Sample records for backbone carbonyl oxygen

  1. Oxygen K edge scattering from bulk comb diblock copolymer reveals extended, ordered backbones above lamellar order-disorder transition

    DOE PAGES

    Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.; ...

    2016-12-14

    The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc 12-b-pNte 21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODTmore » corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.« less

  2. Temperature dependence of fast carbonyl backbone dynamics in chicken villin headpiece subdomain

    PubMed Central

    Vugmeyster, Liliya; Ostrovsky, Dmitry

    2012-01-01

    Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination of three NMR relaxation rates: 13C′ longitudinal rate, and two cross-correlated rates involving dipolar and chemical shift anisotropy (CSA) relaxation mechanisms, 13C′/13C′−13Cα CSA/dipolar and 13C′/13C′−15N CSA/dipolar. Order parameters have been extracted using the Lipari-Szabo model-free approach assuming a separation of the time scales of internal and molecular motions in the 2–16°C temperature range. There is a gradual deviation from this assumption from lower to higher temperatures, such that above 16°C the separation of the time scales is inconsistent with the experimental data and, thus, the Lipari-Szabo formalism can not be applied. While there are variations among the residues, on the average the order parameters indicate a markedly steeper temperature dependence at backbone carbonyl carbons compared to that probed at amide nitrogens in an earlier study. This strongly advocates for probing sites other than amide nitrogen for accurate characterization of the potential and other thermodynamics characteristics of protein backbone. PMID:21416162

  3. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    PubMed

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  4. Backbone dynamics of a model membrane protein: assignment of the carbonyl carbon /sup 13/C NMR resonances in detergent-solubilized M13 coat protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    The major coat protein of the filamentous bacteriophage M13 is a 50-residue amphiphilic polypeptide which is inserted, as an integral membrane-spanning protein, in the inner membrane of the Escherichia coli host during infection. /sup 13/C was incorporated biosynthetically into a total of 23 of the peptide carbonyls using labeled amino acids (alanine, glycine, lysine, phenylalanine, and proline). The structure and dynamics of carbonyl-labeled M13 coat protein were monitored by /sup 13/C nuclear magnetic resonance (NMR) spectroscopy. Assignment of many resonances was achieved by using protease digestion, pH titration, or labeling of the peptide bond with both /sup 13/C and /supmore » 15/N. The carbonyl region of the natural-abundance /sup 13/C NMR spectrum of M13 coat protein in sodium dodecyl sulfate solution shows approximately eight backbone carbonyl resonances with line widths much narrower than the rest. Three of these more mobile residues correspond to assigned peaks (glycine-3, lysine-48, and alanine-49) in the individual amino acid spectra, and another almost certainly arises from glutamic acid-2. A ninth residue, alanine-1, also gives rise to a very narrow carbonyl resonance if the pH is well above or below the pK/sub a/ of the terminal amino group. These data suggest that only about four residues at either end of the protein experience large-amplitude spatial fluctuations; the rest of the molecule is essentially rigid on the time scale of the overall rotational tumbling of the protein-detergent complex. The relative exposure of different regions of detergent-bound protein was monitored by limited digestion with proteinase K. Comparable spectra and digestion patterns were obtained when the protein was solubilized in sodium deoxycholate, suggesting that the coat protein binds both amphiphiles in a similar fashion.« less

  5. Interaction Enthalpy of Side Chain and Backbone Amides in Polyglutamine Solution Monomers and Fibrils.

    PubMed

    Punihaole, David; Jakubek, Ryan S; Workman, Riley J; Asher, Sanford A

    2018-04-19

    We determined an empirical correlation that relates the amide I vibrational band frequencies of the glutamine (Q) side chain to the strength of hydrogen bonding, van der Waals, and Lewis acid-base interactions of its primary amide carbonyl. We used this correlation to determine the Q side chain carbonyl interaction enthalpy (Δ H int ) in monomeric and amyloid-like fibril conformations of D 2 Q 10 K 2 (Q10). We independently verified these Δ H int values through molecular dynamics simulations that showed excellent agreement with experiments. We found that side chain-side chain and side chain-peptide backbone interactions in fibrils and monomers are more enthalpically favorable than are Q side chain-water interactions. Q10 fibrils also showed a more favorable Δ H int for side chain-side chain interactions compared to backbone-backbone interactions. This work experimentally demonstrates that interamide side chain interactions are important in the formation and stabilization of polyQ fibrils.

  6. Orientation Preferences of Backbone Secondary Amide Functional Groups in Peptide Nucleic Acid Complexes: Quantum Chemical Calculations Reveal an Intrinsic Preference of Cationic D-Amino Acid-Based Chiral PNA Analogues for the P-form

    PubMed Central

    Topham, Christopher M.; Smith, Jeremy C.

    2007-01-01

    Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like basepair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNA·DNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs. PMID:17071666

  7. Photophysical properties of a synthetic, carbonyl-containing (N=6+CO) carotenoid analogue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedzwiedzki, Dariusz M.

    Retinyl-1 is a synthetic carotenoid analogue belonging to the retinal analogues family. It has six conjugated carbon–carbon double bonds with a carbonyl group conjugated to the π-electron system. Presence of the carbonyl group in vicinity of the conjugated carbon–carbon backbone leads to unique excited state properties that are extremely sensitive to solvent polarity and temperature. The simplicity of the synthesis of Retinyl-1 and ease of attachment to synthetic tetrapyrrole chromophores make Retinyl-1 attractive for use in artificial photosynthetic systems.

  8. Life estimation and analysis of dielectric strength, hydrocarbon backbone and oxidation of high voltage multi stressed EPDM composites

    NASA Astrophysics Data System (ADS)

    Khattak, Abraiz; Amin, Muhammad; Iqbal, Muhammad; Abbas, Naveed

    2018-02-01

    Micro and nanocomposites of ethylene propylene diene monomer (EPDM) are recently studied for different characteristics. Study on life estimation and effects of multiple stresses on its dielectric strength and backbone scission and oxidation is also vital for endorsement of these composites for high voltage insulation and other outdoor applications. In order to achieve these goals, unfilled EPDM and its micro and nanocomposites are prepared at 23 phr micro silica and 6 phr nanosilica loadings respectively. Prepared samples are energized at 2.5 kV AC voltage and subjected for a long time to heat, ultraviolet radiation, acid rain, humidity and salt fog in accelerated manner in laboratory. Dielectric strength, leakage current and intensity of saturated backbone and carbonyl group are periodically measured. Loss in dielectric strength, increase in leakage current and backbone degradation and oxidation were observed in all samples. These effects were least in the case of EPDM nanocomposite. The nanocomposite sample also demonstrated longest shelf life.

  9. Fluorescence labeling of carbonylated lipids and proteins in cells using coumarin-hydrazide

    PubMed Central

    Vemula, Venukumar; Ni, Zhixu; Fedorova, Maria

    2015-01-01

    Carbonylation is a generic term which refers to reactive carbonyl groups present in biomolecules due to oxidative reactions induced by reactive oxygen species. Carbonylated proteins, lipids and nucleic acids have been intensively studied and often associated with onset or progression of oxidative stress related disorders. In order to reveal underlying carbonylation pathways and biological relevance, it is crucial to study their intracellular formation and spatial distribution. Carbonylated species are usually identified and quantified in cell lysates and body fluids after derivatization using specific chemical probes. However, spatial cellular and tissue distribution have been less often investigated. Here, we report coumarin-hydrazide, a fluorescent chemical probe for time- and cost-efficient labeling of cellular carbonyls followed by fluorescence microscopy to evaluate their intracellular formation both in time and space. The specificity of coumarin-hydrazide was confirmed in time- and dose-dependent experiments using human primary fibroblasts stressed with paraquat and compared with conventional DNPH-based immunocytochemistry. Both techniques stained carbonylated species accumulated in cytoplasm with strong perinuclear clustering. Using a complimentary array of analytical methods specificity of coumarin-hydrazide probe towards both protein- and lipid-bound carbonyls has been shown. Additionally, co-distribution of carbonylated species and oxidized phospholipids was demonstrated. PMID:25974625

  10. A FLUORIMETRIC SEMI-MICROPLATE FORMAT ASSAY OF PROTEIN CARBONYLS IN BLOOD PLASMA

    PubMed Central

    Mohanty, Joy G.; Bhamidipaty, Surya; Evans, Michele K.; Rifkind, Joseph M.

    2010-01-01

    Oxidative stress, originating from reactive oxygen species (ROS), has been implicated in aging and various human diseases. The ROS generated can oxidize proteins producing protein carbonyl derivatives. The level of protein carbonyls in blood plasma has been used as a measure of overall oxidative stress in the body. Classically, protein carbonyls have been quantitated spectrophotometrically by directly reacting them with 2,4, dinitrophenylhydrazine (DNPH). However, the applicability of this method to biological samples is limited by its low inherent sensitivity. This limitation has been overcome by the development of sensitive ELISA methods to measure protein carbonyls. As part of the Healthy Aging in Neighborhoods of Diversity across the Lifespan study, oxidative stress in humans were quantified by measuring blood plasma protein carbonyls using the two commercially available ELISA kits and the spectrophotometric DNPH assay. Surprisingly, two ELISA methods gave very different values for protein carbonyls that were both different from the spectrophotometric method. We have developed a fluorescent semi-microplate format assay of protein carbonyls involving direct reaction of protein carbonyls with fluorescein thiosemicarbazide that correlates (R=0.992) with the direct spectrophotometric method. It has a coefficient of variation of 4.99% and is at least 100 times more sensitive than the spectrophotometric method. PMID:20122892

  11. Enhanced plasma protein carbonylation in patients with myelodysplastic syndromes.

    PubMed

    Hlaváčková, Alžběta; Štikarová, Jana; Pimková, Kristýna; Chrastinová, Leona; Májek, Pavel; Kotlín, Roman; Čermák, Jaroslav; Suttnar, Jiří; Dyr, Jan Evangelista

    2017-07-01

    Myelodysplastic syndromes (MDS) represent a heterogeneous group of pre-leukemic disorders, characterized by ineffective hematopoiesis and the abnormal blood cell development of one or more lineages. Oxidative stress, as an important factor in the carcinogenesis of onco-hematological diseases, is also one of the known factors involved in the pathogenesis of MDS. An increase of reactive oxygen species (ROS) may lead to the oxidation of DNA, lipids, and proteins, thereby causing cell damage. Protein carbonylation caused by ROS is defined as an irreversible post-translational oxidative modification of amino acid side chains, and could play an important role in signaling processes. The detection of protein carbonyl groups is a specific useful marker of oxidative stress. In this study, we examined 32 patients divided into three different subtypes of MDS according to the World Health Organization (WHO) classification criteria as refractory anemia with ringed sideroblasts (RARS), refractory cytopenia with multilineage dysplasia (RCMD), refractory anemia with excess blasts-1,2 (RAEB-1,2). We found significant differences in protein carbonylation between the group of all MDS patients and healthy controls (P=0.0078). Furthermore, carbonylated protein levels were significantly elevated in RARS patients compared to healthy donors (P=0.0013) and to RCMD patients (P=0.0277). We also found a significant difference in the total iron binding capacity (TIBC) between individual subgroups of MDS patients (P=0.0263). Moreover, TIBC was decreased in RARS patients compared to RCMD patients (P=0.0203). TIBC moderately negatively correlated with carbonyl levels (r=-0.5978, P=0.0054) in the MDS patients as a whole. Additionally we observed changes in the carbonylated proteins of RARS patients in comparison with healthy controls and their negative controls. Using tandem mass spectrometry (LC-MS/MS) we identified 27 uniquely carbonylated proteins of RARS patients, which were generated by ROS

  12. A new agent for derivatizing carbonyl species used to investigate limonene ozonolysis

    NASA Astrophysics Data System (ADS)

    Wells, J. R.; Ham, Jason E.

    2014-12-01

    A new method for derivatizing carbonyl compounds is presented. The conversion of a series of dicarbonyls to oximes in aqueous solution and from gas-phase sampling was achieved using O-tert-butylhydroxylamine hydrochloride (TBOX). Some advantages of using this derivatization agent include: aqueous reactions, lower molecular weight oximes, and shortened oxime-formation reaction time. Additionally, the TBOX derivatization technique was used to investigate the carbonyl reaction products from limonene ozonolysis. With ozone (O3) as the limiting reagent, four carbonyl compounds were detected: 7-hydroxy-6-oxo-3-(prop-1-en-2-yl)heptanal; 3-Isopropenyl-6-oxoheptanal (IPOH), 3-acetyl-6-oxoheptanal (3A6O) and one carbonyl of unknown structure. Using cyclohexane as a hydroxyl (OHrad) radical scavenger, the relative yields (peak area) of the unknown carbonyl, IPOH, and 3A6O were reduced indicating the influence secondary OH radicals have on limonene ozonolysis products. The relative yield of the hydroxy-dicarbonyl based on the chromatogram was unchanged suggesting it is only made by the limonene + O3 reaction. The detection of 3A6O using TBOX highlights the advantages of a smaller molecular weight derivatization agent for the detection of multi-carbonyl compounds. The use of TBOX derivatization if combined with other derivatization agents may address a recurring need to simply and accurately detect multi-functional oxygenated species in air.

  13. Proteomic Identification of Carbonylated Proteins in 1,3-Dinitrobenzene Neurotoxicity

    PubMed Central

    Steiner, Stephen R.; Philbert, Martin A.

    2011-01-01

    This study demonstrated that 1,3-dinitrobenzene-induced (1,3-DNB) oxidative stress led to the oxidative carbonlyation of specific protein targets in DI TNC1 cells. 1,3-DNB-induced mitochondrial dysfunction, as indicated by loss of tetramethyl rhodamine methyl ester (TMRM) fluorescence, was initially observed at 5 h and coincided with peak reactive oxygen species (ROS) production. ROS production was inhibited in cells pre-treated with the mitochondrial permeability transition (MPT) inhibitor, bonkrekic acid (BkA). Pre-incubation with the antioxidant deferoxamine inhibited loss of TMRM fluorescence until 24 h after initial exposure to 1,3-DNB. Two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and subsequent Oxyblot analysis were used to determine if 1,3-DNB exposure led to the formation of protein carbonyls. Exposing DI TNC1 cells to 1,3-DNB led to marked protein carbonylation 45 min following initial exposure. Pre-treatment with deferoxamine or Trolox reduced the intensity of protein carbonylation in DI TNC1 cells exposed to 1mM 1,3-DNB. Tandem MS/MS performed on protein samples isolated from 1,3-DNB-treated cells revealed that specific proteins within the mitochondria, endoplasmic reticulum (ER), and cytosol are targets of protein carbonylation. The results presented in this study are the first to suggest that the molecular mechanism of 1,3-DNB neurotoxicity may occur through selective carbonylation of protein targets found within certain intracellular compartments of susceptible cells. PMID:21402099

  14. A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins.

    PubMed

    Tugarinov, Vitali; Venditti, Vincenzo; Marius Clore, G

    2014-01-01

    A methyl-detected 'out-and-back' NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ile(δ1), Leu(δ) and Val(γ) (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of (13)C(α), (13)Cβ and (13)CO are known from prior NMR studies and where some losses in sensitivity can be tolerated for the sake of an overall reduction in NMR acquisition time.

  15. Application of Hyperbaric Oxygen Reduce Oxidative Damage of Plasmatic Carbonyl Proteins and 8-OHdG by Activating Glutathion Peroxidase.

    PubMed

    Matzi, Veronika; Greilberger, Joachim F; Lindenmann, Joerg; Neuboeck, Nicole; Nuhsbaumer, Stephan; Zelzer, Sieglinde; Tafeit, Erwin; Maier, Alfred; Smolle-Juettner, Maria-Frey

    2015-01-01

    It is postulated that application of hyperbaric oxygenation may induce the production of radicals after HBO. Higher oxygenation and transport of oxygen increase the mitochondrial energy turnover, whereas inner mitochondrial radical formation decreases. Several markers of oxidative stress in healthy volunteers (n = 21), including plasma carbonyl proteins (CP), malondialdehyde (MDA), oxidized LDL (oxLDL), 8-hydroxy-deoxyguanosine (8-OHdG), and erythrocyte glutathione peroxidase (GPx) activity are measured before, during, and after HBO. Median plasma concentrations of CP decreased significantly during HBO compared to CP levels before HBO (from 77.1 to 61.7 pmol/mg; p < 0.001) and increased again after HBO (to 78.1 pmol/mg; p = 0.035). 8-OHdG decreased significantly during HBO (8.1 ng/mL; p < 0.001) and remained constant after HBO (8.1 ng/mL) compared to "before HBO" (9.4 ng/mL). MDA increased significantly from 0.92 μM (before HBO) to 1.26 μM (during HBO, p < 0.01) and decreased again to 1.00 μM (after HBO, p = 0.023). Erythrocyte GPx activity also increased significantly during HBO (26.5 ± 14.7; p = 0.005), but not after HBO (25.6 ± 17.2 IU/mg). A negative correlation was observed between GPx and MDA only during HBO (r = -0.518; p = 0.016). We assume that higher oxygen consumption decreases, on the one hand, the inner mitochondrial generation of free radicals and, on the other, RONS by activation of detoxifying enzymes like GPx.

  16. Quantification of protein carbonylation.

    PubMed

    Wehr, Nancy B; Levine, Rodney L

    2013-01-01

    Protein carbonylation is the most commonly used measure of oxidative modification of proteins. It is most often measured spectrophotometrically or immunochemically by derivatizing proteins with the classical carbonyl reagent 2,4 dinitrophenylhydrazine (DNPH). We present protocols for the derivatization and quantification of protein carbonylation with these two methods, including a newly described dot blot with greatly increased sensitivity.

  17. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    PubMed

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Oxidative versus Non-oxidative Decarboxylation of Amino Acids: Conditions for the Preferential Formation of Either Strecker Aldehydes or Amines in Amino Acid/Lipid-Derived Reactive Carbonyl Model Systems.

    PubMed

    Zamora, Rosario; León, M Mercedes; Hidalgo, Francisco J

    2015-09-16

    Comparative formation of both 2-phenylethylamine and phenylacetaldehyde as a consequence of phenylalanine degradation by carbonyl compounds was studied in an attempt to understand if the amine/aldehyde ratio can be changed as a function of reaction conditions. The assayed carbonyl compounds were selected because of the presence in the chain of both electron-donating and electron-withdrawing groups and included alkenals, alkadienals, epoxyalkenals, oxoalkenals, and hydroxyalkenals as well as lipid hydroperoxides. The obtained results showed that the 2-phenylethylamine/phenylacetaldehyde ratio depended upon both the carbonyls and the reaction conditions. Thus, it can be increased using electron-donating groups in the chain of the carbonyl compound, small amounts of carbonyl compound, low oxygen content, increasing the pH, or increasing the temperature at pH 6. Opposed conditions (use of electron-withdrawing groups in the chain of the carbonyl compound, large amounts of carbonyl compound, high oxygen contents, low pH values, and increasing temperatures at low pH values) would decrease the 2-phenylethylamine/phenylacetaldehyde ratio, and the formation of aldehydes over amines in amino acid degradations would be favored.

  19. Cryopreservation of bull semen is associated with carbonylation of sperm proteins.

    PubMed

    Mostek, Agnieszka; Dietrich, Mariola Aleksandra; Słowińska, Mariola; Ciereszko, Andrzej

    2017-04-01

    Artificial insemination with cryopreserved semen enables affordable, large-scale dissemination of gametes with superior genetics. However, cryopreservation can cause functional and structural damage to spermatozoa that is associated with reactive oxygen species (ROS) production, impairment of sperm motility and decreased fertilizing potential, but little attention has been paid to protein changes. The goal of this study was to investigate the oxidative modifications (measured as carbonylation level changes) of bull spermatozoa proteins triggered by the cryopreservation process. Flow cytometry and computer-assisted sperm analysis were used to evaluate changes in viability, ROS level and motility of spermatozoa. Western blotting, in conjunction with two-dimensional electrophoresis (2D-oxyblot) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight spectrometry, was employed to identify and quantify the specifically carbonylated spermatozoa proteins. Cryopreservation decreased motility and viability but increased the number of ROS-positive cells. We identified 11 proteins (ropporin-1, outer dense fiber protein 2, glutathione S-transferase, triosephosphate isomerase, capping protein beta 3 isoform, actin-related protein M1, actin-related protein T2, NADH dehydrogenase, isocitrate dehydrogenase, cilia- and flagella-associated protein 161, phosphatidylethanolamine-binding protein 4) showing differences in protein carbonylation in response to cryopreservation. The identified proteins are associated with cytoskeleton and flagella organization, detoxification and energy metabolism. Moreover, almost all of the identified carbonylated proteins are involved in capacitation. Our results indicate for the first time that cryopreservation induces oxidation of selected sperm proteins via carbonylation. We suggest that carbonylation of sperm proteins could be a direct result of oxidative stress and potentially lead to disturbances of capacitation

  20. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    PubMed

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  1. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials

    PubMed Central

    Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544

  2. Quantitative scale for the extent of conjugation of carbonyl groups: "carbonylicity" percentage as a chemical driving force.

    PubMed

    Mucsi, Zoltán; Chass, Gregory A; Viskolcz, Béla; Csizmadia, Imre G

    2008-09-25

    Despite the carbonyl group being one of the most pervasive chemical building blocks in natural, synthetic, and industrial processes, its exact description in terms of precise quantification of the degree of carbonyl conjugation has yet to be determined. The present work suggests a novel yet simple method for quantifying the conjugation in general carbonyl groups (such as ketones, aldehydes, carboxylic acids and their respective halogenides, amides, etc.) on a linear scale, defined as the "carbonylicity scale". This was achieved by use of the computed enthalpy of hydrogenation (DeltaH(H2)) of the > C=O group in the compounds examined. In the present conceptual work, the DeltaH(H2) value for formate ion is used to define complete conjugated character (carbonylicity = +100%), while formaldehyde represents complete absence of conjugation (carbonylicity = 0%). The component DeltaH(H2) values were computed at differing levels of theory, providing a nearly "method-independent" measure of carbonylicity computationally. A total of 49 common carbonyl compounds were used as accuracy scoring criteria of the methodology. For the compounds examined, correlations have been made between the computed carbonylicity percentage and the > C=O proton affinities, IR frequencies, and their reactivity values in a nucleophilic addition reaction. Selected chemical reactions were also studied to illustrate the utility of carbonylicity scale. Examples herein include demonstrating that change in the carbonylicity value represents a thermodynamic driving force in acylation reactions. The definition was extended to substituted thiocarbonyl and imino compounds.

  3. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    PubMed

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and photooxidation of styrene copolymer bearing camphorquinone pendant groups

    PubMed Central

    Moszner, Norbert; Lukáč, Ivan

    2012-01-01

    Summary (±)-10-Methacryloyloxycamphorquinone (MCQ) was synthesized from (±)-10-camphorsulfonic acid either by a known seven-step synthetic route or by a novel, shorter five-step synthetic route. MCQ was copolymerized with styrene (S) and the photochemical behavior of the copolymer MCQ/S was compared with that of a formerly studied copolymer of styrene with monomers containing the benzil (BZ) moiety (another 1,2-dicarbonyl). Irradiation (λ > 380 nm) of aerated films of styrene copolymers with monomers containing the BZ moiety leads to the insertion of two oxygen atoms between the carbonyl groups of BZ and to the formation of benzoyl peroxide (BP) as pendant groups on the polymer backbone. An equivalent irradiation of MCQ/S led mainly to the insertion of only one oxygen atom between the carbonyl groups of camphorquinone (CQ) and to the formation of camphoric anhydride (11) covalently bound to the polymer backbone. While the decomposition of pendant BP groups formed in irradiated films of styrene copolymers with pendant BZ groups leads to crosslinking, only small molecular-weight changes in irradiated MCQ/S were observed. PMID:22509202

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.

    The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc 12-b-pNte 21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODTmore » corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.« less

  6. MDD-carb: a combinatorial model for the identification of protein carbonylation sites with substrate motifs.

    PubMed

    Kao, Hui-Ju; Weng, Shun-Long; Huang, Kai-Yao; Kaunang, Fergie Joanda; Hsu, Justin Bo-Kai; Huang, Chien-Hsun; Lee, Tzong-Yi

    2017-12-21

    Carbonylation, which takes place through oxidation of reactive oxygen species (ROS) on specific residues, is an irreversibly oxidative modification of proteins. It has been reported that the carbonylation is related to a number of metabolic or aging diseases including diabetes, chronic lung disease, Parkinson's disease, and Alzheimer's disease. Due to the lack of computational methods dedicated to exploring motif signatures of protein carbonylation sites, we were motivated to exploit an iterative statistical method to characterize and identify carbonylated sites with motif signatures. By manually curating experimental data from research articles, we obtained 332, 144, 135, and 140 verified substrate sites for K (lysine), R (arginine), T (threonine), and P (proline) residues, respectively, from 241 carbonylated proteins. In order to examine the informative attributes for classifying between carbonylated and non-carbonylated sites, multifarious features including composition of twenty amino acids (AAC), composition of amino acid pairs (AAPC), position-specific scoring matrix (PSSM), and positional weighted matrix (PWM) were investigated in this study. Additionally, in an attempt to explore the motif signatures of carbonylation sites, an iterative statistical method was adopted to detect statistically significant dependencies of amino acid compositions between specific positions around substrate sites. Profile hidden Markov model (HMM) was then utilized to train a predictive model from each motif signature. Moreover, based on the method of support vector machine (SVM), we adopted it to construct an integrative model by combining the values of bit scores obtained from profile HMMs. The combinatorial model could provide an enhanced performance with evenly predictive sensitivity and specificity in the evaluation of cross-validation and independent testing. This study provides a new scheme for exploring potential motif signatures at substrate sites of protein

  7. Synthesis of 2‐Alkynoates by Palladium(II)‐Catalyzed Oxidative Carbonylation of Terminal Alkynes and Alcohols

    PubMed Central

    Cao, Qun; Hughes, N. Louise

    2016-01-01

    Abstract A homogeneous PdII catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2‐alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures. PMID:27305489

  8. Carbonyl emission and toxicity profile of diesel blends with an animal-fat biodiesel and a tire pyrolysis liquid fuel.

