Fast Back-Propagation Learning Using Steep Activation Functions and Automatic Weight
Tai-Hoon Cho; Richard W. Conners; Philip A. Araman
1992-01-01
In this paper, several back-propagation (BP) learning speed-up algorithms that employ the ãgainä parameter, i.e., steepness of the activation function, are examined. Simulations will show that increasing the gain seemingly increases the speed of convergence and that these algorithms can converge faster than the standard BP learning algorithm on some problems. However,...
Analog Delta-Back-Propagation Neural-Network Circuitry
NASA Technical Reports Server (NTRS)
Eberhart, Silvio
1990-01-01
Changes in synapse weights due to circuit drifts suppressed. Proposed fully parallel analog version of electronic neural-network processor based on delta-back-propagation algorithm. Processor able to "learn" when provided with suitable combinations of inputs and enforced outputs. Includes programmable resistive memory elements (corresponding to synapses), conductances (synapse weights) adjusted during learning. Buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in layers of electronic neurons in accordance with delta-back-propagation algorithm.
Back-propagation learning of infinite-dimensional dynamical systems.
Tokuda, Isao; Tokunaga, Ryuji; Aihara, Kazuyuki
2003-10-01
This paper presents numerical studies of applying back-propagation learning to a delayed recurrent neural network (DRNN). The DRNN is a continuous-time recurrent neural network having time delayed feedbacks and the back-propagation learning is to teach spatio-temporal dynamics to the DRNN. Since the time-delays make the dynamics of the DRNN infinite-dimensional, the learning algorithm and the learning capability of the DRNN are different from those of the ordinary recurrent neural network (ORNN) having no time-delays. First, two types of learning algorithms are developed for a class of DRNNs. Then, using chaotic signals generated from the Mackey-Glass equation and the Rössler equations, learning capability of the DRNN is examined. Comparing the learning algorithms, learning capability, and robustness against noise of the DRNN with those of the ORNN and time delay neural network, advantages as well as disadvantages of the DRNN are investigated.
Analysis of Accuracy and Epoch on Back-propagation BFGS Quasi-Newton
NASA Astrophysics Data System (ADS)
Silaban, Herlan; Zarlis, Muhammad; Sawaluddin
2017-12-01
Back-propagation is one of the learning algorithms on artificial neural networks that have been widely used to solve various problems, such as pattern recognition, prediction and classification. The Back-propagation architecture will affect the outcome of learning processed. BFGS Quasi-Newton is one of the functions that can be used to change the weight of back-propagation. This research tested some back-propagation architectures using classical back-propagation and back-propagation with BFGS. There are 7 architectures that have been tested on glass dataset with various numbers of neurons, 6 architectures with 1 hidden layer and 1 architecture with 2 hidden layers. BP with BFGS improves the convergence of the learning process. The average improvement convergence is 98.34%. BP with BFGS is more optimal on architectures with smaller number of neurons with decreased epoch number is 94.37% with the increase of accuracy about 0.5%.
Program Helps Simulate Neural Networks
NASA Technical Reports Server (NTRS)
Villarreal, James; Mcintire, Gary
1993-01-01
Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.
NASA Astrophysics Data System (ADS)
Guruprasad, R.; Behera, B. K.
2015-10-01
Quantitative prediction of fabric mechanical properties is an essential requirement for design engineering of textile and apparel products. In this work, the possibility of prediction of bending rigidity of cotton woven fabrics has been explored with the application of Artificial Neural Network (ANN) and two hybrid methodologies, namely Neuro-genetic modeling and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling. For this purpose, a set of cotton woven grey fabrics was desized, scoured and relaxed. The fabrics were then conditioned and tested for bending properties. With the database thus created, a neural network model was first developed using back propagation as the learning algorithm. The second model was developed by applying a hybrid learning strategy, in which genetic algorithm was first used as a learning algorithm to optimize the number of neurons and connection weights of the neural network. The Genetic algorithm optimized network structure was further allowed to learn using back propagation algorithm. In the third model, an ANFIS modeling approach was attempted to map the input-output data. The prediction performances of the models were compared and a sensitivity analysis was reported. The results show that the prediction by neuro-genetic and ANFIS models were better in comparison with that of back propagation neural network model.
A stable second order method for training back propagation networks
NASA Technical Reports Server (NTRS)
Nachtsheim, Philip R.
1993-01-01
A simple method for improving the learning rate of the back-propagation algorithm is described. The basis of the method is that approximate second order corrections can be incorporated in the output units. The extended method leads to significant improvements in the convergence rate.
WS-BP: An efficient wolf search based back-propagation algorithm
NASA Astrophysics Data System (ADS)
Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah
2015-05-01
Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.
NASA Technical Reports Server (NTRS)
Ryan, J. P.; Shah, B. H.
1987-01-01
Implementation of the Hopfield net which is used in the image processing type of applications where only partial information about the image may be available is discussed. The image classification type of algorithm of Hopfield and other learning algorithms, such as the Boltzmann machine and the back-propagation training algorithm, have many vital applications in space.
Implementations of back propagation algorithm in ecosystems applications
NASA Astrophysics Data System (ADS)
Ali, Khalda F.; Sulaiman, Riza; Elamir, Amir Mohamed
2015-05-01
Artificial Neural Networks (ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is in solving problems which are too complex for conventional technologies, that do not have an algorithmic solutions or their algorithmic Solutions is too complex to be found. In general, because of their abstraction from the biological brain, ANNs are developed from concept that evolved in the late twentieth century neuro-physiological experiments on the cells of the human brain to overcome the perceived inadequacies with conventional ecological data analysis methods. ANNs have gained increasing attention in ecosystems applications, because of ANN's capacity to detect patterns in data through non-linear relationships, this characteristic confers them a superior predictive ability. In this research, ANNs is applied in an ecological system analysis. The neural networks use the well known Back Propagation (BP) Algorithm with the Delta Rule for adaptation of the system. The Back Propagation (BP) training Algorithm is an effective analytical method for adaptation of the ecosystems applications, the main reason because of their capacity to detect patterns in data through non-linear relationships. This characteristic confers them a superior predicting ability. The BP algorithm uses supervised learning, which means that we provide the algorithm with examples of the inputs and outputs we want the network to compute, and then the error is calculated. The idea of the back propagation algorithm is to reduce this error, until the ANNs learns the training data. The training begins with random weights, and the goal is to adjust them so that the error will be minimal. This research evaluated the use of artificial neural networks (ANNs) techniques in an ecological system analysis and modeling. The experimental results from this research demonstrate that an artificial neural network system can be trained to act as an expert ecosystem analyzer for many applications in ecological fields. The pilot ecosystem analyzer shows promising ability for generalization and requires further tuning and refinement of the basis neural network system for optimal performance.
Neural-Network-Development Program
NASA Technical Reports Server (NTRS)
Phillips, Todd A.
1993-01-01
NETS, software tool for development and evaluation of neural networks, provides simulation of neural-network algorithms plus computing environment for development of such algorithms. Uses back-propagation learning method for all of networks it creates. Enables user to customize patterns of connections between layers of network. Also provides features for saving, during learning process, values of weights, providing more-precise control over learning process. Written in ANSI standard C language. Machine-independent version (MSC-21588) includes only code for command-line-interface version of NETS 3.0.
Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation
Scellier, Benjamin; Bengio, Yoshua
2017-01-01
We introduce Equilibrium Propagation, a learning framework for energy-based models. It involves only one kind of neural computation, performed in both the first phase (when the prediction is made) and the second phase of training (after the target or prediction error is revealed). Although this algorithm computes the gradient of an objective function just like Backpropagation, it does not need a special computation or circuit for the second phase, where errors are implicitly propagated. Equilibrium Propagation shares similarities with Contrastive Hebbian Learning and Contrastive Divergence while solving the theoretical issues of both algorithms: our algorithm computes the gradient of a well-defined objective function. Because the objective function is defined in terms of local perturbations, the second phase of Equilibrium Propagation corresponds to only nudging the prediction (fixed point or stationary distribution) toward a configuration that reduces prediction error. In the case of a recurrent multi-layer supervised network, the output units are slightly nudged toward their target in the second phase, and the perturbation introduced at the output layer propagates backward in the hidden layers. We show that the signal “back-propagated” during this second phase corresponds to the propagation of error derivatives and encodes the gradient of the objective function, when the synaptic update corresponds to a standard form of spike-timing dependent plasticity. This work makes it more plausible that a mechanism similar to Backpropagation could be implemented by brains, since leaky integrator neural computation performs both inference and error back-propagation in our model. The only local difference between the two phases is whether synaptic changes are allowed or not. We also show experimentally that multi-layer recurrently connected networks with 1, 2, and 3 hidden layers can be trained by Equilibrium Propagation on the permutation-invariant MNIST task. PMID:28522969
Cascade Back-Propagation Learning in Neural Networks
NASA Technical Reports Server (NTRS)
Duong, Tuan A.
2003-01-01
The cascade back-propagation (CBP) algorithm is the basis of a conceptual design for accelerating learning in artificial neural networks. The neural networks would be implemented as analog very-large-scale integrated (VLSI) circuits, and circuits to implement the CBP algorithm would be fabricated on the same VLSI circuit chips with the neural networks. Heretofore, artificial neural networks have learned slowly because it has been necessary to train them via software, for lack of a good on-chip learning technique. The CBP algorithm is an on-chip technique that provides for continuous learning in real time. Artificial neural networks are trained by example: A network is presented with training inputs for which the correct outputs are known, and the algorithm strives to adjust the weights of synaptic connections in the network to make the actual outputs approach the correct outputs. The input data are generally divided into three parts. Two of the parts, called the "training" and "cross-validation" sets, respectively, must be such that the corresponding input/output pairs are known. During training, the cross-validation set enables verification of the status of the input-to-output transformation learned by the network to avoid over-learning. The third part of the data, termed the "test" set, consists of the inputs that are required to be transformed into outputs; this set may or may not include the training set and/or the cross-validation set. Proposed neural-network circuitry for on-chip learning would be divided into two distinct networks; one for training and one for validation. Both networks would share the same synaptic weights.
Supervised learning of probability distributions by neural networks
NASA Technical Reports Server (NTRS)
Baum, Eric B.; Wilczek, Frank
1988-01-01
Supervised learning algorithms for feedforward neural networks are investigated analytically. The back-propagation algorithm described by Werbos (1974), Parker (1985), and Rumelhart et al. (1986) is generalized by redefining the values of the input and output neurons as probabilities. The synaptic weights are then varied to follow gradients in the logarithm of likelihood rather than in the error. This modification is shown to provide a more rigorous theoretical basis for the algorithm and to permit more accurate predictions. A typical application involving a medical-diagnosis expert system is discussed.
Khellal, Atmane; Ma, Hongbin; Fei, Qing
2018-05-09
The success of Deep Learning models, notably convolutional neural networks (CNNs), makes them the favorable solution for object recognition systems in both visible and infrared domains. However, the lack of training data in the case of maritime ships research leads to poor performance due to the problem of overfitting. In addition, the back-propagation algorithm used to train CNN is very slow and requires tuning many hyperparameters. To overcome these weaknesses, we introduce a new approach fully based on Extreme Learning Machine (ELM) to learn useful CNN features and perform a fast and accurate classification, which is suitable for infrared-based recognition systems. The proposed approach combines an ELM based learning algorithm to train CNN for discriminative features extraction and an ELM based ensemble for classification. The experimental results on VAIS dataset, which is the largest dataset of maritime ships, confirm that the proposed approach outperforms the state-of-the-art models in term of generalization performance and training speed. For instance, the proposed model is up to 950 times faster than the traditional back-propagation based training of convolutional neural networks, primarily for low-level features extraction.
NASA Technical Reports Server (NTRS)
Salu, Yehuda; Tilton, James
1993-01-01
The classification of multispectral image data obtained from satellites has become an important tool for generating ground cover maps. This study deals with the application of nonparametric pixel-by-pixel classification methods in the classification of pixels, based on their multispectral data. A new neural network, the Binary Diamond, is introduced, and its performance is compared with a nearest neighbor algorithm and a back-propagation network. The Binary Diamond is a multilayer, feed-forward neural network, which learns from examples in unsupervised, 'one-shot' mode. It recruits its neurons according to the actual training set, as it learns. The comparisons of the algorithms were done by using a realistic data base, consisting of approximately 90,000 Landsat 4 Thematic Mapper pixels. The Binary Diamond and the nearest neighbor performances were close, with some advantages to the Binary Diamond. The performance of the back-propagation network lagged behind. An efficient nearest neighbor algorithm, the binned nearest neighbor, is described. Ways for improving the performances, such as merging categories, and analyzing nonboundary pixels, are addressed and evaluated.
Research on particle swarm optimization algorithm based on optimal movement probability
NASA Astrophysics Data System (ADS)
Ma, Jianhong; Zhang, Han; He, Baofeng
2017-01-01
The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.
Two papers on feed-forward networks
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Weigend, Andreas S.
1991-01-01
Connectionist feed-forward networks, trained with back-propagation, can be used both for nonlinear regression and for (discrete one-of-C) classification, depending on the form of training. This report contains two papers on feed-forward networks. The papers can be read independently. They are intended for the theoretically-aware practitioner or algorithm-designer; however, they also contain a review and comparison of several learning theories so they provide a perspective for the theoretician. The first paper works through Bayesian methods to complement back-propagation in the training of feed-forward networks. The second paper addresses a problem raised by the first: how to efficiently calculate second derivatives on feed-forward networks.
Genetic algorithm for neural networks optimization
NASA Astrophysics Data System (ADS)
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Ueda, Michihito; Nishitani, Yu; Kaneko, Yukihiro; Omote, Atsushi
2014-01-01
To realize an analog artificial neural network hardware, the circuit element for synapse function is important because the number of synapse elements is much larger than that of neuron elements. One of the candidates for this synapse element is a ferroelectric memristor. This device functions as a voltage controllable variable resistor, which can be applied to a synapse weight. However, its conductance shows hysteresis characteristics and dispersion to the input voltage. Therefore, the conductance values vary according to the history of the height and the width of the applied pulse voltage. Due to the difficulty of controlling the accurate conductance, it is not easy to apply the back-propagation learning algorithm to the neural network hardware having memristor synapses. To solve this problem, we proposed and simulated a learning operation procedure as follows. Employing a weight perturbation technique, we derived the error change. When the error reduced, the next pulse voltage was updated according to the back-propagation learning algorithm. If the error increased the amplitude of the next voltage pulse was set in such way as to cause similar memristor conductance but in the opposite voltage scanning direction. By this operation, we could eliminate the hysteresis and confirmed that the simulation of the learning operation converged. We also adopted conductance dispersion numerically in the simulation. We examined the probability that the error decreased to a designated value within a predetermined loop number. The ferroelectric has the characteristics that the magnitude of polarization does not become smaller when voltages having the same polarity are applied. These characteristics greatly improved the probability even if the learning rate was small, if the magnitude of the dispersion is adequate. Because the dispersion of analog circuit elements is inevitable, this learning operation procedure is useful for analog neural network hardware. PMID:25393715
Application of neural nets in structural optimization
NASA Technical Reports Server (NTRS)
Berke, Laszlo; Hajela, Prabhat
1993-01-01
The biological motivation for Artificial Neural Net developments is briefly discussed, and the most popular paradigm, the feedforward supervised learning net with error back propagation training algorithm, is introduced. Possible approaches for utilization in structural optimization is illustrated through simple examples. Other currently ongoing developments for application in structural mechanics are also mentioned.
Gross domestic product estimation based on electricity utilization by artificial neural network
NASA Astrophysics Data System (ADS)
Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.
2018-01-01
The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.
A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network
NASA Astrophysics Data System (ADS)
Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed
This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.
Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems
NASA Technical Reports Server (NTRS)
Innocenti, M.; Napolitano, M.
2003-01-01
Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.
ERIC Educational Resources Information Center
Treurniet, William
A study applied artificial neural networks, trained with the back-propagation learning algorithm, to modelling phonemes extracted from the DARPA TIMIT multi-speaker, continuous speech data base. A number of proposed network architectures were applied to the phoneme classification task, ranging from the simple feedforward multilayer network to more…
NASA Astrophysics Data System (ADS)
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
Implementation of neural network for color properties of polycarbonates
NASA Astrophysics Data System (ADS)
Saeed, U.; Ahmad, S.; Alsadi, J.; Ross, D.; Rizvi, G.
2014-05-01
In present paper, the applicability of artificial neural networks (ANN) is investigated for color properties of plastics. The neural networks toolbox of Matlab 6.5 is used to develop and test the ANN model on a personal computer. An optimal design is completed for 10, 12, 14,16,18 & 20 hidden neurons on single hidden layer with five different algorithms: batch gradient descent (GD), batch variable learning rate (GDX), resilient back-propagation (RP), scaled conjugate gradient (SCG), levenberg-marquardt (LM) in the feed forward back-propagation neural network model. The training data for ANN is obtained from experimental measurements. There were twenty two inputs including resins, additives & pigments while three tristimulus color values L*, a* and b* were used as output layer. Statistical analysis in terms of Root-Mean-Squared (RMS), absolute fraction of variance (R squared), as well as mean square error is used to investigate the performance of ANN. LM algorithm with fourteen neurons on hidden layer in Feed Forward Back-Propagation of ANN model has shown best result in the present study. The degree of accuracy of the ANN model in reduction of errors is proven acceptable in all statistical analysis and shown in results. However, it was concluded that ANN provides a feasible method in error reduction in specific color tristimulus values.
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines
Neftci, Emre O.; Augustine, Charles; Paul, Somnath; Detorakis, Georgios
2017-01-01
An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning. PMID:28680387
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.
Neftci, Emre O; Augustine, Charles; Paul, Somnath; Detorakis, Georgios
2017-01-01
An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning.
An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks
Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen
2016-01-01
The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper. PMID:27044001
NASA Astrophysics Data System (ADS)
Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.
2014-02-01
This study aims to improve the performance of nuclear power plants (NPPs) transients training and identification using the latest advances of error back-propagation (EBP) learning algorithm. To this end, elements of EBP, including input data, initial weights, learning rate, cost function, activation function, and weights updating procedure are investigated and an efficient neural network is developed. Usefulness of modular networks is also examined and appropriate identifiers, one for each transient, are employed. Furthermore, the effect of transient type on transient identifier performance is illustrated. Subsequently, the developed transient identifier is applied to Bushehr nuclear power plant (BNPP). Seven types of the plant events are probed to analyze the ability of the proposed identifier. The results reveal that identification occurs very early with only five plant variables, whilst in the previous studies a larger number of variables (typically 15 to 20) were required. Modular networks facilitated identification due to its sole dependency on the sign of each network output signal. Fast training of input patterns, extendibility for identification of more transients and reduction of false identification are other advantageous of the proposed identifier. Finally, the balance between the correct answer to the trained transients (memorization) and reasonable response to the test transients (generalization) is improved, meeting one of the primary design criteria of identifiers.
NASA Technical Reports Server (NTRS)
Troudet, Terry; Merrill, Walter C.
1989-01-01
The ability of feed-forward neural net architectures to learn continuous-valued mappings in the presence of noise is demonstrated in relation to parameter identification and real-time adaptive control applications. Factors and parameters influencing the learning performance of such nets in the presence of noise are identified. Their effects are discussed through a computer simulation of the Back-Error-Propagation algorithm by taking the example of the cart-pole system controlled by a nonlinear control law. Adequate sampling of the state space is found to be essential for canceling the effect of the statistical fluctuations and allowing learning to take place.
A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.
Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei
2017-05-18
The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.
PONS2train: tool for testing the MLP architecture and local traning methods for runoff forecast
NASA Astrophysics Data System (ADS)
Maca, P.; Pavlasek, J.; Pech, P.
2012-04-01
The purpose of presented poster is to introduce the PONS2train developed for runoff prediction via multilayer perceptron - MLP. The software application enables the implementation of 12 different MLP's transfer functions, comparison of 9 local training algorithms and finally the evaluation the MLP performance via 17 selected model evaluation metrics. The PONS2train software is written in C++ programing language. Its implementation consists of 4 classes. The NEURAL_NET and NEURON classes implement the MLP, the CRITERIA class estimates model evaluation metrics and for model performance evaluation via testing and validation datasets. The DATA_PATTERN class prepares the validation, testing and calibration datasets. The software application uses the LAPACK, BLAS and ARMADILLO C++ linear algebra libraries. The PONS2train implements the first order local optimization algorithms: standard on-line and batch back-propagation with learning rate combined with momentum and its variants with the regularization term, Rprop and standard batch back-propagation with variable momentum and learning rate. The second order local training algorithms represents: the Levenberg-Marquardt algorithm with and without regularization and four variants of scaled conjugate gradients. The other important PONS2train features are: the multi-run, the weight saturation control, early stopping of trainings, and the MLP weights analysis. The weights initialization is done via two different methods: random sampling from uniform distribution on open interval or Nguyen Widrow method. The data patterns can be transformed via linear and nonlinear transformation. The runoff forecast case study focuses on PONS2train implementation and shows the different aspects of the MLP training, the MLP architecture estimation, the neural network weights analysis and model uncertainty estimation.
Neuromorphic Learning From Noisy Data
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Troudet, Terry
1993-01-01
Two reports present numerical study of performance of feedforward neural network trained by back-propagation algorithm in learning continuous-valued mappings from data corrupted by noise. Two types of noise considered: plant noise which affects dynamics of controlled process and data-processing noise, which occurs during analog processing and digital sampling of signals. Study performed with view toward use of neural networks as neurocontrollers to substitute for, or enhance, performances of human experts in controlling mechanical devices in presence of sensor and actuator noise and to enhance performances of more-conventional digital feedback electronic process controllers in noisy environments.
Sudha, M
2017-09-27
As a recent trend, various computational intelligence and machine learning approaches have been used for mining inferences hidden in the large clinical databases to assist the clinician in strategic decision making. In any target data the irrelevant information may be detrimental, causing confusion for the mining algorithm and degrades the prediction outcome. To address this issue, this study attempts to identify an intelligent approach to assist disease diagnostic procedure using an optimal set of attributes instead of all attributes present in the clinical data set. In this proposed Application Specific Intelligent Computing (ASIC) decision support system, a rough set based genetic algorithm is employed in pre-processing phase and a back propagation neural network is applied in training and testing phase. ASIC has two phases, the first phase handles outliers, noisy data, and missing values to obtain a qualitative target data to generate appropriate attribute reduct sets from the input data using rough computing based genetic algorithm centred on a relative fitness function measure. The succeeding phase of this system involves both training and testing of back propagation neural network classifier on the selected reducts. The model performance is evaluated with widely adopted existing classifiers. The proposed ASIC system for clinical decision support has been tested with breast cancer, fertility diagnosis and heart disease data set from the University of California at Irvine (UCI) machine learning repository. The proposed system outperformed the existing approaches attaining the accuracy rate of 95.33%, 97.61%, and 93.04% for breast cancer, fertility issue and heart disease diagnosis.
Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems
Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S.; Agarwal, Dev P.
2015-01-01
Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data. PMID:26366169
Fuzzy Counter Propagation Neural Network Control for a Class of Nonlinear Dynamical Systems.
Sakhre, Vandana; Jain, Sanjeev; Sapkal, Vilas S; Agarwal, Dev P
2015-01-01
Fuzzy Counter Propagation Neural Network (FCPN) controller design is developed, for a class of nonlinear dynamical systems. In this process, the weight connecting between the instar and outstar, that is, input-hidden and hidden-output layer, respectively, is adjusted by using Fuzzy Competitive Learning (FCL). FCL paradigm adopts the principle of learning, which is used to calculate Best Matched Node (BMN) which is proposed. This strategy offers a robust control of nonlinear dynamical systems. FCPN is compared with the existing network like Dynamic Network (DN) and Back Propagation Network (BPN) on the basis of Mean Absolute Error (MAE), Mean Square Error (MSE), Best Fit Rate (BFR), and so forth. It envisages that the proposed FCPN gives better results than DN and BPN. The effectiveness of the proposed FCPN algorithms is demonstrated through simulations of four nonlinear dynamical systems and multiple input and single output (MISO) and a single input and single output (SISO) gas furnace Box-Jenkins time series data.
A neural network model for credit risk evaluation.
Khashman, Adnan
2009-08-01
Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.
NASA Astrophysics Data System (ADS)
Raj, A. Stanley; Srinivas, Y.; Oliver, D. Hudson; Muthuraj, D.
2014-03-01
The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.
NASA Astrophysics Data System (ADS)
Nawi, Nazri Mohd.; Khan, Abdullah; Rehman, M. Z.
2015-05-01
A nature inspired behavior metaheuristic techniques which provide derivative-free solutions to solve complex problems. One of the latest additions to the group of nature inspired optimization procedure is Cuckoo Search (CS) algorithm. Artificial Neural Network (ANN) training is an optimization task since it is desired to find optimal weight set of a neural network in training process. Traditional training algorithms have some limitation such as getting trapped in local minima and slow convergence rate. This study proposed a new technique CSLM by combining the best features of two known algorithms back-propagation (BP) and Levenberg Marquardt algorithm (LM) for improving the convergence speed of ANN training and avoiding local minima problem by training this network. Some selected benchmark classification datasets are used for simulation. The experiment result show that the proposed cuckoo search with Levenberg Marquardt algorithm has better performance than other algorithm used in this study.
Martínez-Blanco, Ma Del Rosario; Ornelas-Vargas, Gerardo; Solís-Sánchez, Luis Octavio; Castañeda-Miranada, Rodrigo; Vega-Carrillo, Héctor René; Celaya-Padilla, José M; Garza-Veloz, Idalia; Martínez-Fierro, Margarita; Ortiz-Rodríguez, José Manuel
2016-11-01
The process of unfolding the neutron energy spectrum has been subject of research for many years. Monte Carlo, iterative methods, the bayesian theory, the principle of maximum entropy are some of the methods used. The drawbacks associated with traditional unfolding procedures have motivated the research of complementary approaches. Back Propagation Neural Networks (BPNN), have been applied with success in neutron spectrometry and dosimetry domains, however, the structure and learning parameters are factors that highly impact in the networks performance. In ANN domain, Generalized Regression Neural Network (GRNN) is one of the simplest neural networks in term of network architecture and learning algorithm. The learning is instantaneous, requiring no time for training. Opposite to BPNN, a GRNN would be formed instantly with just a 1-pass training on the development data. In the network development phase, the only hurdle is to optimize the hyper-parameter, which is known as sigma, governing the smoothness of the network. The aim of this work was to compare the performance of BPNN and GRNN in the solution of the neutron spectrometry problem. From results obtained it can be observed that despite the very similar results, GRNN performs better than BPNN. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mofavvaz, Shirin; Sohrabi, Mahmoud Reza; Nezamzadeh-Ejhieh, Alireza
2017-07-01
In the present study, artificial neural networks (ANNs) and least squares support vector machines (LS-SVM) as intelligent methods based on absorption spectra in the range of 230-300 nm have been used for determination of antihistamine decongestant contents. In the first step, one type of network (feed-forward back-propagation) from the artificial neural network with two different training algorithms, Levenberg-Marquardt (LM) and gradient descent with momentum and adaptive learning rate back-propagation (GDX) algorithm, were employed and their performance was evaluated. The performance of the LM algorithm was better than the GDX algorithm. In the second one, the radial basis network was utilized and results compared with the previous network. In the last one, the other intelligent method named least squares support vector machine was proposed to construct the antihistamine decongestant prediction model and the results were compared with two of the aforementioned networks. The values of the statistical parameters mean square error (MSE), Regression coefficient (R2), correlation coefficient (r) and also mean recovery (%), relative standard deviation (RSD) used for selecting the best model between these methods. Moreover, the proposed methods were compared to the high- performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them.
Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei
2014-09-01
In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
A label distance maximum-based classifier for multi-label learning.
Liu, Xiaoli; Bao, Hang; Zhao, Dazhe; Cao, Peng
2015-01-01
Multi-label classification is useful in many bioinformatics tasks such as gene function prediction and protein site localization. This paper presents an improved neural network algorithm, Max Label Distance Back Propagation Algorithm for Multi-Label Classification. The method was formulated by modifying the total error function of the standard BP by adding a penalty term, which was realized by maximizing the distance between the positive and negative labels. Extensive experiments were conducted to compare this method against state-of-the-art multi-label methods on three popular bioinformatic benchmark datasets. The results illustrated that this proposed method is more effective for bioinformatic multi-label classification compared to commonly used techniques.
Azami, Hamed; Escudero, Javier
2015-08-01
Breast cancer is one of the most common types of cancer in women all over the world. Early diagnosis of this kind of cancer can significantly increase the chances of long-term survival. Since diagnosis of breast cancer is a complex problem, neural network (NN) approaches have been used as a promising solution. Considering the low speed of the back-propagation (BP) algorithm to train a feed-forward NN, we consider a number of improved NN trainings for the Wisconsin breast cancer dataset: BP with momentum, BP with adaptive learning rate, BP with adaptive learning rate and momentum, Polak-Ribikre conjugate gradient algorithm (CGA), Fletcher-Reeves CGA, Powell-Beale CGA, scaled CGA, resilient BP (RBP), one-step secant and quasi-Newton methods. An NN ensemble, which is a learning paradigm to combine a number of NN outputs, is used to improve the accuracy of the classification task. Results demonstrate that NN ensemble-based classification methods have better performance than NN-based algorithms. The highest overall average accuracy is 97.68% obtained by NN ensemble trained by RBP for 50%-50% training-test evaluation method.
The algorithm study for using the back propagation neural network in CT image segmentation
NASA Astrophysics Data System (ADS)
Zhang, Peng; Liu, Jie; Chen, Chen; Li, Ying Qi
2017-01-01
Back propagation neural network(BP neural network) is a type of multi-layer feed forward network which spread positively, while the error spread backwardly. Since BP network has advantages in learning and storing the mapping between a large number of input and output layers without complex mathematical equations to describe the mapping relationship, it is most widely used. BP can iteratively compute the weight coefficients and thresholds of the network based on the training and back propagation of samples, which can minimize the error sum of squares of the network. Since the boundary of the computed tomography (CT) heart images is usually discontinuous, and it exist large changes in the volume and boundary of heart images, The conventional segmentation such as region growing and watershed algorithm can't achieve satisfactory results. Meanwhile, there are large differences between the diastolic and systolic images. The conventional methods can't accurately classify the two cases. In this paper, we introduced BP to handle the segmentation of heart images. We segmented a large amount of CT images artificially to obtain the samples, and the BP network was trained based on these samples. To acquire the appropriate BP network for the segmentation of heart images, we normalized the heart images, and extract the gray-level information of the heart. Then the boundary of the images was input into the network to compare the differences between the theoretical output and the actual output, and we reinput the errors into the BP network to modify the weight coefficients of layers. Through a large amount of training, the BP network tend to be stable, and the weight coefficients of layers can be determined, which means the relationship between the CT images and the boundary of heart.
Dai, Zongli; Zhao, Aiwu; He, Jie
2018-01-01
In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method. PMID:29420584
Guan, Hongjun; Dai, Zongli; Zhao, Aiwu; He, Jie
2018-01-01
In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.
NASA Astrophysics Data System (ADS)
Wang, H. B.; Li, J. W.; Zhou, B.; Yuan, Z. Q.; Chen, Y. P.
2013-03-01
In the last few decades, the development of Geographical Information Systems (GIS) technology has provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be appropriate for the fundamental morphological elements in landslide susceptibility evaluation. Following the DEM construction in a loess area susceptible to landslides, the direct-reverse DEM technology was employed to generate 216 slope units in the studied area. After a detailed investigation, the landslide inventory was mapped in which 39 landslides, including paleo-landslides, old landslides and recent landslides, were present. Of the 216 slope units, 123 involved landslides. To analyze the mechanism of these landslides, six environmental factors were selected to evaluate landslide occurrence: slope angle, aspect, the height and shape of the slope, distance to river and human activities. These factors were extracted in terms of the slope unit within the ArcGIS software. The spatial analysis demonstrates that most of the landslides are located on convex slopes at an elevation of 100-150 m with slope angles from 135°-225° and 40°-60°. Landslide occurrence was then checked according to these environmental factors using an artificial neural network with back propagation, optimized by genetic algorithms. A dataset of 120 slope units was chosen for training the neural network model, i.e., 80 units with landslide presence and 40 units without landslide presence. The parameters of genetic algorithms and neural networks were then set: population size of 100, crossover probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning rate of 0.7, max learning number of 10 000, and target error of 0.000001. After training on the datasets, the susceptibility of landslides was mapped for the land-use plan and hazard mitigation. Comparing the susceptibility map with landslide inventory, it was noted that the prediction accuracy of landslide occurrence is 93.02%, whereas units without landslide occurrence are predicted with an accuracy of 81.13%. To sum up, the verification shows satisfactory agreement with an accuracy of 86.46% between the susceptibility map and the landslide locations. In the landslide susceptibility assessment, ten new slopes were predicted to show potential for failure, which can be confirmed by the engineering geological conditions of these slopes. It was also observed that some disadvantages could be overcome in the application of the neural networks with back propagation, for example, the low convergence rate and local minimum, after the network was optimized using genetic algorithms. To conclude, neural networks with back propagation that are optimized by genetic algorithms are an effective method to predict landslide susceptibility with high accuracy.
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
Vázquez, Roberto A.
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132
Multilayer perceptron, fuzzy sets, and classification
NASA Technical Reports Server (NTRS)
Pal, Sankar K.; Mitra, Sushmita
1992-01-01
A fuzzy neural network model based on the multilayer perceptron, using the back-propagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy or uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and the other related models.
Visual recognition and inference using dynamic overcomplete sparse learning.
Murray, Joseph F; Kreutz-Delgado, Kenneth
2007-09-01
We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.
Relative optical navigation around small bodies via Extreme Learning Machine
NASA Astrophysics Data System (ADS)
Law, Andrew M.
To perform close proximity operations under a low-gravity environment, relative and absolute positions are vital information to the maneuver. Hence navigation is inseparably integrated in space travel. Extreme Learning Machine (ELM) is presented as an optical navigation method around small celestial bodies. Optical Navigation uses visual observation instruments such as a camera to acquire useful data and determine spacecraft position. The required input data for operation is merely a single image strip and a nadir image. ELM is a machine learning Single Layer feed-Forward Network (SLFN), a type of neural network (NN). The algorithm is developed on the predicate that input weights and biases can be randomly assigned and does not require back-propagation. The learned model is the output layer weights which are used to calculate a prediction. Together, Extreme Learning Machine Optical Navigation (ELM OpNav) utilizes optical images and ELM algorithm to train the machine to navigate around a target body. In this thesis the asteroid, Vesta, is the designated celestial body. The trained ELMs estimate the position of the spacecraft during operation with a single data set. The results show the approach is promising and potentially suitable for on-board navigation.
Goal Directed Model Inversion: A Study of Dynamic Behavior
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.; Compton, Michael; Raghavan, Bharathi; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize supervised learning to the case where target outputs are not available to the learning system. The output of the learning system becomes the input to some external device or transformation, and only the output of this device or transformation can be compared to a desired target. The fundamental driving mechanism of GDMI is to learn from success. Given that a wrong outcome is achieved, one notes that the action that produced that outcome 0 "would have been right if the outcome had been the desired one." The algorithm then proceeds as follows: (1) store the action that produced the wrong outcome as a "target" (2) redefine the wrong outcome as a desired goal (3) submit the new desired goal to the system (4) compare the new action with the target action and modify the system by using a suitable algorithm for credit assignment (Back propagation in our example) (5) resubmit the original goal. Prior publications by our group in this area focused on demonstrating empirical results based on the inverse kinematic problem for a simulated robotic arm. In this paper we apply the inversion process to much simpler analytic functions in order to elucidate the dynamic behavior of the system and to determine the sensitivity of the learning process to various parameters. This understanding will be necessary for the acceptance of GDMI as a practical tool.
Huang, Yin-Fu; Wang, Chia-Ming; Liou, Sing-Wu
2013-01-01
A hybrid self-adaptive harmony search and back-propagation mining system was proposed to discover weighted patterns in human intron sequences. By testing the weights under a lazy nearest neighbor classifier, the numerical results revealed the significance of these weighted patterns. Comparing these weighted patterns with the popular intron consensus model, it is clear that the discovered weighted patterns make originally the ambiguous 5SS and 3SS header patterns more specific and concrete.
Wang, Chia-Ming; Liou, Sing-Wu
2013-01-01
A hybrid self-adaptive harmony search and back-propagation mining system was proposed to discover weighted patterns in human intron sequences. By testing the weights under a lazy nearest neighbor classifier, the numerical results revealed the significance of these weighted patterns. Comparing these weighted patterns with the popular intron consensus model, it is clear that the discovered weighted patterns make originally the ambiguous 5SS and 3SS header patterns more specific and concrete. PMID:23737711
Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao
2017-09-01
This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.
Core reactivity estimation in space reactors using recurrent dynamic networks
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Tsai, Wei K.
1991-01-01
A recurrent multilayer perceptron network topology is used in the identification of nonlinear dynamic systems from only the input/output measurements. The identification is performed in the discrete time domain, with the learning algorithm being a modified form of the back propagation (BP) rule. The recurrent dynamic network (RDN) developed is applied for the total core reactivity prediction of a spacecraft reactor from only neutronic power level measurements. Results indicate that the RDN can reproduce the nonlinear response of the reactor while keeping the number of nodes roughly equal to the relative order of the system. As accuracy requirements are increased, the number of required nodes also increases, however, the order of the RDN necessary to obtain such results is still in the same order of magnitude as the order of the mathematical model of the system. It is believed that use of the recurrent MLP structure with a variety of different learning algorithms may prove useful in utilizing artificial neural networks for recognition, classification, and prediction of dynamic systems.
Application of artificial neural networks to chemostratigraphy
NASA Astrophysics Data System (ADS)
Malmgren, BjöRn A.; Nordlund, Ulf
1996-08-01
Artificial neural networks, a branch of artificial intelligence, are computer systems formed by a number of simple, highly interconnected processing units that have the ability to learn a set of target vectors from a set of associated input signals. Neural networks learn by self-adjusting a set of parameters, using some pertinent algorithm to minimize the error between the desired output and network output. We explore the potential of this approach in solving a problem involving classification of geochemical data. The data, taken from the literature, are derived from four late Quaternary zones of volcanic ash of basaltic and rhyolithic origin from the Norwegian Sea. These ash layers span the oxygen isotope zones 1, 5, 7, and 11, respectively (last 420,000 years). The data consist of nine geochemical variables (oxides) determined in each of 183 samples. We employed a three-layer back propagation neural network to assess its efficiency to optimally differentiate samples from the four ash zones on the basis of their geochemical composition. For comparison, three statistical pattern recognition techniques, linear discriminant analysis, the k-nearest neighbor (k-NN) technique, and SIMCA (soft independent modeling of class analogy), were applied to the same data. All of these showed considerably higher error rates than the artificial neural network, indicating that the back propagation network was indeed more powerful in correctly classifying the ash particles to the appropriate zone on the basis of their geochemical composition.
Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang
2017-01-01
Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size. PMID:28045443
Wang, Tongtong; Xiao, Zhiqiang; Liu, Zhigang
2017-01-01
Leaf area index (LAI) is an important biophysical parameter and the retrieval of LAI from remote sensing data is the only feasible method for generating LAI products at regional and global scales. However, most LAI retrieval methods use satellite observations at a specific time to retrieve LAI. Because of the impacts of clouds and aerosols, the LAI products generated by these methods are spatially incomplete and temporally discontinuous, and thus they cannot meet the needs of practical applications. To generate high-quality LAI products, four machine learning algorithms, including back-propagation neutral network (BPNN), radial basis function networks (RBFNs), general regression neutral networks (GRNNs), and multi-output support vector regression (MSVR) are proposed to retrieve LAI from time-series Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data in this study and performance of these machine learning algorithms is evaluated. The results demonstrated that GRNNs, RBFNs, and MSVR exhibited low sensitivity to training sample size, whereas BPNN had high sensitivity. The four algorithms performed slightly better with red, near infrared (NIR), and short wave infrared (SWIR) bands than red and NIR bands, and the results were significantly better than those obtained using single band reflectance data (red or NIR). Regardless of band composition, GRNNs performed better than the other three methods. Among the four algorithms, BPNN required the least training time, whereas MSVR needed the most for any sample size.
F77NNS - A FORTRAN-77 NEURAL NETWORK SIMULATOR
NASA Technical Reports Server (NTRS)
Mitchell, P. H.
1994-01-01
F77NNS (A FORTRAN-77 Neural Network Simulator) simulates the popular back error propagation neural network. F77NNS is an ANSI-77 FORTRAN program designed to take advantage of vectorization when run on machines having this capability, but it will run on any computer with an ANSI-77 FORTRAN Compiler. Artificial neural networks are formed from hundreds or thousands of simulated neurons, connected to each other in a manner similar to biological nerve cells. Problems which involve pattern matching or system modeling readily fit the class of problems which F77NNS is designed to solve. The program's formulation trains a neural network using Rumelhart's back-propagation algorithm. Typically the nodes of a network are grouped together into clumps called layers. A network will generally have an input layer through which the various environmental stimuli are presented to the network, and an output layer for determining the network's response. The number of nodes in these two layers is usually tied to features of the problem being solved. Other layers, which form intermediate stops between the input and output layers, are called hidden layers. The back-propagation training algorithm can require massive computational resources to implement a large network such as a network capable of learning text-to-phoneme pronunciation rules as in the famous Sehnowski experiment. The Sehnowski neural network learns to pronounce 1000 common English words. The standard input data defines the specific inputs that control the type of run to be made, and input files define the NN in terms of the layers and nodes, as well as the input/output (I/O) pairs. The program has a restart capability so that a neural network can be solved in stages suitable to the user's resources and desires. F77NNS allows the user to customize the patterns of connections between layers of a network. The size of the neural network to be solved is limited only by the amount of random access memory (RAM) available to the user. The program has a memory requirement of about 900K. The standard distribution medium for this package is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. F77NNS was developed in 1989.
NASA Astrophysics Data System (ADS)
Hramov, Alexander E.; Frolov, Nikita S.; Musatov, Vyachaslav Yu.
2018-02-01
In present work we studied features of the human brain states classification, corresponding to the real movements of hands and legs. For this purpose we used supervised learning algorithm based on feed-forward artificial neural networks (ANNs) with error back-propagation along with the support vector machine (SVM) method. We compared the quality of operator movements classification by means of EEG signals obtained experimentally in the absence of preliminary processing and after filtration in different ranges up to 25 Hz. It was shown that low-frequency filtering of multichannel EEG data significantly improved accuracy of operator movements classification.
Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma
2015-04-21
Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.
Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma
2015-01-01
Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources. PMID:25905698
NASA Astrophysics Data System (ADS)
Pelicano, Christian Mark; Rapadas, Nick; Cagatan, Gerard; Magdaluyo, Eduardo
2017-12-01
Herein, the crystallite size and band gap energy of zinc oxide (ZnO) quantum dots were predicted using artificial neural network (ANN). Three input factors including reagent ratio, growth time, and growth temperature were examined with respect to crystallite size and band gap energy as response factors. The generated results from neural network model were then compared with the experimental results. Experimental crystallite size and band gap energy of ZnO quantum dots were measured from TEM images and absorbance spectra, respectively. The Levenberg-Marquardt (LM) algorithm was used as the learning algorithm for the ANN model. The performance of the ANN model was then assessed through mean square error (MSE) and regression values. Based on the results, the ANN modelling results are in good agreement with the experimental data.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.
Ding, Weifu; Zhang, Jiangshe; Leung, Yee
2016-10-01
In this paper, we predict air pollutant concentration using a feedforward artificial neural network inspired by the mechanism of the human brain as a useful alternative to traditional statistical modeling techniques. The neural network is trained based on sparse response back-propagation in which only a small number of neurons respond to the specified stimulus simultaneously and provide a high convergence rate for the trained network, in addition to low energy consumption and greater generalization. Our method is evaluated on Hong Kong air monitoring station data and corresponding meteorological variables for which five air quality parameters were gathered at four monitoring stations in Hong Kong over 4 years (2012-2015). Our results show that our training method has more advantages in terms of the precision of the prediction, effectiveness, and generalization of traditional linear regression algorithms when compared with a feedforward artificial neural network trained using traditional back-propagation.
Optimization of training backpropagation algorithm using nguyen widrow for angina ludwig diagnosis
NASA Astrophysics Data System (ADS)
Aisyah, Siti; Harahap, Mawaddah; Mahmud Husein Siregar, Amir; Turnip, Mardi
2018-04-01
Tooth and mouth disease is a common disease, with a prevalence of more than 40% (children aged less than 7 years) in milk teeth and about 85% (adults aged 17 years and over) on permanent teeth. Angina Ludwig is one of mouth disease type that occurs due to infection of the tooth root and trauma of the mouth. ‘In this study back propagation algorithm applied to diagnose AnginaLudwig disease (using Nguyen Widrow method in optimization of training time). From the experimental results, it is known that the average BPNN by using Nguyen Widrow is much faster which is about 0.0624 seconds and 0.1019 seconds (without NguyenWidrow). In contrast, for pattern recognition needs, found that back propagation without Nguyen Widrow is much better that is with 90% accuracy (only 70% with NguyenWidrow).
Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.
Aftab, Muhammad Saleheen; Shafiq, Muhammad
2015-11-01
This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir
2017-01-01
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2017-04-19
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.
A neural network approach for image reconstruction in electron magnetic resonance tomography.
Durairaj, D Christopher; Krishna, Murali C; Murugesan, Ramachandran
2007-10-01
An object-oriented, artificial neural network (ANN) based, application system for reconstruction of two-dimensional spatial images in electron magnetic resonance (EMR) tomography is presented. The standard back propagation algorithm is utilized to train a three-layer sigmoidal feed-forward, supervised, ANN to perform the image reconstruction. The network learns the relationship between the 'ideal' images that are reconstructed using filtered back projection (FBP) technique and the corresponding projection data (sinograms). The input layer of the network is provided with a training set that contains projection data from various phantoms as well as in vivo objects, acquired from an EMR imager. Twenty five different network configurations are investigated to test the ability of the generalization of the network. The trained ANN then reconstructs two-dimensional temporal spatial images that present the distribution of free radicals in biological systems. Image reconstruction by the trained neural network shows better time complexity than the conventional iterative reconstruction algorithms such as multiplicative algebraic reconstruction technique (MART). The network is further explored for image reconstruction from 'noisy' EMR data and the results show better performance than the FBP method. The network is also tested for its ability to reconstruct from limited-angle EMR data set.
NASA Astrophysics Data System (ADS)
Francile, C.; Luoni, M. L.
We present a prediction of the time series of the Wolf number R of sunspots using "time lagged feed forward neural networks". We use two types of networks: the focused and distributed ones which were trained with the back propagation of errors algorithm and the temporal back propagation algorithm respectively. As inputs to neural networks we use the time series of the number R averaged annually and monthly with the method IR5. As data sets for training and test we choose certain intervals of the time series similar to other works, in order to compare the results. Finally we discuss the topology of the networks used, the number of delays used, the number of neurons per layer, the number of hidden layers and the results in the prediction of the series between one and six steps ahead. FULL TEXT IN SPANISH
NASA Astrophysics Data System (ADS)
Swastika, Windra
2017-03-01
A money's nominal value recognition system has been developed using Artificial Neural Network (ANN). ANN with Back Propagation has one disadvantage. The learning process is very slow (or never reach the target) in the case of large number of iteration, weight and samples. One way to speed up the learning process is using Quickprop method. Quickprop method is based on Newton's method and able to speed up the learning process by assuming that the weight adjustment (E) is a parabolic function. The goal is to minimize the error gradient (E'). In our system, we use 5 types of money's nominal value, i.e. 1,000 IDR, 2,000 IDR, 5,000 IDR, 10,000 IDR and 50,000 IDR. One of the surface of each nominal were scanned and digitally processed. There are 40 patterns to be used as training set in ANN system. The effectiveness of Quickprop method in the ANN system was validated by 2 factors, (1) number of iterations required to reach error below 0.1; and (2) the accuracy to predict nominal values based on the input. Our results shows that the use of Quickprop method is successfully reduce the learning process compared to Back Propagation method. For 40 input patterns, Quickprop method successfully reached error below 0.1 for only 20 iterations, while Back Propagation method required 2000 iterations. The prediction accuracy for both method is higher than 90%.
A comparison of two neural network schemes for navigation
NASA Technical Reports Server (NTRS)
Munro, Paul W.
1989-01-01
Neural networks have been applied to tasks in several areas of artificial intelligence, including vision, speech, and language. Relatively little work has been done in the area of problem solving. Two approaches to path-finding are presented, both using neural network techniques. Both techniques require a training period. Training under the back propagation (BPL) method was accomplished by presenting representations of (current position, goal position) pairs as input and appropriate actions as output. The Hebbian/interactive activation (HIA) method uses the Hebbian rule to associate points that are nearby. A path to a goal is found by activating a representation of the goal in the network and processing until the current position is activated above some threshold level. BPL, using back-propagation learning, failed to learn, except in a very trivial fashion, that is equivalent to table lookup techniques. HIA, performed much better, and required storage of fewer weights. In drawing a comparison, it is important to note that back propagation techniques depend critically upon the forms of representation used, and can be sensitive to parameters in the simulations; hence the BPL technique may yet yield strong results.
A comparison of two neural network schemes for navigation
NASA Technical Reports Server (NTRS)
Munro, Paul
1990-01-01
Neural networks have been applied to tasks in several areas of artificial intelligence, including vision, speech, and language. Relatively little work has been done in the area of problem solving. Two approaches to path-finding are presented, both using neural network techniques. Both techniques require a training period. Training under the back propagation (BPL) method was accomplished by presenting representations of current position, goal position pairs as input and appropriate actions as output. The Hebbian/interactive activation (HIA) method uses the Hebbian rule to associate points that are nearby. A path to a goal is found by activating a representation of the goal in the network and processing until the current position is activated above some threshold level. BPL, using back-propagation learning, failed to learn, except in a very trivial fashion, that is equivalent to table lookup techniques. HIA, performed much better, and required storage of fewer weights. In drawing a comparison, it is important to note that back propagation techniques depend critically upon the forms of representation used, and can be sensitive to parameters in the simulations; hence the BPL technique may yet yield strong results.
Reliability analysis of C-130 turboprop engine components using artificial neural network
NASA Astrophysics Data System (ADS)
Qattan, Nizar A.
In this study, we predict the failure rate of Lockheed C-130 Engine Turbine. More than thirty years of local operational field data were used for failure rate prediction and validation. The Weibull regression model and the Artificial Neural Network model including (feed-forward back-propagation, radial basis neural network, and multilayer perceptron neural network model); will be utilized to perform this study. For this purpose, the thesis will be divided into five major parts. First part deals with Weibull regression model to predict the turbine general failure rate, and the rate of failures that require overhaul maintenance. The second part will cover the Artificial Neural Network (ANN) model utilizing the feed-forward back-propagation algorithm as a learning rule. The MATLAB package will be used in order to build and design a code to simulate the given data, the inputs to the neural network are the independent variables, the output is the general failure rate of the turbine, and the failures which required overhaul maintenance. In the third part we predict the general failure rate of the turbine and the failures which require overhaul maintenance, using radial basis neural network model on MATLAB tool box. In the fourth part we compare the predictions of the feed-forward back-propagation model, with that of Weibull regression model, and radial basis neural network model. The results show that the failure rate predicted by the feed-forward back-propagation artificial neural network model is closer in agreement with radial basis neural network model compared with the actual field-data, than the failure rate predicted by the Weibull model. By the end of the study, we forecast the general failure rate of the Lockheed C-130 Engine Turbine, the failures which required overhaul maintenance and six categorical failures using multilayer perceptron neural network (MLP) model on DTREG commercial software. The results also give an insight into the reliability of the engine turbine under actual operating conditions, which can be used by aircraft operators for assessing system and component failures and customizing the maintenance programs recommended by the manufacturer.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987
Experiments on Learning by Back Propagation.
ERIC Educational Resources Information Center
Plaut, David C.; And Others
This paper describes further research on a learning procedure for layered networks of deterministic, neuron-like units, described by Rumelhart et al. The units, the way they are connected, the learning procedure, and the extension to iterative networks are presented. In one experiment, a network learns a set of filters, enabling it to discriminate…
Gan, Ruijing; Chen, Xiaojun; Yan, Yu; Huang, Daizheng
2015-01-01
Accurate incidence forecasting of infectious disease provides potentially valuable insights in its own right. It is critical for early prevention and may contribute to health services management and syndrome surveillance. This study investigates the use of a hybrid algorithm combining grey model (GM) and back propagation artificial neural networks (BP-ANN) to forecast hepatitis B in China based on the yearly numbers of hepatitis B and to evaluate the method's feasibility. The results showed that the proposal method has advantages over GM (1, 1) and GM (2, 1) in all the evaluation indexes.
