolates Pichia exigua, Candida rugosa, T. delbrueckii, Candida tropicalis, Pichia kudriavzevii, Wickerhamomyces anomalus, and Candida ethanolica and bacteria isolates Lb. plantarum, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus sp., and Chitinophaga terrae showed amylolytic activity. Only isolates of P. exigua and T. delbrueckii and all species of the genus Bacillus identified in this work exhibited proteolytic activity. All microbial isolates grew at 38 °C, and only the isolates belonging to Hanseniaspora uvarum species did not grow at 42 °C. These characteristics are important for further development of starter cultures; isolates of T. delbrueckii, P. exigua, and Bacillus species identified in this work displayed all of these properties and are potential strains for use as starter culture in cassava fermented food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Non-HACEK gram-negative bacillus endocarditis.

    PubMed

    Morpeth, Susan; Murdoch, David; Cabell, Christopher H; Karchmer, Adolf W; Pappas, Paul; Levine, Donald; Nacinovich, Francisco; Tattevin, Pierre; Fernández-Hidalgo, Núria; Dickerman, Stuart; Bouza, Emilio; del Río, Ana; Lejko-Zupanc, Tatjana; de Oliveira Ramos, Auristela; Iarussi, Diana; Klein, John; Chirouze, Catherine; Bedimo, Roger; Corey, G Ralph; Fowler, Vance G

    2007-12-18

    Infective endocarditis caused by non-HACEK (species other than Haemophilus species, Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, or Kingella species) gram-negative bacilli is rare, is poorly characterized, and is commonly considered to be primarily a disease of injection drug users. To describe the clinical characteristics and outcomes of patients with non-HACEK gram-negative bacillus endocarditis in a large, international, contemporary cohort of patients. Observations from the International Collaboration on Infective Endocarditis Prospective Cohort Study (ICE-PCS) database. 61 hospitals in 28 countries. Hospitalized patients with definite endocarditis. Characteristics of non-HACEK gram-negative bacillus endocarditis cases were described and compared with those due to other pathogens. Among the 2761 case-patients with definite endocarditis enrolled in ICE-PCS, 49 (1.8%) had endocarditis (20 native valve, 29 prosthetic valve or device) due to non-HACEK, gram-negative bacilli. Escherichia coli (14 patients [29%]) and Pseudomonas aeruginosa (11 patients [22%]) were the most common pathogens. Most patients (57%) with non-HACEK gram-negative bacillus endocarditis had health care-associated infection, whereas injection drug use was rare (4%). Implanted endovascular devices were frequently associated with non-HACEK gram-negative bacillus endocarditis compared with other causes of endocarditis (29% vs. 11%; P < 0.001). The in-hospital mortality rate of patients with endocarditis due to non-HACEK gram-negative bacilli was high (24%) despite high rates of cardiac surgery (51%). Because of the small number of patients with non-HACEK gram-negative bacillus endocarditis in each treatment group and the lack of long-term follow-up, strong treatment recommendations are difficult to make. In this large, prospective, multinational cohort, more than one half of all cases of non-HACEK gram-negative bacillus endocarditis were associated with

  10. Isolation of nitrite-degrading strains from Douchi and their application to degrade high nitrite in Jiangshui.

    PubMed

    Guo, Xing; Liu, Bianfang; Gao, Lina; Zhou, Yuan; Shan, Yuanyuan; Lü, Xin

    2018-06-01

    Excessive nitrite in food is potentially harmful to human health because of its carcinogenic effects caused by nitroso-dervivatives. Douchi, which widely distributed throughout the country, is a traditional solid fermented soybean food with low nitrite content. In this study, bacterias which can degrade nitrite were isolated from Douchi and identified according to 16S rDNA sequence. Acinetobacter guillouiae, Acinetobacter bereziniae, Bacillus subtilis, Bacillus tequilensis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus aryabhattai and Bacillus methylotrophicus were selected. It was shown that all strains have nitrite degradation capability, in which 99.41 % nitrite can be degraded by Bacillus subtilis NDS1. The enzyme activities of these strains were determined at 24 h and 48 h, which corresponded to their nitrite degradation rates. The strains were firstly tried to inoculate in Jiangshui, which is a kind of traditional fermented vegetable in northwest China and often has high nitrite content. It was found that Bacillus subtilis NDS1, Bacillus tequilensis NDS3, Acinetobacter bereziniae NDS4, Bacillus subtilis NDS6, Bacillus subtilis NDS12 can degrade nitrite in Jiangshui more quickly, among which Acinetobacter bereziniae NDS4 degraded almost all nitrite in 48 h while it took 180 h for control. These results indicated that the selected strains have potential to become nitrite degradition agent in food. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Biodiversity of aerobic endospore-forming bacterial species occurring in Yanyanku and Ikpiru, fermented seeds of Hibiscus sabdariffa used to produce food condiments in Benin.

    PubMed

    Agbobatinkpo, Pélagie B; Thorsen, Line; Nielsen, Dennis S; Azokpota, Paulin; Akissoe, Noèl; Hounhouigan, Joseph D; Jakobsen, Mogens

    2013-05-15

    Yanyanku and Ikpiru made by the fermentation of Malcavene bean (Hibiscus sabdariffa) are used as functional additives for Parkia biglobosa seed fermentations in Benin. A total of 355 aerobic endospore-forming bacteria (AEFB) isolated from Yanyanku and Ikpiru produced in northern and southern Benin were identified using phenotypic and genotypic methods, including GTG5-PCR, M13-PCR, 16S rRNA, gyrA and gyrB gene sequencing. Generally, the same 5-6 species of the genus Bacillus predominated: Bacillus subtilis (17-41% of isolates), Bacillus cereus (8-39%), Bacillus amyloliquefaciens (9-22%), Bacillus licheniformis (3-26%), Bacillus safensis (8-19%) and Bacillus altitudinis (0-19%). Bacillus aryabhattai, Bacillus flexus, and Bacillus circulans (0-2%), and species of the genera Lysinibacillus (0-14%), Paenibacillus (0-13%), Brevibacillus (0-4%), and Aneurinibacillus (0-3%) occurred sporadically. The diarrheal toxin encoding genes cytK-1, cytK-2, hblA, hblC, and hblD were present in 0%, 91% 15%, 34% and 35% of B. cereus isolates, respectively. 9% of them harbored the emetic toxin genetic determinant, cesB. This study is the first to identify the AEFB of Yanyanku and Ikpiru to species level and perform a safety evaluation based on toxin gene detections. We further suggest, that the gyrA gene can be used for differentiating the closely related species Bacillus pumilus and B. safensis. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Bacillus Coagulans

    MedlinePlus

    ... It is used similarly to lactobacillus and other probiotics as "beneficial" bacteria. People take Bacillus coagulans for ... intestine. Early evidence shows that using a specific probiotic product (Lactol, Bioplus Life Sciences Pvt. Ltd., India) ...

  13. Effect of mixed-Bacillus spp isolated from pustulose ark Anadara tuberculosa on growth, survival, viral prevalence and immune-related gene expression in shrimp Litopenaeus vannamei.

    PubMed

    Sánchez-Ortiz, Ana Claudia; Angulo, Carlos; Luna-González, Antonio; Álvarez-Ruiz, Píndaro; Mazón-Suástegui, José Manuel; Campa-Córdova, Ángel Isidro

    2016-12-01

    The widespread overuse of antibiotics in aquaculture has led to the emergence of antibiotic-resistance shrimp pathogens, the negative impact on shrimp gut microbiota, and the presence of antimicrobial residues in aquaculture products, with negative consequences on human health. Alternatively, probiotics have positive effects on immunological responses and productive performance of aquatic animals. In this study, three probiotic bacteria, (Bacillus licheniformis MAt32, B. subtilis MAt43 and B. subtilis subsp. subtilis GAtB1), isolated from the Anadara tuberculosa were included in diets for juvenile shrimp, Litopenaeus vannamei, to evaluate their effects on growth, survival, disease prevalence, and immune-related gene expression. Shrimp naturally infected with WSSV and IHHNV were fed with the basal diet (control, T1) and diets supplemented with four levels of bacilli probiotic mix (1:1:1) at final concentration of (T2) 1 × 10 6 , (T3) 2 × 10 6 , (T4) 4 × 10 6 , and (T5) 6 × 10 6  CFU g -1 of feed. The specific growth rate of shrimp was significantly higher in T2 than in T1 (control) treatment, and the final growth as well as the survival were similar among treated groups. The prevalence of WSSV and IHHNV infected shrimp was reduced in T2 and T4 treatments, respectively, compared with control. The mRNA expression of proPO gene was higher in treatment T4 than control. The LvToll1 gene was significantly up-regulated in treatments T4 and T5 compared to control. The SOD gene was up-regulated in treatment T5 compared to control. In contrast, the mRNA expression of the Hsp70 gene was down-regulated in treatments T4 and T5 respect to control, and the TGase gene remained unaffected by the level of bacillus probiotic mix. As conclusion, the bacilli probiotic mix (Bacillus spp.) enhanced immune-related gene expression in WSSV and IHHNV naturally infected shrimp. This is the first report of probiotic potential of bacteria isolated from A. tuberculosa on the

  14. Microbiological efficacy of superheated steam. I. Communication: results with spores of Bacillus subtilis and Bacillus stearothermophilus and with spore earth.

    PubMed

    Spicher, G; Peters, J; Borchers, U

    1999-02-01

    For the spores of Bacillus subtilis and Bacillus stearothermophilus as well as for spore earth (acc. DIN 58,946 Part 4 of August 1982), the dependence of resistance on the superheating of the steam used to kill germs was determined. A material (glass fibre fleece) was used as the germ carrier which does not superheat on contact with steam. The temperature of the saturated steam was 100 degrees C (B. subtilis) and 120 degrees C (B. stearothermophilus and spore earth). The yardstick for the resistance of the spores or bioindicators was the exposure period of the saturated or superheated steam at which 50% of the treated test objects no longer showed any viable test germs. The spores of Bacillus subtilis were far more sensitive to superheating of steam and reacted far more than the spores of Bacillus stearothermophilus and the germs in the spore earth. When superheating by 4 Kelvin the spores of Bacillus subtilis were approximately 2.5 times more resistant than they were to saturated steam. The resistance of Bacillus stearothermophilus and spore earth was only slightly higher up to superheating by 10 Kelvin. The spores of Bacillus subtilis had the highest resistance during superheating by 29 Kelvin; they were 119 times more resistant than they were to saturated steam. The resistance maximum of the spores of Bacillus stearothermophilus was at an superheating by around 22 Kelvin. However, the spores were only 4.1 times more resistant than they were to saturated steam. When using steam to kill germs, we must expect superheated steam. This raises the question whether the spores of Bacillus stearothermophilus, with their weaker reaction to the superheating of steam, are suitable as test germs for sterilisation with steam in all cases.

  15. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    DTIC Science & Technology

    2004-12-01

    13061 Neisseria lactamica .............................................................. 23970 Bacillus coagulans ...NEG Bacillus coagulane 7050 NEG NEG Bacillus cereus 13472 NEG NEG Bacillus licheniforms 12759 NEG NEG Bacillus cereus 13824 NEG NEG Bacillus ...Assay for a Unique Chromosomal Sequence of Bacillus anthracis Elizabeth Bode,1 William Hurtle,2† and David Norwood1* United States Army Medical

  16. Bacillus beijingensis sp. nov. and Bacillus ginsengi sp. nov., isolated from ginseng root.

    PubMed

    Qiu, Fubin; Zhang, Xiaoxia; Liu, Lin; Sun, Lei; Schumann, Peter; Song, Wei

    2009-04-01

    Four alkaligenous, moderately halotolerant strains, designated ge09, ge10(T), ge14(T) and ge15, were isolated from the internal tissue of ginseng root and their taxonomic positions were investigated by using a polyphasic approach. Cells of the four strains were Gram-positive-staining, non-motile, short rods. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains ge09 and ge10(T) formed one cluster and strains ge14(T) and ge15 formed another separate cluster within the genus Bacillus. 16S rRNA gene sequence similarities with type strains of other Bacillus species were less than 97 %. Levels of DNA-DNA relatedness among the four strains showed that strains ge09 and ge10(T) and strains ge14(T) and ge15 belonged to two separate species; the mean level of DNA-DNA relatedness between ge10(T) and ge14(T) was only 28.7 %. Their phenotypic and physiological properties supported the view that the two strains represent two different novel species of the genus Bacillus. The DNA G+C contents of strains ge10(T) and ge14(T) were 49.9 and 49.6 mol%, respectively. Strains ge10(T) and ge14(T) showed the peptidoglycan type A4alpha l-Lys-d-Glu. The lipids present in strains ge10(T) and ge14(T) were diphosphatidylglycerol, phosphatidylglycerol, a minor amount of phosphatidylcholine and two unknown phospholipids. Their predominant respiratory quinone was MK-7. The fatty acid profiles of the four novel strains contained large quantities of branched and saturated fatty acids. The predominant cellular fatty acids were iso-C(15 : 0) (42.5 %), anteiso-C(15 : 0) (22.2 %), anteiso-C(17 : 0) (7.3 %) and C(16 : 1)omega7c alcohol (5.7 %) in ge10(T) and iso-C(15 : 0) (50.7 %) and anteiso-C(15 : 0) (20.1 %) in ge14(T). On the basis of their phenotypic properties and phylogenetic distinctiveness, two novel species of the genus Bacillus are proposed, Bacillus beijingensis sp. nov. (type strain ge10(T) =DSM 19037(T) =CGMCC 1.6762(T)) and Bacillus ginsengi sp. nov. (type strain ge14

  17. Capsule Depolymerase Overexpression Reduces Bacillus anthracis Virulence

    DTIC Science & Technology

    2010-01-01

    protein that autocatalytically forms a heterodimer consisting of 35 kDa and 15 kDa subunits. CapD shares 32 % identity with the Bacillus subtilis GGT and 35...Immun 49, 291–297. Kimura, K., Tran, L. S., Uchida, I. & Itoh, Y. (2004). Characterization of Bacillus subtilis gamma-glutamyltransferase and its...Capsule depolymerase overexpression reduces Bacillus anthracis virulence Angelo Scorpio,3 Donald J. Chabot, William A. Day,4 Timothy A. Hoover and

  18. Drought resistant of bacteria producing exopolysaccharide and IAA in rhizosphere of soybean plant (Glycine max) in Wonogiri Regency Central Java Indonesia

    NASA Astrophysics Data System (ADS)

    Susilowati, A.; Puspita, A. A.; Yunus, A.

    2018-03-01

    Drought is one of the main problem which limitating the agriculture productivity in most arid region such as in district Eromoko, Wuryantro and SelogiriWonogiri Central Java Indonesia. Bacteria are able to survive under stress condition by producte exopolysaccharide. This study aims to determine the presence of exopolysaccharide-producing drought-resistant bacteria on rhizosphere of soybean (Glycine max) and to determine the species of bacteria based on 16S rRNA gene. Isolation of bacteria carried out by the spread plate method. The decreased of osmotic potential for screening drought tolerant bacteria according to the previous equation [12]. Selection of exopolysaccharide-producing bacteria on solid media ATCC 14 followed by staining the capsule. 16S rRNA gene amplification performed by PCR using primers of 63f and 1387r. The identificationof the bacteria is determined by comparing the results of DNA sequence similarity with bacteria databank in NCBI database. The results showed 11 isolates were exopolysaccharide-producing drought tolerant bacteria. The identity of the bacteria which found are Bacillus sp, Bacillus licheniformis, Bacillus megaterium and Bacillus pumilus.

  19. Antibacterial protection by enterocin AS-48 in sport and energy drinks with less acidic pH values.

    PubMed

    Viedma, Pilar Martinez; Abriouel, Hikmate; Ben Omar, Nabil; López, Rosario Lucas; Valdivia, Eva; Gálvez, Antonio

    2009-04-01

    The low pH and acid content found in sports and energy drinks are a matter of concern in dental health. Raising the pH may solve this problem, but at the same time increase the risks of spoilage or presence of pathogenic bacteria. In the present study, commercial energy drinks were adjusted to pH 5.0 and challenged with Listeria monocytogenes (drinks A to F), Staphylococcus aureus, Bacillus cereus, and Bacillus licheniformis (drink A) during storage at 37 degrees C. L. monocytogenes was able to grow in drink A and survived in drinks D and F for at least 2 days. Addition of enterocin AS-48 (1 microg/ml final concentration) rapidly inactivated L. monocytogenes in all drinks tested. S. aureus and B. cereus also survived quite well in drink A, and were completely inactivated by 12.5 microg/ml enterocin AS-48 after 2 days of storage or by 25 microg/ml bacteriocin after 1 day. B. licheniformis was able to multiply in drink A, but it was completely inactivated by 5 microg/ml enterocin AS-48 after 2 days of storage or by 12.5 microg/ml bacteriocin after 1 day. Results from the present study suggest that enterocin AS-48 could be used as a natural preservative against these target bacteria in less acidic sport and energy drinks.

  20. Restricting detergent protease action to surface of protein fibres by chemical modification.

    PubMed

    Schroeder, M; Lenting, H B M; Kandelbauer, A; Silva, C J S M; Cavaco-Paulo, A; Gübitz, G M

    2006-10-01

    Due to their excellent properties, such as thermostability, activity over a broad range of pH and efficient stain removal, proteases from Bacillus sp. are commonly used in the textile industry including industrial processes and laundry and represent one of the most important groups of enzymes. However, due to the action of proteases, severe damage on natural protein fibres such as silk and wool result after washing with detergents containing proteases. To include the benefits of proteases in a wool fibre friendly detergent formulation, the soluble polymer polyethylene glycol (PEG) was covalently attached to a protease from Bacillus licheniformis. In contrast to activation of PEG with cyanuric chloride (50%) activation with 1,1'-carbonyldiimidazole (CDI) lead to activity recovery above 90%. With these modified enzymes, hydrolytic attack on wool fibres could be successfully prevented up to 95% compared to the native enzymes. Colour difference (DeltaE) measured in the three dimensional colour space showed good stain removal properties for the modified enzymes. Furthermore, half-life of the modified enzymes in buffers and commercial detergents solutions was nearly twice as high as those of the non-modified enzymes with values of up to 63 min. Out of the different modified proteases especially the B. licheniformis protease with the 2.0-kDa polymer attached both retained stain removal properties and did not hydrolyse/damage wool fibres.

  1. Isolation and identification of bacteria to improve the strength of concrete.

    PubMed

    Krishnapriya, S; Venkatesh Babu, D L; G, Prince Arulraj

    2015-05-01

    The objective of this research work is to isolate and identify calcite precipitating bacteria and to check the suitability of these bacteria for use in concrete to improve its strength. Bacteria to be incorporated in concrete should be alkali resistant to endure the high pH of concrete and endospore forming to withstand the mechanical stresses induced in concrete during mixing. They must exhibit high urease activity to precipitate calcium carbonate in the form of calcite. Bacterial strains were isolated from alkaline soil samples of a cement factory and were tested for urease activity, potential to form endospores and precipitation of calcium carbonate. Based on these results, three isolates were selected and identified by 16S rRNA gene sequencing. They were identified as Bacillus megaterium BSKAU, Bacillus licheniformis BSKNAU and Bacillus flexus BSKNAU. The results were compared with B. megaterium MTCC 1684 obtained from Microbial Type Culture Collection and Gene Bank, Chandigarh, India. Experimental work was carried out to assess the influence of bacteria on the compressive strength and tests revealed that bacterial concrete specimens showed enhancement in compressive strength. The efficiency of bacteria toward crack healing was also tested. Substantial increase in strength and complete healing of cracks was observed in concrete specimens cast with B. megaterium BSKAU, B. licheniformis BSKNAU and B. megaterium MTCC 1684. This indicates the suitability of these bacterial strains for use in concrete. The enhancement of strength and healing of cracks can be attributed to the filling of cracks in concrete by calcite which was visualized by scanning electron microscope. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Evaluation of flocculating performance of a thermostable bioflocculant produced by marine Bacillus sp.

    PubMed

    Okaiyeto, Kunle; Nwodo, Uchechukwu U; Mabinya, Leonard V; Okoli, Arinze S; Okoh, Anthony I

    2016-01-01

    This study assessed the bioflocculant (named MBF-W7) production potential of a bacterial isolate obtained from Algoa Bay, Eastern Cape Province of South Africa. The 16S ribosomal deoxyribonucleic acids gene sequence analysis showed 98% sequence similarity to Bacillus licheniformis strain W7. Optimum culture conditions for MBF-W7 production include 5% (v/v) inoculum size, maltose and NH4NO3 as carbon and nitrogen sources of choice, medium pH of 6 as the initial pH of the growth medium. Under these optimal conditions, maximum flocculating activity of 94.9% was attained after 72 h of cultivation. Chemical composition analyses showed that the purified MBF-W7 was a glycoprotein which was predominantly composed of polysaccharides 73.7% (w/w) and protein 6.2% (w/w). Fourier transform infrared spectroscopy revealed the presence of hydroxyl, carboxyl and amino groups as the main functional groups identified in the bioflocculant molecules. Thermogravimetric analyses showed the thermal decomposition profile of MBF-W7. Scanning electron microscopy imaging revealed that bridging played an important role in flocculation. MBF-W7 exhibited excellent flocculating activity for kaolin clay suspension at 0.2 mg/ml over a wide pH range of 3-11; with the maximal flocculation rate of 85.8% observed at pH 3 in the presence of Mn(2+). It maintained and retained high flocculating activity of over 70% after heating at 100°C for 60 min. MBF-W7 showed good turbidity removal potential (86.9%) and chemical oxygen demand reduction efficiency (75.3%) in Tyume River. The high flocculating rate of MBF-W7 makes it an attractive candidate to replace chemical flocculants utilized in water treatment.

  3. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model

    PubMed Central

    Haldar, Lopamudra; Gandhi, D. N.

    2016-01-01

    Aim: To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. Materials and Methods: An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. Results: The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01) in fecal coliform counts and increase (p<0.05) in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. Conclusions: This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats. PMID:27536040

  4. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model.

    PubMed

    Haldar, Lopamudra; Gandhi, D N

    2016-07-01

    To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01) in fecal coliform counts and increase (p<0.05) in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats.

  5. [Screening and antibacterial function of Bacillus amyloliquefaciens X030].

    PubMed

    He, Hao; Zhu, Yingling; Chi, Liqing; Zhao, Zizhao; Wang, Ting; Zuo, Mingxing; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Ding, Xuezhi

    2015-09-04

    We isolated 339 bacillus strains from 72 soil samples all over the country, then purified their antimicrobial compounds and studied the antibacterial activity, to enrich bacillus resources and explore their second metabolites. A bacillus strain with strong antibacterial activity was selected by dilution plate and water bath heating from a soil sample from a peanut plantation in Henan Province; this strain was identified according to morphological observation, physiological and biochemical characteristics, and consequences of 16S rRNA homologous analysis. Antibacterial compound from the identified strain, Bacillus amyloliquefaciens X030, was separated and purified by acetone precipitation, Sephadex chromatography, C18 reverse phase column chromatography. Its molecular weight was analyzed by LC-MS/MS. The antibacterial activity was characterized by disc diffusion and plate two-way cultivation. Bacillus amyloliquefaciens was isolated that not only has antibacterial activity against Staphylococcus aureus, Candida albican and Saccharomycetes; but also against Pyriculariaoryzae, Chili pointed cell anthrax, Gloeosporium eriobotryae speg and Phytophthora parasitica. The compound was confirmed as polypeptide. Bacillus amyloliquefaciens X030 can produce a polypeptide that inhibits pathogenic bacteria and plant pathogenic fungi.

  6. Potential of Bacillus spp produces siderophores insuppressing thewilt disease of banana plants

    NASA Astrophysics Data System (ADS)

    Kesaulya, H.; Hasinu, J. V.; Tuhumury, G. NC

    2018-01-01

    In nature, different types of siderophore such as hydroxymate, catecholets and carboxylate, are produced by different bacteria. Bacillus spp were isolated from potato rhizospheric soil can produce siderophore of both catecholets and salicylate type with different concentrations. Various strains of Bacillus spp were tested for pathogen inhibition capability in a dual culture manner. The test results showed the ability of inhibition of pathogen isolated from banana wilt disease. From the result tested were found Bacillus niabensis Strain PT-32-1, Bacillus subtilis Strain SWI16b, Bacillus subtilis Strain HPC21, Bacillus mojavensis Strain JCEN3, and Bacillus subtilis Strain HPC24 showed different capabilities in suppressing pathogen.

  7. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    EPA Science Inventory

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  8. Laser-induced speckle scatter patterns in Bacillus colonies

    PubMed Central

    Kim, Huisung; Singh, Atul K.; Bhunia, Arun K.; Bae, Euiwon

    2014-01-01

    Label-free bacterial colony phenotyping technology called BARDOT (Bacterial Rapid Detection using Optical scattering Technology) provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS) patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 to 900 μm, average speckles area decreased two-fold and the number of small speckles increased seven-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony. PMID:25352840

  9. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives

    PubMed Central

    Elshaghabee, Fouad M. F.; Rokana, Namita; Gulhane, Rohini D.; Sharma, Chetan; Panwar, Harsh

    2017-01-01

    Spore-forming bacilli are being explored for the production and preservation of food for many centuries. The inherent ability of production of large number of secretory proteins, enzymes, antimicrobial compounds, vitamins, and carotenoids specifies the importance of bacilli in food chain. Additionally, Bacillus spp. are gaining interest in human health related functional food research coupled with their enhanced tolerance and survivability under hostile environment of gastrointestinal tract. Besides, bacilli are more stable during processing and storage of food and pharmaceutical preparations, making them more suitable candidate for health promoting formulations. Further, Bacillus strains also possess biotherapeutic potential which is connected with their ability to interact with the internal milieu of the host by producing variety of antimicrobial peptides and small extracellular effector molecules. Nonetheless, with proposed scientific evidences, commercial probiotic supplements, and functional foods comprising of Bacillus spp. had not gained much credential in general population, since the debate over probiotic vs pathogen tag of Bacillus in the research and production terrains is confusing consumers. Hence, it’s important to clearly understand the phenotypic and genotypic characteristics of selective beneficial Bacillus spp. and their substantiation with those having GRAS status, to reach a consensus over the same. This review highlights the probiotic candidature of spore forming Bacillus spp. and presents an overview of the proposed health benefits, including application in food and pharmaceutical industry. Moreover, the growing need to evaluate the safety of individual Bacillus strains as well as species on a case by case basis and necessity of more profound analysis for the selection and identification of Bacillus probiotic candidates are also taken into consideration. PMID:28848511

  10. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique.

    PubMed

    Dhanarajan, Gunaseelan; Rangarajan, Vivek; Bandi, Chandrakanth; Dixit, Abhivyakti; Das, Susmita; Ale, Kranthikiran; Sen, Ramkrishna

    2017-08-20

    A lipopeptide biosurfactant produced by marine Bacillus megaterium and a biopolymer produced by thermophilic Bacillus licheniformis were tested for their application potential in the enhanced oil recovery. The crude biosurfactant obtained after acid precipitation effectively reduced the surface tension of deionized water from 70.5 to 28.25mN/m and the interfacial tension between lube oil and water from 18.6 to 1.5mN/m at a concentration of 250mgL -1 . The biosurfactant exhibited a maximum emulsification activity (E 24 ) of 81.66% against lube oil. The lipopeptide micelles were stabilized by addition of Ca 2+ ions to the biosurfactant solution. The oil recovery efficiency of Ca 2+ conditioned lipopeptide solution from a sand-packed column was optimized by using artificial neural network (ANN) modelling coupled with genetic algorithm (GA) optimization. Three important parameters namely lipopeptide concentration, Ca 2+ concentration and solution pH were considered for optimization studies. In order to further improve the recovery efficiency, a water soluble biopolymer produced by Bacillus licheniformis was used as a flooding agent after biosurfactant incubation. Upon ANN-GA optimization, 45% tertiary oil recovery was achieved, when biopolymer at a concentration of 3gL -1 was used as a flooding agent. Oil recovery was only 29% at optimal conditions predicted by ANN-GA, when only water was used as flooding solution. The important characteristics of biopolymers such as its viscosity, pore plugging capabilities and bio-cementing ability have also been tested. Thus, as a result of biosurfactant incubation and biopolymer flooding under the optimal process conditions, a maximum oil recovery of 45% was achieved. Therefore, this study is novel, timely and interesting for it showed the combined influence of biosurfactant and biopolymer on solubilisation and mobilization of oil from the soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP

    NASA Astrophysics Data System (ADS)

    Ni'matuzahroh, Trikurniadewi, N.; Pramadita, A. R. A.; Pratiwi, I. A.; Salamun, Fatimah, Sumarsih, Sri

    2017-06-01

    The purposes of this research were to know growth response, degradation ability, and uptake mechanism of naphthalene and phenanthrene by Bacillus subtilis 3KP. Bacillus subtilis 3KP was grown on Mineral Synthetic (MS) medium with addition of 1% yeast extract and naphthalene and phenanthrene respectively 200 ppm in different cultures. Bacillus subtilis 3KP growth response was monitored by Total Plate Count (TPC) method, the degradation ability was monitored by UV-Vis spectrophotometer, and the uptake mechanism of hydrocarbon was monitored by emulsification activity, decrease of surface tension, and activity of Bacterial Adherence to Hydrocarbon (BATH). Bacillus subtilis 3KP was able to grow and show biphasic growth pattern on both of substrates. Naphthalene and phenanthrene were used as a carbon source for Bacillus subtilis 3KP growth that indicated by the reduction of substrate concomitant with the growth. At room temperature conditions (± 30°C) and 90 rpm of agitation for 7 days, Bacillus subtilis 3KP could degrade naphthalene in the amount of 70.5% and phenanthrene in the amount of 24.8%. Based on the analysis of UV-Vis spectrophotometer, three metabolites, 1-hydroxy-2-naphthoic acid, salicylic acid, and pyrocatechol were found in both cultures. The metabolite identification became basis of propose degradation pathway of naphthalene and phenanthrene by Bacillus subtilis 3KP. The results of hydrocarbon uptake mechanism test show that Bacillus subtilis 3KP used all of the mechanism to degrade naphthalene and phenanthrene.

  12. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.

    PubMed

    Kamika, Ilunga; Momba, Maggy N B

    2013-02-06

    Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Significant differences (p < 0.05) observed between dead and living microbial

  13. Assessment of the microbiological safety of salad vegetables and sauces from kebab take-away restaurants in the United Kingdom.

    PubMed

    Meldrum, R J; Little, C L; Sagoo, S; Mithani, V; McLauchlin, J; de Pinna, E

    2009-09-01

    The purpose of this study was to establish the microbiological safety of salad vegetables and sauces served in kebab take-away restaurants. Comparison with published microbiological guidelines revealed that 4.7% of 1213 salad vegetable samples were of unsatisfactory microbiological quality due to Escherichia coli and/or Staphylococcus aureus levels at > or =10(2) cfu g(-1). Another 0.3% of salad samples were of unacceptable quality due to S. aureus at > or =10(4) cfu g(-1) (2 samples) or the presence of Salmonella Kentucky (1 sample). Cucumber was the most contaminated salad vegetable with regards to unsatisfactory levels of E. coli (6.0%) or S. aureus (4.5%). Five percent of 1208 sauce samples were of unsatisfactory microbiological quality due to E. coli, S. aureus at > or =10(2) cfu g(-1) and/or Bacillus cereus and other Bacillus spp. at > or =10(4) cfu g(-1). A further 0.6% of sauce samples were of unacceptable quality due to Bacillus spp. (Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis) at > or =10(5) cfu g(-1) or the presence of Salmonella Agbeni (1 sample). More samples of chili sauce (8.7%) were of unsatisfactory or unacceptable microbiological quality than any other sauce types. The results emphasize the need for good hygiene practices in kebab take-away restaurants handling these types of ready-to-eat products.

  14. Identification of thermophilic bacteria in solid-waste composting.

    PubMed Central

    Strom, P F

    1985-01-01

    The thermophilic microbiota of solid-waste composting, with major emphasis on Bacillus spp., was examined with Trypticase soy broth (BBL Microbiology Systems) with 2% agar as the initial plating medium. Five 4.5-liter laboratory units at 49 to 69 degrees C were fed a mixture of dried table scraps and shredded newspaper. The composting plants treating refuse at Altoona, Pa., and refuse-sludge at Leicester, England, were also sampled. Of 652 randomly picked colonies, 87% were identified as Bacillus spp. Other isolates included two genera of unidentified nonsporeforming bacteria (one of gram-negative small rods and the other of gram-variable coccobacilli), the actinomycetes Streptomyces spp. and Thermoactinomyces sp., and the fungus Aspergillus fumigatus. Among the Bacillus isolates, the following, in order of decreasing frequency, were observed: B. circulans complex, B. stearothermophilus, B. coagulans types A and B, B. licheniformis, B. brevis, B. sphaericus, Bacillus spp. types i and ii, and B. subtilis. About 15% of the Bacillus isolates could be assigned to species only by allowing for greater variability in one or more characteristics than has been reported by other authors for their strains. In particular, growth at higher temperatures than previously reported was found for strains of several species. A small number of Bacillus isolates (less than 2%) could not be assigned to any recognized species. PMID:4083886

  15. Starter Culture Selection for Making Chinese Sesame-Flavored Liquor Based on Microbial Metabolic Activity in Mixed-Culture Fermentation

    PubMed Central

    Wu, Qun; Ling, Jie

    2014-01-01

    Selection of a starter culture with excellent viability and metabolic activity is important for inoculated fermentation of traditional food. To obtain a suitable starter culture for making Chinese sesame-flavored liquor, the yeast and bacterium community structures were investigated during spontaneous and solid-state fermentations of this type of liquor. Five dominant species in spontaneous fermentation were identified: Saccharomyces cerevisiae, Pichia membranaefaciens, Issatchenkia orientalis, Bacillus licheniformis, and Bacillus amyloliquefaciens. The metabolic activity of each species in mixed and inoculated fermentations of liquor was investigated in 14 different cocultures that used different combinations of these species. The relationships between the microbial species and volatile metabolites were analyzed by partial least-squares (PLS) regression analysis. We found that S. cerevisiae was positively correlated to nonanal, and B. licheniformis was positively associated with 2,3-butanediol, isobutyric acid, guaiacol, and 4-vinyl guaiacol, while I. orientalis was positively correlated to butyric acid, isovaleric acid, hexanoic acid, and 2,3-butanediol. These three species are excellent flavor producers for Chinese liquor. Although P. membranaefaciens and B. amyloliquefaciens were not efficient flavor producers, the addition of them alleviated competition among the other three species and altered their growth rates and flavor production. As a result, the coculture of all five dominant species produced the largest amount of flavor compounds. The result indicates that flavor producers and microbial interaction regulators are important for inoculated fermentation of Chinese sesame-flavored liquor. PMID:24814798

  16. In Vitro Assessment of Marine Bacillus for Use as Livestock Probiotics

    PubMed Central

    Prieto, Maria Luz; O’Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; Gutierrez, Montserrat; Lane, Jonathan A.; Hickey, Rita M.; Lawlor, Peadar G.; Gardiner, Gillian E.