    PubMed

    Ballesteros, R; Guillén-Flores, J; Martínez, J D

    2014-02-01

    In this paper, two diesel fuels, an animal-fat biodiesel and two diesel blends with the animal-fat biodiesel (50vol.%) and with a tire pyrolysis liquid (TPL) fuel (5vol.%) have been tested in a 4-cylinder, 4-stroke, turbocharged, intercooled, 2.0L Nissan diesel automotive engine (model M1D) with common-rail injection system and diesel oxidation catalyst (DOC). Carbonyl emissions have been analyzed both before and after DOC and specific reactivity of carbonyl profile has been calculated. Carbonyl sampling was carried out by means of a heated line, trapping the gas in 2,4-DNPH cartridges. The eluted content was then analyzed in an HPLC system, with UV-VIS detection. Results showed, on the one hand, an increase in carbonyl emissions with the biodiesel fraction in the fuel. On the other hand, the addition of TPL to diesel also increased carbonyl emissions. These trends were occasionally different if the emissions were studied after the DOC, as it seems to be selectivity during the oxidation process. The specific reactivity was also studied, finding a decrease with the oxygen content within the fuel molecule, although the equivalent ozone emissions slightly increased with the oxygen content. Finally, the emissions toxicity was also studied, comparing them to different parameters defined by different organizations. Depending on the point of study, emissions were above or below the established limits, although acrolein exceeded them as it has the least permissive values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Molecular mechanical studies of DNA flexibility: Coupled backbone torsion angles and base-pair openings

    PubMed Central

    Keepers, Joe W.; Kollman, Peter A.; Weiner, Paul K.; James, Thomas L.

    1982-01-01

    Molecular mechanics studies have been carried out on “B-DNA-like” structures of [d(C-G-C-G-A-A-T-T-C-G-C-G)]2 and [d(A)]12·[d(T)]12. Each of the backbone torsion angles (ψ, φ, ω, ω′, φ′) has been “forced” to alternative values from the normal B-DNA values (g+, t, g-, g-, t conformations). Compensating torsion angle changes preserve most of the base stacking energy in the double helix. In a second part of the study, one purine N3-pyrimidine N1 distance at a time has been forced to a value of 6 Å in an attempt to simulate the base opening motions required to rationalize proton exchange data for DNA. When the 6-Å constraint is removed, many of the structures revert to the normal Watson-Crick hydrogen-bonded structure, but a number are trapped in structures ≈5 kcal/mol higher in energy than the starting B-DNA structure. The relative energy of these structures, some of which involve a non-Watson-Crick thymine C2(carbonyl)[unk]adenine 6NH2 hydrogen bond, are qualitatively consistent with the ΔH for a “base pair-open state” suggested by Mandal et al. of 4-6 kcal/mol [Mandal, C., Kallenbach, N. R. & Englander, S. W. (1979) J. Mol. Biol. 135, 391-411]. The picture of DNA flexibility emerging from this study depicts the backbone as undergoing rapid motion between local torsional minima on a nanosecond time scale. Backbone motion is mainly localized within a dinucleoside segment and generally not conformationally coupled along the chain or across the base pairs. Base motions are much smaller in magnitude than backbone motions. Base sliding allows imino N—H exchange, but it is localized, and only a small fraction of the N—H groups is exposed at any one time. Stacking and hydrogen bonding cause a rigid core of bases in the center of the molecule accounting for the hydrodynamic properties of DNA. PMID:6957879

  10. Microscopic analysis of protein oxidative damage: effect of carbonylation on structure, dynamics, and aggregability of villin headpiece.

    PubMed

    Petrov, Drazen; Zagrovic, Bojan

    2011-05-11

    One of the most important irreversible oxidative modifications of proteins is carbonylation, the process of introducing a carbonyl group in reaction with reactive oxygen species. Notably, carbonylation increases with the age of cells and is associated with the formation of intracellular protein aggregates and the pathogenesis of age-related disorders such as neurodegenerative diseases and cancer. However, it is still largely unclear how carbonylation affects protein structure, dynamics, and aggregability at the atomic level. Here, we use classical molecular dynamics simulations to study structure and dynamics of the carbonylated headpiece domain of villin, a key actin-organizing protein. We perform an exhaustive set of molecular dynamics simulations of a native villin headpiece together with every possible combination of carbonylated versions of its seven lysine, arginine, and proline residues, quantitatively the most important carbonylable amino acids. Surprisingly, our results suggest that high levels of carbonylation, far above those associated with cell death in vivo, may be required to destabilize and unfold protein structure through the disruption of specific stabilizing elements, such as salt bridges or proline kinks, or tampering with the hydrophobic effect. On the other hand, by using thermodynamic integration and molecular hydrophobicity potential approaches, we quantitatively show that carbonylation of hydrophilic lysine and arginine residues is equivalent to introducing hydrophobic, charge-neutral mutations in their place, and, by comparison with experimental results, we demonstrate that this by itself significantly increases the intrinsic aggregation propensity of both structured, native proteins and their unfolded states. Finally, our results provide a foundation for a novel experimental strategy to study the effects of carbonylation on protein structure, dynamics, and aggregability using site-directed mutagenesis. © 2011 American Chemical Society

  11. Key factors regulating protein carbonylation by α,β unsaturated carbonyls: A structural study based on a retrospective meta-analysis.

    PubMed

    Vistoli, Giulio; Mantovani, Chiara; Gervasoni, Silvia; Pedretti, Alessandro; Aldini, Giancarlo

    2017-11-01

    Protein carbonylation represents one of the most important oxidative-based modifications involving nucleophilic amino acids and affecting protein folding and function. Protein carbonylation is induced by electrophilic carbonyl species and is an highly selective process since few nucleophilic residues are carbonylated within each protein. While considering the great interest for protein carbonylation, few studies investigated the factors which render a nucleophilic residue susceptible to carbonylation. Hence, the present study is aimed to delve into the factors which modulate the reactivity of cysteine, histidine and lysine residues towards α,β unsaturated carbonyls by a retrospective analysis of the available studies which identified the adducted residues for proteins, the structure of which was resolved. Such an analysis involved different parameters including exposure, nucleophilicity, surrounding residues and capacity to attract carbonyl species (as derived by docking simulations). The obtained results allowed a meaningful clustering of the analyzed proteins suggesting that on average carbonylation selectivity increases with protein size. The comparison between adducted and unreactive residues revealed differences in all monitored parameters which are markedly more pronounced for cysteines compared to lysines and histidines. Overall, these results suggest that cysteine's carbonylation is a finely (and reasonably purposely) modulated process, while the carbonylation of lysines and histidines seems to be a fairly random event in which limited differences influence their reactivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Carbonyl Activation by Borane Lewis Acid Complexation: Transition States of H2 Splitting at the Activated Carbonyl Carbon Atom in a Lewis Basic Solvent and the Proton-Transfer Dynamics of the Boroalkoxide Intermediate.

    PubMed

    Heshmat, Mojgan; Privalov, Timofei

    2017-07-06

    By using transition-state (TS) calculations, we examined how Lewis acid (LA) complexation activates carbonyl compounds in the context of hydrogenation of carbonyl compounds by H 2 in Lewis basic (ethereal) solvents containing borane LAs of the type (C 6 F 5 ) 3 B. According to our calculations, LA complexation does not activate a ketone sufficiently enough for the direct addition of H 2 to the O=C unsaturated bond; but, calculations indicate a possibly facile heterolytic cleavage of H 2 at the activated and thus sufficiently Lewis acidic carbonyl carbon atom with the assistance of the Lewis basic solvent (i.e., 1,4-dioxane or THF). For the solvent-assisted H 2 splitting at the carbonyl carbon atom of (C 6 F 5 ) 3 B adducts with different ketones, a number of TSs are computed and the obtained results are related to insights from experiment. By using the Born-Oppenheimer molecular dynamics with the DFT for electronic structure calculations, the evolution of the (C 6 F 5 ) 3 B-alkoxide ionic intermediate and the proton transfer to the alkoxide oxygen atom were investigated. The results indicate a plausible hydrogenation mechanism with a LA, that is, (C 6 F 5 ) 3 B, as a catalyst, namely, 1) the step of H 2 cleavage that involves a Lewis basic solvent molecule plus the carbonyl carbon atom of thermodynamically stable and experimentally identifiable (C 6 F 5 ) 3 B-ketone adducts in which (C 6 F 5 ) 3 B is the "Lewis acid promoter", 2) the transfer of the solvent-bound proton to the oxygen atom of the (C 6 F 5 ) 3 B-alkoxide intermediate giving the (C 6 F 5 ) 3 B-alcohol adduct, and 3) the S N 2-style displacement of the alcohol by a ketone or a Lewis basic solvent molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quantitation of Protein Carbonylation by Dot Blot

    PubMed Central

    Wehr, Nancy B.; Levine, Rodney L.

    2012-01-01

    Protein carbonylation is the most commonly used measure of oxidative modification of proteins. It is frequently measured spectrophotometrically or immunochemically by derivatizing proteins with the classical carbonyl reagent, 2,4-dinitrophenylhydrazine. We developed an immunochemical dot blot method for quantitation of protein carbonylation in homogenates or purified proteins. Dimethyl sulfoxide was employed as the solvent because it very efficiently extracts proteins from tissues and keeps them soluble. It also readily dissolves 2,4-dinitrophenylhydrazine and wets PVDF membranes. The detection limit is 0.19 ± 0.04 pmol carbonyl. Sixty ng protein is sufficient to measure protein carbonyl content. This level of sensitivity allowed measurement of protein carbonylation in individual Drosophila. PMID:22326366

  14. [pi] Backbonding in Carbonyl Complexes and Carbon-Oxygen Stretching Frequencies: A Molecular Modeling Exercise

    ERIC Educational Resources Information Center

    Montgomery, Craig D.

    2007-01-01

    An exercise is described that has illustrated the effect of various factors on [pi] backbonding to carbonyl ligands, where the students can view the molecular orbitals corresponding to the M-CO [pi] interaction as well as the competing interaction between the metal and co-ligands. The visual and hands-on nature of the modeling exercise has helped…

  15. Quantitation of protein carbonylation by dot blot.

    PubMed

    Wehr, Nancy B; Levine, Rodney L

    2012-04-15

    Protein carbonylation is the most commonly used measure of oxidative modification of proteins. It is frequently measured spectrophotometrically or immunochemically by derivatizing proteins with the classical carbonyl reagent, 2,4-dinitrophenylhydrazine. We developed an immunochemical dot blot method for quantitation of protein carbonylation in homogenates or purified proteins. Dimethyl sulfoxide was employed as the solvent because it very efficiently extracts proteins from tissues and keeps them soluble. It also readily dissolves 2,4-dinitrophenylhydrazine and wets polyvinylidene difluoride (PVDF) membranes. The detection limit is 0.19 ± 0.04 pmol of carbonyl, and 60 ng of protein is sufficient to measure protein carbonyl content. This level of sensitivity allowed measurement of protein carbonylation in individual Drosophila. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Design of HIV-1 Protease Inhibitors with Amino-bis-tetrahydrofuran Derivatives as P2-Ligands to Enhance Backbone-Binding Interactions. Synthesis, Biological Evaluation, and Protein-Ligand X-ray Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Arun K.; Martyr, Cuthbert D.; Osswald, Heather L.

    Structure-based design, synthesis, and biological evaluation of a series of very potent HIV-1 protease inhibitors are described. In an effort to improve backbone ligand–binding site interactions, we have incorporated basic-amines at the C4 position of the bis-tetrahydrofuran (bis-THF) ring. We speculated that these substituents would make hydrogen bonding interactions in the flap region of HIV-1 protease. Synthesis of these inhibitors was performed diastereoselectively. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 25f, 25i, and 25j were evaluated against a number of highly-PI-resistant HIV-1 strains, and they exhibited improved antiviral activity over darunavir. Two high resolutionmore » X-ray structures of 25f- and 25g-bound HIV-1 protease revealed unique hydrogen bonding interactions with the backbone carbonyl group of Gly48 as well as with the backbone NH of Gly48 in the flap region of the enzyme active site. These ligand–binding site interactions are possibly responsible for their potent activity.« less

  17. Hepatocyte or serum albumin protein carbonylation by oxidized fructose metabolites: Glyceraldehyde or glycolaldehyde as endogenous toxins?

    PubMed

    Dong, Qiang; Yang, Kai; Wong, Stephanie M; O'Brien, Peter J

    2010-10-06

    Excessive sugar intake in animal models may cause tissue damage associated with oxidative and carbonyl stress cytotoxicity as well as inflammation. Fructose became a 100-fold more cytotoxic if hepatocytes were exposed to a non-toxic infusion of H(2)O(2) so as to simulate H(2)O(2) released by Kupffer cells or infiltrating immune cells. In order to determine the molecular mechanisms involved, protein carbonylation of fructose and its metabolites were determined using the 2,4-dinitrophenylhydrazine method. In a cell-free system, fructose was found to carbonylate bovine serum albumin (BSA) only if low concentrations of FeII/H(2)O(2) were added. Protein carbonylation by the fructose metabolites glyceraldehyde or glycolaldehyde was also markedly increased by FeII/H(2)O(2). The protein carbonylation may be attributed to glyoxal formation by hydroxyl radicals as the glyoxal trapping agent aminoguanidine or hydroxyl radical scavengers prevented protein carbonylation. Glyoxal was also much more effective than other carbonyls at causing protein carbonylation. When BSA was replaced by isolated rat hepatocytes, fructose metabolite glyceraldehyde in the presence of non-toxic 2 microM FeII:8-hydroxyquinoline (HQ) and a H(2)O(2) generating system (glucose/glucose oxidase) markedly increased cytotoxicity, protein carbonylation and reactive oxygen species (ROS)/H(2)O(2) formation. Furthermore this was prevented by hydroxyl radical scavengers or aminoguanidine, a glyoxal scavenger. CuII: 8-hydroxyquinoline increased H(2)O(2) induced hepatocyte protein carbonylation less but was prevented by aminoguanidine. However, cytotoxicity and protein carbonylation induced by glyceraldehyde/CuII:HQ/H(2)O(2) were not affected by hydroxyl radical scavengers. Although fatty liver induced by an excessive sugar diet in animal models has been proposed as the first hit for non-alcoholic steatohepatitis (NASH) we propose that oxidative stress induced by the oxidation of fructose or fructose metabolites

  18. Copper-Catalyzed Carbonylative Coupling of Cycloalkanes and Amides.

    PubMed

    Li, Yahui; Dong, Kaiwu; Zhu, Fengxiang; Wang, Zechao; Wu, Xiao-Feng

    2016-06-13

    Carbonylation reactions are a most powerful method for the synthesis of carbonyl-containing compounds. However, most known carbonylation procedures still require noble-metal catalysts and the use of activated compounds and good nucleophiles as substrates. Herein, we developed a copper-catalyzed carbonylative transformation of cycloalkanes and amides. Imides were prepared in good yields by carbonylation of a C(sp(3) )-H bond of the cycloalkane with the amides acting as weak nucleophiles. Notably, this is the first report of copper-catalyzed carbonylative C-H activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Transition-Metal-Catalyzed Carbonylation of Methyl Acetate.

    ERIC Educational Resources Information Center

    Polichnowski, S. W.

    1986-01-01

    Presents a study of the rhodium-catalyzed, ioding-promoted carbonylation of methyl acetate. This study provides an interesting contrast between the carbonylation of methyl acetate and the carbonylation of methanol when similar rhodium/iodine catalyst systems are used. (JN)

  20. Role of oxygen functionality on the band structure evolution and conductance of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Roy, Rajarshi; Thapa, Ranjit; Chakrabarty, Soubhik; Jha, Arunava; Midya, Priyanka R.; Kumar, E. Mathan; Chattopadhyay, Kalyan K.

    2017-06-01

    Here we report, structural and electrical transport properties of reduced graphene oxide as a function of oxygen bonding configuration. We find that mainly epoxy (Csbnd Osbnd C) and carbonyl (Cdbnd O) functional groups remain as major residual components after reduction using three different reducing agents. We calculate the band structure in the presence of epoxy and carbonyl groups and defects. Finally, we calculate the theoretical band mobility and find that it is less for the carbonyl with epoxy system. We correlate the distortion of linear dispersion and opening of bandgap at K-point with conductance for different graphene system in presence of oxygen moieties.

  1. Simulation of Ames Backbone Network

    NASA Technical Reports Server (NTRS)

    Shahnasser, Hamid

    1998-01-01

    The networking demands of Ames Research Center are dramatically increasing. More and more workstations are requested to run video and audio applications on the network. These applications require a much greater bandwidth than data applications. The existing ARCLAN 2000 network bandwidth is insufficient, due to the use of FDDI as its backbone, for accommodating video applications. Operating at a maximum of 100 Mbps, FDDI can handle only a few workstations running multimedia applications. The ideal solution is to replace the current ARCLAN 2000 FDDI backbone with an ATM backbone. ATM has the capability to handle the increasing traffic loads on the ARCLAN 2000 that results from these new applications. As it can be seen from Figure 1, ARCLAN 2000 have a total of 32 routers (5 being core routers) each connected to the FDDI backbone via a 100 Mbps link. This network serves 34 different locations by using 34 hubs that are connected to secondary routers. End users are connected to the secondary routers with 10 Mbps links.

  2. Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos.

    PubMed

    Krasuska, Urszula; Ciacka, Katarzyna; Dębska, Karolina; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-08-15

    Deep dormancy of apple (Malus domestica Borkh.) embryos can be overcome by short-term pre-treatment with nitric oxide (NO) or hydrogen cyanide (HCN). Dormancy alleviation of embryos modulated by NO or HCN and the first step of germination depend on temporary increased production of reactive oxygen species (ROS). Direct oxidative attack on some amino acid residues or secondary reactions via reactive carbohydrates and lipids can lead to the formation of protein carbonyl derivatives. Protein carbonylation is a widely accepted covalent and irreversible modification resulting in inhibition or alteration of enzyme/protein activities. It also increases the susceptibility of proteins to proteolytic degradation. The aim of this work was to investigate protein carbonylation in germinating apple embryos, the dormancy of which was removed by pre-treatment with NO or HCN donors. It was performed using a quantitative spectrophotometric method, while patterns of carbonylated protein in embryo axes were analyzed by immunochemical techniques. The highest concentration of protein carbonyl groups was observed in dormant embryos. It declined in germinating embryos pre-treated with NO or HCN, suggesting elevated degradation of modified proteins during seedling formation. A decrease in the concentration of carbonylated proteins was accompanied by modification in proteolytic activity in germinating apple embryos. A strict correlation between the level of protein carbonyl groups and cotyledon growth and greening was detected. Moreover, direct in vitro carbonylation of BSA treated with NO or HCN donors was analyzed, showing action of both signaling molecules as protein oxidation agents. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. THE METAL CARBONYLS.

    PubMed

    Blanchard, A A

    1941-10-03

    When the metal carbonyls were first discovered, their properties were startling because they seemed to violate nearly all the previously recognized generalizations of chemistry. Even to-day the existence of the carbonyls is not particularly emphasized in elementary courses of chemistry because it is rather hard to reconcile them with the first presentations of the generalizations of chemistry. Nevertheless, as the student progresses deeper into the knowledge of chemistry it becomes desirable to include the knowledge of the carbonyls both because they become more comprehensible when viewed in the light of Werner's system of coordination and because they themselves contribute to the comprehension of the Werner theory. As long ago as 1931, Reiff in his discussion of cobalt nitrosyl carbonyl recognized the correlation between the effective atomic number and the volatility of carbonyls. A more recent study of charged Werner coordination complexes, that is, of complex ions, has shown a similar role of the effective atomic number. We are standing on fairly firm ground when we point out the correlation between E.A.N. and the volatility of the carbonyl complexes and the existence of complex ions. Be it noted that we have made no postulates as to the arrangement of the electrons in quantum levels. In the inert gases the outer principal quantum group is supposed always to contain eight electrons. In the carbonyls and other Werner complexes there is no compelling reason to suppose that the electrons in the coordinating layer, be this layer of eight, ten, twelve or sixteen electrons, are not all at the same energy level. Although we have confined our discussion almost exclusively to the property of volatility, the carbonyls are very interesting from the standpoint of several other properties, for example, magnetic susceptibility and dielectric constant. Enthusiasts in the interpretation of such properties try to draw conclusions as to the condition of the electrons, sometimes

  4. Observation of CH⋅⋅⋅π Interactions between Methyl and Carbonyl Groups in Proteins.

    PubMed

    Perras, Frédéric A; Marion, Dominique; Boisbouvier, Jérôme; Bryce, David L; Plevin, Michael J

    2017-06-19

    Protein structure and function is dependent on myriad noncovalent interactions. Direct detection and characterization of these weak interactions in large biomolecules, such as proteins, is experimentally challenging. Herein, we report the first observation and measurement of long-range "through-space" scalar couplings between methyl and backbone carbonyl groups in proteins. These J couplings are indicative of the presence of noncovalent C-H⋅⋅⋅π hydrogen-bond-like interactions involving the amide π network. Experimentally detected scalar couplings were corroborated by a natural bond orbital analysis, which revealed the orbital nature of the interaction and the origins of the through-space J couplings. The experimental observation of this type of CH⋅⋅⋅π interaction adds a new dimension to the study of protein structure, function, and dynamics by NMR spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Excited singlet molecular O2 (1Δg) is generated enzymatically from excited carbonyls in the dark

    PubMed Central

    Mano, Camila M.; Prado, Fernanda M.; Massari, Júlio; Ronsein, Graziella E.; Martinez, Glaucia R.; Miyamoto, Sayuri; Cadet, Jean; Sies, Helmut; Medeiros, Marisa H. G.; Bechara, Etelvino J. H.; Di Mascio, Paolo

    2014-01-01

    In mammalian tissues, ultraweak chemiluminescence arising from biomolecule oxidation has been attributed to the radiative deactivation of singlet molecular oxygen [O2 (1Δg)] and electronically excited triplet carbonyl products involving dioxetane intermediates. Herein, we describe evidence of the generation of O2 (1Δg) in aqueous solution via energy transfer from excited triplet acetone. This involves thermolysis of 3,3,4,4-tetramethyl-1,2-dioxetane, a chemical source, and horseradish peroxidase-catalyzed oxidation of 2-methylpropanal, as an enzymatic source. Both sources of excited carbonyls showed characteristic light emission at 1,270 nm, directly indicative of the monomolecular decay of O2 (1Δg). Indirect analysis of O2 (1Δg) by electron paramagnetic resonance using the chemical trap 2,2,6,6-tetramethylpiperidine showed the formation of 2,2,6,6-tetramethylpiperidine-1-oxyl. Using [18O]-labeled triplet, ground state molecular oxygen [18O2 (3Σg-)], chemical trapping of 18O2 (1Δg) with disodium salt of anthracene-9,10-diyldiethane-2,1-diyl disulfate yielding the corresponding double-[18O]-labeled 9,10-endoperoxide, was detected through mass spectrometry. This corroborates formation of O2 (1Δg). Altogether, photoemission and chemical trapping studies clearly demonstrate that chemically and enzymatically nascent excited carbonyl generates 18O2 (1Δg) by triplet-triplet energy transfer to ground state oxygen O2 (3Σg−), and supports the long formulated hypothesis of O2 (1Δg) involvement in physiological and pathophysiological events that might take place in tissues in the absence of light. PMID:25087485

  6. Measurements of lower carbonyls in Rome ambient air

    NASA Astrophysics Data System (ADS)

    Possanzini, M.; Di Palo, V.; Petricca, M.; Fratarcangeli, R.; Brocco, D.

    Ambient levels and diurnal profiles of lower carbonyls were measured in Rome during selected days of summer 1994 and winter 1995. The most abundant carbonyls were formaldehyde (up to 27 ppb) followed by ethanal (< 17 ppb) and acetone (< 9 ppb). Gas-phase concentrations of other seven carbonyls were in the 0-3 ppb range. The results were discussed with respect to direct emissions and photochemical production. Using carbonyl/CO concentration ratios mobil source emissions of carbonyls were estimated for the urban area. The secondary production of C 1-C 3 aldehydes from reactions of alkenes with O 3 and OH radicals during the early morning hours of summer days was also calculated. The daytime pattern of carbonyls was found to be similar to that of toluene in wintertime and close to that of ozone in summer periods conductive to photochemical pollution episodes.

  7. Cost-effectiveness analysis of dolutegravir plus backbone compared with raltegravir plus backbone, darunavir+ritonavir plus backbone and efavirenz/tenofovir/emtricitabine in treatment naïve and experienced HIV-positive patients.