Goodacre, R; Hiom, S J; Cheeseman, S L; Murdoch, D; Weightman, A J; Wade, W G
1996-02-01
Curie-point pyrolysis mass spectra were obtained from 29 oral asaccharolytic Eubacterium strains and 6 abscess isolates previously identified as Peptostreptococcus heliotrinreducens. Pyrolysis mass spectrometry (PyMS) with cluster analysis was able to clarify the taxonomic position of this group of organisms. Artificial neural networks (ANNS) were then trained by supervised learning (with the back-propagation algorithm) to recognize the strains from their pyrolysis mass spectra; all Eubacterium strains were correctly identified, and the abscess isolates were identified as un-named Eubacterium taxon C2 and were distinct from the type strain of P. heliotrinreducens. These results demonstrate that the combination of PyMS and ANNs provides a rapid and accurate identification technique.
NASA Astrophysics Data System (ADS)
Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang
2018-05-01
In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.
NASA Astrophysics Data System (ADS)
Deo, Ravinesh C.; Şahin, Mehmet
2015-02-01
The prediction of future drought is an effective mitigation tool for assessing adverse consequences of drought events on vital water resources, agriculture, ecosystems and hydrology. Data-driven model predictions using machine learning algorithms are promising tenets for these purposes as they require less developmental time, minimal inputs and are relatively less complex than the dynamic or physical model. This paper authenticates a computationally simple, fast and efficient non-linear algorithm known as extreme learning machine (ELM) for the prediction of Effective Drought Index (EDI) in eastern Australia using input data trained from 1957-2008 and the monthly EDI predicted over the period 2009-2011. The predictive variables for the ELM model were the rainfall and mean, minimum and maximum air temperatures, supplemented by the large-scale climate mode indices of interest as regression covariates, namely the Southern Oscillation Index, Pacific Decadal Oscillation, Southern Annular Mode and the Indian Ocean Dipole moment. To demonstrate the effectiveness of the proposed data-driven model a performance comparison in terms of the prediction capabilities and learning speeds was conducted between the proposed ELM algorithm and the conventional artificial neural network (ANN) algorithm trained with Levenberg-Marquardt back propagation. The prediction metrics certified an excellent performance of the ELM over the ANN model for the overall test sites, thus yielding Mean Absolute Errors, Root-Mean Square Errors, Coefficients of Determination and Willmott's Indices of Agreement of 0.277, 0.008, 0.892 and 0.93 (for ELM) and 0.602, 0.172, 0.578 and 0.92 (for ANN) models. Moreover, the ELM model was executed with learning speed 32 times faster and training speed 6.1 times faster than the ANN model. An improvement in the prediction capability of the drought duration and severity by the ELM model was achieved. Based on these results we aver that out of the two machine learning algorithms tested, the ELM was the more expeditious tool for prediction of drought and its related properties.
Prototype-Incorporated Emotional Neural Network.
Oyedotun, Oyebade K; Khashman, Adnan
2017-08-15
Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many ''engineering'' prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as ``prototype-incorporated EmNN''. Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.
GPU Accelerated Ultrasonic Tomography Using Propagation and Back Propagation Method
2015-09-28
the medical imaging field using GPUs has been done for many years. In [1], Copeland et al. used 2D images , obtained by X - ray projections, to...Index Terms— Medical Imaging , Ultrasonic Tomography, GPU, CUDA, Parallel Computing I. INTRODUCTION GRAPHIC Processing Units (GPUs) are computation... Imaging Algorithm The process of reconstructing images from ultrasonic infor- mation starts with the following acoustical wave equation: ∂2 ∂t2 u ( x
Neural network based glucose - insulin metabolism models for children with Type 1 diabetes.
Mougiakakou, Stavroula G; Prountzou, Aikaterini; Iliopoulou, Dimitra; Nikita, Konstantina S; Vazeou, Andriani; Bartsocas, Christos S
2006-01-01
In this paper two models for the simulation of glucose-insulin metabolism of children with Type 1 diabetes are presented. The models are based on the combined use of Compartmental Models (CMs) and artificial Neural Networks (NNs). Data from children with Type 1 diabetes, stored in a database, have been used as input to the models. The data are taken from four children with Type 1 diabetes and contain information about glucose levels taken from continuous glucose monitoring system, insulin intake and food intake, along with corresponding time. The influences of taken insulin on plasma insulin concentration, as well as the effect of food intake on glucose input into the blood from the gut, are estimated from the CMs. The outputs of CMs, along with previous glucose measurements, are fed to a NN, which provides short-term prediction of glucose values. For comparative reasons two different NN architectures have been tested: a Feed-Forward NN (FFNN) trained with the back-propagation algorithm with adaptive learning rate and momentum, and a Recurrent NN (RNN), trained with the Real Time Recurrent Learning (RTRL) algorithm. The results indicate that the best prediction performance can be achieved by the use of RNN.
Optimize Short Term load Forcasting Anomalous Based Feed Forward Backpropagation
NASA Astrophysics Data System (ADS)
Mulyadi, Y.; Abdullah, A. G.; Rohmah, K. A.
2017-03-01
This paper contains the Short-Term Load Forecasting (STLF) using artificial neural network especially feed forward back propagation algorithm which is particularly optimized in order to getting a reduced error value result. Electrical load forecasting target is a holiday that hasn’t identical pattern and different from weekday’s pattern, in other words the pattern of holiday load is an anomalous. Under these conditions, the level of forecasting accuracy will be decrease. Hence we need a method that capable to reducing error value in anomalous load forecasting. Learning process of algorithm is supervised or controlled, then some parameters are arranged before performing computation process. Momentum constant a value is set at 0.8 which serve as a reference because it has the greatest converge tendency. Learning rate selection is made up to 2 decimal digits. In addition, hidden layer and input component are tested in several variation of number also. The test result leads to the conclusion that the number of hidden layer impact on the forecasting accuracy and test duration determined by the number of iterations when performing input data until it reaches the maximum of a parameter value.
A Pruning Neural Network Model in Credit Classification Analysis
Tang, Yajiao; Ji, Junkai; Dai, Hongwei; Yu, Yang; Todo, Yuki
2018-01-01
Nowadays, credit classification models are widely applied because they can help financial decision-makers to handle credit classification issues. Among them, artificial neural networks (ANNs) have been widely accepted as the convincing methods in the credit industry. In this paper, we propose a pruning neural network (PNN) and apply it to solve credit classification problem by adopting the well-known Australian and Japanese credit datasets. The model is inspired by synaptic nonlinearity of a dendritic tree in a biological neural model. And it is trained by an error back-propagation algorithm. The model is capable of realizing a neuronal pruning function by removing the superfluous synapses and useless dendrites and forms a tidy dendritic morphology at the end of learning. Furthermore, we utilize logic circuits (LCs) to simulate the dendritic structures successfully which makes PNN be implemented on the hardware effectively. The statistical results of our experiments have verified that PNN obtains superior performance in comparison with other classical algorithms in terms of accuracy and computational efficiency. PMID:29606961
Self-learning fuzzy controllers based on temporal back propagation
NASA Technical Reports Server (NTRS)
Jang, Jyh-Shing R.
1992-01-01
This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.
Deep Unfolding for Topic Models.
Chien, Jen-Tzung; Lee, Chao-Hsi
2018-02-01
Deep unfolding provides an approach to integrate the probabilistic generative models and the deterministic neural networks. Such an approach is benefited by deep representation, easy interpretation, flexible learning and stochastic modeling. This study develops the unsupervised and supervised learning of deep unfolded topic models for document representation and classification. Conventionally, the unsupervised and supervised topic models are inferred via the variational inference algorithm where the model parameters are estimated by maximizing the lower bound of logarithm of marginal likelihood using input documents without and with class labels, respectively. The representation capability or classification accuracy is constrained by the variational lower bound and the tied model parameters across inference procedure. This paper aims to relax these constraints by directly maximizing the end performance criterion and continuously untying the parameters in learning process via deep unfolding inference (DUI). The inference procedure is treated as the layer-wise learning in a deep neural network. The end performance is iteratively improved by using the estimated topic parameters according to the exponentiated updates. Deep learning of topic models is therefore implemented through a back-propagation procedure. Experimental results show the merits of DUI with increasing number of layers compared with variational inference in unsupervised as well as supervised topic models.
Minimal perceptrons for memorizing complex patterns
NASA Astrophysics Data System (ADS)
Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo
2016-11-01
Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.
The Prediction of Length-of-day Variations Based on Gaussian Processes
NASA Astrophysics Data System (ADS)
Lei, Y.; Zhao, D. N.; Gao, Y. P.; Cai, H. B.
2015-01-01
Due to the complicated time-varying characteristics of the length-of-day (LOD) variations, the accuracies of traditional strategies for the prediction of the LOD variations such as the least squares extrapolation model, the time-series analysis model, and so on, have not met the requirements for real-time and high-precision applications. In this paper, a new machine learning algorithm --- the Gaussian process (GP) model is employed to forecast the LOD variations. Its prediction precisions are analyzed and compared with those of the back propagation neural networks (BPNN), general regression neural networks (GRNN) models, and the Earth Orientation Parameters Prediction Comparison Campaign (EOP PCC). The results demonstrate that the application of the GP model to the prediction of the LOD variations is efficient and feasible.
Sun, Jiaqi; Xie, Yuchen; Ye, Wenxing; Ho, Jeffrey; Entezari, Alireza; Blackband, Stephen J.
2013-01-01
In this paper, we present a novel dictionary learning framework for data lying on the manifold of square root densities and apply it to the reconstruction of diffusion propagator (DP) fields given a multi-shell diffusion MRI data set. Unlike most of the existing dictionary learning algorithms which rely on the assumption that the data points are vectors in some Euclidean space, our dictionary learning algorithm is designed to incorporate the intrinsic geometric structure of manifolds and performs better than traditional dictionary learning approaches when applied to data lying on the manifold of square root densities. Non-negativity as well as smoothness across the whole field of the reconstructed DPs is guaranteed in our approach. We demonstrate the advantage of our approach by comparing it with an existing dictionary based reconstruction method on synthetic and real multi-shell MRI data. PMID:24684004
Xu, Guoai; Li, Qi; Guo, Yanhui; Zhang, Miao
2017-01-01
Authorship attribution is to identify the most likely author of a given sample among a set of candidate known authors. It can be not only applied to discover the original author of plain text, such as novels, blogs, emails, posts etc., but also used to identify source code programmers. Authorship attribution of source code is required in diverse applications, ranging from malicious code tracking to solving authorship dispute or software plagiarism detection. This paper aims to propose a new method to identify the programmer of Java source code samples with a higher accuracy. To this end, it first introduces back propagation (BP) neural network based on particle swarm optimization (PSO) into authorship attribution of source code. It begins by computing a set of defined feature metrics, including lexical and layout metrics, structure and syntax metrics, totally 19 dimensions. Then these metrics are input to neural network for supervised learning, the weights of which are output by PSO and BP hybrid algorithm. The effectiveness of the proposed method is evaluated on a collected dataset with 3,022 Java files belong to 40 authors. Experiment results show that the proposed method achieves 91.060% accuracy. And a comparison with previous work on authorship attribution of source code for Java language illustrates that this proposed method outperforms others overall, also with an acceptable overhead. PMID:29095934
Resource constrained design of artificial neural networks using comparator neural network
NASA Technical Reports Server (NTRS)
Wah, Benjamin W.; Karnik, Tanay S.
1992-01-01
We present a systematic design method executed under resource constraints for automating the design of artificial neural networks using the back error propagation algorithm. Our system aims at finding the best possible configuration for solving the given application with proper tradeoff between the training time and the network complexity. The design of such a system is hampered by three related problems. First, there are infinitely many possible network configurations, each may take an exceedingly long time to train; hence, it is impossible to enumerate and train all of them to completion within fixed time, space, and resource constraints. Second, expert knowledge on predicting good network configurations is heuristic in nature and is application dependent, rendering it difficult to characterize fully in the design process. A learning procedure that refines this knowledge based on examples on training neural networks for various applications is, therefore, essential. Third, the objective of the network to be designed is ill-defined, as it is based on a subjective tradeoff between the training time and the network cost. A design process that proposes alternate configurations under different cost-performance tradeoff is important. We have developed a Design System which schedules the available time, divided into quanta, for testing alternative network configurations. Its goal is to select/generate and test alternative network configurations in each quantum, and find the best network when time is expended. Since time is limited, a dynamic schedule that determines the network configuration to be tested in each quantum is developed. The schedule is based on relative comparison of predicted training times of alternative network configurations using comparator network paradigm. The comparator network has been trained to compare training times for a large variety of traces of TSSE-versus-time collected during back-propagation learning of various applications.
Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition
Shen, Sheng; Yao, Xiaohui; Sheng, Meiping; Wang, Chen
2018-01-01
Underwater acoustic target recognition based on ship-radiated noise belongs to the small-sample-size recognition problems. A competitive deep-belief network is proposed to learn features with more discriminative information from labeled and unlabeled samples. The proposed model consists of four stages: (1) A standard restricted Boltzmann machine is pretrained using a large number of unlabeled data to initialize its parameters; (2) the hidden units are grouped according to categories, which provides an initial clustering model for competitive learning; (3) competitive training and back-propagation algorithms are used to update the parameters to accomplish the task of clustering; (4) by applying layer-wise training and supervised fine-tuning, a deep neural network is built to obtain features. Experimental results show that the proposed method can achieve classification accuracy of 90.89%, which is 8.95% higher than the accuracy obtained by the compared methods. In addition, the highest accuracy of our method is obtained with fewer features than other methods. PMID:29570642
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network
Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian
2015-01-01
Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish–Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection. PMID:26447696
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.
Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian
2015-01-01
Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.
Multimodal Deep Autoencoder for Human Pose Recovery.
Hong, Chaoqun; Yu, Jun; Wan, Jian; Tao, Dacheng; Wang, Meng
2015-12-01
Video-based human pose recovery is usually conducted by retrieving relevant poses using image features. In the retrieving process, the mapping between 2D images and 3D poses is assumed to be linear in most of the traditional methods. However, their relationships are inherently non-linear, which limits recovery performance of these methods. In this paper, we propose a novel pose recovery method using non-linear mapping with multi-layered deep neural network. It is based on feature extraction with multimodal fusion and back-propagation deep learning. In multimodal fusion, we construct hypergraph Laplacian with low-rank representation. In this way, we obtain a unified feature description by standard eigen-decomposition of the hypergraph Laplacian matrix. In back-propagation deep learning, we learn a non-linear mapping from 2D images to 3D poses with parameter fine-tuning. The experimental results on three data sets show that the recovery error has been reduced by 20%-25%, which demonstrates the effectiveness of the proposed method.
Neural Network Based Intrusion Detection System for Critical Infrastructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd Vollmer; Ondrej Linda; Milos Manic
2009-07-01
Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recordedmore » from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.« less
Algorithmic detectability threshold of the stochastic block model
NASA Astrophysics Data System (ADS)
Kawamoto, Tatsuro
2018-03-01
The assumption that the values of model parameters are known or correctly learned, i.e., the Nishimori condition, is one of the requirements for the detectability analysis of the stochastic block model in statistical inference. In practice, however, there is no example demonstrating that we can know the model parameters beforehand, and there is no guarantee that the model parameters can be learned accurately. In this study, we consider the expectation-maximization (EM) algorithm with belief propagation (BP) and derive its algorithmic detectability threshold. Our analysis is not restricted to the community structure but includes general modular structures. Because the algorithm cannot always learn the planted model parameters correctly, the algorithmic detectability threshold is qualitatively different from the one with the Nishimori condition.
Neural network for processing both spatial and temporal data with time based back-propagation
NASA Technical Reports Server (NTRS)
Villarreal, James A. (Inventor); Shelton, Robert O. (Inventor)
1993-01-01
Neural networks are computing systems modeled after the paradigm of the biological brain. For years, researchers using various forms of neural networks have attempted to model the brain's information processing and decision-making capabilities. Neural network algorithms have impressively demonstrated the capability of modeling spatial information. On the other hand, the application of parallel distributed models to the processing of temporal data has been severely restricted. The invention introduces a novel technique which adds the dimension of time to the well known back-propagation neural network algorithm. In the space-time neural network disclosed herein, the synaptic weights between two artificial neurons (processing elements) are replaced with an adaptable-adjustable filter. Instead of a single synaptic weight, the invention provides a plurality of weights representing not only association, but also temporal dependencies. In this case, the synaptic weights are the coefficients to the adaptable digital filters. Novelty is believed to lie in the disclosure of a processing element and a network of the processing elements which are capable of processing temporal as well as spacial data.
Marocco, Davide; Cangelosi, Angelo; Fischer, Kerstin; Belpaeme, Tony
2010-01-01
This paper presents a cognitive robotics model for the study of the embodied representation of action words. The present research will present how an iCub humanoid robot can learn the meaning of action words (i.e. words that represent dynamical events that happen in time) by physically interacting with the environment and linking the effects of its own actions with the behavior observed on the objects before and after the action. The control system of the robot is an artificial neural network trained to manipulate an object through a Back-Propagation-Through-Time algorithm. We will show that in the presented model the grounding of action words relies directly to the way in which an agent interacts with the environment and manipulates it. PMID:20725503
NASA Astrophysics Data System (ADS)
Hayati, M.; Rashidi, A. M.; Rezaei, A.
2012-10-01
In this paper, the applicability of ANFIS as an accurate model for the prediction of the mass gain during high temperature oxidation using experimental data obtained for aluminized nanostructured (NS) nickel is presented. For developing the model, exposure time and temperature are taken as input and the mass gain as output. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the network. We have compared the proposed ANFIS model with experimental data. The predicted data are found to be in good agreement with the experimental data with mean relative error less than 1.1%. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling the mass gain for NS materials.
Multiscale Methods, Parallel Computation, and Neural Networks for Real-Time Computer Vision.
NASA Astrophysics Data System (ADS)
Battiti, Roberto
1990-01-01
This thesis presents new algorithms for low and intermediate level computer vision. The guiding ideas in the presented approach are those of hierarchical and adaptive processing, concurrent computation, and supervised learning. Processing of the visual data at different resolutions is used not only to reduce the amount of computation necessary to reach the fixed point, but also to produce a more accurate estimation of the desired parameters. The presented adaptive multiple scale technique is applied to the problem of motion field estimation. Different parts of the image are analyzed at a resolution that is chosen in order to minimize the error in the coefficients of the differential equations to be solved. Tests with video-acquired images show that velocity estimation is more accurate over a wide range of motion with respect to the homogeneous scheme. In some cases introduction of explicit discontinuities coupled to the continuous variables can be used to avoid propagation of visual information from areas corresponding to objects with different physical and/or kinematic properties. The human visual system uses concurrent computation in order to process the vast amount of visual data in "real -time." Although with different technological constraints, parallel computation can be used efficiently for computer vision. All the presented algorithms have been implemented on medium grain distributed memory multicomputers with a speed-up approximately proportional to the number of processors used. A simple two-dimensional domain decomposition assigns regions of the multiresolution pyramid to the different processors. The inter-processor communication needed during the solution process is proportional to the linear dimension of the assigned domain, so that efficiency is close to 100% if a large region is assigned to each processor. Finally, learning algorithms are shown to be a viable technique to engineer computer vision systems for different applications starting from multiple-purpose modules. In the last part of the thesis a well known optimization method (the Broyden-Fletcher-Goldfarb-Shanno memoryless quasi -Newton method) is applied to simple classification problems and shown to be superior to the "error back-propagation" algorithm for numerical stability, automatic selection of parameters, and convergence properties.
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Shelton, Robert O.
1991-01-01
Introduced here is a novel technique which adds the dimension of time to the well known back propagation neural network algorithm. Cited here are several reasons why the inclusion of automated spatial and temporal associations are crucial to effective systems modeling. An overview of other works which also model spatiotemporal dynamics is furnished. A detailed description is given of the processes necessary to implement the space-time network algorithm. Several demonstrations that illustrate the capabilities and performance of this new architecture are given.
NASA Astrophysics Data System (ADS)
Pennington, Robert S.; Van den Broek, Wouter; Koch, Christoph T.
2014-05-01
We have reconstructed third-dimension specimen information from convergent-beam electron diffraction (CBED) patterns simulated using the stacked-Bloch-wave method. By reformulating the stacked-Bloch-wave formalism as an artificial neural network and optimizing with resilient back propagation, we demonstrate specimen orientation reconstructions with depth resolutions down to 5 nm. To show our algorithm's ability to analyze realistic data, we also discuss and demonstrate our algorithm reconstructing from noisy data and using a limited number of CBED disks. Applicability of this reconstruction algorithm to other specimen parameters is discussed.
Evaluation of Swift Start TCP in Long-Delay Environment
NASA Technical Reports Server (NTRS)
Lawas-Grodek, Frances J.; Tran, Diepchi T.
2004-01-01
This report presents the test results of the Swift Start algorithm in single-flow and multiple-flow testbeds under the effects of high propagation delays, various slow bottlenecks, and small queue sizes. Although this algorithm estimates capacity and implements packet pacing, the findings were that in a heavily congested link, the Swift Start algorithm will not be applicable. The reason is that the bottleneck estimation is falsely influenced by timeouts induced by retransmissions and the expiration of delayed acknowledgment (ACK) timers, thus causing the modified Swift Start code to fall back to regular transmission control protocol (TCP).
Mixed Signal Learning by Spike Correlation Propagation in Feedback Inhibitory Circuits
Hiratani, Naoki; Fukai, Tomoki
2015-01-01
The brain can learn and detect mixed input signals masked by various types of noise, and spike-timing-dependent plasticity (STDP) is the candidate synaptic level mechanism. Because sensory inputs typically have spike correlation, and local circuits have dense feedback connections, input spikes cause the propagation of spike correlation in lateral circuits; however, it is largely unknown how this secondary correlation generated by lateral circuits influences learning processes through STDP, or whether it is beneficial to achieve efficient spike-based learning from uncertain stimuli. To explore the answers to these questions, we construct models of feedforward networks with lateral inhibitory circuits and study how propagated correlation influences STDP learning, and what kind of learning algorithm such circuits achieve. We derive analytical conditions at which neurons detect minor signals with STDP, and show that depending on the origin of the noise, different correlation timescales are useful for learning. In particular, we show that non-precise spike correlation is beneficial for learning in the presence of cross-talk noise. We also show that by considering excitatory and inhibitory STDP at lateral connections, the circuit can acquire a lateral structure optimal for signal detection. In addition, we demonstrate that the model performs blind source separation in a manner similar to the sequential sampling approximation of the Bayesian independent component analysis algorithm. Our results provide a basic understanding of STDP learning in feedback circuits by integrating analyses from both dynamical systems and information theory. PMID:25910189
Artificial neural network in breast lesions from fine-needle aspiration cytology smear.
Subbaiah, R M; Dey, Pranab; Nijhawan, Raje
2014-03-01
Artificial neural networks (ANNs) are applied in engineering and certain medical fields. ANN has immense potential and is rarely been used in breast lesions. In this present study, we attempted to build up a complete robust back propagation ANN model based on cytomorphological data, morphometric data, nuclear densitometric data, and gray level co-occurrence matrix (GLCM) of ductal carcinoma and fibroadenomas of breast cases diagnosed on fine-needle aspiration cytology (FNAC). We selected 52 cases of fibroadenomas and 60 cases of infiltrating ductal carcinoma of breast diagnosed on FNAC by two cytologists. Essential cytological data was quantitated by two independent cytologists (SRM, PD). With the help of Image J software, nuclear morphomeric, densitometric, and GLCM features were measured in all the cases on hematoxylin and eosin-stained smears. With the available data, an ANN model was built up with the help of Neurointelligence software. The network was designed as 41-20-1 (41 input nodes, 20 hidden nodes, 1 output node). The network was trained by the online back propagation algorithm and 500 iterations were done. Learning was adjusted after every iteration. ANN model correctly identified all cases of fibroadenomas and infiltrating carcinomas in the test set. This is one of the first successful composite ANN models of breast carcinomas. This basic model can be used to diagnose the gray zone area of the breast lesions on FNAC. We assume that this model may have far-reaching implications in future. Copyright © 2013 Wiley Periodicals, Inc.
A generalized LSTM-like training algorithm for second-order recurrent neural networks
Monner, Derek; Reggia, James A.
2011-01-01
The Long Short Term Memory (LSTM) is a second-order recurrent neural network architecture that excels at storing sequential short-term memories and retrieving them many time-steps later. LSTM’s original training algorithm provides the important properties of spatial and temporal locality, which are missing from other training approaches, at the cost of limiting it’s applicability to a small set of network architectures. Here we introduce the Generalized Long Short-Term Memory (LSTM-g) training algorithm, which provides LSTM-like locality while being applicable without modification to a much wider range of second-order network architectures. With LSTM-g, all units have an identical set of operating instructions for both activation and learning, subject only to the configuration of their local environment in the network; this is in contrast to the original LSTM training algorithm, where each type of unit has its own activation and training instructions. When applied to LSTM architectures with peephole connections, LSTM-g takes advantage of an additional source of back-propagated error which can enable better performance than the original algorithm. Enabled by the broad architectural applicability of LSTM-g, we demonstrate that training recurrent networks engineered for specific tasks can produce better results than single-layer networks. We conclude that LSTM-g has the potential to both improve the performance and broaden the applicability of spatially and temporally local gradient-based training algorithms for recurrent neural networks. PMID:21803542
Li, Siqi; Jiang, Huiyan; Pang, Wenbo
2017-05-01
Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Explosion localization and characterization via infrasound using numerical modeling
NASA Astrophysics Data System (ADS)
Fee, D.; Kim, K.; Iezzi, A. M.; Matoza, R. S.; Jolly, A. D.; De Angelis, S.; Diaz Moreno, A.; Szuberla, C.
2017-12-01
Numerous methods have been applied to locate, detect, and characterize volcanic and anthropogenic explosions using infrasound. Far-field localization techniques typically use back-azimuths from multiple arrays (triangulation) or Reverse Time Migration (RTM, or back-projection). At closer ranges, networks surrounding a source may use Time Difference of Arrival (TDOA), semblance, station-pair double difference, etc. However, at volcanoes and regions with topography or obstructions that block the direct path of sound, recent studies have shown that numerical modeling is necessary to provide an accurate source location. A heterogeneous and moving atmosphere (winds) may also affect the location. The time reversal mirror (TRM) application of Kim et al. (2015) back-propagates the wavefield using a Finite Difference Time Domain (FDTD) algorithm, with the source corresponding to the location of peak convergence. Although it provides high-resolution source localization and can account for complex wave propagation, TRM is computationally expensive and limited to individual events. Here we present a new technique, termed RTM-FDTD, which integrates TRM and FDTD. Travel time and transmission loss information is computed from each station to the entire potential source grid from 3-D Green's functions derived via FDTD. The wave energy is then back-projected and stacked at each grid point, with the maximum corresponding to the likely source. We apply our method to detect and characterize thousands of explosions from Yasur Volcano, Vanuatu and Etna Volcano, Italy, which both provide complex wave propagation and multiple source locations. We compare our results with those from more traditional methods (e.g. semblance), and suggest our method is preferred as it is computationally less expensive than TRM but still integrates numerical modeling. RTM-FDTD could be applied to volcanic other anthropogenic sources at a wide variety of ranges and scenarios. Kim, K., Lees, J.M., 2015. Imaging volcanic infrasound sources using time reversal mirror algorithm. Geophysical Journal International 202, 1663-1676.
Learning topic models by belief propagation.
Zeng, Jia; Cheung, William K; Liu, Jiming
2013-05-01
Latent Dirichlet allocation (LDA) is an important hierarchical Bayesian model for probabilistic topic modeling, which attracts worldwide interest and touches on many important applications in text mining, computer vision and computational biology. This paper represents the collapsed LDA as a factor graph, which enables the classic loopy belief propagation (BP) algorithm for approximate inference and parameter estimation. Although two commonly used approximate inference methods, such as variational Bayes (VB) and collapsed Gibbs sampling (GS), have gained great success in learning LDA, the proposed BP is competitive in both speed and accuracy, as validated by encouraging experimental results on four large-scale document datasets. Furthermore, the BP algorithm has the potential to become a generic scheme for learning variants of LDA-based topic models in the collapsed space. To this end, we show how to learn two typical variants of LDA-based topic models, such as author-topic models (ATM) and relational topic models (RTM), using BP based on the factor graph representations.
Distributed learning automata-based algorithm for community detection in complex networks
NASA Astrophysics Data System (ADS)
Khomami, Mohammad Mehdi Daliri; Rezvanian, Alireza; Meybodi, Mohammad Reza
2016-03-01
Community structure is an important and universal topological property of many complex networks such as social and information networks. The detection of communities of a network is a significant technique for understanding the structure and function of networks. In this paper, we propose an algorithm based on distributed learning automata for community detection (DLACD) in complex networks. In the proposed algorithm, each vertex of network is equipped with a learning automation. According to the cooperation among network of learning automata and updating action probabilities of each automaton, the algorithm interactively tries to identify high-density local communities. The performance of the proposed algorithm is investigated through a number of simulations on popular synthetic and real networks. Experimental results in comparison with popular community detection algorithms such as walk trap, Danon greedy optimization, Fuzzy community detection, Multi-resolution community detection and label propagation demonstrated the superiority of DLACD in terms of modularity, NMI, performance, min-max-cut and coverage.
Neural Network Control of a Magnetically Suspended Rotor System
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.
1998-01-01
Magnetic bearings offer significant advantages because they do not come into contact with other parts during operation, which can reduce maintenance. Higher speeds, no friction, no lubrication, weight reduction, precise position control, and active damping make them far superior to conventional contact bearings. However, there are technical barriers that limit the application of this technology in industry. One of them is the need for a nonlinear controller that can overcome the system nonlinearity and uncertainty inherent in magnetic bearings. At the NASA Lewis Research Center, a neural network was selected as a nonlinear controller because it generates a neural model without any detailed information regarding the internal working of the magnetic bearing system. It can be used even for systems that are too complex for an accurate system model to be derived. A feed-forward architecture with a back-propagation learning algorithm was selected because of its proven performance, accuracy, and relatively easy implementation.
Artificial neural network modeling of the water quality index using land use areas as predictors.
Gazzaz, Nabeel M; Yusoff, Mohd Kamil; Ramli, Mohammad Firuz; Juahir, Hafizan; Aris, Ahmad Zaharin
2015-02-01
This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.
NASA Astrophysics Data System (ADS)
Mandal, Sumantra; Sivaprasad, P. V.; Venugopal, S.; Murthy, K. P. N.
2006-09-01
An artificial neural network (ANN) model is developed to predict the constitutive flow behaviour of austenitic stainless steels during hot deformation. The input parameters are alloy composition and process variables whereas flow stress is the output. The model is based on a three-layer feed-forward ANN with a back-propagation learning algorithm. The neural network is trained with an in-house database obtained from hot compression tests on various grades of austenitic stainless steels. The performance of the model is evaluated using a wide variety of statistical indices. Good agreement between experimental and predicted data is obtained. The correlation between individual alloying elements and high temperature flow behaviour is investigated by employing the ANN model. The results are found to be consistent with the physical phenomena. The model can be used as a guideline for new alloy development.
NASA Astrophysics Data System (ADS)
Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.
2013-09-01
This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% <1.53 and 2.85 % for training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.
Appraisal of artificial neural network for forecasting of economic parameters
NASA Astrophysics Data System (ADS)
Kordanuli, Bojana; Barjaktarović, Lidija; Jeremić, Ljiljana; Alizamir, Meysam
2017-01-01
The main aim of this research is to develop and apply artificial neural network (ANN) with extreme learning machine (ELM) and back propagation (BP) to forecast gross domestic product (GDP) and Hirschman-Herfindahl Index (HHI). GDP could be developed based on combination of different factors. In this investigation GDP forecasting based on the agriculture and industry added value in gross domestic product (GDP) was analysed separately. Other inputs are final consumption expenditure of general government, gross fixed capital formation (investments) and fertility rate. The relation between product market competition and corporate investment is contentious. On one hand, the relation can be positive, but on the other hand, the relation can be negative. Several methods have been proposed to monitor market power for the purpose of developing procedures to mitigate or eliminate the effects. The most widely used methods are based on indices such as the Hirschman-Herfindahl Index (HHI). The reliability of the ANN models were accessed based on simulation results and using several statistical indicators. Based upon simulation results, it was presented that ELM shows better performances than BP learning algorithm in applications of GDP and HHI forecasting.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lim, Semyeong; Kim, Keunwoo
2013-03-01
The Neural Networks is mostly used to engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measuring performance data, and proposes a fault diagnostic system using the base performance model and artificial intelligent methods such as Fuzzy and Neural Networks. Each real engine performance model, which is named as the base performance model that can simulate a new engine performance, is inversely made using its performance test data. Therefore the condition monitoring of each engine can be more precisely carried out through comparison with measuring performance data. The proposed diagnostic system identifies firstly the faulted components using Fuzzy Logic, and then quantifies faults of the identified components using Neural Networks leaned by fault learning data base obtained from the developed base performance model. In leaning the measuring performance data of the faulted components, the FFBP (Feed Forward Back Propagation) is used. In order to user's friendly purpose, the proposed diagnostic program is coded by the GUI type using MATLAB.
Kulkarni, Shruti R; Rajendran, Bipin
2018-07-01
We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Applying Gradient Descent in Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Cui, Nan
2018-04-01
With the development of the integrated circuit and computer science, people become caring more about solving practical issues via information technologies. Along with that, a new subject called Artificial Intelligent (AI) comes up. One popular research interest of AI is about recognition algorithm. In this paper, one of the most common algorithms, Convolutional Neural Networks (CNNs) will be introduced, for image recognition. Understanding its theory and structure is of great significance for every scholar who is interested in this field. Convolution Neural Network is an artificial neural network which combines the mathematical method of convolution and neural network. The hieratical structure of CNN provides it reliable computer speed and reasonable error rate. The most significant characteristics of CNNs are feature extraction, weight sharing and dimension reduction. Meanwhile, combining with the Back Propagation (BP) mechanism and the Gradient Descent (GD) method, CNNs has the ability to self-study and in-depth learning. Basically, BP provides an opportunity for backwardfeedback for enhancing reliability and GD is used for self-training process. This paper mainly discusses the CNN and the related BP and GD algorithms, including the basic structure and function of CNN, details of each layer, the principles and features of BP and GD, and some examples in practice with a summary in the end.
NASA Astrophysics Data System (ADS)
Singh, U. K.; Tiwari, R. K.; Singh, S. B.
2005-02-01
This paper deals with the application of artificial neural networks (ANN) technique for the study of a case history using 1-D inversion of vertical electrical resistivity sounding (VES) data from the Puga valley, Kashmir, India. The study area is important for its rich geothermal resources as well as from the tectonic point of view as it is located near the collision boundary of the Indo-Asian crustal plates. In order to understand the resistivity structure and layer thicknesses, we used here three-layer feedforward neural networks to model and predict measured VES data. Three algorithms, e.g. back-propagation (BP), adaptive back-propagation (ABP) and Levenberg-Marquardt algorithm (LMA) were applied to the synthetic as well as real VES field data and efficiency of supervised training network are compared. Analyses suggest that LMA is computationally faster and give results, which are comparatively more accurate and consistent than BP and ABP. The results obtained using the ANN inversions are remarkably correlated with the available borehole litho-logs. The feasibility study suggests that ANN methods offer an excellent complementary tool for the direct detection of layered resistivity structure.
Two States Mapping Based Time Series Neural Network Model for Compensation Prediction Residual Error
NASA Astrophysics Data System (ADS)
Jung, Insung; Koo, Lockjo; Wang, Gi-Nam
2008-11-01
The objective of this paper was to design a model of human bio signal data prediction system for decreasing of prediction error using two states mapping based time series neural network BP (back-propagation) model. Normally, a lot of the industry has been applied neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has got a residual error between real value and prediction result. Therefore, we designed two states of neural network model for compensation residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We determined that most of the simulation cases were satisfied by the two states mapping based time series prediction model. In particular, small sample size of times series were more accurate than the standard MLP model.
Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm.
Wu, Haizhou; Zhou, Yongquan; Luo, Qifang; Basset, Mohamed Abdel
2016-01-01
Symbiotic organisms search (SOS) is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs). In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared.
Forecasting the portuguese stock market time series by using artificial neural networks
NASA Astrophysics Data System (ADS)
Isfan, Monica; Menezes, Rui; Mendes, Diana A.
2010-04-01
In this paper, we show that neural networks can be used to uncover the non-linearity that exists in the financial data. First, we follow a traditional approach by analysing the deterministic/stochastic characteristics of the Portuguese stock market data and some typical features are studied, like the Hurst exponents, among others. We also simulate a BDS test to investigate nonlinearities and the results are as expected: the financial time series do not exhibit linear dependence. Secondly, we trained four types of neural networks for the stock markets and used the models to make forecasts. The artificial neural networks were obtained using a three-layer feed-forward topology and the back-propagation learning algorithm. The quite large number of parameters that must be selected to develop a neural network forecasting model involves some trial and as a consequence the error is not small enough. In order to improve this we use a nonlinear optimization algorithm to minimize the error. Finally, the output of the 4 models is quite similar, leading to a qualitative forecast that we compare with the results of the application of k-nearest-neighbor for the same time series.
An economical semi-analytical orbit theory for micro-computer applications
NASA Technical Reports Server (NTRS)
Gordon, R. A.
1988-01-01
An economical algorithm is presented for predicting the position of a satellite perturbed by drag and zonal harmonics J sub 2 through J sub 4. Simplicity being of the essence, drag is modeled as a secular decay rate in the semi-axis (retarded motion); with the zonal perturbations modeled from a modified version of the Brouwers formulas. The algorithm is developed as: an alternative on-board orbit predictor; a back up propagator requiring low energy consumption; or a ground based propagator for microcomputer applications (e.g., at the foot of an antenna). An O(J sub 2) secular retarded state partial matrix (matrizant) is also given to employ with state estimation. The theory was implemented in BASIC on an inexpensive microcomputer, the program occupying under 8K bytes of memory. Simulated trajectory data and real tracking data are employed to illustrate the theory's ability to accurately accommodate oblateness and drag effects.
An economical semi-analytical orbit theory for micro-computer applications
NASA Technical Reports Server (NTRS)
Gordon, R. A.
1986-01-01
An economical algorithm is presented for predicting the position of a satellite perturbed by drag and zonal harmonics J2 through J4. Simplicity being of the essence, drag is modeled as a secular decay rate in the semimajor axis (retarded motion) with the zonal perturbations modeled from a modified version of Brouwers formulas. The algorithm is developed as an alternative on-board orbit predictor; a back up propagator requiring low energy consumption; or a ground based propagator for microcomputer applications (e.g., at the foot of an antenna). An O(J2) secular retarded state partial matrix (matrizant) is also given to employ with state estimation. The theory has been implemented in BASIC on an inexpensive microcomputer, the program occupying under 8K bytes of memory. Simulated trajectory data and real tracking data are employed to illustrate the theory's ability to accurately accommodate oblateness and drag effects.
Sign Language Recognition System using Neural Network for Digital Hardware Implementation
NASA Astrophysics Data System (ADS)
Vargas, Lorena P.; Barba, Leiner; Torres, C. O.; Mattos, L.
2011-01-01
This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.
Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm
Wu, Haizhou; Luo, Qifang
2016-01-01
Symbiotic organisms search (SOS) is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs). In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared. PMID:28105044
NASA Astrophysics Data System (ADS)
Vrettaros, John; Vouros, George; Drigas, Athanasios S.
This article studies the expediency of using neural networks technology and the development of back-propagation networks (BPN) models for modeling automated evaluation of the answers and progress of deaf students' that possess basic knowledge of the English language and computer skills, within a virtual e-learning environment. The performance of the developed neural models is evaluated with the correlation factor between the neural networks' response values and the real value data as well as the percentage measurement of the error between the neural networks' estimate values and the real value data during its training process and afterwards with unknown data that weren't used in the training process.
The eikonal function: the commom concept in ray optics and particle mechanics
NASA Astrophysics Data System (ADS)
Krautter, Martin
1993-04-01
The habit of teaching the movements of masses first, and propagation of light later, as an electromagnetic phenomenon was widespread. Looking further back into the history of physics, however, we see earlier the concepts for understanding light rays, and later their successful application to particle trajectories, leading to the highly developed celestial mechanics towards the end of the 19th century. And then, 1905, Karl Schwarzschild transferred the technique of `canonical coordinates,' named so by C.G.J. Jacobi in 1837, back to light rays in imaging systems. I would like to point to the chief steps in the evolution. The learning process for handling both particle and wave propagation aspects continues up to our time: Richard Feynman 1918 - 1988. We may judge each contribution: whether it opens our mind to a unifying theory, or whether it hardens partial understanding. And we can notice where the understanding of light propagation led the evolution, and how the theory for movement of masses caught up.
Membership generation using multilayer neural network
NASA Technical Reports Server (NTRS)
Kim, Jaeseok
1992-01-01
There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.
Genetic algorithm for the optimization of features and neural networks in ECG signals classification
NASA Astrophysics Data System (ADS)
Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu
2017-01-01
Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias.
Forecasting financial asset processes: stochastic dynamics via learning neural networks.
Giebel, S; Rainer, M
2010-01-01
Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.
Adaptive multi-time-domain subcycling for crystal plasticity FE modeling of discrete twin evolution
NASA Astrophysics Data System (ADS)
Ghosh, Somnath; Cheng, Jiahao
2018-02-01
Crystal plasticity finite element (CPFE) models that accounts for discrete micro-twin nucleation-propagation have been recently developed for studying complex deformation behavior of hexagonal close-packed (HCP) materials (Cheng and Ghosh in Int J Plast 67:148-170, 2015, J Mech Phys Solids 99:512-538, 2016). A major difficulty with conducting high fidelity, image-based CPFE simulations of polycrystalline microstructures with explicit twin formation is the prohibitively high demands on computing time. High strain localization within fast propagating twin bands requires very fine simulation time steps and leads to enormous computational cost. To mitigate this shortcoming and improve the simulation efficiency, this paper proposes a multi-time-domain subcycling algorithm. It is based on adaptive partitioning of the evolving computational domain into twinned and untwinned domains. Based on the local deformation-rate, the algorithm accelerates simulations by adopting different time steps for each sub-domain. The sub-domains are coupled back after coarse time increments using a predictor-corrector algorithm at the interface. The subcycling-augmented CPFEM is validated with a comprehensive set of numerical tests. Significant speed-up is observed with this novel algorithm without any loss of accuracy that is advantageous for predicting twinning in polycrystalline microstructures.
Gradient calculations for dynamic recurrent neural networks: a survey.
Pearlmutter, B A
1995-01-01
Surveys learning algorithms for recurrent neural networks with hidden units and puts the various techniques into a common framework. The authors discuss fixed point learning algorithms, namely recurrent backpropagation and deterministic Boltzmann machines, and nonfixed point algorithms, namely backpropagation through time, Elman's history cutoff, and Jordan's output feedback architecture. Forward propagation, an on-line technique that uses adjoint equations, and variations thereof, are also discussed. In many cases, the unified presentation leads to generalizations of various sorts. The author discusses advantages and disadvantages of temporally continuous neural networks in contrast to clocked ones continues with some "tricks of the trade" for training, using, and simulating continuous time and recurrent neural networks. The author presents some simulations, and at the end, addresses issues of computational complexity and learning speed.
A neural fuzzy controller learning by fuzzy error propagation
NASA Technical Reports Server (NTRS)
Nauck, Detlef; Kruse, Rudolf
1992-01-01
In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.
NASA Astrophysics Data System (ADS)
Han, Byeongho; Seol, Soon Jee; Byun, Joongmoo
2012-04-01
To simulate wave propagation in a tilted transversely isotropic (TTI) medium with a tilting symmetry-axis of anisotropy, we develop a 2D elastic forward modelling algorithm. In this algorithm, we use the staggered-grid finite-difference method which has fourth-order accuracy in space and second-order accuracy in time. Since velocity-stress formulations are defined for staggered grids, we include auxiliary grid points in the z-direction to meet the free surface boundary conditions for shear stress. Through comparisons of displacements obtained from our algorithm, not only with analytical solutions but also with finite element solutions, we are able to validate that the free surface conditions operate appropriately and elastic waves propagate correctly. In order to handle the artificial boundary reflections efficiently, we also implement convolutional perfectly matched layer (CPML) absorbing boundaries in our algorithm. The CPML sufficiently attenuates energy at the grazing incidence by modifying the damping profile of the PML boundary. Numerical experiments indicate that the algorithm accurately expresses elastic wave propagation in the TTI medium. At the free surface, the numerical results show good agreement with analytical solutions not only for body waves but also for the Rayleigh wave which has strong amplitude along the surface. In addition, we demonstrate the efficiency of CPML for a homogeneous TI medium and a dipping layered model. Only using 10 grid points to the CPML regions, the artificial reflections are successfully suppressed and the energy of the boundary reflection back into the effective modelling area is significantly decayed.
Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H
2003-01-01
Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935
Learning from Bees: An Approach for Influence Maximization on Viral Campaigns
Sankar, C. Prem; S., Asharaf
2016-01-01
Maximisation of influence propagation is a key ingredient to any viral marketing or socio-political campaigns. However, it is an NP-hard problem, and various approximate algorithms have been suggested to address the issue, though not largely successful. In this paper, we propose a bio-inspired approach to select the initial set of nodes which is significant in rapid convergence towards a sub-optimal solution in minimal runtime. The performance of the algorithm is evaluated using the re-tweet network of the hashtag #KissofLove on Twitter associated with the non-violent protest against the moral policing spread to many parts of India. Comparison with existing centrality based node ranking process the proposed method significant improvement on influence propagation. The proposed algorithm is one of the hardly few bio-inspired algorithms in network theory. We also report the results of the exploratory analysis of the network kiss of love campaign. PMID:27992472
Fuzzy regression modeling for tool performance prediction and degradation detection.
Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L
2010-10-01
In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.
Path optimisation of a mobile robot using an artificial neural network controller
NASA Astrophysics Data System (ADS)
Singh, M. K.; Parhi, D. R.
2011-01-01
This article proposed a novel approach for design of an intelligent controller for an autonomous mobile robot using a multilayer feed forward neural network, which enables the robot to navigate in a real world dynamic environment. The inputs to the proposed neural controller consist of left, right and front obstacle distance with respect to its position and target angle. The output of the neural network is steering angle. A four layer neural network has been designed to solve the path and time optimisation problem of mobile robots, which deals with the cognitive tasks such as learning, adaptation, generalisation and optimisation. A back propagation algorithm is used to train the network. This article also analyses the kinematic design of mobile robots for dynamic movements. The simulation results are compared with experimental results, which are satisfactory and show very good agreement. The training of the neural nets and the control performance analysis has been done in a real experimental setup.
Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat
2014-07-01
The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
Neural net controller for inlet pressure control of rocket engine testing
NASA Technical Reports Server (NTRS)
Trevino, Luis C.
1994-01-01
Many dynamic systems operate in select operating regions, each exhibiting characteristic modes of behavior. It is traditional to employ standard adjustable gain proportional-integral-derivative (PID) loops in such systems where no apriori model information is available. However, for controlling inlet pressure for rocket engine testing, problems in fine tuning, disturbance accommodation, and control gains for new profile operating regions (for research and development) are typically encountered. Because of the capability of capturing I/O peculiarities, using NETS, a back propagation trained neural network is specified. For select operating regions, the neural network controller is simulated to be as robust as the PID controller. For a comparative analysis, the higher order moment neural array (HOMNA) method is used to specify a second neural controller by extracting critical exemplars from the I/O data set. Furthermore, using the critical exemplars from the HOMNA method, a third neural controller is developed using NETS back propagation algorithm. All controllers are benchmarked against each other.
NASA Astrophysics Data System (ADS)
Han, Hyung-Suk
2012-12-01
The indoor noise of a ship is usually determined using the A-weighted sound pressure level. However, in order to better understand this phenomenon, evaluation parameters that more accurately reflect the human sense of hearing are required. To find the level of the satisfaction index of the noise inside a naval vessel such as "Loudness" and "Annoyance", psycho-acoustic evaluation of various sound recordings from the naval vessel was performed in a laboratory. The objective of this paper is to develop a single index of "Loudness" and "Annoyance" for noise inside a naval vessel according to a psycho-acoustic evaluation by using psychological responses such as Noise Rating (NR), Noise Criterion (NC), Room Criterion (RC), Preferred Speech Interference Level (PSIL) and loudness level. Additionally, in order to determine a single index of satisfaction for noise such as "Loudness" and "Annoyance", with respect to a human's sense of hearing, a back-propagation neural network is applied.
Neural network simulation of the atmospheric point spread function for the adjacency effect research
NASA Astrophysics Data System (ADS)
Ma, Xiaoshan; Wang, Haidong; Li, Ligang; Yang, Zhen; Meng, Xin
2016-10-01
Adjacency effect could be regarded as the convolution of the atmospheric point spread function (PSF) and the surface leaving radiance. Monte Carlo is a common method to simulate the atmospheric PSF. But it can't obtain analytic expression and the meaningful results can be only acquired by statistical analysis of millions of data. A backward Monte Carlo algorithm was employed to simulate photon emitting and propagating in the atmosphere under different conditions. The PSF was determined by recording the photon-receiving numbers in fixed bin at different position. A multilayer feed-forward neural network with a single hidden layer was designed to learn the relationship between the PSF's and the input condition parameters. The neural network used the back-propagation learning rule for training. Its input parameters involved atmosphere condition, spectrum range, observing geometry. The outputs of the network were photon-receiving numbers in the corresponding bin. Because the output units were too many to be allowed by neural network, the large network was divided into a collection of smaller ones. These small networks could be ran simultaneously on many workstations and/or PCs to speed up the training. It is important to note that the simulated PSF's by Monte Carlo technique in non-nadir viewing angles are more complicated than that in nadir conditions which brings difficulties in the design of the neural network. The results obtained show that the neural network approach could be very useful to compute the atmospheric PSF based on the simulated data generated by Monte Carlo method.
Locally Bayesian Learning with Applications to Retrospective Revaluation and Highlighting
ERIC Educational Resources Information Center
Kruschke, John K.
2006-01-01
A scheme is described for locally Bayesian parameter updating in models structured as successions of component functions. The essential idea is to back-propagate the target data to interior modules, such that an interior component's target is the input to the next component that maximizes the probability of the next component's target. Each layer…
Zhang, Ping; Hong, Bo; He, Liang; Cheng, Fei; Zhao, Peng; Wei, Cailiang; Liu, Yunhui
2015-01-01
PM2.5 pollution has become of increasing public concern because of its relative importance and sensitivity to population health risks. Accurate predictions of PM2.5 pollution and population exposure risks are crucial to developing effective air pollution control strategies. We simulated and predicted the temporal and spatial changes of PM2.5 concentration and population exposure risks, by coupling optimization algorithms of the Back Propagation-Artificial Neural Network (BP-ANN) model and a geographical information system (GIS) in Xi’an, China, for 2013, 2020, and 2025. Results indicated that PM2.5 concentration was positively correlated with GDP, SO2, and NO2, while it was negatively correlated with population density, average temperature, precipitation, and wind speed. Principal component analysis of the PM2.5 concentration and its influencing factors’ variables extracted four components that accounted for 86.39% of the total variance. Correlation coefficients of the Levenberg-Marquardt (trainlm) and elastic (trainrp) algorithms were more than 0.8, the index of agreement (IA) ranged from 0.541 to 0.863 and from 0.502 to 0.803 by trainrp and trainlm algorithms, respectively; mean bias error (MBE) and Root Mean Square Error (RMSE) indicated that the predicted values were very close to the observed values, and the accuracy of trainlm algorithm was better than the trainrp. Compared to 2013, temporal and spatial variation of PM2.5 concentration and risk of population exposure to pollution decreased in 2020 and 2025. The high-risk areas of population exposure to PM2.5 were mainly distributed in the northern region, where there is downtown traffic, abundant commercial activity, and more exhaust emissions. A moderate risk zone was located in the southern region associated with some industrial pollution sources, and there were mainly low-risk areas in the western and eastern regions, which are predominantly residential and educational areas. PMID:26426030
Zhang, Ping; Hong, Bo; He, Liang; Cheng, Fei; Zhao, Peng; Wei, Cailiang; Liu, Yunhui
2015-09-29
PM2.5 pollution has become of increasing public concern because of its relative importance and sensitivity to population health risks. Accurate predictions of PM2.5 pollution and population exposure risks are crucial to developing effective air pollution control strategies. We simulated and predicted the temporal and spatial changes of PM2.5 concentration and population exposure risks, by coupling optimization algorithms of the Back Propagation-Artificial Neural Network (BP-ANN) model and a geographical information system (GIS) in Xi'an, China, for 2013, 2020, and 2025. Results indicated that PM2.5 concentration was positively correlated with GDP, SO₂, and NO₂, while it was negatively correlated with population density, average temperature, precipitation, and wind speed. Principal component analysis of the PM2.5 concentration and its influencing factors' variables extracted four components that accounted for 86.39% of the total variance. Correlation coefficients of the Levenberg-Marquardt (trainlm) and elastic (trainrp) algorithms were more than 0.8, the index of agreement (IA) ranged from 0.541 to 0.863 and from 0.502 to 0.803 by trainrp and trainlm algorithms, respectively; mean bias error (MBE) and Root Mean Square Error (RMSE) indicated that the predicted values were very close to the observed values, and the accuracy of trainlm algorithm was better than the trainrp. Compared to 2013, temporal and spatial variation of PM2.5 concentration and risk of population exposure to pollution decreased in 2020 and 2025. The high-risk areas of population exposure to PM2.5 were mainly distributed in the northern region, where there is downtown traffic, abundant commercial activity, and more exhaust emissions. A moderate risk zone was located in the southern region associated with some industrial pollution sources, and there were mainly low-risk areas in the western and eastern regions, which are predominantly residential and educational areas.