    2014-01-01

    Six antimicrobial-producing seaweed-derived Bacillus strains were evaluated in vitro as animal probiotics, in comparison to two Bacillus from an EU-authorized animal probiotic product. Antimicrobial activity was demonstrated on solid media against porcine Salmonella and E. coli. The marine isolates were most active against the latter, had better activity than the commercial probiotics and Bacillus pumilus WIT 588 also reduced E. coli counts in broth. All of the marine Bacillus tolerated physiological concentrations of bile, with some as tolerant as one of the probiotics. Spore counts for all isolates remained almost constant during incubation in simulated gastric and ileum juices. All of the marine Bacillus grew anaerobically and the spores of all except one isolate germinated under anaerobic conditions. All were sensitive to a panel of antibiotics and none harbored Bacillus enterotoxin genes but all, except B. pumilus WIT 588, showed some degree of β-hemolysis. However, trypan blue dye exclusion and xCELLigence assays demonstrated a lack of toxicity in comparison to two pathogens; in fact, the commercial probiotics appeared more cytotoxic than the majority of the marine Bacillus. Overall, some of the marine-derived Bacillus, in particular B. pumilus WIT 588, demonstrate potential for use as livestock probiotics. PMID:24796302

  17. A report on extensive lateral genetic reciprocation between arsenic resistant Bacillus subtilis and Bacillus pumilus strains analyzed using RAPD-PCR.

    PubMed

    Khowal, Sapna; Siddiqui, Md Zulquarnain; Ali, Shadab; Khan, Mohd Taha; Khan, Mather Ali; Naqvi, Samar Husain; Wajid, Saima

    2017-02-01

    The study involves isolation of arsenic resistant bacteria from soil samples. The characterization of bacteria isolates was based on 16S rRNA gene sequences. The phylogenetic consanguinity among isolates was studied employing rpoB and gltX gene sequence. RAPD-PCR technique was used to analyze genetic similarity between arsenic resistant isolates. In accordance with the results Bacillus subtilis and Bacillus pumilus strains may exhibit extensive horizontal gene transfer. Arsenic resistant potency in Bacillus sonorensis and high arsenite tolerance in Bacillus pumilus strains was identified. The RAPD-PCR primer OPO-02 amplified a 0.5kb DNA band specific to B. pumilus 3ZZZ strain and 0.75kb DNA band specific to B. subtilis 3PP. These unique DNA bands may have potential use as SCAR (Sequenced Characterized Amplified Region) molecular markers for identification of arsenic resistant B. pumilus and B. subtilis strains. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Identification of Bacillus Strains for Biological Control of Catfish Pathogens

    PubMed Central

    Ran, Chao; Carrias, Abel; Williams, Malachi A.; Capps, Nancy; Dan, Bui C. T.; Newton, Joseph C.; Kloepper, Joseph W.; Ooi, Ei L.; Browdy, Craig L.; Terhune, Jeffery S.; Liles, Mark R.

    2012-01-01

    Bacillus strains isolated from soil or channel catfish intestine were screened for their antagonism against Edwardsiella ictaluri and Aeromonas hydrophila, the causative agents of enteric septicemia of catfish (ESC) and motile aeromonad septicaemia (MAS), respectively. Twenty one strains were selected and their antagonistic activity against other aquatic pathogens was also tested. Each of the top 21 strains expressed antagonistic activity against multiple aquatic bacterial pathogens including Edwardsiella tarda, Streptococcus iniae, Yersinia ruckeri, Flavobacterium columnare, and/or the oomycete Saprolegnia ferax. Survival of the 21 Bacillus strains in the intestine of catfish was determined as Bacillus CFU/g of intestinal tissue of catfish after feeding Bacillus spore-supplemented feed for seven days followed by normal feed for three days. Five Bacillus strains that showed good antimicrobial activity and intestinal survival were incorporated into feed in spore form at a dose of 8×107 CFU/g and fed to channel catfish for 14 days before they were challenged by E. ictaluri in replicate. Two Bacillus subtilis strains conferred significant benefit in reducing catfish mortality (P<0.05). A similar challenge experiment conducted in Vietnam with four of the five Bacillus strains also showed protective effects against E. ictaluri in striped catfish. Safety of the four strains exhibiting the strongest biological control in vivo was also investigated in terms of whether the strains contain plasmids or express resistance to clinically important antibiotics. The Bacillus strains identified from this study have good potential to mediate disease control as probiotic feed additives for catfish aquaculture. PMID:23029244

  19. Gangrenous mastitis caused by Bacillus species in six goats.

    PubMed

    Mavangira, Vengai; Angelos, John A; Samitz, Eileen M; Rowe, Joan D; Byrne, Barbara A

    2013-03-15

    6 lactating dairy goats were examined because of acute mastitis. Goats were considered to have endotoxemia on the basis of physical examination and clinicopathologic findings. The affected udder halves had gangrenous discolored distal portions with sharp demarcations from grossly normal tissue proximally. Udder secretions from the affected sides were serosanguineous in all cases. A Bacillus sp was isolated in pure cultures in all cases. In 1 case, the Bacillus sp was identified as Bacillus cereus. Goats were treated for mastitis and endotoxemia with polyionic IV fluid therapy, systemic and intramammary antimicrobial administration, anti-inflammatory drug administration, and other supportive treatment. All goats survived to discharge. All except 1 goat had follow-up information available. The affected udder halves sloughed in 1 to 2 months following discharge. In subsequent lactations after the mastitis episodes, milk production in 2 of 5 goats was above the mean, as determined on the basis of Dairy Herd Improvement records, and 3 of 5 goats were voluntarily withdrawn from lactation. All 5 goats had successful kiddings after the Bacillus mastitis episode. Bacillus sp should be considered as a causative agent in goats with gangrenous mastitis, especially when the Bacillus sp is isolated in a pure culture. Antimicrobial sensitivity testing is recommended for selection of an appropriate antimicrobial for treatment. Prognosis for survival appears to be good, although milk production may be decreased.

  20. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms

    PubMed Central

    Rosenberg, Gili; Steinberg, Nitai; Oppenheimer-Shaanan, Yaara; Olender, Tsvia; Doron, Shany; Ben-Ari, Julius; Sirota-Madi, Alexandra; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2016-01-01

    Bacillus subtilis biofilms have a fundamental role in shaping the soil ecosystem. During this process, they unavoidably interact with neighbour bacterial species. We studied the interspecies interactions between biofilms of the soil-residing bacteria B. subtilis and related Bacillus species. We found that proximity between the biofilms triggered recruitment of motile B. subtilis cells, which engulfed the competing Bacillus simplex colony. Upon interaction, B. subtilis secreted surfactin and cannibalism toxins, at concentrations that were inert to B. subtilis itself, which eliminated the B. simplex colony, as well as colonies of Bacillus toyonensis. Surfactin toxicity was correlated with the presence of short carbon-tail length isomers, and synergistic with the cannibalism toxins. Importantly, during biofilm development and interspecies interactions a subpopulation in B. subtilis biofilm lost its native plasmid, leading to increased virulence against the competing Bacillus species. Overall, these findings indicate that genetic programs and traits that have little effect on biofilm development when each species is grown in isolation have a dramatic impact when different bacterial species interact. PMID:28721238

  1. Effect of Bacillus subtilis on Granite Weathering: A Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Song, W.; Ogawa, N.; Oguchi, C. T.; Hatta, T.; Matsukura, Y.

    2006-12-01

    We performed a comparative experiment to investigate how the ubiquitous soil bacterium Bacillus subtilis weathers granite and which granite-forming minerals weather more rapidly via biological processes. Batch type experiments (granite specimen in a 500 ml solution including NaCl, glucose, yeast extract and bacteria Bacillus subtilis at 27°E C) were carried out for 30 days. Granite surfaces were observed by SEM before and after the experiment. Bacillus subtilis had a strong influence on granite weathering by forming pits. There were 2.4 times as many pits and micropores were 2.3 times wider in granite exposed to Bacillus subtilis when compared with bacteria-free samples. Bacillus subtilis appear to preferentially select an optimum place to adhere to the mineral and dissolve essential elements from the mineral to live. Plagioclase was more vulnerable to bacterial weathering than biotite among the granite composing minerals.

  2. BOOK REVIEW – BACILLUS THURINGIENSIS: A CORNERSTONE OF MODERN AGRICULTURE BACILLUS THURINGIENSIS

    EPA Science Inventory

    Are you interested in the technical issues surrounding the use of Bacillus thuringiensis pesticidal traits as sprays and as plant incorporated protectants (transgenic crops)? Should the dimensions of human health, ecology, entomology, risk assessment, resistance management, and d...

  3. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  4. Bacillus purgationiresistans sp. nov., isolated from a drinking-water treatment plant.

    PubMed

    Vaz-Moreira, Ivone; Figueira, Vânia; Lopes, Ana R; Lobo-da-Cunha, Alexandre; Spröer, Cathrin; Schumann, Peter; Nunes, Olga C; Manaia, Célia M

    2012-01-01

    A Gram-positive, aerobic, non-motile, endospore-forming rod, designated DS22(T), was isolated from a drinking-water treatment plant. Cells were catalase- and oxidase-positive. Growth occurred at 15-37 °C, at pH 7-10 and with <8% (w/v) NaCl (optimum growth: 30 °C, pH 7-8 and 1-3% NaCl). The major respiratory quinone was menaquinone 7, the G+C content of the genomic DNA was 36.5 mol% and the cell wall contained meso-diaminopimelic acid. On the basis of 16S rRNA gene sequence analysis, strain DS22(T) was a member of the genus Bacillus. Its closest phylogenetic neighbours were Bacillus horneckiae NRRL B-59162(T) (98.5% 16S rRNA gene sequence similarity), Bacillus oceanisediminis H2(T) (97.9%), Bacillus infantis SMC 4352-1(T) (97.4%), Bacillus firmus IAM 12464(T) (96.8%) and Bacillus muralis LMG 20238(T) (96.8%). DNA-DNA hybridization, and biochemical and physiological characterization allowed the differentiation of strain DS22(T) from its closest phylogenetic neighbours. The data supports the proposal of a novel species, Bacillus purgationiresistans sp. nov.; the type strain is DS22(T) (=DSM 23494(T)=NRRL B-59432(T)=LMG 25783(T)).

  5. Inhibition of Listeria monocytogenes biofilms by bacteriocin-producing bacteria isolated from mushroom substrate.

    PubMed

    Bolocan, A S; Pennone, V; O'Connor, P M; Coffey, A; Nicolau, A I; McAuliffe, O; Jordan, K

    2017-01-01

    This study was designed to investigate the ability of naturally occurring bacteria isolated from mushroom substrate to prevent biofilm formation by Listeria monocytogenes or to remove existing biofilms in mushroom production facilities. It is generally recognized that L. monocytogenes forms biofilms that can facilitate its survival in food-processing environments. Eleven bacteriocin-producing isolates were identified and the bacteriocins characterized based on heat and enzyme inactivation studies. Further characterization was undertaken by MALDI-TOF mass spectrometry, PCR and sequencing. Production of nisin Z (by Lactococcus lactis isolates), subtilomycin (by Bacillus subtilis isolates) and lichenicidin (by Bacillus licheniformis and Bacillus sonorensis isolates) was detected. In co-culture with L. monocytogenes, the bacteriocin-producing strains could prevent biofilm formation and reduce pre-formed biofilms. Mushroom substrate can be a source of bacteriocin-producing bacteria that can antagonize L. monocytogenes. The results highlight the potential of bacteriocin-producing strains from mushroom substrate to reduce L. monocytogenes biofilm in food production environments, contributing to a reduction in the risk of food contamination from the environment. © 2016 The Society for Applied Microbiology.

  6. Characterization and potential use of cuttlefish skin gelatin hydrolysates prepared by different microbial proteases.

    PubMed

    Jridi, Mourad; Lassoued, Imen; Nasri, Rim; Ayadi, Mohamed Ali; Nasri, Moncef; Souissi, Nabil

    2014-01-01

    Composition, functional properties, and in vitro antioxidant activities of gelatin hydrolysates prepared from cuttlefish skin were investigated. Cuttlefish skin gelatin hydrolysates (CSGHs) were obtained by treatment with crude enzyme preparations from Bacillus licheniformis NH1, Bacillus mojavensis A21, Bacillus subtilis A26, and commercial alcalase. All CSGHs had high protein contents, 74.3-78.3%, and showed excellent solubility (over 90%). CSGH obtained by alcalase demonstrated high antioxidant activities monitored by β-carotene bleaching, DPPH radical scavenging, lipid peroxidation inhibition, and reducing power activity. Its antioxidant activity remained stable or increased in a wide range of pH (1-9), during heating treatment (100°C for 240 min) and after gastrointestinal digestion simulation. In addition, alcalase-CSGH was incorporated into turkey meat sausage to determine its effect on lipid oxidation during 35 days of storage period. At 0.5 mg/g, alcalase-CSGH delayed lipid oxidation monitored by TBARS and conjugated diene up to 10 days compared to vitamin C. The results reveal that CSGHs could be used as food additives possessing both antioxidant activity and functional properties.

  7. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus.

    PubMed

    Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong

    2015-01-01

    A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.

  8. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages.

    PubMed

    Ning, Tingting; Wang, Huili; Zheng, Mingli; Niu, Dongze; Zuo, Sasa; Xu, Chuncheng

    2017-02-01

    This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR) silage. The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR) or Leymus chinensis hay (LTMR), corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens ( B. amyloliquefaciens ), B. cereus , B. licheniformis , and B. subtilis in ATMR silage and B. flexus , B. licheniformis , and Paenibacillus xylanexedens ( P. xylanexedens ) in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens , B. licheniformis , and B. subtilis and B. licheniformis , B. pumilus , and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. The microbial amylase contributes to starch hydrolysis during the ensiling process in both TMR silages

  9. Inhibitory effects of spice essential oils on the growth of Bacillus species.

    PubMed

    Ozcan, Mehmet Musa; Sağdiç, Osman; Ozkan, Gülcan

    2006-01-01

    A series of essential oils of 11 Turkish plant spices [black thyme, cumin, fennel (sweet), laurel, marjoram, mint, oregano, pickling herb, sage, savory, and thyme], used in foods mainly for their flavor, aromas, and preservation, in herbal tea, in alternative medicines, and in natural therapies, were screened for antibacterial effects at 1:50, 1:100, 1:250, and 1:500 dilutions by the paper disc diffusion method against six Bacillus species (Bacillus amyloliquefaciens ATCC 3842, Bacillus brevis FMC 3, Bacillus cereus FMC 19, Bacillus megaterium DSM 32, Bacillus subtilis IMG 22, and B. subtilis var. niger ATCC 10). All of the tested essential oils (except for cumin) showed antibacterial activity against one or more of the Bacillus species used in this study. Generally, the essential oils at 1:50 and 1:100 levels were more effective. Only one essential oil (laurel) was not found effective against the tested bacteria. The bacterium most sensitive to all of the spice essential oils was B. amyloliquefaciens ATCC 3842. Based on the results of this study, it is likely that essential oils of some spices may be used as antimicrobial agents to prevent the spoilage of food products.

  10. Characterization of Bacillus megaterium, Bacillus pumilus, and Paenibacillus polymyxa isolated from a Pinot noir wine from Western Washington State.

    PubMed

    von Cosmos, Nicolas H; Watson, Bruce A; Fellman, J K; Mattinson, D S; Edwards, Charles G

    2017-10-01

    This report provides the first confirmed evidence of Bacillus-like bacteria present in a wine from Washington State. These bacteria were isolated from a 2013 Pinot noir wine whose aroma was sensorially described as being 'dirty' or 'pond scum.' Based on physiological traits and genetic sequencing, three bacterial isolates were identified as Bacillus megaterium (strain NHO-1), Bacillus pumilus (strain NHO-2), and Paenibacillus polymyxa (strain NHO-3). These bacteria grew in synthetic media of low pH (pH 3.5) while some survived ethanol concentrations up to 15% v/v. However, none tolerated molecular SO 2 concentrations ≥0.4 mg/l. Growth of strains NHO-1 and NHO-3 in a Merlot grape juice resulted in increases of titratable and volatile acidities while decreases in titratable acidity were noted for NHO-2. Copyright © 2017. Published by Elsevier Ltd.

  11. A STUDY OF BACILLUS PYOGENES

    PubMed Central

    Brown, J. Howard; Orcutt, Marion L.

    1920-01-01

    Bacillus pyogenes is probably quite common in this country, as it is known to be in Europe. A careful study of twelve strains from cattle and one from a hog has disclosed the following characteristics which have not been reported or have been in dispute. Bacillus pyogenes is Gram-positive and pleomorphic, producing forms ranging from short chains of streptococcoid elements to branching filaments. It is hemolytic, producing the beta type of hemolysis in blood agar. It is not hemoglobinophilic, though its growth is greatly favored by some higher protein material such as egg albumin, serum, or blood. It ferments xylose in addition to the substances previously reported. The coagulation of milk by Bacillus pyogenes is primarily an enzyme coagulation and the subsequent digestion of the curd takes place in an acid medium. The intravenous injection of rabbits was invariably fatal. The lesions most commonly developed were those of the bones. Paralysis was frequently produced, and in each case was caused by lesions in the vertebrae exerting pressure against the ventral columns of the spinal cord. Muscle abscesses were also frequently produced. The authors regard the organism as belonging to the Corynebacteria rather than to the influenza group. PMID:19868442

  12. The microbiota of eight species of dehydrated edible seaweeds from North West Spain.

    PubMed

    Del Olmo, Ana; Picon, Antonia; Nuñez, Manuel

    2018-04-01

    The microbiota of eight species (Chondrus crispus, Himanthalia elongata, Laminaria ochroleuca, Palmaria palmata, Porphyra umbilicalis, Saccharina latissima, Ulva lactuca and Undaria pinnatifida) of edible seaweeds collected in North West Spain, marketed as dehydrated product, was quantitatively determined on nine solid media. Representative colonies were selected from solid culture media. The isolated microorganisms were identified by means of morphological characteristics, 16S rDNA sequencing and biochemical tests. U. pinnatifida was the seaweed species showing the most abundant microbial population, with counts on Marine agar up to 7.7 log cfu/g in individual samples and 5.0 log cfu/g as the mean value, and counts of coliforms up to 4.6 log cfu/g in individual samples and 2.4 log cfu/g as the mean value. The 225 identified bacterial isolates belonged to 11 families, 27 genera and 56 species. Bacillaceae was the family accounting for the highest number of isolates (111) followed by Enterobacteriaceae (60), Bacillales Family XII Incertae Sedis (20), Planococcaceae (11), Moraxellaceae (7), Paenibacillaceae (5) and Pseudomonadaceae (5). Bacterial species showing the highest occurrence in dehydrated seaweeds were Bacillus megaterium, B. licheniformis, Pantoea sp. and termoresistant Pantoea sp. Four of the Bacillus species isolated from dehydrated seaweeds (B. cereus, B. licheniformis, B. pumilus and B. subtilis) are among those containing strains considered to be foodborne pathogens and nine of the isolated non-Bacillales bacterial species have been reported to contain human opportunistic pathogenic strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Micro-Etched Platforms for Thermal Inactivation of Bacillus Anthracis and Bacillus Thuringiensis Spores

    DTIC Science & Technology

    2008-03-01

    slips was first coated with a detergent wash. Commercially available Ivory soap shavings were diluted with sterile Millipore® water in a...environments. This removed controllable variability between the Bacillus species and increased the confidence in continued use of such surrogacy

  14. Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil

    USDA-ARS?s Scientific Manuscript database

    Two isolates of Gram-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacteria were identified during a survey of the diversity of Bacillus strains deposited in the Agriculture Research Service Culture Collection. These strains were originally isolated from soil in Evolution ...

  15. Biofilms affecting progression of mild steel corrosion by Gram positive Bacillus sp.

    PubMed

    Lin, Johnson; Madida, Bafana B

    2015-10-01

    The biodeterioration of metals have detrimental effects on the environment with economic implications. The deterioration of metals is of great concern to industry. In this study, mild steel coupons which were immersed in a medium containing Gram-positive Bacillus spp. and different nutrient sources were compared with the control in sterile deionized water. The weight loss of the coupons in the presence of Bacillus spp. alone was lower than the control and was further reduced when additional carbon sources, especially fructose, were added. The level of metal corrosion was significantly increased in the presence of nitrate with or without bacteria. There was a significant strong correlation between the weight loss and biofilm level (r =  0.64; p < 0.05). The addition of nitrate and Bacillus spp. produced more biofilms on the coupons and resulted in greater weight loss compared to that with Bacillus spp. only under the same conditions. However, Bacillus spp. enriched with carbon sources formed less biofilms and results in lower weight loss compared to that with Bacillus spp. only. The production of biofilm by Bacillus spp. influences the level of metal corrosion under different environmental conditions, thereby, supporting the development of a preventive strategy against corrosion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effects of Mn2+ Levels on the Resistance Properties of Bacillus cereus Spores

    DTIC Science & Technology

    2013-01-01

    In contrast, Bacillus subtilis spores with over a 200-fold range of protoplast Mn levels exhibited no significant differences in resistance to... Bacillus subtilis . J. Bacteriol. 189:8458-8466. Coleman WH, Zhang P, Li YQ, Setlow P (2010). Mechanism of killing of spores of Bacillus cereus and...Gaidamakova EK, Matrosova VY, Daly MJ, Setlow P (2011). Effects of levels of Mn and Fe on Bacillus subtilis spore resistance, and effects of Mn 2

  17. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.

    PubMed

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif

    2016-05-15

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInerney, J.J.; Han, S.O.; Maudgalya, S.

    2003-01-16

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  19. Development of More Effective Biosurfactants for Enhanced Oil Recovery/Advanced Recovery Concepts Awards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McInerney, M.J.; Marsh, T.L.; Zhang, X.

    2002-05-28

    The objectives of this were two fold. First, core displacement studies were done to determine whether microbial processes could recover residual oil at elevated pressures. Second, the importance of biosurfactant production for the recovery of residual oil was studies. In these studies, a biosurfactant-producing, microorganisms called Bacillus licheniformis strain JF-2 was used. This bacterium produces a cyclic peptide biosurfactant that significantly reduces the interfacial tension between oil and brine (7). The use of a mutant deficient in surfactant production and a mathematical MEOR simulator were used to determine the major mechanisms of oil recovery by these two strains.

  20. Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers

    USDA-ARS?s Scientific Manuscript database

    Bacillus subtilis consists of a large collection of strains from which several cryptic species have been delineated, and most of these along with strains within the species are important biocontrol agents. Bacillus mojavensis, a species recently distinguished from this broad Bacillus subtilis grou...

  1. Bacillus nanhaiisediminis sp. nov., an alkalitolerant member of Bacillus rRNA group 6.

    PubMed

    Zhang, Jianli; Wang, Jiewei; Song, Fei; Fang, Caiyuan; Xin, Yuhua; Zhang, Yabo

    2011-05-01

    A Gram-stain-positive, rod-shaped bacterium, designated strain NH3(T), was isolated from a sediment sample from the South China Sea and was subjected to a polyphasic taxonomic study. The isolate grew optimally at 37 °C and pH 9. Strain NH3(T) had cell-wall peptidoglycan based on meso-diaminopimelic acid and MK-7 as the predominant menaquinone. The cellular fatty acid profile included significant amounts of iso-C(15 : 0) and iso-C(14 : 0). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content of strain NH3(T) was 40.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain NH3(T) was a member of rRNA group 6 of the genus Bacillus, which includes alkalitolerant, alkaliphilic and halotolerant species. The closest phylogenetic relatives were Bacillus akibai 1139(T) (96.82 % 16S rRNA gene sequence similarity), B. pseudofirmus DSM 8715(T) (96.76 %), B. okhensis Kh10-101(T) (96.76 %) and B. alkalidiazotrophicus MS 6(T) (96.47 %). Strain NH3(T) could be distinguished from these phylogenetically close neighbours based on a number of phenotypic properties. On the basis of phenotypic and chemotaxonomic characteristics and phylogenetic data, we conclude that strain NH3(T) ( = CGMCC 1.10116(T)  = JCM 16507(T)) merits classification as the type strain of a novel species, for which the name Bacillus nanhaiisediminis sp. nov. is proposed.

  2. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater

    PubMed Central

    2013-01-01

    Background Heavy-metals exert considerable stress on the environment worldwide. This study assessed the resistance to and bioremediation of heavy-metals by selected protozoan and bacterial species in highly polluted industrial-wastewater. Specific variables (i.e. chemical oxygen demand, pH, dissolved oxygen) and the growth/die-off-rates of test organisms were measured using standard methods. Heavy-metal removals were determined in biomass and supernatant by the Inductively Couple Plasma Optical Emission Spectrometer. A parallel experiment was performed with dead microbial cells to assess the biosorption ability of test isolates. Results The results revealed that the industrial-wastewater samples were highly polluted with heavy-metal concentrations exceeding by far the maximum limits (in mg/l) of 0.05-Co, 0.2-Ni, 0.1-Mn, 0.1-V, 0.01-Pb, 0.01-Cu, 0.1-Zn and 0.005-Cd, prescribed by the UN-FAO. Industrial-wastewater had no major effects on Pseudomonas putida, Bacillus licheniformis and Peranema sp. (growth rates up to 1.81, 1.45 and 1.43 d-1, respectively) compared to other test isolates. This was also revealed with significant COD increases (p < 0.05) in culture media inoculated with living bacterial isolates (over 100%) compared to protozoan isolates (up to 24% increase). Living Pseudomonas putida demonstrated the highest removal rates of heavy metals (Co-71%, Ni-51%, Mn-45%, V-83%, Pb-96%, Ti-100% and Cu-49%) followed by Bacillus licheniformis (Al-23% and Zn-53%) and Peranema sp. (Cd-42%). None of the dead cells were able to remove more than 25% of the heavy metals. Bacterial isolates contained the genes copC, chrB, cnrA3 and nccA encoding the resistance to Cu, Cr, Co-Ni and Cd-Ni-Co, respectively. Protozoan isolates contained only the genes encoding Cu and Cr resistance (copC and chrB genes). Peranema sp. was the only protozoan isolate which had an additional resistant gene cnrA3 encoding Co-Ni resistance. Conclusion Significant differences (p < 0

  3. Bacillus cereus Biofilms—Same, Only Different

    PubMed Central

    Majed, Racha; Faille, Christine; Kallassy, Mireille; Gohar, Michel

    2016-01-01

    Bacillus cereus displays a high diversity of lifestyles and ecological niches and include beneficial as well as pathogenic strains. These strains are widespread in the environment, are found on inert as well as on living surfaces and contaminate persistently the production lines of the food industry. Biofilms are suspected to play a key role in this ubiquitous distribution and in this persistency. Indeed, B. cereus produces a variety of biofilms which differ in their architecture and mechanism of formation, possibly reflecting an adaptation to various environments. Depending on the strain, B. cereus has the ability to grow as immersed or floating biofilms, and to secrete within the biofilm a vast array of metabolites, surfactants, bacteriocins, enzymes, and toxins, all compounds susceptible to act on the biofilm itself and/or on its environment. Within the biofilm, B. cereus exists in different physiological states and is able to generate highly resistant and adhesive spores, which themselves will increase the resistance of the bacterium to antimicrobials or to cleaning procedures. Current researches show that, despite similarities with the regulation processes and effector molecules involved in the initiation and maturation of the extensively studied Bacillus subtilis biofilm, important differences exists between the two species. The present review summarizes the up to date knowledge on biofilms produced by B. cereus and by two closely related pathogens, Bacillus thuringiensis and Bacillus anthracis. Economic issues caused by B. cereus biofilms and management strategies implemented to control these biofilms are included in this review, which also discuss the ecological and functional roles of biofilms in the lifecycle of these bacterial species and explore future developments in this important research area. PMID:27458448

  4. Oral administration of a select mixture of Bacillus probiotics generates Tr1 cells in weaned F4ab/acR- pigs challenged with an F4+ ETEC/VTEC/EPEC strain.

    PubMed

    Zhou, Dong; Zhu, Yao-Hong; Zhang, Wei; Wang, Meng-Ling; Fan, Wen-Yi; Song, Dan; Yang, Gui-Yan; Jensen, Bent Borg; Wang, Jiu-Feng

    2015-09-17

    Although breeding of F4 receptor - negative (F4R(-)) pigs may prevent post-weaning diarrhea, the underlying immunity is poorly understood. Here, various doses of a Bacillus licheniformis and Bacillus subtilis mixture (BLS-mix) were orally administered to F4ab/acR(-) pigs for 1 week before F4 (K88) - positive ETEC/VTEC/EPEC challenge. Administration of BLS-mix increased the percentage of Foxp3(-)IL-10(+) T cells but not of Foxp3(+)IL-10(+) regulatory T (Treg) cells among peripheral blood CD4(+) T cells. A low dose of BLS-mix feeding resulted in increased the expression of IL-6, TNF-α, IL-10, and the transcription factors Foxp3 and T-bet mRNAs in the jejunum. Administration of either a low or high dose BLS-mix also led to an increase in the percentage of CD4(+)Foxp3(+) Treg cells among intraepithelial lymphocytes and CD4(+)IL-10(+) T cells in the small intestinal Peyer's patches and the lamina propria of F4ab/acR(-) pigs following F4(+) ETEC/VTEC/EPEC challenge. The increased number of IL-10-producing CD4(+) T cells was attributed to an increase in the proportion of Foxp3(-)IL-10(+) Treg cells rather than Foxp3(+)IL-10(+) Treg cells. Our data indicate that oral administration of BLS-mix to newly weaned F4ab/acR(-) pigs ameliorates enteritis in an F4(+) ETEC/VTEC/EPEC model; however, induction of IL-10-producing Foxp3(-) Treg cells by BLS-mix administration cannot account for the protection of newly weaned F4ab/acR(-) pigs from F4(+) ETEC/VTEC/EPEC infection, and that excessive generation of CD4(+)IL-10(+) T cells following consumption of BLS-mix during episodes of intestinal inflammation that is caused by enteric pathogens might prohibit clearance of the pathogen. Select probiotic mixtures may allow for tailoring strategies to prevent infectious diseases.

  5. Isolation and expression of a Bacillus cereus gene encoding benzil reductase.

    PubMed

    Maruyama, R; Nishizawa, M; Itoi, Y; Ito, S; Inoue, M

    2001-12-20

    Benzil was reduced stereospecifically to (S)-benzoin by Bacillus cereus strain Tim-r01. To isolate the gene responsible for asymmetric reduction, we constructed a library consisting of Escherichia coli clones that harbored plasmids expressing Bacillus cereus genes. The library was screened using the halo formation assay, and one clone showed benzil reduction to (S)-benzoin. Thus, this clone seemed to carry a plasmid encoding a Bacillus cereus benzil reductase. The deduced amino acid sequence had marked homologies to the Bacillus subtilis yueD protein (41% identity), the yeast open reading frame YIR036C protein (31%), and the mammalian sepiapterin reductases (28% to 30%), suggesting that benzil reductase is a novel short-chain de-hydrogenases/ reductase. Copyright 2001 John Wiley & Sons, Inc.

  6. Role of Th17 Cell in Tubercle Bacillus Infection

    NASA Astrophysics Data System (ADS)

    Zhang, Dandan

    2018-01-01

    Tuberculosis is mainly a kind of lung disease. Normal immune cell expression can inhibit proliferation of tubercle bacillus in the lungs, but this may also lead to chronic inflammation and pathological lesion. Th17 cell is a newly discovered CD4 + effector T cell subsets, whose differentiation and roles are influenced by various cytokines in the surrounding environment. Th17 cell plays an important role in resisting tubercle bacillus infection, but also it may cause pathological damage through the inflammatory response. Therefore, to balance two kinds of roles of Th17 cells in tubercle bacillus infection can effectively protect the body. This paper intends to do a summary on differentiation, regulation, and biological functions of Th17 cell.

  7. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments

    PubMed Central

    Radhakrishnan, Ramalingam; Hashem, Abeer; Abd_Allah, Elsayed F.

    2017-01-01

    Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas. Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus-induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus-induced physiological changes, including the regulation of water transport, nutrient up-take and

  8. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments.