    PubMed

    Restelli, Umberto; Rizzardini, Giuliano; Antinori, Andrea; Lazzarin, Adriano; Bonfanti, Marzia; Bonfanti, Paolo; Croce, Davide

    2017-01-01

    In January 2014, the European Medicines Agency issued a marketing authorization for dolutegravir (DTG), a second-generation integrase strand transfer inhibitor for HIV treatment. The study aimed at determining the incremental cost-effectiveness ratio (ICER) of the use of DTG+backbone compared with raltegravir (RAL)+backbone, darunavir (DRV)+ritonavir(r)+backbone and efavirenz/tenofovir/emtricitabine (EFV/TDF/FTC) in HIV-positive treatment-naïve patients and compared with RAL+backbone in treatment-experienced patients, from the Italian National Health Service's point of view. A published Monte Carlo Individual Simulation Model (ARAMIS-DTG model) was used to perform the analysis. Patients pass through mutually exclusive health states (defined in terms of diagnosis of HIV with or without opportunistic infections [OIs] and cardiovascular disease [CVD]) and successive lines of therapy. The model considers costs (2014) and quality of life per monthly cycle in a lifetime horizon. Costs and quality-adjusted life years (QALYs) are dependent on OI, CVD, AIDS events, adverse events and antiretroviral therapies. In treatment-naïve patients, DTG dominates RAL; compared with DRV/r, the ICER obtained is of 38,586 €/QALY (6,170 €/QALY in patients with high viral load) and over EFV/TDF/FTC, DTG generates an ICER of 33,664 €/QALY. In treatment-experienced patients, DTG compared to RAL leads to an ICER of 12,074 €/QALY. The use of DTG+backbone may be cost effective in treatment-naïve and treatment-experienced patients compared with RAL+backbone and in treatment-naïve patients compared with DRV/r+backbone and EFV/TDF/FTC considering a threshold of 40,000 €/QALY.

  8. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, Joseph Robert

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  9. A rapid, one step preparation for measuring selected free plus SO2-bound wine carbonyls by HPLC-DAD/MS.

    PubMed

    Han, Guomin; Wang, Hua; Webb, Michael R; Waterhouse, Andrew L

    2015-03-01

    Carbonyl compounds are produced during fermentation and chemical oxidation during wine making and aging, and they are important to wine flavor and color stability. Since wine also contains these compounds as α-hydroxysulfonates as a result of their reaction with sulfur dioxide, an alkaline pre-treatment requiring oxygen exclusion has been used to release these bound carbonyls for analysis. By modifying the method to hydrolyze the hydroxysulfonates with heating and acid in the presence of 2,4-dinitrophenylhydrazine (DNPH), the carbonyl compounds are simultaneously and quickly released and derivatized, resulting in a simpler and more rapid method. In addition, the method avoids air exclusion complications during hydrolysis by the addition of sulfur dioxide. The method was optimized for temperature, reaction time, and the concentrations of DNPH, sulfur dioxide and acid. The hydrazones were shown to be stable for 10 h, adequate time for chromatographic analysis by HPLC-DAD/MS. This method is demonstrated for 2-ketoglutaric acid, pyruvic acid, acetoin and acetaldehyde, wine carbonyls of very different reactivities, and it offers good specificity, high recovery and low limits of detection. This new rapid, simple method is demonstrated for the measurement of carbonyl compounds in a range of wines of different ages and grape varieties. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain.

    PubMed

    Alexandropoulos, Ioannis I; Argyriou, Aikaterini I; Marousis, Kostas D; Topouzis, Stavros; Papapetropoulos, Andreas; Spyroulias, Georgios A

    2016-10-01

    The H-NOX (Heme-nitric oxide/oxygen binding) domain is conserved across eukaryotes and bacteria. In human soluble guanylyl cyclase (sGC) the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). sGC contains the heme-binding H-NOX domain at its N-terminus, which regulates the catalytic site contained within the C-terminal end of the enzyme catalyzing the conversion of GTP (guanosine 5'-triphosphate) to GMP (guanylyl monophosphate). Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 183-residue H-NOX domain from Nostoc sp. through solution NMR.

  11. Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells.

    PubMed

    Semchyshyn, Halyna M; Lozinska, Liudmyla M; Miedzobrodzki, Jacek; Lushchak, Volodymyr I

    2011-05-15

    Fructose is commonly used as an industrial sweetener and has been excessively consumed in human diets in the last decades. High fructose intake is causative in the development of metabolic disorders, but the mechanisms underlying fructose-induced disturbances are under debate. Fructose compared to glucose has been found to be a more potent initiator of the glycation reaction. Therefore, we supposed that glucose and fructose might have different vital effects. Here we compare the effects of glucose and fructose on yeast cell viability and markers of carbonyl/oxidative stress. Analysis of the parameters in cells growing on glucose and fructose clearly reveals that yeast growing on fructose has higher levels of carbonyl groups in proteins, α-dicarbonyl compounds and reactive oxygen species. This may explain the observation that fructose-supplemented growth as compared with growth on glucose resulted in more pronounced age-related decline in yeast reproductive ability and higher cell mortality. The results are discussed from the point of view that fructose rather than glucose is more extensively involved in glycation and ROS generation in vivo, yeast aging and development of carbonyl/oxidative stress. It should be noted that carbohydrate restriction used in this study does not reveal a significant difference between markers of aging and carbonyl/oxidative stress in yeasts cultivated on glucose and fructose. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Cost-effectiveness analysis of dolutegravir plus backbone compared with raltegravir plus backbone, darunavir+ritonavir plus backbone and efavirenz/tenofovir/emtricitabine in treatment naïve and experienced HIV-positive patients

    PubMed Central

    Restelli, Umberto; Rizzardini, Giuliano; Antinori, Andrea; Lazzarin, Adriano; Bonfanti, Marzia; Bonfanti, Paolo; Croce, Davide

    2017-01-01

    Background In January 2014, the European Medicines Agency issued a marketing authorization for dolutegravir (DTG), a second-generation integrase strand transfer inhibitor for HIV treatment. The study aimed at determining the incremental cost-effectiveness ratio (ICER) of the use of DTG+backbone compared with raltegravir (RAL)+backbone, darunavir (DRV)+ritonavir(r)+backbone and efavirenz/tenofovir/emtricitabine (EFV/TDF/FTC) in HIV-positive treatment-naïve patients and compared with RAL+backbone in treatment-experienced patients, from the Italian National Health Service’s point of view. Materials and methods A published Monte Carlo Individual Simulation Model (ARAMIS-DTG model) was used to perform the analysis. Patients pass through mutually exclusive health states (defined in terms of diagnosis of HIV with or without opportunistic infections [OIs] and cardiovascular disease [CVD]) and successive lines of therapy. The model considers costs (2014) and quality of life per monthly cycle in a lifetime horizon. Costs and quality-adjusted life years (QALYs) are dependent on OI, CVD, AIDS events, adverse events and antiretroviral therapies. Results In treatment-naïve patients, DTG dominates RAL; compared with DRV/r, the ICER obtained is of 38,586 €/QALY (6,170 €/QALY in patients with high viral load) and over EFV/TDF/FTC, DTG generates an ICER of 33,664 €/QALY. In treatment-experienced patients, DTG compared to RAL leads to an ICER of 12,074 €/QALY. Conclusion The use of DTG+backbone may be cost effective in treatment-naïve and treatment-experienced patients compared with RAL+backbone and in treatment-naïve patients compared with DRV/r+backbone and EFV/TDF/FTC considering a threshold of 40,000 €/QALY. PMID:28721059

  13. Method for conversion of .beta.-hydroxy carbonyl compounds

    DOEpatents

    Lilga, Michael A.; White, James F.; Holladay, Johnathan E.; Zacher, Alan H.; Muzatko, Danielle S.; Orth, Rick J.

    2010-03-30

    A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

  14. Divergent palladium iodide catalyzed multicomponent carbonylative approaches to functionalized isoindolinone and isobenzofuranimine derivatives.

    PubMed

    Mancuso, Raffaella; Ziccarelli, Ida; Armentano, Donatella; Marino, Nadia; Giofrè, Salvatore V; Gabriele, Bartolo

    2014-04-18

    2-Alkynylbenzamides underwent different reaction pathways when allowed to react under PdI2-catalyzed oxidative carbonylation conditions, depending on the nature of the external nucleophile and reaction conditions. Thus, oxidative carbonylation of 2-ethynylbenzamides, bearing a terminal triple bond, carried out in the presence of a secondary amine as external nucleophile, selectively led to the formation of 3-[(dialkylcarbamoyl)methylene]isoindolin-1-ones through the intermediate formation of the corresponding 2-ynamide derivatives followed by intramolecular nucleophilic attack by the nitrogen of the benzamide moiety on the conjugated triple bond. On the other hand, 3-[(alkoxycarbonyl)methylene]isobenzofuran-1(3H)imines were selectively obtained when the oxidative carbonylation of 2-alkynylbenzamides, bearing a terminal or an internal triple bond, was carried out in the presence of an alcohol R'OH (such as methanol or ethanol) as the external nucleophile and HC(OR')3 as a dehydrating agent, necessary to avoid substrate hydrolysis. In this latter case, the reaction pathway leading to the isobenzofuranimine corresponded to the 5-exo-dig intramolecular nucleophilic attack of the oxygen of the benzamide moiety on the triple bond coordinated to the metal center followed by alkoxycarbonylation. The structures of representative products have been confirmed by X-ray crystallographic analysis.

  15. COATING URANIUM FROM CARBONYLS

    DOEpatents

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  16. Carbonyl sulfide

    Integrated Risk Information System (IRIS)

    Carbonyl sulfide ; CASRN 463 - 58 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  17. Nickel carbonyl

    Integrated Risk Information System (IRIS)

    Nickel carbonyl ; CASRN 13463 - 39 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  18. High-resolution protein design with backbone freedom.

    PubMed

    Harbury, P B; Plecs, J J; Tidor, B; Alber, T; Kim, P S

    1998-11-20

    Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail.

  19. Optical burst switching based satellite backbone network

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian

    2018-02-01

    We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.

  20. Carbonyl Emissions From Oil and Gas Production Facilities

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; O'Neil, T.; Tran, T.

    2015-12-01

    A number of recent studies have targeted emissions of methane and other hydrocarbons from oil and gas exploration and production activity. These measurements are greatly increasing understanding of the atmospheric impacts of oil and gas development. Very few measurements exist, however, of emissions of formaldehyde and other carbonyls from oil and gas equipment. Carbonyls are toxic and serve as important ozone precursors, especially during winter ozone episodes in places like Utah's Uintah Basin. Current air quality models are only able to reproduce observed high wintertime ozone if they incorporate emissions inventories with very high carbonyl emissions. We measured carbonyl emissions from oil and gas equipment and facilities—including glycol dehydrators, liquid storage tanks, raw gas leaks, raw gas-burning engines, and produced water surface impoundments—in Rocky Mountain oil and gas fields. Carbonyl emissions from raw gas were below detection, but emissions of formaldehyde, acetaldehyde, and other carbonyls were detected from liquid storage tanks, glycol dehydrators, and other oil and gas equipment. In some cases, carbonyls may be formed from the degradation of methanol and other chemicals used in oil and gas production, but the collected data provide evidence for other non-combustion formation pathways. Raw gas-burning engines also emitted carbonyls. Emissions from all measured sources were a small fraction of total volatile organic compound emissions. We incorporated our measurements into an emissions inventory, used that inventory in an air quality model (WRF-SMOKE-CAMx), and were unable to reproduce observed high wintertime ozone. This could be because (1) emission sources we have not yet measured, including compressors, gas processing plants, and others, are large; (2) non-carbonyl emissions, especially those that quickly degrade into carbonyls during photochemical processing, are underestimated in the inventory; or (3) the air quality model is unable

  1. Validation of protein carbonyl measurement: A multi-centre study

    PubMed Central

    Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina; Willetts, Rachel; Korkmaz, Ayhan; Atalay, Mustafa; Weber, Daniela; Grune, Tilman; Borsa, Claudia; Gradinaru, Daniela; Chand Bollineni, Ravi; Fedorova, Maria; Griffiths, Helen R.

    2014-01-01

    Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial kits. We have further explored the potential causes of variance in carbonyl analysis in a ring study. A soluble protein fraction was prepared from rat liver and exposed to 0, 5 and 15 min of UV irradiation. Lyophilised preparations were distributed to six different laboratories that routinely undertook protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5 min of UV irradiation irrespective of method used. After irradiation for 15 min, less oxidation was detected by half of the laboratories than after 5 min irradiation. Three of the four ELISA carbonyl results fell within 95% confidence intervals. Likely errors in calculating absolute carbonyl values may be attributed to differences in standardisation. Out of up to 88 proteins identified as containing carbonyl groups after tryptic cleavage of irradiated and control liver proteins, only seven were common in all three liver preparations. Lysine and arginine residues modified by carbonyls are likely to be resistant to tryptic proteolysis. Use of a cocktail of proteases may increase the recovery of oxidised peptides. In conclusion, standardisation is critical for carbonyl analysis and heavily oxidised proteins may not be effectively analysed by any existing technique. PMID:25560243

  2. Computational protein design with backbone plasticity

    PubMed Central

    MacDonald, James T.; Freemont, Paul S.

    2016-01-01

    The computational algorithms used in the design of artificial proteins have become increasingly sophisticated in recent years, producing a series of remarkable successes. The most dramatic of these is the de novo design of artificial enzymes. The majority of these designs have reused naturally occurring protein structures as ‘scaffolds’ onto which novel functionality can be grafted without having to redesign the backbone structure. The incorporation of backbone flexibility into protein design is a much more computationally challenging problem due to the greatly increased search space, but promises to remove the limitations of reusing natural protein scaffolds. In this review, we outline the principles of computational protein design methods and discuss recent efforts to consider backbone plasticity in the design process. PMID:27911735

  3. Pressure response of protein backbone structure. Pressure-induced amide 15N chemical shifts in BPTI.

    PubMed Central

    Akasaka, K.; Li, H.; Yamada, H.; Li, R.; Thoresen, T.; Woodward, C. K.

    1999-01-01

    The effect of pressure on amide 15N chemical shifts was studied in uniformly 15N-labeled basic pancreatic trypsin inhibitor (BPTI) in 90%1H2O/10%2H2O, pH 4.6, by 1H-15N heteronuclear correlation spectroscopy between 1 and 2,000 bar. Most 15N signals were low field shifted linearly and reversibly with pressure (0.468 +/- 0.285 ppm/2 kbar), indicating that the entire polypeptide backbone structure is sensitive to pressure. A significant variation of shifts among different amide groups (0-1.5 ppm/2 kbar) indicates a heterogeneous response throughout within the three-dimensional structure of the protein. A tendency toward low field shifts is correlated with a decrease in hydrogen bond distance on the order of 0.03 A/2 kbar for the bond between the amide nitrogen atom and the oxygen atom of either carbonyl or water. The variation of 15N shifts is considered to reflect site-specific changes in phi, psi angles. For beta-sheet residues, a decrease in psi angles by 1-2 degrees/2 kbar is estimated. On average, shifts are larger for helical and loop regions (0.553 +/- 0.343 and 0.519 +/- 0.261 ppm/2 kbar, respectively) than for beta-sheet (0.295 +/- 0.195 ppm/2 kbar), suggesting that the pressure-induced structural changes (local compressibilities) are larger in helical and loop regions than in beta-sheet. Because compressibility is correlated with volume fluctuation, the result is taken to indicate that the volume fluctuation is larger in helical and loop regions than in beta-sheet. An important aspect of the volume fluctuation inferred from pressure shifts is that they include motions in slower time ranges (less than milliseconds) in which many biological processes may take place. PMID:10548039

  4. Carbonyl reduction of mequindox by chicken and porcine cytosol and cloned carbonyl reductase 1.

    PubMed

    Tang, Xianqing; Mu, Peiqiang; Wu, Jun; Jiang, Jun; Zhang, Caihui; Zheng, Ming; Deng, Yiqun

    2012-04-01

    Mequindox (MEQ) is a novel synthetic quinoxaline 1,4-dioxides derivative, which is widely used as a veterinary drug and animal feed additive. However, the metabolic mechanism of MEQ is rarely reported. The N-oxide reduction mechanism of MEQ was reported in our previous work. In this article, the toxicity and the reduction of the carbonyl of MEQ were studied. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assays demonstrated that the carbonyl-reduced MEQ, 2-isoethanol MEQ was much less toxic than MEQ. High-performance liquid chromatography analysis showed that the cytosol extracts of chicken and pig livers were able to reduce MEQ to 2-isoethanol MEQ and the reaction was NADPH-dependent. Further study via enzyme-inhibitory experiment revealed that carbonyl reductase 1 (CBR1) participated in this metabolism. The enzyme activity analysis showed that both chicken CBR1 (cCBR1) and porcine CBR1 (pCBR1) were capable of catalyzing the carbonyl reduction of MEQ and its N-oxide reductive metabolite, 1-deoxymequindox. By comparison of the kinetic constants, we observed that the activity of cCBR1 was higher than pCBR1 to MEQ and the standard substrate of CBR1, menadione. On the other hand, both CBR1s exhibited higher activity to 1-deoxymequindox than MEQ. Mutation analysis suggested that the difference of amino acid at position 141/142 may be one possible reason that caused the activity difference between cCBR1 and pCBR1. Thus far, CBR1 was first reported to participate in the carbonyl reduction of MEQ. Our results will be helpful to recognize the metabolic pathways of quinoxaline drugs deeply and to provide a theoretical basis for controlling the negative effects of these drugs.

  5. [Carbonyl compounds emission and uptake by plant: Research progress].

    PubMed

    Li, Jian; Cai, Jing; Yan, Liu-Shui; Li, Ling-Na; Tao, Min

    2013-02-01

    This paper reviewed the researches on the carbonyl compounds emission and uptake by plants, and discussed the compensation point of the bidirectional exchange of carbonyl compounds between plants and atmosphere. The uptake by leaf stomata and stratum corneum is the principal way for the purification of air aldehydes by plants. After entering into plant leaves, most parts of carbonyl compounds can be metabolized into organic acid, glucide, amino acid, and carbon dioxide, etc. , by the endoenzymes in leaves. The exchange direction of the carbonyl compounds between plants and atmosphere can be preliminarily predicted by the compensation point and the concentrations of ambient carbonyl compounds. This paper summarized the analytical methods such as DNPH/HPLC/UV and PFPH/GC/MS used for the determination of carbonyl compounds emitted from plants or in plant leaves. The main research interests in the future were pointed out, e. g. , to improve and optimize the analytical methods for the determination of carbonyl compounds emitted from plants and the researches on systems (e. g. , plant-soil system), to enlarge the detection species of carbonyl compounds emitted from plants, to screen the plant species which can effectively metabolize the pollutants, and to popularize the phytoremediation techniques for atmospheric

  6. Ambient levels of carbonyl compounds and their sources in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Feng, Yanli; Wen, Sheng; Chen, Yingjun; Wang, Xinming; Lü, Huixiong; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    Ambient levels of carbonyl compounds and their possible sources, vehicular exhaust and cooking exhaust, were studied at seven places in Guangzhou, including five districts (a residential area, an industrial area, a botanical garden, a downtown area and a semi-rural area), a bus station and a restaurant during the period of June-September 2003. Nineteen carbonyl compounds were identified in the ambient air, of which acetone was the most abundant carbonyl, followed by formaldehyde and acetaldehyde. Only little changes were found in carbonyl concentration levels in the five different districts because of their dispersion and mixture in the atmosphere in summer. The lower correlations between the carbonyls' concentrations might result from the mixture of carbonyls derived from different sources, including strong photochemical reactions at noon in summer. Formaldehyde and acetaldehyde were the main carbonyls in bus station, while straight-chain carbonyls were comparatively abundant in cooking exhaust. Besides vehicular exhaust, cooking might be another major source of carbonyl compounds in Guangzhou City, especially for high molecular weight carbonyls.

  7. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions

    PubMed Central

    Weber, Daniela; Davies, Michael J.; Grune, Tilman

    2015-01-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. PMID:26141921

  8. Protein carbonylation: avoiding pitfalls in the 2,4-dinitrophenylhydrazine assay.

    PubMed

    Luo, Shen; Wehr, Nancy B

    2009-01-01

    Protein carbonyl content is widely used as both a marker for oxidative stress and a measure of oxidative damage. Widely used methods for determination of protein carbonylation utilize the reaction of carbonyl groups with 2,4-dinitrophenylhydrazine (DNPH) to form protein-bound 2,4-dinitrophenylhydrazones. Hydrazones can be quantitated spectrophotometrically or, for greater sensitivity, detected immunochemically with anti-dinitrophenyl antibodies. Attention to methodology is important to avoid artifactual elevation in protein carbonyl measurements. We studied extracts of Escherichia coli to identify and eliminate such effects. Nucleic acid contamination caused serious artifactual increases in the protein carbonyl content determined by spectrophotometric techniques. Both in vitro synthesized DNA oligonucleotides and purified chromosomal DNA reacted strongly with 2,4-DNPH. Treatment of cell extracts with DNase+RNase or with streptomycin sulfate to precipitate nucleic acids dramatically reduced the apparent carbonyl, while exposure to proteinase K did not. The commercial kit for immunochemical detection of protein carbonylation (OxyBlot from Chemicon/Millipore) recommends a high concentration of thiol in the homogenizing buffer. We found this recommendation leads to an artifactual doubling of the protein carbonyl, perhaps due to a thiol-stimulated Fenton reaction. Avoiding oxidizing conditions, removal of nucleic acids, and prompt assay of samples can prevent artifactual effects on protein carbonyl measurements.

  9. Understanding traffic dynamics at a backbone POP

    NASA Astrophysics Data System (ADS)

    Taft, Nina; Bhattacharyya, Supratik; Jetcheva, Jorjeta; Diot, Christophe

    2001-07-01

    Spatial and temporal information about traffic dynamics is central to the design of effective traffic engineering practices for IP backbones. In this paper we study backbone traffic dynamics using data collected at a major POP on a tier-1 IP backbone. We develop a methodology that combines packet-level traces from access links in the POP and BGP routing information to build components of POP-to-POP traffic matrices. Our results show that there is wide disparity in the volume of traffic headed towards different egress POPs. At the same time, we find that current routing practices in the backbone tend to constrain traffic between ingress-egress POP pairs to a small number of paths. As a result, there is a wide variation in the utilization level of links in the backbone. Frequent capacity upgrades of the heavily used links are expensive; the need for such upgrades can be reduced by designing load balancing policies that will route more traffic over less utilized links. We identify traffic aggregates based on destination address prefixes and find that this set of criteria isolates a few aggregates that account for an overwhelmingly large portion of inter-POP traffic. We also demonstrate that these aggregates exhibit stability throughout the day on per-hour time scales, and thus they form a natural basis for splitting traffic over multiple paths in order to improve load balancing.

  10. 17O NMR spectroscopy of substituted methyleneindanones: relationship between chemical shift and oxygen atom electron density

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Boykin, David W.

    1993-07-01

    17O NMR spectroscopic data for eigth β-substituted methyleneindanones obtained at natural abundance in acetonitrile at 75°C are reported. 17O NMR data for ten para-substituted E-benzalindanones, enriched with 17O, were recorded in acetonitrile at 75°C. The 17O NMR data for the E-benzalindanones gave good correlations with sigma plus values, with literature carbonyl IR stretching frequencies, and with literature 17O NMR carbonyl data of chalcones and 5-aryl-2,3-furandiones. The carbonyl oxygen atom electron density (AM1) gave good correlation with the carbonyl 17O NMR chemical shift of both β-substituted methyleneindanones and the E-benzalindanones.

  11. Large-scale measurement and modeling of backbone Internet traffic

    NASA Astrophysics Data System (ADS)

    Roughan, Matthew; Gottlieb, Joel

    2002-07-01

    There is a brewing controversy in the traffic modeling community concerning how to model backbone traffic. The fundamental work on self-similarity in data traffic appears to be contradicted by recent findings that suggest that backbone traffic is smooth. The traffic analysis work to date has focused on high-quality but limited-scope packet trace measurements; this limits its applicability to high-speed backbone traffic. This paper uses more than one year's worth of SNMP traffic data covering an entire Tier 1 ISP backbone to address the question of how backbone network traffic should be modeled. Although the limitations of SNMP measurements do not permit us to comment on the fine timescale behavior of the traffic, careful analysis of the data suggests that irrespective of the variation at fine timescales, we can construct a simple traffic model that captures key features of the observed traffic. Furthermore, the model's parameters are measurable using existing network infrastructure, making this model practical in a present-day operational network. In addition to its practicality, the model verifies basic statistical multiplexing results, and thus sheds deep insight into how smooth backbone traffic really is.

  12. Chemical probes for analysis of carbonylated proteins: a review

    PubMed Central

    Yan, Liang-Jun; Forster, Michael J.