A smart-pixel holographic competitive learning network
NASA Astrophysics Data System (ADS)
Slagle, Timothy Michael
Neural networks are adaptive classifiers which modify their decision boundaries based on feedback from externally- or internally-generated error signals. Optics is an attractive technology for neural network implementation because it offers the possibility of parallel, nearly instantaneous computation of the weighted neuron inputs by the propagation of light through the optical system. Using current optical device technology, system performance levels of 3 × 1011 connection updates per second can be achieved. This thesis presents an architecture for an optical competitive learning network which offers advantages over previous optical implementations, including smart-pixel-based optical neurons, phase- conjugate self-alignment of a single neuron plane, and high-density, parallel-access weight storage, interconnection, and learning in a volume hologram. The competitive learning algorithm with modifications for optical implementation is described, and algorithm simulations are performed for an example problem. The optical competitive learning architecture is then introduced. The optical system is simulated using the ``beamprop'' algorithm at the level of light propagating through the system components, and results showing competitive learning operation in agreement with the algorithm simulations are presented. The optical competitive learning requires a non-linear, non-local ``winner-take-all'' (WTA) neuron function. Custom-designed smart-pixel WTA neuron arrays were fabricated using CMOS VLSI/liquid crystal technology. Results of laboratory tests of the WTA arrays' switching characteristics, time response, and uniformity are then presented. The system uses a phase-conjugate mirror to write the self-aligning interconnection weight holograms, and energy gain is required from the reflection to minimize erasure of the existing weights. An experimental system for characterizing the PCM response is described. Useful gains of 20 were obtained with a polarization-multiplexed PCM readout, and gains of up to 60 were observed when a time-sequential read-out technique was used. Finally, the optical competitive learning laboratory system is described, including some necessary modifications to the previous architectures, and the data acquisition and control system developed for the system. Experimental results showing phase conjugation of the WTA outputs, holographic interconnect storage, associative storage between input images and WTA neuron outputs, and WTA array switching are presented, demonstrating the functions necessary for the operation of the optical learning system.
Sittig, D. F.; Orr, J. A.
1991-01-01
Various methods have been proposed in an attempt to solve problems in artifact and/or alarm identification including expert systems, statistical signal processing techniques, and artificial neural networks (ANN). ANNs consist of a large number of simple processing units connected by weighted links. To develop truly robust ANNs, investigators are required to train their networks on huge training data sets, requiring enormous computing power. We implemented a parallel version of the backward error propagation neural network training algorithm in the widely portable parallel programming language C-Linda. A maximum speedup of 4.06 was obtained with six processors. This speedup represents a reduction in total run-time from approximately 6.4 hours to 1.5 hours. We conclude that use of the master-worker model of parallel computation is an excellent method for obtaining speedups in the backward error propagation neural network training algorithm. PMID:1807607
NASA Astrophysics Data System (ADS)
Zhang, Li
With the deregulation of the electric power market in New England, an independent system operator (ISO) has been separated from the New England Power Pool (NEPOOL). The ISO provides a regional spot market, with bids on various electricity-related products and services submitted by utilities and independent power producers. A utility can bid on the spot market and buy or sell electricity via bilateral transactions. Good estimation of market clearing prices (MCP) will help utilities and independent power producers determine bidding and transaction strategies with low risks, and this is crucial for utilities to compete in the deregulated environment. MCP prediction, however, is difficult since bidding strategies used by participants are complicated and MCP is a non-stationary process. The main objective of this research is to provide efficient short-term load and MCP forecasting and corresponding confidence interval estimation methodologies. In this research, the complexity of load and MCP with other factors is investigated, and neural networks are used to model the complex relationship between input and output. With improved learning algorithm and on-line update features for load forecasting, a neural network based load forecaster was developed, and has been in daily industry use since summer 1998 with good performance. MCP is volatile because of the complexity of market behaviors. In practice, neural network based MCP predictors usually have a cascaded structure, as several key input factors need to be estimated first. In this research, the uncertainties involved in a cascaded neural network structure for MCP prediction are analyzed, and prediction distribution under the Bayesian framework is developed. A fast algorithm to evaluate the confidence intervals by using the memoryless Quasi-Newton method is also developed. The traditional back-propagation algorithm for neural network learning needs to be improved since MCP is a non-stationary process. The extended Kalman filter (EKF) can be used as an integrated adaptive learning and confidence interval estimation algorithm for neural networks, with fast convergence and small confidence intervals. However, EKF learning is computationally expensive because it involves high dimensional matrix manipulations. A modified U-D factorization within the decoupled EKF (DEKF-UD) framework is developed in this research. The computational efficiency and numerical stability are significantly improved.
Pruning Neural Networks with Distribution Estimation Algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantu-Paz, E
2003-01-15
This paper describes the application of four evolutionary algorithms to the pruning of neural networks used in classification problems. Besides of a simple genetic algorithm (GA), the paper considers three distribution estimation algorithms (DEAs): a compact GA, an extended compact GA, and the Bayesian Optimization Algorithm. The objective is to determine if the DEAs present advantages over the simple GA in terms of accuracy or speed in this problem. The experiments used a feed forward neural network trained with standard back propagation and public-domain and artificial data sets. The pruned networks seemed to have better or equal accuracy than themore » original fully-connected networks. Only in a few cases, pruning resulted in less accurate networks. We found few differences in the accuracy of the networks pruned by the four EAs, but found important differences in the execution time. The results suggest that a simple GA with a small population might be the best algorithm for pruning networks on the data sets we tested.« less
Borchani, Hanen; Bielza, Concha; Martı Nez-Martı N, Pablo; Larrañaga, Pedro
2012-12-01
Multi-dimensional Bayesian network classifiers (MBCs) are probabilistic graphical models recently proposed to deal with multi-dimensional classification problems, where each instance in the data set has to be assigned to more than one class variable. In this paper, we propose a Markov blanket-based approach for learning MBCs from data. Basically, it consists of determining the Markov blanket around each class variable using the HITON algorithm, then specifying the directionality over the MBC subgraphs. Our approach is applied to the prediction problem of the European Quality of Life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39) in order to estimate the health-related quality of life of Parkinson's patients. Fivefold cross-validation experiments were carried out on randomly generated synthetic data sets, Yeast data set, as well as on a real-world Parkinson's disease data set containing 488 patients. The experimental study, including comparison with additional Bayesian network-based approaches, back propagation for multi-label learning, multi-label k-nearest neighbor, multinomial logistic regression, ordinary least squares, and censored least absolute deviations, shows encouraging results in terms of predictive accuracy as well as the identification of dependence relationships among class and feature variables. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue
2018-04-01
The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X.; Wilcox, G.L.
1993-12-31
We have implemented large scale back-propagation neural networks on a 544 node Connection Machine, CM-5, using the C language in MIMD mode. The program running on 512 processors performs backpropagation learning at 0.53 Gflops, which provides 76 million connection updates per second. We have applied the network to the prediction of protein tertiary structure from sequence information alone. A neural network with one hidden layer and 40 million connections is trained to learn the relationship between sequence and tertiary structure. The trained network yields predicted structures of some proteins on which it has not been trained given only their sequences.more » Presentation of the Fourier transform of the sequences accentuates periodicity in the sequence and yields good generalization with greatly increased training efficiency. Training simulations with a large, heterologous set of protein structures (111 proteins from CM-5 time) to solutions with under 2% RMS residual error within the training set (random responses give an RMS error of about 20%). Presentation of 15 sequences of related proteins in a testing set of 24 proteins yields predicted structures with less than 8% RMS residual error, indicating good apparent generalization.« less
Belief propagation decoding of quantum channels by passing quantum messages
NASA Astrophysics Data System (ADS)
Renes, Joseph M.
2017-07-01
The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.
HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.
Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye
2017-02-09
In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.
Razmara, Jafar; Zaboli, Mohammad Hassan; Hassankhani, Hadi
2016-11-01
Falls play a critical role in older people's life as it is an important source of morbidity and mortality in elders. In this article, elders fall risk is predicted based on a physiological profile approach using a multilayer neural network with back-propagation learning algorithm. The personal physiological profile of 200 elders was collected through a questionnaire and used as the experimental data for learning and testing the neural network. The profile contains a series of simple factors putting elders at risk for falls such as vision abilities, muscle forces, and some other daily activities and grouped into two sets: psychological factors and public factors. The experimental data were investigated to select factors with high impact using principal component analysis. The experimental results show an accuracy of ≈90 percent and ≈87.5 percent for fall prediction among the psychological and public factors, respectively. Furthermore, combining these two datasets yield an accuracy of ≈91 percent that is better than the accuracy of single datasets. The proposed method suggests a set of valid and reliable measurements that can be employed in a range of health care systems and physical therapy to distinguish people who are at risk for falls.
Cross-language opinion lexicon extraction using mutual-reinforcement label propagation.
Lin, Zheng; Tan, Songbo; Liu, Yue; Cheng, Xueqi; Xu, Xueke
2013-01-01
There is a growing interest in automatically building opinion lexicon from sources such as product reviews. Most of these methods depend on abundant external resources such as WordNet, which limits the applicability of these methods. Unsupervised or semi-supervised learning provides an optional solution to multilingual opinion lexicon extraction. However, the datasets are imbalanced in different languages. For some languages, the high-quality corpora are scarce or hard to obtain, which limits the research progress. To solve the above problems, we explore a mutual-reinforcement label propagation framework. First, for each language, a label propagation algorithm is applied to a word relation graph, and then a bilingual dictionary is used as a bridge to transfer information between two languages. A key advantage of this model is its ability to make two languages learn from each other and boost each other. The experimental results show that the proposed approach outperforms baseline significantly.
Cross-Language Opinion Lexicon Extraction Using Mutual-Reinforcement Label Propagation
Lin, Zheng; Tan, Songbo; Liu, Yue; Cheng, Xueqi; Xu, Xueke
2013-01-01
There is a growing interest in automatically building opinion lexicon from sources such as product reviews. Most of these methods depend on abundant external resources such as WordNet, which limits the applicability of these methods. Unsupervised or semi-supervised learning provides an optional solution to multilingual opinion lexicon extraction. However, the datasets are imbalanced in different languages. For some languages, the high-quality corpora are scarce or hard to obtain, which limits the research progress. To solve the above problems, we explore a mutual-reinforcement label propagation framework. First, for each language, a label propagation algorithm is applied to a word relation graph, and then a bilingual dictionary is used as a bridge to transfer information between two languages. A key advantage of this model is its ability to make two languages learn from each other and boost each other. The experimental results show that the proposed approach outperforms baseline significantly. PMID:24260190
Deep Learning Methods for Improved Decoding of Linear Codes
NASA Astrophysics Data System (ADS)
Nachmani, Eliya; Marciano, Elad; Lugosch, Loren; Gross, Warren J.; Burshtein, David; Be'ery, Yair
2018-02-01
The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.
Direct phase projection and transcranial focusing of ultrasound for brain therapy.
Pinton, Gianmarco F; Aubry, Jean-Francois; Tanter, Mickaël
2012-06-01
Ultrasound can be used to noninvasively treat the human brain with hyperthermia by focusing through the skull. To obtain an accurate focus, especially at high frequencies (>500 kHz), the phase of the transmitted wave must be modified to correct the aberrations introduced by the patient's individual skull morphology. Currently, three-dimensional finite-difference time-domain simulations are used to model a point source at the target. The outward-propagating wave crosses the measured representation of the human skull and is recorded at the therapy array transducer locations. The signal is then time reversed and experimentally transmitted back to its origin. These simulations are resource intensive and add a significant delay to treatment planning. Ray propagation is computationally efficient because it neglects diffraction and only describes two propagation parameters: the wave's direction and the phase. We propose a minimal method that is based only on the phase. The phase information is projected from the external skull surface to the array locations. This replaces computationally expensive finite-difference computations with an almost instantaneous direct phase projection calculation. For the five human skull samples considered, the phase distribution outside of the skull is shown to vary by less than λ/20 as it propagates over a 5 cm distance and the validity of phase projection is established over these propagation distances. The phase aberration introduced by the skull is characterized and is shown to have a good correspondence with skull morphology. The shape of this aberration is shown to have little variation with propagation distance. The focusing quality with the proposed phase-projection algorithm is shown to be indistinguishable from the gold-standard full finite-difference simulation. In conclusion, a spherical wave that is aberrated by the skull has a phase propagation that can be accurately described as radial, even after it has been distorted. By combining finite-difference simulations with a phase-projection algorithm, the time required for treatment planning is significantly reduced. The correlation length of the phase is used to validate the algorithm and it can also be used to provide guiding parameters for clinical array transducer design in terms of transducer spacing and phase error.
Neural Network and Letter Recognition.
NASA Astrophysics Data System (ADS)
Lee, Hue Yeon
Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C -layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken the on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the 'Gabor' transform. Pattern dependent choice of center and wavelengths of 'Gabor' filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets. The correct recognition rate of the system increases with the number of training sets and eventually saturates at a certain value. Similar recognition rates are obtained for the above three different learning algorithms. The minimum error rate, 4.9% is achieved for alphanumeric sets when 50 sets are trained. With the ambiguity resolver, it is reduced to 2.5%. In case that only numeral sets are trained and tested, 2.0% error rate is achieved. When only alphabet sets are considered, the error rate is reduced to 1.1%.
NASA Technical Reports Server (NTRS)
Bell, S.; Nazarov, E.; Wang, Y. F.; Rodriguez, J. E.; Eiceman, G. A.
2000-01-01
A minimal neural network was applied to a large library of high-temperature mobility spectra drawn from 16 chemical classes including 154 substances with 2000 spectra at various concentrations. A genetic algorithm was used to create a representative subset of points from the mobility spectrum as input to a cascade-type back-propagation network. This network demonstrated that significant information specific to chemical class was located in the spectral region near the reactant ions. This network failed to generalize the solution to unfamiliar compounds necessitating the use of complete spectra in network processing. An extended back-propagation network classified unfamiliar chemicals by functional group with a mean for average values of 0.83 without sulfides and 0.79 with sulfides. Further experiments confirmed that chemical class information was resident in the spectral region near the reactant ions. Deconvolution of spectra demonstrated the presence of ions, merged with the reactant ion peaks that originated from introduced samples. The ability of the neural network to generalize the solution to unfamiliar compounds suggests that these ions are distinct and class specific.
Prediction of Contact Fatigue Life of Alloy Cast Steel Rolls Using Back-Propagation Neural Network
NASA Astrophysics Data System (ADS)
Jin, Huijin; Wu, Sujun; Peng, Yuncheng
2013-12-01
In this study, an artificial neural network (ANN) was employed to predict the contact fatigue life of alloy cast steel rolls (ACSRs) as a function of alloy composition, heat treatment parameters, and contact stress by utilizing the back-propagation algorithm. The ANN was trained and tested using experimental data and a very good performance of the neural network was achieved. The well-trained neural network was then adopted to predict the contact fatigue life of chromium alloyed cast steel rolls with different alloy compositions and heat treatment processes. The prediction results showed that the maximum value of contact fatigue life was obtained with quenching at 960 °C, tempering at 520 °C, and under the contact stress of 2355 MPa. The optimal alloy composition was C-0.54, Si-0.66, Mn-0.67, Cr-4.74, Mo-0.46, V-0.13, Ni-0.34, and Fe-balance (wt.%). Some explanations of the predicted results from the metallurgical viewpoints are given. A convenient and powerful method of optimizing alloy composition and heat treatment parameters of ACSRs has been developed.
D Coordinate Transformation Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Konakoglu, B.; Cakır, L.; Gökalp, E.
2016-10-01
Two coordinate systems used in Turkey, namely the ED50 (European Datum 1950) and ITRF96 (International Terrestrial Reference Frame 1996) coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN) is a new method for coordinate transformation. One of the biggest advantages of the ANN is that it can determine the relationship between two coordinate systems without a mathematical model. The aim of this study was to investigate the performances of three different ANN models (Feed Forward Back Propagation (FFBP), Cascade Forward Back Propagation (CFBP) and Radial Basis Function Neural Network (RBFNN)) with regard to 2D coordinate transformation. To do this, three data sets were used for the same study area, the city of Trabzon. The coordinates of data sets were measured in the ED50 and ITRF96 coordinate systems by using RTK-GPS technique. Performance of each transformation method was investigated by using the coordinate differences between the known and estimated coordinates. The results showed that the ANN algorithms can be used for 2D coordinate transformation in cases where optimum model parameters are selected.
NASA Astrophysics Data System (ADS)
Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood
2015-10-01
Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.
A fuzzy reinforcement learning approach to power control in wireless transmitters.
Vengerov, David; Bambos, Nicholas; Berenji, Hamid R
2005-08-01
We address the issue of power-controlled shared channel access in wireless networks supporting packetized data traffic. We formulate this problem using the dynamic programming framework and present a new distributed fuzzy reinforcement learning algorithm (ACFRL-2) capable of adequately solving a class of problems to which the power control problem belongs. Our experimental results show that the algorithm converges almost deterministically to a neighborhood of optimal parameter values, as opposed to a very noisy stochastic convergence of earlier algorithms. The main tradeoff facing a transmitter is to balance its current power level with future backlog in the presence of stochastically changing interference. Simulation experiments demonstrate that the ACFRL-2 algorithm achieves significant performance gains over the standard power control approach used in CDMA2000. Such a large improvement is explained by the fact that ACFRL-2 allows transmitters to learn implicit coordination policies, which back off under stressful channel conditions as opposed to engaging in escalating "power wars."
Research of converter transformer fault diagnosis based on improved PSO-BP algorithm
NASA Astrophysics Data System (ADS)
Long, Qi; Guo, Shuyong; Li, Qing; Sun, Yong; Li, Yi; Fan, Youping
2017-09-01
To overcome those disadvantages that BP (Back Propagation) neural network and conventional Particle Swarm Optimization (PSO) converge at the global best particle repeatedly in early stage and is easy trapped in local optima and with low diagnosis accuracy when being applied in converter transformer fault diagnosis, we come up with the improved PSO-BP neural network to improve the accuracy rate. This algorithm improves the inertia weight Equation by using the attenuation strategy based on concave function to avoid the premature convergence of PSO algorithm and Time-Varying Acceleration Coefficient (TVAC) strategy was adopted to balance the local search and global search ability. At last the simulation results prove that the proposed approach has a better ability in optimizing BP neural network in terms of network output error, global searching performance and diagnosis accuracy.
Application of dynamic recurrent neural networks in nonlinear system identification
NASA Astrophysics Data System (ADS)
Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang
2006-11-01
An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.
Kim, Keo-Sik; Seo, Jeong-Hwan; Song, Chul-Gyu
2011-08-10
Radiological scoring methods such as colon transit time (CTT) have been widely used for the assessment of bowel motility. However, these radiograph-based methods need cumbersome radiological instruments and their frequent exposure to radiation. Therefore, a non-invasive estimation algorithm of bowel motility, based on a back-propagation neural network (BPNN) model of bowel sounds (BS) obtained by an auscultation, was devised. Twelve healthy males (age: 24.8 ± 2.7 years) and 6 patients with spinal cord injury (6 males, age: 55.3 ± 7.1 years) were examined. BS signals generated during the digestive process were recorded from 3 colonic segments (ascending, descending and sigmoid colon), and then, the acoustical features (jitter and shimmer) of the individual BS segment were obtained. Only 6 features (J1, 3, J3, 3, S1, 2, S2, 1, S2, 2, S3, 2), which are highly correlated to the CTTs measured by the conventional method, were used as the features of the input vector for the BPNN. As a results, both the jitters and shimmers of the normal subjects were relatively higher than those of the patients, whereas the CTTs of the normal subjects were relatively lower than those of the patients (p < 0.01). Also, through k-fold cross validation, the correlation coefficient and mean average error between the CTTs measured by a conventional radiograph and the values estimated by our algorithm were 0.89 and 10.6 hours, respectively. The jitter and shimmer of the BS signals generated during the peristalsis could be clinically useful for the discriminative parameters of bowel motility. Also, the devised algorithm showed good potential for the continuous monitoring and estimation of bowel motility, instead of conventional radiography, and thus, it could be used as a complementary tool for the non-invasive measurement of bowel motility.
Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok
2013-02-01
The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic-algorithm-based neural network IAQ models outperformed the traditional ANN methods of the back-propagation and the radial basis function networks. The novelty of this research is the development of a novel approach to modeling vehicular indoor air quality by integration of the advanced methods of genetic algorithms, regression trees, and the analysis of variance for the monitored in-vehicle gaseous and particulate matter contaminants, and comparing the results obtained from using the developed approach with conventional artificial intelligence techniques of back propagation networks and radial basis function networks. This study validated the newly developed approach using holdout and threefold cross-validation methods. These results are of great interest to scientists, researchers, and the public in understanding the various aspects of modeling an indoor microenvironment. This methodology can easily be extended to other fields of study also.
Neural Architectures for Control
NASA Technical Reports Server (NTRS)
Peterson, James K.
1991-01-01
The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.
Typing SNP based on the near-infrared spectroscopy and artificial neural network
NASA Astrophysics Data System (ADS)
Ren, Li; Wang, Wei-Peng; Gao, Yu-Zhen; Yu, Xiao-Wei; Xie, Hong-Ping
2009-07-01
Based on the near-infrared spectra (NIRS) of the measured samples as the discriminant variables of their genotypes, the genotype discriminant model of SNP has been established by using back-propagation artificial neural network (BP-ANN). Taking a SNP (857G > A) of N-acetyltransferase 2 (NAT2) as an example, DNA fragments containing the SNP site were amplified by the PCR method based on a pair of primers to obtain the three-genotype (GG, AA, and GA) modeling samples. The NIRS-s of the amplified samples were directly measured in transmission by using quartz cell. Based on the sample spectra measured, the two BP-ANN-s were combined to obtain the stronger ability of the three-genotype classification. One of them was established to compress the measured NIRS variables by using the resilient back-propagation algorithm, and another network established by Levenberg-Marquardt algorithm according to the compressed NIRS-s was used as the discriminant model of the three-genotype classification. For the established model, the root mean square error for the training and the prediction sample sets were 0.0135 and 0.0132, respectively. Certainly, this model could rightly predict the three genotypes (i.e. the accuracy of prediction samples was up to100%) and had a good robust for the prediction of unknown samples. Since the three genotypes of SNP could be directly determined by using the NIRS-s without any preprocessing for the analyzed samples after PCR, this method is simple, rapid and low-cost.
An Emotional ANN (EANN) approach to modeling rainfall-runoff process
NASA Astrophysics Data System (ADS)
Nourani, Vahid
2017-01-01
This paper presents the first hydrological implementation of Emotional Artificial Neural Network (EANN), as a new generation of Artificial Intelligence-based models for daily rainfall-runoff (r-r) modeling of the watersheds. Inspired by neurophysiological form of brain, in addition to conventional weights and bias, an EANN includes simulated emotional parameters aimed at improving the network learning process. EANN trained by a modified version of back-propagation (BP) algorithm was applied to single and multi-step-ahead runoff forecasting of two watersheds with two distinct climatic conditions. Also to evaluate the ability of EANN trained by smaller training data set, three data division strategies with different number of training samples were considered for the training purpose. The overall comparison of the obtained results of the r-r modeling indicates that the EANN could outperform the conventional feed forward neural network (FFNN) model up to 13% and 34% in terms of training and verification efficiency criteria, respectively. The superiority of EANN over classic ANN is due to its ability to recognize and distinguish dry (rainless days) and wet (rainy days) situations using hormonal parameters of the artificial emotional system.
Feng, Lei; Zhu, Susu; Lin, Fucheng; Su, Zhenzhu; Yuan, Kangpei; Zhao, Yiying; He, Yong; Zhang, Chu
2018-06-15
Mildew damage is a major reason for chestnut poor quality and yield loss. In this study, a near-infrared hyperspectral imaging system in the 874⁻1734 nm spectral range was applied to detect the mildew damage to chestnuts caused by blue mold. Principal component analysis (PCA) scored images were firstly employed to qualitatively and intuitively distinguish moldy chestnuts from healthy chestnuts. Spectral data were extracted from the hyperspectral images. A successive projections algorithm (SPA) was used to select 12 optimal wavelengths. Artificial neural networks, including back propagation neural network (BPNN), evolutionary neural network (ENN), extreme learning machine (ELM), general regression neural network (GRNN) and radial basis neural network (RBNN) were used to build models using the full spectra and optimal wavelengths to distinguish moldy chestnuts. BPNN and ENN models using full spectra and optimal wavelengths obtained satisfactory performances, with classification accuracies all surpassing 99%. The results indicate the potential for the rapid and non-destructive detection of moldy chestnuts by hyperspectral imaging, which would help to develop online detection system for healthy and blue mold infected chestnuts.
Bluetooth gas sensing module combined with smartphones for air quality monitoring.
Suárez, José Ignacio; Arroyo, Patricia; Lozano, Jesús; Herrero, José Luis; Padilla, Manuel
2018-08-01
This study addresses the development of a miniaturized (60 × 60 mm) Wireless Sensing Module (WSM) for environmental application and air quality detection. The proposed prototype has six sensors: one for humidity, one for ambient temperature (SHT21 from Sensirion), and four for gas detection (MiCS-4514, MiCS-5526 and MiCS-5914 from SGX Sensortech). The core of the system is based on a high performance 8-bit microcontroller, model PIC18F46K80, from Microchip. The obtained data values were transmitted to the Smartphone through a Bluetooth communication module and a home-developed Android app. The discrimination capability of the module is tested with 10 volatile organic compounds (acetone, acetic acid, benzene, ethanol, ethyl acetate, ethylbenzene, formaldehyde, toluene, xylene, and dimethylacetamide) and the effect of humidity and drift of the sensors is also studied. Results show that 88.33% and 92.22% success rates in classification stage are obtained using Multilayer Perceptron with BackPropagation Learning algorithm and Radial-Basis based Neural Networks, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khajeh, M.; Pourkarami, A.; Arefnejad, E.; Bohlooli, M.; Khatibi, A.; Ghaffari-Moghaddam, M.; Zareian-Jahromi, S.
2017-09-01
Chitosan-zinc oxide nanoparticles (CZPs) were developed for solid-phase extraction. Combined artificial neural network-ant colony optimization (ANN-ACO) was used for the simultaneous preconcentration and determination of lead (Pb2+) ions in water samples prior to graphite furnace atomic absorption spectrometry (GF AAS). The solution pH, mass of adsorbent CZPs, amount of 1-(2-pyridylazo)-2-naphthol (PAN), which was used as a complexing agent, eluent volume, eluent concentration, and flow rates of sample and eluent were used as input parameters of the ANN model, and the percentage of extracted Pb2+ ions was used as the output variable of the model. A multilayer perception network with a back-propagation learning algorithm was used to fit the experimental data. The optimum conditions were obtained based on the ACO. Under the optimized conditions, the limit of detection for Pb2+ ions was found to be 0.078 μg/L. This procedure was also successfully used to determine the amounts of Pb2+ ions in various natural water samples.
Eslamizadeh, Gholamhossein; Barati, Ramin
2017-05-01
Early recognition of heart disease plays a vital role in saving lives. Heart murmurs are one of the common heart problems. In this study, Artificial Neural Network (ANN) is trained with Modified Neighbor Annealing (MNA) to classify heart cycles into normal and murmur classes. Heart cycles are separated from heart sounds using wavelet transformer. The network inputs are features extracted from individual heart cycles, and two classification outputs. Classification accuracy of the proposed model is compared with five multilayer perceptron trained with Levenberg-Marquardt, Extreme-learning-machine, back-propagation, simulated-annealing, and neighbor-annealing algorithms. It is also compared with a Self-Organizing Map (SOM) ANN. The proposed model is trained and tested using real heart sounds available in the Pascal database to show the applicability of the proposed scheme. Also, a device to record real heart sounds has been developed and used for comparison purposes too. Based on the results of this study, MNA can be used to produce considerable results as a heart cycle classifier. Copyright © 2017 Elsevier B.V. All rights reserved.
Random synaptic feedback weights support error backpropagation for deep learning
NASA Astrophysics Data System (ADS)
Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.
2016-11-01
The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning.
Random synaptic feedback weights support error backpropagation for deep learning
Lillicrap, Timothy P.; Cownden, Daniel; Tweed, Douglas B.; Akerman, Colin J.
2016-01-01
The brain processes information through multiple layers of neurons. This deep architecture is representationally powerful, but complicates learning because it is difficult to identify the responsible neurons when a mistake is made. In machine learning, the backpropagation algorithm assigns blame by multiplying error signals with all the synaptic weights on each neuron's axon and further downstream. However, this involves a precise, symmetric backward connectivity pattern, which is thought to be impossible in the brain. Here we demonstrate that this strong architectural constraint is not required for effective error propagation. We present a surprisingly simple mechanism that assigns blame by multiplying errors by even random synaptic weights. This mechanism can transmit teaching signals across multiple layers of neurons and performs as effectively as backpropagation on a variety of tasks. Our results help reopen questions about how the brain could use error signals and dispel long-held assumptions about algorithmic constraints on learning. PMID:27824044
Invariant-feature-based adaptive automatic target recognition in obscured 3D point clouds
NASA Astrophysics Data System (ADS)
Khuon, Timothy; Kershner, Charles; Mattei, Enrico; Alverio, Arnel; Rand, Robert
2014-06-01
Target recognition and classification in a 3D point cloud is a non-trivial process due to the nature of the data collected from a sensor system. The signal can be corrupted by noise from the environment, electronic system, A/D converter, etc. Therefore, an adaptive system with a desired tolerance is required to perform classification and recognition optimally. The feature-based pattern recognition algorithm architecture as described below is particularly devised for solving a single-sensor classification non-parametrically. Feature set is extracted from an input point cloud, normalized, and classifier a neural network classifier. For instance, automatic target recognition in an urban area would require different feature sets from one in a dense foliage area. The figure above (see manuscript) illustrates the architecture of the feature based adaptive signature extraction of 3D point cloud including LIDAR, RADAR, and electro-optical data. This network takes a 3D cluster and classifies it into a specific class. The algorithm is a supervised and adaptive classifier with two modes: the training mode and the performing mode. For the training mode, a number of novel patterns are selected from actual or artificial data. A particular 3D cluster is input to the network as shown above for the decision class output. The network consists of three sequential functional modules. The first module is for feature extraction that extracts the input cluster into a set of singular value features or feature vector. Then the feature vector is input into the feature normalization module to normalize and balance it before being fed to the neural net classifier for the classification. The neural net can be trained by actual or artificial novel data until each trained output reaches the declared output within the defined tolerance. In case new novel data is added after the neural net has been learned, the training is then resumed until the neural net has incrementally learned with the new novel data. The associative memory capability of the neural net enables the incremental learning. The back propagation algorithm or support vector machine can be utilized for the classification and recognition.
A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks.
Alauthaman, Mohammad; Aslam, Nauman; Zhang, Li; Alasem, Rafe; Hossain, M A
2018-01-01
In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed.
On-line dynamic monitoring automotive exhausts: using BP-ANN for distinguishing multi-components
NASA Astrophysics Data System (ADS)
Zhao, Yudi; Wei, Ruyi; Liu, Xuebin
2017-10-01
Remote sensing-Fourier Transform infrared spectroscopy (RS-FTIR) is one of the most important technologies in atmospheric pollutant monitoring. It is very appropriate for on-line dynamic remote sensing monitoring of air pollutants, especially for the automotive exhausts. However, their absorption spectra are often seriously overlapped in the atmospheric infrared window bands, i.e. MWIR (3 5μm). Artificial Neural Network (ANN) is an algorithm based on the theory of the biological neural network, which simplifies the partial differential equation with complex construction. For its preferable performance in nonlinear mapping and fitting, in this paper we utilize Back Propagation-Artificial Neural Network (BP-ANN) to quantitatively analyze the concentrations of four typical industrial automotive exhausts, including CO, NO, NO2 and SO2. We extracted the original data of these automotive exhausts from the HITRAN database, most of which virtually overlapped, and established a mixed multi-component simulation environment. Based on Beer-Lambert Law, concentrations can be retrieved from the absorbance of spectra. Parameters including learning rate, momentum factor, the number of hidden nodes and iterations were obtained when the BP network was trained with 80 groups of input data. By improving these parameters, the network can be optimized to produce necessarily higher precision for the retrieved concentrations. This BP-ANN method proves to be an effective and promising algorithm on dealing with multi-components analysis of automotive exhausts.
Active learning for semi-supervised clustering based on locally linear propagation reconstruction.
Chang, Chin-Chun; Lin, Po-Yi
2015-03-01
The success of semi-supervised clustering relies on the effectiveness of side information. To get effective side information, a new active learner learning pairwise constraints known as must-link and cannot-link constraints is proposed in this paper. Three novel techniques are developed for learning effective pairwise constraints. The first technique is used to identify samples less important to cluster structures. This technique makes use of a kernel version of locally linear embedding for manifold learning. Samples neither important to locally linear propagation reconstructions of other samples nor on flat patches in the learned manifold are regarded as unimportant samples. The second is a novel criterion for query selection. This criterion considers not only the importance of a sample to expanding the space coverage of the learned samples but also the expected number of queries needed to learn the sample. To facilitate semi-supervised clustering, the third technique yields inferred must-links for passing information about flat patches in the learned manifold to semi-supervised clustering algorithms. Experimental results have shown that the learned pairwise constraints can capture the underlying cluster structures and proven the feasibility of the proposed approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gui, Chun; Zhang, Ruisheng; Zhao, Zhili; Wei, Jiaxuan; Hu, Rongjing
In order to deal with stochasticity in center node selection and instability in community detection of label propagation algorithm, this paper proposes an improved label propagation algorithm named label propagation algorithm based on community belonging degree (LPA-CBD) that employs community belonging degree to determine the number and the center of community. The general process of LPA-CBD is that the initial community is identified by the nodes with the maximum degree, and then it is optimized or expanded by community belonging degree. After getting the rough structure of network community, the remaining nodes are labeled by using label propagation algorithm. The experimental results on 10 real-world networks and three synthetic networks show that LPA-CBD achieves reasonable community number, better algorithm accuracy and higher modularity compared with other four prominent algorithms. Moreover, the proposed algorithm not only has lower algorithm complexity and higher community detection quality, but also improves the stability of the original label propagation algorithm.
Bayesian Image Segmentations by Potts Prior and Loopy Belief Propagation
NASA Astrophysics Data System (ADS)
Tanaka, Kazuyuki; Kataoka, Shun; Yasuda, Muneki; Waizumi, Yuji; Hsu, Chiou-Ting
2014-12-01
This paper presents a Bayesian image segmentation model based on Potts prior and loopy belief propagation. The proposed Bayesian model involves several terms, including the pairwise interactions of Potts models, and the average vectors and covariant matrices of Gauss distributions in color image modeling. These terms are often referred to as hyperparameters in statistical machine learning theory. In order to determine these hyperparameters, we propose a new scheme for hyperparameter estimation based on conditional maximization of entropy in the Potts prior. The algorithm is given based on loopy belief propagation. In addition, we compare our conditional maximum entropy framework with the conventional maximum likelihood framework, and also clarify how the first order phase transitions in loopy belief propagations for Potts models influence our hyperparameter estimation procedures.
Intelligent processing of acoustic emission signals
NASA Astrophysics Data System (ADS)
Sachse, Wolfgang; Grabec, Igor
1992-07-01
Recent developments in applying neural-like signal-processing procedures for analyzing acoustic emission signals are summarized. These procedures employ a set of learning signals to develop a memory that can subsequently be utilized to process other signals to recover information about an unknown source. A majority of the current applications to process ultrasonic waveforms are based on multilayered, feed-forward neural networks, trained with some type of back-error propagation rule.
Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor.
Xu, Chang; Wang, Yingguan; Bao, Xinghe; Li, Fengrong
2018-05-24
This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.
NASA Astrophysics Data System (ADS)
Van de Casteele, Elke; Parizel, Paul; Sijbers, Jan
2012-03-01
Adaptive statistical iterative reconstruction (ASiR) is a new reconstruction algorithm used in the field of medical X-ray imaging. This new reconstruction method combines the idealized system representation, as we know it from the standard Filtered Back Projection (FBP) algorithm, and the strength of iterative reconstruction by including a noise model in the reconstruction scheme. It studies how noise propagates through the reconstruction steps, feeds this model back into the loop and iteratively reduces noise in the reconstructed image without affecting spatial resolution. In this paper the effect of ASiR on the contrast to noise ratio is studied using the low contrast module of the Catphan phantom. The experiments were done on a GE LightSpeed VCT system at different voltages and currents. The results show reduced noise and increased contrast for the ASiR reconstructions compared to the standard FBP method. For the same contrast to noise ratio the images from ASiR can be obtained using 60% less current, leading to a reduction in dose of the same amount.
Flow rate of some pharmaceutical diluents through die-orifices relevant to mini-tableting.
Kachrimanis, K; Petrides, M; Malamataris, S
2005-10-13
The effects of cylindrical orifice length and diameter on the flow rate of three commonly used pharmaceutical direct compression diluents (lactose, dibasic calcium phosphate dihydrate and pregelatinised starch) were investigated, besides the powder particle characteristics (particle size, aspect ratio, roundness and convexity) and the packing properties (true, bulk and tapped density). Flow rate was determined for three different sieve fractions through a series of miniature tableting dies of different orifice diameter (0.4, 0.3 and 0.2 cm) and thickness (1.5, 1.0 and 0.5 cm). It was found that flow rate decreased with the increase of the orifice length for the small diameter (0.2 cm) but for the large diameter (0.4 cm) was increased with the orifice length (die thickness). Flow rate changes with the orifice length are attributed to the flow regime (transitional arch formation) and possible alterations in the position of the free flowing zone caused by pressure gradients arising from the flow of self-entrained air, both above the entrance in the die orifice and across it. Modelling by the conventional Jones-Pilpel non-linear equation and by two machine learning algorithms (lazy learning, LL, and feed-forward back-propagation, FBP) was applied and predictive performance of the fitted models was compared. It was found that both FBP and LL algorithms have significantly higher predictive performance than the Jones-Pilpel non-linear equation, because they account both dimensions of the cylindrical die opening (diameter and length). The automatic relevance determination for FBP revealed that orifice length is the third most influential variable after the orifice diameter and particle size, followed by the bulk density, the difference between bulk and tapped densities and the particle convexity.
Neural network and letter recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hue Yeon.
Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C-layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken themore » on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the Gabor transform. Pattern dependent choice of center and wavelengths of Gabor filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets.« less
DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key Generation.
Kalsi, Shruti; Kaur, Harleen; Chang, Victor
2017-12-05
Cryptography is not only a science of applying complex mathematics and logic to design strong methods to hide data called as encryption, but also to retrieve the original data back, called decryption. The purpose of cryptography is to transmit a message between a sender and receiver such that an eavesdropper is unable to comprehend it. To accomplish this, not only we need a strong algorithm, but a strong key and a strong concept for encryption and decryption process. We have introduced a concept of DNA Deep Learning Cryptography which is defined as a technique of concealing data in terms of DNA sequence and deep learning. In the cryptographic technique, each alphabet of a letter is converted into a different combination of the four bases, namely; Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), which make up the human deoxyribonucleic acid (DNA). Actual implementations with the DNA don't exceed laboratory level and are expensive. To bring DNA computing on a digital level, easy and effective algorithms are proposed in this paper. In proposed work we have introduced firstly, a method and its implementation for key generation based on the theory of natural selection using Genetic Algorithm with Needleman-Wunsch (NW) algorithm and Secondly, a method for implementation of encryption and decryption based on DNA computing using biological operations Transcription, Translation, DNA Sequencing and Deep Learning.
Elastic Reverse Time Migration (RTM) From Surface Topography
NASA Astrophysics Data System (ADS)
Akram, Naveed; Chen, Xiaofei
2017-04-01
Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.
Elastic Reverse Time Migration (RTM) From Surface Topography
NASA Astrophysics Data System (ADS)
Naveed, A.; Chen, X.
2016-12-01
Seismic Migration is a promising data processing technique to construct subsurface images by projecting the recorded seismic data at surface back to their origins. There are numerous Migration methods. Among them, Reverse Time Migration (RTM) is considered a robust and standard imaging technology in present day exploration industry as well as in academic research field because of its superior performance compared to traditional migration methods. Although RTM is extensive computing and time consuming but it can efficiently handle the complex geology, highly dipping reflectors and strong lateral velocity variation all together. RTM takes data recorded at the surface as a boundary condition and propagates the data backwards in time until the imaging condition is met. It can use the same modeling algorithm that we use for forward modeling. The classical seismic exploration theory assumes flat surface which is almost impossible in practice for land data. So irregular surface topography has to be considered in simulation of seismic wave propagation, which is not always a straightforward undertaking. In this study, Curved grid finite difference method (CG-FDM) is adapted to model elastic seismic wave propagation to investigate the effect of surface topography on RTM results and explore its advantages and limitations with synthetic data experiments by using Foothill model with topography as the true model. We focus on elastic wave propagation rather than acoustic wave because earth actually behaves as an elastic body. Our results strongly emphasize on the fact that irregular surface topography must be considered for modeling of seismic wave propagation to get better subsurface images specially in mountainous scenario and suggest practitioners to properly handled the geometry of data acquired on irregular topographic surface in their imaging algorithms.
NASA Technical Reports Server (NTRS)
Lin, Paul P.; Jules, Kenol
2002-01-01
An intelligent system for monitoring the microgravity environment quality on-board the International Space Station is presented. The monitoring system uses a new approach combining Kohonen's self-organizing feature map, learning vector quantization, and back propagation neural network to recognize and classify the known and unknown patterns. Finally, fuzzy logic is used to assess the level of confidence associated with each vibrating source activation detected by the system.
Cooperative Learning for Distributed In-Network Traffic Classification
NASA Astrophysics Data System (ADS)
Joseph, S. B.; Loo, H. R.; Ismail, I.; Andromeda, T.; Marsono, M. N.
2017-04-01
Inspired by the concept of autonomic distributed/decentralized network management schemes, we consider the issue of information exchange among distributed network nodes to network performance and promote scalability for in-network monitoring. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among autonomic distributed network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of 89.21% (sharing data) and 88.37% (sharing clusters) compared to 88.06% for nodes without cooperative learning capability. The overall performance indicates that cooperative learning is promising for distributed in-network traffic classification.
A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle
Huang, Kuo-Yi; Ye, Yu-Ting
2015-01-01
In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%. PMID:26131678
A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle.
Huang, Kuo-Yi; Ye, Yu-Ting
2015-06-29
In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%.
Learning-based meta-algorithm for MRI brain extraction.
Shi, Feng; Wang, Li; Gilmore, John H; Lin, Weili; Shen, Dinggang
2011-01-01
Multiple-segmentation-and-fusion method has been widely used for brain extraction, tissue segmentation, and region of interest (ROI) localization. However, such studies are hindered in practice by their computational complexity, mainly coming from the steps of template selection and template-to-subject nonlinear registration. In this study, we address these two issues and propose a novel learning-based meta-algorithm for MRI brain extraction. Specifically, we first use exemplars to represent the entire template library, and assign the most similar exemplar to the test subject. Second, a meta-algorithm combining two existing brain extraction algorithms (BET and BSE) is proposed to conduct multiple extractions directly on test subject. Effective parameter settings for the meta-algorithm are learned from the training data and propagated to subject through exemplars. We further develop a level-set based fusion method to combine multiple candidate extractions together with a closed smooth surface, for obtaining the final result. Experimental results show that, with only a small portion of subjects for training, the proposed method is able to produce more accurate and robust brain extraction results, at Jaccard Index of 0.956 +/- 0.010 on total 340 subjects under 6-fold cross validation, compared to those by the BET and BSE even using their best parameter combinations.
Jin, Zhigang; Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei
2017-07-19
Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20-25% compared with a classic lifetime-extended routing protocol (QELAR).
Ma, Yingying; Su, Yishan; Li, Shuo; Fu, Xiaomei
2017-01-01
Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20–25% compared with a classic lifetime-extended routing protocol (QELAR). PMID:28753951
Neural network for image compression
NASA Astrophysics Data System (ADS)
Panchanathan, Sethuraman; Yeap, Tet H.; Pilache, B.
1992-09-01
In this paper, we propose a new scheme for image compression using neural networks. Image data compression deals with minimization of the amount of data required to represent an image while maintaining an acceptable quality. Several image compression techniques have been developed in recent years. We note that the coding performance of these techniques may be improved by employing adaptivity. Over the last few years neural network has emerged as an effective tool for solving a wide range of problems involving adaptivity and learning. A multilayer feed-forward neural network trained using the backward error propagation algorithm is used in many applications. However, this model is not suitable for image compression because of its poor coding performance. Recently, a self-organizing feature map (SOFM) algorithm has been proposed which yields a good coding performance. However, this algorithm requires a long training time because the network starts with random initial weights. In this paper we have used the backward error propagation algorithm (BEP) to quickly obtain the initial weights which are then used to speedup the training time required by the SOFM algorithm. The proposed approach (BEP-SOFM) combines the advantages of the two techniques and, hence, achieves a good coding performance in a shorter training time. Our simulation results demonstrate the potential gains using the proposed technique.
Artistic image analysis using graph-based learning approaches.
Carneiro, Gustavo
2013-08-01
We introduce a new methodology for the problem of artistic image analysis, which among other tasks, involves the automatic identification of visual classes present in an art work. In this paper, we advocate the idea that artistic image analysis must explore a graph that captures the network of artistic influences by computing the similarities in terms of appearance and manual annotation. One of the novelties of our methodology is the proposed formulation that is a principled way of combining these two similarities in a single graph. Using this graph, we show that an efficient random walk algorithm based on an inverted label propagation formulation produces more accurate annotation and retrieval results compared with the following baseline algorithms: bag of visual words, label propagation, matrix completion, and structural learning. We also show that the proposed approach leads to a more efficient inference and training procedures. This experiment is run on a database containing 988 artistic images (with 49 visual classification problems divided into a multiclass problem with 27 classes and 48 binary problems), where we show the inference and training running times, and quantitative comparisons with respect to several retrieval and annotation performance measures.
Usage of the back-propagation method for alphabet recognition
NASA Astrophysics Data System (ADS)
Shaila Sree, R. N.; Eswaran, Kumar; Sundararajan, N.
1999-03-01
Artificial Neural Networks play a pivotal role in the branch of Artificial Intelligence. They can be trained efficiently for a variety of tasks using different methods, of which the Back Propagation method is one among them. The paper studies the choosing of various design parameters of a neural network for the Back Propagation method. The study shows that when these parameters are properly assigned, the training task of the net is greatly simplified. The character recognition problem has been chosen as a test case for this study. A sample space of different handwritten characters of the English alphabet was gathered. A Neural net is finally designed taking many the design aspects into consideration and trained for different styles of writing. Experimental results are reported and discussed. It has been found that an appropriate choice of the design parameters of the neural net for the Back Propagation method reduces the training time and improves the performance of the net.
Terahertz holography for imaging amplitude and phase objects.
Hack, Erwin; Zolliker, Peter
2014-06-30
A non-monochromatic THz Quantum Cascade Laser and an uncooled micro-bolometer array detector with VGA resolution are used in a beam-splitter free holographic set-up to measure amplitude and phase objects in transmission. Phase maps of the diffraction pattern are retrieved using the Fourier transform carrier fringe method; while a Fresnel-Kirchhoff back propagation algorithm is used to reconstruct the complex object image. A lateral resolution of 280 µm and a relative phase sensitivity of about 0.5 rad are estimated from reconstructed images of a metallic Siemens star and a polypropylene test structure, respectively. Simulations corroborate the experimental results.
Enhanced online convolutional neural networks for object tracking
NASA Astrophysics Data System (ADS)
Zhang, Dengzhuo; Gao, Yun; Zhou, Hao; Li, Tianwen
2018-04-01
In recent several years, object tracking based on convolution neural network has gained more and more attention. The initialization and update of convolution filters can directly affect the precision of object tracking effective. In this paper, a novel object tracking via an enhanced online convolution neural network without offline training is proposed, which initializes the convolution filters by a k-means++ algorithm and updates the filters by an error back-propagation. The comparative experiments of 7 trackers on 15 challenging sequences showed that our tracker can perform better than other trackers in terms of AUC and precision.
NASA Technical Reports Server (NTRS)
Lo, Ching F.
1999-01-01
The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.
PSF estimation for defocus blurred image based on quantum back-propagation neural network
NASA Astrophysics Data System (ADS)
Gao, Kun; Zhang, Yan; Shao, Xiao-guang; Liu, Ying-hui; Ni, Guoqiang
2010-11-01
Images obtained by an aberration-free system are defocused blur due to motion in depth and/or zooming. The precondition of restoring the degraded image is to estimate point spread function (PSF) of the imaging system as precisely as possible. But it is difficult to identify the analytic model of PSF precisely due to the complexity of the degradation process. Inspired by the similarity between the quantum process and imaging process in the probability and statistics fields, one reformed multilayer quantum neural network (QNN) is proposed to estimate PSF of the defocus blurred image. Different from the conventional artificial neural network (ANN), an improved quantum neuron model is used in the hidden layer instead, which introduces a 2-bit controlled NOT quantum gate to control output and adopts 2 texture and edge features as the input vectors. The supervised back-propagation learning rule is adopted to train network based on training sets from the historical images. Test results show that this method owns excellent features of high precision and strong generalization ability.
De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico
2016-11-10
A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.
A Software Package for Neural Network Applications Development
NASA Technical Reports Server (NTRS)
Baran, Robert H.
1993-01-01
Original Backprop (Version 1.2) is an MS-DOS package of four stand-alone C-language programs that enable users to develop neural network solutions to a variety of practical problems. Original Backprop generates three-layer, feed-forward (series-coupled) networks which map fixed-length input vectors into fixed length output vectors through an intermediate (hidden) layer of binary threshold units. Version 1.2 can handle up to 200 input vectors at a time, each having up to 128 real-valued components. The first subprogram, TSET, appends a number (up to 16) of classification bits to each input, thus creating a training set of input output pairs. The second subprogram, BACKPROP, creates a trilayer network to do the prescribed mapping and modifies the weights of its connections incrementally until the training set is leaned. The learning algorithm is the 'back-propagating error correction procedures first described by F. Rosenblatt in 1961. The third subprogram, VIEWNET, lets the trained network be examined, tested, and 'pruned' (by the deletion of unnecessary hidden units). The fourth subprogram, DONET, makes a TSR routine by which the finished product of the neural net design-and-training exercise can be consulted under other MS-DOS applications.
NASA Astrophysics Data System (ADS)
Lu, Z. L.; Li, D. C.; Lu, B. H.; Zhang, A. F.; Zhu, G. X.; Pi, G.