    PubMed

    Radhakrishnan, Ramalingam; Hashem, Abeer; Abd Allah, Elsayed F

    2017-01-01

    Crop productivity is affected by environmental and genetic factors. Microbes that are beneficial to plants are used to enhance the crop yield and are alternatives to chemical fertilizers and pesticides. Pseudomonas and Bacillus species are the predominant plant growth-promoting bacteria. The spore-forming ability of Bacillus is distinguished from that of Pseudomonas . Members of this genus also survive for a long time under unfavorable environmental conditions. Bacillus spp. secrete several metabolites that trigger plant growth and prevent pathogen infection. Limited studies have been conducted to understand the physiological changes that occur in crops in response to Bacillus spp. to provide protection against adverse environmental conditions. This review describes the current understanding of Bacillus -induced physiological changes in plants as an adaptation to abiotic and biotic stresses. During water scarcity, salinity and heavy metal accumulate in soil, Bacillus spp. produce exopolysaccharides and siderophores, which prevent the movement of toxic ions and adjust the ionic balance and water transport in plant tissues while controlling the pathogenic microbial population. In addition, the synthesis of indole-3-acetic acid, gibberellic acid and1-aminocyclopropane-1-carboxylate (ACC) deaminase by Bacillus regulates the intracellular phytohormone metabolism and increases plant stress tolerance. Cell-wall-degrading substances, such as chitosanase, protease, cellulase, glucanase, lipopeptides and hydrogen cyanide from Bacillus spp. damage the pathogenic bacteria, fungi, nematodes, viruses and pests to control their populations in plants and agricultural lands. The normal plant metabolism is affected by unfavorable environmental stimuli, which suppress crop growth and yield. Abiotic and biotic stress factors that have detrimental effects on crops are mitigated by Bacillus -induced physiological changes, including the regulation of water transport, nutrient up-take and

  9. Reparation and Immunomodulating Properties of Bacillus sp. Metabolites from Permafrost.

    PubMed

    Kalenova, L F; Melnikov, V P; Besedin, I M; Bazhin, A S; Gabdulin, M A; Kolyvanova, S S

    2017-09-01

    An ointment containing metabolites of Bacillus sp. microorganisms isolated from permafrost samples was applied onto the skin wound of BALB/c mice. Metabolites isolated during culturing of Bacillus sp. at 37°C produced a potent therapeutic effect and promoted wound epithelialization by 30% in comparison with the control (ointment base) and by 20% in comparison with Solcoseryl. Treatment with Bacillus sp. metabolites stimulated predominantly humoral immunity, reduced the time of wound contraction and the volume of scar tissue, and promoted complete hair recovery. These metabolites can be considered as modulators of the wound process with predominance of regeneration mechanisms.

  10. Bacillus siamensis sp. nov., isolated from salted crab (poo-khem) in Thailand.

    PubMed

    Sumpavapol, Punnanee; Tongyonk, Linna; Tanasupawat, Somboon; Chokesajjawatee, Nipa; Luxananil, Plearnpis; Visessanguan, Wonnop

    2010-10-01

    A Gram-positive, endospore-forming, rod-shaped bacterium, strain PD-A10(T), was isolated from salted crab (poo-khem) in Thailand and subjected to a taxonomic study. Phenotypic and chemotaxonomic characteristics, including phylogenetic analyses, showed that the novel strain was a member of the genus Bacillus. The novel strain grew in medium with 0-14 % (w/v) NaCl, at 4-55°C and at pH4.5-9. The predominant quinone was a menaquinone with seven isoprene units (MK-7). The major fatty acids were anteiso-C₁₅:₀ and anteiso-C₁₇:₀. Polar lipid analysis revealed the presence of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, lysylphosphatidylglycerol, glycolipid and unknown lipids. The DNA G+C content was 41.4 mol%. The 16S rRNA gene sequence similarities between strain PD-A10(T) and Bacillus amyloliquefaciens NBRC 15535(T), Bacillus subtilis DSM 10(T), Bacillus vallismortis DSM 11031(T) and Bacillus mojavensis IFO 15718(T) were 99.5, 99.4, 99.4 and 99.2 %, respectively. Strain PD-A10(T) showed a low degree similarity of rep-PCR fingerprints and low DNA-DNA relatedness with the above-mentioned species. On the basis of the data gathered in this study, strain PD-A10(T) should be classified as representing a novel species of the genus Bacillus, for which the name Bacillus siamensis sp. nov. is proposed. The type strain is PD-A10(T) (=BCC 22614(T)=KCTC 13613(T)).

  11. New inhibitors of colony spreading in Bacillus subtilis and Bacillus anthracis.

    PubMed

    Hao, Xin; Nguyen, Tam; Kearns, Daniel B; Arpin, Carolynn C; Fall, Ray; Sammakia, Tarek

    2011-09-15

    We have recently characterized sliding motility in Bacillus subtilis strains that lack functional flagella, and here describe the discovery of inhibitors of colony spreading in these strains as well as the aflagellate pathogen, Bacillus anthracis. Aflagellate B. subtilis strains were used to screen for new types of antibacterials that might inhibit colony spreading on semi-solid media. From a diverse set of organic structures, p-nitrophenylglycerol (NPG), an agent used primarily in clinical laboratories to control Proteus swarming, was found to inhibit colony spreading. The four stereoisomers of NPG were synthesized and tested, and only the 1R,2S-(1R-anti) and 1R,2R-(1R-syn) NPG isomers had significant activity in a quantitative colony-spreading assay. Twenty-six NPG analogs and related structures were synthesized and tested to identify more active inhibitors. p-Methylsulfonylphenylglycerol (p-SPG), but not its ortho or meta analogs, was found to be the most effective of these compounds, and synthesis and testing of all four p-SPG stereoisomers showed that the 1R-anti-isomer was the most active with an average IC(50) of 16 μM (3-5 μg mL(-1)). For B. anthracis, the colony-spreading IC(50) values for 1R-anti-SPG and 1R-anti-NPG are 12 μM (2-4 μg mL(-1)) and >150 μM, respectively. For both Bacillus species tested, 1R-anti-SPG inhibits colony spreading of surface cultures on agar plates, but is not bacteriostatic or bacteriocidal in liquid cultures. Work is in progress to find the cellular target(s) of the NPG/SPG class of compounds, since this could lead to an understanding of the mechanism(s) of colony spreading as well as design and development of more potent inhibitors for the control of B. anthracis surface cultures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization.

    PubMed

    Posada, Luisa F; Alvarez, Javier C; Hu, Chia-Hui; de-Bashan, Luz E; Bashan, Yoav

    2016-09-01

    Strains of Bacillus subtilis are plant growth-promoting bacteria (PGPB) of many crops and are used as inoculants. PGPB colonization is an important trait for success of a PGPB on plants. A specific probe, based on the 16 s rRNA of Bacillus subtilis, was designed and evaluated to distinguishing, by fluorescence in situ hybridization (FISH), between this species and the closely related Bacillus amyloliquefaciens. The selected target for the probe was between nucleotides 465 and 483 of the gene, where three different nucleotides can be identified. The designed probe successfully hybridized with several strains of Bacillus subtilis, but failed to hybridize not only with B. amyloliquefaciens, but also with other strains such as Bacillus altitudinis, Bacillus cereus, Bacillus gibsonii, Bacillus megaterium, Bacillus pumilus; and with the external phylogenetic strains Azospirillum brasilense Cd, Micrococcus sp. and Paenibacillus sp. The results showed the specificity of this molecular probe for B. subtilis.

  13. Differentiation of strains from the Bacillus cereus group by RFLP-PFGE genomic fingerprinting.

    PubMed

    Otlewska, Anna; Oltuszak-Walczak, Elzbieta; Walczak, Piotr

    2013-11-01

    Bacillus mycoides, Bacillus pseudomycoides, Bacillus weihenstephanensis, Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus belong to the B. cereus group. The last three species are characterized by different phenotype features and pathogenicity spectrum, but it has been shown that these species are genetically closely related. The macrorestriction analysis of the genomic DNA with the NotI enzyme was used to generate polymorphism of restriction profiles for 39 food-borne isolates (B. cereus, B. mycoides) and seven reference strains (B. mycoides, B. thuringiensis, B. weihenstephanensis, and B. cereus). The PFGE method was applied to differentiate the examined strains of the B. cereus group. On the basis of the unweighted pair group method with the arithmetic mean method and Dice coefficient, the strains were divided into five clusters (types A-E), and the most numerous group was group A (25 strains). A total of 21 distinct pulsotypes were observed. The RFLP-PFGE analysis was successfully used for the differentiation and characterization of B. cereus and B. mycoides strains isolated from different food products. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Binding Affinity of Glycoconjugates to BACILLUS Spores and Toxins

    NASA Astrophysics Data System (ADS)

    Rasol, Aveen; Eassa, Souzan; Tarasenko, Olga

    2010-04-01

    Early recognition of Bacillus cereus group species is important since they can cause food-borne illnesses and deadly diseases in humans. Glycoconjugates (GCs) are carbohydrates covalently linked to non-sugar moieties including lipids, proteins or other entities. GCs are involved in recognition and signaling processes intrinsic to biochemical functions in cells. They also stimulate cell-cell adhesion and subsequent recognition and activation of receptors. We have demonstrated that GCs are involved in Bacillus cereus spore recognition. In the present study, we have investigated whether GCs possess the ability to bind and recognize B. cereus spores and Bacillus anthracis recombinant single toxins (sTX) and complex toxins (cTX). The affinity of GCs to spores + sTX and spores + cTX toxins was studied in the binding essay. Our results demonstrated that GC9 and GC10 were able to selectively bind to B. cereus spores and B. anthracis toxins. Different binding affinities for GCs were found toward Bacillus cereus spores + sTX and spores + cTX. Dilution of GCs does not impede the recognition and binding. Developed method provides a tool for simultaneous recognition and targeting of spores, bacteria toxins, and/or other entities.

  15. Bacillus ciccensis sp. nov., isolated from maize (Zea mays L.) seeds.

    PubMed

    Liu, Yang; Li, Nannan; Eom, Mi Kyung; Schumann, Peter; Zhang, Xin; Cao, Yanhua; Ge, Yuanyuan; Xiao, Ming; Zhao, Jiuran; Cheng, Chi; Kim, Song-Gun

    2017-11-01

    Two Gram-stain-positive bacterial strains, designated as 5L6 T and 6L6, isolated from seeds of hybrid maize (Zea mays L., Jingke 968) were investigated using a polyphasic taxonomic approach. The cells were aerobic, motile, endospore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were recognized as a species of the genus Bacillus, to which the five closest neighbours are Bacillus solani FJAT-18043 T (99.8 % similarity), Bacillus horneckiae DSM 23495 T (97.7 %), Bacillus eiseniae A1-2 T (97.4 %), Bacillus kochii WCC 4582 T (97.1 %) and Bacillus purgationiresistens DS22 T (97.0 %). The DNA G+C content of strain 5L6 T was 37.4 mol%. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was MK-7 and the major fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, iso-C14 : 0, anteiso-C17 : 0 and C16 : 1 ω7c alcohol. The cell-wall peptidoglycan contained ornithine, serine, aspartic acid, glutamic acid and alanine while diaminopimelic acid could not be detected. Strains 5L6 T and 6L6 were clearly distinguished from the type strains of related validly named species using phylogenetic analysis, DNA-DNA hybridization, fatty acid analysis, peptidoglycan analysis and comparison of a range of physiological and biochemical characteristics. The genotypic and phenotypic data show that strains 5L6 T and 6L6 represent a novel species of the genus Bacillus, for which the name Bacillusciccensis sp. nov. is proposed. The type strain is 5L6 T (=KCTC 33663 T =CICC 23855 T =DSM 104513 T ).

  16. Analysis of Chemical Signatures of Alkaliphiles using Fatty Acid Methyl Ester Analysis

    PubMed Central

    Sreenivasulu, Basha; Paramageetham, Chinthala; Sreenivasulu, Dasari; Suman, Bukke; Umamahesh, Katike; Babu, Gundala Prasada

    2017-01-01

    Background: Fatty acids occur in nearly all living organisms as the important predominant constituents of lipids. While all fatty acids have essentially the same chemical nature, they are an extremely diverse group of compounds. Materials and Methods: To test the hypothesis, fatty acids of alkaliphiles isolates, Bacillus subtilis SVUNM4, Bacillus licheniformis SVUNM8, Bacillus methylotrohicus SVUNM9, and Paenibacillus dendritiformis SVUNM11, were characterized compared using gas chromatography-mass spectrometry (GC-MS) analysis. Results: The content of investigated ten fatty acids, 1, 2-benzenedicarboxylic acid butyl 2-methylpropyl ester, phthalic acid, isobutyl 2-pentyl ester, dibutyl phthalate, cyclotrisiloxane, hexamethyl, cyclotetrasiloxane, octamethyl, dodecamethyl, heptasiloxane 1,1,3,3,5,5,7,7,9,9,11,11,13,13-etradecamethyl, 7,15-dihydroxydehydroabietic acid, methyl ester, di (trimethylsilyl) ether, hentriacontane, 2-thiopheneacetic acid, undec-2-enyl ester, obviously varied among four species, suggesting each species has its own fatty acid pattern. Conclusions: These findings demonstrated that GC-MS-based fatty acid profiling analysis provides the reliable platform to classify these four species, which is helpful for ensuring their biotechnological interest and novel chemotaxonomic. PMID:28717333

  17. Effect of probiotic culture water on growth, mortality, and feed conversion ratio of Vaname shrimp (Litopenaeus vannamei Boone)

    NASA Astrophysics Data System (ADS)

    Bachruddin, M.; Sholichah, M.; Istiqomah, S.; Supriyanto, A.

    2018-04-01

    This study was aimed to determine the effect of various dose of probiotics in the culture water to the growth and mortality of Vaname shrimp. This study consist of treatment control and treatment of various dose of probiotics. Control (0 mL/10 L water), P1 (1 mL/10 L water), P2 (2 mL/10 L water), P3 (3 mL/10 L water) and P4 (4 mL/10 L water) treatment, given to the Vaname shrimps with intervals once per week. This probiotic consist of Lactobacillus plantarum, Lactobacillus fermentum, Bacillus subtilis, Bacillus licheniformis, Bacillus megaterium, Nitrobacter sp., and Nitrosomonas sp. Dependent variables in this study are weight of shrimp, length of shrimp, mortality and feed conversion ratio. The results had different of various dose probiotics application in the water showed significance for each treatment on growth and mortality of Vaname shrimp. The best results were shown in treatment P2 (2 mL/10 water) with mean value of Vaname shrimp weight is 7.447 ± 1.193 g/shrimp, the length is 10,390 ± 0,469 cm/shrimp, mortality is 41%, and the value of FCR is 0.91.

  18. Characterization and Potential Use of Cuttlefish Skin Gelatin Hydrolysates Prepared by Different Microbial Proteases

    PubMed Central

    Jridi, Mourad; Lassoued, Imen; Nasri, Rim; Ayadi, Mohamed Ali; Nasri, Moncef

    2014-01-01

    Composition, functional properties, and in vitro antioxidant activities of gelatin hydrolysates prepared from cuttlefish skin were investigated. Cuttlefish skin gelatin hydrolysates (CSGHs) were obtained by treatment with crude enzyme preparations from Bacillus licheniformis NH1, Bacillus mojavensis A21, Bacillus subtilis A26, and commercial alcalase. All CSGHs had high protein contents, 74.3–78.3%, and showed excellent solubility (over 90%). CSGH obtained by alcalase demonstrated high antioxidant activities monitored by β-carotene bleaching, DPPH radical scavenging, lipid peroxidation inhibition, and reducing power activity. Its antioxidant activity remained stable or increased in a wide range of pH (1–9), during heating treatment (100°C for 240 min) and after gastrointestinal digestion simulation. In addition, alcalase-CSGH was incorporated into turkey meat sausage to determine its effect on lipid oxidation during 35 days of storage period. At 0.5 mg/g, alcalase-CSGH delayed lipid oxidation monitored by TBARS and conjugated diene up to 10 days compared to vitamin C. The results reveal that CSGHs could be used as food additives possessing both antioxidant activity and functional properties. PMID:25025053

  19. Speleothems from Mawsmai and Krem Phyllut caves, Meghalaya, India: some evidences on biogenic activities

    NASA Astrophysics Data System (ADS)

    Baskar, Sushmitha; Baskar, R.; Lee, Natuschka; Theophilus, P. K.

    2009-05-01

    The Mawsmai cave and Krem Phyllut caves, East Khasi hills, Meghalaya, India has so far not yet attracted the attention of geomicrobiologists. Observations and hypotheses on the possible influence of identified microorganisms for speleothem formations in Meghalaya are reported for the first time. XRD studies identified calcite in speleothems and gypsum in cave wall deposits as the dominant minerals. SEM-EDAX showed interesting microfabric features showing strong resemblance with fossilised bacteria, calcified filaments, needle calcite and numerous nano scale calcite crystals, highly weathered and disintegrated crystals of calcite, that point towards a significant microbial influence in its genesis. Thin section petrography showed laminated stromatolitic features. The microorganisms identified by conventional isolation and further evaluation of isolates by molecular techniques include Bacillus cereus, Bacillus mycoides, Bacillus licheniformis, Micrococcus luteus, and Actinomycetes. Microscopic observations also showed unidentifiable cocci and four unidentifiable strains of CaSO4 (gypsum) precipitating bacteria. Experimental studies confirmed that these bacteria are able to precipitate calcium minerals (calcite, gypsum, minor amounts of dolomite) in the laboratory. These results allow us to postulate that species like these may contribute to active biogenic influence in the cave formations at Meghalaya.

  20. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis

    PubMed Central

    Stratilo, Chad W.; Crichton, Melissa K. F.; Sawyer, Thomas W.

    2015-01-01

    Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes. PMID:26394165

  1. CHLORINE INACTIVATION OF BACILLUS ENDOSPORES

    EPA Science Inventory

    The possibility of a bioterrorism event resulting in the release of Bacillus anthracis endospores into a drinking water distribution system necessitates research into means by which these endospores can be inactivated. This study was designed to determine the chlorine resistance...

  2. Dry thermal resistance of Bacillus anthracis (Sterne) spores and spores of other Bacillus species: implications for biological agent destruction via waste incineration.

    PubMed

    Wood, J P; Lemieux, P; Betancourt, D; Kariher, P; Gatchalian, N G

    2010-07-01

    To obtain needed data on the dry thermal resistance of Bacillus anthracis spores and other Bacillus species for waste incinerator applications. Tests were conducted in a pilot-scale incinerator utilizing biological indicators comprised of spores of Geobacillus stearothermophilus, Bacillus atrophaeus and B. anthracis (Sterne) and embedded in building material bundles. Tests were also conducted in a dry heat oven to determine the destruction kinetics for the same species. In the pilot-scale incinerator tests, B. atrophaeus and G. stearothermophilus demonstrated similar thermal sensitivity, but B. anthracis (Sterne) was less thermally resistant than G. stearothermophilus. For the dry heat oven tests conducted at 175°C, the D-values were 0·4, 0·2 and 0·3 min for B. atrophaeus, B. anthracis (Sterne) and G. stearothermophilus, respectively. Bacillus anthracis (Sterne) possesses similar or less dry heat resistance compared to B. atrophaeus and G. stearothermophilus. Previous studies have demonstrated conditions under which bacterial spores may survive in an incinerator environment. The data from this study may assist in the selection of surrogates or indicator micro-organisms to ensure B. anthracis spores embedded in building materials are completely inactivated in an incinerator. © 2009 The Society for Applied Microbiology, Journal of Applied Microbiology. No claim to US Government works.

  3. Isolation and characterization of Bacillus sp. GFP-2, a novel Bacillus strain with antimicrobial activities, from Whitespotted bamboo shark intestine.

    PubMed

    Wu, Jia; Xu, Guoqiang; Jin, Yangyang; Sun, Cong; Zhou, Li; Lin, Guodong; Xu, Rong; Wei, Ling; Fei, Hui; Wang, Dan; Chen, Jianqing; Lv, Zhengbing; Liu, Kuancheng

    2018-05-22

    The abuse of antibiotics and following rapidly increasing of antibiotic-resistant pathogens is the serious threat to our society. Natural products from microorganism are regarded as the important substitution antimicrobial agents of antibiotics. We isolated a new strain, Bacillus sp. GFP-2, from the Chiloscyllium plagiosum (Whitespotted bamboo shark) intestine, which showed great inhibitory effects on the growth of both Gram-positive and Gram-negative bacteria. Additionally, the growth of salmon was effectively promoted when fed with inactivated strain GFP-2 as the inhibition agent of pathogenic bacteria. The genes encoding antimicrobial peptides like LCI, YFGAP and hGAPDH and gene clusters for secondary metabolites and bacteriocins, such as difficidin, bacillibactin, bacilysin, surfactin, butirosin, macrolactin, bacillaene, fengycin, lanthipeptides and LCI, were predicted in the genome of Bacillus sp. GFP-2, which might be expressed and contribute to the antimicrobial activities of this strain. The gene encoding β-1,3-1,4-glucanase was successfully cloned from the genome and this protein was detected in the culture supernatant of Bacillus sp. GFP-2 by the antibody produced in rabbit immunized with the recombinant β-1,3-1,4-glucanase, indicating that this strain could express β-1,3-1,4-glucanase, which might partially contribute to its antimicrobial activities. This study can enhance a better understanding of the mechanism of antimicrobial activities in genus Bacillus and provide a useful material for the biotechnology study in antimicrobial agent development.

  4. Reclassification of Bacillus marismortui as Salibacillus marismortui comb. nov.

    PubMed

    Arahal, D R; Márquez, M C; Volcani, B E; Schleifer, K H; Ventosa, A

    2000-07-01

    Recently, the features of a group of strains isolated from Dead Sea enrichments obtained in 1936 by one of us (B. E. Volcani) were described. They were gram-positive, moderately halophilic, spore-forming rods, and were placed in a new species, Bacillus marismortui. At the same time, the new genus Salibacillus was proposed for the halophilic species Bacillus salexigens. B. marismortui and Salibacillus salexigens have similar phenotypic characteristics and the same peptidoglycan type. Phylogenetic analysis based on 16S rRNA sequence comparisons showed that they are sufficiently closely related (96.6% similarity) as to warrant placement in the same genus. However, DNA-DNA hybridization experiments showed that they constitute two separate species (41% DNA similarity). Therefore the reclassification of Bacillus marismortui as Salibacillus marismortui comb. nov. is proposed.

  5. Modelling the influence of the sporulation temperature upon the bacterial spore heat resistance, application to heating process calculation.

    PubMed

    Leguérinel, I; Couvert, O; Mafart, P

    2007-02-28

    Environmental conditions of sporulation influence bacterial heat resistance. For different Bacillus species a linear Bigelow type relationship between the logarithm of D values determined at constant heating temperature and the temperature of sporulation was observed. The absence of interaction between sporulation and heating temperatures allows the combination of this new relationship with the classical Bigelow model. The parameters zT and zT(spo) of this global model were fitted to different sets of data regarding different Bacillus species: B. cereus, B. subtilis, B. licheniformis, B. coagulans and B. stearothermophilus. The origin of raw products or food process conditions before a heat treatment can lead to warm temperature conditions of sporulation and to a dramatic increase of the heat resistance of the generated spores. In this case, provided that the temperature of sporulation can be assessed, this model can be easily implemented to rectify F values on account of possible increase of thermal resistance of spores and to ensure the sterilisation efficacy.

  6. Identification of the potential of microbial combinations obtained from spent mushroom cultivation substrates for use in textile effluent decolorization.

    PubMed

    Singh, Rajender; Ahlawat, O P; Rajor, Anita

    2012-12-01

    The study presents variation in microbial population of Agaricus bisporus, Pleurotus sajor-caju and Volvariella volvacea spent substrates (SMS) along with ligninolytic enzymes activity and textile effluent decolorization potential of microorganisms isolated from these. The effect of temperature, pH, carbon sources and immobilizing agents on effluent decolorization using different combinations of these microorganisms has also been studied. SMS of P. sajor-caju harbored highest population and diversity of bacteria and fungi compared to other SMSs. Schizophyllum commune and Pezizomycotina sp. from P. sajor-caju SMS, exhibited highest activities of laccase (11.8 and 8.32U mL(-1)) and lignin peroxidase (339 and 318 UL(-1)), while Pseudomonas fluorescens of Manganese peroxidase. Highest decolorization was in presence of glucose and sucrose at 30°C, and microbial consortium comprised of the immobilized forms of S. commune and Pezizomycotina sp. on wheat straw and broth cultures of P. fluorescens, Bacillus licheniformis and Bacillus pumilus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Presence of a new cytochrome b - like pigment with a peak at 567 nm in various aerobic bacteria.

    PubMed

    Jacobs, N J; O'Hara, J; Gray, C T

    1983-09-01

    Several physiological groups of bacteria were examined for the presence of a cytochrome b - like pigment which is demonstrable in dithionite-reduced minus substrate-reduced difference spectra. This pigment is characterized by an unusually high alpha band at 567 nm, a low concentration relative to conventional cytochromes, and an inability to be fully reduced by endogenous substrates or NADH. Previous studies with one denitrifying and nondenitrifying species of the genus Pseudomonas, in Paracoccus denitrificans, in Alcaligenes faecalis, in Azotobacter vinelandii, in Branhamella catarrhalis, and in Neisseria lactamicus. In all these organisms, the peak of the 567-nm pigment is accompanied by a peak of about equal height at approximately 559 nm, which exhibits similar properties to the 567-nm pigment. The 567-nm pigment was not demonstrable by this technique in Gluconobacter oxydans subspecies suboxydans, Bacillus subtilis, Bacillus licheniformis, Aeromonas hydrophilia, Escherichia coli, a Klebsiella species, Moraxella osloensis, Aquaspirillum itersonii, Micrococcus lysodeikticus, Micrococcus luteus, Agrobacterium tumefaciens, or Rhizobium meliloti.

  8. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils.

    PubMed

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-06-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively.

  9. Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils

    PubMed Central

    Aanniz, Tarik; Ouadghiri, Mouna; Melloul, Marouane; Swings, Jean; Elfahime, Elmostafa; Ibijbijen, Jamal; Ismaili, Mohamed; Amar, Mohamed

    2015-01-01

    The diversity of thermophilic bacteria was investigated in four hot springs, three salt marshes and 12 desert sites in Morocco. Two hundred and forty (240) thermophilic bacteria were recovered, identified and characterized. All isolates were Gram positive, rod-shaped, spore forming and halotolerant. Based on BOXA1R-PCR and 16S rRNA gene sequencing, the recovered isolates were dominated by the genus Bacillus (97.5%) represented by B. licheniformis (119), B. aerius (44), B. sonorensis (33), B. subtilis (subsp. spizizenii (2) and subsp. inaquosurum (6)), B. amyloliquefaciens (subsp. amyloliquefaciens (4) and subsp. plantarum (4)), B. tequilensis (3), B. pumilus (3) and Bacillus sp. (19). Only six isolates (2.5%) belonged to the genus Aeribacillus represented by A. pallidus (4) and Aeribacillus sp. (2). In this study, B. aerius and B. tequilensis are described for the first time as thermophilic bacteria. Moreover, 71.25%, 50.41% and 5.41% of total strains exhibited high amylolytic, proteolytic or cellulolytic activity respectively. PMID:26273259

  10. [Diversity of Bacillus species inhabiting on the surface and endophyte of lichens collected from Wuyi Mountain].

    PubMed

    Ge, Cibin; Liu, Bo; Che, Jianmei; Chen, Meichun; Liu, Guohong; Wei, Jiangchun

    2015-05-04

    The present work reported the isolation, identification and diversity of Bacillus species colonizing on the surface and endophyte in lichens collected from Wuyi Mountain. Nine lichen samples of Evernia, Stereocaulon, Menegazzia and other 6 genera belonging to 7 families were collected from Wuyi mountain nature reserve. The bacillus-like species colonizing on the surface and endophyte in these lichens were isolated and identified by 16S rRNA gene sequence analysis. There was no bacillus-like species isolated from Evernia, Ramalina and Lecarona. A total of 34 bacillus-like bacteria were isolated from another 6 lichen samples. These bacteria were identified as 24 species and were classified into Bacillus, Paenibacillus, Brevibacillus, Lysinibacillus and Viridiibacillus. Paenibacillus and Bacillus are the dominant genera, and accounting for 41. 2% and 35. 3% of all isolated bacteria respectively. Brevibacillus, Lysinibacillus and Viridiibacillu were first reported being isolated from lichens. There were different species and quantity of bacillus colonizing on the surface and endophyte in different lichens. The quantity of bacillus colonizing on the surface of Physcia was more than 3.85 x 10(6) cfu/g and was the largest in the isolated bacteria, while the species of bacillus colonizing on the surface and endophyte in Stereocaulon was the most abundant. Most of the isolated bacteria were colonizing on (in) one lichen genera, but Paenibacillus taichungensis, Paenibacillus odorifer, Brevibacillus agri, Lysinibacillus xylanilyticus was respectively colonizing on (in) 2-3 lichen genera and Bacillus mycoides was colonizing on (in) Menegazzia, Cladonia Physcia, and Stereocaulon. There are species and quantity diversity of bacillus colonizing on (in) lichens.

  11. Microbial enhanced oil recovery research. Final report, Annex 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, M.M.; Gerogiou, G.

    1993-07-01

    The objective of this project was to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. An order of magnitude analysis indicated that selective plugging and the production of biosurfactants are the two most likely mechanisms for the mobilization of oil in microbial enhanced oil recovery (MEOR). The latter, biosurfactant production, is easier to control within a reservoir environment and was investigated in some detail. An extensive literature survey indicated that the bacterium Bacillus licheniformis JF-2 produces a very effective surface active agent capable of increasing the capillary number to values sufficiently low for oil mobilization.more » In addition, earlier studies had shown that growth of this bacterium and biosurfactant production occur under conditions that are typically encountered in MEOR, namely temperatures up to 55{degrees}C, lack of oxygen and salinities of up to 10% w/v. The chemical structure of the surfactant, its interfacial properties and its production by fermentation were characterized in some detail. In parallel, a set of experiments as conducted to measure the transport of Bacillus licheniformis JF-2 in sandpacks. It was shown that the determining parameters for cell transport in porous media are: cell size and degree of coagulation, presence of dispersants, injection velocity and cell concentration. The mechanisms of bacteria retention within the pores of the reservoir were analyzed based on heuristic arguments. A mathematical simulator of MEOR was developed using conservation equations in which the mechanisms of bacteria retention and the growth kinetics of the cells were incorporated. The predictions of the model agreed reasonably well with experimental results.« less

  12. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer.

    PubMed

    Yin, Liang; Meng, Zhan; Zhang, Yuxiao; Hu, Kaikai; Chen, Wuya; Han, Kaibin; Wu, Bao-Yan; You, Rong; Li, Chu-Hua; Jin, Ying; Guan, Yan-Qing

    2018-02-10

    Oral drug delivery has attracted substantial attention due to its advantages over other administration routes. Bacillus spores, as oral probiotic agents, are applied widely. In this paper, a novel Bacillus spore-based oral colon targeted carrier loading curcumin was developed for colon cancer treatment. Curcumin was linked covalently with the outer coat of Bacillus spore and folate, respectively (SPORE-CUR-FA). Bacillus spores are capable of delivering drugs to the colon area through gastric barrier, taking the advantage of its tolerance to the harsh conditions and disintegration of the outer coat of spores after germination in the colon. The drug release in vitro and in vivo of SPORE-CUR-FA was investigated. Results showed that SPORE-CUR-FA had the characteristics of colon-targeted drug release. Pharmacokinetic studies confirmed that Bacillus spore-based carriers could efficiently improve the oral bioavailability of curcumin. In vitro and in vivo anti-tumor studies showed that SPORE-CUR-FA had substantial ability for inhibiting colon cancer cells. These findings suggest that this Bacillus spore-based oral drug delivery system has a great potential for the treatment of colon cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Study of the Bacillus flora of Nigerian spices.

    PubMed

    Antai, S P

    1988-05-01

    Bacteriological examination of 230 samples of five different unprocessed spices (aligator pepper, red pepper, black pepper, thyme and curry powder) collected randomly from Port Harcourt main markets revealed that the spices were highly contaminated, with bacterial counts ranging from 1.8 x 10(4) to 1.1 x 10(8) per gram. Bacillus cereus was isolated in high numbers in the majority of the 230 samples examined. It was also observed that other Bacillus spp. including B. subtilis, B. polymyxa and B. coagulans occurred in significant numbers.

  14. Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room.

    PubMed

    Vaishampayan, Parag; Probst, Alexander; Krishnamurthi, Srinivasan; Ghosh, Sudeshna; Osman, Shariff; McDowall, Alasdair; Ruckmani, Arunachalam; Mayilraj, Shanmugam; Venkateswaran, Kasthuri

    2010-05-01

    Five Gram-stain-positive, motile, aerobic strains were isolated from a clean room of the Kennedy Space Center where the Phoenix spacecraft was assembled. All strains are rod-shaped, spore-forming bacteria, whose spores were resistant to UV radiation up to 1000 J m(-2). The spores were subterminally positioned and produced an external layer. A polyphasic taxonomic study including traditional biochemical tests, fatty acid analysis, cell-wall typing, lipid analyses, 16S rRNA gene sequencing and DNA-DNA hybridization studies was performed to characterize these novel strains. 16S rRNA gene sequencing and lipid analyses convincingly grouped these novel strains within the genus Bacillus as a cluster separate from already described species. The similarity of 16S rRNA gene sequences among the novel strains was >99 %, but the similarity was only about 97 % with their nearest neighbours Bacillus pocheonensis, Bacillus firmus and Bacillus bataviensis. DNA-DNA hybridization dissociation values were <24 % to the closest related type strains. The novel strains had a G+C content 35.6+/-0.5 mol% and could liquefy gelatin but did not utilize or produce acids from any of the carbon substrates tested. The major fatty acids were iso-C(15 : 0) and anteiso-C(15 : 0) and the cell-wall diamino acid was meso-diaminopimelic acid. Based on phylogenetic and phenotypic results, it is concluded that these strains represent a novel species of the genus Bacillus, for which the name Bacillus horneckiae sp. nov. is proposed. The type strain is 1P01SC(T) (=NRRL B-59162(T) =MTCC 9535(T)).