    2010-01-01

    Protein carbonylation is a major form of protein oxidation and is widely used as an indicator of oxidative stress. Carbonyl groups do not have distinguishing UV or visible, spectrophotometric absorbance/fluorescence characteristics and thus their detection and quantification can only be achieved using specific chemical probes. In this paper, we review the advantages and disadvantages of several chemical probes that have been and are still being used for protein carbonyl analysis. These probes include 2, 4-dinitrophenylhydazine (DNPH), tritiated sodium borohydride ([3H]NaBH4), biotin-containing probes, and fluorescence probes. As our discussions lean toward gel-based approaches, utilizations of these probes in 2D gel-based proteomic analysis of carbonylated proteins are illustrated where applicable. Analysis of carbonylated proteins by ELISA, immunofluorescent imaging, near infrared fluorescence detection, and gel-free proteomic approaches are also discussed where appropriate. Additionally, potential applications of blue native gel electrophoresis as a tool for first dimensional separation in 2D gel-based analysis of carbonylated proteins are discussed as well. PMID:20732835

  13. Carbonyl species characteristics during the evaporation of essential oils

    NASA Astrophysics Data System (ADS)

    Chiang, Hsiu-Mei; Chiu, Hua-Hsien; Lai, Yen-Ming; Chen, Ching-Yen; Chiang, Hung-Lung

    2010-06-01

    Carbonyls emitted from essential oils can affect the air quality when they are used in indoors, especially under poor ventilation conditions. Lavender, lemon, rose, rosemary, and tea tree oils were selected as typical and popular essential oils to investigate in terms of composition, thermal characteristics and fifteen carbonyl constituents. Based on thermogravimetric (TG) analysis, the activation energy was 7.6-8.3 kcal mol -1, the reaction order was in the range of 0.6-0.7 and the frequency factor was 360-2838 min -1. Formaldehyde, acetaldehyde, acetone, and propionaldehyde were the dominant carbonyl compounds, and their concentrations were 0.034-0.170 ppm. The emission factors of carbonyl compounds were 2.10-3.70 mg g -1, and acetone, propionaldehyde, acetaldehyde, and formaldehyde accounted for a high portion of the emission factor of carbonyl compounds in essential oil exhaust. Some unhealthy carbonyl species such as formaldehyde and valeraldehyde, were measured at low-temperature during the vaporization of essential oils, indicating a potential effect on indoor air quality and human health.

  14. Central role of carbonyl compounds in atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Lary, D. J.; Shallcross, D. E.

    2000-08-01

    With the exception of acetone it is not generally recognized how important atmospheric carbonyls and alkyl radicals are in the lower stratosphere and upper troposphere. Carbonyl compounds are the crucial intermediate species for the autocatalytic production of OH. For example, in the upper troposphere and lower stratosphere it is calculated based on data assimilation analysis of Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) data that CH3 production due to the degradation of carbonyls contributes around 40% to the overall production of CH3, a key initiation step for HOx production, with the contribution due to the photolysis of CH3CHO being comparable to that of acetone. So correctly modeling the alkyl radical concentrations is of central importance and has not be given the attention it deserves to date. The reactions of carbonyls with Br and Cl are also major sources of HBr and HCl. In short, carbonyl compounds play a central role in atmospheric chemistry close to the tropopause, and this is directly relevant to issues such as the assessment of the impact of air traffic, and ozone depletion.

  15. Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Xue, Likun; Wang, Tao; Wang, Xinfeng; Gao, Jian; Lee, Shuncheng; Blake, Donald R.; Chai, Fahe; Wang, Wenxing

    2018-01-01

    Carbonyls are an important group of volatile organic compounds (VOCs) that play critical roles in tropospheric chemistry. To better understand the formation mechanisms of carbonyl compounds, extensive measurements of carbonyls and related parameters were conducted in Beijing in summer 2008. Formaldehyde (11.17 ± 5.32 ppbv), acetone (6.98 ± 3.01 ppbv), and acetaldehyde (5.27 ± 2.24 ppbv) were the most abundant carbonyl species. Two dicarbonyls, glyoxal (0.68 ± 0.26 ppbv) and methylglyoxal (MGLY; 1.10 ± 0.44 ppbv), were also present in relatively high concentrations. An observation-based chemical box model was used to simulate the in situ production of formaldehyde, acetaldehyde, glyoxal, and MGLY and quantify their contributions to ozone formation and ROx budget. All four carbonyls showed similar formation mechanisms but exhibited different precursor distributions. Alkenes (mainly isoprene and ethene) were the dominant precursors of formaldehyde, while both alkenes (e.g., propene, i-butene, and cis-2-pentene) and alkanes (mainly i-pentane) were major precursors of acetaldehyde. For dicarbonyls, both isoprene and aromatic VOCs were the dominant parent hydrocarbons of glyoxal and MGLY. Photolysis of oxygenated VOCs was the dominant source of ROx radicals (approximately >80% for HO2 and approximately >70% for RO2) in Beijing. Ozone production occurred under a mixed-control regime with carbonyls being the key VOC species. Overall, this study provides some new insights into the formation mechanisms of carbonyls, especially their parent hydrocarbon species, and underlines the important role of carbonyls in radical chemistry and ozone pollution in Beijing. Reducing the emissions of alkenes and aromatics would be an effective way to mitigate photochemical pollution in Beijing.

  16. Hazardous airborne carbonyls emissions in industrial workplaces in China.

    PubMed

    Ho, Steven Sai Hang; Ip, Ho Sai Simon; Ho, Kin Fai; Ng, Louisa Pan Ting; Chan, Chi Sing; Dai, Wen Ting; Cao, Jun Ji

    2013-07-01

    A pilot hazardous airborne carbonyls study was carried out in Hong Kong and the Mainland of China. Workplace air samples in 14 factories of various types of manufacturing and industrial operations were collected and analyzed for a panel of 21 carbonyl compounds. The factories can be classified into five general categories, including food processing, electroplating, textile dyeing, chemical manufacturer, and petroleum refinery. Formaldehyde was invariably the most abundant carbonyl compound among all the workplace air samples, accounting for 22.0-44.0% of the total measured amount of carbonyls on a molar basis. Acetone was also found to be an abundant carbonyl in workplace settings; among the selected industrial sectors, chemical manufacturers' workplaces had the highest percentage (an average of 42.6%) of acetone in the total amount of carbonyls measured in air. Benzaldehyde accounted for an average of 20.5% of the total amount of detected carbonyls in electroplating factories, but its contribution was minor in other industrial workplaces. Long-chain aliphatic carbonyls (C6-C10) accounted for a large portion (37.2%) of the total carbonyls in food-processing factories. Glyoxal and methylglyoxal existed at variable levels in the selected workplaces, ranging from 0.2% to 5.5%. The mixing ratio of formaldehyde ranged from 8.6 to 101.2 ppbv in the sampled workplaces. The observed amount of formaldehyde in two paint and wax manufacturers and food-processing factories exceeded the World Health Organization (WHO) air quality guideline of 81.8 ppbv. Carcinogenic risks of chronic exposure to formaldehyde and acetaldehyde by the workers were evaluated. The lifetime cancer hazard risks associated with formaldehyde exposure to male and female workers ranged from 2.01 x 10(-5) to 2.37 x 10(-4) and 2.68 x 10(-5) to 3.16 x 10(-4), respectively. Such elevated risk values suggest that the negative health impact of formaldehyde exposure represents a valid concern, and proper actions

  17. High throughput assay for evaluation of reactive carbonyl scavenging capacity.

    PubMed

    Vidal, N; Cavaille, J P; Graziani, F; Robin, M; Ouari, O; Pietri, S; Stocker, P

    2014-01-01

    Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal.

  18. Triazine-based sequence-defined polymers with side-chain diversity and backbone-backbone interaction motifs

    DOE PAGES

    Grate, Jay W.; Mo, Kai -For; Daily, Michael D.

    2016-02-10

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less

  19. Triazine-based sequence-defined polymers with side-chain diversity and backbone-backbone interaction motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Mo, Kai -For; Daily, Michael D.

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less

  20. Estimating relative carbonyl levels in muscle microstructures by fluorescence imaging

    PubMed Central

    Feng, Juan; Navratil, Marian; Thompson, LaDora V.

    2011-01-01

    The increase in the levels of protein carbonyls, biomarkers of oxidative stress, appears to play an important role in aging skeletal muscle. However, the exact distributions of carbonyls among various skeletal muscle microstructures still remain largely unknown, partly owing to the lack of adequate techniques to carry out these measurements. This report describes an immunohistochemical approach to determine the relative abundance of carbonyls in the intermyofibrillar mitochondria (IFM), the subsarcolemmal mitochondria (SSM), the cytoplasm, and the extracellular space of skeletal muscle. These morphological features were defined by labeling the nucleus, the Z-lines, and mitochondria. Carbonyls were detected by derivatization with dinitrophenylhydrazine followed by labeling with an Alexa 488-labeled anti-dinitrophenyl primary antibody. Alexa 488 fluorescence (green) in different fiber microstructures was used to estimate the relative abundance of carbonyls. On the basis of the samples examined, preliminary results suggest that the most dramatic age-related changes in carbonyl levels occur in the extracellular space, followed in a decreasing order by SSM, IFM, and the cytoplasm. These observations were confirmed in the soleus and semimembranosus muscles composed predominantly of type I and type II fibers, respectively. This approach could easily be extended to the investigation of carbonyl levels in other muscles (composed of mixed skeletal muscle fiber types) or other tissues in which protein carbonyls are present. PMID:18548236

  1. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions.

    PubMed

    Weber, Daniela; Davies, Michael J; Grune, Tilman

    2015-08-01

    Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples. © 2015 Published by Elsevier Ltd.

  2. Pd-Catalyzed Carbonylative Conjugate Addition of Dialkylzinc Reagents to Unsaturated Carbonyls

    PubMed Central

    Custar, Daniel W.; Le, Hai; Morken, James P.

    2010-01-01

    The Pd-catalyzed addition of organozinc reagents to unsaturated carbonyls in the presence of carbon monoxide provides 1,4-diketones in good yield. The reaction was studied with a number of substituted cyclic and acyclic ketones as well as α,β-unsaturated aldehydes. PMID:20687574

  3. PROTEOMIC IDENTIFICATION OF CARBONYLATED PROTEINS AND THEIR OXIDATION SITES

    PubMed Central

    Madian, Ashraf G.; Regnier, Fred E.

    2011-01-01

    Excessive oxidative stress leaves a protein carbonylation fingerprint in biological systems. Carbonylation is an irreversible post translational modification (PTM) that often leads to the loss of protein function and can be a component of multiple diseases. Protein carbonyl groups can be generated directly (by amino acids oxidation and the a-amidation pathway) or indirectly by forming adducts with lipid peroxidation products or glycation and advanced glycation end-products. Studies of oxidative stress are complicated by the low concentration of oxidation products and wide array of routes by which proteins are carbonylated. The development of new selection and enrichment techniques coupled with advances in mass spectrometry are allowing identification of hundreds of new carbonylated protein products from a broad range of proteins located at many sites in biological systems. The focus of this review is on the use of proteomics tools and methods to identify oxidized proteins along with specific sites of oxidative damage and the consequences of protein oxidation. PMID:20521848

  4. POLAR ORGANIC OXYGENATES IN PM2.5 AT A SOUTHEASTERN SITE IN THE UNITED STATES

    EPA Science Inventory

    A field study was undertaken in Research Triangle Park, NC, USA, during the summer of 2000 to identify classes of polar oxygenates in PM2.5 containing carbonyl and/or hydroxyl functional groups and, to the extent possible, determine the individual particle-bound oxygenates that m...

  5. Particulate-Phase Carbonyls: Laboratory and Pacific 2001 Field Measurements

    NASA Astrophysics Data System (ADS)

    Liggio, J.; McLaren, R.

    2002-12-01

    Atmospheric aldehydes and ketones are important constituents of the gas phase. They are emitted from athropogenic and biogenic sources directly, but are also formed as secondary oxidation products of a variety of saturated and unsaturated hydrocarbons. Although their gas phase occurrence and chemistry is well known, the presence of these compounds in the particulate phase is not completely understood. A method has been developed to measure particulate phase carbonyls. Analysis was performed by a simultaneous extraction and derivatization of carbonyls by 2,4-dinitrophenylhydrazine. The subsequent derivatives are pre-concentrated and injected onto an HPLC and detected by UV absorption. Laboratory studies of the extraction kinetics, suggest that partitioning of even highly volatile carbonyls may be possible. Also, experiments performed to determine the extent of positive artifacts on Teflon coated filters, indicate that measurements of these volatile carbonyls are likely not a result of gas-phase adsorption to the filter. These studies also indicate that sampling on quartz fiber filters may introduce significantly more uncertainty with respect to positive artifacts. The analytical method was used to analyze filters sampled during the Pacific 2001 field campaign. Particulate samples were collected on Teflon coated glass-fiber filters. Samples were collected at an urban site (Slocan Park,Vancouver), a rural site (Langley) and an elevated rural mountain site (Eagle Ridge, Sumas). Preliminary results show several carbonyls present in aerosols, at pg/m3 to ng/m3 levels. Detected carbonyls of possible anthropogenic origin include formaldehyde, acetaldehyde, acetone, propanal, glyoxal and methylglyoxal. Detected carbonyls of biogenic origin include pinonaldehyde and nopinone, known oxidation products of the biogenically emitted a-pinene and b-pinene. Possible mechanisms for carbonyl partitioning and implications for their contribution to aerosols in the Lower Fraser Valley

  6. Ozone Effects on Protein Carbonyl Content in the Frontal ...

    EPA Pesticide Factsheets

    Oxidative stress (OS) plays an important role in susceptibility and disease in old age. Understanding age-related susceptibility is a critical part of community-based human health risk assessment of chemical exposures. There is growing concern over a common air pollutant, ozone (03), and adverse health effects including dysfunction of the pulmonary, cardiac, and nervous systems. The objective of this study was to test whether OS plays a role in the adverse effects caused by 03 exposure, and if so, if effects were age-dependent. We selected protein carbonyl as an indicator of OS because carbonyl content of cells is a useful indicator of oxidative protein damage and has been linked to chemical-induced adverse effects. Male Brown Norway rats (4, 12, and 24 months) were exposed to 03 (0,0.25 or 1 ppm) via inhalation for 6 h/day, 2 days per week for 13 weeks. Frontal cortex (FC) and cerebellum (CB) were dissected, quick frozen on dry ice, and stored at -80°C. Protein carbonyls were assayed using commercial kits. Hydrogen peroxide, a positive control, increased protein carbonyls in cortical tissue in vitro in a concentration-dependent manner. Significant effects of age on protein carbonyls in FC and a significant effect of age and 03 dose on protein carbonyls in CB were observed. In control rats, there was an age-dependent increase in protein carbonyls indicating increased OS in 12 and 24 month old rats compared to 4 month old rats. Although 03 increase

  7. 40 CFR 721.10409 - Poly(oxyalkylenediyl), .alpha. - [ [ [methyl - 3 - [ [ [ (polyfluoroalkyl)oxy]carbonyl ] amino...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... - [ [ [methyl - 3 - [ [ [ (polyfluoroalkyl)oxy]carbonyl ] amino] phenyl]amino]carbonyl] - .omega. - methoxy... Specific Chemical Substances § 721.10409 Poly(oxyalkylenediyl), .alpha. - [ [ [methyl - 3 - [ [ [ (polyfluoroalkyl)oxy]carbonyl ] amino] phenyl]amino]carbonyl] - .omega. - methoxy - (generic). (a) Chemical...

  8. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    PubMed Central

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-01-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N∙ (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C∙, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C∙, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals. PMID:26960916

  9. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    NASA Astrophysics Data System (ADS)

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N• (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C•, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C•, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.

  10. Metal-Diazo Radicals of α-Carbonyl Diazomethanes.

    PubMed

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-10

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [Rh(I)Cl(cod)]2, [Co(II)(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [Rh(I)Cl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N∙ (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C∙, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C∙, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.

  11. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C, 15N-labeled peptides and proteins

    NASA Astrophysics Data System (ADS)

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly 13C, 15N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22 kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600 MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i - 2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed.

  12. Protein-Backbone Thermodynamics across the Membrane Interface.

    PubMed

    Bereau, Tristan; Kremer, Kurt

    2016-07-07

    The thermodynamics of insertion of a protein in a membrane depends on the fine interplay between backbone and side-chain contributions interacting with the lipid environment. Using computer simulations, we probe how different descriptions of the backbone glycyl unit affect the thermodynamics of insertion of individual residues, dipeptides, and entire transmembrane helices. Due to the lack of reference data, we first introduce an efficient methodology to estimate atomistic potential of mean force (PMF) curves from a series of representative and uncorrelated coarse-grained (CG) snapshots. We find strong discrepancies between two CG models, Martini and PLUM, against reference atomistic PMFs and experiments. Atomistic simulations suggest a weak free energy of insertion between water and a POPC membrane for the glycyl unit, in overall agreement with experimental results despite severe assumptions in our calculations. We show that refining the backbone contribution in PLUM significantly improves the PMF of insertion of the WALP16 transmembrane peptide. An improper balance between the glycyl backbone and the attached side chain will lead to energetic artifacts, rationalizing Martini's overstabilization of WALP's adsorbed interfacial state. It illustrates difficulties associated with free-energy-based parametrizations of single-residue models, as the relevant free energy of partitioning used for force-field parametrization does not arise from the entire residue but rather the solvent-accessible chemical groups.

  13. Conduction properties of KcsA measured using brownian dynamics with flexible carbonyl groups in the selectivity filter.

    PubMed

    Chung, Shin-Ho; Corry, Ben

    2007-07-01

    In the narrow segment of an ion conducting pathway, it is likely that a permeating ion influences the positions of the nearby atoms that carry partial or full electronic charges. Here we introduce a method of incorporating the motion of charged atoms lining the pore into Brownian dynamics simulations of ion conduction. The movements of the carbonyl groups in the selectivity filter of the KcsA channel are calculated explicitly, allowing their bond lengths, bond angles, and dihedral angels to change in response to the forces acting upon them. By systematically changing the coefficients of bond stretching and of angle bending, the carbon and oxygen atoms can be made to fluctuate from their fixed positions by varying mean distances. We show that incorporating carbonyl motion in this way does not alter the mechanism of ion conduction and only has a small influence on the computed current. The slope conductance of the channel increases by approximately 25% when the root mean-square fluctuations of the carbonyl groups are increased from 0.01 to 0.61 A. The energy profiles and the number of resident ions in the channel remain unchanged. The method we utilized here can be extended to allow the movement of glutamate or aspartate side chains lining the selectivity filters of other ionic channels.

  14. A step-by-step protocol for assaying protein carbonylation in biological samples.

    PubMed

    Colombo, Graziano; Clerici, Marco; Garavaglia, Maria Elisa; Giustarini, Daniela; Rossi, Ranieri; Milzani, Aldo; Dalle-Donne, Isabella

    2016-04-15

    Protein carbonylation represents the most frequent and usually irreversible oxidative modification affecting proteins. This modification is chemically stable and this feature is particularly important for storage and detection of carbonylated proteins. Many biochemical and analytical methods have been developed during the last thirty years to assay protein carbonylation. The most successful method consists on protein carbonyl (PCO) derivatization with 2,4-dinitrophenylhydrazine (DNPH) and consequent spectrophotometric assay. This assay allows a global quantification of PCO content due to the ability of DNPH to react with carbonyl giving rise to an adduct able to absorb at 366 nm. Similar approaches were also developed employing chromatographic separation, in particular HPLC, and parallel detection of absorbing adducts. Subsequently, immunological techniques, such as Western immunoblot or ELISA, have been developed leading to an increase of sensitivity in protein carbonylation detection. Currently, they are widely employed to evaluate change in total protein carbonylation and eventually to highlight the specific proteins undergoing selective oxidation. In the last decade, many mass spectrometry (MS) approaches have been developed for the identification of the carbonylated proteins and the relative amino acid residues modified to carbonyl derivatives. Although these MS methods are much more focused and detailed due to their ability to identify the amino acid residues undergoing carbonylation, they still require too expensive equipments and, therefore, are limited in distribution. In this protocol paper, we summarise and comment on the most diffuse protocols that a standard laboratory can employ to assess protein carbonylation; in particular, we describe step-by-step the different protocols, adding suggestions coming from our on-bench experience. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review

    PubMed Central

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang

    2013-01-01

    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  16. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    PubMed

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.

  17. Rh(I) -Catalyzed Intramolecular Carbonylative C-H/C-I Coupling of 2-Iodobiphenyls Using Furfural as a Carbonyl Source.

    PubMed

    Furusawa, Takuma; Morimoto, Tsumoru; Nishiyama, Yasuhiro; Tanimoto, Hiroki; Kakiuchi, Kiyomi

    2016-08-19

    Synthesis of fluoren-9-ones by a Rh-catalyzed intramolecular C-H/C-I carbonylative coupling of 2-iodobiphenyls using furfural as a carbonyl source is presented. The findings indicate that the rate-determining step is not a C-H bond cleavage but, rather, the oxidative addition of the C-I bond to a Rh(I) center. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Role of oxygen functional groups for structure and dynamics of interfacial water on low rank coal surface: a molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    You, Xiaofang; Wei, Hengbin; Zhu, Xianchang; Lyu, Xianjun; Li, Lin

    2018-07-01

    Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with -386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.

  19. Determination of Carbonyl Functional Groups in Bio-oils by Potentiometric Titration: The Faix Method.

    PubMed

    Black, Stuart; Ferrell, Jack R

    2017-02-07

    Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. Specifically, carbonyls cause an increase in viscosity (often referred to as 'aging') during storage of bio-oils. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Additionally, carbonyls are also responsible for coke formation in bio-oil upgrading processes. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here, we present a modification of the traditional carbonyl oximation procedures that results in less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. While traditional carbonyl oximation methods occur at room temperature, the Faix method presented here occurs at an elevated temperature of 80 °C.

  20. Determination of Carbonyl Functional Groups in Bio-oils by Potentiometric Titration: The Faix Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Stuart; Ferrell, Jack R.

    We know that carbonyl compounds, present in bio-oils, are responsible for bio-oil property changes upon storage and during upgrading. Specifically, carbonyls cause an increase in viscosity (often referred to as 'aging') during storage of bio-oils. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. In addition, carbonyls are also responsible for coke formation in bio-oil upgrading processes. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation havemore » long been used for the determination of carbonyl content in pyrolysis bio-oils. Here, we present a modification of the traditional carbonyl oximation procedures that results in less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. And while traditional carbonyl oximation methods occur at room temperature, the Faix method presented here occurs at an elevated temperature of 80 degrees C.« less

  1. Determination of Carbonyl Functional Groups in Bio-oils by Potentiometric Titration: The Faix Method

    DOE PAGES

    Black, Stuart; Ferrell, Jack R.

    2017-02-07

    We know that carbonyl compounds, present in bio-oils, are responsible for bio-oil property changes upon storage and during upgrading. Specifically, carbonyls cause an increase in viscosity (often referred to as 'aging') during storage of bio-oils. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. In addition, carbonyls are also responsible for coke formation in bio-oil upgrading processes. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation havemore » long been used for the determination of carbonyl content in pyrolysis bio-oils. Here, we present a modification of the traditional carbonyl oximation procedures that results in less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. And while traditional carbonyl oximation methods occur at room temperature, the Faix method presented here occurs at an elevated temperature of 80 degrees C.« less

  2. A method of detecting carbonyl compounds in tree leaves in China.

    PubMed

    Huang, Juan; Feng, Yanli; Fu, Jiamo; Sheng, Guoying

    2010-06-01

    Carbonyl compounds have been paid more and more attention because some carbonyl species have been proven to be carcinogenic or a risk for human health. Plant leaves are both an important emission source and an important sink of carbonyl compounds. But the research on carbonyl compounds from plant leaves is very scarce. In order to make an approach to the emission mechanism of plant leaves, a new method was established to extract carbonyl compounds from fresh plant leaves. The procedure combining derivatization with ultrasonication was developed for the fast extraction of carbonyl compounds from tree leaves. Fresh leaves (< 0.01 g) were minced and ultrasonicated in acidic 2,4-dinitrophenylhydrazine (DNPH)-acetonitrile solution for 30 min and then holding 30 min to allow aldehydes and ketones in leaves to react completely with DNPH. The extraction process was performed under room temperature and only took 60 min. The advantages of this method were very little sample preparation, requiring short treatment time and usual equipment. Four greening trees, i.e., camphor tree (Cinnamomum camphora), sweet olive (Osmanthus fragrans), cedar (Cedrus deodara), and dawn redwood (Metasequoia glyptostroboides), were selected and extracted by this method. Seven carbonyl compounds, including formaldehyde, acetaldehyde, acetone, acrolein, p-tolualdehyde, m/o-tolualdehyde, and hexaldehyde were determined and quantified. The most common carbonyl species of the four tree leaves were formaldehyde, acrolein, and m/o-tolualdehyde. They accounted for 67.3% in cedar, 50.8% in sweet olive, 45.8% in dawn redwood, and 44.6% in camphor tree, respectively. Camphor tree had the highest leaf level of m/o-tolualdehyde with 15.0 +/- 3.4 microg g(-1)(fresh leaf weight), which indicated that camphor tree may be a bioindicator of the level of tolualdehyde or xylene in the atmosphere. By analyzing carbonyl compounds from different tree leaves, it is not only helpful for further studying the relationship

  3. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    DOEpatents

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  4. Carbonyl-Phenol Adducts: An Alternative Sink for Reactive and Potentially Toxic Lipid Oxidation Products.

    PubMed

    Zamora, Rosario; Hidalgo, Francisco J

    2018-02-14

    Different from the well-characterized function of phenolics as antioxidants, their function as lipid-derived carbonyl scavengers is mostly unknown. However, phenolics react with lipid-derived carbonyls as a function of the nucleophilicity of their reactive groups and the electronic effects and steric hindrances present in the reactive carbonyls. Furthermore, the reaction produces a wide variety of carbonyl-phenol adducts, some of which are stable and have been isolated and characterized but others polymerize spontaneously. This perspective updates present knowledge about the lipid-derived carbonyl trapping ability of phenolics, its competition with carbonyl-amine reactions produced in foods, and the presence of carbonyl-phenol adducts in food products.