2010-05-01
Laser Engineered Net Shaping (LENS) is an advanced manufacturing technology, but it is difficult to control the depositing height (DH) of the prototype because there are many technology parameters influencing the forming process. The effect of main parameters (laser power, scanning speed and powder feeding rate) on the DH of single track is firstly analyzed, and then it shows that there is the complex nonlinear intrinsic relationship between them. In order to predict the DH, the back propagation (BP) based network improved with Adaptive learning rate and Momentum coefficient (AM) algorithm, and the least square support vector machine (LS-SVM) network are both adopted. The mapping relationship between above parameters and the DH is constructed according to training samples collected by LENS experiments, and then their generalization ability, function-approximating ability and real-time are contrastively investigated. The results show that although the predicted result by the BP-AM approximates the experimental result, above performance index of the LS-SVM are better than those of the BP-AM. Finally, high-definition thin-walled parts of AISI316L are successfully fabricated. Hence, the LS-SVM network is more suitable for the prediction of the DH.
NASA Astrophysics Data System (ADS)
Mandal, Sumantra
2006-11-01
ABSTRACT In this paper, an artificial neural network (ANN) model has been suggested to predict the constitutive flow behavior of a 15Cr-15Ni-2.2Mo-Ti modified austenitic stainless steel under hot deformation. Hot compression tests in the temperature range 850°C- 1250°C and strain rate range 10-3-102 s-1 were carried out. These tests provided the required data for training the neural network and for subsequent testing. The inputs of the neural network are strain, log strain rate and temperature while flow stress is obtained as output. A three layer feed-forward network with ten neurons in a single hidden layer and back-propagation learning algorithm has been employed. A very good correlation between experimental and predicted result has been obtained. The effect of temperature and strain rate on flow behavior has been simulated employing the ANN model. The results have been found to be consistent with the metallurgical trend. Finally, a monte carlo analiysis has been carried out to find out the noise sensitivity of the developed model.
NASA Astrophysics Data System (ADS)
Ajay Kumar, M.; Srikanth, N. V.
2014-03-01
In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.
Two algorithms for neural-network design and training with application to channel equalization.
Sweatman, C Z; Mulgrew, B; Gibson, G J
1998-01-01
We describe two algorithms for designing and training neural-network classifiers. The first, the linear programming slab algorithm (LPSA), is motivated by the problem of reconstructing digital signals corrupted by passage through a dispersive channel and by additive noise. It constructs a multilayer perceptron (MLP) to separate two disjoint sets by using linear programming methods to identify network parameters. The second, the perceptron learning slab algorithm (PLSA), avoids the computational costs of linear programming by using an error-correction approach to identify parameters. Both algorithms operate in highly constrained parameter spaces and are able to exploit symmetry in the classification problem. Using these algorithms, we develop a number of procedures for the adaptive equalization of a complex linear 4-quadrature amplitude modulation (QAM) channel, and compare their performance in a simulation study. Results are given for both stationary and time-varying channels, the latter based on the COST 207 GSM propagation model.
NASA Technical Reports Server (NTRS)
Hruska, S. I.; Dalke, A.; Ferguson, J. J.; Lacher, R. C.
1991-01-01
Rule-based expert systems may be structurally and functionally mapped onto a special class of neural networks called expert networks. This mapping lends itself to adaptation of connectionist learning strategies for the expert networks. A parsing algorithm to translate C Language Integrated Production System (CLIPS) rules into a network of interconnected assertion and operation nodes has been developed. The translation of CLIPS rules to an expert network and back again is illustrated. Measures of uncertainty similar to those rules in MYCIN-like systems are introduced into the CLIPS system and techniques for combining and hiring nodes in the network based on rule-firing with these certainty factors in the expert system are presented. Several learning algorithms are under study which automate the process of attaching certainty factors to rules.
An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation
NASA Astrophysics Data System (ADS)
McLean, N. M.; Bowring, J. F.; Bowring, S. A.
2011-06-01
High-precision U-Pb geochronology by isotope dilution-thermal ionization mass spectrometry is integral to a variety of Earth science disciplines, but its ultimate resolving power is quantified by the uncertainties of calculated U-Pb dates. As analytical techniques have advanced, formerly small sources of uncertainty are increasingly important, and thus previous simplifications for data reduction and uncertainty propagation are no longer valid. Although notable previous efforts have treated propagation of correlated uncertainties for the U-Pb system, the equations, uncertainties, and correlations have been limited in number and subject to simplification during propagation through intermediary calculations. We derive and present a transparent U-Pb data reduction algorithm that transforms raw isotopic data and measured or assumed laboratory parameters into the isotopic ratios and dates geochronologists interpret without making assumptions about the relative size of sample components. To propagate uncertainties and their correlations, we describe, in detail, a linear algebraic algorithm that incorporates all input uncertainties and correlations without limiting or simplifying covariance terms to propagate them though intermediate calculations. Finally, a weighted mean algorithm is presented that utilizes matrix elements from the uncertainty propagation algorithm to propagate random and systematic uncertainties for data comparison between other U-Pb labs and other geochronometers. The linear uncertainty propagation algorithms are verified with Monte Carlo simulations of several typical analyses. We propose that our algorithms be considered by the community for implementation to improve the collaborative science envisioned by the EARTHTIME initiative.
Loss tolerant speech decoder for telecommunications
NASA Technical Reports Server (NTRS)
Prieto, Jr., Jaime L. (Inventor)
1999-01-01
A method and device for extrapolating past signal-history data for insertion into missing data segments in order to conceal digital speech frame errors. The extrapolation method uses past-signal history that is stored in a buffer. The method is implemented with a device that utilizes a finite-impulse response (FIR) multi-layer feed-forward artificial neural network that is trained by back-propagation for one-step extrapolation of speech compression algorithm (SCA) parameters. Once a speech connection has been established, the speech compression algorithm device begins sending encoded speech frames. As the speech frames are received, they are decoded and converted back into speech signal voltages. During the normal decoding process, pre-processing of the required SCA parameters will occur and the results stored in the past-history buffer. If a speech frame is detected to be lost or in error, then extrapolation modules are executed and replacement SCA parameters are generated and sent as the parameters required by the SCA. In this way, the information transfer to the SCA is transparent, and the SCA processing continues as usual. The listener will not normally notice that a speech frame has been lost because of the smooth transition between the last-received, lost, and next-received speech frames.
Chen, C L; Kaber, D B; Dempsey, P G
2000-06-01
A new and improved method to feedforward neural network (FNN) development for application to data classification problems, such as the prediction of levels of low-back disorder (LBD) risk associated with industrial jobs, is presented. Background on FNN development for data classification is provided along with discussions of previous research and neighborhood (local) solution search methods for hard combinatorial problems. An analytical study is presented which compared prediction accuracy of a FNN based on an error-back propagation (EBP) algorithm with the accuracy of a FNN developed by considering results of local solution search (simulated annealing) for classifying industrial jobs as posing low or high risk for LBDs. The comparison demonstrated superior performance of the FNN generated using the new method. The architecture of this FNN included fewer input (predictor) variables and hidden neurons than the FNN developed based on the EBP algorithm. Independent variable selection methods and the phenomenon of 'overfitting' in FNN (and statistical model) generation for data classification are discussed. The results are supportive of the use of the new approach to FNN development for applications to musculoskeletal disorders and risk forecasting in other domains.
Prediction of toxic metals concentration using artificial intelligence techniques
NASA Astrophysics Data System (ADS)
Gholami, R.; Kamkar-Rouhani, A.; Doulati Ardejani, F.; Maleki, Sh.
2011-12-01
Groundwater and soil pollution are noted to be the worst environmental problem related to the mining industry because of the pyrite oxidation, and hence acid mine drainage generation, release and transport of the toxic metals. The aim of this paper is to predict the concentration of Ni and Fe using a robust algorithm named support vector machine (SVM). Comparison of the obtained results of SVM with those of the back-propagation neural network (BPNN) indicates that the SVM can be regarded as a proper algorithm for the prediction of toxic metals concentration due to its relative high correlation coefficient and the associated running time. As a matter of fact, the SVM method has provided a better prediction of the toxic metals Fe and Ni and resulted the running time faster compared with that of the BPNN.
Efficient video-equipped fire detection approach for automatic fire alarm systems
NASA Astrophysics Data System (ADS)
Kang, Myeongsu; Tung, Truong Xuan; Kim, Jong-Myon
2013-01-01
This paper proposes an efficient four-stage approach that automatically detects fire using video capabilities. In the first stage, an approximate median method is used to detect video frame regions involving motion. In the second stage, a fuzzy c-means-based clustering algorithm is employed to extract candidate regions of fire from all of the movement-containing regions. In the third stage, a gray level co-occurrence matrix is used to extract texture parameters by tracking red-colored objects in the candidate regions. These texture features are, subsequently, used as inputs of a back-propagation neural network to distinguish between fire and nonfire. Experimental results indicate that the proposed four-stage approach outperforms other fire detection algorithms in terms of consistently increasing the accuracy of fire detection in both indoor and outdoor test videos.
Control of Complex Dynamic Systems by Neural Networks
NASA Technical Reports Server (NTRS)
Spall, James C.; Cristion, John A.
1993-01-01
This paper considers the use of neural networks (NN's) in controlling a nonlinear, stochastic system with unknown process equations. The NN is used to model the resulting unknown control law. The approach here is based on using the output error of the system to train the NN controller without the need to construct a separate model (NN or other type) for the unknown process dynamics. To implement such a direct adaptive control approach, it is required that connection weights in the NN be estimated while the system is being controlled. As a result of the feedback of the unknown process dynamics, however, it is not possible to determine the gradient of the loss function for use in standard (back-propagation-type) weight estimation algorithms. Therefore, this paper considers the use of a new stochastic approximation algorithm for this weight estimation, which is based on a 'simultaneous perturbation' gradient approximation that only requires the system output error. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic approximation algorithms based on finite-difference gradient approximations.
Acoustic Inversion in Optoacoustic Tomography: A Review
Rosenthal, Amir; Ntziachristos, Vasilis; Razansky, Daniel
2013-01-01
Optoacoustic tomography enables volumetric imaging with optical contrast in biological tissue at depths beyond the optical mean free path by the use of optical excitation and acoustic detection. The hybrid nature of optoacoustic tomography gives rise to two distinct inverse problems: The optical inverse problem, related to the propagation of the excitation light in tissue, and the acoustic inverse problem, which deals with the propagation and detection of the generated acoustic waves. Since the two inverse problems have different physical underpinnings and are governed by different types of equations, they are often treated independently as unrelated problems. From an imaging standpoint, the acoustic inverse problem relates to forming an image from the measured acoustic data, whereas the optical inverse problem relates to quantifying the formed image. This review focuses on the acoustic aspects of optoacoustic tomography, specifically acoustic reconstruction algorithms and imaging-system practicalities. As these two aspects are intimately linked, and no silver bullet exists in the path towards high-performance imaging, we adopt a holistic approach in our review and discuss the many links between the two aspects. Four classes of reconstruction algorithms are reviewed: time-domain (so called back-projection) formulae, frequency-domain formulae, time-reversal algorithms, and model-based algorithms. These algorithms are discussed in the context of the various acoustic detectors and detection surfaces which are commonly used in experimental studies. We further discuss the effects of non-ideal imaging scenarios on the quality of reconstruction and review methods that can mitigate these effects. Namely, we consider the cases of finite detector aperture, limited-view tomography, spatial under-sampling of the acoustic signals, and acoustic heterogeneities and losses. PMID:24772060
Matching algorithm of missile tail flame based on back-propagation neural network
NASA Astrophysics Data System (ADS)
Huang, Da; Huang, Shucai; Tang, Yidong; Zhao, Wei; Cao, Wenhuan
2018-02-01
This work presents a spectral matching algorithm of missile plume detection that based on neural network. The radiation value of the characteristic spectrum of the missile tail flame is taken as the input of the network. The network's structure including the number of nodes and layers is determined according to the number of characteristic spectral bands and missile types. We can get the network weight matrixes and threshold vectors through training the network using training samples, and we can determine the performance of the network through testing the network using the test samples. A small amount of data cause the network has the advantages of simple structure and practicality. Network structure composed of weight matrix and threshold vector can complete task of spectrum matching without large database support. Network can achieve real-time requirements with a small quantity of data. Experiment results show that the algorithm has the ability to match the precise spectrum and strong robustness.
The lucky image-motion prediction for simple scene observation based soft-sensor technology
NASA Astrophysics Data System (ADS)
Li, Yan; Su, Yun; Hu, Bin
2015-08-01
High resolution is important to earth remote sensors, while the vibration of the platforms of the remote sensors is a major factor restricting high resolution imaging. The image-motion prediction and real-time compensation are key technologies to solve this problem. For the reason that the traditional autocorrelation image algorithm cannot meet the demand for the simple scene image stabilization, this paper proposes to utilize soft-sensor technology in image-motion prediction, and focus on the research of algorithm optimization in imaging image-motion prediction. Simulations results indicate that the improving lucky image-motion stabilization algorithm combining the Back Propagation Network (BP NN) and support vector machine (SVM) is the most suitable for the simple scene image stabilization. The relative error of the image-motion prediction based the soft-sensor technology is below 5%, the training computing speed of the mathematical predication model is as fast as the real-time image stabilization in aerial photography.
Zhang, Yu; Xu, Jing-Liang; Yuan, Zhen-Hong; Qi, Wei; Liu, Yun-Yun; He, Min-Chao
2012-01-01
Two artificial intelligence techniques, namely artificial neural network (ANN) and genetic algorithm (GA) were combined to be used as a tool for optimizing the covalent immobilization of cellulase on a smart polymer, Eudragit L-100. 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) concentration, N-hydroxysuccinimide (NHS) concentration and coupling time were taken as independent variables, and immobilization efficiency was taken as the response. The data of the central composite design were used to train ANN by back-propagation algorithm, and the result showed that the trained ANN fitted the data accurately (correlation coefficient R2 = 0.99). Then a maximum immobilization efficiency of 88.76% was searched by genetic algorithm at a EDC concentration of 0.44%, NHS concentration of 0.37% and a coupling time of 2.22 h, where the experimental value was 87.97 ± 6.45%. The application of ANN based optimization by GA is quite successful. PMID:22942683
NASA Astrophysics Data System (ADS)
Chattopadhyay, Surajit; Bandyopadhyay, Goutami
2007-01-01
Present study deals with the mean monthly total ozone time series over Arosa, Switzerland. The study period is 1932-1971. First of all, the total ozone time series has been identified as a complex system and then Artificial Neural Networks models in the form of Multilayer Perceptron with back propagation learning have been developed. The models are Single-hidden-layer and Two-hidden-layer Perceptrons with sigmoid activation function. After sequential learning with learning rate 0.9 the peak total ozone period (February-May) concentrations of mean monthly total ozone have been predicted by the two neural net models. After training and validation, both of the models are found skillful. But, Two-hidden-layer Perceptron is found to be more adroit in predicting the mean monthly total ozone concentrations over the aforesaid period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.R.; Netrologic, Inc., San Diego, CA)
1988-01-01
Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.
A comparison of algorithms for inference and learning in probabilistic graphical models.
Frey, Brendan J; Jojic, Nebojsa
2005-09-01
Research into methods for reasoning under uncertainty is currently one of the most exciting areas of artificial intelligence, largely because it has recently become possible to record, store, and process large amounts of data. While impressive achievements have been made in pattern classification problems such as handwritten character recognition, face detection, speaker identification, and prediction of gene function, it is even more exciting that researchers are on the verge of introducing systems that can perform large-scale combinatorial analyses of data, decomposing the data into interacting components. For example, computational methods for automatic scene analysis are now emerging in the computer vision community. These methods decompose an input image into its constituent objects, lighting conditions, motion patterns, etc. Two of the main challenges are finding effective representations and models in specific applications and finding efficient algorithms for inference and learning in these models. In this paper, we advocate the use of graph-based probability models and their associated inference and learning algorithms. We review exact techniques and various approximate, computationally efficient techniques, including iterated conditional modes, the expectation maximization (EM) algorithm, Gibbs sampling, the mean field method, variational techniques, structured variational techniques and the sum-product algorithm ("loopy" belief propagation). We describe how each technique can be applied in a vision model of multiple, occluding objects and contrast the behaviors and performances of the techniques using a unifying cost function, free energy.
Adaptive neuro fuzzy inference system-based power estimation method for CMOS VLSI circuits
NASA Astrophysics Data System (ADS)
Vellingiri, Govindaraj; Jayabalan, Ramesh
2018-03-01
Recent advancements in very large scale integration (VLSI) technologies have made it feasible to integrate millions of transistors on a single chip. This greatly increases the circuit complexity and hence there is a growing need for less-tedious and low-cost power estimation techniques. The proposed work employs Back-Propagation Neural Network (BPNN) and Adaptive Neuro Fuzzy Inference System (ANFIS), which are capable of estimating the power precisely for the complementary metal oxide semiconductor (CMOS) VLSI circuits, without requiring any knowledge on circuit structure and interconnections. The ANFIS to power estimation application is relatively new. Power estimation using ANFIS is carried out by creating initial FIS modes using hybrid optimisation and back-propagation (BP) techniques employing constant and linear methods. It is inferred that ANFIS with the hybrid optimisation technique employing the linear method produces better results in terms of testing error that varies from 0% to 0.86% when compared to BPNN as it takes the initial fuzzy model and tunes it by means of a hybrid technique combining gradient descent BP and mean least-squares optimisation algorithms. ANFIS is the best suited for power estimation application with a low RMSE of 0.0002075 and a high coefficient of determination (R) of 0.99961.
Wang, Deyun; Liu, Yanling; Luo, Hongyuan; Yue, Chenqiang; Cheng, Sheng
2017-01-01
Accurate PM2.5 concentration forecasting is crucial for protecting public health and atmospheric environment. However, the intermittent and unstable nature of PM2.5 concentration series makes its forecasting become a very difficult task. In order to improve the forecast accuracy of PM2.5 concentration, this paper proposes a hybrid model based on wavelet transform (WT), variational mode decomposition (VMD) and back propagation (BP) neural network optimized by differential evolution (DE) algorithm. Firstly, WT is employed to disassemble the PM2.5 concentration series into a number of subsets with different frequencies. Secondly, VMD is applied to decompose each subset into a set of variational modes (VMs). Thirdly, DE-BP model is utilized to forecast all the VMs. Fourthly, the forecast value of each subset is obtained through aggregating the forecast results of all the VMs obtained from VMD decomposition of this subset. Finally, the final forecast series of PM2.5 concentration is obtained by adding up the forecast values of all subsets. Two PM2.5 concentration series collected from Wuhan and Tianjin, respectively, located in China are used to test the effectiveness of the proposed model. The results demonstrate that the proposed model outperforms all the other considered models in this paper. PMID:28704955
Back propagation artificial neural network for community Alzheimer's disease screening in China.
Tang, Jun; Wu, Lei; Huang, Helang; Feng, Jiang; Yuan, Yefeng; Zhou, Yueping; Huang, Peng; Xu, Yan; Yu, Chao
2013-01-25
Alzheimer's disease patients diagnosed with the Chinese Classification of Mental Disorders diagnostic criteria were selected from the community through on-site sampling. Levels of macro and trace elements were measured in blood samples using an atomic absorption method, and neurotransmitters were measured using a radioimmunoassay method. SPSS 13.0 was used to establish a database, and a back propagation artificial neural network for Alzheimer's disease prediction was simulated using Clementine 12.0 software. With scores of activities of daily living, creatinine, 5-hydroxytryptamine, age, dopamine and aluminum as input variables, the results revealed that the area under the curve in our back propagation artificial neural network was 0.929 (95% confidence interval: 0.868-0.968), sensitivity was 90.00%, specificity was 95.00%, and accuracy was 92.50%. The findings indicated that the results of back propagation artificial neural network established based on the above six variables were satisfactory for screening and diagnosis of Alzheimer's disease in patients selected from the community.
Back propagation artificial neural network for community Alzheimer's disease screening in China★
Tang, Jun; Wu, Lei; Huang, Helang; Feng, Jiang; Yuan, Yefeng; Zhou, Yueping; Huang, Peng; Xu, Yan; Yu, Chao
2013-01-01
Alzheimer's disease patients diagnosed with the Chinese Classification of Mental Disorders diagnostic criteria were selected from the community through on-site sampling. Levels of macro and trace elements were measured in blood samples using an atomic absorption method, and neurotransmitters were measured using a radioimmunoassay method. SPSS 13.0 was used to establish a database, and a back propagation artificial neural network for Alzheimer's disease prediction was simulated using Clementine 12.0 software. With scores of activities of daily living, creatinine, 5-hydroxytryptamine, age, dopamine and aluminum as input variables, the results revealed that the area under the curve in our back propagation artificial neural network was 0.929 (95% confidence interval: 0.868–0.968), sensitivity was 90.00%, specificity was 95.00%, and accuracy was 92.50%. The findings indicated that the results of back propagation artificial neural network established based on the above six variables were satisfactory for screening and diagnosis of Alzheimer's disease in patients selected from the community. PMID:25206598
Assembly line inspection using neural networks
NASA Astrophysics Data System (ADS)
McAulay, Alastair D.; Danset, Paul; Wicker, Devert W.
1990-09-01
A user friendly flexible system for assembly line part inspection which learns good and bad parts is described. The system detects missing rivets and springs in clutch drivers. The system extracts features in a circular region of interest from a video image processes these using a Fast Fourier Transform for rotation invariance and uses this as inputs to a neural network trained with back-propagation. The advantage of a learning system is that expensive reprogramming and delays are avoided when a part is modified. Two cases were considered. The first one could use back lighting in that surface effects could be ignored. The second case required front lighting because the part had a cover which prevented light from passing through the parts. 100 percent classification of good and bad parts was achieved for both back-lit and front-lit cases with a limited number of training parts available. 1. BACKGROUND A vision system to inspect clutch drivers for missing rivets and springs at the Harrison Radiator Plant of General Motors (GM) works only on parts without covers Fig. 1 and is expensive. The system does not work when there are cover plates Fig. 2 that rule out back light passing through the area of missing rivets and springs. Also the system like all such systems must be reprogrammed at significant time and cost when the system needs to classify a different fault or a
Aerial robot intelligent control method based on back-stepping
NASA Astrophysics Data System (ADS)
Zhou, Jian; Xue, Qian
2018-05-01
The aerial robot is characterized as strong nonlinearity, high coupling and parameter uncertainty, a self-adaptive back-stepping control method based on neural network is proposed in this paper. The uncertain part of the aerial robot model is compensated online by the neural network of Cerebellum Model Articulation Controller and robust control items are designed to overcome the uncertainty error of the system during online learning. At the same time, particle swarm algorithm is used to optimize and fix parameters so as to improve the dynamic performance, and control law is obtained by the recursion of back-stepping regression. Simulation results show that the designed control law has desired attitude tracking performance and good robustness in case of uncertainties and large errors in the model parameters.
NASA Astrophysics Data System (ADS)
Rulaningtyas, Riries; Suksmono, Andriyan B.; Mengko, Tati L. R.; Saptawati, Putri
2016-03-01
Pulmonary tuberculosis is a deadly infectious disease which occurs in many countries in Asia and Africa. In Indonesia, many people with tuberculosis disease are examined in the community health center. Examination of pulmonary tuberculosis is done through sputum smear with Ziehl - Neelsen staining using conventional light microscope. The results of Ziehl - Neelsen staining will give effect to the appearance of tuberculosis (TB) bacteria in red color and sputum background in blue color. The first examination is to detect the presence of TB bacteria from its color, then from the morphology of the TB bacteria itself. The results of Ziehl - Neelsen staining in sputum smear give the complex color images, so that the clinicians have difficulty when doing slide examination manually because it is time consuming and needs highly training to detect the presence of TB bacteria accurately. The clinicians have heavy workload to examine many sputum smear slides from the patients. To assist the clinicians when reading the sputum smear slide, this research built computer aided diagnose with color image segmentation, feature extraction, and classification method. This research used K-means clustering with patch technique to segment digital sputum smear images which separated the TB bacteria images from the background images. This segmentation method gave the good accuracy 97.68%. Then, feature extraction based on geometrical shape of TB bacteria was applied to this research. The last step, this research used neural network with back propagation method to classify TB bacteria and non TB bacteria images in sputum slides. The classification result of neural network back propagation are learning time (42.69±0.02) second, the number of epoch 5000, error rate of learning 15%, learning accuracy (98.58±0.01)%, and test accuracy (96.54±0.02)%.
A morphological perceptron with gradient-based learning for Brazilian stock market forecasting.
Araújo, Ricardo de A
2012-04-01
Several linear and non-linear techniques have been proposed to solve the stock market forecasting problem. However, a limitation arises from all these techniques and is known as the random walk dilemma (RWD). In this scenario, forecasts generated by arbitrary models have a characteristic one step ahead delay with respect to the time series values, so that, there is a time phase distortion in stock market phenomena reconstruction. In this paper, we propose a suitable model inspired by concepts in mathematical morphology (MM) and lattice theory (LT). This model is generically called the increasing morphological perceptron (IMP). Also, we present a gradient steepest descent method to design the proposed IMP based on ideas from the back-propagation (BP) algorithm and using a systematic approach to overcome the problem of non-differentiability of morphological operations. Into the learning process we have included a procedure to overcome the RWD, which is an automatic correction step that is geared toward eliminating time phase distortions that occur in stock market phenomena. Furthermore, an experimental analysis is conducted with the IMP using four complex non-linear problems of time series forecasting from the Brazilian stock market. Additionally, two natural phenomena time series are used to assess forecasting performance of the proposed IMP with other non financial time series. At the end, the obtained results are discussed and compared to results found using models recently proposed in the literature. Copyright © 2011 Elsevier Ltd. All rights reserved.
Neural Network Compensation for Frequency Cross-Talk in Laser Interferometry
NASA Astrophysics Data System (ADS)
Lee, Wooram; Heo, Gunhaeng; You, Kwanho
The heterodyne laser interferometer acts as an ultra-precise measurement apparatus in semiconductor manufacture. However the periodical nonlinearity property caused from frequency cross-talk is an obstacle to improve the high measurement accuracy in nanometer scale. In order to minimize the nonlinearity error of the heterodyne interferometer, we propose a frequency cross-talk compensation algorithm using an artificial intelligence method. The feedforward neural network trained by back-propagation compensates the nonlinearity error and regulates to minimize the difference with the reference signal. With some experimental results, the improved accuracy is proved through comparison with the position value from a capacitive displacement sensor.
NASA Astrophysics Data System (ADS)
Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak
2010-02-01
This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.
NASA Astrophysics Data System (ADS)
Kong, Changduk; Lim, Semyeong
2011-12-01
Recently, the health monitoring system of major gas path components of gas turbine uses mostly the model based method like the Gas Path Analysis (GPA). This method is to find quantity changes of component performance characteristic parameters such as isentropic efficiency and mass flow parameter by comparing between measured engine performance parameters such as temperatures, pressures, rotational speeds, fuel consumption, etc. and clean engine performance parameters without any engine faults which are calculated by the base engine performance model. Currently, the expert engine diagnostic systems using the artificial intelligent methods such as Neural Networks (NNs), Fuzzy Logic and Genetic Algorithms (GAs) have been studied to improve the model based method. Among them the NNs are mostly used to the engine fault diagnostic system due to its good learning performance, but it has a drawback due to low accuracy and long learning time to build learning data base if there are large amount of learning data. In addition, it has a very complex structure for finding effectively single type faults or multiple type faults of gas path components. This work builds inversely a base performance model of a turboprop engine to be used for a high altitude operation UAV using measured performance data, and proposes a fault diagnostic system using the base engine performance model and the artificial intelligent methods such as Fuzzy logic and Neural Network. The proposed diagnostic system isolates firstly the faulted components using Fuzzy Logic, then quantifies faults of the identified components using the NN leaned by fault learning data base, which are obtained from the developed base performance model. In leaning the NN, the Feed Forward Back Propagation (FFBP) method is used. Finally, it is verified through several test examples that the component faults implanted arbitrarily in the engine are well isolated and quantified by the proposed diagnostic system.
Zhang, Jie; Xiao, Wendong; Zhang, Sen; Huang, Shoudong
2017-04-17
Device-free localization (DFL) is becoming one of the new technologies in wireless localization field, due to its advantage that the target to be localized does not need to be attached to any electronic device. In the radio-frequency (RF) DFL system, radio transmitters (RTs) and radio receivers (RXs) are used to sense the target collaboratively, and the location of the target can be estimated by fusing the changes of the received signal strength (RSS) measurements associated with the wireless links. In this paper, we will propose an extreme learning machine (ELM) approach for DFL, to improve the efficiency and the accuracy of the localization algorithm. Different from the conventional machine learning approaches for wireless localization, in which the above differential RSS measurements are trivially used as the only input features, we introduce the parameterized geometrical representation for an affected link, which consists of its geometrical intercepts and differential RSS measurement. Parameterized geometrical feature extraction (PGFE) is performed for the affected links and the features are used as the inputs of ELM. The proposed PGFE-ELM for DFL is trained in the offline phase and performed for real-time localization in the online phase, where the estimated location of the target is obtained through the created ELM. PGFE-ELM has the advantages that the affected links used by ELM in the online phase can be different from those used for training in the offline phase, and can be more robust to deal with the uncertain combination of the detectable wireless links. Experimental results show that the proposed PGFE-ELM can improve the localization accuracy and learning speed significantly compared with a number of the existing machine learning and DFL approaches, including the weighted K-nearest neighbor (WKNN), support vector machine (SVM), back propagation neural network (BPNN), as well as the well-known radio tomographic imaging (RTI) DFL approach.
Zhang, Jie; Xiao, Wendong; Zhang, Sen; Huang, Shoudong
2017-01-01
Device-free localization (DFL) is becoming one of the new technologies in wireless localization field, due to its advantage that the target to be localized does not need to be attached to any electronic device. In the radio-frequency (RF) DFL system, radio transmitters (RTs) and radio receivers (RXs) are used to sense the target collaboratively, and the location of the target can be estimated by fusing the changes of the received signal strength (RSS) measurements associated with the wireless links. In this paper, we will propose an extreme learning machine (ELM) approach for DFL, to improve the efficiency and the accuracy of the localization algorithm. Different from the conventional machine learning approaches for wireless localization, in which the above differential RSS measurements are trivially used as the only input features, we introduce the parameterized geometrical representation for an affected link, which consists of its geometrical intercepts and differential RSS measurement. Parameterized geometrical feature extraction (PGFE) is performed for the affected links and the features are used as the inputs of ELM. The proposed PGFE-ELM for DFL is trained in the offline phase and performed for real-time localization in the online phase, where the estimated location of the target is obtained through the created ELM. PGFE-ELM has the advantages that the affected links used by ELM in the online phase can be different from those used for training in the offline phase, and can be more robust to deal with the uncertain combination of the detectable wireless links. Experimental results show that the proposed PGFE-ELM can improve the localization accuracy and learning speed significantly compared with a number of the existing machine learning and DFL approaches, including the weighted K-nearest neighbor (WKNN), support vector machine (SVM), back propagation neural network (BPNN), as well as the well-known radio tomographic imaging (RTI) DFL approach. PMID:28420187
An algorithm for propagating the square-root covariance matrix in triangular form
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Choe, C. Y.
1976-01-01
A method for propagating the square root of the state error covariance matrix in lower triangular form is described. The algorithm can be combined with any triangular square-root measurement update algorithm to obtain a triangular square-root sequential estimation algorithm. The triangular square-root algorithm compares favorably with the conventional sequential estimation algorithm with regard to computation time.
Boundary identification and error analysis of shocked material images
NASA Astrophysics Data System (ADS)
Hock, Margaret; Howard, Marylesa; Cooper, Leora; Meehan, Bernard; Nelson, Keith
2017-06-01
To compute quantities such as pressure and velocity from laser-induced shock waves propagating through materials, high-speed images are captured and analyzed. Shock images typically display high noise and spatially-varying intensities, causing conventional analysis techniques to have difficulty identifying boundaries in the images without making significant assumptions about the data. We present a novel machine learning algorithm that efficiently segments, or partitions, images with high noise and spatially-varying intensities, and provides error maps that describe a level of uncertainty in the partitioning. The user trains the algorithm by providing locations of known materials within the image but no assumptions are made on the geometries in the image. The error maps are used to provide lower and upper bounds on quantities of interest, such as velocity and pressure, once boundaries have been identified and propagated through equations of state. This algorithm will be demonstrated on images of shock waves with noise and aberrations to quantify properties of the wave as it progresses. DOE/NV/25946-3126 This work was done by National Security Technologies, LLC, under Contract No. DE- AC52-06NA25946 with the U.S. Department of Energy and supported by the SDRD Program.
Belchansky, G.I.; Douglas, David C.; Alpatsky, I.V.; Platonov, Nikita G.
2004-01-01
Arctic multiyear sea ice concentration maps for January 1988-2001 were generated from SSM/I brightness temperatures (19H, 19V, and 37V) using modified multiple layer perceptron neural networks. Learning data for the neural networks were extracted from ice maps derived from Okean and ERS satellite imagery to capitalize on the stability of active radar multiyear ice signatures. Evaluations of three learning algorithms and several topologies indicated that networks constructed with error back propagation learning and 3-20-1 topology produced the most consistent and physically plausible results. Operational neural networks were developed specifically with January learning data, and then used to estimate daily multiyear ice concentrations from daily-averaged SSM/I brightness temperatures during January. Monthly mean maps were produced for analysis by averaging the respective daily estimates. The 14-year series of January multiyear ice distributions revealed dense and persistent cover in the central Arctic surrounded by expansive regions of highly fluctuating interannual cover. Estimates of total multiyear ice area by the neural network were intermediate to those of other passive microwave algorithms, but annual fluctuations and trends were similar among all algorithms. When compared to Radarsat estimates of multiyear ice concentration in the Beaufort and Chukchi Seas (1997-1999), average discrepancies were small (0.9-2.5%) and spatial coherency was reasonable, indicating the neural network's Okean and ERS learning data facilitated passive microwave inversion that emulated backscatter signatures. During 1988-2001, total January multiyear ice area declined at a significant linear rate of -54.3 x 103 km2/yr-1 (-1.4%/yr-1). The most persistent and extensive decline in multiyear ice concentration (-3.3%/yr-1) occurred in the southern Beaufort and Chukchi Seas. In autumn 1996, a large multiyear ice recruitment of over 106 km2 (mostly in the Siberian Arctic) fully replenished the previous 8-year decline in total area, but it was followed by an accelerated and compensatory decline during the subsequent 4 years. Seventy-five percent of the interannual variation in January multiyear sea ice area was explained by linear regression on two atmospheric parameters: the previous inter's (JFM) Arctic Oscillation index as a proxy to melt duration and the previous year's average sea level pressure gradient across the Fram Strait as a proxy to annual ice export. Consecutive year changes (1994-2001) in January multiyear ice volume were significantly correlated with duration of the intervening melt season (R2 = 0.73, -80.0 km3/d-1), emphasizing a large thermodynamic influence on the Arctic's mass sea ice balance during summers with anomalous melt durations.
NASA Astrophysics Data System (ADS)
Muñoz-Esparza, Domingo; Kosović, Branko; Jiménez, Pedro A.; Coen, Janice L.
2018-04-01
The level-set method is typically used to track and propagate the fire perimeter in wildland fire models. Herein, a high-order level-set method using fifth-order WENO scheme for the discretization of spatial derivatives and third-order explicit Runge-Kutta temporal integration is implemented within the Weather Research and Forecasting model wildland fire physics package, WRF-Fire. The algorithm includes solution of an additional partial differential equation for level-set reinitialization. The accuracy of the fire-front shape and rate of spread in uncoupled simulations is systematically analyzed. It is demonstrated that the common implementation used by level-set-based wildfire models yields to rate-of-spread errors in the range 10-35% for typical grid sizes (Δ = 12.5-100 m) and considerably underestimates fire area. Moreover, the amplitude of fire-front gradients in the presence of explicitly resolved turbulence features is systematically underestimated. In contrast, the new WRF-Fire algorithm results in rate-of-spread errors that are lower than 1% and that become nearly grid independent. Also, the underestimation of fire area at the sharp transition between the fire front and the lateral flanks is found to be reduced by a factor of ≈7. A hybrid-order level-set method with locally reduced artificial viscosity is proposed, which substantially alleviates the computational cost associated with high-order discretizations while preserving accuracy. Simulations of the Last Chance wildfire demonstrate additional benefits of high-order accurate level-set algorithms when dealing with complex fuel heterogeneities, enabling propagation across narrow fuel gaps and more accurate fire backing over the lee side of no fuel clusters.
Optical diffraction tomography: accuracy of an off-axis reconstruction
NASA Astrophysics Data System (ADS)
Kostencka, Julianna; Kozacki, Tomasz
2014-05-01
Optical diffraction tomography is an increasingly popular method that allows for reconstruction of three-dimensional refractive index distribution of semi-transparent samples using multiple measurements of an optical field transmitted through the sample for various illumination directions. The process of assembly of the angular measurements is usually performed with one of two methods: filtered backprojection (FBPJ) or filtered backpropagation (FBPP) tomographic reconstruction algorithm. The former approach, although conceptually very simple, provides an accurate reconstruction for the object regions located close to the plane of focus. However, since FBPJ ignores diffraction, its use for spatially extended structures is arguable. According to the theory of scattering, more precise restoration of a 3D structure shall be achieved with the FBPP algorithm, which unlike the former approach incorporates diffraction. It is believed that with this method one is allowed to obtain a high accuracy reconstruction in a large measurement volume exceeding depth of focus of an imaging system. However, some studies have suggested that a considerable improvement of the FBPP results can be achieved with prior propagation of the transmitted fields back to the centre of the object. This, supposedly, enables reduction of errors due to approximated diffraction formulas used in FBPP. In our view this finding casts doubt on quality of the FBPP reconstruction in the regions far from the rotation axis. The objective of this paper is to investigate limitation of the FBPP algorithm in terms of an off-axis reconstruction and compare its performance with the FBPJ approach. Moreover, in this work we propose some modifications to the FBPP algorithm that allow for more precise restoration of a sample structure in off-axis locations. The research is based on extensive numerical simulations supported with wave-propagation method.
A new pattern associative memory model for image recognition based on Hebb rules and dot product
NASA Astrophysics Data System (ADS)
Gao, Mingyue; Deng, Limiao; Wang, Yanjiang
2018-04-01
A great number of associative memory models have been proposed to realize information storage and retrieval inspired by human brain in the last few years. However, there is still much room for improvement for those models. In this paper, we extend a binary pattern associative memory model to accomplish real-world image recognition. The learning process is based on the fundamental Hebb rules and the retrieval is implemented by a normalized dot product operation. Our proposed model can not only fulfill rapid memory storage and retrieval for visual information but also have the ability on incremental learning without destroying the previous learned information. Experimental results demonstrate that our model outperforms the existing Self-Organizing Incremental Neural Network (SOINN) and Back Propagation Neuron Network (BPNN) on recognition accuracy and time efficiency.
Classification of neocortical interneurons using affinity propagation.
Santana, Roberto; McGarry, Laura M; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael
2013-01-01
In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. In fact, neuronal classification is a difficult problem because it is unclear how to designate a neuronal cell class and what are the best characteristics to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological, or molecular characteristics, have provided quantitative and unbiased identification of distinct neuronal subtypes, when applied to selected datasets. However, better and more robust classification methods are needed for increasingly complex and larger datasets. Here, we explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. Affinity propagation outperformed Ward's method, a current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.
Prediction of properties of wheat dough using intelligent deep belief networks
NASA Astrophysics Data System (ADS)
Guha, Paramita; Bhatnagar, Taru; Pal, Ishan; Kamboj, Uma; Mishra, Sunita
2017-11-01
In this paper, the rheological and chemical properties of wheat dough are predicted using deep belief networks. Wheat grains are stored at controlled environmental conditions. The internal parameters of grains viz., protein, fat, carbohydrates, moisture, ash are determined using standard chemical analysis and viscosity of the dough is measured using Rheometer. Here, fat, carbohydrates, moisture, ash and temperature are considered as inputs whereas protein and viscosity are chosen as outputs. The prediction algorithm is developed using deep neural network where each layer is trained greedily using restricted Boltzmann machine (RBM) networks. The overall network is finally fine-tuned using standard neural network technique. In most literature, it has been found that fine-tuning is done using back-propagation technique. In this paper, a new algorithm is proposed in which each layer is tuned using RBM and the final network is fine-tuned using deep neural network (DNN). It has been observed that with the proposed algorithm, errors between the actual and predicted outputs are less compared to the conventional algorithm. Hence, the given network can be considered as beneficial as it predicts the outputs more accurately. Numerical results along with discussions are presented.
Forecasting impact injuries of unrestrained occupants in railway vehicle passenger compartments.
Xie, Suchao; Zhou, Hui
2014-01-01
In order to predict the injury parameters of the occupants corresponding to different experimental parameters and to determine impact injury indices conveniently and efficiently, a model forecasting occupant impact injury was established in this work. The work was based on finite experimental observation values obtained by numerical simulation. First, the various factors influencing the impact injuries caused by the interaction between unrestrained occupants and the compartment's internal structures were collated and the most vulnerable regions of the occupant's body were analyzed. Then, the forecast model was set up based on a genetic algorithm-back propagation (GA-BP) hybrid algorithm, which unified the individual characteristics of the back propagation-artificial neural network (BP-ANN) model and the genetic algorithm (GA). The model was well suited to studies of occupant impact injuries and allowed multiple-parameter forecasts of the occupant impact injuries to be realized assuming values for various influencing factors. Finally, the forecast results for three types of secondary collision were analyzed using forecasting accuracy evaluation methods. All of the results showed the ideal accuracy of the forecast model. When an occupant faced a table, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.0 percent and the average relative error (ARE) values did not exceed 3.0 percent. When an occupant faced a seat, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 5.2 percent and the ARE values did not exceed 3.1 percent. When the occupant faced another occupant, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.3 percent and the ARE values did not exceed 3.8 percent. The injury forecast model established in this article reduced repeat experiment times and improved the design efficiency of the internal compartment's structure parameters, and it provided a new way for assessing the safety performance of the interior structural parameters in existing, and newly designed, railway vehicle compartments.
Deng, Lei; Jiao, Peng; Pei, Jing; Wu, Zhenzhi; Li, Guoqi
2018-04-01
Although deep neural networks (DNNs) are being a revolutionary power to open up the AI era, the notoriously huge hardware overhead has challenged their applications. Recently, several binary and ternary networks, in which the costly multiply-accumulate operations can be replaced by accumulations or even binary logic operations, make the on-chip training of DNNs quite promising. Therefore there is a pressing need to build an architecture that could subsume these networks under a unified framework that achieves both higher performance and less overhead. To this end, two fundamental issues are yet to be addressed. The first one is how to implement the back propagation when neuronal activations are discrete. The second one is how to remove the full-precision hidden weights in the training phase to break the bottlenecks of memory/computation consumption. To address the first issue, we present a multi-step neuronal activation discretization method and a derivative approximation technique that enable the implementing the back propagation algorithm on discrete DNNs. While for the second issue, we propose a discrete state transition (DST) methodology to constrain the weights in a discrete space without saving the hidden weights. Through this way, we build a unified framework that subsumes the binary or ternary networks as its special cases, and under which a heuristic algorithm is provided at the website https://github.com/AcrossV/Gated-XNOR. More particularly, we find that when both the weights and activations become ternary values, the DNNs can be reduced to sparse binary networks, termed as gated XNOR networks (GXNOR-Nets) since only the event of non-zero weight and non-zero activation enables the control gate to start the XNOR logic operations in the original binary networks. This promises the event-driven hardware design for efficient mobile intelligence. We achieve advanced performance compared with state-of-the-art algorithms. Furthermore, the computational sparsity and the number of states in the discrete space can be flexibly modified to make it suitable for various hardware platforms. Copyright © 2018 Elsevier Ltd. All rights reserved.
Validation of optical codes based on 3D nanostructures
NASA Astrophysics Data System (ADS)
Carnicer, Artur; Javidi, Bahram
2017-05-01
Image information encoding using random phase masks produce speckle-like noise distributions when the sample is propagated in the Fresnel domain. As a result, information cannot be accessed by simple visual inspection. Phase masks can be easily implemented in practice by attaching cello-tape to the plain-text message. Conventional 2D-phase masks can be generalized to 3D by combining glass and diffusers resulting in a more complex, physical unclonable function. In this communication, we model the behavior of a 3D phase mask using a simple approach: light is propagated trough glass using the angular spectrum of plane waves whereas the diffusor is described as a random phase mask and a blurring effect on the amplitude of the propagated wave. Using different designs for the 3D phase mask and multiple samples, we demonstrate that classification is possible using the k-nearest neighbors and random forests machine learning algorithms.
NASA Astrophysics Data System (ADS)
Hsu, Roy CHaoming; Jian, Jhih-Wei; Lin, Chih-Chuan; Lai, Chien-Hung; Liu, Cheng-Ting
2013-01-01
The main purpose of this paper is to use machine learning method and Kinect and its body sensation technology to design a simple, convenient, yet effective robot remote control system. In this study, a Kinect sensor is used to capture the human body skeleton with depth information, and a gesture training and identification method is designed using the back propagation neural network to remotely command a mobile robot for certain actions via the Bluetooth. The experimental results show that the designed mobile robots remote control system can achieve, on an average, more than 96% of accurate identification of 7 types of gestures and can effectively control a real e-puck robot for the designed commands.
Parallel Clustering Algorithm for Large-Scale Biological Data Sets
Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang
2014-01-01
Backgrounds Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Methods Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. Result A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies. PMID:24705246
Efficient Geometric Sound Propagation Using Visibility Culling
NASA Astrophysics Data System (ADS)
Chandak, Anish
2011-07-01
Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying efficient audio-processing algorithms. We also present the first efficient audio-processing algorithm for scenarios with simultaneously moving source and moving receiver (MS-MR) which incurs less than 25% overhead compared to static source and moving receiver (SS-MR) or moving source and static receiver (MS-SR) scenario.
Hemmateenejad, Bahram; Akhond, Morteza; Miri, Ramin; Shamsipur, Mojtaba
2003-01-01
A QSAR algorithm, principal component-genetic algorithm-artificial neural network (PC-GA-ANN), has been applied to a set of newly synthesized calcium channel blockers, which are of special interest because of their role in cardiac diseases. A data set of 124 1,4-dihydropyridines bearing different ester substituents at the C-3 and C-5 positions of the dihydropyridine ring and nitroimidazolyl, phenylimidazolyl, and methylsulfonylimidazolyl groups at the C-4 position with known Ca(2+) channel binding affinities was employed in this study. Ten different sets of descriptors (837 descriptors) were calculated for each molecule. The principal component analysis was used to compress the descriptor groups into principal components. The most significant descriptors of each set were selected and used as input for the ANN. The genetic algorithm (GA) was used for the selection of the best set of extracted principal components. A feed forward artificial neural network with a back-propagation of error algorithm was used to process the nonlinear relationship between the selected principal components and biological activity of the dihydropyridines. A comparison between PC-GA-ANN and routine PC-ANN shows that the first model yields better prediction ability.
An intercomparison of artificial intelligence approaches for polar scene identification
NASA Technical Reports Server (NTRS)
Tovinkere, V. R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R. C.; Berendes, T. A.; Welch, R. M.
1993-01-01
The following six different artificial-intelligence (AI) approaches to polar scene identification are examined: (1) a feed forward back propagation neural network, (2) a probabilistic neural network, (3) a hybrid neural network, (4) a 'don't care' feed forward perception model, (5) a 'don't care' feed forward back propagation neural network, and (6) a fuzzy logic based expert system. The ten classes into which six AVHRR local-coverage arctic scenes were classified were: water, solid sea ice, broken sea ice, snow-covered mountains, land, stratus over ice, stratus over water, cirrus over water, cumulus over water, and multilayer cloudiness. It was found that 'don't care' back propagation neural network produced the highest accuracies. This approach has also low CPU requirement.
NASA Astrophysics Data System (ADS)
Çelik, Emre; Uzun, Yunus; Kurt, Erol; Öztürk, Nihat; Topaloğlu, Nurettin
2018-01-01
An application of an artificial neural network (ANN) has been implemented in this article to model the nonlinear relationship of the harvested electrical power of a recently developed piezoelectric pendulum with respect to its resistive load R L and magnetic excitation frequency f. Prediction of harvested power for a wide range is a difficult task, because it increases dramatically when f gets closer to the natural frequency f 0 of the system. The neural model of the concerned system is designed upon the basis of a standard multi-layer network with a back propagation learning algorithm. Input data, termed input patterns, to present to the network and the respective output data, termed output patterns, describing desired network output that are carefully collected from the experiment under several conditions in order to train the developed network accurately. Results have indicated that the designed ANN is an effective means for predicting the harvested power of the piezoelectric harvester as functions of R L and f with a root mean square error of 6.65 × 10-3 for training and 1.40 for different test conditions. Using the proposed approach, the harvested power can be estimated reasonably without tackling the difficulty of experimental studies and complexity of analytical formulas representing the concerned system.
De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico
2016-01-01
A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration. PMID:28774035
Modelling local GPS/levelling geoid undulations using artificial neural networks
NASA Astrophysics Data System (ADS)
Kavzoglu, T.; Saka, M. H.
2005-04-01
The use of GPS for establishing height control in an area where levelling data are available can involve the so-called GPS/levelling technique. Modelling of the GPS/levelling geoid undulations has usually been carried out using polynomial surface fitting, least-squares collocation (LSC) and finite-element methods. Artificial neural networks (ANNs) have recently been used for many investigations, and proven to be effective in solving complex problems represented by noisy and missing data. In this study, a feed-forward ANN structure, learning the characteristics of the training data through the back-propagation algorithm, is employed to model the local GPS/levelling geoid surface. The GPS/levelling geoid undulations for Istanbul, Turkey, were estimated from GPS and precise levelling measurements obtained during a field study in the period 1998-99. The results are compared to those produced by two well-known conventional methods, namely polynomial fitting and LSC, in terms of root mean square error (RMSE) that ranged from 3.97 to 5.73 cm. The results show that ANNs can produce results that are comparable to polynomial fitting and LSC. The main advantage of the ANN-based surfaces seems to be the low deviations from the GPS/levelling data surface, which is particularly important for distorted levelling networks.
Artificial neural network modelling of uncertainty in gamma-ray spectrometry
NASA Astrophysics Data System (ADS)
Dragović, S.; Onjia, A.; Stanković, S.; Aničin, I.; Bačić, G.
2005-03-01
An artificial neural network (ANN) model for the prediction of measuring uncertainties in gamma-ray spectrometry was developed and optimized. A three-layer feed-forward ANN with back-propagation learning algorithm was used to model uncertainties of measurement of activity levels of eight radionuclides ( 226Ra, 238U, 235U, 40K, 232Th, 134Cs, 137Cs and 7Be) in soil samples as a function of measurement time. It was shown that the neural network provides useful data even from small experimental databases. The performance of the optimized neural network was found to be very good, with correlation coefficients ( R2) between measured and predicted uncertainties ranging from 0.9050 to 0.9915. The correlation coefficients did not significantly deteriorate when the network was tested on samples with greatly different uranium-to-thorium ( 238U/ 232Th) ratios. The differences between measured and predicted uncertainties were not influenced by the absolute values of uncertainties of measured radionuclide activities. Once the ANN is trained, it could be employed in analyzing soil samples regardless of the 238U/ 232Th ratio. It was concluded that a considerable saving in time could be obtained using the trained neural network model for predicting the measurement times needed to attain the desired statistical accuracy.
NASA Astrophysics Data System (ADS)
Podder, M. S.; Majumder, C. B.
2017-11-01
An artificial neural network (ANN) model was developed to predict the phycoremediation efficiency of Chlorella pyrenoidosa for the removal of both As(III) and As(V) from synthetic wastewater based on 49 data-sets obtained from experimental study and increased the data using CSCF technique. The data were divided into training (60%) validation (20%) and testing (20%) sets. The data collected was used for training a three-layer feed-forward back propagation (BP) learning algorithm having 4-5-1 architecture. The model used tangent sigmoid transfer function at input to hidden layer ( tansing) while a linear transfer function ( purelin) was used at output layer. Comparison between experimental results and model results gave a high correlation coefficient (R allANN 2 equal to 0.99987 for both ions and exhibited that the model was able to predict the phycoremediation of As(III) and As(V) from wastewater. Experimental parameters influencing phycoremediation process like pH, inoculum size, contact time and initial arsenic concentration [either As(III) or As(V)] were investigated. A contact time of 168 h was mainly required for achieving equilibrium at pH 9.0 with an inoculum size of 10% (v/v). At optimum conditions, metal ion uptake enhanced with increasing initial metal ion concentration.
Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN
NASA Astrophysics Data System (ADS)
Pradhan, Nandita; Sinha, A. K.
2008-03-01
This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.
Optical back propagation for fiber optic networks with hybrid EDFA Raman amplification.
Liang, Xiaojun; Kumar, Shiva
2017-03-06
We have investigated an optical back propagation (OBP) method to compensate for propagation impairments in fiber optic networks with lumped Erbium doped fiber amplifier (EDFA) and/or distributed Raman amplification. An OBP module consists of an optical phase conjugator (OPC), optical amplifiers and dispersion varying fibers (DVFs). We derived a semi-analytical expression that calculates the dispersion profile of DVF. The OBP module acts as a nonlinear filter that fully compensates for the nonlinear distortions due to signal propagation in a transmission fiber, and is applicable for fiber optic networks with reconfigurable optical add-drop multiplexers (ROADMs). We studied a wavelength division multiplexing (WDM) network with 3000 km transmission distance and 64-quadrature amplitude modulation (QAM) modulation. OBP brings 5.8 dB, 5.9 dB and 6.1 dB Q-factor gains over linear compensation for systems with full EDFA amplification, hybrid EDFA/Raman amplification, and full Raman amplification, respectively. In contrast, digital back propagation (DBP) or OPC-only systems provide only 0.8 ~ 1.5 dB Q-factor gains.
Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks
NASA Astrophysics Data System (ADS)
Ghasemian, Amir; Zhang, Pan; Clauset, Aaron; Moore, Cristopher; Peel, Leto
2016-07-01
The detection of communities within a dynamic network is a common means for obtaining a coarse-grained view of a complex system and for investigating its underlying processes. While a number of methods have been proposed in the machine learning and physics literature, we lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when communities can be detected. Here, we study the fundamental limits of detecting community structure in dynamic networks. Specifically, we analyze the limits of detectability for a dynamic stochastic block model where nodes change their community memberships over time, but where edges are generated independently at each time step. Using the cavity method, we derive a precise detectability threshold as a function of the rate of change and the strength of the communities. Below this sharp threshold, we claim that no efficient algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this threshold. The first uses belief propagation, which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the belief propagation equations. These results extend our understanding of the limits of community detection in an important direction, and introduce new mathematical tools for similar extensions to networks with other types of auxiliary information.
An enhanced DWBA algorithm in hybrid WDM/TDM EPON networks with heterogeneous propagation delays
NASA Astrophysics Data System (ADS)
Li, Chengjun; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng
2011-12-01
An enhanced dynamic wavelength and bandwidth allocation (DWBA) algorithm in hybrid WDM/TDM PON is proposed and experimentally demonstrated. In addition to the fairness of bandwidth allocation, this algorithm also considers the varying propagation delays between ONUs and OLT. The simulation based on MATLAB indicates that the improved algorithm has a better performance compared with some other algorithms.
Post interaural neural net-based vowel recognition
NASA Astrophysics Data System (ADS)
Jouny, Ismail I.
2001-10-01
Interaural head related transfer functions are used to process speech signatures prior to neural net based recognition. Data representing the head related transfer function of a dummy has been collected at MIT and made available on the Internet. This data is used to pre-process vowel signatures to mimic the effects of human ear on speech perception. Signatures representing various vowels of the English language are then presented to a multi-layer perceptron trained using the back propagation algorithm for recognition purposes. The focus in this paper is to assess the effects of human interaural system on vowel recognition performance particularly when using a classification system that mimics the human brain such as a neural net.
NASA Astrophysics Data System (ADS)
Horstmann, T.; Harrington, R. M.; Cochran, E. S.
2012-12-01
Frequently, the lack of distinctive phase arrivals makes locating tectonic tremor more challenging than locating earthquakes. Classic location algorithms based on travel times cannot be directly applied because impulsive phase arrivals are often difficult to recognize. Traditional location algorithms are often modified to use phase arrivals identified from stacks of recurring low-frequency events (LFEs) observed within tremor episodes, rather than single events. Stacking the LFE waveforms improves the signal-to-noise ratio for the otherwise non-distinct phase arrivals. In this study, we apply a different method to locate tectonic tremor: a modified time-reversal imaging approach that potentially exploits the information from the entire tremor waveform instead of phase arrivals from individual LFEs. Time reversal imaging uses the waveforms of a given seismic source recorded by multiple seismometers at discrete points on the surface and a 3D velocity model to rebroadcast the waveforms back into the medium to identify the seismic source location. In practice, the method works by reversing the seismograms recorded at each of the stations in time, and back-propagating them from the receiver location individually into the sub-surface as a new source time function. We use a staggered-grid, finite-difference code with 2.5 ms time steps and a grid node spacing of 50 m to compute the rebroadcast wavefield. We calculate the time-dependent curl field at each grid point of the model volume for each back-propagated seismogram. To locate the tremor, we assume that the source time function back-propagated from each individual station produces a similar curl field at the source position. We then cross-correlate the time dependent curl field functions and calculate a median cross-correlation coefficient at each grid point. The highest median cross-correlation coefficient in the model volume is expected to represent the source location. For our analysis, we use the velocity model of Thurber et al. (2006) interpolated to a grid spacing of 50 m. Such grid spacing corresponds to frequencies of up to 8 Hz, which is suitable to calculate the wave propagation of tremor. Our dataset contains continuous broadband data from 13 STS-2 seismometers deployed from May 2010 to July 2011 along the Cholame segment of the San Andreas Fault as well as data from the HRSN and PBO networks. Initial synthetic results from tests on a 2D plane using a line of 15 receivers suggest that we are able to recover accurate event locations to within 100 m horizontally and 300 m depth. We conduct additional synthetic tests to determine the influence of signal-to-noise ratio, number of stations used, and the uncertainty in the velocity model on the location result by adding noise to the seismograms and perturbations to the velocity model. Preliminary results show accurate show location results to within 400 m with a median signal-to-noise ratio of 3.5 and 5% perturbations in the velocity model. The next steps will entail performing the synthetic tests on the 3D velocity model, and applying the method to tremor waveforms. Furthermore, we will determine the spatial and temporal distribution of the source locations and compare our results to those by Sumy and others.
Huang, Daizheng; Wu, Zhihui
2017-01-01
Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods. PMID:28222194
Huang, Daizheng; Wu, Zhihui
2017-01-01
Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.
Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor.
Wu, Chensheng; Ko, Jonathan; Davis, Christopher C
2015-05-01
We have designed a plenoptic sensor to retrieve phase and amplitude changes resulting from a laser beam's propagation through atmospheric turbulence. Compared with the commonly restricted domain of (-π,π) in phase reconstruction by interferometers, the reconstructed phase obtained by the plenoptic sensors can be continuous up to a multiple of 2π. When compared with conventional Shack-Hartmann sensors, ambiguities caused by interference or low intensity, such as branch points and branch cuts, are less likely to happen and can be adaptively avoided by our reconstruction algorithm. In the design of our plenoptic sensor, we modified the fundamental structure of a light field camera into a mini Keplerian telescope array by accurately cascading the back focal plane of its object lens with a microlens array's front focal plane and matching the numerical aperture of both components. Unlike light field cameras designed for incoherent imaging purposes, our plenoptic sensor operates on the complex amplitude of the incident beam and distributes it into a matrix of images that are simpler and less subject to interference than a global image of the beam. Then, with the proposed reconstruction algorithms, the plenoptic sensor is able to reconstruct the wavefront and a phase screen at an appropriate depth in the field that causes the equivalent distortion on the beam. The reconstructed results can be used to guide adaptive optics systems in directing beam propagation through atmospheric turbulence. In this paper, we will show the theoretical analysis and experimental results obtained with the plenoptic sensor and its reconstruction algorithms.
Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.
2015-05-01
We have designed a plenoptic sensor to retrieve phase and amplitude changes resulting from a laser beam's propagation through atmospheric turbulence. Compared with the commonly restricted domain of (-pi, pi) in phase reconstruction by interferometers, the reconstructed phase obtained by the plenoptic sensors can be continuous up to a multiple of 2pi. When compared with conventional Shack-Hartmann sensors, ambiguities caused by interference or low intensity, such as branch points and branch cuts, are less likely to happen and can be adaptively avoided by our reconstruction algorithm. In the design of our plenoptic sensor, we modified the fundamental structure of a light field camera into a mini Keplerian telescope array by accurately cascading the back focal plane of its object lens with a microlens array's front focal plane and matching the numerical aperture of both components. Unlike light field cameras designed for incoherent imaging purposes, our plenoptic sensor operates on the complex amplitude of the incident beam and distributes it into a matrix of images that are simpler and less subject to interference than a global image of the beam. Then, with the proposed reconstruction algorithms, the plenoptic sensor is able to reconstruct the wavefront and a phase screen at an appropriate depth in the field that causes the equivalent distortion on the beam. The reconstructed results can be used to guide adaptive optics systems in directing beam propagation through atmospheric turbulence. In this paper we will show the theoretical analysis and experimental results obtained with the plenoptic sensor and its reconstruction algorithms.
Low-loss adiabatically-tapered high-contrast gratings for slow-wave modulators on SOI
NASA Astrophysics Data System (ADS)
Sciancalepore, Corrado; Hassan, Karim; Ferrotti, Thomas; Harduin, Julie; Duprez, Hélène; Menezo, Sylvie; Ben Bakir, Badhise
2015-02-01
In this communication, we report about the design, fabrication, and testing of Silicon-based photonic integrated circuits (Si-PICs) including low-loss flat-band slow-light high-contrast-gratings (HCGs) waveguides at 1.31 μm. The light slowdown is achieved in 300-nm-thick silicon-on-insulator (SOI) rib waveguides by patterning adiabatically-tapered highcontrast gratings, capable of providing slow-light propagation with extremely low optical losses, back-scattering, and Fabry-Pérot noise. In detail, the one-dimensional (1-D) grating architecture is capable to provide band-edge group indices ng ~ 25, characterized by overall propagation losses equivalent to those of the index-like propagation regime (~ 1-2 dB/cm). Such photonic band-edge slow-light regime at low propagation losses is made possible by the adiabatic apodization of such 1-D HCGs, thus resulting in a win-win approach where light slow-down regime is reached without additional optical losses penalty. As well as that, a tailored apodization optimized via genetic algorithms allows the flattening of slow-light regime over the wavelength window of interest, therefore suiting well needs for group index stability for modulation purposes and non-linear effects generation. In conclusion, such architectures provide key features suitable for power-efficient high-speed modulators in silicon as well as an extremely low-loss building block for non-linear optics (NLO) which is now available in the Si photonics toolbox.
Bayesian networks in neuroscience: a survey.
Bielza, Concha; Larrañaga, Pedro
2014-01-01
Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper we review Bayesian networks and how they can be learned automatically from data by means of structure learning algorithms. Also, we examine how a user can take advantage of these networks for reasoning by exact or approximate inference algorithms that propagate the given evidence through the graphical structure. Despite their applicability in many fields, they have been little used in neuroscience, where they have focused on specific problems, like functional connectivity analysis from neuroimaging data. Here we survey key research in neuroscience where Bayesian networks have been used with different aims: discover associations between variables, perform probabilistic reasoning over the model, and classify new observations with and without supervision. The networks are learned from data of any kind-morphological, electrophysiological, -omics and neuroimaging-, thereby broadening the scope-molecular, cellular, structural, functional, cognitive and medical- of the brain aspects to be studied.
Bayesian networks in neuroscience: a survey
Bielza, Concha; Larrañaga, Pedro
2014-01-01
Bayesian networks are a type of probabilistic graphical models lie at the intersection between statistics and machine learning. They have been shown to be powerful tools to encode dependence relationships among the variables of a domain under uncertainty. Thanks to their generality, Bayesian networks can accommodate continuous and discrete variables, as well as temporal processes. In this paper we review Bayesian networks and how they can be learned automatically from data by means of structure learning algorithms. Also, we examine how a user can take advantage of these networks for reasoning by exact or approximate inference algorithms that propagate the given evidence through the graphical structure. Despite their applicability in many fields, they have been little used in neuroscience, where they have focused on specific problems, like functional connectivity analysis from neuroimaging data. Here we survey key research in neuroscience where Bayesian networks have been used with different aims: discover associations between variables, perform probabilistic reasoning over the model, and classify new observations with and without supervision. The networks are learned from data of any kind–morphological, electrophysiological, -omics and neuroimaging–, thereby broadening the scope–molecular, cellular, structural, functional, cognitive and medical– of the brain aspects to be studied. PMID:25360109
Learn, R; Feigenbaum, E
2016-06-01
Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. The second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Learn, R.; Feigenbaum, E.
Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.
Learn, R.; Feigenbaum, E.
2016-05-27
Two algorithms that enhance the utility of the absorbing boundary layer are presented, mainly in the framework of the Fourier beam-propagation method. One is an automated boundary layer width selector that chooses a near-optimal boundary size based on the initial beam shape. Furthermore, the second algorithm adjusts the propagation step sizes based on the beam shape at the beginning of each step in order to reduce aliasing artifacts.
Yu, Peng; Sun, Jia; Wolz, Robin; Stephenson, Diane; Brewer, James; Fox, Nick C; Cole, Patricia E; Jack, Clifford R; Hill, Derek L G; Schwarz, Adam J
2014-04-01
The objective of this study was to evaluate the effect of computational algorithm, measurement variability, and cut point on hippocampal volume (HCV)-based patient selection for clinical trials in mild cognitive impairment (MCI). We used normal control and amnestic MCI subjects from the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) as normative reference and screening cohorts. We evaluated the enrichment performance of 4 widely used hippocampal segmentation algorithms (FreeSurfer, Hippocampus Multi-Atlas Propagation and Segmentation (HMAPS), Learning Embeddings Atlas Propagation (LEAP), and NeuroQuant) in terms of 2-year changes in Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), and Clinical Dementia Rating Sum of Boxes (CDR-SB). We modeled the implications for sample size, screen fail rates, and trial cost and duration. HCV based patient selection yielded reduced sample sizes (by ∼40%-60%) and lower trial costs (by ∼30%-40%) across a wide range of cut points. These results provide a guide to the choice of HCV cut point for amnestic MCI clinical trials, allowing an informed tradeoff between statistical and practical considerations. Copyright © 2014 Elsevier Inc. All rights reserved.
Deep Learning: A Primer for Radiologists.
Chartrand, Gabriel; Cheng, Phillip M; Vorontsov, Eugene; Drozdzal, Michal; Turcotte, Simon; Pal, Christopher J; Kadoury, Samuel; Tang, An
2017-01-01
Deep learning is a class of machine learning methods that are gaining success and attracting interest in many domains, including computer vision, speech recognition, natural language processing, and playing games. Deep learning methods produce a mapping from raw inputs to desired outputs (eg, image classes). Unlike traditional machine learning methods, which require hand-engineered feature extraction from inputs, deep learning methods learn these features directly from data. With the advent of large datasets and increased computing power, these methods can produce models with exceptional performance. These models are multilayer artificial neural networks, loosely inspired by biologic neural systems. Weighted connections between nodes (neurons) in the network are iteratively adjusted based on example pairs of inputs and target outputs by back-propagating a corrective error signal through the network. For computer vision tasks, convolutional neural networks (CNNs) have proven to be effective. Recently, several clinical applications of CNNs have been proposed and studied in radiology for classification, detection, and segmentation tasks. This article reviews the key concepts of deep learning for clinical radiologists, discusses technical requirements, describes emerging applications in clinical radiology, and outlines limitations and future directions in this field. Radiologists should become familiar with the principles and potential applications of deep learning in medical imaging. © RSNA, 2017.
Hebbian based learning with winner-take-all for spiking neural networks
NASA Astrophysics Data System (ADS)
Gupta, Ankur; Long, Lyle
2009-03-01
Learning methods for spiking neural networks are not as well developed as the traditional neural networks that widely use back-propagation training. We propose and implement a Hebbian based learning method with winner-take-all competition for spiking neural networks. This approach is spike time dependent which makes it naturally well suited for a network of spiking neurons. Homeostasis with Hebbian learning is implemented which ensures stability and quicker learning. Homeostasis implies that the net sum of incoming weights associated with a neuron remains the same. Winner-take-all is also implemented for competitive learning between output neurons. We implemented this learning rule on a biologically based vision processing system that we are developing, and use layers of leaky integrate and fire neurons. The network when presented with 4 bars (or Gabor filters) of different orientation learns to recognize the bar orientations (or Gabor filters). After training, each output neuron learns to recognize a bar at specific orientation and responds by firing more vigorously to that bar and less vigorously to others. These neurons are found to have bell shaped tuning curves and are similar to the simple cells experimentally observed by Hubel and Wiesel in the striate cortex of cat and monkey.
NASA Astrophysics Data System (ADS)
Gjaja, Marin N.
1997-11-01
Neural networks for supervised and unsupervised learning are developed and applied to problems in remote sensing, continuous map learning, and speech perception. Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART networks synthesize fuzzy logic and neural networks, and supervised ARTMAP networks incorporate ART modules for prediction and classification. New ART and ARTMAP methods resulting from analyses of data structure, parameter specification, and category selection are developed. Architectural modifications providing flexibility for a variety of applications are also introduced and explored. A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on fuzzy ARTMAP, is developed. System capabilities are tested on a challenging remote sensing problem, prediction of vegetation classes in the Cleveland National Forest from spectral and terrain features. After training at the pixel level, performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, back propagation neural networks, and K-nearest neighbor algorithms. Best performance is obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. This work forms the foundation for additional studies exploring fuzzy ARTMAP's capability to estimate class mixture composition for non-homogeneous sites. Exploratory simulations apply ARTMAP to the problem of learning continuous multidimensional mappings. A novel system architecture retains basic ARTMAP properties of incremental and fast learning in an on-line setting while adding components to solve this class of problems. The perceptual magnet effect is a language-specific phenomenon arising early in infant speech development that is characterized by a warping of speech sound perception. An unsupervised neural network model is proposed that embodies two principal hypotheses supported by experimental data--that sensory experience guides language-specific development of an auditory neural map and that a population vector can predict psychological phenomena based on map cell activities. Model simulations show how a nonuniform distribution of map cell firing preferences can develop from language-specific input and give rise to the magnet effect.
Neural networks for function approximation in nonlinear control
NASA Technical Reports Server (NTRS)
Linse, Dennis J.; Stengel, Robert F.
1990-01-01
Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.
Superpixel-based graph cuts for accurate stereo matching
NASA Astrophysics Data System (ADS)
Feng, Liting; Qin, Kaihuai
2017-06-01
Estimating the surface normal vector and disparity of a pixel simultaneously, also known as three-dimensional label method, has been widely used in recent continuous stereo matching problem to achieve sub-pixel accuracy. However, due to the infinite label space, it’s extremely hard to assign each pixel an appropriate label. In this paper, we present an accurate and efficient algorithm, integrating patchmatch with graph cuts, to approach this critical computational problem. Besides, to get robust and precise matching cost, we use a convolutional neural network to learn a similarity measure on small image patches. Compared with other MRF related methods, our method has several advantages: its sub-modular property ensures a sub-problem optimality which is easy to perform in parallel; graph cuts can simultaneously update multiple pixels, avoiding local minima caused by sequential optimizers like belief propagation; it uses segmentation results for better local expansion move; local propagation and randomization can easily generate the initial solution without using external methods. Middlebury experiments show that our method can get higher accuracy than other MRF-based algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, S; Coroller, T; Niu, N
2015-06-15
Purpose: Tumor regions-of-interest (ROI) can be propagated from the pre-onto the post-treatment PET/CT images using image registration of their CT counterparts, providing an automatic way to compute texture features on longitudinal scans. This exploratory study assessed the impact of image registration algorithms on textures to predict pathological response. Methods: Forty-six esophageal cancer patients (1 tumor/patient) underwent PET/CT scans before and after chemoradiotherapy. Patients were classified into responders and non-responders after the surgery. Physician-defined tumor ROIs on pre-treatment PET were propagated onto the post-treatment PET using rigid and ten deformable registration algorithms. One co-occurrence, two run-length and size zone matrix texturesmore » were computed within all ROIs. The relative difference of each texture at different treatment time-points was used to predict the pathologic responders. Their predictive value was assessed using the area under the receiver-operating-characteristic curve (AUC). Propagated ROIs and texture quantification resulting from different algorithms were compared using overlap volume (OV) and coefficient of variation (CoV), respectively. Results: Tumor volumes were better captured by ROIs propagated by deformable rather than the rigid registration. The OV between rigidly and deformably propagated ROIs were 69%. The deformably propagated ROIs were found to be similar (OV∼80%) except for fast-demons (OV∼60%). Rigidly propagated ROIs with run-length matrix textures failed to significantly differentiate between responders and non-responders (AUC=0.65, p=0.07), while the differentiation was significant with other textures (AUC=0.69–0.72, p<0.03). Among the deformable algorithms, fast-demons was the least predictive (AUC=0.68–0.71, p<0.04). ROIs propagated by all other deformable algorithms with any texture significantly predicted pathologic responders (AUC=0.71–0.78, p<0.01) despite substantial variation in texture quantification (CoV>70%). Conclusion: Propagated ROIs using deformable registration for all textures can lead to accurate prediction of pathologic response, potentially expediting the temporal texture analysis process. However, rigid and fast-demons deformable algorithms are not recommended due to their inferior performance compared to other algorithms. The project was supported in part by a Kaye Scholar Award.« less
Studies on the Parametric Effects of Plasma Arc Welding of 2205 Duplex Stainless Steel
NASA Astrophysics Data System (ADS)
Selva Bharathi, R.; Siva Shanmugam, N.; Murali Kannan, R.; Arungalai Vendan, S.
2018-03-01
This research study attempts to create an optimized parametric window by employing Taguchi algorithm for Plasma Arc Welding (PAW) of 2 mm thick 2205 duplex stainless steel. The parameters considered for experimentation and optimization are the welding current, welding speed and pilot arc length respectively. The experimentation involves the parameters variation and subsequently recording the depth of penetration and bead width. Welding current of 60-70 A, welding speed of 250-300 mm/min and pilot arc length of 1-2 mm are the range between which the parameters are varied. Design of experiments is used for the experimental trials. Back propagation neural network, Genetic algorithm and Taguchi techniques are used for predicting the bead width, depth of penetration and validated with experimentally achieved results which were in good agreement. Additionally, micro-structural characterizations are carried out to examine the weld quality. The extrapolation of these optimized parametric values yield enhanced weld strength with cost and time reduction.
NASA Astrophysics Data System (ADS)
An, Zhao; Zhounian, Lai; Peng, Wu; Linlin, Cao; Dazhuan, Wu
2016-07-01
This paper describes the shape optimization of a low specific speed centrifugal pump at the design point. The target pump has already been manually modified on the basis of empirical knowledge. A genetic algorithm (NSGA-II) with certain enhancements is adopted to improve its performance further with respect to two goals. In order to limit the number of design variables without losing geometric information, the impeller is parametrized using the Bézier curve and a B-spline. Numerical simulation based on a Reynolds averaged Navier-Stokes (RANS) turbulent model is done in parallel to evaluate the flow field. A back-propagating neural network is constructed as a surrogate for performance prediction to save computing time, while initial samples are selected according to an orthogonal array. Then global Pareto-optimal solutions are obtained and analysed. The results manifest that unexpected flow structures, such as the secondary flow on the meridian plane, have diminished or vanished in the optimized pump.
[Portable Epileptic Seizure Monitoring Intelligent System Based on Android System].
Liang, Zhenhu; Wu, Shufeng; Yang, Chunlin; Jiang, Zhenzhou; Yu, Tao; Lu, Chengbiao; Li, Xiaoli
2016-02-01
The clinical electroencephalogram (EEG) monitoring systems based on personal computer system can not meet the requirements of portability and home usage. The epilepsy patients have to be monitored in hospital for an extended period of time, which imposes a heavy burden on hospitals. In the present study, we designed a portable 16-lead networked monitoring system based on the Android smart phone. The system uses some technologies including the active electrode, the WiFi wireless transmission, the multi-scale permutation entropy (MPE) algorithm, the back-propagation (BP) neural network algorithm, etc. Moreover, the software of Android mobile application can realize the processing and analysis of EEG data, the display of EEG waveform and the alarm of epileptic seizure. The system has been tested on the mobile phones with Android 2. 3 operating system or higher version and the results showed that this software ran accurately and steadily in the detection of epileptic seizure. In conclusion, this paper provides a portable and reliable solution for epileptic seizure monitoring in clinical and home applications.
Due Date Assignment in a Dynamic Job Shop with the Orthogonal Kernel Least Squares Algorithm
NASA Astrophysics Data System (ADS)
Yang, D. H.; Hu, L.; Qian, Y.
2017-06-01
Meeting due dates is a key goal in the manufacturing industries. This paper proposes a method for due date assignment (DDA) by using the Orthogonal Kernel Least Squares Algorithm (OKLSA). A simulation model is built to imitate the production process of a highly dynamic job shop. Several factors describing job characteristics and system state are extracted as attributes to predict job flow-times. A number of experiments under conditions of varying dispatching rules and 90% shop utilization level have been carried out to evaluate the effectiveness of OKLSA applied for DDA. The prediction performance of OKLSA is compared with those of five conventional DDA models and back-propagation neural network (BPNN). The experimental results indicate that OKLSA is statistically superior to other DDA models in terms of mean absolute lateness and root mean squares lateness in most cases. The only exception occurs when the shortest processing time rule is used for dispatching jobs, the difference between OKLSA and BPNN is not statistically significant.
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
Discriminative clustering on manifold for adaptive transductive classification.
Zhang, Zhao; Jia, Lei; Zhang, Min; Li, Bing; Zhang, Li; Li, Fanzhang
2017-10-01
In this paper, we mainly propose a novel adaptive transductive label propagation approach by joint discriminative clustering on manifolds for representing and classifying high-dimensional data. Our framework seamlessly combines the unsupervised manifold learning, discriminative clustering and adaptive classification into a unified model. Also, our method incorporates the adaptive graph weight construction with label propagation. Specifically, our method is capable of propagating label information using adaptive weights over low-dimensional manifold features, which is different from most existing studies that usually predict the labels and construct the weights in the original Euclidean space. For transductive classification by our formulation, we first perform the joint discriminative K-means clustering and manifold learning to capture the low-dimensional nonlinear manifolds. Then, we construct the adaptive weights over the learnt manifold features, where the adaptive weights are calculated through performing the joint minimization of the reconstruction errors over features and soft labels so that the graph weights can be joint-optimal for data representation and classification. Using the adaptive weights, we can easily estimate the unknown labels of samples. After that, our method returns the updated weights for further updating the manifold features. Extensive simulations on image classification and segmentation show that our proposed algorithm can deliver the state-of-the-art performance on several public datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Active action potential propagation but not initiation in thalamic interneuron dendrites
Casale, Amanda E.; McCormick, David A.
2012-01-01
Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033
NASA Astrophysics Data System (ADS)
Yip, Stephen S. F.; Coroller, Thibaud P.; Sanford, Nina N.; Huynh, Elizabeth; Mamon, Harvey; Aerts, Hugo J. W. L.; Berbeco, Ross I.
2016-01-01
Change in PET-based textural features has shown promise in predicting cancer response to treatment. However, contouring tumour volumes on longitudinal scans is time-consuming. This study investigated the usefulness of contour propagation in texture analysis for the purpose of pathologic response prediction in esophageal cancer. Forty-five esophageal cancer patients underwent PET/CT scans before and after chemo-radiotherapy. Patients were classified into responders and non-responders after the surgery. Physician-defined tumour ROIs on pre-treatment PET were propagated onto the post-treatment PET using rigid and ten deformable registration algorithms. PET images were converted into 256 discrete values. Co-occurrence, run-length, and size zone matrix textures were computed within all ROIs. The relative difference of each texture at different treatment time-points was used to predict the pathologic responders. Their predictive value was assessed using the area under the receiver-operating-characteristic curve (AUC). Propagated ROIs from different algorithms were compared using Dice similarity index (DSI). Contours propagated by the fast-demons, fast-free-form and rigid algorithms did not fully capture the high FDG uptake regions of tumours. Fast-demons propagated ROIs had the least agreement with other contours (DSI = 58%). Moderate to substantial overlap were found in the ROIs propagated by all other algorithms (DSI = 69%-79%). Rigidly propagated ROIs with co-occurrence texture failed to significantly differentiate between responders and non-responders (AUC = 0.58, q-value = 0.33), while the differentiation was significant with other textures (AUC = 0.71‒0.73, p < 0.009). Among the deformable algorithms, fast-demons (AUC = 0.68‒0.70, q-value < 0.03) and fast-free-form (AUC = 0.69‒0.74, q-value < 0.04) were the least predictive. ROIs propagated by all other deformable algorithms with any texture significantly predicted pathologic responders (AUC = 0.72‒0.78, q-value < 0.01). Propagated ROIs using deformable registration for all textures can lead to accurate prediction of pathologic response, potentially expediting the temporal texture analysis process. However, fast-demons, fast-free-form, and rigid algorithms should be applied with care due to their inferior performance compared to other algorithms.
Huang, Tao; Li, Xiao-yu; Jin, Rui; Ku, Jing; Xu, Sen-miao; Xu, Meng-ling; Wu, Zhen-zhong; Kong, De-guo
2015-04-01
The present paper put forward a non-destructive detection method which combines semi-transmission hyperspectral imaging technology with manifold learning dimension reduction algorithm and least squares support vector machine (LSSVM) to recognize internal and external defects in potatoes simultaneously. Three hundred fifteen potatoes were bought in farmers market as research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images of normal external defects (bud and green rind) and internal defect (hollow heart) potatoes. In order to conform to the actual production, defect part is randomly put right, side and back to the acquisition probe when the hyperspectral images of external defects potatoes are acquired. The average spectrums (390-1,040 nm) were extracted from the region of interests for spectral preprocessing. Then three kinds of manifold learning algorithm were respectively utilized to reduce the dimension of spectrum data, including supervised locally linear embedding (SLLE), locally linear embedding (LLE) and isometric mapping (ISOMAP), the low-dimensional data gotten by manifold learning algorithms is used as model input, Error Correcting Output Code (ECOC) and LSSVM were combined to develop the multi-target classification model. By comparing and analyzing results of the three models, we concluded that SLLE is the optimal manifold learning dimension reduction algorithm, and the SLLE-LSSVM model is determined to get the best recognition rate for recognizing internal and external defects potatoes. For test set data, the single recognition rate of normal, bud, green rind and hollow heart potato reached 96.83%, 86.96%, 86.96% and 95% respectively, and he hybrid recognition rate was 93.02%. The results indicate that combining the semi-transmission hyperspectral imaging technology with SLLE-LSSVM is a feasible qualitative analytical method which can simultaneously recognize the internal and external defects potatoes and also provide technical reference for rapid on-line non-destructive detecting of the internal and external defects potatoes.
Bolanča, Tomislav; Marinović, Slavica; Ukić, Sime; Jukić, Ante; Rukavina, Vinko
2012-06-01
This paper describes development of artificial neural network models which can be used to correlate and predict diesel fuel properties from several FTIR-ATR absorbances and Raman intensities as input variables. Multilayer feed forward and radial basis function neural networks have been used to rapid and simultaneous prediction of cetane number, cetane index, density, viscosity, distillation temperatures at 10% (T10), 50% (T50) and 90% (T90) recovery, contents of total aromatics and polycyclic aromatic hydrocarbons of commercial diesel fuels. In this study two-phase training procedures for multilayer feed forward networks were applied. While first phase training algorithm was constantly the back propagation one, two second phase training algorithms were varied and compared, namely: conjugate gradient and quasi Newton. In case of radial basis function network, radial layer was trained using K-means radial assignment algorithm and three different radial spread algorithms: explicit, isotropic and K-nearest neighbour. The number of hidden layer neurons and experimental data points used for the training set have been optimized for both neural networks in order to insure good predictive ability by reducing unnecessary experimental work. This work shows that developed artificial neural network models can determine main properties of diesel fuels simultaneously based on a single and fast IR or Raman measurement.
NASA Astrophysics Data System (ADS)
Bostock, J.; Weller, P.; Cooklin, M.
2010-07-01
Automated diagnostic algorithms are used in implantable cardioverter-defibrillators (ICD's) to detect abnormal heart rhythms. Algorithms misdiagnose and improved specificity is needed to prevent inappropriate therapy. Knowledge engineering (KE) and artificial intelligence (AI) could improve this. A pilot study of KE was performed with artificial neural network (ANN) as AI system. A case note review analysed arrhythmic events stored in patients ICD memory. 13.2% patients received inappropriate therapy. The best ICD algorithm had sensitivity 1.00, specificity 0.69 (p<0.001 different to gold standard). A subset of data was used to train and test an ANN. A feed-forward, back-propagation network with 7 inputs, a 4 node hidden layer and 1 output had sensitivity 1.00, specificity 0.71 (p<0.001). A prospective study was performed using KE to list arrhythmias, factors and indicators for which measurable parameters were evaluated and results reviewed by a domain expert. Waveforms from electrodes in the heart and thoracic bio-impedance; temperature and motion data were collected from 65 patients during cardiac electrophysiological studies. 5 incomplete datasets were due to technical failures. We concluded that KE successfully guided selection of parameters and ANN produced a usable system and that complex data collection carries greater risk of technical failure, leading to data loss.
Nurmohamadi, Maryam; Pourghassem, Hossein
2014-05-01
The utilization of antibiotics produced by Clavulanic acid (CA) is an increasing need in medicine and industry. Usually, the CA is created from the fermentation of Streptomycen Clavuligerus (SC) bacteria. Analysis of visual and morphological features of SC bacteria is an appropriate measure to estimate the growth of CA. In this paper, an automatic and fast CA production level estimation algorithm based on visual and structural features of SC bacteria instead of statistical methods and experimental evaluation by microbiologist is proposed. In this algorithm, structural features such as the number of newborn branches, thickness of hyphal and bacterial density and also color features such as acceptance color levels are extracted from the SC bacteria. Moreover, PH and biomass of the medium provided by microbiologists are considered as specified features. The level of CA production is estimated by using a new application of Self-Organizing Map (SOM), and a hybrid model of genetic algorithm with back propagation network (GA-BPN). The proposed algorithm is evaluated on four carbonic resources including malt, starch, wheat flour and glycerol that had used as different mediums of bacterial growth. Then, the obtained results are compared and evaluated with observation of specialist. Finally, the Relative Error (RE) for the SOM and GA-BPN are achieved 14.97% and 16.63%, respectively. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
2D model of plasma current sheath propagation in a Mather type plasma focus device
NASA Astrophysics Data System (ADS)
Mohamad, Saiful Najmee; Rashid, Natashah Abdul; Halim, Mohd Mahadi; Ali, Jalil
2018-06-01
Plasma focus device is initially developed by two known researchers back in the 1960s, Mather and Filippov. The interest on the research built due to its capability to produce high energetic neutron from a fusion reaction. The relevance of the research in Plasma Focus device remain after decade is because of its competence to produce multi radiation yield and its known physics during nanosecond of plasma compression remain open for discussed. In the recent years, the direction of the plasma research is in device optimisation, where many possible configurations have been present, discuss and highlighting its performance for differences conditions. The significant difference between the electrode configuration is the profile of the dynamics inductance. In this context, this paper comparatively discusses the 1D dynamics model of the plasma current sheath (PSC) propagation axially and radially with the 2D model. The 2D model algorithm for the PSC propagation is developed using macro (Excel) by incorporating a drag force to solve the momentum exchange of the PCS with neutral gas. The discharge current profile of both model successfully calibrated to agree with each other with 2% difference at 1.83 µs after discharge but with an expense of different assumption.
Use of the Hotelling observer to optimize image reconstruction in digital breast tomosynthesis
Sánchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan
2015-01-01
Abstract. We propose an implementation of the Hotelling observer that can be applied to the optimization of linear image reconstruction algorithms in digital breast tomosynthesis. The method is based on considering information within a specific region of interest, and it is applied to the optimization of algorithms for detectability of microcalcifications. Several linear algorithms are considered: simple back-projection, filtered back-projection, back-projection filtration, and Λ-tomography. The optimized algorithms are then evaluated through the reconstruction of phantom data. The method appears robust across algorithms and parameters and leads to the generation of algorithm implementations which subjectively appear optimized for the task of interest. PMID:26702408
Sun, Yangbo; Chen, Long; Huang, Bisheng; Chen, Keli
2017-07-01
As a mineral, the traditional Chinese medicine calamine has a similar shape to many other minerals. Investigations of commercially available calamine samples have shown that there are many fake and inferior calamine goods sold on the market. The conventional identification method for calamine is complicated, therefore as a result of the large scale of calamine samples, a rapid identification method is needed. To establish a qualitative model using near-infrared (NIR) spectroscopy for rapid identification of various calamine samples, large quantities of calamine samples including crude products, counterfeits and processed products were collected and correctly identified using the physicochemical and powder X-ray diffraction method. The NIR spectroscopy method was used to analyze these samples by combining the multi-reference correlation coefficient (MRCC) method and the error back propagation artificial neural network algorithm (BP-ANN), so as to realize the qualitative identification of calamine samples. The accuracy rate of the model based on NIR and MRCC methods was 85%; in addition, the model, which took comprehensive multiple factors into consideration, can be used to identify crude calamine products, its counterfeits and processed products. Furthermore, by in-putting the correlation coefficients of multiple references as the spectral feature data of samples into BP-ANN, a BP-ANN model of qualitative identification was established, of which the accuracy rate was increased to 95%. The MRCC method can be used as a NIR-based method in the process of BP-ANN modeling.
Gan, Ruijing; Chen, Ni; Huang, Daizheng
2016-01-01
This study compares and evaluates the prediction of hepatitis in Guangxi Province, China by using back propagation neural networks based genetic algorithm (BPNN-GA), generalized regression neural networks (GRNN), and wavelet neural networks (WNN). In order to compare the results of forecasting, the data obtained from 2004 to 2013 and 2014 were used as modeling and forecasting samples, respectively. The results show that when the small data set of hepatitis has seasonal fluctuation, the prediction result by BPNN-GA will be better than the two other methods. The WNN method is suitable for predicting the large data set of hepatitis that has seasonal fluctuation and the same for the GRNN method when the data increases steadily.
Terahertz radar cross section measurements.
Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd
2010-12-06
We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.
Early driver fatigue detection from electroencephalography signals using artificial neural networks.
King, L M; Nguyen, H T; Lal, S K L
2006-01-01
This paper describes a driver fatigue detection system using an artificial neural network (ANN). Using electroencephalogram (EEG) data sampled from 20 professional truck drivers and 35 non professional drivers, the time domain data are processed into alpha, beta, delta and theta bands and then presented to the neural network to detect the onset of driver fatigue. The neural network uses a training optimization technique called the magnified gradient function (MGF). This technique reduces the time required for training by modifying the standard back propagation (SBP) algorithm. The MGF is shown to classify professional driver fatigue with 81.49% accuracy (80.53% sensitivity, 82.44% specificity) and non-professional driver fatigue with 83.06% accuracy (84.04% sensitivity and 82.08% specificity).
Mean-field message-passing equations in the Hopfield model and its generalizations
NASA Astrophysics Data System (ADS)
Mézard, Marc
2017-02-01
Motivated by recent progress in using restricted Boltzmann machines as preprocessing algorithms for deep neural network, we revisit the mean-field equations [belief-propagation and Thouless-Anderson Palmer (TAP) equations] in the best understood of such machines, namely the Hopfield model of neural networks, and we explicit how they can be used as iterative message-passing algorithms, providing a fast method to compute the local polarizations of neurons. In the "retrieval phase", where neurons polarize in the direction of one memorized pattern, we point out a major difference between the belief propagation and TAP equations: The set of belief propagation equations depends on the pattern which is retrieved, while one can use a unique set of TAP equations. This makes the latter method much better suited for applications in the learning process of restricted Boltzmann machines. In the case where the patterns memorized in the Hopfield model are not independent, but are correlated through a combinatorial structure, we show that the TAP equations have to be modified. This modification can be seen either as an alteration of the reaction term in TAP equations or, more interestingly, as the consequence of message passing on a graphical model with several hidden layers, where the number of hidden layers depends on the depth of the correlations in the memorized patterns. This layered structure is actually necessary when one deals with more general restricted Boltzmann machines.
Frame prediction using recurrent convolutional encoder with residual learning
NASA Astrophysics Data System (ADS)
Yue, Boxuan; Liang, Jun
2018-05-01
The prediction for the frame of a video is difficult but in urgent need in auto-driving. Conventional methods can only predict some abstract trends of the region of interest. The boom of deep learning makes the prediction for frames possible. In this paper, we propose a novel recurrent convolutional encoder and DE convolutional decoder structure to predict frames. We introduce the residual learning in the convolution encoder structure to solve the gradient issues. The residual learning can transform the gradient back propagation to an identity mapping. It can reserve the whole gradient information and overcome the gradient issues in Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN). Besides, compared with the branches in CNNs and the gated structures in RNNs, the residual learning can save the training time significantly. In the experiments, we use UCF101 dataset to train our networks, the predictions are compared with some state-of-the-art methods. The results show that our networks can predict frames fast and efficiently. Furthermore, our networks are used for the driving video to verify the practicability.
Label propagation algorithm for community detection based on node importance and label influence
NASA Astrophysics Data System (ADS)
Zhang, Xian-Kun; Ren, Jing; Song, Chen; Jia, Jia; Zhang, Qian
2017-09-01
Recently, the detection of high-quality community has become a hot spot in the research of social network. Label propagation algorithm (LPA) has been widely concerned since it has the advantages of linear time complexity and is unnecessary to define objective function and the number of community in advance. However, LPA has the shortcomings of uncertainty and randomness in the label propagation process, which affects the accuracy and stability of the community. For large-scale social network, this paper proposes a novel label propagation algorithm for community detection based on node importance and label influence (LPA_NI). The experiments with comparative algorithms on real-world networks and synthetic networks have shown that LPA_NI can significantly improve the quality of community detection and shorten the iteration period. Also, it has better accuracy and stability in the case of similar complexity.
Tjolleng, Amir; Jung, Kihyo; Hong, Wongi; Lee, Wonsup; Lee, Baekhee; You, Heecheon; Son, Joonwoo; Park, Seikwon
2017-03-01
An artificial neural network (ANN) model was developed in the present study to classify the level of a driver's cognitive workload based on electrocardiography (ECG). ECG signals were measured on 15 male participants while they performed a simulated driving task as a primary task with/without an N-back task as a secondary task. Three time-domain ECG measures (mean inter-beat interval (IBI), standard deviation of IBIs, and root mean squared difference of adjacent IBIs) and three frequencydomain ECG measures (power in low frequency, power in high frequency, and ratio of power in low and high frequencies) were calculated. To compensate for individual differences in heart response during the driving tasks, a three-step data processing procedure was performed to ECG signals of each participant: (1) selection of two most sensitive ECG measures, (2) definition of three (low, medium, and high) cognitive workload levels, and (3) normalization of the selected ECG measures. An ANN model was constructed using a feed-forward network and scaled conjugate gradient as a back-propagation learning rule. The accuracy of the ANN classification model was found satisfactory for learning data (95%) and testing data (82%). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Magnuson, Brian
A proof-of-concept software-in-the-loop study is performed to assess the accuracy of predicted net and charge-gaining energy consumption for potential effective use in optimizing powertrain management of hybrid vehicles. With promising results of improving fuel efficiency of a thermostatic control strategy for a series, plug-ing, hybrid-electric vehicle by 8.24%, the route and speed prediction machine learning algorithms are redesigned and implemented for real- world testing in a stand-alone C++ code-base to ingest map data, learn and predict driver habits, and store driver data for fast startup and shutdown of the controller or computer used to execute the compiled algorithm. Speed prediction is performed using a multi-layer, multi-input, multi- output neural network using feed-forward prediction and gradient descent through back- propagation training. Route prediction utilizes a Hidden Markov Model with a recurrent forward algorithm for prediction and multi-dimensional hash maps to store state and state distribution constraining associations between atomic road segments and end destinations. Predicted energy is calculated using the predicted time-series speed and elevation profile over the predicted route and the road-load equation. Testing of the code-base is performed over a known road network spanning 24x35 blocks on the south hill of Spokane, Washington. A large set of training routes are traversed once to add randomness to the route prediction algorithm, and a subset of the training routes, testing routes, are traversed to assess the accuracy of the net and charge-gaining predicted energy consumption. Each test route is traveled a random number of times with varying speed conditions from traffic and pedestrians to add randomness to speed prediction. Prediction data is stored and analyzed in a post process Matlab script. The aggregated results and analysis of all traversals of all test routes reflect the performance of the Driver Prediction algorithm. The error of average energy gained through charge-gaining events is 31.3% and the error of average net energy consumed is 27.3%. The average delta and average standard deviation of the delta of predicted energy gained through charge-gaining events is 0.639 and 0.601 Wh respectively for individual time-series calculations. Similarly, the average delta and average standard deviation of the delta of the predicted net energy consumed is 0.567 and 0.580 Wh respectively for individual time-series calculations. The average delta and standard deviation of the delta of the predicted speed is 1.60 and 1.15 respectively also for the individual time-series measurements. The percentage of accuracy of route prediction is 91%. Overall, test routes are traversed 151 times for a total test distance of 276.4 km.
Fuzzy Nonlinear Proximal Support Vector Machine for Land Extraction Based on Remote Sensing Image
Zhong, Xiaomei; Li, Jianping; Dou, Huacheng; Deng, Shijun; Wang, Guofei; Jiang, Yu; Wang, Yongjie; Zhou, Zebing; Wang, Li; Yan, Fei
2013-01-01
Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da’an in northern China. Two multi-category strategies, namely “one-against-one” and “one-against-rest” for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments. PMID:23936016
NASA Astrophysics Data System (ADS)
Tian, Lei; Waller, Laura
2017-05-01
Microscope lenses can have either large field of view (FOV) or high resolution, not both. Computational microscopy based on illumination coding circumvents this limit by fusing images from different illumination angles using nonlinear optimization algorithms. The result is a Gigapixel-scale image having both wide FOV and high resolution. We demonstrate an experimentally robust reconstruction algorithm based on a 2nd order quasi-Newton's method, combined with a novel phase initialization scheme. To further extend the Gigapixel imaging capability to 3D, we develop a reconstruction method to process the 4D light field measurements from sequential illumination scanning. The algorithm is based on a 'multislice' forward model that incorporates both 3D phase and diffraction effects, as well as multiple forward scatterings. To solve the inverse problem, an iterative update procedure that combines both phase retrieval and 'error back-propagation' is developed. To avoid local minimum solutions, we further develop a novel physical model-based initialization technique that accounts for both the geometric-optic and 1st order phase effects. The result is robust reconstructions of Gigapixel 3D phase images having both wide FOV and super resolution in all three dimensions. Experimental results from an LED array microscope were demonstrated.
A comparison of neural network architectures for the prediction of MRR in EDM
NASA Astrophysics Data System (ADS)
Jena, A. R.; Das, Raja
2017-11-01
The aim of the research work is to predict the material removal rate of a work-piece in electrical discharge machining (EDM). Here, an effort has been made to predict the material removal rate through back-propagation neural network (BPN) and radial basis function neural network (RBFN) for a work-piece of AISI D2 steel. The input parameters for the architecture are discharge-current (Ip), pulse-duration (Ton), and duty-cycle (τ) taken for consideration to obtained the output for material removal rate of the work-piece. In the architecture, it has been observed that radial basis function neural network is comparatively faster than back-propagation neural network but logically back-propagation neural network results more real value. Therefore BPN may consider as a better process in this architecture for consistent prediction to save time and money for conducting experiments.
Dictionary learning based noisy image super-resolution via distance penalty weight model
Han, Yulan; Zhao, Yongping; Wang, Qisong
2017-01-01
In this study, we address the problem of noisy image super-resolution. Noisy low resolution (LR) image is always obtained in applications, while most of the existing algorithms assume that the LR image is noise-free. As to this situation, we present an algorithm for noisy image super-resolution which can achieve simultaneously image super-resolution and denoising. And in the training stage of our method, LR example images are noise-free. For different input LR images, even if the noise variance varies, the dictionary pair does not need to be retrained. For the input LR image patch, the corresponding high resolution (HR) image patch is reconstructed through weighted average of similar HR example patches. To reduce computational cost, we use the atoms of learned sparse dictionary as the examples instead of original example patches. We proposed a distance penalty model for calculating the weight, which can complete a second selection on similar atoms at the same time. Moreover, LR example patches removed mean pixel value are also used to learn dictionary rather than just their gradient features. Based on this, we can reconstruct initial estimated HR image and denoised LR image. Combined with iterative back projection, the two reconstructed images are applied to obtain final estimated HR image. We validate our algorithm on natural images and compared with the previously reported algorithms. Experimental results show that our proposed method performs better noise robustness. PMID:28759633
Dynamically stable associative learning: a neurobiologically based ANN and its applications
NASA Astrophysics Data System (ADS)
Vogl, Thomas P.; Blackwell, Kim L.; Barbour, Garth; Alkon, Daniel L.
1992-07-01
Most currently popular artificial neural networks (ANN) are based on conceptions of neuronal properties that date back to the 1940s and 50s, i.e., to the ideas of McCullough, Pitts, and Hebb. Dystal is an ANN based on current knowledge of neurobiology at the cellular and subcellular level. Networks based on these neurobiological insights exhibit the following advantageous properties: (1) A theoretical storage capacity of bN non-orthogonal memories, where N is the number of output neurons sharing common inputs and b is the number of distinguishable (gray shade) levels. (2) The ability to learn, store, and recall associations among noisy, arbitrary patterns. (3) A local synaptic learning rule (learning depends neither on the output of the post-synaptic neuron nor on a global error term), some of whose consequences are: (4) Feed-forward, lateral, and feed-back connections (as well as time-sensitive connections) are possible without alteration of the learning algorithm; (5) Storage allocation (patch creation) proceeds dynamically as associations are learned (self- organizing); (6) The number of training set presentations required for learning is small (< 10) and does not change with pattern size or content; and (7) The network exhibits monotonic convergence, reaching equilibrium (fully trained) values without oscillating. The performance of Dystal on pattern completion tasks such as faces with different expressions and/or corrupted by noise, and on reading hand-written digits (98% accuracy) and hand-printed Japanese Kanji (90% accuracy) is demonstrated.
Dynamics and Stability of Acoustic Wavefronts in the Ocean
2014-09-30
processes on underwater acoustic fields. The 3-D HWT algorithm was also applied to investigate long- range propagation of infrasound in the atmosphere...oceanographic processes on underwater sound propagation and also has been demonstrated to be an efficient and robust technique for modeling infrasound ...algorithm by modeling propagation of infrasound generated by Eyjafjallajökull volcano in southern Iceland. Eruptions of this volcano were recorded by
NASA Astrophysics Data System (ADS)
Timoney, Padraig; Kagalwala, Taher; Reis, Edward; Lazkani, Houssam; Hurley, Jonathan; Liu, Haibo; Kang, Charles; Isbester, Paul; Yellai, Naren; Shifrin, Michael; Etzioni, Yoav
2018-03-01
In recent years, the combination of device scaling, complex 3D device architecture and tightening process tolerances have strained the capabilities of optical metrology tools to meet process needs. Two main categories of approaches have been taken to address the evolving process needs. In the first category, new hardware configurations are developed to provide more spectral sensitivity. Most of this category of work will enable next generation optical metrology tools to try to maintain pace with next generation process needs. In the second category, new innovative algorithms have been pursued to increase the value of the existing measurement signal. These algorithms aim to boost sensitivity to the measurement parameter of interest, while reducing the impact of other factors that contribute to signal variability but are not influenced by the process of interest. This paper will evaluate the suitability of machine learning to address high volume manufacturing metrology requirements in both front end of line (FEOL) and back end of line (BEOL) sectors from advanced technology nodes. In the FEOL sector, initial feasibility has been demonstrated to predict the fin CD values from an inline measurement using machine learning. In this study, OCD spectra were acquired after an etch process that occurs earlier in the process flow than where the inline CD is measured. The fin hard mask etch process is known to impact the downstream inline CD value. Figure 1 shows the correlation of predicted CD vs downstream inline CD measurement obtained after the training of the machine learning algorithm. For BEOL, machine learning is shown to provide an additional source of information in prediction of electrical resistance from structures that are not compatible for direct copper height measurement. Figure 2 compares the trench height correlation to electrical resistance (Rs) and the correlation of predicted Rs to the e-test Rs value for a far back end of line (FBEOL) metallization level across 3 products. In the case of product C, it is found that the predicted Rs correlation to the e-test value is significantly improved utilizing spectra acquired at the e-test structure. This paper will explore the considerations required to enable use of machine learning derived metrology output to enable improved process monitoring and control. Further results from the FEOL and BEOL sectors will be presented, together with further discussion on future proliferation of machine learning based metrology solutions in high volume manufacturing.