  15. Effect of Hyperbaric Carbon Dioxide on Spores and Vegetative Cells of Bacillus stearothermophilus

    DTIC Science & Technology

    1994-05-01

    BACILLUS STEAROTHERMOPHILUS DTIC ELECTE JUN131994 D By Chester T. Roskey* Anthony Sikes *Framingham State College Framingham, MA 01701 94-18004...Spores and Vegetative Cells of Bacillus Stearothermophilus 6. AUTHOR(S) Dr. Chester T. Roskey* & Dr. Anthony Sikes 5 FUNDING NUMBERS PR: TB040...SUBJECT TERMS BACILLUS STEAROTHERMOPHILUS THERM0PHILIC BACTERIA THERM0PHILIC SPOILAGE 15. NUMBER OF PAGES 39 16 PRICE CODE 17. SECURITY

  16. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics.

    PubMed

    Sumi, Chandra Datta; Yang, Byung Wook; Yeo, In-Cheol; Hahm, Young Tae

    2015-02-01

    The rapid onset of resistance reduces the efficacy of most conventional antimicrobial drugs and is a general cause of concern for human well-being. Thus, there is great demand for a continuous supply of novel antibiotics to combat this problem. Bacteria-derived antimicrobial peptides (AMPs) have long been used as food preservatives; moreover, prior to the development of conventional antibiotics, these AMPs served as an efficient source of antibiotics. Recently, peptides produced by members of the genus Bacillus were shown to have a broad spectrum of antimicrobial activity against pathogenic microbes. Bacillus-derived AMPs can be synthesized both ribosomally and nonribosomally and can be classified according to peptide biosynthesis, structure, and molecular weight. The precise mechanism of action of these AMPs is not yet clear; however, one proposed mechanism is that these AMPs kill bacteria by forming channels in and (or) disrupting the bacterial cell wall. Bacillus-derived AMPs have potential in the pharmaceutical industry, as well as the food and agricultural sectors. Here, we focus on Bacillus-derived AMPs as a novel alternative approach to antibacterial drug development. We also provide an overview of the biosynthesis, mechanisms of action, applications, and effectiveness of different AMPs produced by members of the Bacillus genus, including several recently identified novel AMPs.

  17. Evaluation of in situ valine production by Bacillus subtilis in young pigs.

    PubMed

    Nørgaard, J V; Canibe, N; Soumeh, E A; Jensen, B B; Nielsen, B; Derkx, P; Cantor, M D; Blaabjerg, K; Poulsen, H D

    2016-11-01

    Mutants of Bacillus subtilis can be developed to overproduce Val in vitro. It was hypothesized that addition of Bacillus subtilis mutants to pig diets can be a strategy to supply the animal with Val. The objective was to investigate the effect of Bacillus subtilis mutants on growth performance and blood amino acid (AA) concentrations when fed to piglets. Experiment 1 included 18 pigs (15.0±1.1 kg) fed one of three diets containing either 0.63 or 0.69 standardized ileal digestible (SID) Val : Lys, or 0.63 SID Val : Lys supplemented with a Bacillus subtilis mutant (mutant 1). Blood samples were obtained 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding and analyzed for AAs. In Experiment 2, 80 piglets (9.1±1.1 kg) were fed one of four diets containing 0.63 or 0.67 SID Val : Lys, or 0.63 SID Val : Lys supplemented with another Bacillus subtilis mutant (mutant 2) or its parent wild type. Average daily feed intake, daily weight gain and feed conversion ratio were measured on days 7, 14 and 21. On day 17, blood samples were taken and analyzed for AAs. On days 24 to 26, six pigs from each dietary treatment were fitted with a permanent jugular vein catheter, and blood samples were taken for AA analysis 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding. In experiment 1, Bacillus subtilis mutant 1 tended (P<0.10) to increase the plasma levels of Val at 2 and 3 h post-feeding, but this was not confirmed in Experiment 2. In Experiment 2, Bacillus subtilis mutant 2 and the wild type did not result in a growth performance different from the negative and positive controls. In conclusion, results obtained with the mutant strains of Bacillus subtilis were not better than results obtained with the wild-type strain, and for both strains, the results were not different than the negative control.

  18. Current research efforts with Bacillus thuringiensis

    Treesearch

    Normand R. Dubois

    1991-01-01

    The bioassay of 260 strains of Bacillus thuringiensis (Bt) and 70 commercial preparations show that regression coefficient estimates may be as critical as LC5O estimates when evaluating them for future consideration.

  19. Surfactant-based EOR mediated by naturally occurring microorganisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, C.P.; Duvall, M.L.; Robertson, E.P.

    1993-11-01

    Oil recovery experiments using Bacillus licheniformis JF-2 (ATCC 39307) and a sucrose-based nutrient were performed with Berea sandstone cores (permeability 0.084 to 0.503 [mu]m [85 to 510 md]). Oil recovery efficiencies for four different crude oils (0.9396 to 0.8343 g/cm[sup 3] [19.1 to 38.1 [degree] API]) varied from 2.8% to 42.6% of the waterflood residual oil. Microbial systems reduced interfacial tension (IFT) [approximately]20 mN/m [[approximately]20 dyne/cm] for all oils tested. After the microbial flood experimentation, organisms were distributed throughout the core, with most cells near the outlet.

  20. Measurements of DNA Damage and Repair in Bacillus anthracis Sterne Spores by UV Radiation

    DTIC Science & Technology

    2014-09-18

    MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION...AFIT-ENP-T-14-S-01 MEASUREMENTS OF DNA DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION THESIS Presented to the... DAMAGE AND REPAIR IN BACILLUS ANTHRACIS STERNE SPORES BY UV RADIATION Chelsea C. Marcum, BS Approved

  1. Genome sequence of the thermophile Bacillus coagulans Hammer, the type strain of the species.

    PubMed

    Su, Fei; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2012-11-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans.

  2. Bacillus anthracis

    PubMed Central

    Spencer, R C

    2003-01-01

    The events of 11 September 2001 and the subsequent anthrax outbreaks have shown that the West needs to be prepared for an increasing number of terrorist attacks, which may include the use of biological warfare. Bacillus anthracis has long been considered a potential biological warfare agent, and this review will discuss the history of its use as such. It will also cover the biology of this organism and the clinical features of the three disease forms that it can produce: cutaneous, gastrointestinal, and inhalation anthrax. In addition, treatment and vaccination strategies will be reviewed. PMID:12610093

  3. Identification and Classification of bcl Genes and Proteins of Bacillus cereus Group Organisms and Their Application in Bacillus anthracis Detection and Fingerprinting▿ †

    PubMed Central

    Leski, Tomasz A.; Caswell, Clayton C.; Pawlowski, Marcin; Klinke, David J.; Bujnicki, Janusz M.; Hart, Sean J.; Lukomski, Slawomir

    2009-01-01

    The Bacillus cereus group includes three closely related species, B. anthracis, B. cereus, and B. thuringiensis, which form a highly homogeneous subdivision of the genus Bacillus. One of these species, B. anthracis, has been identified as one of the most probable bacterial biowarfare agents. Here, we evaluate the sequence and length polymorphisms of the Bacillus collagen-like protein bcl genes as a basis for B. anthracis detection and fingerprinting. Five genes, designated bclA to bclE, are present in B. anthracis strains. Examination of bclABCDE sequences identified polymorphisms in bclB alleles of the B. cereus group organisms. These sequence polymorphisms allowed specific detection of B. anthracis strains by PCR using both genomic DNA and purified Bacillus spores in reactions. By exploiting the length variation of the bcl alleles it was demonstrated that the combined bclABCDE PCR products generate markedly different fingerprints for the B. anthracis Ames and Sterne strains. Moreover, we predict that bclABCDE length polymorphism creates unique signatures for B. anthracis strains, which facilitates identification of strains with specificity and confidence. Thus, we present a new diagnostic concept for B. anthracis detection and fingerprinting, which can be used alone or in combination with previously established typing platforms. PMID:19767469

  4. Propensity for biofilm formation by aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders.

    PubMed

    Sadiq, Faizan A; Flint, Steve; Yuan, Lei; Li, Yun; Liu, TongJie; He, GuoQing

    2017-12-04

    Biofilms on the surface of dairy manufacturing plants are potential reservoirs of microbial contamination. These microbial aggregates may harbour pathogenic and spoilage organisms which contaminate dairy products. The biofilm forming capacity of many spore forming isolates of dairy origin has not been given much attention. The present study explored the biofilm forming potential of 148 isolates, comprising mesophilic and thermophilic bacteria, with particular emphasis on Bacillus licheniformis on polystyrene and stainless steel (SS) surfaces. We concluded that only four species are of significance for biofilm development on the surface of SS in the presence of skimmed milk, namely, B. licheniformis, Geobacillus stearothermophilus, Geobacillus thermoleovorans group and Anoxybacillus flavithermus. The maximum number of cells recovered from the biofilms developed on SS coupons in the presence of skimmed milk for these four species was as follows: 4.8, 5.2, 4.5 and 5.3logCFU/cm 2 , respectively. Number of cells recovered from biofilms on 1cm 2 SS coupons increased in the presence of tryptic soy broth (TSB) for all mesophiles including B. licheniformis, while decreased for G. stearothermophilus, G. thermoleovorans group and A. flavithermus. The crystal violet staining assay on polystyrene proved to be inadequate to predict cell counts on SS for the bacteria tested in our trial in the presence of either TSB or skimmed milk. The results support the idea that biofilm formation is an important part of bacterial survival strategy as only the most prevalent isolates from milk powders formed good biofilms on SS in the presence of skimmed milk. Biofilm formation also proved to be a strain-dependent characteristic and interestingly significant variation in biofilm formation was observed within the same RAPD groups of B. licheniformis which supports the previously reported genetic and phenotypic heterogeneity within the same RAPD based groups. The work reported in this manuscript

  5. Genome Sequence of the Thermophile Bacillus coagulans Hammer, the Type Strain of the Species

    PubMed Central

    Su, Fei; Tao, Fei; Tang, Hongzhi

    2012-01-01

    Here we announce a 3.0-Mb assembly of the Bacillus coagulans Hammer strain, which is the type strain of the species within the genus Bacillus. Genomic analyses based on the sequence may provide insights into the phylogeny of the species and help to elucidate characteristics of the poorly studied strains of Bacillus coagulans. PMID:23105047

  6. Bacillus kyonggiensis sp. nov., isolated from soil of a lettuce field.

    PubMed

    Dong, Ke; Lee, Sangseob

    2011-10-01

    A Gram-positive, rod-shaped, motile, endospore-forming bacterial strain, designated NB22(T), was isolated from soil of a lettuce field in Kyonggi province, South Korea, and was characterized by using a polyphasic taxonomic approach. This novel isolate grew optimally at 30-37°C and pH 8-9. It grew in the presence of 0-4% NaCl (optimum, 1-2%). Comparative 16S rRNA gene sequence analysis showed that strain NB22(T) was closely related to members of the genus Bacillus and fell within a coherent cluster comprising B. siralis 171544(T) (98.1%) and B. korlensis ZLC-26(T) (97.3%). The levels of 16S rRNA gene sequence similarity with respect to other Bacillus species with validly published names were less than 96.4%. Strain NB22(T) had a genomic DNA G+C content of 36.3 mol% and the predominant respiratory quinone was MK-7. The peptidoglycan contained meso-diaminopimelic acid. The major cellular fatty acids were iso-C(15:0), anteiso-C(15:0), C(14:0), and C(16:0). These chemotaxonomic results supported the affiliation of strain NB22(T) to the genus Bacillus, and the low DNA-DNA relatedness values and distinguishing phenotypic characteristics allowed genotypic and phenotypic differentiation of strain NB22(T) from recognized Bacillus species. On the basis of the evidence presented, strain NB22(T) is considered to represent a novel species of the genus Bacillus, for which the name Bacillus kyonggiensis sp. nov. is proposed. The type strain is NB22(T) (=KEMB 5401-267(T) =JCM 17569(T)).

  7. Seasonal Outbreak of Bacillus Bacteremia Associated With Contaminated Linen in Hong Kong.

    PubMed

    Cheng, Vincent C C; Chen, Jonathan H K; Leung, Sally S M; So, Simon Y C; Wong, Shuk-Ching; Wong, Sally C Y; Tse, Herman; Yuen, Kwok-Yung

    2017-05-15

    A high seasonal incidence of Bacillus bacteremia was associated with the use of contaminated hospital linens. An outbreak investigation was conducted to study the incidence and source of Bacillus bacteremia during the baseline, outbreak, and postoutbreak period from 1 January 2012 through 31 July 2016 at a university-affiliated teaching hospital in Hong Kong. Replicate organism detection and counting plates were used for microbial screening of linen samples. The Bacillus species isolated from patient and linen samples were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and were phylogenetically analyzed. During the study period, a total of 113 207 blood cultures were collected from 43 271 patients, of which 978 (0.86%) specimens from 744 (1.72%) patients were identified as Bacillus species. The incidence of Bacillus bacteremia per 10 000 patient admissions and per 10 000 patient-days was significantly higher during the summer outbreak as compared with baseline and 1 year postoutbreak after cessation of the linen supply from the designated laundry and change of laundry protocol (39.97 vs 18.21 vs 2.27; 13.36 vs 5.61 vs 0.73; P < .001). The mean total aerobic bacterial count per 100 cm2 was significantly higher among the 99 linen samples screened during the outbreak period compared to the 100 screened in the postoutbreak period (916.0 ± 641.6 vs 0.6 ± 1.6; P < .001). Blood culture isolates of Bacillus cereus group in 14 of 87 (16.1%) patients were phylogenetically associated with 9 linen sample isolates. Suboptimal conditions of hospital laundry contributed to the seasonal outbreak of Bacillus bacteremia. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  8. Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis and Other Bacteria

    DTIC Science & Technology

    2016-09-01

    The Bacillus-inoculated NSM agar plates were incubated at 35°C for at least 48 h until Gram stains revealed the presence of > 90% Bacillus spores in...longer visible in Gram stained samples. Finally, centrifugation was used to remove soluble debris from the preparation and spore concentrations were...minutes post treatment. Gram Stains . Gram stains were used to track the emergence of vegetative Bacillus cells from spores. In this assay, bacterial

  9. Sporulation of Bacillus spp. within biofilms: a potential source of contamination in food processing environments.

    PubMed

    Faille, C; Bénézech, T; Midelet-Bourdin, G; Lequette, Y; Clarisse, M; Ronse, G; Ronse, A; Slomianny, C

    2014-06-01

    Bacillus strains are often isolated from biofilms in the food industries. Previous works have demonstrated that sporulation could occur in biofilms, suggesting that biofilms would be a significant source of food contamination with spores. In this study, we investigated the properties of mono-species and mixed Bacillus biofilms and the ability of Bacillus strains to sporulate inside biofilms. Bacillus strains were able to form mono-species biofilms on stainless steel coupons, with up to 90% spores after a 48 h-incubation. These spores were highly resistant to cleaning but were easily transferred to agar, mimicking the cross-contamination of food, thereby suggesting that biofilms would be of particular concern due to a potential for Bacillus spore food contamination. This hypothesis was strengthened by the fact that Bacillus strains were able to form mixed biofilms with resident strains and that sporulation still occurred easily in these complex structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Response surface modeling for hot, humid air decontamination of materials contaminated with Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores

    PubMed Central

    2014-01-01

    Response surface methodology using a face-centered cube design was used to describe and predict spore inactivation of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores after exposure of six spore-contaminated materials to hot, humid air. For each strain/material pair, an attempt was made to fit a first or second order model. All three independent predictor variables (temperature, relative humidity, and time) were significant in the models except that time was not significant for B. thuringiensis Al Hakam on nylon. Modeling was unsuccessful for wiring insulation and wet spores because there was complete spore inactivation in the majority of the experimental space. In cases where a predictive equation could be fit, response surface plots with time set to four days were generated. The survival of highly purified Bacillus spores can be predicted for most materials tested when given the settings for temperature, relative humidity, and time. These predictions were cross-checked with spore inactivation measurements. PMID:24949256

  11. Performance of Microbial Concrete Developed Using Bacillus Subtilus JC3

    NASA Astrophysics Data System (ADS)

    Rao, M. V. Seshagiri; Reddy, V. Srinivasa; Sasikala, Ch.

    2017-12-01

    Concrete is vulnerable to deterioration, corrosion, and cracks, and the consequent damage and loss of strength requires immensely expensive remediation and repair. So need for special concrete that they would respond to crack formation with an autonomous self-healing action lead to research and development of microbial concrete. The microbial concrete works on the principle of calcite mineral precipitation by a specific group of alkali-resistant spore-forming bacteria related to the genus Bacillus called Bacillus subtilis JC3, this phenomenon is called biomineralization or Microbiologically Induced Calcite Crystal Precipitation. Bacillus subtilis JC3, a common soil bacterium, has inherent ability to precipitate calcite crystals continuously which enhances the strength and durability performance of concrete enormously. This microbial concrete can be called as a "Self healing Bacterial Concrete" because it can remediate its cracks by itself without any human intervention and would make the concrete more durable and sustainable. This paper discuss the incorporation of microorganism Bacillus subtilis JC3 (developed at JNTU, India) into concrete and presents the results of experimental investigations carried out to study the improved durability and sustainability characteristics of microbial concrete.

  12. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture...

  13. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture...

  14. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false α-Amylase enzyme preparation from Bacillus... Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture filtrate that results from a pure...

  15. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture...

  16. 21 CFR 184.1012 - α-Amylase enzyme preparation from Bacillus stearothermophilus.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false α-Amylase enzyme preparation from Bacillus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1012 α-Amylase enzyme preparation from Bacillus stearothermophilus. (a) α-Amylase enzyme preparation is obtained from the culture...

  17. 40 CFR 180.1128 - Bacillus subtilis MBI 600; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis MBI 600; exemption... FOOD Exemptions From Tolerances § 180.1128 Bacillus subtilis MBI 600; exemption from the requirement of... biofungicide Bacillus subtilis MBI 600 in or on all food commodities, including residues resulting from post...

  18. 40 CFR 180.1269 - Bacillus mycoides Isolate J: exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus mycoides Isolate J: exemption... FOOD Exemptions From Tolerances § 180.1269 Bacillus mycoides Isolate J: exemption from the requirement of a tolerance. Bacillus mycoides isolate J is temporarily exempt from the requirement of a tolerance...

  19. Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus.

    PubMed

    Tsuge, Takeharu; Hyakutake, Manami; Mizuno, Kouhei

    2015-08-01

    This review highlights the recent investigations of class IV polyhydroxyalkanoate (PHA) synthases, the newest classification of PHA synthases. Class IV synthases are prevalent in organisms of the Bacillus genus and are composed of a catalytic subunit PhaC (approximately 40 kDa), which has a PhaC box sequence ([GS]-X-C-X-[GA]-G) at the active site, and a second subunit PhaR (approximately 20 kDa). The representative PHA-producing Bacillus strains are Bacillus megaterium and Bacillus cereus; the nucleotide sequence of phaC and the genetic organization of the PHA biosynthesis gene locus are somewhat different between these two strains. It is generally considered that class IV synthases favor short-chain-length monomers such as 3-hydroxybutyrate (C4) and 3-hydroxyvalerate (C5) for polymerization, but can polymerize some unusual monomers as minor components. In Escherichia coli expressing PhaRC from B. cereus YB-4, the biosynthesized PHA undergoes synthase-catalyzed alcoholytic cleavage using endogenous and exogenous alcohols. This alcoholysis is thought to be shared among class IV synthases, and this reaction is useful not only for the regulation of PHA molecular weight but also for the modification of the PHA carboxy terminus. The novel properties of class IV synthases will open up the possibility for the design of new PHA materials.

  20. Purification and characterization of two polyhydroxyalcanoates from Bacillus cereus.

    PubMed

    Zribi-Maaloul, Emna; Trabelsi, Imen; Elleuch, Lobna; Chouayekh, Hichem; Ben Salah, Riadh

    2013-10-01

    This work aimed to study the potential of 155 strains of Bacillus sp., isolated from a collection of Tunisian microorganisms, for polyhydroxyalcanoates production. The strains were submitted to a battery of standard tests commonly used for determining bioplastic properties. The findings revealed that two of the isolates, namely Bacillus US 163 and US 177, provided red excitations at a wavelength of approximately 543 nm. The polyhydroxyalcanoates produced by the two strains were purified. Gas chromatography-mass spectroscopy (GC-MS), Fourier transformed infrared spectroscopy (FTIR), and gel permeation chromatography (GPC) were used to characterize the two biopolymers. Bacillus US 163 was noted to produce a poly methyl-3-hydroxy tetradecanoic acid (P-3HTD) with an average molecular weight of 455 kDa, a completely amorphous homopolymer without crystallinity. The US 177 strain produced a homopolymer of methyl-3-hydroxy octadecanoic acid (P3-HOD) with an average molecular weight of 555 kDa. Exhibiting the highest performance, US 163 and US 177 were submitted to 16S rRNA gene sequencing, and the results revealed that they belonged to the Bacillus cereus species. Overall, the findings indicated that the Bacilli from petroleum soil have a number of promising properties that make them promising candidates for bioplastic production. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Preparation of AN Electrode Modified with a Thermostable Enzyme BACILLUS Subtilis COTA by Electrodeposition

    NASA Astrophysics Data System (ADS)

    Watanabe, Toshio; Yamada, Yohei; Motonaka, Junko; Yabutani, Tomoki; Sakuraba, Haruhiko; Yasuzawa, Mikito

    In this study, electrodeposition of thermostable enzyme Bacillus subtilis CotA, which is a laccase and has a bilirubin oxidase (BOD) activity, was investigated. The electrodeposition was operated in a mixture of Bacillus subtilis CotA in the PBS (pH 8.0) and TritonX-100 under applying potential (1100 mV vs. Ag/AgCl for 5 min.). The current response was measured by linear sweep voltammetry technique (LSV). The thermostable enzyme Bacillus subtilis CotA electrodeposited electrode was compared with a mesophile BOD electrodeposited electrode. As a result, the Bacillus subtilis CotA modified electrode showed better sensitivity and long-term stability than the mesophile BOD modified electrode.

  2. Inactivation of Bacillus Anthracis Spores Using Carbon Nanotubes

    DTIC Science & Technology

    2014-10-30

    S1793984412300129 Marquita Lilly, Liju Yang, Kamal Aferchich. Effect of Single-walled Carbon Nanotubes on Bacillus Anthracis Cell Growth, Sporulation ...addition,  SWNTs  treatment  did  not  induce  sporulation  of B. anthracis.  [Aferichich, et al. 2012]. 2)  SWNTs  in  combination with oxidizing agents...8. Kamal Aferchich, Marquita Lilly, Liju Yang*. 2012. Effect of Single‐walled Carbon Nanotubes on  Bacillus Anthracis Cell Growth,  Sporulation , and

  3. Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies

    NASA Technical Reports Server (NTRS)

    Rossler, D.; Ludwig, W.; Schleifer, K. H.; Lin, C.; McGill, T. J.; Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.

    1991-01-01

    Comparative sequence analysis of 16S ribosomal (r)RNAs or DNAs of Bacillus alvei, B. laterosporus, B. macerans, B. macquariensis, B. polymyxa and B. stearothermophilus revealed the phylogenetic diversity of the genus Bacillus. Based on the presently available data set of 16S rRNA sequences from bacilli and relatives at least four major "Bacillus clusters" can be defined: a "Bacillus subtilis cluster" including B. stearothermophilus, a "B. brevis cluster" including B. laterosporus, a "B. alvei cluster" including B. macerans, B. maquariensis and B. polymyxa and a "B. cycloheptanicus branch".

  4. Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen peroxide gas generator.

    PubMed

    Rogers, J V; Sabourin, C L K; Choi, Y W; Richter, W R; Rudnicki, D C; Riggs, K B; Taylor, M L; Chang, J

    2005-01-01

    To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Bacillus anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to > or =1000 ppm hydrogen peroxide gas for 20 min. Hydrogen peroxide exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials except G. stearothermophilus on industrial carpet. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with both surrogates. The effectiveness of gaseous hydrogen peroxide on the growth of biological indicators and spore strips was evaluated in parallel as a qualitative assessment of decontamination. At 1 and 7 days postexposure, decontaminated biological indicators and spore strips exhibited no growth, while the nondecontaminated samples displayed growth. Significant differences in decontamination efficacy of hydrogen peroxide gas on porous and nonporous surfaces were observed when comparing the mean log reduction in B. anthracis spores with B. subtilis and G. stearothermophilus spores. These results provide comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using hydrogen peroxide gas.

  5. Expression and characterization of aiiA gene from Bacillus subtilis BS-1.

    PubMed

    Pan, Jieru; Huang, Tianpei; Yao, Fan; Huang, Zhipeng; Powell, Charles A; Qiu, Sixin; Guan, Xiong

    2008-01-01

    AHL-lactonase (AiiA), a metallo-beta-lactamase produced by Bacillus thuringiensis, Bacillus cereus and Bacillus anthracis, specifically hydrolyzes N-acyl-homoserine lactones (AHLs) secreted by Gram-negative bacteria and thereby attenuates the symptoms caused by plant pathogens. In this study, an aiiA gene was cloned from Bacillus subtilis BS-1 by PCR with a pair of degenerate primers. The deduced 250 amino acid sequence contained two small conserved regions, 103SHLHFDH109 and 166TPGHTPGH173, which are characteristic of the metallo-beta-lactamase family. Homology comparison revealed that the deduced amino acid sequence had a high degree of similarity with those of the known AiiA proteins in the B. cereus group. Additionally, the aiiA gene was expressed in Escherichia coli BL21 (DE3) pLysS and the expressed AiiA protein could attenuate the soft rot symptoms caused by Erwinia carotovora var. carotovora.

  6. 40 CFR 180.1111 - Bacillus subtilis GB03; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis GB03; exemption from... FOOD Exemptions From Tolerances § 180.1111 Bacillus subtilis GB03; exemption from the requirement of a tolerance. The biofungicide Bacillus subtilis GB03 is exempted from the requirement of a tolerance in or on...

  7. Classification of Bacillus beneficial substances related to plants, humans and animals.

    PubMed

    Mongkolthanaruk, Wiyada

    2012-12-01

    Genus Bacillus is a spore-forming bacterium that has unique properties in cell differentiation, allowing the forming of spores in stress conditions and activated in the vegetative cell, with suitable environments occurring during the life cycle acting as a trigger. Their habitat is mainly in soil; thus, many species of Bacillus are associated with plants as well as rhizosphere bacteria and endophytic bacteria. Signal transduction is the principal mechanism of interactions, both within the cell community and with the external environment, which provides the subsequent functions or properties for the cell. The antimicrobial compounds of Bacillus sp. are potentially useful products, which have been used in agriculture for the inhibition of phytopathogens, for the stimulation of plant growth, and in the food industry as probiotics. There are two systems for the synthesis of these substances: nonribosomal synthesis of cyclic lipopeptides (NRPS) and polyketides (PKS). For each group, the structures, properties, and genes of the main products are described. The different compounds described and the way in which they co-exist exhibit the relationship of Bacillus substances to plants, humans, and animals.

  8. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  9. The Hemolytic Enterotoxin HBL Is Broadly Distributed among Species of the Bacillus cereus Group

    PubMed Central

    Prüß, Birgit M.; Dietrich, Richard; Nibler, Birgit; Märtlbauer, Erwin; Scherer, Siegfried

    1999-01-01

    The prevalence of the hemolytic enterotoxin complex HBL was determined in all species of the Bacillus cereus group with the exception of Bacillus anthracis. hblA, encoding the binding subunit B, was detected by PCR and Southern analysis and was confirmed by partial sequencing of 18 strains. The sequences formed two clusters, one including B. cereus and Bacillus thuringiensis strains and the other one consisting of Bacillus mycoides, Bacillus pseudomycoides, and Bacillus weihenstephanensis strains. From eight B. thuringiensis strains, the enterotoxin gene hblA could be amplified. Seven of them also expressed the complete HBL complex as determined with specific antibodies against the L1, L2, and B components. Eleven of 16 B. mycoides strains, all 3 B. pseudomyoides strains, 9 of 15 B. weihenstephanensis strains, and 10 of 23 B. cereus strains carried hblA. While HBL was not expressed in the B. pseudomycoides strains, the molecular assays were in accordance with the immunological assays for the majority of the remaining strains. In summary, the hemolytic enterotoxin HBL seems to be broadly distributed among strains of the B. cereus group and relates neither to a certain species nor to a specific environment. The consequences of this finding for food safety considerations need to be evaluated. PMID:10584001

  10. 77 FR 2910 - Bacillus Amyloliquefaciens Strain D747; Exemption From the Requirement of a Tolerance; Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 180 [EPA-HQ-OPP-2010-0944; FRL-9334-3] Bacillus... requirement of a tolerance for residues of Bacillus amyloliquefaciens strain D747 (formerly known as Bacillus subtilis variant amyloliquefaciens strain D747). This document is being issued to correct the typographical...

  11. Controlling gastrointestinal nematodes in cattle by Bacillus species.

    PubMed

    Pinto, Natália Berne; de Castro, Leonardo Mortagua; de Almeida Capella, Gabriela; Motta, Tairan Ourique; de Souza Stori de Lara, Ana Paula; de Moura, Micaele Quintana; Berne, Maria Elisabeth Aires; Leite, Fábio Pereira Leivas

    2017-10-15

    In this study, we tested the in vitro and in vivo larvicidal activity of Bacillus species against gastrointestinal nematodes in cattle, and their viability in the presence of anthelmintics. For in vitro tests, cattle feces naturally infected with trichostrongylides were incubated with spore suspensions of Bacillus circulans (Bcir), B. thuringiensis var. osvaldocruzi (Bto), B. thuringiensis var. israelensis (Bti) or B. thuringiensis var. kurstaki (Btk). Subsequently, residual larvae were counted and identified. All of the Bacillus species showed 60% or more larvicidal effects. Bcir and Bti were selected to be incubated with anthelmintics (moxidectin, nitroxynil and levamisole), and after 24, 72, and 144h, their viability was evaluated. Bti showed highest drug resistance, maintaining a concentration of 1×10 7 CFU/mL. Based on this result, Bti was selected for in vivo tests on calves naturally infected with gastrointestinal nematodes. The calves were dived into four groups: Group 1, Bti suspension of ∼1×10 9 CFU orally administered; Group 2, Bti suspension of ∼1×10 9 CFU orally administered with levamisole (subcutaneously, 150mg); Group 3, only levamisole (subcutaneously, 150mg), and Group 4 untreated. Then 24 and 48h after treatment, larvae numbers were counted. We observed a reduction of 84%, 100%, and 100% after 48h of treatment, respectively, for Groups 1, 2 and 3 treatments in comparison with the untreated. The tested Bacillus species showed larvicidal activity against bovine trichostrongylides, and its association with anthelmintics. It may serve as a promising integrated alternative for control of gastrointestinal nematodes in cattle. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense-related terpenes in in vitro cultured grapevine.

    PubMed

    Salomon, María Victoria; Bottini, Rubén; de Souza Filho, Gonçalo Apolinário; Cohen, Ana Carmen; Moreno, Daniela; Gil, Mariana; Piccoli, Patricia

    2014-08-01

    Eleven bacterial strains were isolated at different soil depths from roots and rhizosphere of grapevines from a commercial vineyard. By 16S rRNA gene sequencing 10 different genera and 8 possible at species level were identified. From them, Bacillus licheniformis Rt4M10 and Pseudomonas fluorescens Rt6M10 were selected according to their characteristics as plant growth promoting rhizobacteria (PGPR). Both produced abscisic acid (ABA), indole-3-acetic acid (IAA) and the gibberellins A1 and A3 in chemically-defined medium. They also colonized roots of in vitro grown Vitis vinifera cv. Malbec plants. As result of bacterization ABA levels in 45 days-old in vitro plants were increased 76-fold by B. licheniformis and 40-fold by P. fluorescens as compared to controls. Both bacteria diminished plant water loss rate in correlation with increments of ABA. Twenty and 30 days post bacterization the plants incremented terpenes. The monoterpenes α-pinene, terpinolene, 4-carene, limonene, eucalyptol and lilac aldehyde A, and the sesquiterpenes α-bergamotene, α-farnesene, nerolidol and farnesol were assessed by gas chromatography-electron impact mass spectrometry analysis. α-Pinene and nerolidol were the most abundant (µg per g of tissue in plants bacterized with P. fluorescens). Only α-pinene, eucalyptol and farnesol were identified at low concentration in non-bacterized plants treated with ABA, while no terpenes were detected in controls. The results obtained along with others from literature suggest that B. licheniformis and P. fluorescens act as stress alleviators by inducing ABA synthesis so diminishing water losses. These bacteria also elicit synthesis of compounds of plant defense via an ABA independent mechanism. © 2013 Scandinavian Plant Physiology Society.

  13. Engineering of thermotolerant Bacillus coagulans for production of D(-)-lactic acid

    DOEpatents

    Wang, Qingzhao; Shanmugam, Keelnatham T; Ingram, Lonnie O

    2014-12-02

    Genetically modified microorganisms having the ability to produce D(-)-lactic acid at temperatures between 30.degree. C. and 55.degree. C. are provided. In various embodiments, the microorganisms may have the chromosomal lactate dehydrogenase (ldh) gene and/or the chromosomal acetolactate synthase (alsS) gene inactivated. Exemplary microorganisms for use in the disclosed methods are Bacillus spp., such as Bacillus coagulans.