  5. Interresidue carbonyl-carbonyl polarization transfer experiments in uniformly 13C,15N-labeled peptides and proteins.

    PubMed

    Janik, Rafal; Ritz, Emily; Gravelle, Andrew; Shi, Lichi; Peng, Xiaohu; Ladizhansky, Vladimir

    2010-03-01

    In this work, we demonstrate that Homonuclear Rotary Resonance Recoupling (HORROR) can be used to reintroduce carbonyl-carbonyl interresidue dipolar interactions and to achieve efficient polarization transfer between carbonyl atoms in uniformly (13)C,(15)N-labeled peptides and proteins. We show that the HORROR condition is anisotropically broadened and overall shifted to higher radio frequency intensities because of the CSA effects. These effects are analyzed theoretically using Average Hamiltonian Theory. At spinning frequencies used in this study, 22kHz, this broadening is experimentally found to be on the order of a kilohertz at a proton field of 600MHz. To match HORROR condition over all powder orientations, variable amplitude radio frequency (RF) fields are required, and efficient direct transfers on the order of 20-30% can be straightforwardly established. Two- and three-dimensional chemical shift correlation experiments establishing long-range interresidue connectivities (e.g., (N[i]-CO[i-2])) are demonstrated on the model peptide N-acetyl-valine-leucine, and on the third immunoglobulin binding domain of protein G. Possible future developments are discussed. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  6. 40 CFR 721.10409 - Poly(oxyalkylenediyl), .alpha.-[[[methyl-3-[[[(polyfluoroalkyl)oxy]carbonyl] amino]phenyl]amino...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....-[[[methyl-3-[[[(polyfluoroalkyl)oxy]carbonyl] amino]phenyl]amino]carbonyl]- .omega.-methoxy-(generic). 721....-[[[methyl-3-[[[(polyfluoroalkyl) oxy]carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (PMN P-11-217... Substances § 721.10409 Poly(oxyalkylenediyl), .alpha.-[[[methyl-3-[[[(polyfluoroalkyl)oxy]carbonyl] amino...

  7. 40 CFR 721.10409 - Poly(oxyalkylenediyl), .alpha.-[[[methyl-3-[[[(polyfluoroalkyl) oxy]carbonyl]amino]phenyl]amino...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....-[[[methyl-3-[[[(polyfluoroalkyl) oxy]carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (generic). 721....-[[[methyl-3-[[[(polyfluoroalkyl) oxy]carbonyl]amino]phenyl]amino] carbonyl]-.omega.-methoxy- (PMN P-11-217... Substances § 721.10409 Poly(oxyalkylenediyl), .alpha.-[[[methyl-3-[[[(polyfluoroalkyl) oxy]carbonyl]amino...

  8. Millimeter wave spectra of carbonyl cyanide ⋆

    PubMed Central

    Bteich, S.B.; Tercero, B.; Cernicharo, J.; Motiyenko, R.A.; Margulès, L.; Guillemin, J.-C.

    2016-01-01

    Context More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson’s A- and S-reduction Hamiltonians. Results The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. PMID:27738349

  9. Method for the Determination of Carbonyl Compounds in E-Cigarette Aerosols

    PubMed Central

    Flora, Jason W.; Wilkinson, Celeste T.; Wilkinson, James W.; Lipowicz, Peter J.; Skapars, James A.; Anderson, Adam; Miller, John H.

    2017-01-01

    Low levels of thermal degradation products such as carbonyls (formaldehyde, acetaldehyde, acrolein, crotonaldehyde) have been reported in e-cigarette aerosols. The collection and analysis of e-cigarette aerosol carbonyls are often adapted from methods developed for tobacco cigarette smoke. These methodologies are often not sensitive enough to detect low carbonyl levels in e-cigarette aerosols. One objective of this work was to develop and validate a rapid, selective and sensitive ultra-performance liquid chromatography with mass spectrometry method optimized for analysis of carbonyls in e-cigarette aerosols. Aerosols were trapped in 20-puff collections, 4-s durations, 55-mL volumes, 30-s intervals, square wave puff profiles. Collection apparatus involved a linear smoking machine with Cambridge filter pad followed by a glass impinger containing acidified 2,4-dinitrophenylhydrazine. This method showed limits of quantitation and detection of 0.016 and 0.003 µg puff−1, respectively, and run time of 4 min. Six e-cigarettes were evaluated (five devices each). All contained measurable levels of carbonyls. Levels were mostly well below those in conventional cigarettes. However, for some e-cigarettes, formaldehyde levels were above those for tobacco cigarettes (highest at 14.1 µg puff−1). Temperatures related to carbonyl yields in e-cigarette aerosols were explored to better understand carbonyl formation: formation of formaldehyde is low at temperatures below 350°C. PMID:28087758

  10. Determination of backbone chain direction of PDA using FFM

    NASA Astrophysics Data System (ADS)

    Jo, Sadaharu; Okamoto, Kentaro; Takenaga, Mitsuru

    2010-01-01

    The effect of backbone chains on friction force was investigated on both Langmuir-Blodgett (LB) films of 10,12-heptacosadiynoic acid and the (0 1 0) surfaces of single crystals of 2,4-hexadiene-1,6-diol using friction force microscopy (FFM). It was observed that friction force decreased when the scanning direction was parallel to the [0 0 1] direction in both samples. Moreover, friction force decreased when the scanning direction was parallel to the crystallographic [1 0 2], [1 0 1], [1 0 0] and [1 0 1¯] directions in only the single crystals. For the LB films, the [0 0 1] direction corresponds to the backbone chain direction of 10,12-heptacosadiynoic acid. For the single crystals, both the [0 0 1] and [1 0 1] directions correspond to the backbone chain direction, and the [1 0 2], [1 0 0] and [1 0 1¯] directions correspond to the low-index crystallographic direction. In both the LB films and single crystals, the friction force was minimized when the directions of scanning and the backbone chain were parallel.

  11. Ethanol and other oxygenateds from low grade carbonaceous resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joo, O.S.; Jung, K.D.; Han, S.H.

    1995-12-31

    Anhydrous ethanol and other oxygenates of C2 up can be produced quite competitively from low grade carbonaceous resources in high yield via gasification, methanol synthesis, carbonylation of methanol an hydrogenation consecutively. Gas phase carbonylation of methanol to form methyl acetate is the key step for the whole process. Methyl acetate can be produced very selectively in one step gas phase reaction on a fixed bed column reactor with GHSV over 5,000. The consecutive hydrogenation of methyl or ethyl acetate produce anhydrous ethanol in high purity. It is also attempted to co-produce methanol and DME in IGCC, in which low grademore » carbonaceous resources are used as energy sources, and the surplus power and pre-power gas can be stored in liquid form of methanol and DME during base load time. Further integration of C2 up oxygenate production with IGCC can improve its economics. The attempt of above extensive technology integration can generate significant industrial profitability as well as reduce the environmental complication related with massive energy consumption.« less

  12. Conduction Properties of KcsA Measured Using Brownian Dynamics with Flexible Carbonyl Groups in the Selectivity Filter

    PubMed Central

    Chung, Shin-Ho; Corry, Ben

    2007-01-01

    In the narrow segment of an ion conducting pathway, it is likely that a permeating ion influences the positions of the nearby atoms that carry partial or full electronic charges. Here we introduce a method of incorporating the motion of charged atoms lining the pore into Brownian dynamics simulations of ion conduction. The movements of the carbonyl groups in the selectivity filter of the KcsA channel are calculated explicitly, allowing their bond lengths, bond angles, and dihedral angels to change in response to the forces acting upon them. By systematically changing the coefficients of bond stretching and of angle bending, the carbon and oxygen atoms can be made to fluctuate from their fixed positions by varying mean distances. We show that incorporating carbonyl motion in this way does not alter the mechanism of ion conduction and only has a small influence on the computed current. The slope conductance of the channel increases by ∼25% when the root mean-square fluctuations of the carbonyl groups are increased from 0.01 to 0.61 Å. The energy profiles and the number of resident ions in the channel remain unchanged. The method we utilized here can be extended to allow the movement of glutamate or aspartate side chains lining the selectivity filters of other ionic channels. PMID:17434934

  13. Spatiotemporal distribution of carbonyl compounds in China.

    PubMed

    Ho, K F; Ho, Steven Sai Hang; Huang, R-J; Dai, W T; Cao, J J; Tian, Linwei; Deng, W J

    2015-02-01

    A sampling campaign was carried out at nine Chinese cities in 2010/2011. Fifteen monocarbonyls (C# = 1-9) were quantified. Temperature is the rate-determining factor of the summertime carbonyl levels. The carbonyl emissions in winter are mainly driven by the primary anthropogenic sources like automobile. A molar ratio of propionaldehyde to nonaldehyde is a barometer of the impact of atmospheric vegetation emission which suggesting that strong vegetation emissions exist in summer and high propionaldehyde abundance is caused by fossil fuel combustion in winter. Potential health risk assessment of formaldehyde and acetaldehyde was conducted and the highest cumulative risks were observed at Chengdu in summer and Wuhan in winter. Because of the strong photochemical reaction and large amount of anthropogenic emissions, high concentrations of carbonyl compounds were observed in Chengdu. The use of ethanol-blended gasoline in Wuhan is the key reason of acetaldehyde emission and action should be taken to avoid potential health risks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    NASA Astrophysics Data System (ADS)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  15. Carbonyl compounds generated from electronic cigarettes.

    PubMed

    Bekki, Kanae; Uchiyama, Shigehisa; Ohta, Kazushi; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2014-10-28

    Electronic cigarettes (e-cigarettes) are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols) when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.

  16. Carbonylated plasma proteins as potential biomarkers of obesity induced type 2 diabetes mellitus.

    PubMed

    Bollineni, Ravi Chand; Fedorova, Maria; Blüher, Matthias; Hoffmann, Ralf

    2014-11-07

    Protein carbonylation is a common nonenzymatic oxidative post-translational modification, which is often considered as biomarker of oxidative stress. Recent evidence links protein carbonylation also to obesity and type 2 diabetes mellitus (T2DM), though the protein targets of carbonylation in human plasma have not been identified. In this study, we profiled carbonylated proteins in plasma samples obtained from lean individuals and obese patients with or without T2DM. The plasma samples were digested with trypsin, carbonyl groups were derivatized with O-(biotinylcarbazoylmethyl)hydroxylamine, enriched by avidin affinity chromatography, and analyzed by RPC-MS/MS. Signals of potentially modified peptides were targeted in a second LC-MS/MS analysis to retrieve the peptide sequence and the modified residues. A total of 158 unique carbonylated proteins were identified, of which 52 were detected in plasma samples of all three groups. Interestingly, 36 carbonylated proteins were detected only in obese patients with T2DM, whereas 18 were detected in both nondiabetic groups. The carbonylated proteins originated mostly from liver, plasma, platelet, and endothelium. Functionally, they were mainly involved in cell adhesion, signaling, angiogenesis, and cytoskeletal remodeling. Among the identified carbonylated proteins were several candidates, such as VEGFR-2, MMP-1, argin, MKK4, and compliment C5, already connected before to diabetes, obesity and metabolic diseases.

  17. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  18. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  19. Measurements of carbonyls in a 13-story building.

    PubMed

    Báez, Armando P; Padilla, Hugo G; García, Rocío M; Belmont, Raúl D; Torres, Maria del Carmen B

    2004-01-01

    Formaldehyde and acetaldehyde are emitted by many mobile and stationary sources and secondary aldehydes are intermediates in the photo-oxidation of organic compounds in the atmosphere. These aldehydes are emitted indoors by many materials such as furniture, carpets, heating and cooling systems, an by smoking. Carbonyls, mainly formaldehyde and acetaldehyde, have been studied because of their adverse health effects. In addition, formaldehyde is a suspected carcinogen. Therefore, the concentrations of formaldehyde and acetaldehyde were determined to assess the inhalation exposure doses to carbonyls for people who work in a 13-story building and in order to evaluate the cancer hazard. Carbonyl compounds in indoor and outdoor air were measured at a 13-story building located in Mexico City. The mezzanine, fifth and tenth floors, and the third level-parking garage were selected for sampling. Samples were collected in two sampling periods, the first from April 20 to 29, 1998 and the second from December 1 to 20, 1998. Carbonyls were sampled by means of DNHP-coated cartridges at a flow rate of 1 l min(-1) from 9:00 to 19:00 hours, during 2-hour time intervals and analyzed by HPLC with hours, during 2-hour time intervals and analyzed by HPLC with UV/VIS detection. Mean carbonyl concentrations were highest in the 3rd level-parking garage, with the formaldehyde concentration being the highest ranging from 108 to 418 microg m(-3). In working areas, the highest carbonyl arithmetic mean concentrations (AM) were observed on the 5th floor. Acetone and formaldehyde concentrations were highest in April ranging from 161 to 348 microg m(-3) (AM = 226) and from 157 to 270 microg m(-3) (AM = 221), respectively. Propionaldehyde and butyraldehyde were present in smaller concentrations ranging from 2 to 25 and 1 to 28 microg m(-3), respectively, considering all the samples. Mean indoor/outdoor ratios of carbonyls ranged from 1.8 to 9.6. A reduction of inhalation exposure doses of 41% and

  20. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor.

    PubMed

    Zhang, Maolin; An, Taicheng; Fu, Jiamo; Sheng, Guoying; Wang, Xinming; Hu, Xiaohong; Ding, Xuejun

    2006-06-01

    An adsorptive silica-supported titania photocatalyst TiO(2)/SiO(2) was prepared by using nanosized titania (anatase) immobilized on silica gel by the sol-gel technique with the titanium tetra isopropoxide as the main raw material and acetic acid as the acid catalyst. Meanwhile the structure and properties of the TiO(2)/SiO(2) photocatalyst were studied by means of many modern analysis techniques such as TEM, XRD, and BET. Gas-solid heterogeneous photocatalytic decomposition of four carbonyl compounds mixture at low concentration levels over ultraviolet irradiated TiO(2)/SiO(2) photocatalyst were carried out with high degradation efficiencies in a coaxial triple-cylinder-type fluidized bed photocatalytic reactor, which provided efficient continuous contact of ultraviolet photons, silica-supported titania photocatalyst, and gaseous reactants. Experimental results showed that the photocatalyst had a high adsorption performance and a good photocatalytic activity for four carbonyl compounds mixture. Some factors influencing the photocatalytic decomposition of the mixed carbonyl compounds, i.e. the gas flowrate, relative humidity, concentration of oxygen, and illumination time, were discussed in detail. It is found that the photocatalytic reaction rate of four carbonyl compounds decreased in this order: propionaldehyde, acetone, acetaldehyde and formaldehyde.

  1. The carbonyl oxide-aldehyde complex: a new intermediate of the ozonolysis reaction

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter; Kraka, Elfi; McKee, M. L.; Radharkrishnan, T. P.

    1991-12-01

    MP4(SDQ)/6-31G (d,p) calculations suggest that the ozonolysis of alkenes in solution phase does not proceed via carbonyl oxide, but via a dipole complex between aldehyde and carbonyl oxide, which is 9 kcal/mol more stable than the separated molecules. The dipole complex is probably formed in the solvent cage upon decomposition of primary ozonide to aldehyde and carbonyl oxide. Rotation of either aldehyde or carbonyl oxide in the solvent cage leads to an antiparallel alignment of molecular dipole moments and dipole-dipole attraction.

  2. The use of charcoal in modified cigarette filters for mainstream smoke carbonyl reduction

    PubMed Central

    Holman, Matthew R.; Ding, Yan S.; Yan, Xizheng; Chan, Michele; Chafin, Dana; Perez, Jose; Mendez, Magaly I.; Cardenas, Roberto Bravo; Watson, Clifford

    2017-01-01

    Carbonyls are harmful and potentially harmful constituents (HPHCs) in mainstream cigarette smoke (MSS). Carbonyls, including formaldehyde and acrolein, are carcinogenic or mutagenic in a dose-dependent manner. Past studies demonstrate significant reduction of HPHCs by charcoal filtration. However, limits of charcoal filtration and cigarette design have not yet been investigated in a systematic manner. Objective data is needed concerning the feasibility of HPHC reduction in combustible filtered cigarettes. This systematic study evaluates the effect of charcoal filtration on carbonyl reduction in MSS. We modified filters of ten popular cigarette products with predetermined quantities (100–400 mg) of charcoal in a plug-space-plug configuration. MSS carbonyls, as well as total particulate matter, tar, nicotine, carbon monoxide (TNCO), and draw resistance were quantified. Significant carbonyl reductions were observed across all cigarette products as charcoal loading increased. At the highest charcoal loadings, carbonyls were reduced by nearly 99%. Tar and nicotine decreased modestly (<20%) compared to reductions in carbonyls. Increased draw resistance was significant at only the highest charcoal loadings. This work addresses information gaps in the science base that can inform the evaluation of charcoal filtration as an available technological adaptation to cigarette design which reduces levels of carbonyls in MSS. PMID:28238852

  3. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.

    PubMed

    Martin, Hans-Jörg; Ziemba, Marta; Kisiela, Michael; Botella, José A; Schneuwly, Stephan; Maser, Edmund

    2011-05-30

    Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Solution, solid phase and computational structures of apicidin and its backbone-reduced analogs.

    PubMed

    Kranz, Michael; Murray, Peter John; Taylor, Stephen; Upton, Richard J; Clegg, William; Elsegood, Mark R J

    2006-06-01

    The recently isolated broad-spectrum antiparasitic apicidin (1) is one of the few naturally occurring cyclic tetrapeptides (CTP). Depending on the solvent, the backbone of 1 exhibits two gamma-turns (in CH(2)Cl(2)) or a beta-turn (in DMSO), differing solely in the rotation of the plane of one of the amide bonds. In the X-ray crystal structure, the peptidic C==Os and NHs are on opposite sides of the backbone plane, giving rise to infinite stacks of cyclotetrapeptides connected by three intermolecular hydrogen bonds between the backbones. Conformational searches (Amber force field) on a truncated model system of 1 confirm all three backbone conformations to be low-energy states. The previously synthesized analogs of 1 containing a reduced amide bond exhibit the same backbone conformation as 1 in DMSO, which is confirmed further by the X-ray crystal structure of a model system of the desoxy analogs of 1. This similarity helps in explaining why the desoxy analogs retain some of the antiprotozoal activities of apicidin. The backbone-reduction approach designed to facilitate the cyclization step of the acyclic precursors of the CTPs seems to retain the conformational preferences of the parent peptide backbone.

  5. Propheromones that release pheromonal carbonyl compounds in light.

    PubMed

    Liu, X; Macaulay, E D; Pickett, J A

    1984-05-01

    Pheromonal carbonyl compounds; (Z)-11-hexadecanal, (E)-citral, and 2-heptanone were treated with six alcohols to give acetals or ketals, some of which acted as propheromones by releasing the pheromonal carbonyl compounds in ultraviolet or simulated sunlight. Highest yields of pheromone were obtained from adducts prepared witho-nitrobenzyl alcohol ando-nitrophenylethane-1,2-diol. Adducts from (Z)-11-hexadecenal and these two alcohols were employed in lures to catch diamondback moths,Plutella xylostella (L.).

  6. 2,4-dinitrophenylhydrazine carbonyl assay in metal-catalysed protein glycoxidation.

    PubMed

    Stefek, M; Trnkova, Z; Krizanova, L

    1999-01-01

    Using an experimental in vitro glycation model, long-term incubations of bovine serum albumin with glucose (fructose) resulted in a significant increase in protein content of 2,4-dinitrophenylhydrazine (DNPH)-reactive carbonyl groups, which could be strongly inhibited by anaerobiosis and metal chelation. The pattern of yields of the protein-bound DNPH was not in accordance with that of the sugar-derived carbonyls determined as the ketoamine Amadori product. In spite of the fact that the contribution of the final advanced glycation end-products to the total DNPH-reactivity of glycation-altered protein remains unclear, the present results stress the need of oxidative steps in formation of most of the DNPH-reactive carbonyl compounds generated by glycation. The results provide evidence that, in protein glycoxidation, the DNPH assay is selective enough to discriminate between protein-bound carbonyls produced by metal-catalysed oxidations and those formed in the early glycation steps.

  7. Semi-automated image analysis: detecting carbonylation in subcellular regions of skeletal muscle

    PubMed Central

    Kostal, Vratislav; Levar, Kiara; Swift, Mark; Skillrud, Erik; Chapman, Mark; Thompson, LaDora V.

    2011-01-01

    The level of carbonylation in skeletal muscle is a marker of oxidative damage associated with disease and aging. While immunofluorescence microscopy is an elegant method to identify carbonylation sites in muscle cross-sections, imaging analysis is manual, tedious, and time consuming, especially when the goal is to characterize carbonyl contents in subcellular regions. In this paper, we present a semi-automated method for the analysis of carbonylation in subcellular regions of skeletal muscle cross-sections visualized with dual fluorescent immunohistochemistry. Carbonyls were visualized by their reaction with 2,4-dinitrophenylhydrazine (DNPH) followed by immunolabeling with an Alexa488-tagged anti-DNP antibody. Mitochondria were probed with an anti-COXI primary antibody followed by the labeling with an Alexa568-tagged secondary antibody. After imaging, muscle fibers were individually analyzed using a custom-designed, lab-written, computer-aided procedure to measure carbonylation levels in subsarcolemmal and interfibrillar mitochondrial regions, and in the cytoplasmic and extracellular regions. Using this procedure, we were able to decrease the time necessary for the analysis of a single muscle fiber from 45 min to about 1 min. The procedure was tested by four independent analysts and found to be independent on inter-person and intra-person variations. This procedure will help increase highly needed throughput in muscle studies related to ageing, disease, physical performance, and inactivity that use carbonyl levels as markers of oxidative damage. PMID:21327623

  8. ExScal Backbone Network Architecture

    DTIC Science & Technology

    2005-01-01

    802.11 battery powered nodes was laid over the sensor network. We adopted the Stargate platform for the backbone tier to serve as the basis for...its head. XSS Hardware and Network: XSS stands for eXtreme Scaling Stargate . A stargate is a linux-based single board computer. It has a 400 MHz

  9. Synthesis and investigation of Pd(I) carbonyl complexes with heteroorganic ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberov, A.A.; Polovnyak, V.K.; Akhmetov, N.S.

    1987-09-10

    Pd(I) carbonyl complexes are attracting attention because they have been shown to have catalytic properties in a series of organic syntheses. The stability and catalytic properties of these compounds are determined by the nature of the phosphine ligand and the bridge coordination of the carbonylgroup. Through the partial replacement of carbonyl and acido ligands by heteroorganic ligands in carbonyl halogenide and carbonyl acetate Pd(I) complexes, new stable Pd(I) complexes were obtained: (PdLX)/sub 2/CO, where L = PPh/sub 3/, X = OAc; L = AsPh/sub 3/, X = Cl, Br, OAc; L = SbPh/sub 3/, X = Cl Br, OAc; Lmore » = Ph/sub 2/PCH/sub 2/PPh/sub 2/, Ph/sub 2/AsCH/sub 2/AsPh/sub 2/, X = OAc. Atoms of the heteroorganic and acido ligands are equivalently coordinated to the palladium atoms. The carbonyl group in the complexes has bridge coordination to palladium atoms in the Pd(CO)Pd fragment; in complexes with bidentate heteroorganic ligands the covalent bond between palladium atoms is absent.« less

  10. Underestimated Halogen Bonds Forming with Protein Backbone in Protein Data Bank.

    PubMed

    Zhang, Qian; Xu, Zhijian; Shi, Jiye; Zhu, Weiliang

    2017-07-24

    Halogen bonds (XBs) are attracting increasing attention in biological systems. Protein Data Bank (PDB) archives experimentally determined XBs in biological macromolecules. However, no software for structure refinement in X-ray crystallography takes into account XBs, which might result in the weakening or even vanishing of experimentally determined XBs in PDB. In our previous study, we showed that side-chain XBs forming with protein side chains are underestimated in PDB on the basis of the phenomenon that the proportion of side-chain XBs to overall XBs decreases as structural resolution becomes lower and lower. However, whether the dominant backbone XBs forming with protein backbone are overlooked is still a mystery. Here, with the help of the ratio (R F ) of the observed XBs' frequency of occurrence to their frequency expected at random, we demonstrated that backbone XBs are largely overlooked in PDB, too. Furthermore, three cases were discovered possessing backbone XBs in high resolution structures while losing the XBs in low resolution structures. In the last two cases, even at 1.80 Å resolution, the backbone XBs were lost, manifesting the urgent need to consider XBs in the refinement process during X-ray crystallography study.

  11. Active control of methanol carbonylation selectivity over Au/carbon anode by electrochemical potential.

    PubMed

    Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi

    2005-05-12

    Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (<+1.2 V (Ag/AgCl)). On the other hand, Au(3+) is the active spices for the selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).