A total variation diminishing finite difference algorithm for sonic boom propagation models
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.
1993-01-01
It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.
Imaging tilted transversely isotropic media with a generalised screen propagator
NASA Astrophysics Data System (ADS)
Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee
2015-01-01
One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.
Catalytic Ignition and Upstream Reaction Propagation in Monolith Reactors
NASA Technical Reports Server (NTRS)
Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.
2007-01-01
Using numerical simulations, this work demonstrates a concept called back-end ignition for lighting-off and pre-heating a catalytic monolith in a power generation system. In this concept, a downstream heat source (e.g. a flame) or resistive heating in the downstream portion of the monolith initiates a localized catalytic reaction which subsequently propagates upstream and heats the entire monolith. The simulations used a transient numerical model of a single catalytic channel which characterizes the behavior of the entire monolith. The model treats both the gas and solid phases and includes detailed homogeneous and heterogeneous reactions. An important parameter in the model for back-end ignition is upstream heat conduction along the solid. The simulations used both dry and wet CO chemistry as a model fuel for the proof-of-concept calculations; the presence of water vapor can trigger homogenous reactions, provided that gas-phase temperatures are adequately high and there is sufficient fuel remaining after surface reactions. With sufficiently high inlet equivalence ratio, back-end ignition occurs using the thermophysical properties of both a ceramic and metal monolith (coated with platinum in both cases), with the heat-up times significantly faster for the metal monolith. For lower equivalence ratios, back-end ignition occurs without upstream propagation. Once light-off and propagation occur, the inlet equivalence ratio could be reduced significantly while still maintaining an ignited monolith as demonstrated by calculations using complete monolith heating.
Optimal and adaptive methods of processing hydroacoustic signals (review)
NASA Astrophysics Data System (ADS)
Malyshkin, G. S.; Sidel'nikov, G. B.
2014-09-01
Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.
Automated global structure extraction for effective local building block processing in XCS.
Butz, Martin V; Pelikan, Martin; Llorà, Xavier; Goldberg, David E
2006-01-01
Learning Classifier Systems (LCSs), such as the accuracy-based XCS, evolve distributed problem solutions represented by a population of rules. During evolution, features are specialized, propagated, and recombined to provide increasingly accurate subsolutions. Recently, it was shown that, as in conventional genetic algorithms (GAs), some problems require efficient processing of subsets of features to find problem solutions efficiently. In such problems, standard variation operators of genetic and evolutionary algorithms used in LCSs suffer from potential disruption of groups of interacting features, resulting in poor performance. This paper introduces efficient crossover operators to XCS by incorporating techniques derived from competent GAs: the extended compact GA (ECGA) and the Bayesian optimization algorithm (BOA). Instead of simple crossover operators such as uniform crossover or one-point crossover, ECGA or BOA-derived mechanisms are used to build a probabilistic model of the global population and to generate offspring classifiers locally using the model. Several offspring generation variations are introduced and evaluated. The results show that it is possible to achieve performance similar to runs with an informed crossover operator that is specifically designed to yield ideal problem-dependent exploration, exploiting provided problem structure information. Thus, we create the first competent LCSs, XCS/ECGA and XCS/BOA, that detect dependency structures online and propagate corresponding lower-level dependency structures effectively without any information about these structures given in advance.
NASA Astrophysics Data System (ADS)
Suh, Donghyuk; Radak, Brian K.; Chipot, Christophe; Roux, Benoît
2018-01-01
Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample the configurational space of complex molecular systems. However, brute-force MD often converges slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been proposed to address this problem by effectively smoothing the potential energy surface. However, in order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator combining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic system is dynamically propagated for some period of time using standard equilibrium MD on the correct potential energy surface; (ii) the system is then propagated for a brief period of time during what is referred to as a "boosting phase," via a time-dependent Hamiltonian that is evolved toward the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescription is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecular systems indicate that the method can yield a significant speedup.
Suh, Donghyuk; Radak, Brian K; Chipot, Christophe; Roux, Benoît
2018-01-07
Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample the configurational space of complex molecular systems. However, brute-force MD often converges slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been proposed to address this problem by effectively smoothing the potential energy surface. However, in order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator combining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic system is dynamically propagated for some period of time using standard equilibrium MD on the correct potential energy surface; (ii) the system is then propagated for a brief period of time during what is referred to as a "boosting phase," via a time-dependent Hamiltonian that is evolved toward the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescription is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecular systems indicate that the method can yield a significant speedup.
MRI Brain Tumor Segmentation and Necrosis Detection Using Adaptive Sobolev Snakes.
Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen
2014-03-21
Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at different points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D diffusion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.
MRI brain tumor segmentation and necrosis detection using adaptive Sobolev snakes
NASA Astrophysics Data System (ADS)
Nakhmani, Arie; Kikinis, Ron; Tannenbaum, Allen
2014-03-01
Brain tumor segmentation in brain MRI volumes is used in neurosurgical planning and illness staging. It is important to explore the tumor shape and necrosis regions at di erent points of time to evaluate the disease progression. We propose an algorithm for semi-automatic tumor segmentation and necrosis detection. Our algorithm consists of three parts: conversion of MRI volume to a probability space based on the on-line learned model, tumor probability density estimation, and adaptive segmentation in the probability space. We use manually selected acceptance and rejection classes on a single MRI slice to learn the background and foreground statistical models. Then, we propagate this model to all MRI slices to compute the most probable regions of the tumor. Anisotropic 3D di usion is used to estimate the probability density. Finally, the estimated density is segmented by the Sobolev active contour (snake) algorithm to select smoothed regions of the maximum tumor probability. The segmentation approach is robust to noise and not very sensitive to the manual initialization in the volumes tested. Also, it is appropriate for low contrast imagery. The irregular necrosis regions are detected by using the outliers of the probability distribution inside the segmented region. The necrosis regions of small width are removed due to a high probability of noisy measurements. The MRI volume segmentation results obtained by our algorithm are very similar to expert manual segmentation.
Kar, Subrata; Majumder, D Dutta
2017-08-01
Investigation of brain cancer can detect the abnormal growth of tissue in the brain using computed tomography (CT) scans and magnetic resonance (MR) images of patients. The proposed method classifies brain cancer on shape-based feature extraction as either benign or malignant. The authors used input variables such as shape distance (SD) and shape similarity measure (SSM) in fuzzy tools, and used fuzzy rules to evaluate the risk status as an output variable. We presented a classifier neural network system (NNS), namely Levenberg-Marquardt (LM), which is a feed-forward back-propagation learning algorithm used to train the NN for the status of brain cancer, if any, and which achieved satisfactory performance with 100% accuracy. The proposed methodology is divided into three phases. First, we find the region of interest (ROI) in the brain to detect the tumors using CT and MR images. Second, we extract the shape-based features, like SD and SSM, and grade the brain tumors as benign or malignant with the concept of SD function and SSM as shape-based parameters. Third, we classify the brain cancers using neuro-fuzzy tools. In this experiment, we used a 16-sample database with SSM (μ) values and classified the benignancy or malignancy of the brain tumor lesions using the neuro-fuzzy system (NFS). We have developed a fuzzy expert system (FES) and NFS for early detection of brain cancer from CT and MR images. In this experiment, shape-based features, such as SD and SSM, were extracted from the ROI of brain tumor lesions. These shape-based features were considered as input variables and, using fuzzy rules, we were able to evaluate brain cancer risk values for each case. We used an NNS with LM, a feed-forward back-propagation learning algorithm, as a classifier for the diagnosis of brain cancer and achieved satisfactory performance with 100% accuracy. The proposed network was trained with MR image datasets of 16 cases. The 16 cases were fed to the ANN with 2 input neurons, one hidden layer of 10 neurons and 2 output neurons. Of the 16-sample database, 10 datasets for training, 3 datasets for validation, and 3 datasets for testing were used in the ANN classification system. From the SSM (µ) confusion matrix, the number of output datasets of true positive, false positive, true negative and false negative was 6, 0, 10, and 0, respectively. The sensitivity, specificity and accuracy were each equal to 100%. The method of diagnosing brain cancer presented in this study is a successful model to assist doctors in the screening and treatment of brain cancer patients. The presented FES successfully identified the presence of brain cancer in CT and MR images using the extracted shape-based features and the use of NFS for the identification of brain cancer in the early stages. From the analysis and diagnosis of the disease, the doctors can decide the stage of cancer and take the necessary steps for more accurate treatment. Here, we have presented an investigation and comparison study of the shape-based feature extraction method with the use of NFS for classifying brain tumors as showing normal or abnormal patterns. The results have proved that the shape-based features with the use of NFS can achieve a satisfactory performance with 100% accuracy. We intend to extend this methodology for the early detection of cancer in other regions such as the prostate region and human cervix.
Seismic waveform classification using deep learning
NASA Astrophysics Data System (ADS)
Kong, Q.; Allen, R. M.
2017-12-01
MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It has an Artificial Neural Network (ANN) algorithm running on the phone to distinguish earthquake motion from human activities recorded by the accelerometer on board. Once the ANN detects earthquake-like motion, it sends a 5-min chunk of acceleration data back to the server for further analysis. The time-series data collected contains both earthquake data and human activity data that the ANN confused. In this presentation, we will show the Convolutional Neural Network (CNN) we built under the umbrella of supervised learning to find out the earthquake waveform. The waveforms of the recorded motion could treat easily as images, and by taking the advantage of the power of CNN processing the images, we achieved very high successful rate to select the earthquake waveforms out. Since there are many non-earthquake waveforms than the earthquake waveforms, we also built an anomaly detection algorithm using the CNN. Both these two methods can be easily extended to other waveform classification problems.
Heterogeneous Multi-Robot Multi-Sensor Platform for Intruder Detection
2009-09-15
propagation model, with variance τi: si ~ N(b0i + b1i *logDi, τ i). The initial parameters (b0i, b1i, τ i ) of the model are unknown, and the training...that the advantage of MOO-learned mode would become more significant over time compared with the other mode. 1 2 3 4 5 6 7 0 0.05 0.1 0.15 0.2...nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II,” in Parallel Problem Solving from Nature (PPSN VI), M. Schoenauer
Laser beam modeling in optical storage systems
NASA Technical Reports Server (NTRS)
Treptau, J. P.; Milster, T. D.; Flagello, D. G.
1991-01-01
A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.
The A-Current Modulates Learning via NMDA Receptors Containing the NR2B Subunit
Fontán-Lozano, Ángela; Suárez-Pereira, Irene; González-Forero, David; Carrión, Ángel Manuel
2011-01-01
Synaptic plasticity involves short- and long-term events, although the molecular mechanisms that underlie these processes are not fully understood. The transient A-type K+ current (IA) controls the excitability of the dendrites from CA1 pyramidal neurons by regulating the back-propagation of action potentials and shaping synaptic input. Here, we have studied how decreases in IA affect cognitive processes and synaptic plasticity. Using wild-type mice treated with 4-AP, an IA inhibitor, and mice lacking the DREAM protein, a transcriptional repressor and modulator of the IA, we demonstrate that impairment of IA decreases the stimulation threshold for learning and the induction of early-LTP. Hippocampal electrical recordings in both models revealed alterations in basal electrical oscillatory properties toward low-theta frequencies. In addition, we demonstrated that the facilitated learning induced by decreased IA requires the activation of NMDA receptors containing the NR2B subunit. Together, these findings point to a balance between the IA and the activity of NR2B-containing NMDA receptors in the regulation of learning. PMID:21966384
Zhao, Tuo; Liu, Han
2016-01-01
We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430
Propagating Qualitative Values Through Quantitative Equations
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak
1992-01-01
In most practical problems where traditional numeric simulation is not adequate, one need to reason about a system with both qualitative and quantitative equations. In this paper, we address the problem of propagating qualitative values represented as interval values through quantitative equations. Previous research has produced exponential-time algorithms for approximate solution of the problem. These may not meet the stringent requirements of many real time applications. This paper advances the state of art by producing a linear-time algorithm that can propagate a qualitative value through a class of complex quantitative equations exactly and through arbitrary algebraic expressions approximately. The algorithm was found applicable to Space Shuttle Reaction Control System model.
Prestack reverse time migration for tilted transversely isotropic media
NASA Astrophysics Data System (ADS)
Jang, Seonghyung; Hien, Doan Huy
2013-04-01
According to having interest in unconventional resource plays, anisotropy problem is naturally considered as an important step for improving the seismic image quality. Although it is well known prestack depth migration for the seismic reflection data is currently one of the powerful tools for imaging complex geological structures, it may lead to migration error without considering anisotropy. Asymptotic analysis of wave propagation in transversely isotropic (TI) media yields a dispersion relation of couple P- and SV wave modes that can be converted to a fourth order scalar partial differential equation (PDE). By setting the shear wave velocity equal zero, the fourth order PDE, called an acoustic wave equation for TI media, can be reduced to couple of second order PDE systems and we try to solve the second order PDE by the finite difference method (FDM). The result of this P wavefield simulation is kinematically similar to elastic and anisotropic wavefield simulation. We develop prestack depth migration algorithm for tilted transversely isotropic media using reverse time migration method (RTM). RTM is a method for imaging the subsurface using inner product of source wavefield extrapolation in forward and receiver wavefield extrapolation in backward. We show the subsurface image in TTI media using the inner product of partial derivative wavefield with respect to physical parameters and observation data. Since the partial derivative wavefields with respect to the physical parameters require extremely huge computing time, so we implemented the imaging condition by zero lag crosscorrelation of virtual source and back propagating wavefield instead of partial derivative wavefields. The virtual source is calculated directly by solving anisotropic acoustic wave equation, the back propagating wavefield on the other hand is calculated by the shot gather used as the source function in the anisotropic acoustic wave equation. According to the numerical model test for a simple geological model including syncline and anticline, the prestack depth migration using TTI-RTM in weak anisotropic media shows the subsurface image is similar to the true geological model used to generate the shot gathers.
The prediction in computer color matching of dentistry based on GA+BP neural network.
Li, Haisheng; Lai, Long; Chen, Li; Lu, Cheng; Cai, Qiang
2015-01-01
Although the use of computer color matching can reduce the influence of subjective factors by technicians, matching the color of a natural tooth with a ceramic restoration is still one of the most challenging topics in esthetic prosthodontics. Back propagation neural network (BPNN) has already been introduced into the computer color matching in dentistry, but it has disadvantages such as unstable and low accuracy. In our study, we adopt genetic algorithm (GA) to optimize the initial weights and threshold values in BPNN for improving the matching precision. To our knowledge, we firstly combine the BPNN with GA in computer color matching in dentistry. Extensive experiments demonstrate that the proposed method improves the precision and prediction robustness of the color matching in restorative dentistry.
Parametric study of closed wet cooling tower thermal performance
NASA Astrophysics Data System (ADS)
Qasim, S. M.; Hayder, M. J.
2017-08-01
The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.
A Report of Bethune-Cookman College NASA JOVE Projects
NASA Technical Reports Server (NTRS)
Agba, Lawrence C.; David, Sunil K.; Rao, Narsing G.; Rahmani, Munir A.
1997-01-01
This document is the final report for the Joint Venture (JOVE) in Space Sciences, and describes the tasks, performed with the support of the contract. These tasks include work in: (1) interfacing microprocessor systems to high performance parallel interface chips, SCSI drive and memory, needed for the implementation of a Space Optical Data Recorder; (2) designing a digital interface architecture for a microprocessor controlled sensors monitoring unit for a NASA Jitter Attenuation and Dynamics Experiment (JADE) project; (3) developing an enhanced back-propagation training algorithm; (4) studying the effect of simulated spaceflight on Aortic Contractility; (5) developing a course in astronomy; and (6) improving internet access by running cables, and installing hubs in various places on the campus; and (7) researching the characteristics of Nd:YALO laser resonator.
Affinity learning with diffusion on tensor product graph.
Yang, Xingwei; Prasad, Lakshman; Latecki, Longin Jan
2013-01-01
In many applications, we are given a finite set of data points sampled from a data manifold and represented as a graph with edge weights determined by pairwise similarities of the samples. Often the pairwise similarities (which are also called affinities) are unreliable due to noise or due to intrinsic difficulties in estimating similarity values of the samples. As observed in several recent approaches, more reliable similarities can be obtained if the original similarities are diffused in the context of other data points, where the context of each point is a set of points most similar to it. Compared to the existing methods, our approach differs in two main aspects. First, instead of diffusing the similarity information on the original graph, we propose to utilize the tensor product graph (TPG) obtained by the tensor product of the original graph with itself. Since TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities. However, it comes at the price of higher order computational complexity and storage requirement. The key contribution of the proposed approach is that the information propagation on TPG can be computed with the same computational complexity and the same amount of storage as the propagation on the original graph. We prove that a graph diffusion process on TPG is equivalent to a novel iterative algorithm on the original graph, which is guaranteed to converge. After its convergence we obtain new edge weights that can be interpreted as new, learned affinities. We stress that the affinities are learned in an unsupervised setting. We illustrate the benefits of the proposed approach for data manifolds composed of shapes, images, and image patches on two very different tasks of image retrieval and image segmentation. With learned affinities, we achieve the bull's eye retrieval score of 99.99 percent on the MPEG-7 shape dataset, which is much higher than the state-of-the-art algorithms. When the data- points are image patches, the NCut with the learned affinities not only significantly outperforms the NCut with the original affinities, but it also outperforms state-of-the-art image segmentation methods.
Time reversal for localization of sources of infrasound signals in a windy stratified atmosphere.
Lonzaga, Joel B
2016-06-01
Time reversal is used for localizing sources of recorded infrasound signals propagating in a windy, stratified atmosphere. Due to the convective effect of the background flow, the back-azimuths of the recorded signals can be substantially different from the source back-azimuth, posing a significant difficulty in source localization. The back-propagated signals are characterized by negative group velocities from which the source back-azimuth and source-to-receiver (STR) distance can be estimated using the apparent back-azimuths and trace velocities of the signals. The method is applied to several distinct infrasound arrivals recorded by two arrays in the Netherlands. The infrasound signals were generated by the Buncefield oil depot explosion in the U.K. in December 2005. Analyses show that the method can be used to substantially enhance estimates of the source back-azimuth and the STR distance. In one of the arrays, for instance, the deviations between the measured back-azimuths of the signals and the known source back-azimuth are quite large (-1° to -7°), whereas the deviations between the predicted and known source back-azimuths are small with an absolute mean value of <1°. Furthermore, the predicted STR distance is off only by <5% of the known STR distance.
Moghtadaei, Motahareh; Hashemi Golpayegani, Mohammad Reza; Malekzadeh, Reza
2013-02-07
Identification of squamous dysplasia and esophageal squamous cell carcinoma (ESCC) is of great importance in prevention of cancer incidence. Computer aided algorithms can be very useful for identification of people with higher risks of squamous dysplasia, and ESCC. Such method can limit the clinical screenings to people with higher risks. Different regression methods have been used to predict ESCC and dysplasia. In this paper, a Fuzzy Neural Network (FNN) model is selected for ESCC and dysplasia prediction. The inputs to the classifier are the risk factors. Since the relation between risk factors in the tumor system has a complex nonlinear behavior, in comparison to most of ordinary data, the cost function of its model can have more local optimums. Thus the need for global optimization methods is more highlighted. The proposed method in this paper is a Chaotic Optimization Algorithm (COA) proceeding by the common Error Back Propagation (EBP) local method. Since the model has many parameters, we use a strategy to reduce the dependency among parameters caused by the chaotic series generator. This dependency was not considered in the previous COA methods. The algorithm is compared with logistic regression model as the latest successful methods of ESCC and dysplasia prediction. The results represent a more precise prediction with less mean and variance of error. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gram-Schmidt algorithms for covariance propagation
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1977-01-01
This paper addresses the time propagation of triangular covariance factors. Attention is focused on the square-root free factorization, P = UD(transpose of U), where U is unit upper triangular and D is diagonal. An efficient and reliable algorithm for U-D propagation is derived which employs Gram-Schmidt orthogonalization. Partitioning the state vector to distinguish bias and coloured process noise parameters increase mapping efficiency. Cost comparisons of the U-D, Schmidt square-root covariance and conventional covariance propagation methods are made using weighted arithmetic operation counts. The U-D time update is shown to be less costly than the Schmidt method; and, except in unusual circumstances, it is within 20% of the cost of conventional propagation.
Gram-Schmidt algorithms for covariance propagation
NASA Technical Reports Server (NTRS)
Thornton, C. L.; Bierman, G. J.
1975-01-01
This paper addresses the time propagation of triangular covariance factors. Attention is focused on the square-root free factorization, P = UDU/T/, where U is unit upper triangular and D is diagonal. An efficient and reliable algorithm for U-D propagation is derived which employs Gram-Schmidt orthogonalization. Partitioning the state vector to distinguish bias and colored process noise parameters increases mapping efficiency. Cost comparisons of the U-D, Schmidt square-root covariance and conventional covariance propagation methods are made using weighted arithmetic operation counts. The U-D time update is shown to be less costly than the Schmidt method; and, except in unusual circumstances, it is within 20% of the cost of conventional propagation.
Development of neural network techniques for finger-vein pattern classification
NASA Astrophysics Data System (ADS)
Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen
2010-02-01
A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.
1993-01-01
This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.
Network propagation in the cytoscape cyberinfrastructure.
Carlin, Daniel E; Demchak, Barry; Pratt, Dexter; Sage, Eric; Ideker, Trey
2017-10-01
Network propagation is an important and widely used algorithm in systems biology, with applications in protein function prediction, disease gene prioritization, and patient stratification. However, up to this point it has required significant expertise to run. Here we extend the popular network analysis program Cytoscape to perform network propagation as an integrated function. Such integration greatly increases the access to network propagation by putting it in the hands of biologists and linking it to the many other types of network analysis and visualization available through Cytoscape. We demonstrate the power and utility of the algorithm by identifying mutations conferring resistance to Vemurafenib.
Intelligent Machine Learning Approaches for Aerospace Applications
NASA Astrophysics Data System (ADS)
Sathyan, Anoop
Machine Learning is a type of artificial intelligence that provides machines or networks the ability to learn from data without the need to explicitly program them. There are different kinds of machine learning techniques. This thesis discusses the applications of two of these approaches: Genetic Fuzzy Logic and Convolutional Neural Networks (CNN). Fuzzy Logic System (FLS) is a powerful tool that can be used for a wide variety of applications. FLS is a universal approximator that reduces the need for complex mathematics and replaces it with expert knowledge of the system to produce an input-output mapping using If-Then rules. The expert knowledge of a system can help in obtaining the parameters for small-scale FLSs, but for larger networks we will need to use sophisticated approaches that can automatically train the network to meet the design requirements. This is where Genetic Algorithms (GA) and EVE come into the picture. Both GA and EVE can tune the FLS parameters to minimize a cost function that is designed to meet the requirements of the specific problem. EVE is an artificial intelligence developed by Psibernetix that is trained to tune large scale FLSs. The parameters of an FLS can include the membership functions and rulebase of the inherent Fuzzy Inference Systems (FISs). The main issue with using the GFS is that the number of parameters in a FIS increase exponentially with the number of inputs thus making it increasingly harder to tune them. To reduce this issue, the FLSs discussed in this thesis consist of 2-input-1-output FISs in cascade (Chapter 4) or as a layer of parallel FISs (Chapter 7). We have obtained extremely good results using GFS for different applications at a reduced computational cost compared to other algorithms that are commonly used to solve the corresponding problems. In this thesis, GFSs have been designed for controlling an inverted double pendulum, a task allocation problem of clustering targets amongst a set of UAVs, a fire detection problem and the aircraft conflict resolution problem. During the last decade, CNNs have become increasingly popular in the domain of image and speech processing. CNNs have a lot more parameters compared to GFSs that are tuned using the back-propagation algorithm. CNNs typically have hundreds of thousands or maybe millions of parameters that are tuned using common cost functions such as integral squared error, softmax loss etc. Chapter 5 discusses a classification problem to classify images as humans or not and Chapter 6 discusses a regression task using CNN for producing an approximate near-optimal route for the Traveling Salesman Problem (TSP) which is regarded as one of the most complicated decision making problem. Both the GFS and CNN are used to develop intelligent systems specific to the application providing them computational efficiency, robustness in the face of uncertainties and scalability.
Scene segmentation of natural images using texture measures and back-propagation
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Phatak, Anil; Chatterji, Gano
1993-01-01
Knowledge of the three-dimensional world is essential for many guidance and navigation applications. A sequence of images from an electro-optical sensor can be processed using optical flow algorithms to provide a sparse set of ranges as a function of azimuth and elevation. A natural way to enhance the range map is by interpolation. However, this should be undertaken with care since interpolation assumes continuity of range. The range is continuous in certain parts of the image and can jump at object boundaries. In such situations, the ability to detect homogeneous object regions by scene segmentation can be used to determine regions in the range map that can be enhanced by interpolation. The use of scalar features derived from the spatial gray-level dependence matrix for texture segmentation is explored. Thresholding of histograms of scalar texture features is done for several images to select scalar features which result in a meaningful segmentation of the images. Next, the selected scalar features are used with a neural net to automate the segmentation procedure. Back-propagation is used to train the feed forward neural network. The generalization of the network approach to subsequent images in the sequence is examined. It is shown that the use of multiple scalar features as input to the neural network result in a superior segmentation when compared with a single scalar feature. It is also shown that the scalar features, which are not useful individually, result in a good segmentation when used together. The methodology is applied to both indoor and outdoor images.
NASA Astrophysics Data System (ADS)
Morad, Amin Moniri; Sattarvand, Javad
2013-12-01
Maintenance cost of the equipment is one of the most important portions of the operating expenditures in mines; therefore, any change in the equipment productivity can lead to major changes in the unit cost of the production. This clearly shows the importance and necessity of using novel maintenance methods instead of traditional approaches, in order to reach the minimum sudden occurrence of the equipment failure. For instance, the tires are costly components in maintenance which should be regularly inspected and replaced among different axles. The paper investigates the current condition of equipment tires at Sungun Copper Mine and uses neural networks to estimate the wear of the tires. The Input parameters of the network composed of initial tread depth, time of inspection and consumed tread depth by the time of inspection. The output of the network is considered as the residual service time ratio of the tires. The network trained by the feed-forward back propagation learning algorithm. Results revealed a good coincidence between the real and estimated values as 96.6% of correlation coefficient. Hence, better decisions could be made about the tires to reduce the sudden failures and equipment breakdowns. Koszty użytkowania sprzętu stanowią jedną z najpoważniejszych pozycji w zestawieniu kosztów eksploatacyjnych kopalni, dlatego też każda poprawa wydajności sprzętu powoduje w efekcie zmianę jednostkowego kosztu produkcji. Wyraźnie pokazuje to wagę i konieczność stosowania nowoczesnych metod eksploatacji w miejsce podejścia tradycyjnego w celu minimalizacji ryzyka wystąpienia awarii sprzętu. Przykładowo, opony są elementami kosztownymi w eksploatacji, wymagają regularnego przeglądu i ponownego mocowania na osi. W artykule przebadano stan techniczny opon w maszynach i urządzeniach eksploatowanych w kopalni miedzi Sungun. Przy zastosowaniu metod wykorzystujących sieci neuronowe określano zużycie opon. Parametry wejściowe sieci to początkowa głębokość bieżnika, okres pomiędzy przeglądami, zużycie bieżnika do czasu przeglądu. Parametr wyjściowy to współczynnik określającyczas serwisowania opon. Sieć uczono przy użyciu algorytmu propagacji wstecznej z wyprzedzeniem (feedforward back-propagation algorithm). Uzyskane wyniki wskazują wysoką zbieżność pomiędzy wartościami rzeczywistymi a estymowanymi, współczynnik korelacji kształtuje się na poziomie 96.6%. Umożliwia to podejmowanie lepszych decyzji w odniesieniu do eksploatacji opon, tak by zapobiec nagłym uszkodzeniom i awariom sprzętu.
Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks
Brosch, Tobias; Neumann, Heiko; Roelfsema, Pieter R.
2015-01-01
The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies. PMID:26496502
Page, Tessa; Nguyen, Huong Thi Huynh; Hilts, Lindsey; Ramos, Lorena; Hanrahan, Grady
2012-06-01
This work reveals a computational framework for parallel electrophoretic separation of complex biological macromolecules and model urinary metabolites. More specifically, the implementation of a particle swarm optimization (PSO) algorithm on a neural network platform for multiparameter optimization of multiplexed 24-capillary electrophoresis technology with UV detection is highlighted. Two experimental systems were examined: (1) separation of purified rabbit metallothioneins and (2) separation of model toluene urinary metabolites and selected organic acids. Results proved superior to the use of neural networks employing standard back propagation when examining training error, fitting response, and predictive abilities. Simulation runs were obtained as a result of metaheuristic examination of the global search space with experimental responses in good agreement with predicted values. Full separation of selected analytes was realized after employing optimal model conditions. This framework provides guidance for the application of metaheuristic computational tools to aid in future studies involving parallel chemical separation and screening. Adaptable pseudo-code is provided to enable users of varied software packages and modeling framework to implement the PSO algorithm for their desired use.
A Dynamic Health Assessment Approach for Shearer Based on Artificial Immune Algorithm
Wang, Zhongbin; Xu, Xihua; Si, Lei; Ji, Rui; Liu, Xinhua; Tan, Chao
2016-01-01
In order to accurately identify the dynamic health of shearer, reducing operating trouble and production accident of shearer and improving coal production efficiency further, a dynamic health assessment approach for shearer based on artificial immune algorithm was proposed. The key technologies such as system framework, selecting the indicators for shearer dynamic health assessment, and health assessment model were provided, and the flowchart of the proposed approach was designed. A simulation example, with an accuracy of 96%, based on the collected data from industrial production scene was provided. Furthermore, the comparison demonstrated that the proposed method exhibited higher classification accuracy than the classifiers based on back propagation-neural network (BP-NN) and support vector machine (SVM) methods. Finally, the proposed approach was applied in an engineering problem of shearer dynamic health assessment. The industrial application results showed that the paper research achievements could be used combining with shearer automation control system in fully mechanized coal face. The simulation and the application results indicated that the proposed method was feasible and outperforming others. PMID:27123002
Xu, Yingjie; Gao, Tian
2016-01-01
Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343
Wang, Liang; Yang, Die; Fang, Cheng; Chen, Zuliang; Lesniewski, Peter J; Mallavarapu, Megharaj; Naidu, Ravendra
2015-01-01
Sodium potassium absorption ratio (SPAR) is an important measure of agricultural water quality, wherein four exchangeable cations (K(+), Na(+), Ca(2+) and Mg(2+)) should be simultaneously determined. An ISE-array is suitable for this application because its simplicity, rapid response characteristics and lower cost. However, cross-interferences caused by the poor selectivity of ISEs need to be overcome using multivariate chemometric methods. In this paper, a solid contact ISE array, based on a Prussian blue modified glassy carbon electrode (PB-GCE), was applied with a novel chemometric strategy. One of the most popular independent component analysis (ICA) methods, the fast fixed-point algorithm for ICA (fastICA), was implemented by the genetic algorithm (geneticICA) to avoid the local maxima problem commonly observed with fastICA. This geneticICA can be implemented as a data preprocessing method to improve the prediction accuracy of the Back-propagation neural network (BPNN). The ISE array system was validated using 20 real irrigation water samples from South Australia, and acceptable prediction accuracies were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhou, Fuqiang; Su, Zhen; Chai, Xinghua; Chen, Lipeng
2014-01-01
This paper proposes a new method to detect and identify foreign matter mixed in a plastic bottle filled with transfusion solution. A spin-stop mechanism and mixed illumination style are applied to obtain high contrast images between moving foreign matter and a static transfusion background. The Gaussian mixture model is used to model the complex background of the transfusion image and to extract moving objects. A set of features of moving objects are extracted and selected by the ReliefF algorithm, and optimal feature vectors are fed into the back propagation (BP) neural network to distinguish between foreign matter and bubbles. The mind evolutionary algorithm (MEA) is applied to optimize the connection weights and thresholds of the BP neural network to obtain a higher classification accuracy and faster convergence rate. Experimental results show that the proposed method can effectively detect visible foreign matter in 250-mL transfusion bottles. The misdetection rate and false alarm rate are low, and the detection accuracy and detection speed are satisfactory. PMID:25347581
Jacob, Samuel; Banerjee, Rintu
2016-08-01
A novel approach to overcome the acidification problem has been attempted in the present study by codigesting industrial potato waste (PW) with Pistia stratiotes (PS, an aquatic weed). The effectiveness of codigestion of the weed and PW was tested in an equal (1:1) proportion by weight with substrate concentration of 5g total solid (TS)/L (2.5gPW+2.5gPS) which resulted in enhancement of methane yield by 76.45% as compared to monodigestion of PW with a positive synergistic effect. Optimization of process parameters was conducted using central composite design (CCD) based response surface methodology (RSM) and artificial neural network (ANN) coupled genetic algorithm (GA) model. Upon comparison of these two optimization techniques, ANN-GA model obtained through feed forward back propagation methodology was found to be efficient and yielded 447.4±21.43LCH4/kgVSfed (0.279gCH4/kgCODvs) which is 6% higher as compared to the CCD-RSM based approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identification and classification of similar looking food grains
NASA Astrophysics Data System (ADS)
Anami, B. S.; Biradar, Sunanda D.; Savakar, D. G.; Kulkarni, P. V.
2013-01-01
This paper describes the comparative study of Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers by taking a case study of identification and classification of four pairs of similar looking food grains namely, Finger Millet, Mustard, Soyabean, Pigeon Pea, Aniseed, Cumin-seeds, Split Greengram and Split Blackgram. Algorithms are developed to acquire and process color images of these grains samples. The developed algorithms are used to extract 18 colors-Hue Saturation Value (HSV), and 42 wavelet based texture features. Back Propagation Neural Network (BPNN)-based classifier is designed using three feature sets namely color - HSV, wavelet-texture and their combined model. SVM model for color- HSV model is designed for the same set of samples. The classification accuracies ranging from 93% to 96% for color-HSV, ranging from 78% to 94% for wavelet texture model and from 92% to 97% for combined model are obtained for ANN based models. The classification accuracy ranging from 80% to 90% is obtained for color-HSV based SVM model. Training time required for the SVM based model is substantially lesser than ANN for the same set of images.
Identification and control of plasma vertical position using neural network in Damavand tokamak.
Rasouli, H; Rasouli, C; Koohi, A
2013-02-01
In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.
NASA Astrophysics Data System (ADS)
Sun, Chao; Zhang, Chunran; Gu, Xinfeng; Liu, Bin
2017-10-01
Constraints of the optimization objective are often unable to be met when predictive control is applied to industrial production process. Then, online predictive controller will not find a feasible solution or a global optimal solution. To solve this problem, based on Back Propagation-Auto Regressive with exogenous inputs (BP-ARX) combined control model, nonlinear programming method is used to discuss the feasibility of constrained predictive control, feasibility decision theorem of the optimization objective is proposed, and the solution method of soft constraint slack variables is given when the optimization objective is not feasible. Based on this, for the interval control requirements of the controlled variables, the slack variables that have been solved are introduced, the adaptive weighted interval predictive control algorithm is proposed, achieving adaptive regulation of the optimization objective and automatically adjust of the infeasible interval range, expanding the scope of the feasible region, and ensuring the feasibility of the interval optimization objective. Finally, feasibility and effectiveness of the algorithm is validated through the simulation comparative experiments.
Network-based stochastic semisupervised learning.
Silva, Thiago Christiano; Zhao, Liang
2012-03-01
Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.
Amiralizadeh, Siamak; Nguyen, An T; Rusch, Leslie A
2013-08-26
We investigate the performance of digital filter back-propagation (DFBP) using coarse parameter estimation for mitigating SOA nonlinearity in coherent communication systems. We introduce a simple, low overhead method for parameter estimation for DFBP based on error vector magnitude (EVM) as a figure of merit. The bit error rate (BER) penalty achieved with this method has negligible penalty as compared to DFBP with fine parameter estimation. We examine different bias currents for two commercial SOAs used as booster amplifiers in our experiments to find optimum operating points and experimentally validate our method. The coarse parameter DFBP efficiently compensates SOA-induced nonlinearity for both SOA types in 80 km propagation of 16-QAM signal at 22 Gbaud.
Stable architectures for deep neural networks
NASA Astrophysics Data System (ADS)
Haber, Eldad; Ruthotto, Lars
2018-01-01
Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.
Single-image super-resolution based on Markov random field and contourlet transform
NASA Astrophysics Data System (ADS)
Wu, Wei; Liu, Zheng; Gueaieb, Wail; He, Xiaohai
2011-04-01
Learning-based methods are well adopted in image super-resolution. In this paper, we propose a new learning-based approach using contourlet transform and Markov random field. The proposed algorithm employs contourlet transform rather than the conventional wavelet to represent image features and takes into account the correlation between adjacent pixels or image patches through the Markov random field (MRF) model. The input low-resolution (LR) image is decomposed with the contourlet transform and fed to the MRF model together with the contourlet transform coefficients from the low- and high-resolution image pairs in the training set. The unknown high-frequency components/coefficients for the input low-resolution image are inferred by a belief propagation algorithm. Finally, the inverse contourlet transform converts the LR input and the inferred high-frequency coefficients into the super-resolved image. The effectiveness of the proposed method is demonstrated with the experiments on facial, vehicle plate, and real scene images. A better visual quality is achieved in terms of peak signal to noise ratio and the image structural similarity measurement.
Belief Propagation Algorithm for Portfolio Optimization Problems
2015-01-01
The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm. PMID:26305462
Belief Propagation Algorithm for Portfolio Optimization Problems.
Shinzato, Takashi; Yasuda, Muneki
2015-01-01
The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.
A memory learning framework for effective image retrieval.
Han, Junwei; Ngan, King N; Li, Mingjing; Zhang, Hong-Jiang
2005-04-01
Most current content-based image retrieval systems are still incapable of providing users with their desired results. The major difficulty lies in the gap between low-level image features and high-level image semantics. To address the problem, this study reports a framework for effective image retrieval by employing a novel idea of memory learning. It forms a knowledge memory model to store the semantic information by simply accumulating user-provided interactions. A learning strategy is then applied to predict the semantic relationships among images according to the memorized knowledge. Image queries are finally performed based on a seamless combination of low-level features and learned semantics. One important advantage of our framework is its ability to efficiently annotate images and also propagate the keyword annotation from the labeled images to unlabeled images. The presented algorithm has been integrated into a practical image retrieval system. Experiments on a collection of 10,000 general-purpose images demonstrate the effectiveness of the proposed framework.
Yang, Cheng-Huei; Luo, Ching-Hsing; Yang, Cheng-Hong; Chuang, Li-Yeh
2004-01-01
Morse code is now being harnessed for use in rehabilitation applications of augmentative-alternative communication and assistive technology, including mobility, environmental control and adapted worksite access. In this paper, Morse code is selected as a communication adaptive device for disabled persons who suffer from muscle atrophy, cerebral palsy or other severe handicaps. A stable typing rate is strictly required for Morse code to be effective as a communication tool. This restriction is a major hindrance. Therefore, a switch adaptive automatic recognition method with a high recognition rate is needed. The proposed system combines counter-propagation networks with a variable degree variable step size LMS algorithm. It is divided into five stages: space recognition, tone recognition, learning process, adaptive processing, and character recognition. Statistical analyses demonstrated that the proposed method elicited a better recognition rate in comparison to alternative methods in the literature.
Numerical simulations of detonation propagation in gaseous fuel-air mixtures
NASA Astrophysics Data System (ADS)
Honhar, Praveen; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine
2017-11-01
Unsteady multidimensional numerical simulations of detonation propagation and survival in mixtures of fuel (hydrogen or methane) diluted with air were carried out with a fully compressible Navier-Stokes solver using a simplified chemical-diffusive model (CDM). The CDM was derived using a genetic algorithm combined with the Nelder-Mead optimization algorithm and reproduces physically correct laminar flame and detonation properties. Cases studied are overdriven detonations propagating through confined mediums, with or without gradients in composition. Results from simulations confirm that the survival of the detonation depends on the channel heights. In addition, the simulations show that the propagation of the detonation waves depends on the steepness in composition gradients.
A neural network construction method for surrogate modeling of physics-based analysis
NASA Astrophysics Data System (ADS)
Sung, Woong Je
In this thesis existing methodologies related to the developmental methods of neural networks have been surveyed and their approaches to network sizing and structuring are carefully observed. This literature review covers the constructive methods, the pruning methods, and the evolutionary methods and questions about the basic assumption intrinsic to the conventional neural network learning paradigm, which is primarily devoted to optimization of connection weights (or synaptic strengths) for the pre-determined connection structure of the network. The main research hypothesis governing this thesis is that, without breaking a prevailing dichotomy between weights and connectivity of the network during learning phase, the efficient design of a task-specific neural network is hard to achieve because, as long as connectivity and weights are searched by separate means, a structural optimization of the neural network requires either repetitive re-training procedures or computationally expensive topological meta-search cycles. The main contribution of this thesis is designing and testing a novel learning mechanism which efficiently learns not only weight parameters but also connection structure from a given training data set, and positioning this learning mechanism within the surrogate modeling practice. In this work, a simple and straightforward extension to the conventional error Back-Propagation (BP) algorithm has been formulated to enable a simultaneous learning for both connectivity and weights of the Generalized Multilayer Perceptron (GMLP) in supervised learning tasks. A particular objective is to achieve a task-specific network having reasonable generalization performance with a minimal training time. The dichotomy between architectural design and weight optimization is reconciled by a mechanism establishing a new connection for a neuron pair which has potentially higher error-gradient than one of the existing connections. Interpreting an instance of the absence of connection as a zero-weight connection, the potential contribution to training error reduction of any present or absent connection can readily be evaluated using the BP algorithm. Instead of being broken, the connections that contribute less remain frozen with constant weight values optimized to that point but they are excluded from further weight optimization until reselected. In this way, a selective weight optimization is executed only for the dynamically maintained pool of high gradient connections. By searching the rapidly changing weights and concentrating optimization resources on them, the learning process is accelerated without either a significant increase in computational cost or a need for re-training. This results in a more task-adapted network connection structure. Combined with another important criterion for the division of a neuron which adds a new computational unit to a network, a highly fitted network can be grown out of the minimal random structure. This particular learning strategy can belong to a more broad class of the variable connectivity learning scheme and the devised algorithm has been named Optimal Brain Growth (OBG). The OBG algorithm has been tested on two canonical problems; a regression analysis using the Complicated Interaction Regression Function and a classification of the Two-Spiral Problem. A comparative study with conventional Multilayer Perceptrons (MLPs) consisting of single- and double-hidden layers shows that OBG is less sensitive to random initial conditions and generalizes better with only a minimal increase in computational time. This partially proves that a variable connectivity learning scheme has great potential to enhance computational efficiency and reduce efforts to select proper network architecture. To investigate the applicability of the OBG to more practical surrogate modeling tasks, the geometry-to-pressure mapping of a particular class of airfoils in the transonic flow regime has been sought using both the conventional MLP networks with pre-defined architecture and the OBG-developed networks started from the same initial MLP networks. Considering wide variety in airfoil geometry and diversity of flow conditions distributed over a range of flow Mach numbers and angles of attack, the new method shows a great potential to capture fundamentally nonlinear flow phenomena especially related to the occurrence of shock waves on airfoil surfaces in transonic flow regime. (Abstract shortened by UMI.).
Analysis of pulse thermography using similarities between wave and diffusion propagation
NASA Astrophysics Data System (ADS)
Gershenson, M.
2017-05-01
Pulse thermography or thermal wave imaging are commonly used as nondestructive evaluation (NDE) method. While the technical aspect has evolve with time, theoretical interpretation is lagging. Interpretation is still using curved fitting on a log log scale. A new approach based directly on the governing differential equation is introduced. By using relationships between wave propagation and the diffusive propagation of thermal excitation, it is shown that one can transform from solutions in one type of propagation to the other. The method is based on the similarities between the Laplace transforms of the diffusion equation and the wave equation. For diffusive propagation we have the Laplace variable s to the first power, while for the wave propagation similar equations occur with s2. For discrete time the transformation between the domains is performed by multiplying the temperature data vector by a matrix. The transform is local. The performance of the techniques is tested on synthetic data. The application of common back projection techniques used in the processing of wave data is also demonstrated. The combined use of the transform and back projection makes it possible to improve both depth and lateral resolution of transient thermography.
Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu
2016-03-11
This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL.
Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu
2016-01-01
This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL. PMID:26978361
Understanding the Physical Optics Phenomena by Using a Digital Application for Light Propagation
NASA Astrophysics Data System (ADS)
Sierra-Sosa, Daniel-Esteban; Ángel-Toro, Luciano
2011-01-01
Understanding the light propagation on the basis of the Huygens-Fresnel principle stands for a fundamental factor for deeper comprehension of different physical optics related phenomena like diffraction, self-imaging, image formation, Fourier analysis and spatial filtering. This constitutes the physical approach of the Fourier optics whose principles and applications have been developed since the 1950's. Both for analytical and digital applications purposes, light propagation can be formulated in terms of the Fresnel Integral Transform. In this work, a digital optics application based on the implementation of the Discrete Fresnel Transform (DFT), and addressed to serve as a tool for applications in didactics of optics is presented. This tool allows, at a basic and intermediate learning level, exercising with the identification of basic phenomena, and observing changes associated with modifications of physical parameters. This is achieved by using a friendly graphic user interface (GUI). It also assists the user in the development of his capacity for abstracting and predicting the characteristics of more complicated phenomena. At an upper level of learning, the application could be used to favor a deeper comprehension of involved physics and models, and experimenting with new models and configurations. To achieve this, two characteristics of the didactic tool were taken into account when designing it. First, all physical operations, ranging from simple diffraction experiments to digital holography and interferometry, were developed on the basis of the more fundamental concept of light propagation. Second, the algorithm was conceived to be easily upgradable due its modular architecture based in MATLAB® software environment. Typical results are presented and briefly discussed in connection with didactics of optics.
NASA Astrophysics Data System (ADS)
Berahmand, Kamal; Bouyer, Asgarali
2018-03-01
Community detection is an essential approach for analyzing the structural and functional properties of complex networks. Although many community detection algorithms have been recently presented, most of them are weak and limited in different ways. Label Propagation Algorithm (LPA) is a well-known and efficient community detection technique which is characterized by the merits of nearly-linear running time and easy implementation. However, LPA has some significant problems such as instability, randomness, and monster community detection. In this paper, an algorithm, namely node’s label influence policy for label propagation algorithm (LP-LPA) was proposed for detecting efficient community structures. LP-LPA measures link strength value for edges and nodes’ label influence value for nodes in a new label propagation strategy with preference on link strength and for initial nodes selection, avoid of random behavior in tiebreak states, and efficient updating order and rule update. These procedures can sort out the randomness issue in an original LPA and stabilize the discovered communities in all runs of the same network. Experiments on synthetic networks and a wide range of real-world social networks indicated that the proposed method achieves significant accuracy and high stability. Indeed, it can obviously solve monster community problem with regard to detecting communities in networks.
NASA Astrophysics Data System (ADS)
Yang, Bing; Liao, Zhen; Qin, Yahang; Wu, Yayun; Liang, Sai; Xiao, Shoune; Yang, Guangwu; Zhu, Tao
2017-05-01
To describe the complicated nonlinear process of the fatigue short crack evolution behavior, especially the change of the crack propagation rate, two different calculation methods are applied. The dominant effective short fatigue crack propagation rates are calculated based on the replica fatigue short crack test with nine smooth funnel-shaped specimens and the observation of the replica films according to the effective short fatigue cracks principle. Due to the fast decay and the nonlinear approximation ability of wavelet analysis, the self-learning ability of neural network, and the macroscopic searching and global optimization of genetic algorithm, the genetic wavelet neural network can reflect the implicit complex nonlinear relationship when considering multi-influencing factors synthetically. The effective short fatigue cracks and the dominant effective short fatigue crack are simulated and compared by the Genetic Wavelet Neural Network. The simulation results show that Genetic Wavelet Neural Network is a rational and available method for studying the evolution behavior of fatigue short crack propagation rate. Meanwhile, a traditional data fitting method for a short crack growth model is also utilized for fitting the test data. It is reasonable and applicable for predicting the growth rate. Finally, the reason for the difference between the prediction effects by these two methods is interpreted.
The structure-AChE inhibitory activity relationships study in a series of pyridazine analogues.
Saracoglu, M; Kandemirli, F
2009-07-01
The structure-activity relationships (SAR) are investigated by means of the Electronic-Topological Method (ETM) followed by the Neural Networks application (ETM-NN) for a class of anti-cholinesterase inhibitors (AChE, 53 molecules) being pyridazine derivatives. AChE activities of the series were measured in IC(50) units, and relative to the activity levels, the series was partitioned into classes of active and inactive compounds. Based on pharmacophores and antipharmacophores calculated by the ETM-software as sub-matrices containing important spatial and electronic characteristics, a system for the activity prognostication is developed. Input data for the ETM were taken as the results of conformational and quantum-mechanics calculations. To predict the activity, we used one of the most well known neural networks, namely, the feed-forward neural networks (FFNNs) trained with the back propagation algorithm. The supervised learning was performed using a variant of FFNN known as the Associative Neural Networks (ASNN). The result of the testing revealed that the high ETM's ability of predicting both activity and inactivity of potential AChE inhibitors. Analysis of HOMOs for the compounds containing Ph1 and APh1 has shown that atoms with the highest values of the atomic orbital coefficients are mainly those atoms that enter into the pharmacophores. Thus, the set of pharmacophores and antipharmacophores found as the result of this study forms a basis for a system of the anti-cholinesterase activity prediction.
Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network
He, Jun; Yang, Shixi; Gan, Chunbiao
2017-01-01
Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods. PMID:28677638
Modeling when and where a secondary accident occurs.
Wang, Junhua; Liu, Boya; Fu, Ting; Liu, Shuo; Stipancic, Joshua
2018-01-31
The occurrence of secondary accidents leads to traffic congestion and road safety issues. Secondary accident prevention has become a major consideration in traffic incident management. This paper investigates the location and time of a potential secondary accident after the occurrence of an initial traffic accident. With accident data and traffic loop data collected over three years from California interstate freeways, a shock wave-based method was introduced to identify secondary accidents. A linear regression model and two machine learning algorithms, including a back-propagation neural network (BPNN) and a least squares support vector machine (LSSVM), were implemented to explore the distance and time gap between the initial and secondary accidents using inputs of crash severity, violation category, weather condition, tow away, road surface condition, lighting, parties involved, traffic volume, duration, and shock wave speed generated by the primary accident. From the results, the linear regression model was inadequate in describing the effect of most variables and its goodness-of-fit and accuracy in prediction was relatively poor. In the training programs, the BPNN and LSSVM demonstrated adequate goodness-of-fit, though the BPNN was superior with a higher CORR and lower MSE. The BPNN model also outperformed the LSSVM in time prediction, while both failed to provide adequate distance prediction. Therefore, the BPNN model could be used to forecast the time gap between initial and secondary accidents, which could be used by decision makers and incident management agencies to prevent or reduce secondary collisions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tahavvor, Ali Reza
2017-03-01
In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.
Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network.
He, Jun; Yang, Shixi; Gan, Chunbiao
2017-07-04
Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods.
Posture recognition associated with lifting of heavy objects using Kinect and Adaboost
NASA Astrophysics Data System (ADS)
Raut, Sayli; Navaneethakrishna, M.; Ramakrishnan, S.
2017-12-01
Lifting of heavy objects is the common task in the industries. Recent statistics from the Bureau of Labour indicate, back injuries account for one of every five injuries in the workplace. Eighty per cent of these injuries occur to the lower back and are associated with manual materials handling tasks. According to the Industrial ergonomic safety manual, Squatting is the correct posture for lifting a heavy object. In this work, an attempt has been made to monitor posture of the workers during squat and stoop using 3D motion capture and machine learning techniques. For this, Microsoft Kinect V2 is used for capturing the depth data. Further, Dynamic Time Warping and Euclidian distance algorithms are used for extraction of features. Ada-boost algorithm is used for classification of stoop and squat. The results show that the 3D image data is large and complex to analyze. The application of nonlinear and linear metrics captures the variation in the lifting pattern. Additionally, the features extracted from this metric resulted in a classification accuracy of 85% and 81% respectively. This framework may be put-upon to alert the workers in the industrial ergonomic environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2016-01-11
SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.