  14. Characterization of Bacillus phage-K2 isolated from chungkookjang, a fermented soybean foodstuff.

    PubMed

    Kim, Eun Ju; Hong, Jeong Won; Yun, Na-Rae; Lee, Young Nam

    2011-01-01

    An investigation of a virulent Bacillus phage-K2 (named Bp-K2) isolated from chungkookjang (a fermented soybean foodstuff) was made. Bp-K2 differed in infectivity against a number of Bacillus subtilis strains including starter strains of chungkookjang and natto, being more infectious to Bacillus strains isolated from the chungkookjang, but much less active against a natto strain. Bp-K2 is a small DNA phage whose genome size is about 21 kb. Bp-K2 is a tailed bacteriophage with an isometric icosahedral head (50 nm long on the lateral side, 80 nm wide), a long contractile sheath (85-90 nm × 28 nm), a thin tail fiber (80-85 nm long, 10 nm wide), and a basal plate (29 nm long, 47 nm wide) with a number of spikes, but no collar. The details of the structures of Bp-K2 differ from natto phage ϕBN100 as well as other known Bacillus phages such as SPO1-like or ϕ 29-like viruses. These data suggest that Bp-K2 would be a new member of the Myoviridae family of Bacillus bacteriophages.

  15. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments.

    PubMed

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies. Bacillus species-Spores-Germination-High salinity-Salt stress-NaCl-Inhibition. Astrobiology 16, 500-512.

  16. Systematic characterization of Bacillus Genetic Stock Center Bacillus thuringiensis strains using Multi-Locus Sequence Typing.

    PubMed

    Wang, Kui; Shu, Changlong; Soberón, Mario; Bravo, Alejandra; Zhang, Jie

    2018-04-30

    The goal of this work was to perform a systematic characterization of Bacillus thuringiensis (Bt) strains from the Bacillus Genetic Stock Center (BGSC) collection using Multi-Locus Sequence Typing (MLST). Different genetic markers of 158 Bacillus thuringiensis (Bt) strains from 73 different serovars stored in the BGSC, that represented 92% of the different Bt serovars of the BGSC were analyzed, the 8% that were not analyzed were not available. In addition, we analyzed 72 Bt strains from 18 serovars available at the pubMLST bcereus database, and Bt strains G03, HBF18 and Bt185, with no H serovars provided by our laboratory. We performed a systematic MLST analysis using seven housekeeping genes (glpF, gmK, ilvD, pta, pur, pycA and tpi) and analyzed correlation of the results of this analysis with strain serovars. The 233 Bt strains analyzed were assigned to 119 STs from which 19 STs were new. Genetic relationships were established by phylogenetic analysis and showed that STs could be grouped in two major Clusters containing 21 sub-groups. We found that a significant number of STs (101 in total) correlated with specific serovars, such as ST13 that corresponded to nine Bt isolates from B. thuringiensis serovar kenyae. However, other serovars showed high genetic variability and correlated with multiple STs; for example, B. thuringiensis serovar morrisoni correlated with 11 different STs. In addition, we found that 16 different STs correlated with multiple serovars (2-4 different serovars); for example, ST12 correlated with B. thuringiensis serovar alesti, dakota, palmanyolensis and sotto/dendrolimus. These data indicated that only partial correspondence between MLST and serotyping can be established. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Contribution of Bacillus Isolates to the Flavor Profiles of Vanilla Beans Assessed through Aroma Analysis and Chemometrics.

    PubMed

    Gu, Fenglin; Chen, Yonggan; Fang, Yiming; Wu, Guiping; Tan, Lehe

    2015-10-09

    Colonizing Bacillus in vanilla (Vanilla planifolia Andrews) beans is involved in glucovanillin hydrolysis and vanillin formation during conventional curing. The flavor profiles of vanilla beans under Bacillus-assisted curing were analyzed through gas chromatography-mass spectrometry, electronic nose, and quantitative sensory analysis. The flavor profiles were analytically compared among the vanilla beans under Bacillus-assisted curing, conventional curing, and non-microorganism-assisted curing. Vanilla beans added with Bacillus vanillea XY18 and Bacillus subtilis XY20 contained higher vanillin (3.58%±0.05% and 3.48%±0.10%, respectively) than vanilla beans that underwent non-microorganism-assisted curing and conventional curing (3.09%±0.14% and 3.21%±0.15%, respectively). Forty-two volatiles were identified from endogenous vanilla metabolism. Five other compounds were identified from exogenous Bacillus metabolism. Electronic nose data confirmed that vanilla flavors produced through the different curing processes were easily distinguished. Quantitative sensory analysis confirmed that Bacillus-assisted curing increased vanillin production without generating any unpleasant sensory attribute. Partial least squares regression further provided a correlation model of different measurements. Overall, we comparatively analyzed the flavor profiles of vanilla beans under Bacillus-assisted curing, indirectly demonstrated the mechanism of vanilla flavor formation by microbes.

  18. Diversity of Bacillus-like bacterial community in the sediments of the Bamenwan mangrove wetland in Hainan, China.

    PubMed

    Liu, Min; Cui, Ying; Chen, Yuqing; Lin, Xiangzhi; Huang, Huiqin; Bao, Shixiang

    2017-03-01

    Members of the genus Bacillus and related spore-forming genera are ubiquitous. However, Bacillus-like species isolated from marine sediments have attracted less interest than their terrestrial relatives. Here, we investigated the diversity of Bacillus-like bacterial communities in the sediments of the Bamenwan mangrove wetland in Hainan, China, using culture-dependent and culture-independent methods, and present the first report on this subject. We also discovered some potential novel species from the sediment samples. Four families, Bacillaceae (58%), Paenibacillaceae (22%), Alicyclobacillaceae (15%), and Planococcaceae (5%), and 9 genera, Bacillus (42%), Paenibacillus (16%), Halobacillus (13%), Alicyclobacillus (11%), Rummeliibacillus (5%), Cohnella (5%), Tumebacillus (4%), Pontibacillus (3%), and Aneurinibacillus (2%), were identified by pyrosequencing. In contrast, only 4 genera, Bacillus (57%), Paenibacillus (23%), Halobacillus (14%), and Virgibacillus (6%), were detected by the culture-dependent method. In the 16S rDNA sequencing analysis, the isolates HB12036 and HB12037 were closest to Bacillus okuhidensis Kh10-101 T and Paenibacillus xylanilyticus XIL14 T with similarities of 94.8% and 95.9%, respectively, indicating that these were novel species. Bacillus sp. HB12035 and HB12040 exhibited antimicrobial activity against Staphylococcus aureus ATCC 25923, and Bacillus sp. HB12033 exhibited antimicrobial activity against Ustilago scitaminea Syd.

  19. Effect of corona electric field on the production of gamma-poly glutamic acid based on bacillus natto

    NASA Astrophysics Data System (ADS)

    Qi, Hong; Na, Ri; Xin, Jiletu; Jie Xie, Ya; Guo, Jiu Feng

    2013-03-01

    Bacillus Natto is an important strain for gamma-poly glutamic acid (γ-PGA) production. The mutagenesis of Bacillus Natto 20646 under corona electric field and the screening of high γ-PGA producing mutant were investigated. A new mutant bacillus natto Ndlz01 was isolated from Bacillus Natto 20646 after mutation in corona electric field at 9kV for 2min. The Ndlz01 exhibited genetic stability of high γ-PGA producing ability even after five generation cultures. When the bacterium was mutated in streamer discharge state at 9kV for 2min, its death rate was more than 90%. Compared with the yield of γ-PGA based on the original Bacillus Natto 20646, the γ-PGA yield of mutant bacillus natto Ndlz01 increased from 2.6 to 5.94 g/L, with an increase rate of 129.78%.

  20. Hyperexpression of the gene for a Bacillus alpha-amylase in Bacillus subtilis cells: enzymatic properties and crystallization of the recombinant enzyme.

    PubMed

    Ikawa, K; Araki, H; Tsujino, Y; Hayashi, Y; Igarashi, K; Hatada, Y; Hagihara, H; Ozawa, T; Ozaki, K; Kobayashi, T; Ito, S

    1998-09-01

    We have constructed a new excretion vector, pHSP64, to develop a hyperexcretion system for Bacillus subtilis [Sumitomo et al., Biosci. Biotech. Biochem., 59, 2172-2175 (1995)]. The structural gene for a novel liquefying semi-alkaline alpha-amylase from the alkaliphilic Bacillus sp. KSM-1378 was amplified by PCR. It was cloned into a SalI-SmaI site of pHSP64 and the recombinant plasmid obtained was introduced into B. subtilis. The transformed B. subtilis hyperproduced the alpha-amylase activity extracellularly, corresponding to approximately 1.0 g (5 x 10(6) units) per liter of an optimized liquid culture. The recombinant enzyme was purified to homogeneity by a simple purification procedure with very high yield. No significant differences in physiochemical and catalytic properties were observed between the recombinant enzyme and the native enzyme produced by Bacillus sp. KSM-1378. The enzymatic properties of the recombinant enzyme were further examined with respect to the responses to various metal ions. The recombinant enzyme could easily be crystallized at room temperature within one day in a buffered solution of 10% (w/v) ammonium sulfate (pH 6.5).

  1. A Comparative Study: Taxonomic Grouping of Alkaline Protease Producing Bacilli.

    PubMed

    Tekin, Nilgun; Cihan, Arzu Coleri; Karaca, Basar; Cokmus, Cumhur

    2017-03-30

    Alkaline proteases have biotechnological importance due to their activity and stability at alkaline pH. 56 bacteria, capable of growing under alkaline conditions were isolated and their alkaline protease activities were carried out at different parameters to determine their optimum alkaline protease production conditions. Seven isolates were showed higher alkaline protease production capacity than the reference strains. The highest alkaline protease producing isolates (103125 U/g), E114 and C265, were identified as Bacillus licheniformis with 99.4% and Bacillus mojavensis 99.8% based on 16S rRNA gene sequence similarities, respectively. Interestingly, the isolates identified as Bacillus safensis were also found to be high alkaline protease producing strains. Genotypic characterizations of the isolates were also determined by using a wide range of molecular techniques (ARDRA, ITS-PCR, (GTG)5-PCR, BOX-PCR). These different techniques allowed us to differentiate the alkaliphilic isolates and the results were in concurrence with phylogenetic analyses of the 16S rRNA genes. While ITS-PCR provided the highest correlation with 16S rRNA groups, (GTG)5-PCR showed the highest differentiation at species and intra-species level. In this study, each of the biotechnologically valuable alkaline protease producing isolates was grouped into their taxonomic positions with multi-genotypic analyses.

  2. Microbial enhanced oil recovery and wettability research program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is amore » significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.« less

  3. 40 CFR 180.1209 - Bacillus subtilis strain QST 713; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis strain QST 713... RESIDUES IN FOOD Exemptions From Tolerances § 180.1209 Bacillus subtilis strain QST 713; exemption from the... the microbial pesticide Bacillus subtilis strain QST 713 when used in or on all food commodities. [65...

  4. Engineering of baker's yeasts, E. coli and Bacillus hosts for the production of Bacillus subtilis Lipase A.

    PubMed

    Sánchez, Marta; Prim, Núria; Rández-Gil, Francisca; Pastor, F I Javier; Diaz, Pilar

    2002-05-05

    Lipases are versatile biocatalists showing multiple applications in a wide range of biotechnological processes. The gene lipA coding for Lipase A from Bacillus subtilis was isolated by PCR amplification, cloned and expressed in Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis strains, using pBR322, YEplac112 and pUB110-derived vectors, respectively. Lipase activity analysis of the recombinant strains showed that the gene can be properly expressed in all hosts assayed, this being the first time a lipase from bacterial origin can be expressed in baker's S. cerevisiae strains. An important increase of lipase production was obtained in heterologous hosts with respect to that of parental strains, indicating that the described systems can represent a useful tool to enhance productivity of the enzyme for biotechnological applications, including the use of the lipase in bread making, or as a technological additive. Copyright 2002 Wiley Periodicals, Inc.

  5. Growth characteristics of Bacillus anthracis compared to other Bacillus spp. on the selective nutrient media Anthrax Blood Agar and Cereus Ident Agar.

    PubMed

    Tomaso, Herbert; Bartling, Carsten; Al Dahouk, Sascha; Hagen, Ralf M; Scholz, Holger C; Beyer, Wolfgang; Neubauer, Heinrich

    2006-01-01

    Anthrax Blood Agar (ABA) and Cereus Ident Agar (CEI) were evaluated as selective growth media for the isolation of Bacillus anthracis using 92 B. anthracis and 132 other Bacillus strains from 30 species. The positive predictive values for the identification of B. anthracis on ABA, CEI, and the combination of both were 72%, 71%, and 90%, respectively. Thus, less than 10% of all species were misidentified using both nutrient media. Species which might be misidentified as B. anthracis were B. cereus, B. mycoides, and B. thuringiensis. Particularly, 30% of B. weihenstephanensis strains were misidentified as B. anthracis.

  6. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus.

    PubMed

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species.

  7. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    PubMed Central

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  8. Screening of Peptide Libraries Against Protective Antigen of Bacillus Anthracis in a Disposable Microfluidic Cartridge

    DTIC Science & Technology

    2011-11-28

    New Reprint Screening of Peptide Libraries against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge W911NF-09-D-0001...against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge Report Title ABSTRACT See attached. Screening of Peptide...Libraries against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge Joshua M. Kogot1, Yanting Zhang2, Stephen J. Moore3

  9. Phylogenomic analysis shows that ‘Bacillus vanillea’ is a later heterotypic synonym of Bacillus siamensis

    USDA-ARS?s Scientific Manuscript database

    Bacillus vanillea’ XY18T (=CGMCC 8629 T =NCCB 100507 T) was isolated from cured vanilla beans and involved in the formation of vanilla aroma compounds. A draft genome of this type strain was assembled and yielded a length of 3.72 Mbp and a GC content of 46.3%. Comparative genomic analysis with its ...

  10. Bacillus "next generation" diagnostics: moving from detection toward subtyping and risk-related strain profiling.

    PubMed

    Ehling-Schulz, Monika; Messelhäusser, Ute

    2013-01-01

    The highly heterogeneous genus Bacillus comprises the largest species group of endospore forming bacteria. Because of their ubiquitous nature, Bacillus spores can enter food production at several stages resulting in significant economic losses and posing a potential risk to consumers due the capacity of certain Bacillus strains for toxin production. In the past, food microbiological diagnostics was focused on the determination of species using conventional culture-based methods, which are still widely used. However, due to the extreme intra-species diversity found in the genus Bacillus, DNA-based identification and typing methods are gaining increasing importance in routine diagnostics. Several studies showed that certain characteristics are rather strain-dependent than species-specific. Therefore, the challenge for current and future Bacillus diagnostics is not only the efficient and accurate identification on species level but also the development of rapid methods to identify strains with specific characteristics (such as stress resistance or spoilage potential), trace contamination sources, and last but not least discriminate potential hazardous strains from non-toxic strains.

  11. Bacillus thermotolerans sp. nov., a thermophilic bacterium capable of reducing humus.

    PubMed

    Yang, Guiqin; Zhou, Xuemei; Zhou, Shungui; Yang, Dehui; Wang, Yueqiang; Wang, Dingmei

    2013-10-01

    A novel thermotolerant bacterium, designated SgZ-8(T), was isolated from a compost sample. Cells were non-motile, endospore-forming, Gram-staining positive, oxidase-negative and catalase-positive. The isolate was able to grow at 20-65 °C (optimum 50 °C) and pH 6.0-9.0 (optimum 6.5-7.0), and tolerate up to 9.0 % NaCl (w/v) under aerobic conditions. Anaerobic growth occurred with anthraquinone-2,6-disulphonate (AQDS), fumarate and NO3(-) as electron acceptors. Phylogenetic analysis based on the16S rRNA and gyrB genes grouped strain SgZ-8(T) into the genus Bacillus, with the highest similarity to Bacillus badius JCM 12228(T) (96.2 % for 16S rRNA gene sequence and 83.5 % for gyrB gene sequence) among all recognized species in the genus Bacillus. The G+C content of the genomic DNA was 49.3 mol%. The major isoprenoid quinone was menaquinone 7 (MK-7) and the polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major cellular fatty acid was iso-C16 : 0. On the basis of its phenotypic and phylogenetic properties, chemotaxonomic analysis and the results of physiological and biochemical tests, strain SgZ-8(T) ( = CCTCC AB 2012108(T) = KACC 16706(T)) was designated the type strain of a novel species of the genus Bacillus, for which the name Bacillus thermotolerans sp. nov. is proposed.

  12. Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities.

    PubMed

    Chauhan, Ankit Kumar; Maheshwari, Dinesh Kumar; Kim, Kangmin; Bajpai, Vivek K

    2016-10-01

    Bacillus strains were isolated from termitarium soil and screened for their antifungal activity through the production of diffusible and volatile metabolites. Further, the bacterial strains that showed antifungal activity were evaluated for their biocontrol potential on the basis of their plant-growth-promoting attributes. Termitarium-inhabiting Bacillus strains TSH42 and TSH77 significantly reduced the growth of pathogenic fungus Fusarium solani, controlled the symptoms of rhizome rot in turmeric (Curcuma longa L.), and demonstrated various plant-growth-promoting traits in different in vitro assays. On the basis of morphological, physiological, biochemical, and 16S rDNA characteristics, isolates TSH42 and TSH77 were identified as Bacillus endophyticus (KT379993) and Bacillus cereus (KT379994), respectively. Through liquid chromatography - mass spectrometry analysis, acidified cell-free culture filtrate (CFCF) of B. cereus TSH77 was shown to contain surfactin and fengycin, while CFCF of B. endophyticus TSH42 contained iturin in addition to surfactin and fengycin. Treatment of the turmeric (C. longa L.) plants with TSH42 and TSH77 significantly reduced the percentage incidence of rhizome rot disease caused by F. solani. The same treatment also increased the fresh rhizome biomass and plant growth in greenhouse conditions.

  13. Lead (Pb) bioaccumulation; genera Bacillus isolate S1 and SS19 as a case study

    NASA Astrophysics Data System (ADS)

    Arifiyanto, Achmad; Apriyanti, Fitria Dwi; Purwaningsih, Puput; Kalqutny, Septian Hary; Agustina, Dyah; Surtiningsih, Tini; Shovitri, Maya; Zulaika, Enny

    2017-06-01

    Lead (Pb) includes a group of large heavy metal in nature was toxic either on animal or human and did not provide an advantage function biologically. Bacillus isolates S1 and SS19 known resistant to lead up to 50 mg / L PbCl2. In this research will be examined whether genera Bacillus isolates S1 and SS19 could accumulate metal lead (Pb), their capability in accumulating and profile protein differences when the bacteria genera Bacillus isolates S1 and SS19 get exposed metal lead (Pb). Inoculum at age ± 9 hours are used, with a Nutrient Broth (NB) containing 50, 75 and 100 mg / L PbCl2. Inductively Coupled Plasma Atomic Emission Spectrometry (ICP) used to assessed Pb2+ concentrations. Bioaccumulation levels of Pb2+ by Bacillus isolate S1 and SS19 related to the distinction of beginning concentration to the final concentration. Bacillus isolate S1 achieved 53% and 51% bioaccumulation efficiency rate in lead presence concentration (75 and 100 mg/L) and 51% (50 mg/L). Another way Bacillus isolate SS19 was able to accumulate 57% (50 mg/L PbCl2) and kept stable on 36% bioaccumulation efficiency rate (75 and 100 mg/L PbCl2). Regarding SDS-PAGE electrophoresis protein profile result, protein in ± 127 kDa, molecule mass detected in the presence of Lead for Bacillus isolate S1.

  14. Safety assessment of the use of Bacillus-based cleaning products.

    PubMed

    Berg, Ninna W; Evans, Matthew R; Sedivy, John; Testman, Robert; Acedo, Kimon; Paone, Domenic; Long, David; Osimitz, Thomas G

    2018-06-01

    Non-pathogenic Bacillus species used in cleaning products produce the appropriate enzymes to degrade stains and soils. However, there is little scientific data regarding the human exposure by inhalation of Bacillus spores during or after use of microbial-based cleaning products. Herein, air samples were collected at various locations in a ventilated, carpeted, residential room to determine the air concentration of viable bacteria and spores during and after the application of microbial-based carpet cleaning products containing Bacillus spores. The influence of human activities and vacuuming was investigated. Bioaerosol levels associated with use and post-application activities of whole room carpet treatments were elevated during post-application activity, but quickly returned to the indoor background range. Use of trigger spray spot applications generated aerosolized spores in the immediate vicinity, however, their use pattern and the generation of mostly non-respirable particles suggest minimal risks for pulmonary exposure from their use. The aerosol counts associated with use of these microbial-based cleaners were below the recommendation for safe exposure levels to non-pathogenic and non-toxigenic microorganisms except during application of the spot cleaner. The data presented suggest that carpet cleaning products, containing non-pathogenic Bacillus spores present a low potential for inhalation exposure and consequently minimal risk of adverse effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Production of the antimicrobial peptides Caseicin A and B by Bacillus isolates growing on sodium caseinate.

    PubMed

    Kent, R M; Guinane, C M; O'Connor, P M; Fitzgerald, G F; Hill, C; Stanton, C; Ross, R P

    2012-08-01

    The aim of this study was to identify Bacillus isolates capable of degrading sodium caseinate and subsequently to generate bioactive peptides with antimicrobial activity. Sodium caseinate (2.5% w/v) was inoculated separately with 16 Bacillus isolates and allowed to ferment overnight. Protein breakdown in the fermentates was analysed using gel permeation-HPLC (GP-HPLC) and screened for peptides (<3-kDa) with MALDI-TOF mass spectrometry. Caseicin A (IKHQGLPQE) and caseicin B (VLNENLLR), two previously characterized antimicrobial peptides, were identified in the fermentates of both Bacillus cereus and Bacillus thuringiensis isolates. The caseicin peptides were subsequently purified by RP-HPLC and antimicrobial assays indicated that the peptides maintained the previously identified inhibitory activity against the infant formula pathogen Cronobacter sakazakii. We report a new method using Bacillus sp. to generate two previously characterized antimicrobial peptides from casein. This study highlights the potential to exploit Bacillus sp. or the enzymes they produce for the generation of bioactive antimicrobial peptides from bovine casein. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  16. A silica sands-based method for faithful analysis of microbial communities and DNA isolation from a wide range of species.

    PubMed

    Liu, Xia; Xu, Yongdong; Li, Zhi; Jiang, Shengwei; Yao, Shuo; Wu, Rina; An, Yingfeng

    2018-04-21

    A silica sands-based method has been developed to isolate high quality genomic DNAs from cells of animals, plants and microorganisms, such as Hemisalanx prognathus, Spinacia oleracea, Pichia pastoris, Bacillus licheniformis and Escherichia coli. To the best of our knowledge, no DNA isolation method has so wide application until now. In addition, this method and a commercially available kit were compared in analysis of microbial communities using high-throughput 16s rDNA sequencing. As a result, the silica sands-based method was found to be even more efficient in isolating genomic DNA from gram-positive bacteria than the kit, indicating that it would become a very valuable choice to faithfully reflect the composition of microbial communities.

  17. Bacillus cereus causing fulminant sepsis and hemolysis in two patients with acute leukemia.

    PubMed

    Arnaout, M K; Tamburro, R F; Bodner, S M; Sandlund, J T; Rivera, G K; Pui, C H; Ribeiro, R C

    1999-01-01

    Hemolysis is so rarely associated with Bacillus cereus sepsis that only two very well documented cases have been reported. This article reports two unusual cases of Bacillus cereus sepsis with massive intravascular hemolysis in patients who had acute lymphoblastic leukemia (ALL). A 20-year-old woman who was 9 weeks pregnant experienced a relapse of ALL. A therapeutic abortion was performed. During week 4 of reinduction the patient had abdominal pain, nausea, and vomiting, with severe neutropenia but no fever. Her condition deteriorated rapidly with cardiovascular collapse, acute massive intravascular hemolysis, and death within hours of the onset of symptoms. Blood cultures were positive for Bacillus cereus. Postmortem histologic examination and cultures revealed Bacillus cereus and Candida albicans in multiple organs. The second patient, a 10-year-old girl, presented with relapsed T-cell ALL. In the second week of reinduction, she had abdominal pain followed by hypotension. Again, no fever was noted. Laboratory studies showed intravascular hemolysis 12 hours after admission. Aggressive support was promptly initiated. Despite disseminated intravascular coagulation; cardiovascular, hepatic, and renal failure; and multiple intracerebral hypodense lesions believed to be infarcts, the patient recovered fully and resumed reinduction therapy. Bacillus cereus infection can have a fulminant clinical course that may be complicated by massive intravascular hemolysis. This pathogen should be suspected in immunosuppressed patients who experience gastrointestinal symptoms and should not be precluded by the absence of fever, especially if steroids such as dexamethasone are being given. Exchange transfusion may be lifesaving in Bacillus cereus septicemia associated with massive hemolysis.

  18. Genetic and Physiological Studies of Bacillus anthracis Related to Development of an Improved Vaccine

    DTIC Science & Technology

    1987-07-01

    nontransformable Bacillus species such as B. anthracis. Our results suggest that plasmid pLS20 of Bacillus subtilis ( natto ), which promotes transfer of the...mobilizing pBC16, pLS20 mediates transfer of the B. subtills ( natto ) plasmid pLS19 and the Staphylococcus aureus plasmid pUB110. To facilitate direct...and (v) transformation of B. cereus and B. anthracis with plasmid DNA. The 55-kb plasmid, pLS20, of Bacillus subtilis ( natto ) 3335 promotes tr msfer

  19. 40 CFR 180.1243 - Bacillus subtilis var. amyloliquefaciens strain FZB24; exemption from the requirement of a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis var... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1243 Bacillus subtilis... the requirement of a tolerance for residues of the Bacillus subtilis var. amyloliquefaciens strain...

  20. Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes.

    PubMed

    Dick, Gregory J; Lee, Yifan E; Tebo, Bradley M

    2006-05-01

    Microbial oxidation and precipitation of manganese at deep-sea hydrothermal vents are important oceanic biogeochemical processes, yet nothing is known about the types of microorganisms or mechanisms involved. Here we report isolation of a number of diverse spore-forming Mn(II)-oxidizing Bacillus species from Guaymas Basin, a deep-sea hydrothermal vent environment in the Gulf of California, where rapid microbially mediated Mn(II) oxidation was previously observed. mnxG multicopper oxidase genes involved in Mn(II) oxidation were amplified from all Mn(II)-oxidizing Bacillus spores isolated, suggesting that a copper-mediated mechanism of Mn(II) oxidation could be important at deep-sea hydrothermal vents. Phylogenetic analysis of 16S rRNA and mnxG genes revealed that while many of the deep-sea Mn(II)-oxidizing Bacillus species are very closely related to previously recognized isolates from coastal sediments, other organisms represent novel strains and clusters. The growth and Mn(II) oxidation properties of these Bacillus species suggest that in hydrothermal sediments they are likely present as spores that are active in oxidizing Mn(II) as it emerges from the seafloor.

  1. 14C Analysis of Protein Extracts from Bacillus Spores

    PubMed Central

    Cappucio, Jenny A.; Sarachine Falso, Miranda J.; Kashgarian, Michaele; Buchholz, Bruce A.

    2014-01-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F14C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F14C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F14C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F14C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their 14C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate 14C bomb-pulse dating. Since media is contemporary, 14C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. PMID:24814329

  2. 14C Analysis of protein extracts from Bacillus spores.

    PubMed

    Cappuccio, Jenny A; Falso, Miranda J Sarachine; Kashgarian, Michaele; Buchholz, Bruce A

    2014-07-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Inactivation of Geobacillus stearothermophilus Spores by High-Pressure Carbon Dioxide Treatment

    PubMed Central

    Watanabe, Taisuke; Furukawa, Soichi; Hirata, Junichi; Koyama, Tetsuya; Ogihara, Hirokazu; Yamasaki, Makari

    2003-01-01

    High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35°C, to high-hydrostatic-pressure treatment at 200 MPa and 65°C, or to heat treatment at 0.1 MPa and 85°C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95°C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95°C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95°C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95°C was more effective than treatment at 95°C alone. PMID:14660357

  4. Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment.

    PubMed

    Watanabe, Taisuke; Furukawa, Soichi; Hirata, Junichi; Koyama, Tetsuya; Ogihara, Hirokazu; Yamasaki, Makari

    2003-12-01

    High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35 degrees C, to high-hydrostatic-pressure treatment at 200 MPa and 65 degrees C, or to heat treatment at 0.1 MPa and 85 degrees C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95 degrees C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95 degrees C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95 degrees C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95 degrees C was more effective than treatment at 95 degrees C alone.

  5. Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments

    PubMed Central

    Nicholson, Wayne L.; Munakata, Nobuo; Horneck, Gerda; Melosh, Henry J.; Setlow, Peter

    2000-01-01

    Endospores of Bacillus spp., especially Bacillus subtilis, have served as experimental models for exploring the molecular mechanisms underlying the incredible longevity of spores and their resistance to environmental insults. In this review we summarize the molecular laboratory model of spore resistance mechanisms and attempt to use the model as a basis for exploration of the resistance of spores to environmental extremes both on Earth and during postulated interplanetary transfer through space as a result of natural impact processes. PMID:10974126

  6. Genetic analysis of Bacillus stearothermophilus by protoplast fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Wojcik, S.F.; Welker, N.E.

    1986-03-01

    Efficient and reliable protoplasting, regeneration, and fusion techniques were established for the prototrophic strain Bacillus stearothermophilus NUB36. Auxotrophic mutants were isolated, and protoplast fusion was used to construct isogenic mutant strains and for chromosomal mapping. Markers were mapped using two-, three-, and four-factor crosses. The order of the markers was hom-1-thr-1-his-1-(gly-1 or gly-2)-pur-1-pur-2. These markers may be analogous to hom, thrA, hisA, glyC, and purA markers on the Bacillus subtilis chromosome. No analogous pur-1 marker has been reported in B. subtilis. The relative order of three of the markers (hom-1-thr-1-gly-1) was independently confirmed by transduction.

  7. Decontamination of materials contaminated with Bacillus anthracis and Bacillus thuringiensis Al Hakam spores using PES-Solid, a solid source of peracetic acid.

    PubMed

    Buhr, T L; Wells, C M; Young, A A; Minter, Z A; Johnson, C A; Payne, A N; McPherson, D C

    2013-08-01

    To develop test methods and evaluate survival of Bacillus anthracis Ames, B. anthracis ∆Sterne and B. thuringiensis Al Hakam spores after exposure to PES-Solid (a solid source of peracetic acid), including PES-Solid formulations with bacteriostatic surfactants. Spores (≥ 7 logs) were dried on seven different test materials and treated with three different PES-Solid formulations (or preneutralized controls) at room temperature for 15 min. There was either no spore survival or less than 1 log (<10 spores) of spore survival in 56 of 63 test combinations (strain, formulation and substrate). Less than 2.7 logs (<180 spores) survived in the remaining seven test combinations. The highest spore survival rates were seen on water-dispersible chemical agent resistant coating (CARC-W) and Naval ship topcoat (NTC). Electron microscopy and Coulter analysis showed that all spore structures were intact after spore inactivation with PES-Solid. Three PES-Solid formulations inactivated Bacillus spores that were dried on seven different materials. A test method was developed to show that PES-Solid formulations effectively inactivate Bacillus spores on different materials. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Bacillus galliciensis sp. nov., isolated from faeces of wild seahorses (Hippocampus guttulatus).

    PubMed

    Balcázar, José Luis; Pintado, José; Planas, Miquel

    2010-04-01

    A Gram-positive-staining, motile, rod-shaped, endospore-forming bacterium (BFLP-1( T)) was isolated from faeces of wild long-snouted seahorses ( Hippocampus guttulatus) captured in north-west Spain (Toralla, Galicia). Strain BFLP-1(T) grew at 10-30 degrees C and pH 5.5-9 (optimally at 20 degrees C and pH 7.2) and with 0-7 % (w/v) NaCl (optimally with 2 % NaCl). The G+C content of the DNA was 48.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BFLP-1(T) was a member of the genus Bacillus and was most closely related to Bacillus herbersteinensis D-1,5a(T) (96.6 %), B. shackletonii LMG 18435(T) (96.0 %) and B. isabeliae CVS-8(T) (95.9 %). Chemotaxonomic data (peptidoglycan type, meso-diaminopimelic acid; major menaquinone, MK-7; predominant fatty acids, anteiso-C(15 : 0 ), anteiso-C(17 : 0) and C(16 : 1 )omega11c; major polar lipids, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown aminoglycophospholipid) supported the affiliation of strain BFLP-1(T) to the genus Bacillus . Comparative analysis of 16S rRNA gene sequences and chemotaxonomic and phenotypic features indicated that strain BFLP-1(T) represents a novel species within the genus Bacillus, for which the name Bacillus galliciensis sp. nov. is proposed. The type strain is BFLP-1( T) (=DSM 21539(T) =LMG 24668(T)).