  12. LETTER TO THE EDITOR: Backbones of traffic jams

    NASA Astrophysics Data System (ADS)

    Shikhar Gupta, Himadri; Ramaswamy, Ramakrishna

    1996-11-01

    We study the jam phase of the deterministic traffic model in two dimensions. Within the jam phase, there is a phase transition, from a self-organized jam (formed by initial synchronization followed by jamming), to a random-jam structure. The backbone of the jam is defined and used to analyse self-organization in the jam. The fractal dimension and interparticle correlations on the backbone indicate a continous phase transition at density 0305-4470/29/21/003/img1 with critical exponent 0305-4470/29/21/003/img2, which are characterized through simulations.

  13. The Graphical Representation of the Digital Astronaut Physiology Backbone

    NASA Technical Reports Server (NTRS)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  14. Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air

    NASA Astrophysics Data System (ADS)

    Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.

  15. Singlet molecular oxygen generated by biological hydroperoxides.

    PubMed

    Miyamoto, Sayuri; Martinez, Glaucia R; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-10-05

    The chemistry behind the phenomenon of ultra-weak photon emission has been subject of considerable interest for decades. Great progress has been made on the understanding of the chemical generation of electronically excited states that are involved in these processes. Proposed mechanisms implicated the production of excited carbonyl species and singlet molecular oxygen in the mechanism of generation of chemiluminescence in biological system. In particular, attention has been focused on the potential generation of singlet molecular oxygen in the recombination reaction of peroxyl radicals by the Russell mechanism. In the last ten years, our group has demonstrated the generation of singlet molecular oxygen from reactions involving the decomposition of biologically relevant hydroperoxides, especially from lipid hydroperoxides in the presence of metal ions, peroxynitrite, HOCl and cytochrome c. In this review we will discuss details on the chemical aspects related to the mechanism of singlet molecular oxygen generation from different biological hydroperoxides. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Cooperative UAV-Based Communications Backbone for Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs aremore » used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.« less

  17. A first principles analysis of the hydrogenation of C1C4 aldehydes and ketones over Ru(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Nishant K.; Neurock, Matthew

    The structure and degree of substitution of C₁–C₄ oxygenate molecules can influence their chemisorption and reactivity on metal surfaces. Gradient-corrected periodic density functional theory calculations were carried out to analyze alkyl substituent effects on the hydrogenation of C₁–C₄ aldehydes and ketones to their corresponding alcohols. All of these aldehydes along with acetone were found to adsorb in a di-ση1η2(C,O) mode onto the Ru(0001) surface and result in rehybridization of the C=O bond. Steric hindrance from two alkyl substituents on the carbonyl backbone of methyl ethyl ketone (MEK), however, prevents it from binding di-ση1η2(C,O). It adsorbs instead atop a Ru atommore » in an g1(O) configuration through its oxygen atom. Hydrogenation of both aldehydes and ketones can occur through either a hydroxy or an alkoxy mechanism. The hydroxy route proceeds via the formation of the hydroxyalkyl intermediate R₁R₂C*OH by the addition of hydrogen to the oxygen of the carbonyl, whereas the alkoxy mechanism proceeds by the addition of hydrogen to the carbon end to form the alkoxy intermediate R₂CHO*). DFT calculations indicate that the activation barrier for the initial addition of hydrogen to the carbon to form the C–H bond in the alkoxy mechanism is independent of the substituent groups that are attached to the carbon center as these groups are oriented away from the surface in the transition state and thus have little influence on the activation energies. The activation barriers for the addition of hydrogen to the oxygen of the carbonyl to form the O–H bond in the hydroxy mechanism, however, was found to linearly correlate with the binding energy of the hydroxyalkyl intermediate that forms. This trend can be explained through the Brønsted–Evans–Polanyi relationship and the fact that both the hydroxyalkyl products and carbonyl reactants interact via their carbon centers and are correlated with one another. All of the carbonyls

  18. Nonribosomal biosynthesis of backbone-modified peptides

    NASA Astrophysics Data System (ADS)

    Niquille, David L.; Hansen, Douglas A.; Mori, Takahiro; Fercher, David; Kries, Hajo; Hilvert, Donald

    2018-03-01

    Biosynthetic modification of nonribosomal peptide backbones represents a potentially powerful strategy to modulate the structure and properties of an important class of therapeutics. Using a high-throughput assay for catalytic activity, we show here that an L-Phe-specific module of an archetypal nonribosomal peptide synthetase can be reprogrammed to accept and process the backbone-modified amino acid (S)-β-Phe with near-native specificity and efficiency. A co-crystal structure with a non-hydrolysable aminoacyl-AMP analogue reveals the origins of the 40,000-fold α/β-specificity switch, illuminating subtle but precise remodelling of the active site. When the engineered catalyst was paired with downstream module(s), (S)-β-Phe-containing peptides were produced at preparative scale in vitro (~1 mmol) and high titres in vivo (~100 mg l-1), highlighting the potential of biosynthetic pathway engineering for the construction of novel nonribosomal β-frameworks.

  19. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    DOEpatents

    Marling, John B.

    1981-01-01

    A method for producing a deuterium enriched material by photoinduced dissociation which uses as the working material a gas phase photolytically dissociable organic carbonyl compound containing at least one hydrogen atom bonded to an atom which is adjacent to a carbonyl group and consisting of molecules wherein said hydrogen atom is present as deuterium and molecules wherein said hydrogen atom is present as another isotope of hydrogen. The organic carbonyl compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of the deuterium containing species to yield a deuterium enriched stable molecular product. Undissociated carbonyl compound, depleted in deuterium, is preferably redeuterated for reuse.

  20. Visible Light-Induced Carbonylation Reactions with Organic Dyes as the Photosensitizers.

    PubMed

    Peng, Jin-Bao; Qi, Xinxin; Wu, Xiao-Feng

    2016-09-08

    Dyes can CO do it: Organic dyes and pigments are usually applied in textile dyeing, which can be dated back to the Neolithic period. Interestingly, the possibility to use organic dyes as photoredox catalysts has also been noticed by organic chemists and applied in organic synthesis. Carbonylation reactions as a powerful procedure in carbonyl-containing compound preparation have also been studied. In this manuscript, the recent achievements in using organic dyes as visible-light sensitizers in carbonylation chemistry are summarized and discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Qualitative and quantitative evaluation of derivatization reagents for different types of protein-bound carbonyl groups.

    PubMed

    Bollineni, Ravi Chand; Fedorova, Maria; Hoffmann, Ralf

    2013-09-07

    Mass spectrometry (MS) of 'carbonylated proteins' often involves derivatization of reactive carbonyl groups to facilitate their enrichment, identification and quantification. Among the many reported reagents, 2,4-dinitrophenylhydrazine (DNPH), biotin hydrazide (BHZ) and O-(biotinylcarbazoylmethyl) hydroxylamine (ARP) are the most frequently used. Despite their common use in carbonylation research, their reactivity towards protein-bound carbonyls has not been quantitatively evaluated in detail, to the best of our knowledge. Thus we studied the reactivity and specificity of these reagents towards different classes of reactive carbonyl groups (e.g. aldehydes, ketones and lactams), each being represented by a synthetic peptide carrying an accordingly modified residue. All three tagging reagents were selective for aliphatic aldehydes and ketones. Lactams and carbonyl-containing tryptophan oxidation products, however, were labelled only at low levels or not at all. Whereas DNPH derivatization was efficient under the published standard conditions, the derivatization conditions for BHZ and ARP had to be altered. Acidic conditions provided quantitative labelling yields for ARP. Peptides derivatized with DNPH, BHZ and ARP fragmented efficiently in tandem mass spectrometry, when the experimental conditions were chosen carefully for each reagent. Importantly, the tested carbonylated peptides did not cross-react with amino groups in other proteins present during sample preparations or enzymatic digestion. Thus, it appears favourable to digest proteins first and then derivatise the reactive carbonyl groups more efficiently at the peptide level under acidic conditions. The carbonylated model peptides used in this study might be valid internal standards for carbonylation proteomics.

  2. Fluoride-Mediated Dephosphonylation of α-Diazo-β-carbonyl Phosphonates.

    PubMed

    Phatake, Ravindra S; Mullapudi, Venkannababu; Wakchaure, Vivek C; Ramana, Chepuri V

    2017-01-20

    The possibility of fluoride-mediated selective dephosphonylation of α-diazo-β-carbonyl phosphonates such as the Ohira-Bestmann reagent has been proposed and executed. The resulting α-diazocarbonyl intermediates undergo a (3 + 2)-cycloaddition at room temperature with conjugated olefins and benzynes. Interestingly, under the current conditions, the resulting cycloaddition products underwent either N-acylation (with excess α-diazo-β-carbonyl phosphonates) or Michael addition (with conjugated olefins).

  3. Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone.

    PubMed

    Gui, Meng; Song, Juyi; Zhang, Lu; Wang, Shun; Wu, Ruiyun; Ma, Changwei; Li, Pinglan

    2015-06-05

    Chondroitin sulfates (CSs) were extracted from sturgeon skull and backbone, and their chemical composition, anticoagulant, anti-platelet and thrombolysis activities were evaluated. The average molecular weights of CS from sturgeon skull and backbone were 38.5kDa and 49.2kDa, respectively. Disaccharide analysis indicated that the sturgeon backbone CS was primarily composed of disaccharide monosulfated in position four of the GalNAc (37.8%) and disaccharide monosulfated in position six of the GalNAc (59.6%) while sturgeon skull CS was primarily composed of nonsulfated disaccharide (74.2%). Sturgeon backbone CS showed stronger antithrombotic effect than sturgeon skull CS. Sturgeon backbone CS could significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT), inhibited ADP-induced platelet aggregation and dissolved platelet plasma clots in vitro. The results suggested that sturgeon backbone CS can be explored as a functional food with antithrombotic function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Recoil Inversion in the Photodissociation of Carbonyl Sulfide near 234 nm.

    PubMed

    Sofikitis, Dimitris; Suarez, Jaime; Schmidt, Johan A; Rakitzis, T Peter; Farantos, Stavros C; Janssen, Maurice H M

    2017-06-23

    We report the observation of recoil inversion of the CO (v=0, J_{CO}=66) state in the UV dissociation of lab-frame oriented carbonyl sulfide (OCS). This state is ejected in the opposite direction with respect to all other (>30) states and in absence of any OCS rotation, thus resulting in spatial filtering of this particular high-J rovibrational state. This inversion is caused by resonances occurring in shallow local minima of the molecular potential, which bring the sulfur closer to the oxygen than the carbon atom, and is a striking example where such subtleties severely modify the photofragment trajectories. The resonant behavior is observed only in the photofragment trajectories and not in their population, showing that stereodynamic measurements from oriented molecules offer an indispensable probe for exploring energy landscapes.

  5. Millimeter wave spectra of carbonyl cyanide

    NASA Astrophysics Data System (ADS)

    Bteich, S. B.; Tercero, B.; Cernicharo, J.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2016-07-01

    Context. More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims: The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods: The rotational spectrum of carbonyl cyanide was measured in the frequency range 152-308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. Results: The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of

  6. Modeling 15N NMR chemical shift changes in protein backbone with pressure

    NASA Astrophysics Data System (ADS)

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-01

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.

  7. - Wave Spectrum of Carbonyl Diazide in Pursuit of Diazirinone

    NASA Astrophysics Data System (ADS)

    Amberger, Brent K.; Esselman, Brian J.; Woods, R. Claude; McMahon, Robert J.

    2013-06-01

    Pyrolysis of carbonyl diazide (CO(N_3)_2) has been shown to give diazirinone (CON_2). While diazirione decomposes over the course of a few hours under terrestrial conditions, there is the possibility for it to exist in space. In the pursuit of obtaining a rotational spectrum for diazirinone, we have started with the rotational spectroscopy of its immediate precursor, carbonyl diazide. Carbonyl diazide is highly explosive, and requires careful synthesis. Spectra in the range of 260-360 GHz were collected at room temperature and at -60°C. Ab initio calculations at the CCSD/cc-pVDZ level predict that the conformation where both azide groups are syn to the carbonyl is preferred. A second conformation, where one azide is syn and one is anti, is calculated to lie about 2 kcal/ mol higher in energy. Pure rotational transitions for the ground state and multiple low-lying excited vibrational states of the syn- syn conformation are readily observed and assigned. X. Zeng, H. Beckers, H. Willner and J. F. Stanton, Angew. Chem. Int. Ed. 50 (2011), 1720-1723 A. M. Nolan, B. K. Amberger, B. J. Esselman, V. S. Thimmakondu, J. F. Stanton, R. C. Woods, and R. J. McMahon, Inorg. Chem. 51 (2012), 9846-9851

  8. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry.

    PubMed

    Milic, Ivana; Hoffmann, Ralf; Fedorova, Maria

    2013-01-02

    Reactive oxygen species (ROS) and other oxidative agents such as free radicals can oxidize polyunsaturated fatty acids (PUFA) as well as PUFA in lipids. The oxidation products can undergo consecutive reactions including oxidative cleavages to yield a chemically diverse group of products, such as lipid peroxidation products (LPP). Among them are aldehydes and ketones ("reactive carbonyls") that are strong electrophiles and thus can readily react with nucleophilic side chains of proteins, which can alter the protein structure, function, cellular distribution, and antigenicity. Here, we report a novel technique to specifically derivatize both low molecular and high molecular weight carbonylated LPP with 7-(diethylamino)coumarin-3-carbohydrazide (CHH) and analyze all compounds by electrospray ionization-mass spectrometry (ESI-MS) in positive ion mode. CHH-derivatized compounds were identified by specific neutral losses or fragment ions. The fragment ion spectra displayed additional signals that allowed unambiguous identification of the lipid, fatty acids, cleavage sites, and oxidative modifications. Oxidation of docosahexaenoic (DHA, 22:6), arachidonic (AA, 20:4), linoleic (LA, 18:2), and oleic acids (OA, 18:1) yielded 69 aliphatic carbonyls, whose structures were all deduced from the tandem mass spectra. When four phosphatidylcholine (PC) vesicles containing the aforementioned unsaturated fatty acids were oxidized, we were able to deduce the structures of 122 carbonylated compounds from the tandem mass spectra of a single shotgun analysis acquired within 15 min. The high sensitivity (LOD ∼ 1 nmol/L for 4-hydroxy-2-nonenal, HNE) and a linear range of more than 3 orders of magnitude (10 nmol/L to 10 μmol/L for HNE) will allow further studies on complex biological samples including plasma.

  9. Benchmarking of protein carbonylation analysis in Caenorhabditis elegans: specific considerations and general advice.

    PubMed

    Pyr Dit Ruys, S; Bonzom, J-M; Frelon, S

    2016-10-01

    Oxidative stress has been extensively studied due to its correlation with cellular disorders and aging. In proteins, one biomarker of oxidative stress is the presence of carbonyl groups, such as aldehyde and ketone, in specific amino acid side chains such as lysine, proline, arginine and threonine, so-called protein carbonylation (PC). PC study is now a growing field in general and medical science since PC accumulation is associated with various pathologies and disorders. At present, enzyme-linked immunosorbent assays (ELISA) seem to be the most robust method of quantifying the presence of carbonyl groups in proteins, despite having some recognised caveats. In parallel, gel-based approaches present cross-comparison difficulties, along with other technical problems. As generic PC analyses still suffer from poor homogeneity, leading to cross-data analysis difficulties and poor results overlap, the need for harmonisation in the field of carbonyl detection is now widely accepted. This study aims to highlight some of the technical challenges in proteomic gel-based multiplexing experiments when dealing with PC in difficult samples like those from Caenorhabditis elegans, from protein extraction to carbonyl detection. We demonstrate that some critical technical parameters, such as labelling time, probe concentration, and total and carbonylated protein recovery rates, should be re-addressed in a sample-specific way. We also defined a procedure to cost-effectively adapt CyDye™-hydrazide-based protocols to specific samples, especially when the experimental interest is focused on studying differences between stimulating conditions with a maximised signal-to-noise ratio. Moreover, we have improved an already-existing powerful solubilisation buffer, making it potentially useful for hard-to-solubilise protein pellets. Lastly, the depicted methodology exemplifies a simple way of normalising carbonyl-related signal to total protein in SDS-PAGE multiplexing experiments. Within

  10. Formation of neutral and charged gold carbonyls on highly facetted gold nanostructures

    NASA Astrophysics Data System (ADS)

    Chau, Thoi-Dai; Visart de Bocarmé, Thierry; Kruse, Norbert; Wang, Richard L. C.; Kreuzer, Hans Jürgen

    2003-12-01

    We show that gold mono- and di-carbonyls are formed on gold field emitter tips during interaction with carbon monoxide gas at room temperature and in the presence of high electrostatic fields. The experiments are done in a time-of-flight atom probe to obtain mass spectra. The yield of monocarbonyl cations is about twice that of di-carbonyl ions. Density functional theory calculations are reported that explain the field stabilization of adsorbed carbonyls and the desorption yield of their cations.

  11. Oxygenated Interface on Biomass Burn Tar Balls Determined bySingle Particle Scanning Transmission X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tivanski, A.V.; Hopkins, R.J.; Tyliszczak, T.

    2007-06-21

    Carbonaceous particles originating from biomass burning canaccount for a large fraction of organic aerosols in a local environment.Presently, their composition, physical and chemical properties, as wellas their environmental effects are largely unknown. Tar balls, a distincttype of highly spherical carbonaceous biomass burn particles, have beenobserved in a number of field campaigns. The Yosemite AerosolCharacterization Study that took place in summer 2002 occurred during anactive fire season in the western United States; tar balls collectedduring this field campaign are described in this article. Scanningtransmission X-ray microscopy and near-edge X-ray absorption finestructure spectroscopy are used to determine the shape, structure, andsize-dependent chemicalmore » composition of ~;150 individual sphericalparticles ranging in size from 0.15 to 1.2mu m.The elemental compositionof tar balls is ~;55 percent atomic carbon and ~;45 percent atomicoxygen. Oxygen is present primarily as carboxylic carbonyls andoxygen-substituted alkyl (O-alkyl-C) functional groups, followed bymoderate amounts of ketonic carbonyls. The observed chemical composition,density, and carbon functional groups are distinctly different from sootor black carbon and more closely resemble high molecular weight polymerichumic-like substances, which could account for their reported opticalproperties. A detailed examination of the carboxylic carbonyl andO-alkyl-C functional groups as a function of particle size reveals a thinoxygenated interface layer. The high oxygen content, as well as thepresence of water-soluble carboxylic carbonyl groups, could account forthe reported hygroscopic properties of tar balls. The presence of theoxygenated layer is attributed to atmospheric processing of biomass burnparticles.« less

  12. Coordination Complexes of Titanium(IV) and Indium(III) Phthalocyanines with Carbonyl-Containing Dyes: The Formation of Singly Bonded Anionic Squarylium Dimers.

    PubMed

    Konarev, Dmitri V; Kuzmin, Alexey V; Khasanov, Salavat S; Fatalov, Alexey M; Yudanova, Evgenia I; Lyubovskaya, Rimma N

    2018-04-14

    Reduction methods for the preparation of coordination complexes of titanium(IV) and indium(III) phthalocyanines (Pc) with organic dyes such as indigo, thioindigo, and squarylium dye III (SQ) have been developed, which allow one to obtain crystalline {cryptand(K + )}{(cis-indigo-O,O) 2- Ti IV (Pc 2- )}(Cl - )⋅C 6 H 4 Cl 2 (1), {cryptand(K + )}{(cis-thioindigo-O,O) 2- In III (Pc 2- )} - ⋅C 6 H 4 Cl 2 (2), and {cryptand(K + )}{[(SQ) 2 -O,O] 2- In III (Pc 2- )} - ⋅3.5 C 6 H 4 Cl 2 (3) complexes. The formation of these complexes is accompanied by the reduction of the starting dyes to the anionic state. Transition of trans-indigo or trans-thioindigo to the cis conformation in 1 and 2 provides coordination of both carbonyl oxygen atoms of the dye to Ti IV Pc or In III Pc. SQ is reduced to the radical anion state and forms unusual diamagnetic singly bonded (SQ - ) 2 dimers in 3. These dimers have two closely positioned carbonyl oxygen atoms coordinated to In III Pc. Dianionic Pc 2- macrocycles have been found in 1-3. The complexes contain two chromophore molecules at one metal center. However, their optical spectra are defined mainly by absorption bands of the metal phthalocyanines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. PROCESS OF COATING WITH NICKEL BY THE DECOMPOSITION OF NICKEL CARBONYL

    DOEpatents

    Hoover, T.B.

    1959-04-01

    An improved process is presented for the deposition of nickel coatings by the thermal decomposition of nickel carbonyl vapor. The improvement consists in incorporating a small amount of hydrogen sulfide gas in the nickel carbonyl plating gas. It is postulated that the hydrogen sulfide functions as a catalyst. i

  14. Determination of Carbonyl Groups in Pyrolysis Bio-oils Using Potentiometric Titration: Review and Comparison of Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Stuart; Ferrell, Jack R.

    Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here in this study, we present a modification of the traditional carbonyl oximation procedures that results inmore » less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. Some compounds such as carbohydrates are not measured by the traditional method (modified Nicolaides method), resulting in low estimations of the carbonyl content. Furthermore, we have shown that reaction completion for the traditional method can take up to 300 hours. The new method presented here (the modified Faix method) reduces the reaction time to 2 hours, uses triethanolamine (TEA) in the place of pyridine, and requires a smaller sample size for the analysis. Carbonyl contents determined using this new method are consistently higher than when using the traditional titration methods.« less

  15. Determination of Carbonyl Groups in Pyrolysis Bio-oils Using Potentiometric Titration: Review and Comparison of Methods

    DOE PAGES

    Black, Stuart; Ferrell, Jack R.

    2016-01-06

    Carbonyl compounds present in bio-oils are known to be responsible for bio-oil property changes upon storage and during upgrading. As such, carbonyl content has previously been used as a method of tracking bio-oil aging and condensation reactions with less variability than viscosity measurements. Given the importance of carbonyls in bio-oils, accurate analytical methods for their quantification are very important for the bio-oil community. Potentiometric titration methods based on carbonyl oximation have long been used for the determination of carbonyl content in pyrolysis bio-oils. Here in this study, we present a modification of the traditional carbonyl oximation procedures that results inmore » less reaction time, smaller sample size, higher precision, and more accurate carbonyl determinations. Some compounds such as carbohydrates are not measured by the traditional method (modified Nicolaides method), resulting in low estimations of the carbonyl content. Furthermore, we have shown that reaction completion for the traditional method can take up to 300 hours. The new method presented here (the modified Faix method) reduces the reaction time to 2 hours, uses triethanolamine (TEA) in the place of pyridine, and requires a smaller sample size for the analysis. Carbonyl contents determined using this new method are consistently higher than when using the traditional titration methods.« less

  16. Novel DNPH-based method for determination of protein carbonylation in muscle and meat.

    PubMed

    Soglia, Francesca; Petracci, Massimiliano; Ertbjerg, Per

    2016-04-15

    Protein oxidation is considered an ongoing deteriorative process during storage of fresh and processed meat. Carbonyl compounds have traditionally been detected spectrophotometrically after derivatization with 2,4-dinitrophenylhydrazine (DNPH) to form protein-bound hydrazones with absorbance at 370 nm. Here we describe a novel DNPH-based method to quantify protein carbonylation in muscle and meat. The additional steps of the novel method aimed at increasing the protein solubility and inducing protein unfolding before labeling with DNPH. Compared to the traditional method, the new procedure reflected an increased protein carbonylation level measuring overall two to fourfold more carbonyls in muscles from different species as well as in soluble, salt-soluble and insoluble protein fractions. The study suggested that protein unfolding is a more important phenomenon than solubilization for increased DNPH labeling. The novel method resulted in three to fourfold larger carbonyl content determined in chicken, pork and beef (2.8, 3.6 and 3.1 nmol/mg of protein, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. [Fructose as a factor of Carbonyl and oxidative stress development and accelerated aging in the yeast Saccharomyces].

    PubMed

    Lozins'ka, L M; Semchyshyn, G M

    2011-01-01

    Excessive and prolonged consumption of fructose may lead to the development of metabolic disorders. However, the mechanisms of disturbances are still discussed. In the present work, the budding yeast Saccharomyces cerevisiae has been used as a model to compare the effects of prolonged consumption of different concentrations of glucose and fructose on certain physiology-biochemical parameters of eukaryotes. It has been shown that the yeast growth, their metabolic activity, intracellular level of glycogen and oxidized proteins were higher in cells grown on fructose. The observation is consistent with the data on a higher in vitro ability of fructose than glucose to initiate glycation which products of which are highly reactive a-dicarbonyl compounds and activated oxygen forms. Thus the intensity of carbonyl and oxidative stress is higher in cells grown on fructose. This can explain a higher rate of aging of yeast consuming fructose as a source of carbon and energy as compared to cells growing on glucose. However, carbohydrate restriction used in this study ham- pered the accumulation of glycogen and oxidized proteins and did not reveal any difference between markers of aging and carbonyl and oxidative stress in yeast grown on glucose and fructose.