Neural Network Back-Propagation Algorithm for Sensing Hypergols
NASA Technical Reports Server (NTRS)
Perotti, Jose; Lewis, Mark; Medelius, Pedro; Bastin, Gary
2013-01-01
Fast, continuous detection of a wide range of hazardous substances simultaneously is needed to achieve improved safety for personnel working with hypergolic fuels and oxidizers, as well as other hazardous substances, with a requirement for such detection systems to warn personnel immediately upon the sudden advent of hazardous conditions, with a high probability of detection and a low false alarm rate. The primary purpose of this software is to read the voltage outputs from voltage dividers containing carbon nano - tube sensors as a variable resistance leg, and to recognize quickly when a leak has occurred through recognizing that a generalized pattern change in resistivity of a carbon nanotube sensor has occurred upon exposure to dangerous substances, and, further, to identify quickly just what substance is present through detailed pattern recognition of the shape of the response provided by the carbon nanotube sensor.
NASA Astrophysics Data System (ADS)
Wang, Baocheng; Qu, Dandan; Tian, Qing; Pang, Liping
2018-05-01
For the problem that the linear scale of intrusion signals in the optical fiber pre-warning system (OFPS) is inconsistent, this paper presents a method to correct the scale. Firstly, the intrusion signals are intercepted, and an aggregate of the segments with equal length is obtained. Then, the Mellin transform (MT) is applied to convert them into the same scale. The spectral characteristics are obtained by the Fourier transform. Finally, we adopt back-propagation (BP) neural network to identify intrusion types, which takes the spectral characteristics as input. We carried out the field experiments and collected the optical fiber intrusion signals which contain the picking signal, shoveling signal, and running signal. The experimental results show that the proposed algorithm can effectively improve the recognition accuracy of the intrusion signals.
The Use of Neural Networks in Identifying Error Sources in Satellite-Derived Tropical SST Estimates
Lee, Yung-Hsiang; Ho, Chung-Ru; Su, Feng-Chun; Kuo, Nan-Jung; Cheng, Yu-Hsin
2011-01-01
An neural network model of data mining is used to identify error sources in satellite-derived tropical sea surface temperature (SST) estimates from thermal infrared sensors onboard the Geostationary Operational Environmental Satellite (GOES). By using the Back Propagation Network (BPN) algorithm, it is found that air temperature, relative humidity, and wind speed variation are the major factors causing the errors of GOES SST products in the tropical Pacific. The accuracy of SST estimates is also improved by the model. The root mean square error (RMSE) for the daily SST estimate is reduced from 0.58 K to 0.38 K and mean absolute percentage error (MAPE) is 1.03%. For the hourly mean SST estimate, its RMSE is also reduced from 0.66 K to 0.44 K and the MAPE is 1.3%. PMID:22164030
Variational and symplectic integrators for satellite relative orbit propagation including drag
NASA Astrophysics Data System (ADS)
Palacios, Leonel; Gurfil, Pini
2018-04-01
Orbit propagation algorithms for satellite relative motion relying on Runge-Kutta integrators are non-symplectic—a situation that leads to incorrect global behavior and degraded accuracy. Thus, attempts have been made to apply symplectic methods to integrate satellite relative motion. However, so far all these symplectic propagation schemes have not taken into account the effect of atmospheric drag. In this paper, drag-generalized symplectic and variational algorithms for satellite relative orbit propagation are developed in different reference frames, and numerical simulations with and without the effect of atmospheric drag are presented. It is also shown that high-order versions of the newly-developed variational and symplectic propagators are more accurate and are significantly faster than Runge-Kutta-based integrators, even in the presence of atmospheric drag.
A wide-angle high Mach number modal expansion for infrasound propagation.
Assink, Jelle; Waxler, Roger; Velea, Doru
2017-03-01
The use of modal expansions to solve the problem of atmospheric infrasound propagation is revisited. A different form of the associated modal equation is introduced, valid for wide-angle propagation in atmospheres with high Mach number flow. The modal equation can be formulated as a quadratic eigenvalue problem for which there are simple and efficient numerical implementations. A perturbation expansion for the treatment of attenuation, valid for stratified media with background flow, is derived as well. Comparisons are carried out between the proposed algorithm and a modal algorithm assuming an effective sound speed, including a real data case study. The comparisons show that the effective sound speed approximation overestimates the effect of horizontal wind on sound propagation, leading to errors in traveltime, propagation path, trace velocity, and absorption. The error is found to be dependent on propagation angle and Mach number.
Three-dimensional propagation in near-field tomographic X-ray phase retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim
An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resultingmore » in superior reconstruction quality.« less
Active sensors for health monitoring of aging aerospace structures
NASA Astrophysics Data System (ADS)
Giurgiutiu, Victor; Redmond, James M.; Roach, Dennis P.; Rackow, Kirk
2000-06-01
A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto- ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.
Taghvaei, Sajjad; Jahanandish, Mohammad Hasan; Kosuge, Kazuhiro
2017-01-01
Population aging of the societies requires providing the elderly with safe and dependable assistive technologies in daily life activities. Improving the fall detection algorithms can play a major role in achieving this goal. This article proposes a real-time fall prediction algorithm based on the acquired visual data of a user with walking assistive system from a depth sensor. In the lack of a coupled dynamic model of the human and the assistive walker a hybrid "system identification-machine learning" approach is used. An autoregressive-moving-average (ARMA) model is fitted on the time-series walking data to forecast the upcoming states, and a hidden Markov model (HMM) based classifier is built on the top of the ARMA model to predict falling in the upcoming time frames. The performance of the algorithm is evaluated through experiments with four subjects including an experienced physiotherapist while using a walker robot in five different falling scenarios; namely, fall forward, fall down, fall back, fall left, and fall right. The algorithm successfully predicts the fall with a rate of 84.72%.
NASA Astrophysics Data System (ADS)
Rose, R.; Aizenman, H.; Mei, E.; Choudhury, N.
2013-12-01
High School students interested in the STEM fields benefit most when actively participating, so I created a series of learning modules on how to analyze complex systems using machine-learning that give automated feedback to students. The automated feedbacks give timely responses that will encourage the students to continue testing and enhancing their programs. I have designed my modules to take the tactical learning approach in conveying the concepts behind correlation, linear regression, and vector distance based classification and clustering. On successful completion of these modules, students will learn how to calculate linear regression, Pearson's correlation, and apply classification and clustering techniques to a dataset. Working on these modules will allow the students to take back to the classroom what they've learned and then apply it to the Earth Science curriculum. During my research this summer, we applied these lessons to analyzing river deltas; we looked at trends in the different variables over time, looked for similarities in NDVI, precipitation, inundation, runoff and discharge, and attempted to predict floods based on the precipitation, waves mean, area of discharge, NDVI, and inundation.
Ask-the-Expert: Active Learning Based Knowledge Discovery Using the Expert
NASA Technical Reports Server (NTRS)
Das, Kamalika
2017-01-01
Often the manual review of large data sets, either for purposes of labeling unlabeled instances or for classifying meaningful results from uninteresting (but statistically significant) ones is extremely resource intensive, especially in terms of subject matter expert (SME) time. Use of active learning has been shown to diminish this review time significantly. However, since active learning is an iterative process of learning a classifier based on a small number of SME-provided labels at each iteration, the lack of an enabling tool can hinder the process of adoption of these technologies in real-life, in spite of their labor-saving potential. In this demo we present ASK-the-Expert, an interactive tool that allows SMEs to review instances from a data set and provide labels within a single framework. ASK-the-Expert is powered by an active learning algorithm for training a classifier in the back end. We demonstrate this system in the context of an aviation safety application, but the tool can be adopted to work as a simple review and labeling tool as well, without the use of active learning.
A PML-FDTD ALGORITHM FOR SIMULATING PLASMA-COVERED CAVITY-BACKED SLOT ANTENNAS. (R825225)
A three-dimensional frequency-dependent finite-difference time-domain (FDTD) algorithm with perfectly matched layer (PML) absorbing boundary condition (ABC) and recursive convolution approaches is developed to model plasma-covered open-ended waveguide or cavity-backed slot antenn...
Gog, Simon; Bader, Martin
2008-10-01
The problem of sorting signed permutations by reversals is a well-studied problem in computational biology. The first polynomial time algorithm was presented by Hannenhalli and Pevzner in 1995. The algorithm was improved several times, and nowadays the most efficient algorithm has a subquadratic running time. Simple permutations played an important role in the development of these algorithms. Although the latest result of Tannier et al. does not require simple permutations, the preliminary version of their algorithm as well as the first polynomial time algorithm of Hannenhalli and Pevzner use the structure of simple permutations. More precisely, the latter algorithms require a precomputation that transforms a permutation into an equivalent simple permutation. To the best of our knowledge, all published algorithms for this transformation have at least a quadratic running time. For further investigations on genome rearrangement problems, the existence of a fast algorithm for the transformation could be crucial. Another important task is the back transformation, i.e. if we have a sorting on the simple permutation, transform it into a sorting on the original permutation. Again, the naive approach results in an algorithm with quadratic running time. In this paper, we present a linear time algorithm for transforming a permutation into an equivalent simple permutation, and an O(n log n) algorithm for the back transformation of the sorting sequence.
Chromatic characterization of a three-channel colorimeter using back-propagation neural networks
NASA Astrophysics Data System (ADS)
Pardo, P. J.; Pérez, A. L.; Suero, M. I.
2004-09-01
This work describes a method for the chromatic characterization of a three-channel colorimeter of recent design and construction dedicated to color vision research. The colorimeter consists of two fixed monochromators and a third monochromator interchangeable with a cathode ray tube or any other external light source. Back-propagation neural networks were used for the chromatic characterization to establish the relationship between each monochromator's input parameters and the tristimulus values of each chromatic stimulus generated. The results showed the effectiveness of this type of neural-network-based system for the chromatic characterization of the stimuli produced by any monochromator.
NASA Astrophysics Data System (ADS)
Yu, Yali; Wang, Mengxia; Lima, Dimas
2018-04-01
In order to develop a novel alcoholism detection method, we proposed a magnetic resonance imaging (MRI)-based computer vision approach. We first use contrast equalization to increase the contrast of brain slices. Then, we perform Haar wavelet transform and principal component analysis. Finally, we use back propagation neural network (BPNN) as the classification tool. Our method yields a sensitivity of 81.71±4.51%, a specificity of 81.43±4.52%, and an accuracy of 81.57±2.18%. The Haar wavelet gives better performance than db4 wavelet and sym3 wavelet.
A Novel Approach for Lie Detection Based on F-Score and Extreme Learning Machine
Gao, Junfeng; Wang, Zhao; Yang, Yong; Zhang, Wenjia; Tao, Chunyi; Guan, Jinan; Rao, Nini
2013-01-01
A new machine learning method referred to as F-score_ELM was proposed to classify the lying and truth-telling using the electroencephalogram (EEG) signals from 28 guilty and innocent subjects. Thirty-one features were extracted from the probe responses from these subjects. Then, a recently-developed classifier called extreme learning machine (ELM) was combined with F-score, a simple but effective feature selection method, to jointly optimize the number of the hidden nodes of ELM and the feature subset by a grid-searching training procedure. The method was compared to two classification models combining principal component analysis with back-propagation network and support vector machine classifiers. We thoroughly assessed the performance of these classification models including the training and testing time, sensitivity and specificity from the training and testing sets, as well as network size. The experimental results showed that the number of the hidden nodes can be effectively optimized by the proposed method. Also, F-score_ELM obtained the best classification accuracy and required the shortest training and testing time. PMID:23755136
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolme, David S; Mikkilineni, Aravind K; Rose, Derek C
Analog computational circuits have been demonstrated to provide substantial improvements in power and speed relative to digital circuits, especially for applications requiring extreme parallelism but only modest precision. Deep machine learning is one such area and stands to benefit greatly from analog and mixed-signal implementations. However, even at modest precisions, offsets and non-linearity can degrade system performance. Furthermore, in all but the simplest systems, it is impossible to directly measure the intermediate outputs of all sub-circuits. The result is that circuit designers are unable to accurately evaluate the non-idealities of computational circuits in-situ and are therefore unable to fully utilizemore » measurement results to improve future designs. In this paper we present a technique to use deep learning frameworks to model physical systems. Recently developed libraries like TensorFlow make it possible to use back propagation to learn parameters in the context of modeling circuit behavior. Offsets and scaling errors can be discovered even for sub-circuits that are deeply embedded in a computational system and not directly observable. The learned parameters can be used to refine simulation methods or to identify appropriate compensation strategies. We demonstrate the framework using a mixed-signal convolution operator as an example circuit.« less
Minervini, Fabio; Lattanzi, Anna; De Angelis, Maria; Gobbetti, Marco
2012-01-01
Seven mature type I sourdoughs were comparatively back-slopped (80 days) at artisan bakery and laboratory levels under constant technology parameters. The cell density of presumptive lactic acid bacteria and related biochemical features were not affected by the environment of propagation. On the contrary, the number of yeasts markedly decreased from artisan bakery to laboratory propagation. During late laboratory propagation, denaturing gradient gel electrophoresis (DGGE) showed that the DNA band corresponding to Saccharomyces cerevisiae was no longer detectable in several sourdoughs. Twelve species of lactic acid bacteria were variously identified through a culture-dependent approach. All sourdoughs harbored a certain number of species and strains, which were dominant throughout time and, in several cases, varied depending on the environment of propagation. As shown by statistical permutation analysis, the lactic acid bacterium populations differed among sourdoughs propagated at artisan bakery and laboratory levels. Lactobacillus plantarum, Lactobacillus sakei, and Weissella cibaria dominated in only some sourdoughs back-slopped at artisan bakeries, and Leuconostoc citreum seemed to be more persistent under laboratory conditions. Strains of Lactobacillus sanfranciscensis were indifferently found in some sourdoughs. Together with the other stable species and strains, other lactic acid bacteria temporarily contaminated the sourdoughs and largely differed between artisan bakery and laboratory levels. The environment of propagation has an undoubted influence on the composition of sourdough yeast and lactic acid bacterium microbiotas. PMID:22635989
An Envelope Based Feedback Control System for Earthquake Early Warning: Reality Check Algorithm
NASA Astrophysics Data System (ADS)
Heaton, T. H.; Karakus, G.; Beck, J. L.
2016-12-01
Earthquake early warning systems are, in general, designed to be open loop control systems in such a way that the output, i.e., the warning messages, only depend on the input, i.e., recorded ground motions, up to the moment when the message is issued in real-time. We propose an algorithm, which is called Reality Check Algorithm (RCA), which would assess the accuracy of issued warning messages, and then feed the outcome of the assessment back into the system. Then, the system would modify its messages if necessary. That is, we are proposing to convert earthquake early warning systems into feedback control systems by integrating them with RCA. RCA works by continuously monitoring and comparing the observed ground motions' envelopes to the predicted envelopes of Virtual Seismologist (Cua 2005). Accuracy of magnitude and location (both spatial and temporal) estimations of the system are assessed separately by probabilistic classification models, which are trained by a Sparse Bayesian Learning technique called Automatic Relevance Determination prior.
Chuan, He; Dishan, Qiu; Jin, Liu
2012-01-01
The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible. PMID:23365522
Coherent field propagation between tilted planes.
Stock, Johannes; Worku, Norman Girma; Gross, Herbert
2017-10-01
Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3 log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.
Sen, Alper; Gümüsay, M Umit; Kavas, Aktül; Bulucu, Umut
2008-09-25
Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.
Şen, Alper; Gümüşay, M. Ümit; Kavas, Aktül; Bulucu, Umut
2008-01-01
Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN. PMID:27873854
Back to Learning: How Research-Based Classroom Instruction Can Make the Impossible Possible
ERIC Educational Resources Information Center
Parsons, Les
2012-01-01
Based on the most up-to-date research, "Back to Learning" presents straightforward analysis and practical guidance on confronting bullying, taming the digital universe, and changing the troublesome trend in students' entitled attitudes toward learning and grades. "Back to Learning" gives teachers the background they need to: (1) understand how the…
Zemp, Roland; Tanadini, Matteo; Plüss, Stefan; Schnüriger, Karin; Singh, Navrag B; Taylor, William R; Lorenzetti, Silvio
2016-01-01
Occupational musculoskeletal disorders, particularly chronic low back pain (LBP), are ubiquitous due to prolonged static sitting or nonergonomic sitting positions. Therefore, the aim of this study was to develop an instrumented chair with force and acceleration sensors to determine the accuracy of automatically identifying the user's sitting position by applying five different machine learning methods (Support Vector Machines, Multinomial Regression, Boosting, Neural Networks, and Random Forest). Forty-one subjects were requested to sit four times in seven different prescribed sitting positions (total 1148 samples). Sixteen force sensor values and the backrest angle were used as the explanatory variables (features) for the classification. The different classification methods were compared by means of a Leave-One-Out cross-validation approach. The best performance was achieved using the Random Forest classification algorithm, producing a mean classification accuracy of 90.9% for subjects with which the algorithm was not familiar. The classification accuracy varied between 81% and 98% for the seven different sitting positions. The present study showed the possibility of accurately classifying different sitting positions by means of the introduced instrumented office chair combined with machine learning analyses. The use of such novel approaches for the accurate assessment of chair usage could offer insights into the relationships between sitting position, sitting behaviour, and the occurrence of musculoskeletal disorders.
An automated workflow for patient-specific quality control of contour propagation
NASA Astrophysics Data System (ADS)
Beasley, William J.; McWilliam, Alan; Slevin, Nicholas J.; Mackay, Ranald I.; van Herk, Marcel
2016-12-01
Contour propagation is an essential component of adaptive radiotherapy, but current contour propagation algorithms are not yet sufficiently accurate to be used without manual supervision. Manual review of propagated contours is time-consuming, making routine implementation of real-time adaptive radiotherapy unrealistic. Automated methods of monitoring the performance of contour propagation algorithms are therefore required. We have developed an automated workflow for patient-specific quality control of contour propagation and validated it on a cohort of head and neck patients, on which parotids were outlined by two observers. Two types of error were simulated—mislabelling of contours and introducing noise in the scans before propagation. The ability of the workflow to correctly predict the occurrence of errors was tested, taking both sets of observer contours as ground truth, using receiver operator characteristic analysis. The area under the curve was 0.90 and 0.85 for the observers, indicating good ability to predict the occurrence of errors. This tool could potentially be used to identify propagated contours that are likely to be incorrect, acting as a flag for manual review of these contours. This would make contour propagation more efficient, facilitating the routine implementation of adaptive radiotherapy.
Region of Interest Imaging for a General Trajectory with the Rebinned BPF Algorithm*
Bian, Junguo; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan
2010-01-01
The back-projection-filtration (BPF) algorithm has been applied to image reconstruction for cone-beam configurations with general source trajectories. The BPF algorithm can reconstruct 3-D region-of-interest (ROI) images from data containing truncations. However, like many other existing algorithms for cone-beam configurations, the BPF algorithm involves a back-projection with a spatially varying weighting factor, which can result in the non-uniform noise levels in reconstructed images and increased computation time. In this work, we propose a BPF algorithm to eliminate the spatially varying weighting factor by using a rebinned geometry for a general scanning trajectory. This proposed BPF algorithm has an improved noise property, while retaining the advantages of the original BPF algorithm such as minimum data requirement. PMID:20617122
Region of Interest Imaging for a General Trajectory with the Rebinned BPF Algorithm.
Bian, Junguo; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan
2010-02-01
The back-projection-filtration (BPF) algorithm has been applied to image reconstruction for cone-beam configurations with general source trajectories. The BPF algorithm can reconstruct 3-D region-of-interest (ROI) images from data containing truncations. However, like many other existing algorithms for cone-beam configurations, the BPF algorithm involves a back-projection with a spatially varying weighting factor, which can result in the non-uniform noise levels in reconstructed images and increased computation time. In this work, we propose a BPF algorithm to eliminate the spatially varying weighting factor by using a rebinned geometry for a general scanning trajectory. This proposed BPF algorithm has an improved noise property, while retaining the advantages of the original BPF algorithm such as minimum data requirement.
Modeling Delamination in Postbuckled Composite Structures Under Static and Fatigue Loads
NASA Technical Reports Server (NTRS)
Bisagni, Chiara; Brambilla, Pietro; Bavila, Carlos G.
2013-01-01
The ability of the Abaqus progressive Virtual Crack Closure Technique (VCCT) to model delamination in composite structures was investigated for static, postbuckling, and fatigue loads. Preliminary evaluations were performed using simple Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. The nodal release sequences that describe the propagation of the delamination front were investigated. The effect of using a sudden or a gradual nodal release was evaluated by considering meshes aligned with the crack front as well as misaligned meshes. Fatigue simulations were then performed using the Direct Cyclic Fatigue (DCF) algorithm. It was found that in specimens such as the DCB, which are characterized by a nearly linear response and a pure fracture mode, the algorithm correctly predicts the Paris Law rate of propagation. However, the Abaqus DCF algorithm does not consider different fatigue propagation laws in different fracture modes. Finally, skin/stiffener debonding was studied in an aircraft fuselage subcomponent in which debonding occurs deep into post-buckling deformation. VCCT was shown to be a robust tool for estimating the onset propagation. However, difficulties were found with the ability of the current implementation of the Abaqus progressive VCCT to predict delamination propagation within structures subjected to postbuckling deformations or fatigue loads.
Exploring cluster Monte Carlo updates with Boltzmann machines
NASA Astrophysics Data System (ADS)
Wang, Lei
2017-11-01
Boltzmann machines are physics informed generative models with broad applications in machine learning. They model the probability distribution of an input data set with latent variables and generate new samples accordingly. Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.
NASA Astrophysics Data System (ADS)
Liu, Jianjun; Kan, Jianquan
2018-04-01
In this paper, based on the terahertz spectrum, a new identification method of genetically modified material by support vector machine (SVM) based on affinity propagation clustering is proposed. This algorithm mainly uses affinity propagation clustering algorithm to make cluster analysis and labeling on unlabeled training samples, and in the iterative process, the existing SVM training data are continuously updated, when establishing the identification model, it does not need to manually label the training samples, thus, the error caused by the human labeled samples is reduced, and the identification accuracy of the model is greatly improved.
Richings, Gareth W; Habershon, Scott
2017-09-12
We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated "on-the-fly". The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree-Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.
A unified framework for image retrieval using keyword and visual features.
Jing, Feng; Li, Mingling; Zhang, Hong-Jiang; Zhang, Bo
2005-07-01
In this paper, a unified image retrieval framework based on both keyword annotations and visual features is proposed. In this framework, a set of statistical models are built based on visual features of a small set of manually labeled images to represent semantic concepts and used to propagate keywords to other unlabeled images. These models are updated periodically when more images implicitly labeled by users become available through relevance feedback. In this sense, the keyword models serve the function of accumulation and memorization of knowledge learned from user-provided relevance feedback. Furthermore, two sets of effective and efficient similarity measures and relevance feedback schemes are proposed for query by keyword scenario and query by image example scenario, respectively. Keyword models are combined with visual features in these schemes. In particular, a new, entropy-based active learning strategy is introduced to improve the efficiency of relevance feedback for query by keyword. Furthermore, a new algorithm is proposed to estimate the keyword features of the search concept for query by image example. It is shown to be more appropriate than two existing relevance feedback algorithms. Experimental results demonstrate the effectiveness of the proposed framework.
NASA Astrophysics Data System (ADS)
Chao, I.-Fen; Zhang, Tsung-Min
2015-06-01
Long-reach passive optical networks (LR-PONs) have been considered to be promising solutions for future access networks. In this paper, we propose a distributed medium access control (MAC) scheme over an advantageous LR-PON network architecture that reroutes the control information from and back to all ONUs through an (N + 1) × (N + 1) star coupler (SC) deployed near the ONUs, thereby overwhelming the extremely long propagation delay problem in LR-PONs. In the network, the control slot is designed to contain all bandwidth requirements of all ONUs and is in-band time-division-multiplexed with a number of data slots within a cycle. In the proposed MAC scheme, a novel profit-weight-based dynamic bandwidth allocation (P-DBA) scheme is presented. The algorithm is designed to efficiently and fairly distribute the amount of excess bandwidth based on a profit value derived from the excess bandwidth usage of each ONU, which resolves the problems of previously reported DBA schemes that are either unfair or inefficient. The simulation results show that the proposed decentralized algorithms exhibit a nearly three-order-of-magnitude improvement in delay performance compared to the centralized algorithms over LR-PONs. Moreover, the newly proposed P-DBA scheme guarantees low delay performance and fairness even when under attack by the malevolent ONU irrespective of traffic loads and burstiness.
Prediction Surface Morphology of Nanostructure Fabricated by Nano-Oxidation Technology.
Huang, Jen-Ching; Chang, Ho; Kuo, Chin-Guo; Li, Jeen-Fong; You, Yong-Chin
2015-12-04
Atomic force microscopy (AFM) was used for visualization of a nano-oxidation technique performed on diamond-like carbon (DLC) thin film. Experiments of the nano-oxidation technique of the DLC thin film include those on nano-oxidation points and nano-oxidation lines. The feature sizes of the DLC thin film, including surface morphology, depth, and width, were explored after application of a nano-oxidation technique to the DLC thin film under different process parameters. A databank for process parameters and feature sizes of thin films was then established, and multiple regression analysis (MRA) and a back-propagation neural network (BPN) were used to carry out the algorithm. The algorithmic results are compared with the feature sizes acquired from experiments, thus obtaining a prediction model of the nano-oxidation technique of the DLC thin film. The comparative results show that the prediction accuracy of BPN is superior to that of MRA. When the BPN algorithm is used to predict nano-point machining, the mean absolute percentage errors (MAPE) of depth, left side, and right side are 8.02%, 9.68%, and 7.34%, respectively. When nano-line machining is being predicted, the MAPEs of depth, left side, and right side are 4.96%, 8.09%, and 6.77%, respectively. The obtained data can also be used to predict cross-sectional morphology in the DLC thin film treated with a nano-oxidation process.
Neural network modeling of drying of rice in BAU-STR dryer
NASA Astrophysics Data System (ADS)
Alam, Md. Ashraful; Saha, Chayan Kumer; Alam, Md. Monjurul; Ashraf, Md. Ali; Bala, Bilash Kanti; Harvey, Jagger
2018-05-01
The experimental performance and artificial neural network modeling of rice drying in BAU-STR dryer is presented in this paper. The dryer consists of a biomass stove as a heat source, a perforated inner bin and a perforated outer bin with annular space for grains, and a blower (1 hp) to supply heated air. The dryer capacity was 500 kg of freshly harvested rice. Twenty experimental runs were conducted to investigate the experimental performance of the dryer for drying of rice. An independent multilayer neural network approach was used to predict the performance of the BAU-STR dryer for drying of rice. Ten sets of experimental data were used for training using back propagation algorithm and another ten sets of data were used for testing the artificial neural network model. The prediction of the performance of the dryer was found to be excellent after it was adequately trained. The statistical analysis showed that the errors (MSE and RMSE) were within and acceptable range of ±5% with a coefficient of determination (R2) of 99%. The model can be used to predict the potential of the dryer for different locations, and can also be used in a predictive optimal control algorithm.
Multi-objective Optimization of Pulsed Gas Metal Arc Welding Process Using Neuro NSGA-II
NASA Astrophysics Data System (ADS)
Pal, Kamal; Pal, Surjya K.
2018-05-01
Weld quality is a critical issue in fabrication industries where products are custom-designed. Multi-objective optimization results number of solutions in the pareto-optimal front. Mathematical regression model based optimization methods are often found to be inadequate for highly non-linear arc welding processes. Thus, various global evolutionary approaches like artificial neural network, genetic algorithm (GA) have been developed. The present work attempts with elitist non-dominated sorting GA (NSGA-II) for optimization of pulsed gas metal arc welding process using back propagation neural network (BPNN) based weld quality feature models. The primary objective to maintain butt joint weld quality is the maximization of tensile strength with minimum plate distortion. BPNN has been used to compute the fitness of each solution after adequate training, whereas NSGA-II algorithm generates the optimum solutions for two conflicting objectives. Welding experiments have been conducted on low carbon steel using response surface methodology. The pareto-optimal front with three ranked solutions after 20th generations was considered as the best without further improvement. The joint strength as well as transverse shrinkage was found to be drastically improved over the design of experimental results as per validated pareto-optimal solutions obtained.
NASA Astrophysics Data System (ADS)
Telipenko, E.; Chernysheva, T.; Zakharova, A.; Dumchev, A.
2015-10-01
The article represents research results about the knowledge base development for the intellectual information system for the bankruptcy risk assessment of the enterprise. It is described the process analysis of the knowledge base development; the main process stages, some problems and their solutions are given. The article introduces the connectionist model for the bankruptcy risk assessment based on the analysis of industrial enterprise financial accounting. The basis for this connectionist model is a three-layer perceptron with the back propagation of error algorithm. The knowledge base for the intellectual information system consists of processed information and the processing operation method represented as the connectionist model. The article represents the structure of the intellectual information system, the knowledge base, and the information processing algorithm for neural network training. The paper shows mean values of 10 indexes for industrial enterprises; with the help of them it is possible to carry out a financial analysis of industrial enterprises and identify correctly the current situation for well-timed managerial decisions. Results are given about neural network testing on the data of both bankrupt and financially strong enterprises, which were not included into training and test sets.
NASA Astrophysics Data System (ADS)
Ouyang, Qin; Chen, Quansheng; Zhao, Jiewen
2016-02-01
The approach presented herein reports the application of near infrared (NIR) spectroscopy, in contrast with human sensory panel, as a tool for estimating Chinese rice wine quality; concretely, to achieve the prediction of the overall sensory scores assigned by the trained sensory panel. Back propagation artificial neural network (BPANN) combined with adaptive boosting (AdaBoost) algorithm, namely BP-AdaBoost, as a novel nonlinear algorithm, was proposed in modeling. First, the optimal spectra intervals were selected by synergy interval partial least square (Si-PLS). Then, BP-AdaBoost model based on the optimal spectra intervals was established, called Si-BP-AdaBoost model. These models were optimized by cross validation, and the performance of each final model was evaluated according to correlation coefficient (Rp) and root mean square error of prediction (RMSEP) in prediction set. Si-BP-AdaBoost showed excellent performance in comparison with other models. The best Si-BP-AdaBoost model was achieved with Rp = 0.9180 and RMSEP = 2.23 in the prediction set. It was concluded that NIR spectroscopy combined with Si-BP-AdaBoost was an appropriate method for the prediction of the sensory quality in Chinese rice wine.
LMD Based Features for the Automatic Seizure Detection of EEG Signals Using SVM.
Zhang, Tao; Chen, Wanzhong
2017-08-01
Achieving the goal of detecting seizure activity automatically using electroencephalogram (EEG) signals is of great importance and significance for the treatment of epileptic seizures. To realize this aim, a newly-developed time-frequency analytical algorithm, namely local mean decomposition (LMD), is employed in the presented study. LMD is able to decompose an arbitrary signal into a series of product functions (PFs). Primarily, the raw EEG signal is decomposed into several PFs, and then the temporal statistical and non-linear features of the first five PFs are calculated. The features of each PF are fed into five classifiers, including back propagation neural network (BPNN), K-nearest neighbor (KNN), linear discriminant analysis (LDA), un-optimized support vector machine (SVM) and SVM optimized by genetic algorithm (GA-SVM), for five classification cases, respectively. Confluent features of all PFs and raw EEG are further passed into the high-performance GA-SVM for the same classification tasks. Experimental results on the international public Bonn epilepsy EEG dataset show that the average classification accuracy of the presented approach are equal to or higher than 98.10% in all the five cases, and this indicates the effectiveness of the proposed approach for automated seizure detection.
Araújo, Ricardo de A
2010-12-01
This paper presents a hybrid intelligent methodology to design increasing translation invariant morphological operators applied to Brazilian stock market prediction (overcoming the random walk dilemma). The proposed Translation Invariant Morphological Robust Automatic phase-Adjustment (TIMRAA) method consists of a hybrid intelligent model composed of a Modular Morphological Neural Network (MMNN) with a Quantum-Inspired Evolutionary Algorithm (QIEA), which searches for the best time lags to reconstruct the phase space of the time series generator phenomenon and determines the initial (sub-optimal) parameters of the MMNN. Each individual of the QIEA population is further trained by the Back Propagation (BP) algorithm to improve the MMNN parameters supplied by the QIEA. Also, for each prediction model generated, it uses a behavioral statistical test and a phase fix procedure to adjust time phase distortions observed in stock market time series. Furthermore, an experimental analysis is conducted with the proposed method through four Brazilian stock market time series, and the achieved results are discussed and compared to results found with random walk models and the previously introduced Time-delay Added Evolutionary Forecasting (TAEF) and Morphological-Rank-Linear Time-lag Added Evolutionary Forecasting (MRLTAEF) methods. Copyright © 2010 Elsevier Ltd. All rights reserved.
Liu, Xue-song; Sun, Fen-fang; Jin, Ye; Wu, Yong-jiang; Gu, Zhi-xin; Zhu, Li; Yan, Dong-lan
2015-12-01
A novel method was developed for the rapid determination of multi-indicators in corni fructus by means of near infrared (NIR) spectroscopy. Particle swarm optimization (PSO) based least squares support vector machine was investigated to increase the levels of quality control. The calibration models of moisture, extractum, morroniside and loganin were established using the PSO-LS-SVM algorithm. The performance of PSO-LS-SVM models was compared with partial least squares regression (PLSR) and back propagation artificial neural network (BP-ANN). The calibration and validation results of PSO-LS-SVM were superior to both PLS and BP-ANN. For PSO-LS-SVM models, the correlation coefficients (r) of calibrations were all above 0.942. The optimal prediction results were also achieved by PSO-LS-SVM models with the RMSEP (root mean square error of prediction) and RSEP (relative standard errors of prediction) less than 1.176 and 15.5% respectively. The results suggest that PSO-LS-SVM algorithm has a good model performance and high prediction accuracy. NIR has a potential value for rapid determination of multi-indicators in Corni Fructus.
Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images
Cao, Jianfang; Chen, Lichao
2015-01-01
With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP) neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance. PMID:25838818
Liu, Da; Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai
2016-01-01
Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012.
Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai
2016-01-01
Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012. PMID:27281032
NASA Astrophysics Data System (ADS)
Tan, Zhukui; Xie, Baiming; Zhao, Yuanliang; Dou, Jinyue; Yan, Tong; Liu, Bin; Zeng, Ming
2018-06-01
This paper presents a new integrated planning framework for effective accommodating electric vehicles in smart distribution systems (SDS). The proposed method incorporates various investment options available for the utility collectively, including distributed generation (DG), capacitors and network reinforcement. Using a back-propagation algorithm combined with cost-benefit analysis, the optimal network upgrade plan, allocation and sizing of the selected components are determined, with the purpose of minimizing the total system capital and operating costs of DG and EV accommodation. Furthermore, a new iterative reliability test method is proposed. It can check the optimization results by subsequently simulating the reliability level of the planning scheme, and modify the generation reserve margin to guarantee acceptable adequacy levels for each year of the planning horizon. Numerical results based on a 32-bus distribution system verify the effectiveness of the proposed method.
Optimization of Adaboost Algorithm for Sonar Target Detection in a Multi-Stage ATR System
NASA Technical Reports Server (NTRS)
Lin, Tsung Han (Hank)
2011-01-01
JPL has developed a multi-stage Automated Target Recognition (ATR) system to locate objects in images. First, input images are preprocessed and sent to a Grayscale Optical Correlator (GOC) filter to identify possible regions-of-interest (ROIs). Second, feature extraction operations are performed using Texton filters and Principal Component Analysis (PCA). Finally, the features are fed to a classifier, to identify ROIs that contain the targets. Previous work used the Feed-forward Back-propagation Neural Network for classification. In this project we investigate a version of Adaboost as a classifier for comparison. The version we used is known as GentleBoost. We used the boosted decision tree as the weak classifier. We have tested our ATR system against real-world sonar images using the Adaboost approach. Results indicate an improvement in performance over a single Neural Network design.
Hyper-X Post-Flight Trajectory Reconstruction
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Tartabini, Paul V.; Blanchard, RobertC.; Kirsch, Michael; Toniolo, Matthew D.
2004-01-01
This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X{43A/Hyper{X high speed research vehicle, and its implementation for the reconstruction and analysis of ight test data. Extended Kalman ltering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the ltering routines. Additionally, smoothing algorithms have been implemented in which the nal value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from ight data.
Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir
2013-01-01
This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119
Temperature Effects and Compensation-Control Methods
Xia, Dunzhu; Chen, Shuling; Wang, Shourong; Li, Hongsheng
2009-01-01
In the analysis of the effects of temperature on the performance of microgyroscopes, it is found that the resonant frequency of the microgyroscope decreases linearly as the temperature increases, and the quality factor changes drastically at low temperatures. Moreover, the zero bias changes greatly with temperature variations. To reduce the temperature effects on the microgyroscope, temperature compensation-control methods are proposed. In the first place, a BP (Back Propagation) neural network and polynomial fitting are utilized for building the temperature model of the microgyroscope. Considering the simplicity and real-time requirements, piecewise polynomial fitting is applied in the temperature compensation system. Then, an integral-separated PID (Proportion Integration Differentiation) control algorithm is adopted in the temperature control system, which can stabilize the temperature inside the microgyrocope in pursuing its optimal performance. Experimental results reveal that the combination of microgyroscope temperature compensation and control methods is both realizable and effective in a miniaturized microgyroscope prototype. PMID:22408509
Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo
2016-12-13
In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods.
Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo
2016-01-01
In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods. PMID:27983577
Fatigue design of a cellular phone folder using regression model-based multi-objective optimization
NASA Astrophysics Data System (ADS)
Kim, Young Gyun; Lee, Jongsoo
2016-08-01
In a folding cellular phone, the folding device is repeatedly opened and closed by the user, which eventually results in fatigue damage, particularly to the front of the folder. Hence, it is important to improve the safety and endurance of the folder while also reducing its weight. This article presents an optimal design for the folder front that maximizes its fatigue endurance while minimizing its thickness. Design data for analysis and optimization were obtained experimentally using a test jig. Multi-objective optimization was carried out using a nonlinear regression model. Three regression methods were employed: back-propagation neural networks, logistic regression and support vector machines. The AdaBoost ensemble technique was also used to improve the approximation. Two-objective Pareto-optimal solutions were identified using the non-dominated sorting genetic algorithm (NSGA-II). Finally, a numerically optimized solution was validated against experimental product data, in terms of both fatigue endurance and thickness index.
A neural approach for improving the measurement capability of an electronic nose
NASA Astrophysics Data System (ADS)
Chimenti, M.; DeRossi, D.; Di Francesco, F.; Domenici, C.; Pieri, G.; Pioggia, G.; Salvetti, O.
2003-06-01
Electronic noses, instruments for automatic recognition of odours, are typically composed of an array of partially selective sensors, a sampling system, a data acquisition device and a data processing system. For the purpose of evaluating the quality of olive oil, an electronic nose based on an array of conducting polymer sensors capable of discriminating olive oil aromas was developed. The selection of suitable pattern recognition techniques for a particular application can enhance the performance of electronic noses. Therefore, an advanced neural recognition algorithm for improving the measurement capability of the device was designed and implemented. This method combines multivariate statistical analysis and a hierarchical neural-network architecture based on self-organizing maps and error back-propagation. The complete system was tested using samples composed of characteristic olive oil aromatic components in refined olive oil. The results obtained have shown that this approach is effective in grouping aromas into different categories representative of their chemical structure.
NASA Astrophysics Data System (ADS)
Takadoya, M.; Notake, M.; Kitahara, M.; Achenbach, J. D.; Guo, Q. C.; Peterson, M. L.
A neural network approach has been developed to determine the depth of a surface breaking crack in a steel plate from ultrasonic backscattering data. The network is trained by the use of a feedforward three-layered network together with a back-propagation algorithm for error corrections. Synthetic data are employed for network training. The signal used for crack isonification is a mode converted 45 deg transverse wave. The plate with a surface breaking crack is immersed in water, and the crack is insonified from the opposite uncracked side of the plate. A numerical analysis of the backscattered field is carried out based on the elastic wave theory by the use of the boundary element method. The numerical analysis provides synthetic data for the training of the network. The training data have been calculated for cracks with specific increments of the experimental data which are different from the training data.
Inverse obstacle problem for the scalar Helmholtz equation
NASA Astrophysics Data System (ADS)
Crosta, Giovanni F.
1994-07-01
The method presented is aimed at identifying the shape of an axially symmetric, sound soft acoustic scatterer from knowledge of the incident plane wave and of the scattering amplitude. The method relies on the approximate back propagation (ABP) of the estimated far field coefficients to the obstacle boundary and iteratively minimizes a boundary defect, without the addition of any penalty term. The ABP operator owes its structure to the properties of complete families of linearly independent solutions of Helmholtz equation. If the obstacle is known, as it happens in simulations, the theory also provides some independent means of predicting the performance of the ABP method. The ABP algorithm and the related computer code are outlined. Several reconstruction examples are considered, where noise is added to the estimated far field coefficients and other errors are deliberately introduced in the data. Many numerical and graphical results are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng
An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classificationmore » rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.« less
An accelerated training method for back propagation networks
NASA Technical Reports Server (NTRS)
Shelton, Robert O. (Inventor)
1993-01-01
The principal objective is to provide a training procedure for a feed forward, back propagation neural network which greatly accelerates the training process. A set of orthogonal singular vectors are determined from the input matrix such that the standard deviations of the projections of the input vectors along these singular vectors, as a set, are substantially maximized, thus providing an optimal means of presenting the input data. Novelty exists in the method of extracting from the set of input data, a set of features which can serve to represent the input data in a simplified manner, thus greatly reducing the time/expense to training the system.
Validation of TGLF in C-Mod and DIII-D using machine learning and integrated modeling tools
NASA Astrophysics Data System (ADS)
Rodriguez-Fernandez, P.; White, Ae; Cao, Nm; Creely, Aj; Greenwald, Mj; Grierson, Ba; Howard, Nt; Meneghini, O.; Petty, Cc; Rice, Je; Sciortino, F.; Yuan, X.
2017-10-01
Predictive models for steady-state and perturbative transport are necessary to support burning plasma operations. A combination of machine learning algorithms and integrated modeling tools is used to validate TGLF in C-Mod and DIII-D. First, a new code suite, VITALS, is used to compare SAT1 and SAT0 models in C-Mod. VITALS exploits machine learning and optimization algorithms for the validation of transport codes. Unlike SAT0, the SAT1 saturation rule contains a model to capture cross-scale turbulence coupling. Results show that SAT1 agrees better with experiments, further confirming that multi-scale effects are needed to model heat transport in C-Mod L-modes. VITALS will next be used to analyze past data from DIII-D: L-mode ``Shortfall'' plasma and ECH swing experiments. A second code suite, PRIMA, allows for integrated modeling of the plasma response to Laser Blow-Off cold pulses. Preliminary results show that SAT1 qualitatively reproduces the propagation of cold pulses after LBO injections and SAT0 does not, indicating that cross-scale coupling effects play a role in the plasma response. PRIMA will be used to ``predict-first'' cold pulse experiments using the new LBO system at DIII-D, and analyze existing ECH heat pulse data. Work supported by DE-FC02-99ER54512, DE-FC02-04ER54698.
A portable back massage robot based on Traditional Chinese Medicine.
Wang, Wendong; Liang, Chaohong; Zhang, Peng; Shi, Yikai
2018-05-30
A portable back massage robot which can complete the massage operations such as tapping, kneading and rolling was designed to improve the level of intelligence and massage effect. An efficient full covered path planning algorithm was put forward for a portable back massage robot to improve the coverage. Currently, massage robots has become one of important research focuses with the increasing requirements for healthcare. The massage robot is difficult to be widely accepted as there are problems of massage robot in control, structure, and coverage path planning. The 3D electromagnetic simulation model was established to optimize electromagnetic force. By analyzing the Traditional Chinese Medicine massage operation and the demands, the path planning algorithm models were established. The experimental platform of the massage robot was built. The simulation results show presented path planning algorithm is suitable for back massage, which ensures that the massage robot traverse the entire back area with improved massage coverage. The tested results show that the massage effect is best when the duty cycle is in the range of 1/8 to 1/2, and the massage force increases with the increase of the input voltage. The massage robot eventually achieved the desired massage effect, and the proposed efficient algorithm can effectively improve the coverage and promote the massage effect.
Exploiting ensemble learning for automatic cataract detection and grading.
Yang, Ji-Jiang; Li, Jianqiang; Shen, Ruifang; Zeng, Yang; He, Jian; Bi, Jing; Li, Yong; Zhang, Qinyan; Peng, Lihui; Wang, Qing
2016-02-01
Cataract is defined as a lenticular opacity presenting usually with poor visual acuity. It is one of the most common causes of visual impairment worldwide. Early diagnosis demands the expertise of trained healthcare professionals, which may present a barrier to early intervention due to underlying costs. To date, studies reported in the literature utilize a single learning model for retinal image classification in grading cataract severity. We present an ensemble learning based approach as a means to improving diagnostic accuracy. Three independent feature sets, i.e., wavelet-, sketch-, and texture-based features, are extracted from each fundus image. For each feature set, two base learning models, i.e., Support Vector Machine and Back Propagation Neural Network, are built. Then, the ensemble methods, majority voting and stacking, are investigated to combine the multiple base learning models for final fundus image classification. Empirical experiments are conducted for cataract detection (two-class task, i.e., cataract or non-cataractous) and cataract grading (four-class task, i.e., non-cataractous, mild, moderate or severe) tasks. The best performance of the ensemble classifier is 93.2% and 84.5% in terms of the correct classification rates for cataract detection and grading tasks, respectively. The results demonstrate that the ensemble classifier outperforms the single learning model significantly, which also illustrates the effectiveness of the proposed approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques.
Wang, Guanjin; Lam, Kin-Man; Deng, Zhaohong; Choi, Kup-Sze
2015-08-01
Bladder cancer is a common cancer in genitourinary malignancy. For muscle invasive bladder cancer, surgical removal of the bladder, i.e. radical cystectomy, is in general the definitive treatment which, unfortunately, carries significant morbidities and mortalities. Accurate prediction of the mortality of radical cystectomy is therefore needed. Statistical methods have conventionally been used for this purpose, despite the complex interactions of high-dimensional medical data. Machine learning has emerged as a promising technique for handling high-dimensional data, with increasing application in clinical decision support, e.g. cancer prediction and prognosis. Its ability to reveal the hidden nonlinear interactions and interpretable rules between dependent and independent variables is favorable for constructing models of effective generalization performance. In this paper, seven machine learning methods are utilized to predict the 5-year mortality of radical cystectomy, including back-propagation neural network (BPN), radial basis function (RBFN), extreme learning machine (ELM), regularized ELM (RELM), support vector machine (SVM), naive Bayes (NB) classifier and k-nearest neighbour (KNN), on a clinicopathological dataset of 117 patients of the urology unit of a hospital in Hong Kong. The experimental results indicate that RELM achieved the highest average prediction accuracy of 0.8 at a fast learning speed. The research findings demonstrate the potential of applying machine learning techniques to support clinical decision making. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gong, Maoguo; Yang, Hailun; Zhang, Puzhao
2017-07-01
Ternary change detection aims to detect changes and group the changes into positive change and negative change. It is of great significance in the joint interpretation of spatial-temporal synthetic aperture radar images. In this study, sparse autoencoder, convolutional neural networks (CNN) and unsupervised clustering are combined to solve ternary change detection problem without any supervison. Firstly, sparse autoencoder is used to transform log-ratio difference image into a suitable feature space for extracting key changes and suppressing outliers and noise. And then the learned features are clustered into three classes, which are taken as the pseudo labels for training a CNN model as change feature classifier. The reliable training samples for CNN are selected from the feature maps learned by sparse autoencoder with certain selection rules. Having training samples and the corresponding pseudo labels, the CNN model can be trained by using back propagation with stochastic gradient descent. During its training procedure, CNN is driven to learn the concept of change, and more powerful model is established to distinguish different types of changes. Unlike the traditional methods, the proposed framework integrates the merits of sparse autoencoder and CNN to learn more robust difference representations and the concept of change for ternary change detection. Experimental results on real datasets validate the effectiveness and superiority of the proposed framework.
NASA Astrophysics Data System (ADS)
Martin, A. K.
2006-06-01
When a continent breaks up into two plates, which then separate from each other about a rotation pole, it can be shown that if initial movement is taken up by lithospheric extension, asthenospheric breakthrough and oceanic accretion propagate toward the pole of rotation. Such a propagating rift model is then applied to an embryonic centrally located rift which evolves into two rifts propagating in opposite directions. The resultant rhombic shape of the modeled basin, initially underlain entirely by thinned continental crust, is very similar to the Oligocene to Burdigalian back-arc evolution of the Valencia Trough and the Liguro-Provencal Basin in the western Mediterranean. Existing well and seismic stratigraphic data confirm that a rift did initiate in the Gulf of Lion and propagated southwest into the Valencia Trough. Similarly, seismic refraction, gravity, and heat flow data demonstrate that maximum extension within the Valencia Trough/Liguro-Provencal Basin occurred in an axial position close to the North Balearic Fracture Zone. The same model of oppositely propagating rifts, when applied to the Burdigalian/Langhian episode of back-arc oceanic accretion within the Liguro-Provencal and Algerian basins, predicts a number of features which are borne out by existing geological and geophysical, particularly magnetic data. These include the orientation of subparallel magnetic anomalies, presumed to be seafloor spreading isochrons, in both basins; concave-to-the-west fracture zones southwest of the North Balearic Fracture Zone, and concave-to-the-east fracture zones to its northeast; a spherical triangular area of NW oriented seafloor spreading isochrons southwest of Sardinia; the greater NW extension of the central (youngest?) magnetic anomaly within this triangular area, in agreement with the model-predicted northwestward propagation of a rift in this zone; successively more central (younger) magnetic anomalies abutting thinned continental crust nearer to the pole of rotation in the Liguro-Provencal Basin. The latter feature demonstrates that a rift also propagated northeast in the Liguro-Provencal Basin, at least in its oceanic accretion phase of development. An adaptation of an existing model for subduction slab detachment occurring along the North African margin in the late Burdigalian/Langhian, proposes propagation in opposite directions of the slab tear. The resultant rhombic slab detachment is closely associated in space and time with the rhombic form of the Algerian/Liguro-Provencal basins, suggesting a cause and effect relationship.
NASA Astrophysics Data System (ADS)
Tape, Carl; Liu, Qinya; Tromp, Jeroen
2007-03-01
We employ adjoint methods in a series of synthetic seismic tomography experiments to recover surface wave phase-speed models of southern California. Our approach involves computing the Fréchet derivative for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a 2-D spectral-element method (SEM) and a phase-speed model for southern California. A `target' phase-speed model is used to generate the `data' at the receivers. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the remaining differences between data and synthetics are time-reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernels. An event kernel may be thought of as a weighted sum of phase-specific (e.g. P) banana-doughnut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, that is, the Fréchet derivative. A non-linear conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. We illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions and joint source-structure inversions. Finally, we draw connections between classical Hessian-based tomography and gradient-based adjoint tomography.
NASA Astrophysics Data System (ADS)
Bigeon, John; Huby, Nolwenn; Duvail, Jean-Luc; Bêche, Bruno
2014-04-01
We report photonic concepts related to injection and sub-wavelength propagation in nanotubes, an unusual but promising geometry for highly integrated photonic devices. Theoretical simulation by the finite domain time-dependent (FDTD) method was first used to determine the features of the direct light injection and sub-wavelength propagation regime within nanotubes. Then, the injection into nanotubes of SU8, a photoresist used for integrated photonics, was successfully achieved by using polymer microlensed fibers with a sub-micronic radius of curvature, as theoretically expected from FDTD simulations. The propagation losses in a single SU8 nanotube were determined by using a comprehensive set-up and a protocol for optical characterization. The attenuation coefficient has been evaluated at 1.25 dB mm-1 by a cut-back method transposed to such nanostructures. The mechanisms responsible for losses in nanotubes were identified with FDTD theoretical support. Both injection and cut-back methods developed here are compatible with any sub-micronic structures. This work on SU8 nanotubes suggests broader perspectives for future nanophotonics.