  9. Effects of a probiotic intervention in acute canine gastroenteritis--a controlled clinical trial.

    PubMed

    Herstad, H K; Nesheim, B B; L'Abée-Lund, T; Larsen, S; Skancke, E

    2010-01-01

    To evaluate the effect of a probiotic product in acute self-limiting gastroenteritis in dogs. Thirty-six dogs suffering from acute diarrhoea or acute diarrhoea and vomiting were included in the study. The trial was performed as a randomised, double blind and single centre study with stratified parallel group design. The animals were allocated to equal looking probiotic or placebo treatment by block randomisation with a fixed block size of six. The probiotic cocktail consisted of thermo-stabilised Lactobacillus acidophilus and live strains of Pediococcus acidilactici, Bacillus subtilis, Bacillus licheniformis and Lactobacillus farciminis. The time from initiation of treatment to the last abnormal stools was found to be significantly shorter (P = 0.04) in the probiotic group compared to placebo group, the mean time was 1.3 days and 2.2 days, respectively. The two groups were found nearly equal with regard to time from start of treatment to the last vomiting episode. The probiotic tested may reduce the convalescence time in acute self-limiting diarrhoea in dogs.

  10. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    PubMed

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance.

  11. Effect of boiling and roasting on the fermentation of soybeans into dawadawa (soy-dawadawa).

    PubMed

    Dakwa, Sarah; Sakyi-Dawson, Esther; Diako, Charles; Annan, Nana Takyiwa; Amoa-Awua, Wisdom Kofi

    2005-09-25

    Soybeans which had initially been dehulled by either boiling (boiled/dehulled) or roasting (roasted/dehulled) before peeling, were cooked and fermented into dawadawa, a traditional food condiment. The micropopulation, enzymatic activities, proximate composition, amino acid, and aroma profiles of the two types of soybean dawadawa were evaluated during fermentation. Only minor differences were found in the microbial profiles of the two types of soy-dawadawa. Although boiled/dehulled soy-dawadawa initially had lower microbial counts, it recorded higher counts at the advanced stages of fermentation. Proteolytic and amylolytic Bacillus species including Bacillus subtilis, Bacillus pumilus, Bacillus licheniformis, Bacillus cereus, and Bacillus firmus dominated the micropopulation of the two types of soy-dawadawa with Bacillus subtilis accounting for about 50% of the Bacillus species in all samples. Lactic acid bacteria and yeasts occurred in low numbers in the two types of soy-dawadawa. The proximate composition of the two types of soy-dawadawa were similar, and their contents of moisture and protein increased whilst fat and ash decreased during fermentation. Both types of fermenting soy-dawadawa recorded similar levels of alpha-amylase activity, but boiled/dehulled soy-dawadawa showed slightly higher protease activity. The levels of isoleucine, leucine, lysine, phenylalanine, arginine and proline increased significantly with fermentation time in both types of soy-dawadawa. With respect to differences in their aroma profiles, hexanodecanol, octadecyl acetate, 1,2-dimethyl benzene, tetradecene, (E)-5-eicosene, cyclohexadecane, and hexacosane were found only in the roasted/dehulled samples, whilst 1,2-ethanediol, ethyl acetate, dimethyl disulfide, cyclotetradecane, decene, indole , 2 butyl-octenal, acetophenone, and toluene were found only in the boiled/dehulled samples. A market focus group showed preference for roasted/dehulled soy-dawadawa over boiled/dehulled soy

  12. Formaldehyde gas inactivation of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials.

    PubMed

    Rogers, J V; Choi, Y W; Richter, W R; Rudnicki, D C; Joseph, D W; Sabourin, C L K; Taylor, M L; Chang, J C S

    2007-10-01

    To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using formaldehyde gas. B. anthracis, B. subtilis, and G. stearothermophilus spores were dried on seven types of indoor surfaces and exposed to approx. 1100 ppm formaldehyde gas for 10 h. Formaldehyde exposure significantly decreased viable B. anthracis, B. subtilis, and G. stearothermophilus spores on all test materials. Significant differences were observed when comparing the reduction in viable spores of B. anthracis with B. subtilis (galvanized metal and painted wallboard paper) and G. stearothermophilus (industrial carpet and painted wallboard paper). Formaldehyde gas inactivated>or=50% of the biological indicators and spore strips (approx. 1x10(6) CFU) when analyzed after 1 and 7 days. Formaldehyde gas significantly reduced the number of viable spores on both porous and nonporous materials in which the two surrogates exhibited similar log reductions to that of B. anthracis on most test materials. These results provide new comparative information for the decontamination of B. anthracis spores with surrogates on indoor surfaces using formaldehyde gas.

  13. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are exempted...

  14. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are exempted...

  15. 40 CFR 174.504 - Bacillus thuringiensis Cry1F protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacillus thuringiensis Cry1F protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.504 Bacillus thuringiensis Cry1F protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry1F protein in the food...

  16. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are exempted...

  17. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are exempted...

  18. 40 CFR 174.509 - Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacillus thuringiensis Cry3A protein...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.509 Bacillus thuringiensis Cry3A protein; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry3A protein are exempted...

  19. HtrC Is Involved in Proteolysis of YpeB during Germination of Bacillus anthracis and Bacillus subtilis Spores

    PubMed Central

    Bernhards, Casey B.; Chen, Yan; Toutkoushian, Hannah

    2014-01-01

    Bacterial endospores can remain dormant for decades yet can respond to nutrients, germinate, and resume growth within minutes. An essential step in the germination process is degradation of the spore cortex peptidoglycan wall, and the SleB protein in Bacillus species plays a key role in this process. Stable incorporation of SleB into the spore requires the YpeB protein, and some evidence suggests that the two proteins interact within the dormant spore. Early during germination, YpeB is proteolytically processed to a stable fragment. In this work, the primary sites of YpeB cleavage were identified in Bacillus anthracis, and it was shown that the stable products are comprised of the C-terminal domain of YpeB. Modification of the predominant YpeB cleavage sites reduced proteolysis, but cleavage at other sites still resulted in loss of full-length YpeB. A B. anthracis strain lacking the HtrC protease did not generate the same stable YpeB products. In B. anthracis and Bacillus subtilis htrC mutants, YpeB was partially stabilized during germination but was still degraded at a reduced rate by other, unidentified proteases. Purified HtrC cleaved YpeB to a fragment similar to that observed in vivo, and this cleavage was stimulated by Mn2+ or Ca2+ ions. A lack of HtrC did not stabilize YpeB or SleB during spore formation in the absence of the partner protein, indicating other proteases are involved in their degradation during sporulation. PMID:25384476

  20. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments

    PubMed Central

    Miller, Rachel A.; Beno, Sarah M.; Kent, David J.; Carroll, Laura M.; Martin, Nicole H.; Boor, Kathryn J.

    2016-01-01

    A facultatively anaerobic, spore-forming Bacillus strain, FSL W8-0169T, collected from raw milk stored in a silo at a dairy powder processing plant in the north-eastern USA was initially identified as a Bacillus cereus group species based on a partial sequence of the rpoB gene and 16S rRNA gene sequence. Analysis of core genome single nucleotide polymorphisms clustered this strain separately from known B. cereus group species. Pairwise average nucleotide identity blast values obtained for FSL W8-0169T compared to the type strains of existing B. cereus group species were <95 % and predicted DNA–DNA hybridization values were <70 %, suggesting that this strain represents a novel B. cereus group species. We characterized 10 additional strains with the same or closely related rpoB allelic type, by whole genome sequencing and phenotypic analyses. Phenotypic characterization identified a higher content of iso-C16 : 0 fatty acid and the combined inability to ferment sucrose or to hydrolyse arginine as the key characteristics differentiating FSL W8-0169T from other B. cereus group species. FSL W8-0169T is psychrotolerant, produces haemolysin BL and non-haemolytic enterotoxin, and is cytotoxic in a HeLa cell model. The name Bacillus wiedmannii sp. nov. is proposed for the novel species represented by the type strain FSL W8-0169T (=DSM 102050T=LMG 29269T). PMID:27520992

  1. Pathogenicity of Bacillus thuringiensis variety kurstaki to Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Zhioua, Elyes; Heyer, Klaus; Browning, M.; Ginsberg, Howard S.; LeBrun, Roger A.

    1999-01-01

    Pathogenicity of the entomopathogenic bacterium Bacillus thuringiensis var. kurstaki de Barjac & Lemille was tested against the black-legged tick, Ixodes scapularis Say. Engorged larvae dipped in a solution of 108 spores per ml showed 96% mortality, 3 wk post-infection. The LC50 value for engorged larvae (concentration required to kill 50% of ticks) was 107 spores/ml. Bacillus thuringiensis shows considerable potential as a microbial control agent for the management of Ixodes scapularis.

  2. Introduction and expression of the cry1Ac gene of Bacillus thuringiensis in a cereal-associated bacterium, Bacillus polymyxa.

    PubMed

    Sudha, S N; Jayakumar, R; Sekar, V

    1999-03-01

    The abilities of Bacillus polymyxa and Bacillus thuringiensis to survive on the rice phyllospere were compared; it was found that B. polymyxa colonizes the crop better. This study also showed that B. polymyxa inoculation to rice plants increased the shoot and the root growth of the crop. Efforts were made to introduce the cry1Ac gene of B. thuringiensis subsp. kurstaki into B. polymyxa so that the application of such transgenic B. polymyxa strains would prove to be dually beneficial to rice crops both as a biopesticide and as a biofertilizer. Immunoblot analysis of the recombinant organism containing the cry1Ac gene, strain BP113, indicated efficient expression of this gene in the heterologous host. Bioassays with the first instar larvae of the yellow stem borer of rice (Scirpophaga incertulas) revealed that the protein preparations from BP113 were toxic.

  3. Effects of Secondary Metabolites of Permafrost Bacillus sp. on Cytokine Synthesis by Human Peripheral Blood Mononuclear Cells.

    PubMed

    Kalenova, L F; Kolyvanova, S S; Bazhin, A S; Besedin, I M; Mel'nikov, V P

    2017-06-01

    We studied the effects of secondary metabolites of Bacillus sp. isolated from late Neogene permafrost on secretion of proinflammatory (TNF-α, IL-1β, IL-8, IL-2, and IFNγ) and antiinflammatory (IL-4 and IL-10) cytokines by human peripheral blood mononuclear cells. It was found that metabolites of Bacillus sp. produced more potent effect on cytokine secretion than mitogen phytohemagglutinin and metabolites of Bacillus cereus, medicinal strain IP5832. Activity of metabolites depended on the temperature of bacteria incubation. "Cold" metabolites of Bacillus sp. (isolated at -5°C) primarily induced Th1-mediated secretion of IFNγ, while "warm" metabolites (obtained at 37°C) induced Th2-mediated secretion of IL-4. The results suggest that Bacillus sp. metabolites are promising material for the development of immunomodulating drugs.

  4. Genetic Characterization of Bacillus anthracis 17 JB strain.

    PubMed

    Seyed-Mohamadi, Sakineh; Moradi Bidhendi, Soheila; Tadayon, Keyvan; Ghaderi, Rainak

    2015-06-01

    Bacillus anthracis is one of the most homogenous bacteria ever described. Some level of diversity. Bacillus anthracis 17JB is a laboratory strain It is broadly used as a challenge strain in guinea pigs for potency test of anthrax vaccine. This work describes genetic characterization of B. anthracis 17 JB strain using the SNPs and MLVA genotyping. In SNPs typing, the originally French 17JB strain represented the A.Br. 008/009 subgroup. In Levy's genotyping method, 843, 451 and 864 bp long fragments were identified at AA03, AJ03 and AA07 loci, respectively. In the vaccine manufacturer perspective these findings are much valuable on their own account, but similar research is required to extend molecular knowledge of B. anthracis epidemiology in Persia.

  5. Bacillus “next generation” diagnostics: moving from detection toward subtyping and risk-related strain profiling

    PubMed Central

    Ehling-Schulz, Monika; Messelhäusser, Ute

    2013-01-01

    The highly heterogeneous genus Bacillus comprises the largest species group of endospore forming bacteria. Because of their ubiquitous nature, Bacillus spores can enter food production at several stages resulting in significant economic losses and posing a potential risk to consumers due the capacity of certain Bacillus strains for toxin production. In the past, food microbiological diagnostics was focused on the determination of species using conventional culture-based methods, which are still widely used. However, due to the extreme intra-species diversity found in the genus Bacillus, DNA-based identification and typing methods are gaining increasing importance in routine diagnostics. Several studies showed that certain characteristics are rather strain-dependent than species-specific. Therefore, the challenge for current and future Bacillus diagnostics is not only the efficient and accurate identification on species level but also the development of rapid methods to identify strains with specific characteristics (such as stress resistance or spoilage potential), trace contamination sources, and last but not least discriminate potential hazardous strains from non-toxic strains. PMID:23440299

  6. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores

    PubMed Central

    Edmonds, Jason; Lindquist, H. D. Alan; Sabol, Jonathan; Martinez, Kenneth; Shadomy, Sean; Cymet, Tyler; Emanuel, Peter

    2016-01-01

    The release of biological agents, including those which could be used in biowarfare or bioterrorism in large urban areas, has been a concern for governments for nearly three decades. Previous incidents from Sverdlosk and the postal anthrax attack of 2001 have raised questions on the mechanism of spread of Bacillus anthracis spores as an aerosol or contaminant. Prior studies have demonstrated that Bacillus atrophaeus is easily transferred through simulated mail handing, but no reports have demonstrated this ability with Bacillus anthracis spores, which have morphological differences that may affect adhesion properties between spore and formite. In this study, equipment developed to simulate interactions across three generations of envelopes subjected to tumbling and mixing was used to evaluate the potential for cross-contamination of B. anthracis spores in simulated mail handling. In these experiments, we found that the potential for cross-contamination through letter tumbling from one generation to the next varied between generations while the presence of a fluidizer had no statistical impact on the transfer of material. Likewise, the presence or absence of a fluidizer had no statistically significant impact on cross-contamination levels or reaerosolization from letter opening. PMID:27123934

  7. Bacillus niabensis sp. nov., isolated from cotton-waste composts for mushroom cultivation.

    PubMed

    Kwon, Soon-Wo; Lee, Seon-Young; Kim, Byung-Yong; Weon, Hang-Yeon; Kim, Jung-Bong; Go, Seung-Joo; Lee, Gil-Bok

    2007-08-01

    A group of five bacilli, designated strains 4T12, 4T19(T), 5M45, 5M53 and 5T52, isolated from cotton-waste composts for mushroom cultivation, were examined. These strains were Gram-positive, aerobic, motile, spore-forming rods. 16S rRNA gene sequence analyses revealed that the isolates belonged to the genus Bacillus, showing the highest levels of similarity (approx. 96.6-96.9 %) with respect to Bacillus herbersteinensis DSM 16534(T). The values for DNA-DNA hybridization (approx. 85-96 %) among these five strains revealed that they belong to the same species. The major menaquinone present was MK-7 and the predominant cellular fatty acids were anteiso-C(15 : 0) (approx. 24.5-33.9 %) and C(16 : 0) (approx. 15.1-34.1 %). The DNA G+C contents were 37.7-40.9 mol%. On the basis of physiological, biochemical, chemotaxonomic and comparative genomic analyses, the five isolates represent a novel species of the genus Bacillus, for which the name Bacillus niabensis sp. nov. is proposed. The type strain is 4T19(T) (=KACC 11279(T) =DSM 17723(T)).

  8. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation

    PubMed Central

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress. PMID:26030352

  9. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments

    NASA Astrophysics Data System (ADS)

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies.

  10. Antagonism of Bacillus spp. isolated from marine biofilms against terrestrial phytopathogenic fungi.

    PubMed

    Ortega-Morales, B O; Ortega-Morales, F N; Lara-Reyna, J; De la Rosa-García, S C; Martínez-Hernández, A; Montero-M, Jorge

    2009-01-01

    We aimed at determining the antagonistic behavior of bacteria derived from marine biofilms against terrestrial phytopathogenic fungi. Some bacteria closely related to Bacillus mojavensis (three isolates) and Bacillus firmus (one isolate) displayed antagonistic activity against Colletotrichum gloeosporioides ATCC 42374, selected as first screen organism. The four isolates were further quantitatively tested against C. gloeosporioides, Colletotrichum fragariae, and Fusarium oxysporum on two culture media, potato dextrose agar (PDA) and a marine medium-based agar [yeast extract agar (YEA)] at different times of growth of the antagonists (early, co-inoculation with the pathogen and late). Overall antagonistic assays showed differential susceptibility among the pathogens as a function of the type of culture media and time of colonization (P < 0.05). In general, higher suppressive activities were recorded for assays performed on YEA than on PDA; and also when the antagonists were allowed to grow 24 h earlier than the pathogen. F. oxysporum was the most resistant fungus while the most sensitive was C. gloeosporioides ATCC 42374. Significant differences in antagonistic activity (P < 0.05) were found between the different isolates. In general, Bacillus sp. MC3B-22 displayed a greater antagonistic effect than the commercial biocontrol strain Bacillus subtilis G03 (Kodiak). Further incubation studies and scanning electronic microscopy revealed that Bacillus sp. MC3B-22 was able to colonize, multiply, and inhibit C. gloeosporioides ATCC 42374 when tested in a mango leaf assay, showing its potential for fungal biocontrol. Additional studies are required to definitively identify the active isolates and to determine their mode of antifungal action, safety, and biocompatibility.

  11. Distribution of phenotypes among Bacillus thuringiensis strains

    USDA-ARS?s Scientific Manuscript database

    An extensive collection of Bacillus thuringiensis isolates from around the world were phenotypically profiled using standard biochemical tests. Six phenotypic traits occurred in 20-86% of the isolates and were useful in distinguishing isolates: production of urease (U; 20.5% of isolates), hydrolysis...

  12. The Blueprint of a Minimal Cell: MiniBacillus

    PubMed Central

    Reuß, Daniel R.; Commichau, Fabian M.; Gundlach, Jan; Zhu, Bingyao

    2016-01-01

    SUMMARY Bacillus subtilis is one of the best-studied organisms. Due to the broad knowledge and annotation and the well-developed genetic system, this bacterium is an excellent starting point for genome minimization with the aim of constructing a minimal cell. We have analyzed the genome of B. subtilis and selected all genes that are required to allow life in complex medium at 37°C. This selection is based on the known information on essential genes and functions as well as on gene and protein expression data and gene conservation. The list presented here includes 523 and 119 genes coding for proteins and RNAs, respectively. These proteins and RNAs are required for the basic functions of life in information processing (replication and chromosome maintenance, transcription, translation, protein folding, and secretion), metabolism, cell division, and the integrity of the minimal cell. The completeness of the selected metabolic pathways, reactions, and enzymes was verified by the development of a model of metabolism of the minimal cell. A comparison of the MiniBacillus genome to the recently reported designed minimal genome of Mycoplasma mycoides JCVI-syn3.0 indicates excellent agreement in the information-processing pathways, whereas each species has a metabolism that reflects specific evolution and adaptation. The blueprint of MiniBacillus presented here serves as the starting point for a successive reduction of the B. subtilis genome. PMID:27681641

  13. [Pilot-scale purification of lipopeptide from marine-derived Bacillus marinus].

    PubMed

    Gu, Kangbo; Guan, Cheng; Xu, Jiahui; Li, Shulan; Luo, Yuanchan; Shen, Guomin; Zhang, Daojing; Li, Yuanguang

    2016-11-25

    This research was aimed at establishing the pilot-scale purification technology of lipopeptide from marine-derived Bacillus marinus. We studied lipopeptide surfactivity interferences on scale-up unit technologies including acid precipitation, methanol extraction, solvent precipitation, salting out, extraction, silica gel column chromatography and HZ806 macroporous absorption resin column chromatography. Then, the unit technologies were combined in a certain order, to remove the impurities gradually, and to gain purified lipopeptide finally, with high recovery rate throughout the whole process. The novel pilot-scale purification technology could effectively isolate and purify lipopeptide with 87.51% to 100% purity in hectograms from 1 ton of Bacillus marinus B-9987 fermentation broth with more than 81.73% recovery rate. The first practical hectogram production of highly purified lipopeptide derived from Bacillus marinus was achieved. With this new purification method, using complex media became possible in fermentation process to reduce the fermentation cost and scale-up the purification for lipopeptide production. For practicability and economy, foaming problem resulting from massive water evaporation was avoided in this technology.

  14. A Bacillus subtilis malate dehydrogenase gene.

    PubMed Central

    Jin, S; De Jesús-Berríos, M; Sonenshein, A L

    1996-01-01

    A Bacillus subtilis gene for malate dehydrogenase (citH) was found downstream of genes for citrate synthase and isocitrate dehydrogenase. Disruption of citH caused partial auxotrophy for aspartate and a requirement for aspartate during sporulation. In the absence of aspartate, citH mutant cells were blocked at a late stage of spore formation. PMID:8550482

  15. 77 FR 73934 - Bacillus subtilis Strain QST 713 Variant Soil; Amendment to an Exemption From the Requirement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... subtilis Strain QST 713 Variant Soil; Amendment to an Exemption From the Requirement of a Tolerance for Bacillus subtilis Strain QST 713 To Include Residues of Bacillus subtilis Strain QST 713 Variant Soil... in or on all food commodities by including residues of Bacillus subtilis strain QST 713 variant soil...

  16. Biosynthesis of silver nanoparticles by a Bacillus sp. of marine origin

    NASA Astrophysics Data System (ADS)

    Janardhanan, A.; Roshmi, T.; Varghese, Rintu T.; Soniya, E. V.; Mathew, Jyothis; Radhakrishnan, E. K.

    2013-04-01

    This study was aimed to explore the nanoparticle synthesizing properties of a silver resistant Bacillus sp. isolated from a marine water sample. The 16SrDNA sequence analysis of the isolate proved it as a Bacillus strain. Very interestingly, the isolate was found to have the ability to form intracellular silver nanoparticles at room temperature within 24 hours. This was confirmed by the UV-Vis absorption analysis which showed a peak at 430 nm corresponding to the plasmon absorbance of silver nanoparticles. Further characterization of the nanoparticles was carried out by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analysis. The presence of silver nanoparticles with the size less than 100 nm was confirmed. These particles were found to be extremely stable as confirmed by the TEM analysis after three months of purification. So, the current study is the demonstration of an efficient synthesis of stable silver nanoparticles by a marine Bacillus strain.

  17. Surfactin production by strains of Bacillus mojavensis

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis, RRC101 is an endophytic bacterium patented for control of fungal diseases in maize and other plants. DNA fingerprint analysis of the rep-PCR fragments of 35 B. mojavensis and 4 B. subtilis strains using the Diversilab genotyping system revealed genotypic distinctive strains alon...

  18. Probiotic Bacillus spp. in Soy-Curd: Nutritional, Rheological, Sensory, and Antioxidant Properties.

    PubMed

    Shobharani, P; Prakash, Maya; Halami, Prakash M

    2015-10-01

    The focus of this study was to coculture probiotic Bacillus spp. with dairy starter cultures namely, Streptococcus thermophilus and Lactobacillus bulgaricus for enhanced nutritional properties of soy-curd. Subsequently, rheological, sensory, and antioxidant properties of soy-curd along with mineral as well as fatty acid composition were analyzed. Data revealed an increase in the cell viability of probiotic Bacillus spp. on coculturing rather than as mono-culture. Proximate analysis showed higher nutritional value along with increased trace elements. UFA/SFA ratio, rheology, and sensory properties of probiotic soy-curd were in the acceptable range. Probiotic soy-curd showed higher antioxidant activity as measured by the ability to scavenge free radicals. No significant difference in the overall quality within the probiotic products was observed. However, B. flexus MCC2427 cocultured product displayed slightly better attributes than other samples. In general, the results suggest that soy-curd can be a suitable carrier for probiotic Bacillus spp. and the enhanced nutritional and antioxidant properties could be of additional advantage to combat malnutrition problem. In order to supply consumers with intriguing probiotic products for improving health benefits, several criteria including technological and functional properties should be considered as a quality control measures. Further, a meaningful level of probiotics has to be viable to exhibit beneficial effect. Hence, present work has been carried out to improve the quality of soy-curd by supplementation of probiotic Bacillus spp. These Bacillus spp. are well characterized native probiotic cultures with potential functional attributes including antimicrobial, antioxidant, anticholesterol activity (Shobharani and Halami 2014). Hence, the application of these cultures will encourage for development of food product with wider health benefits. © 2015 Institute of Food Technologists®

  19. Composite Sampling of a Bacillus anthracis Surrogate with ...

    EPA Pesticide Factsheets

    Journal Article A series of experiments were conducted to explore the utility of composite-based collection of surface samples for the detection of a Bacillus anthracis surrogate using cellulose sponge samplers on a stainless steel surface.

  20. Survival strategies of Bacillus spores in food.

    PubMed

    Stecchini, Mara Lucia; Del Torre, Manuela; Polese, Pierluigi

    2013-11-01

    Control of bacterial spores is one of the major problem in the food preservation. Spores of Bacillus genus are commonly present in different environments, including soil and the gut of insects and animals and, as a result, they can be spread to all kind of foods. Due to their high resistance properties, their complete inactivation in food is often impossible without changing the product characteristics. Surviving spores can germinate and grow out to vegetative cells, with the consequent great risk of food spoilage and food poisoning after consumption. Spores have evolved various mechanisms, including phenotypic variability, to protect themselves from a wide range of damage resulting from food preservation treatments. Even if the phenotypic heterogeneity contributes to increase the chances of survival of Bacillus spore to conventional preservation treatments, in some specific instances, an homogeneous response could be the result of a strategy adopted by the spores to increase resistance to those treatments.

  1. [Effect of carbon and nitrogen sources and complex B vitamins on the synthesis of alkaline protease by different strains of Bacillus mesentericus and Bacillus subtilis].

    PubMed

    Emtseva, T V

    1975-01-01

    The effect of different sources of carbon, nitrogen, amino acids and vitamins on the synthesis of alkaline proteases by the stock and mutant strains of Bacillus mesentericus and by the natural strain of Bacillus subtilis-12 has been investigated. The maximum synthesis of alkaline protease has been obtained in the media containing starch or its hydrolysates--dextrine and maltose as the carbon source. Ammonium phosphate and casein as the nitrogen source prove to be optimal for Bac. mesentericus and Bac. subtilis, respectively. Complex B vitamins added to the nutrient medium accelerate the enzyme synthesis 2.5-4-fold.

  2. Systematic Evaluation of Aggressive Air Sampling for Bacillus ...

    EPA Pesticide Factsheets

    Report The primary objectives of this project were to evaluate the Aggressive Air Sampling (AAS) method compared to currently used surface sampling methods and to determine if AAS is a viable option for sampling Bacillus anthracis spores.

  3. Evaluation of Surface Sampling for Bacillus Spores Using ...

    EPA Pesticide Factsheets

    Report The primary objectives of this project were to evaluate the Aggressive Air Sampling (AAS) method compared to currently used surface sampling methods and to determine if AAS is a viable option for sampling Bacillus anthracis spores.

  4. Evaluating novel synthetic compounds active against Bacillus subtilis and Bacillus cereus spores using Live imaging with SporeTrackerX.

    PubMed

    Omardien, Soraya; Ter Beek, Alexander; Vischer, Norbert; Montijn, Roy; Schuren, Frank; Brul, Stanley

    2018-06-14

    An empirical approach was taken to screen a novel synthetic compound library designed to be active against Gram-positive bacteria. We obtained five compounds that were active against spores from the model organism Bacillus subtilis and the food-borne pathogen Bacillus cereus during our population based experiments. Using single cell live imaging we were able to observe effects of the compounds on spore germination and outgrowth. Difference in sensitivity to the compounds could be observed between B. subtilis and B. cereus using live imaging, with minor difference in the minimal inhibitory and bactericidal concentrations of the compounds against the spores. The compounds all delayed the bursting time of germinated spores and affected the generation time of vegetative cells at sub-inhibitory concentrations. At inhibitory concentrations spore outgrowth was prevented. One compound showed an unexpected potential for preventing spore germination at inhibitory concentrations, which merits further investigation. Our study shows the valuable role single cell live imaging can play in the final selection process of antimicrobial compounds.

  5. An Alkalophilic Bacillus sp. Produces 2-Phenylethylamine

    PubMed Central

    Hamasaki, Nobuko; Shirai, Shinji; Niitsu, Masaru; Kakinuma, Katsumi; Oshima, Tairo

    1993-01-01

    A large amount of 2-phenylethylamine was produced in cells of alkalophilic Bacillus sp. strain YN-2000. This amine is secreted in the medium during the cell growth. The amounts of 2-phenylethylamine in both cells and medium change upon changing the pH of the medium. PMID:16349025

  6. Phosphatase activity of aerobic and facultative anaerobic bacteria.

    PubMed

    Pácová, Z; Kocur, M

    1978-10-01

    1115 strains of aerobic and facultatively anaerobic bacteria were tested for phosphatase activity by a conventional plate method and a microtest. The microtest was devised to allow results to be read after 4 h cultivation. Phosphatase activity was found in wide range of species and strains. Besides staphylococci, where the test for phosphatase is successfully used, it may be applied as one of the valuable tests for the differentiation of the following species: Bacillus cereus, B. licheniformis, Aeromonas spp., Vibrio parahaemolyticus, Actinobacillus spp., Pasteurella spp., Xanthomonas spp., Flavobacterium spp., Alteromonas putrefaciens, Pseudomonas maltophilia, Ps. cepacia, and some other species of Pseudomonas. The species which gave uniformly negative phosphatase reaction were as follows: Staph. saprophyticus, Acinetobacter calcoaceticus, Alcaligenes faecalis, and Bordetella bronchiseptica.

  7. Statistical optimization for lipase production from solid waste of vegetable oil industry.

    PubMed

    Sahoo, Rajesh Kumar; Kumar, Mohit; Mohanty, Swati; Sawyer, Matthew; Rahman, Pattanathu K S M; Sukla, Lala Behari; Subudhi, Enketeswara

    2018-04-21

    The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.

  8. Analysis of the Effects of a gerP Mutation on the Germination of Spores of Bacillus subtilis

    DTIC Science & Technology

    2012-11-01

    REPORT Analysis of the effects of a gerP mutation on the germination of spores of Bacillus subtilis 14. ABSTRACT 16. SECURITY CLASSIFICATION OF... Bacillus subtilis spores with a gerP mutation triggered spore germination via nutrient germinant receptors (GRs) slowly, although this defect was...gerP, Bacillus subtilis , dipicolinic acid Xuan Y. Butzin, Anthony J. Troiano, William H. Coleman, Keren K. Griffiths, Christopher J. Doona, Florence E

  9. Seasonal variability in size-segregated airborne bacterial particles and their characterization at different source-sites.

    PubMed

    Agarwal, Smita

    2017-05-01

    Size-segregated aerosol samplings were carried out near the potential sources of airborne biological particles i.e. at a landfill site, an agricultural field and a road side restaurant-cluster site in winter, spring and summer seasons during 2013-2015 in New Delhi. The culturable airborne bacterial (CAB) concentrations showed significant seasonal variation from higher to moderate in spring and winter seasons and lowest during summer. Highest CAB concentrations were observed at the Okhla landfill site followed by restaurant-cluster area and agriculture site. The CAB particles showed bimodal size distribution, abundant in the size ranges of 1.1-2.1, 2.1-3.3 and 4.7-5.8 μm. However, substantial concentrations were also observed in the size bins of 0.43-0.65 and <0.43 μm, which are important for cloud condensation nuclei (CCN) activity of aerosols in addition to their adverse health effects. In spring, bacterial particles were also maximized in size ranges between 5.8 and >9.0 μm. Fine mode proportions of CAB were found to be higher in winter than other two seasons. Bacterial identification was done by 16s rDNA sequencing, and most abundant identified strains were Bacillus cereus (16%), Bacillus licheniformis (11%), Bacillus thuringiensis (9%), Micrococcus sp. (7%) and Acinetobacter sp. (9%).

  10. Typing and Subtyping of 83 Clinical Isolates Purified from Surgically Implanted Silicone Feeding Tubes by Random Amplified Polymorphic DNA Amplification

    PubMed Central

    Dautle, Melanie P.; Ulrich, Ricky L.; Hughes, Thomas A.

    2002-01-01

    In this study, 83 clinical isolates purified from biofilms colonizing 18 silicone gastrostomy devices (12 “buttons” and six tubes converted to skin level devices) were selected for subtype characterization utilizing genetic analysis. The tubes, previously used for feeding, remained in place for 3 to 47 months (mean, 20.0 months) in children ranging in age from 6 months to 17 years. Classification of specific microbes using random amplified polymorphic DNA (RAPD) analysis revealed genetic similarities and differences among isolates belonging to the same genus. Both gram-positive and -negative bacteria were investigated, including 2 isolates of Bacillus brevis, 4 isolates of Bacillus licheniformis, 2 isolates of Bacillus pumilus, 3 isolates of Enterococcus durans, 19 isolates of Enterococcus faecalis, 8 isolates of Enterococcus faecium, 2 isolates of Enterococcus hirae, 7 isolates of Escherichia coli, 8 isolates of Lactobacillus plantarum, 19 isolates of Staphylococcus aureus, 2 isolates of Staphylococcus epidermidis, and 7 isolates of Staphylococcus saprophyticus. Amplified DNA fragments (amplicons) provided species-specific fingerprints for comparison by agarose gel electrophoresis. A total of 62 distinct RAPD types were categorized from the five genera studied. Typing analysis suggested cross acquisition of E. coli, E. faecalis, and S. aureus in three patient pairs. Genomic polymorphism detection proved efficient and reliable for classifying bacterial subtypes isolated from biofilms adhering to various portions of commonly employed enteral access tubes. PMID:11825951

  11. Characterization of microbial contamination in United States Air Force aviation fuel tanks.

    PubMed

    Rauch, Michelle E; Graef, Harold W; Rozenzhak, Sophie M; Jones, Sharon E; Bleckmann, Charles A; Kruger, Randell L; Naik, Rajesh R; Stone, Morley O

    2006-01-01

    Bacteria and fungi, isolated from United States Air Force (USAF) aviation fuel samples, were identified by gas chromatograph fatty acid methyl ester (GC-FAME) profiling and 16S or 18S rRNA gene sequencing. Thirty-six samples from 11 geographically separated USAF bases were collected. At each base, an above-ground storage tank, a refueling truck, and an aircraft wing tank were sampled at the lowest sample point, or sump, to investigate microbial diversity and dispersion within the fuel distribution chain. Twelve genera, including four Bacillus species and two Staphylococcus species, were isolated and identified. Bacillus licheniformis, the most prevalent organism isolated, was found at seven of the 11 bases. Of the organisms identified, Bacillus sp., Micrococcus luteus, Sphinogmonas sp., Staphylococcus sp., and the fungus Aureobasidium pullulans have previously been isolated from aviation fuel samples. The bacteria Pantoea ananatis, Arthrobacter sp., Alcaligenes sp., Kocuria rhizophilia, Leucobacter komagatae, Dietza sp., and the fungus Discophaerina fagi have not been previously reported in USAF aviation fuel. Only at two bases were the same organisms isolated from all three sample points in the fuel supply distribution chain. Isolation of previously undocumented organisms suggests either, changes in aviation fuel microbial community in response to changes in aviation fuel composition, additives and biocide use, or simply, improvements in isolation and identification techniques.