  18. Carbonyl Emissions in E-cigarette Aerosol: A Systematic Review and Methodological Considerations.

    PubMed

    Farsalinos, Konstantinos E; Gillman, Gene

    2017-01-01

    Carbonyl emissions from tobacco cigarettes represent a substantial health risk contributing to smoking-related morbidity and mortality. As expected, this is an important research topic for tobacco harm reduction products, in an attempt to compare the relative risk of these products compared to tobacco cigarettes. In this study, a systematic review of the literature available on PubMed was performed analyzing the studies evaluating carbonyl emissions from e-cigarettes. A total of 32 studies were identified and presented. We identified a large diversity of methodologies, with substantial discrepancies in puffing patterns, aerosol collection and analytical methods as well as reported units of measurements. Such discrepancies make comparisons difficult, and in some cases the accuracy of the findings cannot be determined. Importantly, control for the generation of dry puffs was not performed in the vast majority of studies, particularly in studies using variable power devices, which could result in testing conditions and reported carbonyl levels that have no clinical relevance or context. Some studies have been replicated, verifying the presence of dry puff conditions. Whenever realistic use conditions were ensured, carbonyl emissions from e-cigarettes were substantially lower than tobacco cigarette smoke, while newer generation (bottom-coil, cotton wick) atomizers appeared to emit minimal levels of carbonyls with questionable clinical significance in terms of health risk. However, extremely high levels of carbonyl emissions were reported in some studies, and all these studies need to be replicated because of potentially important health implications.

  19. Protein carbonylation associated to high-fat, high-sucrose diet and its metabolic effects.

    PubMed

    Méndez, Lucía; Pazos, Manuel; Molinar-Toribio, Eunice; Sánchez-Martos, Vanesa; Gallardo, José M; Rosa Nogués, M; Torres, Josep L; Medina, Isabel

    2014-12-01

    The present research draws a map of the characteristic carbonylation of proteins in rats fed high-caloric diets with the aim of providing a new insight of the pathogenesis of metabolic diseases derived from the high consumption of fat and refined carbohydrates. Protein carbonylation was analyzed in plasma, liver and skeletal muscle of Sprague-Dawley rats fed a high-fat, high-sucrose (HFHS) diet by a proteomics approach based on carbonyl-specific fluorescence-labeling, gel electrophoresis and mass spectrometry. Oxidized proteins along with specific sites of oxidative damage were identified and discussed to illustrate the consequences of protein oxidation. The results indicated that long-term HFHS consumption increased protein oxidation in plasma and liver; meanwhile, protein carbonyls from skeletal muscle did not change. The increment of carbonylation by HFHS diet was singularly selective on specific target proteins: albumin from plasma and liver, and hepatic proteins such as mitochondrial carbamoyl-phosphate synthase (ammonia), mitochondrial aldehyde dehydrogenase, argininosuccinate synthetase, regucalcin, mitochondrial adenosine triphosphate synthase subunit beta, actin cytoplasmic 1 and mitochondrial glutamate dehydrogenase 1. The possible consequences that these specific protein carbonylations have on the excessive weight gain, insulin resistance and nonalcoholic fatty liver disease resulting from HFHS diet consumption are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    NASA Astrophysics Data System (ADS)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  1. Modeling {sup 15}N NMR chemical shift changes in protein backbone with pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Penna, Giovanni, E-mail: glapenna@iccom.cnr.it; Mori, Yoshiharu, E-mail: ymori@ims.ac.jp; Kitahara, Ryo, E-mail: ryo@ph.ritsumei.ac.jp

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change inmore » the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.« less

  2. Ambient gas-particle partitioning of atmospheric carbonyl at an urban site in Beijing

    NASA Astrophysics Data System (ADS)

    Shen, H.; Chen, Z.

    2017-12-01

    Carbonyls are important oxidation intermediates of hydrocarbons and major carcinogenic and genotoxic compounds in urban areas. While their health and climate impacts are primarily associated with their gas-particle conversion such as oligomers and brown carbon formation in particle phase, however, observations of their actual ambient gas-particle partitioning are sparse. In this study, the Sep-Pak DNPH-Silica Gel Cartridges and a four-channel particle sampler were used to collect carbonyls in gaseous and particle (PM2.5) phases simultaneously. Six carbonyls (formaldehyde, acetaldehyde, acetone, propionaldehyde and two dicarbonyls, glyoxal and methylglyoxal) of the ten observed in gas phase (plus butyraldehyde, methacrolein, methyl vinyl ketone, benzaldehyde) were detected in ambient particles. The measured gas/particle (G/P) partitioning coefficients (Kp,field) of the six carbonyls were calculated and compared to their predicted G/P partitioning coefficients (Kp,theor) based on the absorptive partitioning theory. The values of Kp,field are 105-106 times higher than Kp,theor and the Kp,field of the measured total carbonyls were determined to be as high as (0.3-11)×10-4 m3 µg-1, indicating that small carbonyls were much easier to enter the particle phase than previously expected and their distribution between gas and particles varied greatly with environmental conditions. The measured Kp,CHOCHO > Kp,CH3COCHO > Kp,CH3CH3CHO > Kp,CH3CHO ≈ Kp,HCHO > Kp,CH3COCH3, suggesting that the aldehyde group, to some extent, is more likely to promote the carbonyl compounds into particle phase than ketone group and methyl group. The variation trends of the measured G/P partitioning coefficients were very consistent and significantly correlated, and did not reflect the different salting effect for glyoxal and methylglyoxal ("salting-in" for glyoxal and "salting-out" for methylglyoxal), which indicated that the factors affecting the gas-particle partitioning of carbonyls in the

  3. Surface decorated platinum carbonyl clusters

    NASA Astrophysics Data System (ADS)

    Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Zacchini, Stefano; Zarra, Salvatore

    2012-06-01

    Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters.Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters. CCDC 867747 and 867748. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30400g

  4. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness (h)

    PubMed Central

    2017-01-01

    The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom—the backbone dihedral angles φ and ψ (Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function of φ and ψ has not been completely described for both cis and trans backbones. Additionally, little intuitive understanding is available about a peptide’s conformation simply from knowing the φ and ψ values of a peptide (e.g., is the regular peptide defined by φ = ψ =  − 100°  left-handed or right-handed?). This report provides a new metric for backbone handedness (h) based on interpreting a peptide backbone as a helix with axial displacement d and angular displacement θ, both of which are derived from a peptide backbone’s internal coordinates, especially dihedral angles φ, ψ and ω. In particular, h equals sin(θ)d∕|d|, with range [−1, 1] and negative (or positive) values indicating left(or right)-handedness. The metric h is used to characterize the handedness of every region of the Ramachandran plot for both cis (ω = 0°) and trans (ω = 180°) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ, ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013), this report presents a new plot based on d and θ that serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone including cis

  5. Protein carbonylation, protein aggregation and neuronal cell death in a murine model of multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Dasgupta, Anushka

    Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal

  6. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress.

    PubMed

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-02-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase.

  7. Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azoitei, Mihai L.; Correia, Bruno E.; Ban, Yih-En Andrew

    2012-02-07

    The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.

  8. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajari, Timir; Vegt, Nico F. A. van der, E-mail: vandervegt@csi.tu-darmstadt.de

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvationmore » free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar

  9. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    NASA Astrophysics Data System (ADS)

    Hajari, Timir; van der Vegt, Nico F. A.

    2015-04-01

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side

  10. Brand variation in oxidant production in mainstream cigarette smoke: Carbonyls and free radicals.

    PubMed

    Reilly, Samantha M; Goel, Reema; Trushin, Neil; Elias, Ryan J; Foulds, Jonathan; Muscat, Joshua; Liao, Jason; Richie, John P

    2017-08-01

    Oxidative stress/damage resulting from exposure to cigarette smoke plays a critical role in the development of tobacco-caused diseases. Carbonyls and free radicals are two major classes of oxidants in tobacco smoke. There is little information on the combined delivery of these oxidants across different cigarette brands; thus, we set out to measure and compare their levels in mainstream smoke from popular US cigarettes. Mainstream smoke from 28 different cigarette brands produced by smoking (FTC protocol) was analyzed for five important, abundant carbonyls, and levels were compared to previously determined free radical for the same brands. Overall, there were large variations (3- to 6-fold) in carbonyl levels across brands with total carbonyl levels ranging from 275 to 804 μg/cigarette, which persisted even after adjusting for ventilation. Individual carbonyl levels were highly correlated with each other (r 2 : 0.40-0.95, P < 0.003) except for formaldehyde. Both gas-phase (r 2 : 0.37, P = 0.006) and particulate-phase (r 2 : 0.27, P = 0.005) free radicals were correlated to total carbonyl content; however, this correlation disappeared after adjusting for ventilation. These data show that overall oxidant production varies widely by cigarette brand and the resulting difference in oxidant burden could potentially lead to differences in disease risk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Carbonyl-based blue autofluorescence of proteins and amino acids

    PubMed Central

    Niyangoda, Chamani; Miti, Tatiana; Breydo, Leonid; Uversky, Vladimir

    2017-01-01

    Intrinsic protein fluorescence is inextricably linked to the near-UV autofluorescence of aromatic amino acids. Here we show that a novel deep-blue autofluorescence (dbAF), previously thought to emerge as a result of protein aggregation, is present at the level of monomeric proteins and even poly- and single amino acids. Just as its aggregation-related counterpart, this autofluorescence does not depend on aromatic residues, can be excited at the long wavelength edge of the UV and emits in the deep blue. Differences in dbAF excitation and emission peaks and intensities from proteins and single amino acids upon changes in solution conditions suggest dbAF’s sensitivity to both the chemical identity and solution environment of amino acids. Autofluorescence comparable to dbAF is emitted by carbonyl-containing organic solvents, but not those lacking the carbonyl group. This implicates the carbonyl double bonds as the likely source for the autofluorescence in all these compounds. Using beta-lactoglobulin and proline, we have measured the molar extinction coefficients and quantum yields for dbAF in the monomeric state. To establish its potential utility in monitoring protein biophysics, we show that dbAF emission undergoes a red-shift comparable in magnitude to tryptophan upon thermal denaturation of lysozyme, and that it is sensitive to quenching by acrylamide. Carbonyl dbAF therefore provides a previously neglected intrinsic optical probe for investigating the structure and dynamics of amino acids, proteins and, by extension, DNA and RNA. PMID:28542206

  12. No-Enclave Percolation Corresponds to Holes in the Cluster Backbone.

    PubMed

    Hu, Hao; Ziff, Robert M; Deng, Youjin

    2016-10-28

    The no-enclave percolation (NEP) model introduced recently by Sheinman et al. can be mapped to a problem of holes within a standard percolation backbone, and numerical measurements of such holes give the same size-distribution exponent τ=1.82(1) as found for the NEP model. An argument is given that τ=1+d_{B}/2≈1.822 for backbone holes, where d_{B} is the backbone dimension. On the other hand, a model of simple holes within a percolation cluster yields τ=1+d_{f}/2=187/96≈1.948, where d_{f} is the fractal dimension of the cluster, and this value is consistent with the experimental results of gel collapse of Sheinman et al., which give τ=1.91(6). This suggests that the gel clusters are of the universality class of percolation cluster holes. Both models give a discontinuous maximum hole size at p_{c}, signifying explosive percolation behavior.

  13. Oxygen content and oxidation in frying oil.

    PubMed

    Totani, Nagao; Yawata, Miho; Mori, Terutoshi; Hammond, Earl G

    2013-01-01

    The relation between oxygen content and oxidation was investigated in frying oils. When canola oil, a canola-soybean oil blend or a trioctanoylglycerol (glycerol tricaprate) sample were heated with stirring, their dissolved oxygen content decreased abruptly at about 120°C and the carbonyl values (CV) increased gradually with heating and reached values of 6-7 at 180°C in the blended and canola oils, while the CV of trioctanoylglycerol was zero up to 150°C. Probably this abrupt decrease in oxygen content above 120°C can be attributed to the solubility of oxygen in oil rather than because of oxidative reactions. The oxygen content of oil that has been stripped of part of its oxygen, increased at temperatures between 25 and 120°C. In oils that have lost their oxygen by being heated to 180°C, standing at room temperature will slowly restore their oxygen content as the oil cools. Intermittent simple heating of oil promoted oxygen absorbance during cooling periods and standing times, and it resulted in an elevated content of polar compounds (PC). Domestic deep-frying conditions also favor the presence of oxygen in oil below 120°C and during the oil's long standing at room temperature. The oxygen content in oil was low during deep-frying, but oxidation was active at the oil/air interface of bubbles generated by foods being fried. Repeated use of oil at temperatures between 25-180°C resulted in oil with low oxygen values.

  14. Cu/Mn bimetallic catalysis enables carbonylative Suzuki-Miyaura coupling with unactivated alkyl electrophiles.

    PubMed

    Pye, Dominic R; Cheng, Li-Jie; Mankad, Neal P

    2017-07-01

    A bimetallic system consisting of Cu-carbene and Mn-carbonyl co-catalysts was employed for carbonylative C-C coupling of arylboronic esters with alkyl halides, allowing for the convergent synthesis of ketones. The system operates under mild conditions and exhibits complementary reactivity to Pd catalysis. The method is compatible with a wide range of arylboronic ester nucleophiles and proceeds smoothly for both primary and secondary alkyl iodide electrophiles. Preliminary mechanistic experiments corroborate a hypothetical catalytic mechanism consisting of co-dependent cycles wherein the Cu-carbene co-catalyst engages in transmetallation to generate an organocopper nucleophile, while the Mn-carbonyl co-catalyst activates the alkyl halide electrophile by single-electron transfer and then undergoes reversible carbonylation to generate an acylmanganese electrophile. The two cycles then intersect with a heterobimetallic, product-releasing C-C coupling step.

  15. Development of a test method for carbonyl compounds from stationary source emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhihua Fan; Peterson, M.R.; Jayanty, R.K.M.

    1997-12-31

    Carbonyl compounds have received increasing attention because of their important role in ground-level ozone formation. The common method used for the measurement of aldehydes and ketones is 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by high performance liquid chromatography and ultra violet (HPLC-UV) analysis. One of the problems associated with this method is the low recovery for certain compounds such as acrolein. This paper presents a study in the development of a test method for the collection and measurement of carbonyl compounds from stationary source emissions. This method involves collection of carbonyl compounds in impingers, conversion of carbonyl compounds to a stable derivativemore » with O-2,3,4,5,6-pentafluorobenzyl hydroxylamine hydrochloride (PFBHA), and separation and measurement by electron capture gas chromatography (GC-ECD). Eight compounds were selected for the evaluation of this method: formaldehyde, acetaldehyde, acrolein, acetone, butanal, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and hexanal.« less

  16. SELECTIVE OXIDATION OF ALCOHOLS BY MOLECULAR OXYGEN OVER A PD/MGO CATALYST IN THE ABSENCE OF ANY ADDITIVES

    EPA Science Inventory

    Selective oxidation of alcohols to the corresponding carbonyl products using molecular oxygen is achieved over a simple and easily recyclable 1% Pd/MgO impregnated heterogeneous catalyst in the presence of trifluorotoluene. A variety of activated and non-activated alcohols are ef...

  17. Rapid method for determination of carbonyl groups in lignin compounds by headspace gas chromatography.

    PubMed

    Li, Jing; Hu, Hui-Chao; Chai, Xin-Sheng

    2015-07-24

    The paper reports on a novel method for rapid determination of carbonyl in lignins by headspace gas chromatography (HS-GC). The method involves the quantitative carbonyl reduction for aldehydes in 2min at room temperature or for acetones in 30min at 80°C by sodium borohydride solution in a closed headspace sample vial. After the reaction, the solution was acidified by injecting sulfuric acid solution and the hydrogen released to the headspace was determined by GC using thermal-conductivity detector. The results showed that with the addition of SiO2 powder, the reduction reaction of carbonyl groups can be greatly facilitated. The method has a good measurement precision (RSD<7.74%) and accuracy (relative error <10% compared with a reference method) in the carbonyl quantification. It is suitable to be used for rapid determination of carbonyl content in lignin and related materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Characteristics of carbonyls: Concentrations and source strengths for indoor and outdoor residential microenvironments in China

    NASA Astrophysics Data System (ADS)

    Wang, B.; Lee, S. C.; Ho, K. F.

    Indoor and outdoor carbonyl concentrations were measured simultaneously in 12 urban dwellings in Beijing, Shanghai, Guangzhou, and Xi'an, China in summer (from July to September in 2004) and winter (from December 2004 to February 2005). Formaldehyde was the most abundant indoor carbonyls species, while formaldehyde, acetaldehyde and acetone were found to be the most abundant outdoor carbonyls species. The average formaldehyde concentrations in summer indoor air varied widely between cities, ranging from a low of 19.3 μg m -3 in Xi'an to a high of 92.8 μg m -3 in Beijing. The results showed that the dwellings with tobacco smoke, incense burning or poor ventilation had significantly higher indoor concentrations of certain carbonyls. It was noticed that although one half of the dwellings in this study installed with low emission building materials or furniture, the carbonyls levels were still significantly high. It was also noted that in winter both the indoor and outdoor acetone concentrations in two dwellings in Guangzhou were significantly high, which were mainly caused by the usage of acetone as industrial solvent in many paint manufacturing and other industries located around Guangzhou and relatively longer lifetime of acetone for removal by photolysis and OH reaction than other carbonyls species. The indoor carbonyls levels in Chinese dwellings were higher than that in dwellings in the other countries. The levels of indoor and ambient carbonyls showed great seasonal differences. Six carbonyls species were carried out the estimation of indoor source strengths. Formaldehyde had the largest indoor source strength, with an average of 5.25 mg h -1 in summer and 1.98 mg h -1 in winter, respectively. However, propionaldehyde, crotonaldehyde and benzaldehyde had the weakest indoor sources.

  19. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage.

    PubMed

    Kosmider, Leon; Sobczak, Andrzej; Fik, Maciej; Knysak, Jakub; Zaciera, Marzena; Kurek, Jolanta; Goniewicz, Maciej Lukasz

    2014-10-01

    Glycerin (VG) and propylene glycol (PG) are the most common nicotine solvents used in e-cigarettes (ECs). It has been shown that at high temperatures both VG and PG undergo decomposition to low molecular carbonyl compounds, including the carcinogens formaldehyde and acetaldehyde. The aim of this study was to evaluate how various product characteristics, including nicotine solvent and battery output voltage, affect the levels of carbonyls in EC vapor. Twelve carbonyl compounds were measured in vapors from 10 commercially available nicotine solutions and from 3 control solutions composed of pure glycerin, pure propylene glycol, or a mixture of both solvents (50:50). EC battery output voltage was gradually modified from 3.2 to 4.8V. Carbonyl compounds were determined using the HPLC/DAD method. Formaldehyde and acetaldehyde were found in 8 of 13 samples. The amounts of formaldehyde and acetaldehyde in vapors from lower voltage EC were on average 13- and 807-fold lower than in tobacco smoke, respectively. The highest levels of carbonyls were observed in vapors generated from PG-based solutions. Increasing voltage from 3.2 to 4.8V resulted in a 4 to more than 200 times increase in formaldehyde, acetaldehyde, and acetone levels. The levels of formaldehyde in vapors from high-voltage device were in the range of levels reported in tobacco smoke. Vapors from EC contain toxic and carcinogenic carbonyl compounds. Both solvent and battery output voltage significantly affect levels of carbonyl compounds in EC vapors. High-voltage EC may expose users to high levels of carbonyl compounds. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Method for determination of some soluble atmospheric carbonyl compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.N.; Zhou, X.

    1993-04-01

    A technique was developed for the measurement of soluble atmospheric carbonyl compounds, which uses a pyrex coil gas-liquid scrubber sampler in conjunction with a high-performance liquid chromatograph equipped with a UV-visible detector for separation and identification following derivatization with 2,4-dinitrophenylhydrazine. Carbonyls exhibiting a Henry's law solubility similar to or greater than that of formaldehyde (FA) can be determined by this method; these include FA, glycolaldehyde (GA), glyoxal (GL), and methylglyoxal (MG). Based on liquid standards and field-developed chromatographic characteristics, the limits of detection are about 0.005 ppb (in the gas phase) for MG, about 0.01 ppb for GL, and aboutmore » 0.02 ppb for FA and GA. Because of the short air-liquid contact time in the coil sampler (smaller than 10 s), interferences from aqueous-phase reactions of ozone are insignificant. Also, at the low pH of the scrubbing solution, interference resulting from reactions of carbonyls with S(IV) is unimportant. 43 refs., 7 figs., 3 tabs.« less

  1. Impact of HVAC filter on indoor air quality in terms of ozone removal and carbonyls generation

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Chi; Chen, Hsuan-Yu

    2014-06-01

    This study aims at detecting ozone removal rates and corresponding carbonyls generated by ozone reaction with HVAC filters from various building, i.e., shopping mall, school, and office building. Studies were conducted in a small-scale environmental chamber. By examining dust properties including organic carbon proportion and specific surface area of dusts adsorbed on filters along with ozone removal rates and carbonyls generation rate, the relationship among dust properties, ozone removal rates, and carbonyls generation was identified. The results indicate a well-defined positive correlation between ozone removal efficiency and carbonyls generation on filters, as well as a positive correlation among the mass of organic carbon on filters, ozone removal efficiency and carbonyls generations.

  2. Gas chromatography-mass spectrometry of carbonyl compounds in cigarette mainstream smoke after derivatization with 2,4-dinitrophenylhydrazine.

    PubMed

    Dong, Ji-Zhou; Moldoveanu, Serban C

    2004-02-20

    An improved gas chromatography-mass spectrometry (GC-MS) method was described for the analysis of carbonyl compounds in cigarette mainstream smoke (CMS) after 2,4-dinitrophenylhydrazine (DNPH) derivatization. Besides formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, methyl ethyl ketone, butyraldehyde, and crotonaldehyde that are routinely analyzed in cigarette smoke, this technique separates and allows the analysis of several C4, C5 and C6 isomeric carbonyl compounds. Differentiation could be made between the linear and branched carbon chain components. In cigarette smoke, the branched chain carbonyls are found at higher level than the linear chain carbonyls. Also, several trace carbonyl compounds such as methoxyacetaldehyde were found for the first time in cigarette smoke. For the analysis, cigarette smoke was collected using DNPH-treated pads, which is a simpler procedure compared to conventional impinger collection. Thermal decomposition of DNPH-carbonyl compounds was minimized by the optimization of the GC conditions. The linear range of the method was significantly improved by using a standard mixture of DNPH-carbonyl compounds instead of individual compounds for calibration. The minimum detectable quantity for the carbonyls ranged from 1.4 to 5.6 microg/cigarette.

  3. Quantification of airborne fossil and biomass carbonylic carbon by combined radiocarbon and liquid chromatography mass spectrometry

    NASA Astrophysics Data System (ADS)

    Larsen, B. R.; Tudos, A.; Slanina, J.; Van der Borg, K.; Kotzias, D.

    Airborne carbonyl compounds have been sampled at three European semi-remote to semi-urban test sites for radiocarbon ( 14C) analysis. The used methodology included collection on 2,4-dinitrophenylhydrazine coated silica gel cartridges, chromatographic isolation of the formed hydrazones, combustion into CO 2, reduction into graphite followed by accelerator mass spectrometry. In combination with this, liquid chromatography coupled to atmospheric pressure chemical ionisation mass spectrometry was used for chemical speciation of the collected carbonyls. At all sites the carbonyls were found to be of a mixed biogenic/anthropogenic origin. The determining factor for the proportion of fossil (anthropogenic) carbon in the samples was the vicinity of urban sources for carbonyls and their photochemical precursors. At meteorological conditions, which gave the test sites semi-rural/semi-remote characteristics the samples contained an average of 24% (range: 10-34%) of fossil carbonylic carbon. When air masses were transported from urban areas to the test-sites significantly higher proportions of fossil carbonylic carbon were determined with a maximum of 61%. Principal component analysis on this limited data set indicated that a low fossil proportion of carbonylic carbon is associated with high proportions of acetaldehyde, acetone, pentanone and acrolein. Until further radicarbon studies are carried out the conclusion remains that for the carbonyl compounds measured European background levels are of a predominant biogenic origin.

  4. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators

    PubMed Central

    Flierl, Ulrike; Nero, Tracy L.; Lim, Bock; Arthur, Jane F.; Yao, Yu; Jung, Stephanie M.; Gitz, Eelo; Pollitt, Alice Y.; Zaldivia, Maria T.K.; Jandrot-Perrus, Martine; Schäfer, Andreas; Nieswandt, Bernhard; Andrews, Robert K.; Parker, Michael W.; Gardiner, Elizabeth E.