Bigeon, John; Huby, Nolwenn; Duvail, Jean-Luc; Bêche, Bruno
2014-05-21
We report photonic concepts related to injection and sub-wavelength propagation in nanotubes, an unusual but promising geometry for highly integrated photonic devices. Theoretical simulation by the finite domain time-dependent (FDTD) method was first used to determine the features of the direct light injection and sub-wavelength propagation regime within nanotubes. Then, the injection into nanotubes of SU8, a photoresist used for integrated photonics, was successfully achieved by using polymer microlensed fibers with a sub-micronic radius of curvature, as theoretically expected from FDTD simulations. The propagation losses in a single SU8 nanotube were determined by using a comprehensive set-up and a protocol for optical characterization. The attenuation coefficient has been evaluated at 1.25 dB mm(-1) by a cut-back method transposed to such nanostructures. The mechanisms responsible for losses in nanotubes were identified with FDTD theoretical support. Both injection and cut-back methods developed here are compatible with any sub-micronic structures. This work on SU8 nanotubes suggests broader perspectives for future nanophotonics.
NASA Astrophysics Data System (ADS)
Wu, Lianglong; Fu, Xiquan; Guo, Xing
2013-03-01
In this paper, we propose a modified adaptive algorithm (MAA) of dealing with the high chirp to efficiently simulate the propagation of chirped pulses along an optical fiber for the propagation distance shorter than the "temporal focal length". The basis of the MAA is that the chirp term of initial pulse is treated as the rapidly varying part by means of the idea of the slowly varying envelope approximation (SVEA). Numerical simulations show that the performance of the MAA is validated, and that the proposed method can decrease the number of sampling points by orders of magnitude. In addition, the computational efficiency of the MAA compared with the time-domain beam propagation method (BPM) can be enhanced with the increase of the chirp of initial pulse.
Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations
NASA Technical Reports Server (NTRS)
Osher, Stanley; Sethian, James A.
1987-01-01
New numerical algorithms are devised (PSC algorithms) for following fronts propagating with curvature-dependent speed. The speed may be an arbitrary function of curvature, and the front can also be passively advected by an underlying flow. These algorithms approximate the equations of motion, which resemble Hamilton-Jacobi equations with parabolic right-hand-sides, by using techniques from the hyperbolic conservation laws. Non-oscillatory schemes of various orders of accuracy are used to solve the equations, providing methods that accurately capture the formation of sharp gradients and cusps in the moving fronts. The algorithms handle topological merging and breaking naturally, work in any number of space dimensions, and do not require that the moving surface be written as a function. The methods can be used also for more general Hamilton-Jacobi-type problems. The algorithms are demonstrated by computing the solution to a variety of surface motion problems.
Ahmed, Afaz Uddin; Tariqul Islam, Mohammad; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina
2014-01-01
An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation. PMID:25133214
Ahmed, Afaz Uddin; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina
2014-01-01
An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation.
NASA Astrophysics Data System (ADS)
Turnbull, Heather; Omenzetter, Piotr
2018-03-01
vDifficulties associated with current health monitoring and inspection practices combined with harsh, often remote, operational environments of wind turbines highlight the requirement for a non-destructive evaluation system capable of remotely monitoring the current structural state of turbine blades. This research adopted a physics based structural health monitoring methodology through calibration of a finite element model using inverse techniques. A 2.36m blade from a 5kW turbine was used as an experimental specimen, with operational modal analysis techniques utilised to realize the modal properties of the system. Modelling the experimental responses as fuzzy numbers using the sub-level technique, uncertainty in the response parameters was propagated back through the model and into the updating parameters. Initially, experimental responses of the blade were obtained, with a numerical model of the blade created and updated. Deterministic updating was carried out through formulation and minimisation of a deterministic objective function using both firefly algorithm and virus optimisation algorithm. Uncertainty in experimental responses were modelled using triangular membership functions, allowing membership functions of updating parameters (Young's modulus and shear modulus) to be obtained. Firefly algorithm and virus optimisation algorithm were again utilised, however, this time in the solution of fuzzy objective functions. This enabled uncertainty associated with updating parameters to be quantified. Varying damage location and severity was simulated experimentally through addition of small masses to the structure intended to cause a structural alteration. A damaged model was created, modelling four variable magnitude nonstructural masses at predefined points and updated to provide a deterministic damage prediction and information in relation to the parameters uncertainty via fuzzy updating.
Propagation failures, breathing pulses, and backfiring in an excitable reaction-diffusion system.
Manz, Niklas; Steinbock, Oliver
2006-09-01
We report results from experiments with a pseudo-one-dimensional Belousov-Zhabotinsky reaction that employs 1,4-cyclohexanedione as its organic substrate. This excitable system shows traveling oxidation pulses and pulse trains that can undergo complex sequences of propagation failures. Moreover, we present examples for (i) breathing pulses that undergo periodic changes in speed and size and (ii) backfiring pulses that near their back repeatedly generate new pulses propagating in opposite direction.
A neural network based methodology to predict site-specific spectral acceleration values
NASA Astrophysics Data System (ADS)
Kamatchi, P.; Rajasankar, J.; Ramana, G. V.; Nagpal, A. K.
2010-12-01
A general neural network based methodology that has the potential to replace the computationally-intensive site-specific seismic analysis of structures is proposed in this paper. The basic framework of the methodology consists of a feed forward back propagation neural network algorithm with one hidden layer to represent the seismic potential of a region and soil amplification effects. The methodology is implemented and verified with parameters corresponding to Delhi city in India. For this purpose, strong ground motions are generated at bedrock level for a chosen site in Delhi due to earthquakes considered to originate from the central seismic gap of the Himalayan belt using necessary geological as well as geotechnical data. Surface level ground motions and corresponding site-specific response spectra are obtained by using a one-dimensional equivalent linear wave propagation model. Spectral acceleration values are considered as a target parameter to verify the performance of the methodology. Numerical studies carried out to validate the proposed methodology show that the errors in predicted spectral acceleration values are within acceptable limits for design purposes. The methodology is general in the sense that it can be applied to other seismically vulnerable regions and also can be updated by including more parameters depending on the state-of-the-art in the subject.
Quantum Graphical Models and Belief Propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leifer, M.S.; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo Ont., N2L 2Y5; Poulin, D.
Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markovmore » Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described.« less
Multi-exemplar affinity propagation.
Wang, Chang-Dong; Lai, Jian-Huang; Suen, Ching Y; Zhu, Jun-Yong
2013-09-01
The affinity propagation (AP) clustering algorithm has received much attention in the past few years. AP is appealing because it is efficient, insensitive to initialization, and it produces clusters at a lower error rate than other exemplar-based methods. However, its single-exemplar model becomes inadequate when applied to model multisubclasses in some situations such as scene analysis and character recognition. To remedy this deficiency, we have extended the single-exemplar model to a multi-exemplar one to create a new multi-exemplar affinity propagation (MEAP) algorithm. This new model automatically determines the number of exemplars in each cluster associated with a super exemplar to approximate the subclasses in the category. Solving the model is NP-hard and we tackle it with the max-sum belief propagation to produce neighborhood maximum clusters, with no need to specify beforehand the number of clusters, multi-exemplars, and superexemplars. Also, utilizing the sparsity in the data, we are able to reduce substantially the computational time and storage. Experimental studies have shown MEAP's significant improvements over other algorithms on unsupervised image categorization and the clustering of handwritten digits.
Micó-Amigo, M Encarna; Kingma, Idsart; Ainsworth, Erik; Walgaard, Stefan; Niessen, Martijn; van Lummel, Rob C; van Dieën, Jaap H
2016-04-19
The assessment of short episodes of gait is clinically relevant and easily implemented, especially given limited space and time requirements. BFS (body-fixed-sensors) are small, lightweight and easy to wear sensors, which allow the assessment of gait at relative low cost and with low interference. Thus, the assessment with BFS of short episodes of gait, extracted from dailylife physical activity or measured in a standardised and supervised setting, may add value in the study of gait quality of the elderly. The aim of this study was to evaluate the accuracy of a novel algorithm based on acceleration signals recorded at different human locations (lower back and heels) for the detection of step durations over short episodes of gait in healthy elderly subjects. Twenty healthy elderly subjects (73.7 ± 7.9 years old) walked twice a distance of 5 m, wearing a BFS on the lower back, and on the outside of each heel. Moreover, an optoelectronic three-dimensional (3D) motion tracking system was used to detect step durations. A novel algorithm is presented for the detection of step durations from low-back and heel acceleration signals separately. The accuracy of the algorithm was assessed by comparing absolute differences in step duration between the three methods: step detection from the optoelectronic 3D motion tracking system, step detection from the application of the novel algorithm to low-back accelerations, and step detection from the application of the novel algorithm to heel accelerations. The proposed algorithm successfully detected all the steps, without false positives and without false negatives. Absolute average differences in step duration within trials and across subjects were calculated for each comparison, between low-back accelerations and the optoelectronic system were on average 22.4 ± 7.6 ms (4.0 ± 1.3 % of average step duration), between heel accelerations and the optoelectronic system were on average 20.7 ± 11.8 ms (3.7 ± 1.9 %), and between low-back accelerations and heel accelerations were on average 27.8 ± 15.1 ms (4.9 ± 2.5 % of average step duration). This study showed that the presented novel algorithm detects step durations over short episodes of gait in healthy elderly subjects with acceptable accuracy from low-back and heel accelerations, which provides opportunities to extract a range of gait parameters from short episodes of gait.
Sensor failure detection for jet engines
NASA Technical Reports Server (NTRS)
Beattie, E. C.; Laprad, R. F.; Akhter, M. M.; Rock, S. M.
1983-01-01
Revisions to the advanced sensor failure detection, isolation, and accommodation (DIA) algorithm, developed under the sensor failure detection system program were studied to eliminate the steady state errors due to estimation filter biases. Three algorithm revisions were formulated and one revision for detailed evaluation was chosen. The selected version modifies the DIA algorithm to feedback the actual sensor outputs to the integral portion of the control for the nofailure case. In case of a failure, the estimates of the failed sensor output is fed back to the integral portion. The estimator outputs are fed back to the linear regulator portion of the control all the time. The revised algorithm is evaluated and compared to the baseline algorithm developed previously.
[Managment of acute low back pain without trauma - an algorithm].
Melcher, Carolin; Wegener, Bernd; Jansson, Volkmar; Mutschler, Wolf; Kanz, Karl-Georg; Birkenmaier, Christof
2018-05-14
Low back pain is a common problem for primary care providers, outpatient clinics and A&E departments. The predominant symptoms are those of so-called "unspecific back pain", but serious pathologies can be concealed by the clinical signs. Especially less experienced colleagues have problems in treating these patients, as - despite the multitude of recommendations and guidelines - there is no generally accepted algorithm. After a literature search (Medline/Cochrane), 158 articles were selected from 15,000 papers and classified according to their level of evidence. These were attuned to the clinical guidelines of the orthopaedic and pain-physician associations in Europe, North America and overseas and the experience of specialists at LMU Munich, in order to achieve consistency with literature recommendations, as well as feasibility in everyday clinical work and optimised with practical relevance. An algorithm was formed to provide the crucial differential diagnosis of lumbar back pain according to its clinical relevance and to provide a plan of action offering reasonable diagnostic and therapeutic steps. As a consequence of distinct binary decisions, low back patients should be treated at any given time according to the guidelines, with emergencies detected, unnecessary diagnostic testing and interventions averted and reasonable treatment initiated pursuant to the underlying pathology. In the context of the available evidence, a clinical algorithm has been developed that translates the complex diagnostic testing of acute low back pain into a transparent, structured and systematic guideline. Georg Thieme Verlag KG Stuttgart · New York.
Enhancing data locality by using terminal propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, B.; Leland, R.; Van Driessche, R.
1995-12-31
Terminal propagation is a method developed in the circuit placement community for adding constraints to graph partitioning problems. This paper adapts and expands this idea, and applies it to the problem of partitioning data structures among the processors of a parallel computer. We show how the constraints in terminal propagation can be used to encourage partitions in which messages are communicated only between architecturally near processors. We then show how these constraints can be handled in two important partitioning algorithms, spectral bisection and multilevel-KL. We compare the quality of partitions generated by these algorithms to each other and to Partitionsmore » generated by more familiar techniques.« less
Handapangoda, Chintha C; Premaratne, Malin; Paganin, David M; Hendahewa, Priyantha R D S
2008-10-27
A novel algorithm for mapping the photon transport equation (PTE) to Maxwell's equations is presented. Owing to its accuracy, wave propagation through biological tissue is modeled using the PTE. The mapping of the PTE to Maxwell's equations is required to model wave propagation through foreign structures implanted in biological tissue for sensing and characterization of tissue properties. The PTE solves for only the magnitude of the intensity but Maxwell's equations require the phase information as well. However, it is possible to construct the phase information approximately by solving the transport of intensity equation (TIE) using the full multigrid algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumarasiri, Akila, E-mail: akumara1@hfhs.org; Siddiqui, Farzan; Liu, Chang
2014-12-15
Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreementmore » of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm{sup 3}. Organs with volumes <3 cm{sup 3} and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm{sup 3}), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours.” Conclusions: Use of DIR-based contour propagation in the routine clinical setting is expected to increase the efficiency of H and N replanning, reducing the amount of time needed for manual target and organ delineations.« less
NASA Astrophysics Data System (ADS)
Fink, Wolfgang
2009-05-01
Artificial neural networks (ANNs) are powerful methods for the classification of multi-dimensional data as well as for the control of dynamic systems. In general terms, ANNs consist of neurons that are, e.g., arranged in layers and interconnected by real-valued or binary neural couplings or weights. ANNs try mimicking the processing taking place in biological brains. The classification and generalization capabilities of ANNs are given by the interconnection architecture and the coupling strengths. To perform a certain classification or control task with a particular ANN architecture (i.e., number of neurons, number of layers, etc.), the inter-neuron couplings and their accordant coupling strengths must be determined (1) either by a priori design (i.e., manually) or (2) using training algorithms such as error back-propagation. The more complex the classification or control task, the less obvious it is how to determine an a priori design of an ANN, and, as a consequence, the architecture choice becomes somewhat arbitrary. Furthermore, rather than being able to determine for a given architecture directly the corresponding coupling strengths necessary to perform the classification or control task, these have to be obtained/learned through training of the ANN on test data. We report on the use of a Stochastic Optimization Framework (SOF; Fink, SPIE 2008) for the autonomous self-configuration of Artificial Neural Networks (i.e., the determination of number of hidden layers, number of neurons per hidden layer, interconnections between neurons, and respective coupling strengths) for performing classification or control tasks. This may provide an approach towards cognizant and self-adapting computing architectures and systems.
NASA Astrophysics Data System (ADS)
García-Rodríguez, M. J.; Malpica, J. A.
2010-06-01
This paper presents an approach for assessing earthquake-triggered landslide susceptibility using artificial neural networks (ANNs). The computational method used for the training process is a back-propagation learning algorithm. It is applied to El Salvador, one of the most seismically active regions in Central America, where the last severe destructive earthquakes occurred on 13 January 2001 (Mw 7.7) and 13 February 2001 (Mw 6.6). The first one triggered more than 600 landslides (including the most tragic, Las Colinas landslide) and killed at least 844 people. The ANN is designed and programmed to develop landslide susceptibility analysis techniques at a regional scale. This approach uses an inventory of landslides and different parameters of slope instability: slope gradient, elevation, aspect, mean annual precipitation, lithology, land use, and terrain roughness. The information obtained from ANN is then used by a Geographic Information System (GIS) to map the landslide susceptibility. In a previous work, a Logistic Regression (LR) was analysed with the same parameters considered in the ANN as independent variables and the occurrence or non-occurrence of landslides as dependent variables. As a result, the logistic approach determined the importance of terrain roughness and soil type as key factors within the model. The results of the landslide susceptibility analysis with ANN are checked using landslide location data. These results show a high concordance between the landslide inventory and the high susceptibility estimated zone. Finally, a comparative analysis of the ANN and LR models are made. The advantages and disadvantages of both approaches are discussed using Receiver Operating Characteristic (ROC) curves.
A Seed-Based Plant Propagation Algorithm: The Feeding Station Model
Salhi, Abdellah
2015-01-01
The seasonal production of fruit and seeds is akin to opening a feeding station, such as a restaurant. Agents coming to feed on the fruit are like customers attending the restaurant; they arrive at a certain rate and get served at a certain rate following some appropriate processes. The same applies to birds and animals visiting and feeding on ripe fruit produced by plants such as the strawberry plant. This phenomenon underpins the seed dispersion of the plants. Modelling it as a queuing process results in a seed-based search/optimisation algorithm. This variant of the Plant Propagation Algorithm is described, analysed, tested on nontrivial problems, and compared with well established algorithms. The results are included. PMID:25821858
A Novel Latin Hypercube Algorithm via Translational Propagation
Pan, Guang; Ye, Pengcheng
2014-01-01
Metamodels have been widely used in engineering design to facilitate analysis and optimization of complex systems that involve computationally expensive simulation programs. The accuracy of metamodels is directly related to the experimental designs used. Optimal Latin hypercube designs are frequently used and have been shown to have good space-filling and projective properties. However, the high cost in constructing them limits their use. In this paper, a methodology for creating novel Latin hypercube designs via translational propagation and successive local enumeration algorithm (TPSLE) is developed without using formal optimization. TPSLE algorithm is based on the inspiration that a near optimal Latin Hypercube design can be constructed by a simple initial block with a few points generated by algorithm SLE as a building block. In fact, TPSLE algorithm offers a balanced trade-off between the efficiency and sampling performance. The proposed algorithm is compared to two existing algorithms and is found to be much more efficient in terms of the computation time and has acceptable space-filling and projective properties. PMID:25276844
Wave propagation, scattering and emission in complex media
NASA Astrophysics Data System (ADS)
Jin, Ya-Qiu
I. Polarimetric scattering and SAR imagery. EM wave propagation and scattering in polarimetric SAR interferometry / S. R. Cloude. Terrain topographic inversion from single-pass polarimetric SAR image data by using polarimetric stokes parameters and morphological algorithm / Y. Q. Jin, L. Luo. Road detection in forested area using polarimetric SAR / G. W. Dong ... [et al.]. Research on some problems about SAR radiometric resolution / G. Dong ... [et al.]. A fast image matching algorithm for remote sensing applications / Z. Q. Hou ... [et al.]. A new algorithm of noised remote sensing image fusion based on steerable filters / X. Kang ... [et al.]. Adaptive noise reduction of InSAR data based on anisotropic diffusion models and their applications to phase unwrapping / C. Wang, X. Gao, H. Zhang -- II. Scattering from randomly rough surfaces. Modeling tools for backscattering from rough surfaces / A. K. Fung, K. S. Chen. Pseudo-nondiffracting beams from rough surface scattering / E. R. Méndez, T. A. Leskova, A. A. Maradudin. Surface roughness clutter effects in GPR modeling and detection / C. Rappaport. Scattering from rough surfaces with small slopes / M. Saillard, G. Soriano. Polarization and spectral characteristics of radar signals reflected by sea-surface / V. A. Butko, V. A. Khlusov, L. I. Sharygina. Simulation of microwave scattering from wind-driven ocean surfaces / M. Y. Xia ... [et al.]. HF surface wave radar tests at the Eastern China Sea / X. B. Wu ... [et al.] -- III. Electromagnetics of complex materials. Wave propagation in plane-parallel metamaterial and constitutive relations / A. Ishimaru ... [et al.]. Two dimensional periodic approach for the study of left-handed metamaterials / T. M. Grzegorczyk ... [et al.]. Numerical analysis of the effective constitutive parameters of a random medium containing small chiral spheres / Y. Nanbu, T. Matsuoka, M. Tateiba. Wave propagation in inhomogeneous media: from the Helmholtz to the Ginzburg -Landau equation / M. Gitterman. Transformation of the spectrum of scattered radiation in randomly inhomogeneous absorptive plasma layer / G. V. Jandieri, G. D. Aburjunia, V. G. Jandieri. Numerical analysis of microwave heating on saponification reaction / K. Huang, K. Jia -- IV. Scattering from complex targets. Analysis of electromagnetic scattering from layered crossed-gratings of circular cylinders using lattice sums technique / K. Yasumoto, H. T. Jia. Scattering by a body in a random medium / M. Tateiba, Z. Q. Meng, H. El-Ocla. A rigorous analysis of electromagnetic scattering from multilayered crossed-arrays of metallic cylinders / H. T. Jia, K. Yasumoto. Vector models of non-stable and spatially-distributed radar objects / A. Surkov ... [et al.]. Simulation of algorithm of orthogonal signals forming and processing used to estimate back scattering matrix of non-stable radar objects / D. Nosov ... [et al.]. New features of scattering from a dielectric film on a reflecting metal substrate / Z. H. Gu, I. M. Fuks, M. Ciftan. A higher order FDTD method for EM wave propagation in collision plasmas / S. B. Liu, J. J. Mo, N. C. Yuan -- V. Radiative transfer and remote sensing. Simulating microwave emission from Antarctica ice sheet with a coherent model / M. Tedesco, P. Pampaloni. Scattering and emission from inhomogeneous vegetation canopy and alien target by using three-dimensional Vector Radiative Transfer (3D-VRT) equation / Y. Q. Jin, Z. C. Liang. Analysis of land types using high-resolution satellite images and fractal approach / H. G. Zhang ... [et al.]. Data fusion of RADARSAT SAR and DMSP SSM/I for monitoring sea ice of China's Bohai Sea / Y. Q. Jin. Retrieving atmospheric temperature profiles from simulated microwave radiometer data with artificial neural networks / Z. G. Yao, H. B. Chen -- VI. Wave propagation and wireless communication. Wireless propagation in urban environments: modeling and experimental verification / D. Erricolo ... [et al.]. An overview of physics-based wave propagation in forested environment / K. Sarabandi, I. Koh. Angle-of-arrival fluctuations due to meteorological conditions in the diffraction zone of C-band radio waves, propagated over the ground surface / T. A. Tyufilina, A. A. Meschelyakov, M. V. Krutikov. Simulating radio channel statistics using ray based prediction codes / H. L. Bertoni. Measurement and simulation of ultra wideband antenna elements / W. Sörgel, W. Wiesbeck. The experimental investigation of a ground-placed radio complex synchronization system / V. P. Denisov ... [et al.] -- VII. Computational electromagnetics. Analysis of 3-D electromagnetic wave scattering with the Krylov subspace FFT iterative methods / R. S. Chen ... [et al.]. Sparse approximate inverse preconditioned iterative algorithm with block toeplitz matrix for fast analysis of microstrip circuits / L. Mo, R. S. Chen, E. K. N. Yung. An Efficient modified interpolation technique for the translation operators in MLFMA / J. Hu, Z. P. Nie, G. X. Zou. Efficient solution of 3-D vector electromagnetic scattering by CG-MLFMA with partly approximate iteration / J. Hu, Z. P. Nie. The effective constitution at interface of different media / L. G. Zheng, W. X. Zhang. Novel basis functions for quadratic hexahedral edge element / P. Liu ... [et al.]. A higher order FDTD method for EM wave propagation in collision plasmas / S. B. Liu, J. J. Mo, N. C. Yuan. Attenuation of electric field eradiated by underground source / J. P. Dong, Y. G. Gao.
Xu, Tianhua; Shevchenko, Nikita A; Lavery, Domaniç; Semrau, Daniel; Liga, Gabriele; Alvarado, Alex; Killey, Robert I; Bayvel, Polina
2017-02-20
The relationship between modulation format and the performance of multi-channel digital back-propagation (MC-DBP) in ideal Nyquist-spaced optical communication systems is investigated. It is found that the nonlinear distortions behave independent of modulation format in the case of full-field DBP, in contrast to the cases of electronic dispersion compensation and partial-bandwidth DBP. It is shown that the minimum number of steps per span required for MC-DBP depends on the chosen modulation format. For any given target information rate, there exists a possible trade-off between modulation format and back-propagated bandwidth, which could be used to reduce the computational complexity requirement of MC-DBP.
Parallel Splash Belief Propagation
2010-08-01
s/ ROGER J. DZIEGIEL, Jr. MICHAEL J. WESSING, Deputy Chief Work Unit Manager For... Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE...Propagation algorithm outperforms synchronous, round-robin, wild-fire ( Ranganathan et al., 2007), and residual (Elidan et al., 2006) belief propagation
Deep Visual Attention Prediction
NASA Astrophysics Data System (ADS)
Wang, Wenguan; Shen, Jianbing
2018-05-01
In this work, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although Convolutional Neural Networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve CNN based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark datasets demonstrate our method yields state-of-the-art performance with competitive inference time.
Spectral Target Detection using Schroedinger Eigenmaps
NASA Astrophysics Data System (ADS)
Dorado-Munoz, Leidy P.
Applications of optical remote sensing processes include environmental monitoring, military monitoring, meteorology, mapping, surveillance, etc. Many of these tasks include the detection of specific objects or materials, usually few or small, which are surrounded by other materials that clutter the scene and hide the relevant information. This target detection process has been boosted lately by the use of hyperspectral imagery (HSI) since its high spectral dimension provides more detailed spectral information that is desirable in data exploitation. Typical spectral target detectors rely on statistical or geometric models to characterize the spectral variability of the data. However, in many cases these parametric models do not fit well HSI data that impacts the detection performance. On the other hand, non-linear transformation methods, mainly based on manifold learning algorithms, have shown a potential use in HSI transformation, dimensionality reduction and classification. In target detection, non-linear transformation algorithms are used as preprocessing techniques that transform the data to a more suitable lower dimensional space, where the statistical or geometric detectors are applied. One of these non-linear manifold methods is the Schroedinger Eigenmaps (SE) algorithm that has been introduced as a technique for semi-supervised classification. The core tool of the SE algorithm is the Schroedinger operator that includes a potential term that encodes prior information about the materials present in a scene, and enables the embedding to be steered in some convenient directions in order to cluster similar pixels together. A completely novel target detection methodology based on SE algorithm is proposed for the first time in this thesis. The proposed methodology does not just include the transformation of the data to a lower dimensional space but also includes the definition of a detector that capitalizes on the theory behind SE. The fact that target pixels and those similar pixels are clustered in a predictable region of the low-dimensional representation is used to define a decision rule that allows one to identify target pixels over the rest of pixels in a given image. In addition, a knowledge propagation scheme is used to combine spectral and spatial information as a means to propagate the "potential constraints" to nearby points. The propagation scheme is introduced to reinforce weak connections and improve the separability between most of the target pixels and the background. Experiments using different HSI data sets are carried out in order to test the proposed methodology. The assessment is performed from a quantitative and qualitative point of view, and by comparing the SE-based methodology against two other detection methodologies that use linear/non-linear algorithms as transformations and the well-known Adaptive Coherence/Cosine Estimator (ACE) detector. Overall results show that the SE-based detector outperforms the other two detection methodologies, which indicates the usefulness of the SE transformation in spectral target detection problems.
Testing of Gyroless Estimation Algorithms for the Fuse Spacecraft
NASA Technical Reports Server (NTRS)
Harman, R.; Thienel, J.; Oshman, Yaakov
2004-01-01
This paper documents the testing and development of magnetometer-based gyroless attitude and rate estimation algorithms for the Far Ultraviolet Spectroscopic Explorer (FUSE). The results of two approaches are presented, one relies on a kinematic model for propagation, a method used in aircraft tracking, and the other is a pseudolinear Kalman filter that utilizes Euler's equations in the propagation of the estimated rate. Both algorithms are tested using flight data collected over a few months after the failure of two of the reaction wheels. The question of closed-loop stability is addressed. The ability of the controller to meet the science slew requirements, without the gyros, is analyzed.
Pollitz, F.F.
2002-01-01
I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f < ???0.01-0.05 Hz) seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.
Mariano-Goulart, D; Fourcade, M; Bernon, J L; Rossi, M; Zanca, M
2003-01-01
Thanks to an experimental study based on simulated and physical phantoms, the propagation of the stochastic noise in slices reconstructed using the conjugate gradient algorithm has been analysed versus iterations. After a first increase corresponding to the reconstruction of the signal, the noise stabilises before increasing linearly with iterations. The level of the plateau as well as the slope of the subsequent linear increase depends on the noise in the projection data.
Interactive lesion segmentation with shape priors from offline and online learning.
Shepherd, Tony; Prince, Simon J D; Alexander, Daniel C
2012-09-01
In medical image segmentation, tumors and other lesions demand the highest levels of accuracy but still call for the highest levels of manual delineation. One factor holding back automatic segmentation is the exemption of pathological regions from shape modelling techniques that rely on high-level shape information not offered by lesions. This paper introduces two new statistical shape models (SSMs) that combine radial shape parameterization with machine learning techniques from the field of nonlinear time series analysis. We then develop two dynamic contour models (DCMs) using the new SSMs as shape priors for tumor and lesion segmentation. From training data, the SSMs learn the lower level shape information of boundary fluctuations, which we prove to be nevertheless highly discriminant. One of the new DCMs also uses online learning to refine the shape prior for the lesion of interest based on user interactions. Classification experiments reveal superior sensitivity and specificity of the new shape priors over those previously used to constrain DCMs. User trials with the new interactive algorithms show that the shape priors are directly responsible for improvements in accuracy and reductions in user demand.
NASA Astrophysics Data System (ADS)
Burns, W. Robert
Since the early 1970's research in airborne laser systems has been the subject of continued interest. Airborne laser applications depend on being able to propagate a near diffraction-limited laser beam from an airborne platform. Turbulent air flowing over the aircraft produces density fluctuations through which the beam must propagate. Because the index of refraction of the air is directly related to the density, the turbulent flow imposes aberrations on the beam passing through it. This problem is referred to as Aero-Optics. Aero-Optics is recognized as a major technical issue that needs to be solved before airborne optical systems can become routinely fielded. This dissertation research specifically addresses an approach to mitigating the deleterious effects imposed on an airborne optical system by aero-optics. A promising technology is adaptive optics: a feedback control method that measures optical aberrations and imprints the conjugate aberrations onto an outgoing beam. The challenge is that it is a computationally-difficult problem, since aero-optic disturbances are on the order of kilohertz for practical applications. High control loop frequencies and high disturbance frequencies mean that adaptive-optic systems are sensitive to latency in sensors, mirrors, amplifiers, and computation. These latencies build up to result in a dramatic reduction in the system's effective bandwidth. This work presents two variations of an algorithm that uses model reduction and data-driven predictors to estimate the evolution of measured wavefronts over a short temporal horizon and thus compensate for feedback latency. The efficacy of the two methods are compared in this research, and evaluated against similar algorithms that have been previously developed. The best version achieved over 75% disturbance rejection in simulation in the most optically active flow region in the wake of a turret, considerably outperforming conventional approaches. The algorithm is shown to be insensitive to changes in flow condition, and stable in the presence of small latency uncertainty. Consideration is given to practical implementation of the algorithms as well as computational requirement scaling.
Grounding the Meanings in Sensorimotor Behavior using Reinforcement Learning
Farkaš, Igor; Malík, Tomáš; Rebrová, Kristína
2012-01-01
The recent outburst of interest in cognitive developmental robotics is fueled by the ambition to propose ecologically plausible mechanisms of how, among other things, a learning agent/robot could ground linguistic meanings in its sensorimotor behavior. Along this stream, we propose a model that allows the simulated iCub robot to learn the meanings of actions (point, touch, and push) oriented toward objects in robot’s peripersonal space. In our experiments, the iCub learns to execute motor actions and comment on them. Architecturally, the model is composed of three neural-network-based modules that are trained in different ways. The first module, a two-layer perceptron, is trained by back-propagation to attend to the target position in the visual scene, given the low-level visual information and the feature-based target information. The second module, having the form of an actor-critic architecture, is the most distinguishing part of our model, and is trained by a continuous version of reinforcement learning to execute actions as sequences, based on a linguistic command. The third module, an echo-state network, is trained to provide the linguistic description of the executed actions. The trained model generalizes well in case of novel action-target combinations with randomized initial arm positions. It can also promptly adapt its behavior if the action/target suddenly changes during motor execution. PMID:22393319
Feature selection and back-projection algorithms for nonline-of-sight laser-gated viewing
NASA Astrophysics Data System (ADS)
Laurenzis, Martin; Velten, Andreas
2014-11-01
We discuss new approaches to analyze laser-gated viewing data for nonline-of-sight vision with a frame-to-frame back-projection as well as feature selection algorithms. Although first back-projection approaches use time transients for each pixel, our method has the ability to calculate the projection of imaging data on the voxel space for each frame. Further, different data analysis algorithms and their sequential application were studied with the aim of identifying and selecting signals from different target positions. A slight modification of commonly used filters leads to a powerful selection of local maximum values. It is demonstrated that the choice of the filter has an impact on the selectivity i.e., multiple target detection as well as on the localization precision.
Temperature and Particle Size Dependence of Sodium Bicarbonate Inhibition of Methane/Air Flames.
1982-11-03
with thermal theories dating back to those of Mallard and Le Chatelier . They proposed that it was a propagation of heat back * ~ ~ -7 7 - 777* - . 41...inhibiting effects * can be separated in principle , the action of a given inhibiting agent does not have to fall exclusively in the realm of one or an- other
Aqil, M; Kita, I; Yano, A; Nishiyama, S
2006-01-01
It is widely accepted that an efficient flood alarm system may significantly improve public safety and mitigate economical damages caused by inundations. In this paper, a modified adaptive neuro-fuzzy system is proposed to modify the traditional neuro-fuzzy model. This new method employs a rule-correction based algorithm to replace the error back propagation algorithm that is employed by the traditional neuro-fuzzy method in backward pass calculation. The final value obtained during the backward pass calculation using the rule-correction algorithm is then considered as a mapping function of the learning mechanism of the modified neuro-fuzzy system. Effectiveness of the proposed identification technique is demonstrated through a simulation study on the flood series of the Citarum River in Indonesia. The first four-year data (1987 to 1990) was used for model training/calibration, while the other remaining data (1991 to 2002) was used for testing the model. The number of antecedent flows that should be included in the input variables was determined by two statistical methods, i.e. autocorrelation and partial autocorrelation between the variables. Performance accuracy of the model was evaluated in terms of two statistical indices, i.e. mean average percentage error and root mean square error. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach, and evolving graphical features, and can be adopted for any similar situation to predict the streamflow. The main data processing includes gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood data, to train/test the model using various input options, and to visualize results. The program code consists of a set of files, which can be modified as well to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The results indicate that the modified neuro-fuzzy model applied to the flood prediction seems to have reached encouraging results for the river basin under examination. The comparison of the modified neuro-fuzzy predictions with the observed data was satisfactory, where the error resulted from the testing period was varied between 2.632% and 5.560%. Thus, this program may also serve as a tool for real-time flood monitoring and process control.
Design of Belief Propagation Based on FPGA for the Multistereo CAFADIS Camera
Magdaleno, Eduardo; Lüke, Jonás Philipp; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel
2010-01-01
In this paper we describe a fast, specialized hardware implementation of the belief propagation algorithm for the CAFADIS camera, a new plenoptic sensor patented by the University of La Laguna. This camera captures the lightfield of the scene and can be used to find out at which depth each pixel is in focus. The algorithm has been designed for FPGA devices using VHDL. We propose a parallel and pipeline architecture to implement the algorithm without external memory. Although the BRAM resources of the device increase considerably, we can maintain real-time restrictions by using extremely high-performance signal processing capability through parallelism and by accessing several memories simultaneously. The quantifying results with 16 bit precision have shown that performances are really close to the original Matlab programmed algorithm. PMID:22163404
Design of belief propagation based on FPGA for the multistereo CAFADIS camera.
Magdaleno, Eduardo; Lüke, Jonás Philipp; Rodríguez, Manuel; Rodríguez-Ramos, José Manuel
2010-01-01
In this paper we describe a fast, specialized hardware implementation of the belief propagation algorithm for the CAFADIS camera, a new plenoptic sensor patented by the University of La Laguna. This camera captures the lightfield of the scene and can be used to find out at which depth each pixel is in focus. The algorithm has been designed for FPGA devices using VHDL. We propose a parallel and pipeline architecture to implement the algorithm without external memory. Although the BRAM resources of the device increase considerably, we can maintain real-time restrictions by using extremely high-performance signal processing capability through parallelism and by accessing several memories simultaneously. The quantifying results with 16 bit precision have shown that performances are really close to the original Matlab programmed algorithm.
Wave Propagation in 2-D Granular Matrix and Dust Mitigation of Fabrics for Space Exploration Mission
NASA Technical Reports Server (NTRS)
Thanh, Phi Hung X.
2004-01-01
Wave Propagation study is essential to exploring the soil on Mars or Moon and Dust Mitigation is a necessity in terms of crew's health in exploration missions. The study of Dust Mitigation has a significant impact on the crew s health when astronauts track dust back into their living space after exploration trips. We are trying to use piezoelectric fiber to create waves and vibrations at certain critical frequencies and amplitudes so that we can shake the particles off from the astronaut s fabrics. By shaking off the dust and removing it, the astronauts no longer have to worry about breathing in small and possibly hazardous materials, when they are back in their living quarters. The Wave Propagation in 2-D Granular Matrix studies how the individual particles interact with each other when a pressure wave travels through the matrix. This experiment allows us to understand how wave propagates through soils and other materials. By knowing the details about the interactions of particles when they act as a medium for waves, we can better understand how wave propagates through soils and other materials. With this experiment, we can study how less gravity effects the wave propagation and hence device a way to study soils in space and on Moon or Mars. Some scientists treat the medium that waves travel through as a "black box", they did not pay much attention to how individual particles act as wave travels through them. With this data, I believe that we can use it to model ways to measure the properties of different materials such as density and composition. In order to study how the particles interact with each other, I have continued Juan Agui's experiment of the effects of impacts on a 2-D matrix. By controlling the inputs and measuring the outputs of the system, I will be able to study now the particles in that system interact with each other. I will also try to model this with the software called PFC2D in order to obtain theoretical data to compare with the experiment. PFC2D is a program that allows the user to control the number of particle's characteristic, and the environment of the particle. With this I can run simulations that mimic the impulse test. This software uses a language called FISH, probably created by the creator of the software. This means that in order to model anything, one must use the command terminal instead of GUI's. I will also use this program to simulate the Moon/Mars simulate adhering to the fabric for the Dust Mitigation project. My goals for this summer are just to complete preliminary studies of the feasibility of the Shaking Fabric, learn the PFC-2D program, and to complete building and testing the wave propagation experiment.
Deep learning of quasar spectra to discover and characterize damped Lyα systems
NASA Astrophysics Data System (ADS)
Parks, David; Prochaska, J. Xavier; Dong, Shawfeng; Cai, Zheng
2018-05-01
We have designed, developed, and applied a convolutional neural network (CNN) architecture using multi-task learning to search for and characterize strong H I Lyα absorption in quasar spectra. Without any explicit modelling of the quasar continuum or application of the predicted line profile for Lyα from quantum mechanics, our algorithm predicts the presence of strong H I absorption and estimates the corresponding redshift zabs and H I column density N_{H I}, with emphasis on damped Lyα systems (DLAs, absorbers with N_{H I}≥ 2 × 10^{20} cm^{-2}). We tuned the CNN model using a custom training set of DLAs injected into DLA-free quasar spectra from the Sloan Digital Sky Survey (SDSS), data release 5 (DR5). Testing on a held-back validation set demonstrates a high incidence of DLAs recovered by the algorithm (97.4 per cent as DLAs and 99 per cent as an H I absorber with N_{H I}> 10^{19.5} cm^{-2}) and excellent estimates for zabs and N_{H I}. Similar results are obtained against a human-generated survey of the SDSS DR5 data set. The algorithm yields a low incidence of false positives and negatives but is challenged by overlapping DLAs and/or very high N_{H I} systems. We have applied this CNN model to the quasar spectra of SDSS DR7 and the Baryon Oscillation Spectroscopic Survey (data release 12) and provide catalogues of 4913 and 50 969 DLAs, respectively (including 1659 and 9230 high-confidence DLAs that were previously unpublished). This work validates the application of deep learning techniques to astronomical spectra for both classification and quantitative measurements.
Migration of dispersive GPR data
Powers, M.H.; Oden, C.P.; ,
2004-01-01
Electrical conductivity and dielectric and magnetic relaxation phenomena cause electromagnetic propagation to be dispersive in earth materials. Both velocity and attenuation may vary with frequency, depending on the frequency content of the propagating energy and the nature of the relaxation phenomena. A minor amount of velocity dispersion is associated with high attenuation. For this reason, measuring effects of velocity dispersion in ground penetrating radar (GPR) data is difficult. With a dispersive forward model, GPR responses to propagation through materials with known frequency-dependent properties have been created. These responses are used as test data for migration algorithms that have been modified to handle specific aspects of dispersive media. When either Stolt or Gazdag migration methods are modified to correct for just velocity dispersion, the results are little changed from standard migration. For nondispersive propagating wavefield data, like deep seismic, ensuring correct phase summation in a migration algorithm is more important than correctly handling amplitude. However, the results of migrating model responses to dispersive media with modified algorithms indicate that, in this case, correcting for frequency-dependent amplitude loss has a much greater effect on the result than correcting for proper phase summation. A modified migration is only effective when it includes attenuation recovery, performing deconvolution and migration simultaneously.
Efficient Grammar Induction Algorithm with Parse Forests from Real Corpora
NASA Astrophysics Data System (ADS)
Kurihara, Kenichi; Kameya, Yoshitaka; Sato, Taisuke
The task of inducing grammar structures has received a great deal of attention. The reasons why researchers have studied are different; to use grammar induction as the first stage in building large treebanks or to make up better language models. However, grammar induction has inherent computational complexity. To overcome it, some grammar induction algorithms add new production rules incrementally. They refine the grammar while keeping their computational complexity low. In this paper, we propose a new efficient grammar induction algorithm. Although our algorithm is similar to algorithms which learn a grammar incrementally, our algorithm uses the graphical EM algorithm instead of the Inside-Outside algorithm. We report results of learning experiments in terms of learning speeds. The results show that our algorithm learns a grammar in constant time regardless of the size of the grammar. Since our algorithm decreases syntactic ambiguities in each step, our algorithm reduces required time for learning. This constant-time learning considerably affects learning time for larger grammars. We also reports results of evaluation of criteria to choose nonterminals. Our algorithm refines a grammar based on a nonterminal in each step. Since there can be several criteria to decide which nonterminal is the best, we evaluate them by learning experiments.
Casperson, Lee W.
1976-02-24
The properties of an improved class of lasers is presented. In one configuration of these lasers the radiation propagates radially within the amplifying medium, resulting in high fields and symmetric illumination at the resonator axis. Thus there is a strong focusing of energy at the axis of the resonator. In a second configuration the radiation propagates back and forth in a tubular region of space.
Efficient model learning methods for actor-critic control.
Grondman, Ivo; Vaandrager, Maarten; Buşoniu, Lucian; Babuska, Robert; Schuitema, Erik
2012-06-01
We propose two new actor-critic algorithms for reinforcement learning. Both algorithms use local linear regression (LLR) to learn approximations of the functions involved. A crucial feature of the algorithms is that they also learn a process model, and this, in combination with LLR, provides an efficient policy update for faster learning. The first algorithm uses a novel model-based update rule for the actor parameters. The second algorithm does not use an explicit actor but learns a reference model which represents a desired behavior, from which desired control actions can be calculated using the inverse of the learned process model. The two novel methods and a standard actor-critic algorithm are applied to the pendulum swing-up problem, in which the novel methods achieve faster learning than the standard algorithm.
Measuring contraction propagation and localizing pacemaker cells using high speed video microscopy
Akl, Tony J.; Nepiyushchikh, Zhanna V.; Gashev, Anatoliy A.; Zawieja, David C.; Coté, Gerard L.
2011-01-01
Previous studies have shown the ability of many lymphatic vessels to contract phasically to pump lymph. Every lymphangion can act like a heart with pacemaker sites that initiate the phasic contractions. The contractile wave propagates along the vessel to synchronize the contraction. However, determining the location of the pacemaker sites within these vessels has proven to be very difficult. A high speed video microscopy system with an automated algorithm to detect pacemaker location and calculate the propagation velocity, speed, duration, and frequency of the contractions is presented in this paper. Previous methods for determining the contractile wave propagation velocity manually were time consuming and subject to errors and potential bias. The presented algorithm is semiautomated giving objective results based on predefined criteria with the option of user intervention. The system was first tested on simulation images and then on images acquired from isolated microlymphatic mesenteric vessels. We recorded contraction propagation velocities around 10 mm∕s with a shortening speed of 20.4 to 27.1 μm∕s on average and a contraction frequency of 7.4 to 21.6 contractions∕min. The simulation results showed that the algorithm has no systematic error when compared to manual tracking. The system was used to determine the pacemaker location with a precision of 28 μm when using a frame rate of 300 frames per second. PMID:21361700
Güntürkün, Rüştü
2010-08-01
In this study, Elman recurrent neural networks have been defined by using conjugate gradient algorithm in order to determine the depth of anesthesia in the continuation stage of the anesthesia and to estimate the amount of medicine to be applied at that moment. The feed forward neural networks are also used for comparison. The conjugate gradient algorithm is compared with back propagation (BP) for training of the neural Networks. The applied artificial neural network is composed of three layers, namely the input layer, the hidden layer and the output layer. The nonlinear activation function sigmoid (sigmoid function) has been used in the hidden layer and the output layer. EEG data has been recorded with Nihon Kohden 9200 brand 22-channel EEG device. The international 8-channel bipolar 10-20 montage system (8 TB-b system) has been used in assembling the recording electrodes. EEG data have been recorded by being sampled once in every 2 milliseconds. The artificial neural network has been designed so as to have 60 neurons in the input layer, 30 neurons in the hidden layer and 1 neuron in the output layer. The values of the power spectral density (PSD) of 10-second EEG segments which correspond to the 1-50 Hz frequency range; the ratio of the total power of PSD values of the EEG segment at that moment in the same range to the total of PSD values of EEG segment taken prior to the anesthesia.
Linear genetic programming application for successive-station monthly streamflow prediction
NASA Astrophysics Data System (ADS)
Danandeh Mehr, Ali; Kahya, Ercan; Yerdelen, Cahit
2014-09-01
In recent decades, artificial intelligence (AI) techniques have been pronounced as a branch of computer science to model wide range of hydrological phenomena. A number of researches have been still comparing these techniques in order to find more effective approaches in terms of accuracy and applicability. In this study, we examined the ability of linear genetic programming (LGP) technique to model successive-station monthly streamflow process, as an applied alternative for streamflow prediction. A comparative efficiency study between LGP and three different artificial neural network algorithms, namely feed forward back propagation (FFBP), generalized regression neural networks (GRNN), and radial basis function (RBF), has also been presented in this study. For this aim, firstly, we put forward six different successive-station monthly streamflow prediction scenarios subjected to training by LGP and FFBP using the field data recorded at two gauging stations on Çoruh River, Turkey. Based on Nash-Sutcliffe and root mean squared error measures, we then compared the efficiency of these techniques and selected the best prediction scenario. Eventually, GRNN and RBF algorithms were utilized to restructure the selected scenario and to compare with corresponding FFBP and LGP. Our results indicated the promising role of LGP for successive-station monthly streamflow prediction providing more accurate results than those of all the ANN algorithms. We found an explicit LGP-based expression evolved by only the basic arithmetic functions as the best prediction model for the river, which uses the records of the both target and upstream stations.
A Globally Optimal Particle Tracking Technique for Stereo Imaging Velocimetry Experiments
NASA Technical Reports Server (NTRS)
McDowell, Mark
2008-01-01
An important phase of any Stereo Imaging Velocimetry experiment is particle tracking. Particle tracking seeks to identify and characterize the motion of individual particles entrained in a fluid or air experiment. We analyze a cylindrical chamber filled with water and seeded with density-matched particles. In every four-frame sequence, we identify a particle track by assigning a unique track label for each camera image. The conventional approach to particle tracking is to use an exhaustive tree-search method utilizing greedy algorithms to reduce search times. However, these types of algorithms are not optimal due to a cascade effect of incorrect decisions upon adjacent tracks. We examine the use of a guided evolutionary neural net with simulated annealing to arrive at a globally optimal assignment of tracks. The net is guided both by the minimization of the search space through the use of prior limiting assumptions about valid tracks and by a strategy which seeks to avoid high-energy intermediate states which can trap the net in a local minimum. A stochastic search algorithm is used in place of back-propagation of error to further reduce the chance of being trapped in an energy well. Global optimization is achieved by minimizing an objective function, which includes both track smoothness and particle-image utilization parameters. In this paper we describe our model and present our experimental results. We compare our results with a nonoptimizing, predictive tracker and obtain an average increase in valid track yield of 27 percent
Direct injection in organic SU8 nanowires and nanotubes for waveguiding properties investigation
NASA Astrophysics Data System (ADS)
Bigeon, J.; Huby, N.; Duvail, Jean-Luc; Bêche, Bruno
2014-05-01
We report photonic concepts related to injection and sub-wavelength propagation in nanofibers (nanowires and nanotubes). These nanostructures are fabricated by the wetting template method leading to aspect ratio of over 250. At first, injection into nanowires and nanotubes of SU8, a photoresist used for integrated photonics, was successfully achieved by using polymer microlensed fibers with sub-micronic radius of curvature. Theoret- ical simulation by finite domain time-dependent (FDTD) method was used to determine the sub-wavelength propagation for nanowires and nanotubes and corroborate this coupling phenomena. The original confinement of energy density into SU8 nanotubes is highlighted. Finally, characterisation of propagation losses is reported by using a cut-back method transposed to such nanotubes and determined to range between 1 and 2 dB/mm. Both injection and cut-back method developed here are compatible with any sub-micronic structures. This work on SU8 nanofibers suggests broader perspectives for future nanophotonics.
Consistency functional map propagation for repetitive patterns
NASA Astrophysics Data System (ADS)
Wang, Hao
2017-09-01
Repetitive patterns appear frequently in both man-made and natural environments. Automatically and robustly detecting such patterns from an image is a challenging problem. We study repetitive pattern alignment by embedding segmentation cue with a functional map model. However, this model cannot tackle the repetitive patterns directly due to the large photometric and geometric variations. Thus, a consistency functional map propagation (CFMP) algorithm that extends the functional map with dynamic propagation is proposed to address this issue. This propagation model is acquired in two steps. The first one aligns the patterns from a local region, transferring segmentation functions among patterns. It can be cast as an L norm optimization problem. The latter step updates the template segmentation for the next round of pattern discovery by merging the transferred segmentation functions. Extensive experiments and comparative analyses have demonstrated an encouraging performance of the proposed algorithm in detection and segmentation of repetitive patterns.
Back analysis of geomechanical parameters in underground engineering using artificial bee colony.
Zhu, Changxing; Zhao, Hongbo; Zhao, Ming
2014-01-01
Accurate geomechanical parameters are critical in tunneling excavation, design, and supporting. In this paper, a displacements back analysis based on artificial bee colony (ABC) algorithm is proposed to identify geomechanical parameters from monitored displacements. ABC was used as global optimal algorithm to search the unknown geomechanical parameters for the problem with analytical solution. To the problem without analytical solution, optimal back analysis is time-consuming, and least square support vector machine (LSSVM) was used to build the relationship between unknown geomechanical parameters and displacement and improve the efficiency of back analysis. The proposed method was applied to a tunnel with analytical solution and a tunnel without analytical solution. The results show the proposed method is feasible.
NASA Astrophysics Data System (ADS)
Budiyanto, M.; Suhariningsih; Yasin, M.
2018-04-01
The use of instructional media needs to be implemented in one of the courses such as wave and optics to cover up the contents of material. To bring this advantage, one of the alternatives that can be used is to use fiber optic sensors for detecting cholesterol concentration. This device brings about the concepts of how the wave and optics behaves and operates. In doing so, the variation concentration of cholesterol solution is 0 ppm, 50 ppm, 100 ppm, 150 ppm, 200 ppm, 250 ppm, and 300 ppm. The work mechanism of cholesterol concentration detection is laser propagation of He-Ne wavelength 632.5 nm through fiber optic in cholesterol solution and reflected back by flat mirror then ray reflected through fiber optic bundle so detected by SL-818 silicon detector in the form of voltage Output. The detection results showed that the maximum output voltage showed a linear decrease in the concentration of cholesterol solution with a sensitivity of 0.21 mV/ppm and linearity of more than 95%. In terms of developed learning media, the use of optical fiber sensor learning media is compatible with optical wave learning in terms of basic competence of lectures, learning indicators, learning materials, student worksheets and science process skills. From the assessment of validation of learning media obtained an assessment of more than 95%. The results of this study indicate the parameters and performance of sensors that have accurate potential as a medium for learning wave and optics.