  12. Reclassification of Bacillus beijingensis Qiu et al. 2009 and Bacillus ginsengi Qiu et al. 2009 as Bhargavaea beijingensis comb. nov. and Bhargavaea ginsengi comb. nov. and emended description of the genus Bhargavaea.

    PubMed

    Verma, Pankaj; Pandey, Prashant Kumar; Gupta, Arvind Kumar; Seong, Chi Nam; Park, Seong Chan; Choe, Han Na; Baik, Keun Sik; Patole, Milind Shivaji; Shouche, Yogesh Shreepad

    2012-10-01

    We have carried out a polyphasic taxonomic characterization of Bacillus beijingensis DSM 19037(T) and Bacillus ginsengi DSM 19038(T), which are closely related phylogenetically to Bhargavaea cecembensis LMG 24411(T). All three strains are Gram-stain-positive, non-motile, moderately halotolerant and non-spore-forming. 16S rRNA gene sequence analyses showed that the strains constituted a coherent cluster, with sequence similarities between 99.7 and 98.7 %. The percentage similarity on the basis of amino acid sequences deduced from partial gyrB gene nucleotide sequences of these three type strains was 96.1-92.7 %. Phylogenetic trees based on the 16S rRNA gene and GyrB amino acid sequences, obtained by using three different algorithms, were consistent and showed that these three species constituted a deeply rooted cluster separated from the clades represented by the genera Bacillus, Planococcus, Planomicrobium, Sporosarcina, Lysinibacillus, Viridibacillus, Kurthia and Geobacillus, supporting their placement in the genus Bhargavaea. All three type strains have menaquinone MK-8 as the major respiratory quinone and showed similar fatty acid profiles. The main polar lipids present in the three type strains were diphosphatidylglycerol and phosphatidylglycerol, and the three strains showed peptidoglycan type A4α with L-lysine as the diagnostic diamino acid. The DNA G+C contents of Bacillus beijingensis DSM 19037(T), Bacillus ginsengi DSM 19038(T) and Bhargavaea cecembensis LMG 24411(T) were 53.1, 50.2 and 53.7 mol%, respectively. The level of DNA-DNA hybridization among the three strains was 57-39 %, indicating that they are members of different species of the genus Bhargavaea. The phenotypic data are consistent with the placement of these three species in a single genus and support their differentiation at the species level. On the basis of these data, we have emended the description of the genus Bhargavaea and propose the reclassification of Bacillus beijingensis

  13. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  14. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  15. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  16. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  17. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1107 Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of...

  18. Development of an aerosol surface inoculation method for bacillus spores.

    PubMed

    Lee, Sang Don; Ryan, Shawn P; Snyder, Emily Gibb

    2011-03-01

    A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 10(7) CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies.

  19. Protocol for Detection of Bacillus anthracis in Environmental Samples

    EPA Pesticide Factsheets

    This pProtocol Method describes proceduresintended for the analyses of swabs, wipes, Sponge-Sticks, vacuum socks and filters, air filters, drinking water, and decontamination waste water for Bacillus anthracis spores.

  20. Bio sorption of strontium from aqueous solution by New Strain Bacillus sp. GTG-83

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajer Mohammad Ghazvini, P.; Ghorbanzadeh Mashkani, S.; Ghafourian, H.

    Attempt was made to isolate bacterial strains capable of removing Sr biologically. In this study we collected ten different water samples from naturally radioactive spring Neydasht in Iran and bacterial strains samples isolated. Initial screening of a total of 50 bacterial isolates resulted in selection of one strain. The strain showed maximum adsorption capacity with 55 mg Sr/g dry wt. It was tentatively identified as Bacillus sp. according to morphological and biochemical properties and called strain GTG-83. Studies indicated that Bacillus sp. GTG-83 was able to grow aerobically in the presence of 50 mM SrCl{sub 2} but showed severe growthmore » inhibition at levels above that concentration. The bio-sorption capacity of Bacillus sp. GTG-83 strongly depends on solution pH, and the maximum Sr sorption capacity of Bacillus sp. GTG-83 were obtained at pH 10 independent of the absence or the presence of increasing concentrations of salt (MgCl{sub 2}). Sr-salt bio-sorption studies were also performed at this pH values. Equilibrium uptakes of Sr increased with increasing Sr concentrations up to 250 mg/l for Bacillus sp. GTG-83. Maximum bio-sorption of Sr was obtained at temperatures in the range of 30-35 deg. C. Bacillus sp. GTG-83 bio-sorbed 97 mg Sr/g dry wt at 100 mg/l initial Sr concentration without salt medium (MgCl{sub 2}). When salt concentration (MgCl{sub 2}) increased to 15% (w/v), these values dropped to 23.6 mg Sr/g dry wt at the same conditions. Uptake of Sr within 5 min of incubation was relatively rapid and the absorption continued slowly thereafter. (authors)« less

  1. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes.

    PubMed

    Eom, Jeong Seon; Lee, Sun Young; Choi, Hye Sun

    2014-11-01

    Bacillus subtilis HJ18-4 isolated from buckwheat sokseongjang, a traditional Korean fermented soybean food, exhibits broad-spectrum antimicrobial activity against foodborne pathogens, including Bacillus cereus. In this study, we investigated the antibacterial efficacy and regulation of toxin gene expression in B. cereus by B. subtilis HJ18-4. Expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM) was downregulated by B. subtilis HJ18-4, which also exhibited strong antibacterial activity against B. cereus. We also found that water extracts of soy product fermented with B. subtilis HJ18-4 significantly inhibited the growth of B. cereus and toxin expression. These results indicate that B. subtilis HJ18-4 could be used as an antimicrobial agent to control B. cereus in the fermented soybean food industry. Our findings also provide an opportunity to develop an efficient biological control agent against B. cereus. © 2014 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists®

  2. Whole-Genome Sequences of 94 Environmental Isolates of Bacillus cereus Sensu Lato

    PubMed Central

    Feldgarden, Michael; Kolter, Roberto; Mahillon, Jacques

    2013-01-01

    Bacillus cereus sensu lato is a species complex that includes the anthrax pathogen Bacillus anthracis and other bacterial species of medical, industrial, and ecological importance. Their phenotypes of interest are typically linked to large plasmids that are closely related to the anthrax plasmids pXO1 and pXO2. Here, we present the draft genome sequences of 94 isolates of B. cereus sensu lato, which were chosen for their plasmid content and environmental origins. PMID:24092776

  3. Decontamination of Bacillus spores adhered to iron and ...

    EPA Pesticide Factsheets

    Journal Article This study examines the effectiveness of decontaminating Bacillus globigii spores attached to corroded iron and cement-mortar coupons with free chlorine at two pH levels, monochloramine, chlorine dioxide, ozone, peracetic acid (PAA) and acidified nitrite, followed by flushing.

  4. Inhibitory effects of Bacillus subtilis on plant pathogens of conservatory in high latitudes

    NASA Astrophysics Data System (ADS)

    Xue, Chun-Mei; Wang, Xue; Yang, Jia-Li; Zhang, Yue-Hua

    2018-03-01

    Researching the effect of three kinds of Bacillus and their mixed strains inhibitory on common fungal diseases of conservatory vegetables. The results showed that B. megaterium culture medium had a significant inhibition effect on Cucumber Fusarium wilt, and the inhibition rate was up to 84.36%; B. mucilaginosus and B. megaterium sterile superna-tant had an obvious inhibitory effect on brown disease of eggplant, and the inhibition rate as high as 85.49%; B. subtilis sterile supernatant had a good inhibitory effect on the spore germination of C. Fusarium wilt, and the inhibition rate was 76.83%. The results revealed that Bacillus had a significant inhibitory effect on five common fungal pathogens. Three kinds of Bacillus can be used for the prevention and control of common fungal diseases in conservatory vegetables.

  5. Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field

    USDA-ARS?s Scientific Manuscript database

    We are developing a collection of Bacillus strains, isolated from different environments, for use in controlling Sclerotinia sclerotiorum on oilseed rape in China and elsewhere. Strain BY-2, isolated from internal tissues of an oilseed rape root, was demonstrated to be Bacillus subtilis based on bi...

  6. Bacillus Endospores - an ideal exobiological Tool

    NASA Astrophysics Data System (ADS)

    Moeller, R.; Horneck, G.

    Exobiology investigations have one overall goal -- finding the answer to the question if Earth is the only possible place in our universe where life was created. For tackling this question a good approach is to use a simple and ubiquitous system like bacteria as used in BIOPAN and EXPOSE. Many of these microorganisms have the ability to form metabolic inactive continuous forms such as Bacillus endospores. These spores are highly resistant against a variety of environmental stresses, such as toxic chemical agents, desiccation, high and low pressure, high doses of ionising and UV radiation and temperature extremes such as heat or permafrost. They are ubiquitous, inhabit soils and rocks and are easily disseminated by wind and water. Therefore they are suitable test systems for studying several questions of astrobiology, such as the theory of Panspermia, planetary protection issues in connection with missions to Mars or Europa, or chances for life on past or present Mars. The strategies Bacillus sp. endospores have developed to survive harsh conditions include a desiccated spore core, an altered conformation of their DNA (A-form), high concentration of small acid-soluble proteins (SASPs) stabilising the DNA, dipicolinic acid (DPA) for stabilisation and protective spore coating layers. We have investigated the role of endogenous and exogenous pigments in the UV-resistance of Bacillus endospores by using spores of different degree and kind of pigmentation, i.e. white, grey or red spores (DSMZ culture collection). The spectral ranges of UV radiation represented those of the early or present UV radiation climate of Earth or Mars. It was found, that endogenous carotenoids, identified by spectrophotometrical analysis from a spore extract as well as in-situ by Raman spectroscopy, efficiently protect against UV-A radiation, whereas melanin was also protective against UV-C radiation. From these studied follows, that highly pigmented spores might survive even in an intense UV

  7. Inactivation of Bacillus anthracis Spores in Soil Matrices with ...

    EPA Pesticide Factsheets

    Report This report documents the results of a laboratory study designed to better understand the effectiveness of chlorine dioxide (ClO2) gas to decontaminate soil materials contaminated with Bacillus anthracis spores.

  8. Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species

    NASA Astrophysics Data System (ADS)

    Ghiuță, I.; Cristea, D.; Croitoru, C.; Kost, J.; Wenkert, R.; Vyrides, I.; Anayiotos, A.; Munteanu, D.

    2018-04-01

    In this work, the biosynthesis of silver nanoparticles, using AgNO3 as a precursor, by two Bacillus species, namely Bacillus amyloliquefaciens and Bacillus subtillis, is reported. After the synthesis stages, the absorbance of the brown nanoparticle colloidal solutions was assessed by UV-vis spectrophotometry, which showed the peak absorbance values at 418 nm and 414 nm, corresponding to surface plasmon resonance of silver nanoparticles. The EDX, SEM and DLS analyses confirmed the formation of spherical silver nanoparticles with an average diameter smaller than 140 nm. XRD confirmed the presence of face-centered cubic silver crystals, with the highest intensity peak at 2θ = 38.12°, which corresponds to the (111) diffraction planes. The antibacterial activity after 24 h of incubation was observed against gram negative bacteria: Escherichia coli, Pseudomonas aeruginosa, Salmonella, as well as gram positive: Staphylococcus aureus, Streptococcus pyogenes. Furthermore, the antifungal activity was assessed against Candida albicans. The inhibition zone was clearly observed on the plates containing silver nanoparticles, either standalone or in combination with antibiotics, thus showing their potentiating antibacterial effect.

  9. Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor.

    PubMed

    Sundar, K; Sadiq, I Mohammed; Mukherjee, Amitava; Chandrasekaran, N

    2011-11-30

    Present study deals with the applicability of bacterial biofilms for the bioremoval of trivalent chromium from tannery effluents. A continuous flow reactor was designed for the development of biofilms on different substrates like glass beads, pebbles and coarse sand. The parameters for the continuous flow reactor were 20 ml/min flow rate at 30°C, pH4. Biofilm biomass on the substrates was in the following sequence: coarse sand>pebbles>glass beads (4.8 × 10(7), 4.5 × 10(7) and 3.5 × 10(5)CFU/cm(2)), which was confirmed by CLSM. Biofilms developed using consortium of Bacillus subtilis and Bacillus cereus on coarse sand had more surface area and was able to remove 98% of Cr(III), SEM-EDX proved 92.60% Cr(III) adsorption on biofilms supported by coarse sand. Utilization of Bacillus biofilms for effective bioremoval of Cr(III) from chrome tanning effluent could be a better option for tannery industry, especially during post chrome tanning operation. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Bacillus Classification Based on Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry-Effects of Culture Conditions.

    PubMed

    Shu, Lin-Jie; Yang, Yu-Liang

    2017-11-14

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a reliable and rapid technique applied widely in the identification and classification of microbes. MALDI-TOF MS has been used to identify many endospore-forming Bacillus species; however, endospores affect the identification accuracy when using MALDI-TOF MS because they change the protein composition of samples. Since culture conditions directly influence endospore formation and Bacillus growth, in this study we clarified how culture conditions influence the classification of Bacillus species by using MALDI-TOF MS. We analyzed members of the Bacillus subtilis group and Bacillus cereus group using different incubation periods, temperatures and media. Incubation period was found to affect mass spectra due to endospores which were observed mixing with vegetative cells after 24 hours. Culture temperature also resulted in different mass spectra profiles depending on the temperature best suited growth and sporulation. Conversely, the four common media for Bacillus incubation, Luria-Bertani agar, nutrient agar, plate count agar and brain-heart infusion agar did not result in any significant differences in mass spectra profiles. Profiles in the range m/z 1000-3000 were found to provide additional data to the standard ribosomal peptide/protein region m/z 3000-15000 profiles to enable easier differentiation of some highly similar species and the identification of new strains under fresh culture conditions. In summary, control of culture conditions is vital for Bacillus identification and classification by MALDI-TOF MS.

  11. Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei).

    PubMed

    Nimrat, Subuntith; Suksawat, Sunisa; Boonthai, Traimat; Vuthiphandchai, Verapong

    2012-10-12

    Epidemics of epizootics and occurrence of multiresistant antibiotics of pathogenic bacteria in aquaculture have put forward a development of effective probiotics for the sustainable culture. This study examined the effectiveness of forms of mixed Bacillus probiotics (probiotic A and probiotic B) and mode of probiotic administration on growth, bacterial numbers and water quality during rearing of white shrimp (Litopenaeus vannamei) in two separated experiments: (1) larval stages and (2) postlarval (PL) stages. Forms of Bacillus probiotics and modes of probiotic administration did not affect growth and survival of larval to PL shrimp. The compositions of Bacillus species in probiotic A and probiotic B did not affect growth and survival of larvae. However, postlarvae treated with probiotic B exhibited higher (P<0.05) growth than probiotic A and controls, indicating Bacillus probiotic composition affects the growth of PL shrimp. Total heterotrophic bacteria and Bacillus numbers in larval and PL shrimp or culture water of the treated groups were higher (P<0.05) than in controls. Levels of pH, ammonia and nitrite of the treated shrimp were significantly decreased, compared to the controls. Microencapsulated Bacillus probiotic was effective for rearing of PL L. vannamei. This investigation showed that administration of mixed Bacillus probiotics significantly improved growth and survival of PL shrimp, increased beneficial bacteria in shrimp and culture water and enhanced water quality for the levels of pH, ammonia and nitrite of culture water. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Architecture and High-Resolution Structure of Bacillus thuringiensis and Bacillus cereus Spore Coat Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plomp, M; Leighton, T; Wheeler, K

    2005-02-18

    We have utilized atomic force microscopy (AFM) to visualize the native surface topology and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereusmore » was {approx}8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to {approx}200 nm. The lattice constant of the honeycomb structures was {approx}9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing ''fingerprints'' of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.« less

  13. Effects of Bacillus subtilis natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria In Vitro.

    PubMed

    Sun, Peng; Li, Jinan; Bu, Dengpan; Nan, Xuemei; Du, Hong

    2016-05-01

    This study was to investigate the effects of live or autoclaved Bacillus subtilis natto, their fermented products and media on rumen fermentation and rumen functional bacteria in vitro. Rumen fluid from three multiparous lactating Holstein cows was combined and transferred into serum bottles after diluted. Fifteen serum bottles were divided into five treatments, which were designed as following: CTR (the fermentation of 0.5 g TMR and ruminal fluids from dairy cows), LBS (CTR plus a minimum of 10(11) cfu live Bacillus subtilis natto), ABS (CTR plus a minimum of 10(11) cfu autoclaved Bacillus subtilis natto), BSC (CTR plus 1 ml Bacillus subtilis natto fermentation products without bacteria), and BSM (CTR plus 1 ml liquid fermentation medium). When separated from the culture, live Bacillus subtilis natto individually increased the concentrations of ammonia-N (P < 0.01), MCP production (P < 0.01), and tended to elevate total VFA (P = 0.07), but decreased the ratio of acetate and propionate (P < 0.01). Autoclaved Bacillus subtilis natto has the similar function with the live bacteria except for the ratio of acetate and propionate. Except B. fibrisolvens, live or autoclaved Bacillus subtilis natto did not influence or decreased the 16S rRNA gene quantification of the detected bacteria. BSC and BSM altered the relative expression of certain functional bacteria in the rumen. These results indicated that it was Bacillus subtilis natto thalli that played the important role in promoting rumen fermentation when applied as a probiotic in dairy ration.

  14. SR450 and Superhawk XP applications of Bacillus thuringiensis israelensis de Barjac against Culex quinquefasciatus Say

    USDA-ARS?s Scientific Manuscript database

    Sprayer comparisons and larval morality assays were conducted following SR450 backpack mist blower and Superhawk XP thermal fogger applications of Vectobac® WDG Bacillus thuringiensis israelensis (Bti) de Barjac against Culex quinquefasciatus Say. Bacillus thuringiensis israelensis was applied at m...

  15. Differences in the roles of a glutamine amidotransferase subunit of pyridoxal 5'-phosphate synthase between Bacillus circulans and Bacillus subtilis.

    PubMed

    Itagaki, Shiori; Haga, Minami; Oikawa, Yuji; Sakoda, Ayaka; Ohke, Yoshie; Sawada, Hiroshi; Eguchi, Tadashi; Tamegai, Hideyuki

    2013-01-01

    BtrC2 of the butirosin producer Bacillus circulans is a non-catalytic subunit of 2-deoxy-scyllo-inosose (DOI) synthase that is involved in butirosin biosynthesis, and also a homolog of glutamine amidotransferase subunit (PdxT) of pyridoxal 5'-phosphate (PLP) synthase of Bacillus subtilis. BtrC2 has been found to have functions in B. circulans both in primary and secondary metabolism. In this study, we investigated the properties of PdxT of B. subtilis in order to determine whether the property of enzyme stabilization is universal among PdxT homologs. Complementation with PdxT in the btrC2 disruptant of B. circulans restored the growth and short-term production of antibiotics, but long-term production of antibiotics cannot be restored. Additionally, PdxT did not bind physically with or stabilize BtrC. Our results indicate that the function of BtrC2 in secondary metabolism is specific properties, not universal among PdxT homologs.

  16. 40 CFR 180.1282 - Bacillus firmus I-1582; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus firmus I-1582; exemption from the requirement of a tolerance. 180.1282 Section 180.1282 Protection of Environment ENVIRONMENTAL..., for residues of Bacillus firmus I-1582 when used as a soil application or seed treatment. [73 FR 25528...

  17. Kinetics of Germination of Bacillus Spores1

    PubMed Central

    Vary, J. C.; Halvorson, H. O.

    1965-01-01

    Vary, J. C. (University of Wisconsin, Madison), and H. O. Halvorson. Kinetics or germination of Bacillus spores. J. Bacteriol. 89:1340–1347. 1965.—The kinetics of germination of Bacillus cereus strain T spores was accurately described by McCormick. To study the mechanism of germination, it is necessary to correlate the characteristic changes in a population of germinating spores with the behavior of the individual spores in the same population. Two microscopic events are apparent during germination: microlag, the time interval between the addition of l-alanine to heat-activated spores and the beginning of loss in refractility, and microgermination time, the time for the actual change in refractility to occur. The frequency distributions of both events are skewed, and appear to be independent. The effects of l-alanine concentration, heat activation, and temperature of germination on three parameters, microlag, microgermination, and per cent germination, were microscopically studied. The data are discussed in relation to the mechanism of germination, and a correlation between microlag and microgermination times with the constants of McCormick's equation has been suggested. Images PMID:14293008

  18. Biodegradation of international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems.

    PubMed

    Itah, A Y; Brooks, A A; Ogar, B O; Okure, A B

    2009-09-01

    Microorganisms contaminating international Jet A-1 aircraft fuel and fuel preserved in Joint Hydrant Storage Tank (JHST) were isolated, characterized and identified. The isolates were Bacillus subtillis, Bacillus megaterium, Flavobacterium oderatum, Sarcina flava, Micrococcus varians, Pseudomonas aeruginosa, Bacillus licheniformis, Bacillus cereus and Bacillus brevis. Others included Candida tropicalis, Candida albicans, Saccharomyces estuari, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Cladosporium resinae, Penicillium citrinum and Penicillium frequentans. The viable plate count of microorganisms in the Aircraft Tank ranged from 1.3 (+/-0.01) x 104 cfu/mL to 2.2 (+/-1.6) x 104 cfu/mL for bacteria and 102 cfu/mL to 1.68 (+/-0.32) x 103 cfu/mL for fungi. Total bacterial counts of 1.79 (+/-0.2) x 104 cfu/mL to 2.58 (+/-0.04) x 104 cfu/mL and total fungal count of 2.1 (+/-0.1) x 103 cfu/mL to 2.28 (+/-0.5) x 103 cfu/mL were obtained for JHST. Selected isolates were re-inoculated into filter sterilized aircraft fuels and biodegradation studies carried out. After 14 days incubation, Cladosporium resinae exhibited the highest degradation rate with a percentage weight loss of 66 followed by Candida albicans (60.6) while Penicillium citrinum was the least degrader with a weight loss of 41.6%. The ability of the isolates to utilize the fuel as their sole source of carbon and energy was examined and found to vary in growth profile between the isolates. The results imply that aviation fuel could be biodegraded by hydrocarbonoclastic microorganisms. To avert a possible deterioration of fuel quality during storage, fuel pipe clogging and failure, engine component damage, wing tank corrosion and aircraft disaster, efficient routine monitoring of aircraft fuel systems is advocated.

  19. Biodegradation of furfural by Bacillus subtilis strain DS3.

    PubMed

    Zheng, Dan; Bao, Jianguo; Lu, Jueming; Lv, Quanxi

    2015-07-01

    An aerobic bacterial strain DS3, capable of growing on furfural as sole carbon source, was isolated from actived sludge of wastewater treatment plant in a diosgenin factory after enrichment. Based on morphological physiological tests as well as 16SrDNA sequence and Biolog analyses it was identified as Bacillus subtilis. The study revealed that strain DS3 utilized furfural, as analyzed by high-performance liquid chromatography (HPLC). Under following conditions: pH 8.0, temperature 35 degrees C, 150 rpm and 10% inoculum, strain DS3 showed 31.2% furfural degradation. Furthermore, DS3 strain was found to tolerate furfural concentration as high as 6000 mg(-1). The ability of Bacillus subtilis strain DS3 to degrade furfural has been demonstrated for the first time in the present study.

  20. Involvement of Colonizing Bacillus Isolates in Glucovanillin Hydrolysis during the Curing of Vanilla planifolia Andrews

    PubMed Central

    Chen, Yonggan; Li, Jihua; He, Shuzhen; Xu, Fei; Fang, Yiming

    2015-01-01

    Vanilla beans were analyzed using biochemical methods, which revealed that glucovanillin disperses from the inner part to the outer part of the vanilla bean during the curing process and is simultaneously hydrolyzed by β-d-glucosidase. Enzymatic hydrolysis was found to occur on the surface of the vanilla beans. Transcripts of the β-d-glucosidase gene (bgl) of colonizing microorganisms were detected. The results directly indicate that colonizing microorganisms are involved in glucovanillin hydrolysis. Phylogenetic analysis based on 16S rRNA gene sequences showed that the colonizing microorganisms mainly belonged to the Bacillus genus. bgl was detected in all the isolates and presented clustering similar to that of the isolate taxonomy. Furthermore, inoculation of green fluorescent protein-tagged isolates showed that the Bacillus isolates can colonize vanilla beans. Glucovanillin was metabolized as the sole source of carbon in a culture of the isolates within 24 h. These isolates presented unique glucovanillin degradation capabilities. Vanillin was the major volatile compound in the culture. Other compounds, such as α-cubebene, β-pinene, and guaiacol, were detected in some isolate cultures. Colonizing Bacillus isolates were found to hydrolyze glucovanillin in culture, indirectly demonstrating the involvement of colonizing Bacillus isolates in glucovanillin hydrolysis during the vanilla curing process. Based on these results, we conclude that colonizing Bacillus isolates produce β-d-glucosidase, which mediates glucovanillin hydrolysis and influences flavor formation. PMID:25979899

  1. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases.

    PubMed

    Jacobsen, B J; Zidack, N K; Larson, B J

    2004-11-01

    ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.

  2. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: Two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic

    USGS Publications Warehouse

    Switzer, Blum J.; Burns, Bindi A.; Buzzelli, J.; Stolz, J.F.; Oremland, R.S.

    1998-01-01

    Two gram-positive anaerobic bacteria (strains E1H and MLS10) were isolated from the anoxic muds of Mono Lake, California, an alkaline, hypersaline, arsenic-rich water body. Both grew by dissimilatory reduction of As(V) to As(III) with the concomitant oxidation of lactate to acetate plus CO2. Bacillus arsenicoselenatis (strain E1H) is a spore-forming rod that also grew by dissimilatory reduction of Se(VI) to Se(IV). Bacillus selenitireducens (strain MLS 10) is a short, non-spore-forming rod that grew by dissimilatory reduction of Se(IV) to Se(0). When the two isolates were cocultured, a complete reduction of Se(VI) to Se(0) was achieved. Both isolates are alkaliphiles and had optimal specific growth rates in the pH range of 8.5-10. Strain E1H had a salinity optimum at 60 g 1-1 NaCl, while strain MLS10 had optimal growth at lower salinities (24-60 g 1-1 NaCl). Both strains have limited abilities to grow with electron donors and acceptors other than those given above. Strain MLS10 demonstrated weak growth as a microaerophile and was also capable of fermentative growth on glucose, while strain E1H is a strict anaerobe. Comparative 16S rRNA gene sequence analysis placed the two isolates with other Bacillus spp. in the low G+C gram-positive group of bacteria.

  3. Anti-angiogenic effects of the superantigen staphylococcal enterotoxin B and bacillus Calmette-Guérin immunotherapy for nonmuscle invasive bladder cancer.

    PubMed

    Reis, Leonardo O; Ferreira, Ubirajara; Billis, Athanase; Cagnon, Valéria H A; Fávaro, Wagner J

    2012-02-01

    We compared and characterized the effects of intravesical bacillus Calmette-Guérin and/or staphylococcal enterotoxin B for nonmuscle invasive bladder cancer. A total of 75 female Fisher 344 rats were anesthetized. Of the rats 15 received 0.3 ml saline (control) and 60 received 1.5 mg/kg MNU (N-methyl-n-nitrosourea) intravesically every other week for 6 weeks. The rats were divided into 5 groups. The MNU and control groups received 0.3 ml saline. The bacillus Calmette-Guérin group received 10(6) cfu bacillus Calmette-Guérin. The staphylococcal enterotoxin B group received 10 μg/ml staphylococcal enterotoxin B. The bacillus Calmette-Guérin plus staphylococcal enterotoxin B group received the 2 treatments simultaneously. Each group was treated intravesically for 6 weeks. At 15 weeks all bladders were collected for histopathological and immunological evaluation, and Western blot. Papillary carcinoma (pTa) and high grade intraepithelial neoplasia (carcinoma in situ) were more common in the MNU group. Papillary hyperplasia was more common in the bacillus Calmette-Guérin and enterotoxin groups. Flat hyperplasia was more common in the bacillus Calmette-Guérin plus enterotoxin group. No significant toxicity was observed. The apoptosis and cellular proliferation indexes decreased in the bacillus Calmette-Guérin, enterotoxin and bacillus Calmette-Guérin plus enterotoxin groups compared to the MNU group. Intensified vascular endothelial growth factor, matrix metalloproteinase-9, Ki-67 and insulin-like growth factor receptor-1 immunoreactivity was verified in the MNU group, moderate in the bacillus Calmette-Guérin and enterotoxin groups, and weak in the bacillus Calmette-Guérin plus enterotoxin and control groups. In contrast, intense endostatin immunoreactivity was verified in the control and bacillus Calmette-Guérin plus enterotoxin groups. Bacillus Calmette-Guérin and staphylococcal enterotoxin B showed similar anti-angiogenic effects. Bacillus Calmette

  4. Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio.

    PubMed

    Siahmoshteh, Fatemeh; Siciliano, Ilenia; Banani, Houda; Hamidi-Esfahani, Zohreh; Razzaghi-Abyaneh, Mehdi; Gullino, Maria Lodovica; Spadaro, Davide

    2017-08-02

    Pistachio (Pistacia vera) is an important nut for its economic, nutritional and health aspects but it can be contaminated by aflatoxigenic fungi in the field and during storage. Biological control could be considered as an alternative to chemical treatment. In this study, we evaluated the antifungal and anti-mycotoxigenic capability of two Bacillus spp. both in vitro and on pistachio kernels. In in vitro conditions, both strains were able to reduce the mycelial growth and they were able to degrade the four aflatoxins during the first three days after inoculation. AFG 1 and AFG 2 were rapidly degraded within two days of incubation with the bacterial strains. No aflatoxin was found in the bacterial cell walls, permitting exclusion of mycotoxin adsorption and hypothesis of an in vitro biodegradation as a mode of action. The cultivar of pistachio most susceptible to fungal colonization was 'Ahmad-Aghaei', selected among four main Iranian cultivars. A. parasiticus was able to grow and produce aflatoxins on pistachios, but at longer inoculation periods, a natural decrease of aflatoxins was registered. Both strains were able to reduce the fungal incidence and number of spores on pistachio with a stronger effect during the first 5dpi. The effect on aflatoxin content in vivo was less pronounced than in vitro, with a maximum effect at 8dpi. At longer times, there was a contrasting effect due to the lower activity of Bacillus spp. in stationary phase and higher growth of Aspergillus species. This consideration could explain the lack of aflatoxin reduction at 12dpi. Both bacterial strains showed good antifungal activity and aflatoxin reduction in in vitro conditions and on pistachio kernels. Altogether, these results indicate that Bacillus species could be considered as potential biocontrol agents to combat toxigenic fungal growth and subsequent aflatoxin contamination of nuts and agricultural crops in practice. Copyright © 2017. Published by Elsevier B.V.

  5. Mob/oriT, a mobilizable site-specific recombination system for unmarked genetic manipulation in Bacillus thuringiensis and Bacillus cereus.

    PubMed

    Wang, Pengxia; Zhu, Yiguang; Zhang, Yuyang; Zhang, Chunyi; Xu, Jianyi; Deng, Yun; Peng, Donghai; Ruan, Lifang; Sun, Ming

    2016-06-10

    Bacillus thuringiensis and Bacillus cereus are two important species in B. cereus group. The intensive study of these strains at the molecular level and construction of genetically modified bacteria requires the development of efficient genetic tools. To insert genes into or delete genes from bacterial chromosomes, marker-less manipulation methods were employed. We present a novel genetic manipulation method for B. thuringiensis and B. cereus strains that does not leave selection markers. Our approach takes advantage of the relaxase Mob02281 encoded by plasmid pBMB0228 from Bacillus thuringiensis. In addition to its mobilization function, this Mob protein can mediate recombination between oriT sites. The Mob02281 mobilization module was associated with a spectinomycin-resistance gene to form a Mob-Spc cassette, which was flanked by the core 24-bp oriT sequences from pBMB0228. A strain in which the wild-type chromosome was replaced with the modified copy containing the Mob-Spc cassette at the target locus was obtained via homologous recombination. Thus, the spectinomycin-resistance gene can be used to screen for Mob-Spc cassette integration mutants. Recombination between the two oriT sequences mediated by Mob02281, encoded by the Mob-Spc cassette, resulted in the excision of the Mob-Spc cassette, producing the desired chromosomal alteration without introducing unwanted selection markers. We used this system to generate an in-frame deletion of a target gene in B. thuringiensis as well as a gene located in an operon of B. cereus. Moreover, we demonstrated that this system can be used to introduce a single gene or an expression cassette of interest in B. thuringiensis. The Mob/oriT recombination system provides an efficient method for unmarked genetic manipulation and for constructing genetically modified bacteria of B. thuringiensis and B. cereus. Our method extends the available genetic tools for B. thuringiensis and B. cereus strains.

  6. Improving the selection efficiency of the counter-selection marker pheS* for the genetic engineering of Bacillus amyloliquefaciens.

    PubMed

    Kharchenko, Maria S; Teslya, Petr N; Babaeva, Maria N; Zakataeva, Natalia P

    2018-05-01

    Bacillus subtilis pheS was genetically modified to obtain a counter-selection marker with high selection efficiency in Bacillus amyloliquefaciens. The application of the new replication-thermosensitive integrative vector pNZTM1, containing this marker, pheS BsT255S/A309G , with a two-step replacement recombination procedure provides an effective tool for the genetic engineering of industrially important Bacillus species. Copyright © 2018. Published by Elsevier B.V.

  7. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  8. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  9. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  10. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  11. 40 CFR 180.1108 - Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Delta endotoxin of Bacillus... From Tolerances § 180.1108 Delta endotoxin of Bacillus thuringiensis variety San Diego encapsulated into killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin...

  12. Diversity of commensal Bacillus cereus sensu lato isolated from the common sow bug (Porcellio scaber, Isopoda).

    PubMed

    Swiecicka, Izabela; Mahillon, Jacques

    2006-04-01

    Although Bacillus cereus sensu lato are important both from an ecological and an economical point of view, little is known about their population structure, ecology, and relationships with other organisms. In the present work, the genotypic similarity of arthropod-borne B. cereus s.l. isolates, and their symbiotic relationship with the host are assessed. Bacilli of this group were recovered from the digestive tracts of sow bugs (Porcellio scaber) collected in three closely located sites. Their genotypic diversity was investigated using pulse-field gel electrophoresis (PFGE) following the whole-genome DNA digestions with NotI and AscI, and PCR amplification of virulence genes. The majority of the sow-bug Bacillus cereus sensu stricto isolates originating from the same but also from different sites displayed identical PFGE patterns, virulence gene content and enterotoxicity, indicating strong genetic and genomic relationships. The sow-bug Bacillus mycoides/Bacillus pseudomycoides strains displayed a higher diversity. The isopod-B. cereus s.l. relationship was also evaluated using antibiotic-resistant derivatives of B. cereus s.s., B. mycoides/B. pseudomycoides and Bacillus thuringiensis reintroduced into sow bugs. Both spores and vegetative cells of B. cereus s.l. were recovered from sow bugs over a 30-day period, strongly suggesting that these bacteria are natural residents of terrestrial isopods.

  13. Bacillusin A, an antibacterial macrodiolide from Bacillus amyloliquefaciens

    USDA-ARS?s Scientific Manuscript database

    Bioassay-guided fractionation of the organic extracts of a Bacillus amyloliquefaciens strain (AP183) led to the discovery of a new macrocyclic polyene antibiotic, bacillusin A (1). Its structure was assigned by interpretation of NMR and MS spectroscopic data as a novel macrodiolide composed of dimer...

  14. Biological treatment of chicken feather waste for improved biogas production.

    PubMed

    Forgács, Gergely; Alinezhad, Saeid; Mirabdollah, Amir; Feuk-Lagerstedt, Elisabeth; Horváth, Ilona Sárvári

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas. Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production. Chopped, autoclaved chicken feathers (4%, W/V) were completely degraded, resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain. During the subsequent anaerobic batch digestion experiments, methane production of 0.35 Nm3/kg dry feathers (i.e., 0.4 Nm3/kg volatile solids of feathers), corresponding to 80% of the theoretical value on proteins, was achieved from the feather hydrolyzates, independently of the pre-hydrolysis time period of 1, 2 or 8 days. Cultivation with a native keratinase producing strain, Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate, which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers. Feather hydrolyzates treated with the wild type B. megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  15. Roles of the Bacillus anthracis Spore Protein ExsK in Exosporium Maturation and Germination

    DTIC Science & Technology

    2009-12-01

    exosporium maturation and assembly and suggest a novel role for the exosporium in germination. During starvation, bacteria of the genus Bacillus...Bacillus subtilis, the outermost struc- ture is a protective layer called the coat, which guards the spore against reactive small molecules, degradative ...analysis. Generation of anti-ExsK antibodies. Recombinant ExsK was generated and purified using the pET expression system (Novagen) according to the

  16. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    PubMed Central

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  17. Bacillus subtilis genome diversity.

    PubMed

    Earl, Ashlee M; Losick, Richard; Kolter, Roberto

    2007-02-01

    Microarray-based comparative genomic hybridization (M-CGH) is a powerful method for rapidly identifying regions of genome diversity among closely related organisms. We used M-CGH to examine the genome diversity of 17 strains belonging to the nonpathogenic species Bacillus subtilis. Our M-CGH results indicate that there is considerable genetic heterogeneity among members of this species; nearly one-third of Bsu168-specific genes exhibited variability, as measured by the microarray hybridization intensities. The variable loci include those encoding proteins involved in antibiotic production, cell wall synthesis, sporulation, and germination. The diversity in these genes may reflect this organism's ability to survive in diverse natural settings.

  18. Bacillus alkalilacus sp. nov., isolated from a sediment sample from a lake in India.

    PubMed

    Singh, Harjodh; Kaur, Manpreet; Sharma, Shivani; Kaur, Lakhwinder; Mishra, Sunita; Tanuku, Naga Radha Srinivas; Pinnaka, Anil Kumar

    2018-05-01

    An aerobic, endospore-forming, haloalkali-tolerant, Gram-stain-positive, motile, rod-shaped bacterium, designated strain AK73 T , was isolated from a sediment sample collected from Sambhar lake, Jaipur, Rajasthan, India. Colonies were circular, 1-2 mm in diameter, glossy, smooth, yellowish and convex with an entire margin after 48 h growth on marine agar at pH 9 and 37 °C. Growth occurred at 15-42 °C, 0-10 % (w/v) NaCl and at a pH range of 7-12. Strain AK73 T was positive for catalase and arginine dihydrolase 2 activities, hydrolysis of Tweens 20, 40 and 80, and negative for esculinase, caseinase, gelatinase, β-galactosidase, lipase (Tween 60) and urease activities. The fatty acids were dominated by branched iso-, anteiso-, saturated fatty acids with a high abundance of iso-C15 : 0, anteiso-C15 : 0, C16 : 0 and anteiso-C17 : 0; MK-7 was the major menaquinone. The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid, four unidentified phospholipids and three unidentified lipids. The DNA G+C content of strain AK73 T was 54 mol%. Analysis based on comparative 16S rRNA gene sequence analysis indicated that Bacillus alcalophilus was the nearest phylogenetic neighbour, with a pair-wise sequence similarity of 96.0 %. Phylogenetic analysis showed that strain AK73 T formed a separate lineage but was loosely associated with a peripheral cluster of organisms that contained Bacillus gibsonii, Bacillus murimartini and Bacillus plakortidis with similarity values of 93.6, 93.5 and 93.4 %, respectively. Based on its phenotypic characteristics and on phylogenetic inference, strain AK73 T represents a novel species of the genus Bacillus, for which the name Bacillus alkalilacus sp. nov. is proposed. The type strain is AK73 T (=JCM 32184 T =MTCC 12637 T =KCTC 33880 T ).

  19. Spore populations among bulk tank raw milk and dairy powders are significantly different.

    PubMed

    Miller, Rachel A; Kent, David J; Watterson, Matthew J; Boor, Kathryn J; Martin, Nicole H; Wiedmann, Martin

    2015-12-01

    To accommodate stringent spore limits mandated for the export of dairy powders, a more thorough understanding of the spore species present will be necessary to develop prospective strategies to identify and reduce sources (i.e., raw materials or in-plant) of contamination. We characterized 1,523 spore isolates obtained from bulk tank raw milk (n=33 farms) and samples collected from 4 different dairy powder-processing plants producing acid whey, nonfat dry milk, sweet whey, or whey protein concentrate 80. The spores isolated comprised 12 genera, at least 44 species, and 216 rpoB allelic types. Bacillus and Geobacillus represented the most commonly isolated spore genera (approximately 68.9 and 12.1%, respectively, of all spore isolates). Whereas Bacillus licheniformis was isolated from samples collected from all plants and farms, Geobacillus spp. were isolated from samples from 3 out of 4 plants and just 1 out of 33 farms. We found significant differences between the spore population isolated from bulk tank raw milk and those isolated from dairy powder plant samples, except samples from the plant producing acid whey. A comparison of spore species isolated from raw materials and finished powders showed that although certain species, such as B. licheniformis, were found in both raw and finished product samples, other species, such as Geobacillus spp. and Anoxybacillus spp., were more frequently isolated from finished powders. Importantly, we found that 8 out of 12 genera were isolated from at least 2 different spore count methods, suggesting that some spore count methods may provide redundant information if used in parallel. Together, our results suggest that (1) Bacillus and Geobacillus are the predominant spore contaminants in a variety of dairy powders, implying that future research efforts targeted at elucidating approaches to reduce levels of spores in dairy powders should focus on controlling levels of spore isolates from these genera; and (2) the spore

  20. Bacillus cereus and related species.

    PubMed

    Drobniewski, F A

    1993-10-01

    Bacillus cereus is a gram-positive aerobic or facultatively anaerobic spore-forming rod. It is a cause of food poisoning, which is frequently associated with the consumption of rice-based dishes. The organism produces an emetic or diarrheal syndrome induced by an emetic toxin and enterotoxin, respectively. Other toxins are produced during growth, including phospholipases, proteases, and hemolysins, one of which, cereolysin, is a thiol-activated hemolysin. These toxins may contribute to the pathogenicity of B. cereus in nongastrointestinal disease. B. cereus isolated from clinical material other than feces or vomitus was commonly dismissed as a contaminant, but increasingly it is being recognized as a species with pathogenic potential. It is now recognized as an infrequent cause of serious nongastrointestinal infection, particularly in drug addicts, the immunosuppressed, neonates, and postsurgical patients, especially when prosthetic implants such as ventricular shunts are inserted. Ocular infections are the commonest types of severe infection, including endophthalmitis, panophthalmitis, and keratitis, usually with the characteristic formation of corneal ring abscesses. Even with prompt surgical and antimicrobial agent treatment, enucleation of the eye and blindness are common sequelae. Septicemia, meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections are other manifestations of severe disease. B. cereus produces beta-lactamases, unlike Bacillus anthracis, and so is resistant to beta-lactam antibiotics; it is usually susceptible to treatment with clindamycin, vancomycin, gentamicin, chloramphenicol, and erythromycin. Simultaneous therapy via multiple routes may be required.

  1. Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers.

    PubMed

    Ke, Qian; Zhang, Yunge; Wu, Xilin; Su, Xiaomei; Wang, Yuyang; Lin, Hongjun; Mei, Rongwu; Zhang, Yu; Hashmi, Muhammad Zaffar; Chen, Chongjun; Chen, Jianrong

    2018-09-15

    In this study, high-efficient phenol-degrading bacterium Bacillus sp. SAS19 which was isolated from activated sludge by resuscitation-promoting factor (Rpf) addition, were immobilized on porous carbonaceous gels (CGs) for phenol degradation. The phenol-degrading capabilities of free and immobilized Bacillus sp. SAS19 were evaluated under various initial phenol concentrations. The obtained results showed that phenol could be removed effectively by both free and immobilized Bacillus sp. SAS19. Furthermore, for degradation of phenol at high concentrations, long-term utilization and recycling were more readily achieved for immobilized bacteria as compared to free bacteria. Immobilized bacteria exhibited significant increase in phenol-degrading capabilities in the third cycle of recycling and reuse, which demonstrated 87.2% and 100% of phenol (1600 mg/L) degradation efficiency at 12 and 24 h, respectively. The present study revealed that immobilized Bacillus sp. SAS19 can be potentially used for enhanced treatment of synthetic phenol-laden wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Phylogenetic Analysis of Polygalacturonase-Producing Bacillus and Pseudomonas Isolated From Plant Waste Material

    PubMed Central

    Sohail, Muhammad; Latif, Zakia

    2016-01-01

    Background: Keeping in mind the commercial application of polygalacturonase (PG) in juice and beverages industry, bacterial strains were isolated from rotten fruits and vegetables to screen for competent producers of PG. Objectives: In this study, the plate method was used for preliminary screening of polygalacturonase-producing bacteria, while the Dinitrosalicylic Acid (DNS) method was used for quantifications of PG. Materials and Methods: Biochemically-identified polygalacturonase-producing Bacillus and Pseudomonas species were further characterized by molecular markers. The genetic diversity among these selected strains was analyzed by investigating microsatellite distribution in their genome. Out of 110 strains, 17 competent strains of Bacillus and eight strains of Pseudomonas were selected, identified and confirmed biochemically. Selected strains were characterized by 16S rRNA sequencing and data was submitted to the national center for biotechnology information (NCBI) website for accession numbers. Results: Among the Bacillus, Bacillus vallismortis (JQ990307) isolated from mango was the most competent producer of PG; producing up to 4.4 U/µL. Amongst Pseudomonas, Pseudomonas aeruginosa (JQ990314) isolated from oranges was the most competent PG producer equivalent to B. vallismortis (JQ990307). To determine genetic diversity of different strains of Pseudomonas and Bacillus varying in PG production, fingerprinting was done on the basis of Simple Sequence Repeats (SSR) or microsatellites. The data was analyzed and a phylogenetic tree was constructed using the Minitab 3 software for comparison of bacterial isolates producing different concentrations of PG. Fingerprinting showed that presence or absence of certain microsatellites correlated with the ability of PG production. Conclusions: Bacteria from biological waste were competent producers of PG and must be used on an industrial scale to cope with the demand of PG in the food industry. PMID:27099686

  3. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ andmore » in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future

  4. BOOK REVIEW: BACILLUS THURINGIENSIS: A CORNERSTONE OF MODERN AGRICULTURE

    EPA Science Inventory

    Are you interested in the technical issues surrounding the use of Bacillus thuringiensis pesticidal traits as sprays and as plant incorporated protectants (transgenic crops)? Should the dimensions of human health, ecology, entomology, risk assessment, resistance management, and d...

  5. POROSITY OF ISOLATED CELL WALLS OF SACCHAROMYCES CEREVISIAE AND BACILLUS MEGATERIUM.

    PubMed

    GERHARDT, P; JUDGE, J A

    1964-04-01

    Gerhardt, Philipp (The University of Michigan, Ann Arbor), and Jean A. Judge. Porosity of isolated cell walls of a yeast and a bacillus. J. Bacteriol. 87:945-951. 1964.-Decagram masses of cell walls were isolated from Saccharomyces cerevisiae and Bacillus megaterium; their porosity was examined by measuring the extent of uptake with polyethylene glycols and dextrans varying in molecular weight from 62 to 2,000,000. The results indicated that both walls are heteroporous. The near equality of extrapolated water-uptake values and determined moisture contents suggested that water in the cell walls is mainly free for distribution of solutes. Polymers with molecular weights of 4,500 and above were excluded by the yeast walls, and those with molecular weights of 57,000 were excluded by the bacillus walls; from these results, maximal openings of 36 and 107 A, respectively, were calculated. Electron micrographs of shadowed, stained, and sectioned walls revealed fine structure not inconsistent with heteroporosity, but the predicted openings were not seen. Altogether, in structure and permeability behavior, the cell walls were like a random meshwork of cross-linked macromolecular strands.

  6. Development of an Aerosol Surface Inoculation Method for Bacillus Spores ▿

    PubMed Central

    Lee, Sang Don; Ryan, Shawn P.; Snyder, Emily Gibb

    2011-01-01

    A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 107 CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies. PMID:21193670

  7. Characterization of Cyt2Bc Toxin from Bacillus thuringiensis subsp. medellin

    PubMed Central

    Juárez-Pérez, Victor; Guerchicoff, Alejandra; Rubinstein, Clara; Delécluse, Armelle

    2002-01-01

    We cloned and sequenced a new cytolysin gene from Bacillus thuringiensis subsp. medellin. Three IS240-like insertion sequence elements and the previously cloned cyt1Ab and p21 genes were found in the vicinity of the cytolysin gene. The cytolysin gene encodes a protein 29.7 kDa in size that is 91.5% identical to Cyt2Ba from Bacillus thuringiensis subsp. israelensis and has been designated Cyt2Bc. Inclusions containing Cyt2Bc were purified from the crystal-negative strain SPL407 of B. thuringiensis. Cyt2Bc reacted weakly with antibodies directed against Cyt2Ba and was not recognized by an antiserum directed against the reference cytolysin Cyt1Aa. Cyt2Bc was hemolytic only upon activation with trypsin and had only one-third to one-fifth of the activity of Cyt2Ba, depending on the activation time. Cyt2Bc was also mosquitocidal against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus, including strains resistant to the Bacillus sphaericus binary toxin. Its toxicity was half of that of Cyt2Ba on all mosquito species except resistant C. quinquefasciatus. PMID:11872472

  8. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants.

    PubMed

    Kim, Ji-Seong; Lee, Jeongeun; Lee, Chan-Hui; Woo, Su Young; Kang, Hoduck; Seo, Sang-Gyu; Kim, Sun-Hyung

    2015-06-01

    Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

  9. [Characteristics of Bacillus cereus dissociants].

    PubMed

    Doroshenko, E V; Loĭko, N G; Il'inskaia, O N; Kolpakov, A I; Gornova, I B; Klimanova, E V; El'-Registan, G I

    2001-01-01

    The autoregulation of the phenotypic (populational) variability of the Bacillus cereus strain 504 was studied. The isolated colonial morphotypes of this bacterium were found to differ in their growth characteristics and the synthesis of extracellular proteases. The phenotypic variabilities of vegetative proliferating cells and those germinated from endospores and cystlike refractory cells were different. Bacterial variants also differed in the production of the d1 and d2 factors (the autoinducers of dormancy and autolysis, respectively) and sensitivity to them. The possible role of these factors in the dissociation of microorganisms is discussed.

  10. Involvement of Colonizing Bacillus Isolates in Glucovanillin Hydrolysis during the Curing of Vanilla planifolia Andrews.

    PubMed

    Chen, Yonggan; Gu, Fenglin; Li, Jihua; He, Shuzhen; Xu, Fei; Fang, Yiming

    2015-08-01

    Vanilla beans were analyzed using biochemical methods, which revealed that glucovanillin disperses from the inner part to the outer part of the vanilla bean during the curing process and is simultaneously hydrolyzed by β-d-glucosidase. Enzymatic hydrolysis was found to occur on the surface of the vanilla beans. Transcripts of the β-d-glucosidase gene (bgl) of colonizing microorganisms were detected. The results directly indicate that colonizing microorganisms are involved in glucovanillin hydrolysis. Phylogenetic analysis based on 16S rRNA gene sequences showed that the colonizing microorganisms mainly belonged to the Bacillus genus. bgl was detected in all the isolates and presented clustering similar to that of the isolate taxonomy. Furthermore, inoculation of green fluorescent protein-tagged isolates showed that the Bacillus isolates can colonize vanilla beans. Glucovanillin was metabolized as the sole source of carbon in a culture of the isolates within 24 h. These isolates presented unique glucovanillin degradation capabilities. Vanillin was the major volatile compound in the culture. Other compounds, such as α-cubebene, β-pinene, and guaiacol, were detected in some isolate cultures. Colonizing Bacillus isolates were found to hydrolyze glucovanillin in culture, indirectly demonstrating the involvement of colonizing Bacillus isolates in glucovanillin hydrolysis during the vanilla curing process. Based on these results, we conclude that colonizing Bacillus isolates produce β-d-glucosidase, which mediates glucovanillin hydrolysis and influences flavor formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Test methods and response surface models for hot, humid air decontamination of materials contaminated with dirty spores of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam.

    PubMed

    Buhr, T L; Young, A A; Barnette, H K; Minter, Z A; Kennihan, N L; Johnson, C A; Bohmke, M D; DePaola, M; Cora-Laó, M; Page, M A

    2015-11-01

    To develop test methods and evaluate survival of Bacillus anthracis ∆Sterne or Bacillus thuringiensis Al Hakam on materials contaminated with dirty spore preparations after exposure to hot, humid air using response surface modelling. Spores (>7 log10 ) were mixed with humic acid + spent sporulation medium (organic debris) or kaolin (dirt debris). Spore samples were then dried on five different test materials (wiring insulation, aircraft performance coating, anti-skid, polypropylene, and nylon). Inoculated materials were tested with 19 test combinations of temperature (55, 65, 75°C), relative humidity (70, 80, 90%) and time (1, 2, 3 days). The slowest spore inactivation kinetics was on nylon webbing and/or after addition of organic debris. Hot, humid air effectively decontaminates materials contaminated with dirty Bacillus spore preparations; debris and material interactions create complex decontamination kinetic patterns; and B. thuringiensis Al Hakam is a realistic surrogate for B. anthracis. Response surface models of hot, humid air decontamination were developed which may be used to select decontamination parameters for contamination scenarios including aircraft. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  12. Investigation of antibacterial activity of Bacillus spp. isolated from the feces of Giant Panda and characterization of their antimicrobial gene distributions.

    PubMed

    Zhou, Ziyao; Zhou, Xiaoxiao; Zhong, Zhijun; Wang, Chengdong; Zhang, Hemin; Li, Desheng; He, Tingmei; Li, Caiwu; Liu, Xuehan; Yuan, Hui; Ji, Hanli; Luo, Yongjiu; Gu, Wuyang; Fu, Hualin; Peng, Guangneng

    2014-12-01

    Bacillus group is a prevalent community of Giant Panda's intestinal flora, and plays a significant role in the field of biological control of pathogens. To understand the diversity of Bacillus group from the Giant Panda intestine and their functions in maintaining the balance of the intestinal microflora of Giant Panda, this study isolated a significant number of strains of Bacillus spp. from the feces of Giant Panda, compared the inhibitory effects of these strains on three common enteric pathogens, investigated the distributions of six universal antimicrobial genes (ituA, hag, tasA, sfp, spaS and mrsA) found within the Bacillus group by PCR, and analyzed the characterization of antimicrobial gene distributions in these strains using statistical methods. The results suggest that 34 strains of Bacillus spp. were isolated which has not previously been detected at such a scale, these Bacillus strains could be classified into five categories as well as an external strain by 16S rRNA; Most of Bacillus strains are able to inhibit enteric pathogens, and the antimicrobial abilities may be correlated to their categories of 16S rRNA; The detection rates of six common antimicrobial genes are between 20.58 %(7/34) and 79.41 %(27/34), and genes distribute in three clusters in these strains. We found that the antimicrobial abilities of Bacillus strains can be one of the mechanisms by which Giant Panda maintains its intestinal microflora balance, and may be correlated to their phylogeny.

  13. Large-Scale Bioinformatics Analysis of Bacillus Genomes Uncovers Conserved Roles of Natural Products in Bacterial Physiology.

    PubMed

    Grubbs, Kirk J; Bleich, Rachel M; Santa Maria, Kevin C; Allen, Scott E; Farag, Sherif; Shank, Elizabeth A; Bowers, Albert A

    2017-01-01

    Bacteria possess an amazing capacity to synthesize a diverse range of structurally complex, bioactive natural products known as specialized (or secondary) metabolites. Many of these specialized metabolites are used as clinical therapeutics, while others have important ecological roles in microbial communities. The biosynthetic gene clusters (BGCs) that generate these metabolites can be identified in bacterial genome sequences using their highly conserved genetic features. We analyzed an unprecedented 1,566 bacterial genomes from Bacillus species and identified nearly 20,000 BGCs. By comparing these BGCs to one another as well as a curated set of known specialized metabolite BGCs, we discovered that the majority of Bacillus natural products are comprised of a small set of highly conserved, well-distributed, known natural product compounds. Most of these metabolites have important roles influencing the physiology and development of Bacillus species. We identified, in addition to these characterized compounds, many unique, weakly conserved BGCs scattered across the genus that are predicted to encode unknown natural products. Many of these "singleton" BGCs appear to have been acquired via horizontal gene transfer. Based on this large-scale characterization of metabolite production in the Bacilli , we go on to connect the alkylpyrones, natural products that are highly conserved but previously biologically uncharacterized, to a role in Bacillus physiology: inhibiting spore development. IMPORTANCE Bacilli are capable of producing a diverse array of specialized metabolites, many of which have gained attention for their roles as signals that affect bacterial physiology and development. Up to this point, however, the Bacillus genus's metabolic capacity has been underexplored. We undertook a deep genomic analysis of 1,566 Bacillus genomes to understand the full spectrum of metabolites that this bacterial group can make. We discovered that the majority of the specialized

  14. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis.

    PubMed

    Gustafsson, Tomas N; Osman, Harer; Werngren, Jim; Hoffner, Sven; Engman, Lars; Holmgren, Arne

    2016-06-01

    Bacillus anthracis is the causative agent of anthrax, a disease associated with a very high mortality rate in its invasive forms. We studied a number of ebselen analogs as inhibitors of B. anthracis thioredoxin reductase and their antibacterial activity on Bacillus subtilis, Staphylococcus aureus, Bacillus cereus and Mycobacterium tuberculosis. The most potent compounds in the series gave IC(50) values down to 70 nM for the pure enzyme and minimal inhibitory concentrations (MICs) down to 0.4 μM (0.12 μg/ml) for B. subtilis, 1.5 μM (0.64 μg/ml) for S. aureus, 2 μM (0.86 μg/ml) for B. cereus and 10 μg/ml for M. tuberculosis. Minimal bactericidal concentrations (MBCs) were found at 1-1.5 times the MIC, indicating a general, class-dependent, bactericidal mode of action. The combined bacteriological and enzymological data were used to construct a preliminary structure-activity-relationship for the benzoisoselenazol class of compounds. When S. aureus and B. subtilis were exposed to ebselen, we were unable to isolate resistant mutants on both solid and in liquid medium suggesting a high resistance barrier. These results suggest that ebselen and analogs thereof could be developed into a novel antibiotic class, useful for the treatment of infections caused by B. anthracis, S. aureus, M. tuberculosis and other clinically important bacteria. Furthermore, the high barrier against resistance development is encouraging for further drug development. We have characterized the thioredoxin system from B. anthracis as a novel drug target and ebselen and analogs thereof as a potential new class of antibiotics targeting several important human pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mixed-mode resins: taking shortcut in downstream processing of raw-starch digesting α-amylases

    PubMed Central

    Lončar, Nikola; Slavić, Marinela Šokarda; Vujčić, Zoran; Božić, Nataša

    2015-01-01

    Bacillus licheniformis 9945a α-amylase is known as a potent enzyme for raw starch hydrolysis. In this paper, a mixed mode Nuvia cPrime™ resin is examined with the aim to improve the downstream processing of raw starch digesting amylases and exploit the hydrophobic patches on their surface. This resin combines hydrophobic interactions with cation exchange groups and as such the presence of salt facilitates hydrophobic interactions while the ion-exchange groups enable proper selectivity. α-Amylase was produced using an optimized fed-batch approach in a defined media and significant overexpression of 1.2 g L−1 was achieved. This single step procedure enables simultaneous concentration, pigment removal as well as purification of amylase with yields of 96% directly from the fermentation broth. PMID:26492875

  16. Heme inhibition of ferrisiderophore reductase in Bacillus subtilis.

    PubMed

    Lodge, J S; Gaines, C G; Arceneaux, J E; Byers, B R

    1982-11-01

    Heme was a noncompetitive inhibitor (apparent K(i) and K'(i) = 0.043 mM) of a ferrisiderophore reductase purified from Bacillus subtilis; protoporphyrin IX had no effect. The cellular level of heme may partly regulate the function of this reductase to yield a controlled flow of iron into metabolism.

  17. Multi-effect of the water-soluble Moringa oleifera lectin against Serratia marcescens and Bacillus sp.: antibacterial, antibiofilm and anti-adhesive properties.

    PubMed

    Moura, M C; Trentin, D S; Napoleão, T H; Primon-Barros, M; Xavier, A S; Carneiro, N P; Paiva, P M G; Macedo, A J; Coelho, L C B B

    2017-10-01

    To evaluate the antibiofilm potential of water-soluble Moringa oleifera seed lectin (WSMoL) on Serratia marcescens and Bacillus sp. WSMoL inhibited biofilm formation by S. marcescens at concentrations lower than 2·6 μg ml -1 and impaired bacterial growth at higher concentrations, avoiding biofilm formation. For Bacillus sp., the lectin inhibited bacterial growth at all concentrations. The antibiofilm action of WSMoL is associated with damage to bacterial cells. WSMoL did not disrupt preformed S. marcescens biofilms but was able to damage cells inside them. On the other hand, the lectin reduced the number of cells in Bacillus sp. biofilm treated with it. WSMoL was able to control biofilm formation when immobilized on glass surface (116 μg cm -2 ), damaging S. marcescens cells and avoiding adherence of Bacillus sp. cells on glass. The Bacillus sp. isolate is member of Bacillus subtilis species complex and closely related to species of the conspecific 'amyloliquefaciens' group. WSMoL prevented biofilm development by S. marcescens and Bacillus sp. and the antibiofilm effect is also observed when the lectin is immobilized on glass. Taking together, our results provide support to the potential use of WSMoL for controlling biofilm formation by bacteria. © 2017 The Society for Applied Microbiology.

  18. Algicidal activity of Bacillus sp. Lzh-5 and its algicidal compounds against Microcystis aeruginosa.

    PubMed

    Li, Zhenghua; Geng, Mengxin; Yang, Hong

    2015-01-01

    A freshwater algicidal bacterial strain, Lzh-5, isolated from Lake Taihu, with strong algicidal activity against Microcystis aeruginosa, was identified as Bacillus sp. based on its phenotypic characteristics and 16S ribosomal RNA (rRNA) gene sequence. The algicidal mode of Bacillus sp. Lzh-5 was indirect, attacking M. aeruginosa cells by releasing algicidal compounds. Two algicidal compounds (S-5A and S-5B) produced by Bacillus sp. Lzh-5 were purified with ethyl acetate extraction, column chromatography, and high-performance liquid chromatography and identified as hexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 3-isopropyl-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione based on liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and nuclear magnetic resonance analyses. The active algicidal compounds S-5A (hexahydropyrrolo[1,2-a]pyrazine-1,4-dione) and S-5B (3-isopropyl-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione) displayed high levels of algicidal activity against M. aeruginosa 9110, with LD50 values of 5.7 and 19.4 μg/ml, respectively. This is the first report of 3-isopropyl-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione as an algicidal compound. Compounds S-5A and S-5B also induced obvious morphological changes in M. aeruginosa 9110. In cocultures of M. aeruginosa 9110 and Bacillus sp. Lzh-5, the cell density of Bacillus sp. Lzh-5 and the concentrations of S-5A and S-5B correlated positively with the algicidal activity. Our results indicate that strain Lzh-5 and its two algicidal compounds are potentially useful for controlling cyanobacterial blooms in Lake Taihu.

  19. Squamocin, an annonaceous acetogenin, enhances naphthalene degradation mediated by Bacillus atrophaeus CN4.

    PubMed

    Parellada, Eduardo A; Igarza, Mercedes; Isacc, Paula; Bardón, Alicia; Ferrero, Marcela; Ameta, Keshav Lalit; Neske, Adriana

    Squamocin belongs to a group of compounds called annonaceous acetogenins. They are secondary products of Annonaceae metabolism and can be isolated from Annona cherimolia seeds. This paper deals with the stimulation of biofilm formation of Bacillus atrophaeus CN4 by employing low squamocin concentrations to increase naphthalene degradation. Bacillus atrophaeus CN4, isolated from contaminated soil, has the ability to degrade naphthalene as the only source of carbon and energy. In the absence of additional carbon sources, the strain removed 69% of the initial concentration of naphthalene (approx. 0.2mmol/l) in the first 12h of incubation. The addition of squamocin in LB medium stimulated Bacillus atrophaeus CN4 biofilm formation and enhanced naphthalene removal. Squamocin (2.5μg/ml) does not affect planktonic growth and therefore, the observed increases are solely due to the stimulation of biofilm formation. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Genetic diversity of Bacillus sp producers of amylase isolated from the soil.

    PubMed

    Xavier, A R E O; Lima, E R; Oliveira, A M E; Cardoso, L; Santos, J; Cangussu, C H C; Leite, L N; Quirino, M C L; Júnior, I G C; Oliveira, D A; Xavier, M A S

    2017-09-27

    The microorganisms are the best source of extracellular enzymes since they allow an economical technology with low-resource consumption compared to animals and plants. The amylases are among the most important enzymes being the genus Bacillus one of the most investigated due to its ability to produce this enzyme. The objective of this study was to isolate and analyze the genetic diversity among bacteria of the genus Bacillus sp producer of amylase originated from the soil. To this end, soil samples were collected and submitted to the condition of extreme temperature. The serial dilution procedure followed by seeding on solid medium containing starch was used for isolation of strains that produce amylase. The microorganisms isolated were subjected to standard morphological methods for presumptive identification of the genus Bacillus. The PCR assay with the universal genetic marker 16S rDNA was used for confirmation of bacterial strain. All the 10 isolates presumptively identified as bacteria amplified a fragment of 370 bp corresponding to the 16S rDNA gene. The enzymatic activity was expressed as an enzymatic index (EI), after 24 h of incubation. All isolate producers of amylase exhibited EI ≥ 2.0. The determination of the genetic profile and the clonal relationship among the isolates were performed by the method of ERIC-PCR polymorphism. The isolates of Bacillus spp were divided into 2 groups (I and II). Through this method, the discriminatory capacity of this analysis of polymorphisms was verified in differing producer strains from those not producing amylase.