    2015-01-01

    Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function–deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone–dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics. PMID:25646267

  5. Hydrogen bond formation between the naturally modified nucleobase and phosphate backbone

    PubMed Central

    Sheng, Jia; Zhang, Wen; Hassan, Abdalla E. A.; Gan, Jianhua; Soares, Alexei S.; Geng, Song; Ren, Yi; Huang, Zhen

    2012-01-01

    Natural RNAs, especially tRNAs, are extensively modified to tailor structure and function diversities. Uracil is the most modified nucleobase among all natural nucleobases. Interestingly, >76% of uracil modifications are located on its 5-position. We have investigated the natural 5-methoxy (5-O-CH3) modification of uracil in the context of A-form oligonucleotide duplex. Our X-ray crystal structure indicates first a H-bond formation between the uracil 5-O-CH3 and its 5′-phosphate. This novel H-bond is not observed when the oxygen of 5-O-CH3 is replaced with a larger atom (selenium or sulfur). The 5-O-CH3 modification does not cause significant structure and stability alterations. Moreover, our computational study is consistent with the experimental observation. The investigation on the uracil 5-position demonstrates the importance of this RNA modification at the atomic level. Our finding suggests a general interaction between the nucleobase and backbone and reveals a plausible function of the tRNA 5-O-CH3 modification, which might potentially rigidify the local conformation and facilitates translation. PMID:22641848

  6. Adsorption and carbonylation of plasma proteins by dialyser membrane material: in vitro and in vivo proteomics investigations

    PubMed Central

    Pavone, Barbara; Sirolli, Vittorio; Bucci, Sonia; Libardi, Fulvio; Felaco, Paolo; Amoroso, Luigi; Sacchetta, Paolo; Urbani, Andrea; Bonomini, Mario

    2010-01-01

    Background. Protein carbonylation is an irreversible and not reparable reaction which is caused by the introduction into proteins of carbonyl derivatives such as ketones and aldehydes, generated from direct oxidation processes or from secondary protein reaction with reactive carbonyl compounds. Several studies have demonstrated significantly increased levels of reactive carbonyl compounds, a general increase in plasma protein carbonyls and carbonyl formation on major plasma proteins in blood from uremic patients, particularly those undergoing chronic haemodialysis. Materials and methods. In the present preliminary study, we first assessed by an in vitro filtration apparatus the possible effects of different materials used for haemodialysis membranes on protein retention and carbonylation. We employed hollow fiber minidialyzers of identical structural characteristics composed of either polymethylmethacrylate, ethylenevinyl alcohol, or cellulose diacetate materials. Protein Western Blot and SDS-PAGE coupled to mass spectrometry analysis were applied to highlight the carbonylated protein-binding characteristics of the different materials. We also investigated in vivo protein carbonylation and carboxy methyl lisine-modification in plasma obtained before and after a haemodialysis session. Results. Our data underline a different capability on protein adsorption associated with the different properties of the filter materials, highlighting the central buffering and protective role of serum albumin. In particular, polymethylmethacrylate and cellulose diacetate showed, in vitro, the highest capacity of binding plasma proteins on the surface of the hollow fiber minidialyzers. Conclusions. The present study suggests that biomaterials used for fabrication of haemodialysis membrane may affect the carbonyl balance in chronic uremic patients. PMID:20606741

  7. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGES

    Yu, L.; Smith, J.; Laskin, A.; ...

    2014-08-19

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl ( 3C*) and hydroxyl radical (·OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules aremore » identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than ·OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  8. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGES

    Yu, L.; Smith, J.; Laskin, A.; ...

    2014-12-23

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C 6H 5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants – the triplet excited states of an aromatic carbonyl ( 3C *) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). Amore » large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C * are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV–visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  9. CARBONYLATION OF MYOSIN HEAVY CHAINS IN RAT HEARTS DURING DIABETES

    PubMed Central

    Shao, Chun-Hong; Rozanski, George J.; Nagai, Ryoji; Stockdale, Frank E.; Patel, Kaushik P.; Wang, Mu; Singh, Jaipaul; Mayhan, William G.; Bidasee, Keshore R.

    2010-01-01

    Cardiac inotropy progressively declines during diabetes mellitus. To date, the molecular mechanisms underlying this defect remain incompletely characterized. This study tests the hypothesis that ventricular myosin heavy chains (MHC) undergo carbonylation by reactive carbonyl species (RCS) during diabetes and these modifications contribute to the inotropic decline. Male Sprague-Dawley rats were injected with streptozotocin (STZ). Fourteen days later animals were divided into two groups: one group was treated with the RCS blocker aminoguanidine for six weeks, while the other group received no treatment. After eight weeks of diabetes, cardiac ejection fraction, fractional shortening, left ventricular pressure development (+dP/dt) and myocyte shortening were decreased by 9%, 16%, 34% and 18%, respectively. Ca2+- and Mg2+-actomyosin ATPase activities and peak actomyosin syneresis were also reduced by 35%, 28%, and 72%. MHC-α to MHC-β ratio was 12:88. Mass spectrometry and Western blots revealed the presence of carbonyl adducts on MHC-α and MHC-β. Aminoguandine treatment did not alter MHC composition, but it blunted formation of carbonyl adducts and decreases in actomyosin Ca2+-sensitive ATPase activity, syneresis, myocyte shortening, cardiac ejection fraction, fractional shortening and +dP/dt induced by diabetes. From these new data it can be concluded that in addition to isozyme switching, modification of MHC by RCS also contributes to the inotropic decline seen during diabetes. PMID:20359464

  10. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration.

    PubMed

    Botella, Jose A; Ulschmid, Julia K; Gruenewald, Christoph; Moehle, Christoph; Kretzschmar, Doris; Becker, Katja; Schneuwly, Stephan

    2004-05-04

    A growing body of evidence suggests that oxidative stress is a common underlying mechanism in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Huntington's, Creutzfeld-Jakob and Parkinson's diseases. Despite the increasing number of reports finding a causal relation between oxidative stress and neurodegeneration, little is known about the genetic elements that confer protection against the deleterious effects of oxidation in neurons. We have isolated and characterized the Drosophila melanogaster gene sniffer, whose function is essential for preventing age-related neurodegeneration. In addition, we demonstrate that oxidative stress is a direct cause of neurodegeneration in the Drosophila central nervous system and that reduction of sniffer activity leads to neuronal cell death. The overexpression of the gene confers neuronal protection against oxygen-induced apoptosis, increases resistance of flies to experimental normobaric hyperoxia, and improves general locomotor fitness. Sniffer belongs to the family of short-chain dehydrogenase/reductase (SDR) enzymes and exhibits carbonyl reductase activity. This is the first in vivo evidence of the direct and important implication of this enzyme as a neuroprotective agent in the cellular defense mechanisms against oxidative stress.

  11. Synthesis of furan-3-carboxylic and 4-methylene-4,5-dihydrofuran-3-carboxylic esters by direct palladium iodide catalyzed oxidative carbonylation of 3-yne-1,2-diol derivatives.

    PubMed

    Gabriele, Bartolo; Mancuso, Raffaella; Maltese, Vito; Veltri, Lucia; Salerno, Giuseppe

    2012-10-05

    A variety of 3-yne-1,2-diol derivatives 1, bearing a primary or secondary alcoholic group at C-1, have been efficiently converted into high value added furan-3-carboxylic esters 2 in one step by PdI(2)/KI-catalyzed direct oxidative carbonylation, carried out in alcoholic media under relatively mild conditions (100 °C under 40 atm of a 4/1 mixture of CO and air). Carbonylated furans 2 were obtained in fair to excellent isolated yields (56-93%) through a sequential 5-endo-dig heterocyclization-alkoxycarbonylation-dehydration process, using only oxygen as the external oxidant. Under similar conditions, 2-methyl-3-yne-1,2-diols 3, bearing a tertiary alcoholic group, afforded 4-methylene-4,5-dihydrofuran-3-carboxylates 4 in satisfactory yields (58-70%).

  12. In situ visualization of carbonylation and its co-localization with proteins, lipids, DNA and RNA in Caenorhabditis elegans.

    PubMed

    Kuzmic, Mira; Javot, Hélène; Bonzom, Jean-Marc; Lecomte-Pradines, Catherine; Radman, Miroslav; Garnier-Laplace, Jacqueline; Frelon, Sandrine

    2016-12-01

    All key biological macromolecules are susceptible to carbonylation - an irreparable oxidative damage with deleterious biological consequences. Carbonyls in proteins, lipids and DNA from cell extracts have been used as a biomarker of oxidative stress and aging, but formation of insoluble aggregates by carbonylated proteins precludes quantification. Since carbonylated proteins correlate with and become a suspected cause of morbidity and mortality in some organisms, there is a need for their accurate quantification and localization. Using appropriate fluorescent probes, we have developed an in situ detection of total proteins, DNA, RNA, lipids and carbonyl groups at the level of the whole organism. In C. elegans, we found that after UV irradiation carbonylation co-localizes mainly with proteins and, to a lesser degree, with DNA, RNA and lipids. The method efficiency was illustrated by carbonylation induction assessment over 5 different UV doses. The procedure enables the monitoring of carbonylation in the nematode C. elegans during stress, aging and disease along its life cycle including the egg stage. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Carbonyl compounds at Mount Tai in the North China Plain: Characteristics, sources, and effects on ozone formation

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Xue, Likun; Yao, Lan; Li, Qinyi; Wen, Liang; Zhu, Yanhong; Chen, Tianshu; Wang, Xinfeng; Yang, Lingxiao; Wang, Tao; Lee, Shuncheng; Chen, Jianmin; Wang, Wenxing

    2017-11-01

    Carbonyl compounds, an important category of volatile organic compounds (VOCs), play important roles in ozone (O3) formation and atmospheric chemistry. To better understand the characteristics and sources of carbonyl compounds and their effects on O3 formation, C1-C8 carbonyls were measured at Mount Tai, the highest mountain in the North China Plain (NCP), in summer 2014. Acetone (3.57 ± 0.55 ppbv), formaldehyde (3.48 ± 0.98 ppbv) and acetaldehyde (1.27 ± 0.78 ppbv) are the three most abundant species, comprising as high as 90% of the total observed compounds. Isovaleraldehyde (0.37 ± 0.17 ppbv) presents another important carbonyl compound despite its high reactivity. Comparison with the observations available in China highlights the serious situation of carbonyls pollution in the NCP region. The sources of carbonyls are dominated by photo-oxidation of VOCs during the daytime and regional transport at night. Secondary sources from oxidation of hydrocarbons contribute on average 44% of formaldehyde, 31% of acetone, 85% of acetaldehyde, 78% of benzaldehyde, and 84% of isovaleraldehyde, demonstrating the dominant role of secondary formation in the ambient carbonyl levels. Formaldehyde, acetaldehyde and isovaleraldehyde are the most important contributors to the OH reactivity and O3 production among the measured carbonyls. This study shows that carbonyl compounds contribute significantly to the photochemical pollution in the NCP region and hence understanding their sources and characteristics is essential for developing the science-based O3 pollution control strategies.

  14. Negative Differential Conductance in Polyporphyrin Oligomers with Nonlinear Backbones.

    PubMed

    Kuang, Guowen; Chen, Shi Zhang; Yan, Linghao; Chen, Ke Qiu; Shang, Xuesong; Liu, Pei Nian; Lin, Nian

    2018-01-17

    We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink. Aided by density functional theory with nonequilibrium Green's functions simulations, we attributed this backbone-dependent NDC to bias-modulated hybridization of the electrode states with the resonant transport molecular orbital. We argue this mechanism is generic in molecular systems, which opens a new route of designing molecular NDC devices.

  15. Fundamental understanding of distracted oxygen delignification efficiency by dissolved lignin during biorefinery process of eucalyptus.

    PubMed

    Zhao, Huifang; Li, Jing; Zhang, Xuejin

    2018-06-01

    In this work, a fundamental understanding of oxygen delignification distracted by dissolved lignin was investigated. In the new biorefinery model of shortening kraft pulping integrated with extended oxygen delignification process, increasing content of residual lignin in the original pulp could result in enhanced delignification efficiency, higher pulp viscosity and less carbonyl groups. However, the invalid oxygen consumption by dissolved lignin could be increased with the increase of process temperature and alkali dosage. The normalized ultraviolet absorbance (divided by absorbance at 280 nm) also showed that the content of chromophoric group in dissolved lignin decreased with oxygen delignification proceeded, both of which indicated that dissolved lignin could enhance the invalid oxygen consumption. Therefore, a conclusion that replacement of the liquor at the initial phase of oxygen delignification process would balance the enhancement of delignification efficiency and invalid oxygen consumption was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Geometry motivated alternative view on local protein backbone structures.

    PubMed

    Zacharias, Jan; Knapp, Ernst Walter

    2013-11-01

    We present an alternative to the classical Ramachandran plot (R-plot) to display local protein backbone structure. Instead of the (φ, ψ)-backbone angles relating to the chemical architecture of polypeptides generic helical parameters are used. These are the rotation or twist angle ϑ and the helical rise parameter d. Plots with these parameters provide a different view on the nature of local protein backbone structures. It allows to display the local structures in polar (d, ϑ)-coordinates, which is not possible for an R-plot, where structural regimes connected by periodicity appear disconnected. But there are other advantages, like a clear discrimination of the handedness of a local structure, a larger spread of the different local structure domains--the latter can yield a better separation of different local secondary structure motives--and many more. Compared to the R-plot we are not aware of any major disadvantage to classify local polypeptide structures with the (d, ϑ)-plot, except that it requires some elementary computations. To facilitate usage of the new (d, ϑ)-plot for protein structures we provide a web application (http://agknapp.chemie.fu-berlin.de/secsass), which shows the (d, ϑ)-plot side-by-side with the R-plot. © 2013 The Protein Society.

  17. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.

    PubMed

    Zhao, Qing; Zhu, Zhiqiang; Chen, Jun

    2017-12-01

    Organic carbonyl electrode materials that have the advantages of high capacity, low cost and being environmentally friendly, are regarded as powerful candidates for next-generation stationary and redox flow rechargeable batteries (RFBs). However, low carbonyl utilization, poor electronic conductivity and undesired dissolution in electrolyte are urgent issues to be solved. Here, we summarize a molecular engineering approach for tuning the capacity, working potential, concentration of active species, kinetics, and stability of stationary and redox flow batteries, which well resolves the problems of organic carbonyl electrode materials. As an example, in stationary batteries, 9,10-anthraquinone (AQ) with two carbonyls delivers a capacity of 257 mAh g -1 (2.27 V vs Li + /Li), while increasing the number of carbonyls to four with the formation of 5,7,12,14-pentacenetetrone results in a higher capacity of 317 mAh g -1 (2.60 V vs Li + /Li). In RFBs, AQ, which is less soluble in aqueous electrolyte, reaches 1 M by grafting -SO 3 H with the formation of 9,10-anthraquinone-2,7-disulphonic acid, resulting in a power density exceeding 0.6 W cm -2 with long cycling life. Therefore, through regulating substituent groups, conjugated structures, Coulomb interactions, and the molecular weight, the electrochemical performance of carbonyl electrode materials can be rationally optimized. This review offers fundamental principles and insight into designing advanced carbonyl materials for the electrodes of next-generation rechargeable batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High Pressure Synthesis of Transition Metal Carbonyls.

    ERIC Educational Resources Information Center

    Hagen, A. P.; And Others

    1979-01-01

    Presents an experiment which uses readily available starting materials and inexpensive equipment for synthesis of transition metal carbonyls at 1000 atm and which is intended to give students experience in techniques used in research and industry. Safety precautions are emphasized. (Author/SA)

  19. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment

    PubMed Central

    Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen

    2015-01-01

    To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability. PMID:26257980

  20. Nitric Oxide Enhances Desiccation Tolerance of Recalcitrant Antiaris toxicaria Seeds via Protein S-Nitrosylation and Carbonylation

    PubMed Central

    Bai, Xuegui; Yang, Liming; Tian, Meihua; Chen, Jinhui; Shi, Jisen; Yang, Yongping; Hu, Xiangyang

    2011-01-01

    The viability of recalcitrant seeds is lost following stress from either drying or freezing. Reactive oxygen species (ROS) resulting from uncontrolled metabolic activity are likely responsible for seed sensitivity to drying. Nitric oxide (NO) and the ascorbate-glutathione cycle can be used for the detoxification of ROS, but their roles in the seed response to desiccation remain poorly understood. Here, we report that desiccation induces rapid accumulation of H2O2, which blocks recalcitrant Antiaris toxicaria seed germination; however, pretreatment with NO increases the activity of antioxidant ascorbate-glutathione pathway enzymes and metabolites, diminishes H2O2 production and assuages the inhibitory effects of desiccation on seed germination. Desiccation increases the protein carbonylation levels and reduces protein S-nitrosylation of these antioxidant enzymes; these effects can be reversed with NO treatment. Antioxidant protein S-nitrosylation levels can be further increased by the application of S-nitrosoglutathione reductase inhibitors, which further enhances NO-induced seed germination rates after desiccation and reduces desiccation-induced H2O2 accumulation. These findings suggest that NO reinforces recalcitrant seed desiccation tolerance by regulating antioxidant enzyme activities to stabilize H2O2 accumulation at an appropriate concentration. During this process, protein carbonylation and S-nitrosylation patterns are used as a specific molecular switch to control antioxidant enzyme activities. PMID:21674063

  1. Evaluation of three simple direct or indirect carbonyl detection methods for characterization of oxidative modifications of proteins.

    PubMed

    Vásquez-Garzón, Verónica R; Rouimi, Patrick; Jouanin, Isabelle; Waeg, Georg; Zarkovic, Neven; Villa-Treviño, Saul; Guéraud, Françoise

    2012-05-01

    Among disruptions induced by oxidative stress, modifications of proteins, particularly irreversible carbonylation, are associated with the development of several diseases, including cardiovascular diseases, neurodegenerative diseases, and cancer. Carbonylation of proteins can occur directly or indirectly through the adduction of lipid oxidation products. In this study, three classical and easy-to-perform techniques to detect direct or indirect carbonylation of proteins were compared. A model protein apomyoglobin and a complex mixture of rat liver cytosolic proteins were exposed to cumene hydroperoxide oxidation or adduction to the lipid peroxidation product 4-hydroxynonenal in order to test direct or indirect carbonylation, respectively. The technique using a specific anti-4-hydroxynonenal-histidine adduct antibody was effective to detect in vitro modification of model apomyoglobin and cytosolic proteins by 4-hydroxynonenal but not by direct carbonylation which was achieved by techniques using biotin-coupled hydrazide or dinitrophenylhydrazine derivatization of carbonyls. Sequential use of these methods enabled the detection of both direct and indirect carbonyl modification in proteins, although constitutively biotinylated proteins were detected by biotin-hydrazide. Although rather classical and efficient, methods for carbonyl detection on proteins in oxidative stress studies may be biased by some artifactual detections and complicated by proteins multimerizations. The use of more and more specific available antibodies is recommended to complete detection of lipid peroxidation product adducts on proteins.

  2. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness ( h )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannige, Ranjan V.

    The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom—the backbone dihedral anglesφandψ(Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function ofφandψhas not been completely described for bothcisandtransbackbones. Additionally, little intuitive understanding is available about a peptide’s conformation simply from knowing theφandψvalues of a peptide (e.g., is the regular peptide defined byφ = ψ =  - 100°  left-handed or right-handed?). This report provides a new metric for backbone handednessmore » (h) based on interpreting a peptide backbone as a helix with axial displacementdand angular displacementθ, both of which are derived from a peptide backbone’s internal coordinates, especially dihedral anglesφ,ψandω. In particular,hequals sin(θ)d/d|, with range [-1, 1] and negative (or positive) values indicating left(or right)-handedness. The metrichis used to characterize the handedness of every region of the Ramachandran plot for bothcis(ω = 0°) and trans (ω = 180°) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ,ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013), this report presents a new plot based ondandθthat serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone includingcisandtransbackbones. The intuitiveness

  3. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness ( h )

    DOE PAGES

    Mannige, Ranjan V.

    2017-05-16

    The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom—the backbone dihedral anglesφandψ(Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function ofφandψhas not been completely described for bothcisandtransbackbones. Additionally, little intuitive understanding is available about a peptide’s conformation simply from knowing theφandψvalues of a peptide (e.g., is the regular peptide defined byφ = ψ =  - 100°  left-handed or right-handed?). This report provides a new metric for backbone handednessmore » (h) based on interpreting a peptide backbone as a helix with axial displacementdand angular displacementθ, both of which are derived from a peptide backbone’s internal coordinates, especially dihedral anglesφ,ψandω. In particular,hequals sin(θ)d/d|, with range [-1, 1] and negative (or positive) values indicating left(or right)-handedness. The metrichis used to characterize the handedness of every region of the Ramachandran plot for bothcis(ω = 0°) and trans (ω = 180°) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ,ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013), this report presents a new plot based ondandθthat serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone includingcisandtransbackbones. The intuitiveness

  4. Ceruloplasmin inhibits carbonyl formation in endogenous proteins in phorbol myristate acetate (PMA)-stimulated neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krsek-Staples, J.; Webster, R.O.

    1991-03-11

    The respiratory burst of stimulated neutrophils can cause oxidative modifications of endogenous neutrophil proteins as measured by increased carbonyl formation. Ceruloplasmin is an acute phase protein and may act as an antioxidant during inflammation. Therefore, the role of ceruloplasmin in preventing oxidative damage of endogenous neutrophil proteins was investigated. Protein carbonyl content was determined spectrophotometrically using 2,4-dinitrophenylhydrazine. Ceruloplasmin, at a concentration present during inflammation significantly inhibited carbonyl formation in endogenous proteins of PMA-stimulated neutrophils. In order to determine if oxidative damage was occurring to the ceruloplasmin upon incubation with stimulated neutrophils, carbonyl formation in the ceruloplasmin in the presence andmore » absence of stimulated neutrophils. This data suggests that ceruloplasmin may play a role in regulating oxidative damage to proteins and that ceruloplasmin itself may act as a target for these modifications.« less

  5. Extraction of dielectric and magnetic properties of carbonyl iron powder composites at high frequencies

    NASA Astrophysics Data System (ADS)

    Zivkovic, I.; Murk, A.

    2012-06-01

    In this paper, we examine carbonyl iron composites in silicone rubber and epoxy matrices. Transmission measurements were performed at W (70 to 110 GHz) and Ka (26 to 40 GHz) bands and effective permittivity and permeability of composites with 10% volume fraction of carbonyl iron powder (CIP) were extracted at these frequencies. To extract permittivity and permeability of carbonyl iron powder in W and Ka bands, we use Looyenga formula. We extract permittivity and permeability of CIP from both silicone rubber and epoxy based composites and good agreement is achieved.

  6. Structural test of the parameterized-backbone method for protein design.

    PubMed

    Plecs, Joseph J; Harbury, Pehr B; Kim, Peter S; Alber, Tom

    2004-09-03

    Designing new protein folds requires a method for simultaneously optimizing the conformation of the backbone and the side-chains. One approach to this problem is the use of a parameterized backbone, which allows the systematic exploration of families of structures. We report the crystal structure of RH3, a right-handed, three-helix coiled coil that was designed using a parameterized backbone and detailed modeling of core packing. This crystal structure was determined using another rationally designed feature, a metal-binding site that permitted experimental phasing of the X-ray data. RH3 adopted the intended fold, which has not been observed previously in biological proteins. Unanticipated structural asymmetry in the trimer was a principal source of variation within the RH3 structure. The sequence of RH3 differs from that of a previously characterized right-handed tetramer, RH4, at only one position in each 11 amino acid sequence repeat. This close similarity indicates that the design method is sensitive to the core packing interactions that specify the protein structure. Comparison of the structures of RH3 and RH4 indicates that both steric overlap and cavity formation provide strong driving forces for oligomer specificity.

  7. Impact of aggregation on scaling behavior of Internet backbone traffic

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Li; Ribeiro, Vinay J.; Moon, Sue B.; Diot, Christophe

    2002-07-01

    We study the impact of aggregation on the scaling behavior of Internet backbone tra ffic, based on traces collected from OC3 and OC12 links in a tier-1 ISP. We make two striking observations regarding the sub-second small time scaling behaviors of Internet backbone traffic: 1) for a majority of these traces, the Hurst parameters at small time scales (1ms - 100ms) are fairly close to 0.5. Hence the traffic at these time scales are nearly uncorrelated; 2) the scaling behaviors at small time scales are link-dependent, and stay fairly invariant over changing utilization and time. To understand the scaling behavior of network traffic, we develop analytical models and employ them to demonstrate how traffic composition -- aggregation of traffic with different characteristics -- affects the small-time scalings of network traffic. The degree of aggregation and burst correlation structure are two major factors in traffic composition. Our trace-based data analysis confirms this. Furthermore, we discover that traffic composition on a backbone link stays fairly consistent over time and changing utilization, which we believe is the cause for the invariant small-time scalings we observe in the traces.

  8. A new characterization of three-dimensional conductivity backbone above and below the percolation threshold

    NASA Astrophysics Data System (ADS)

    Skal, Asya S.

    1996-08-01

    A new definition of three-dimensional conductivity backbone, obtained from a distribution function of Joule heat and the Hall coefficient is introduced. The fractal dimension d fB = d - ( {g}/{v}) = 2.25 of conductivity backbone for both sides of the threshold is obtained from a critical exponent of the Hall coefficient g = 0.6. This allows one to construct, below the threshold, a new order parameter of metal-conductor transition—the two-component infinite conductivity back-bone and tested scaling relation, proposed by Alexander and Orbach [ J. Phys. Rev. Lett.43, 1982, L625] for both sides of a threshold.

  9. Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.

    PubMed

    Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong

    2018-01-01

    Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.

  10. An aircraft measurement technique for formaldehyde and soluble carbonyl compounds

    NASA Astrophysics Data System (ADS)

    Lee, Yin-Nan; Zhou, Xianliang; Leaitch, W. Richard; Banic, Catharine M.

    1996-12-01

    An aircraft technique was developed for measuring ambient concentrations of formaldehyde and a number of soluble carbonyl compounds, including glycolaldehyde, glyoxal, methylglyoxal, glyoxylic acid, and pyruvic acid. Sampling was achieved by liquid scrubbing using a glass coil scrubber in conjunction with an autosampler which collected 5-min integrated liquid samples in septum-sealed vials. Analysis was performed on the ground after flight using high-performance liquid chromatography following derivatization of the carbonyl analytes with 2,4-dinitrophenylhydrazine; the limit of detection was 0.01 to 0.02 parts per billion by volume (ppbv) in the gas phase. Although lacking a real-time capability, this technique offers the advantage of simultaneously measuring six carbonyl compounds, savings in space and power on the aircraft, and a dependable ground-based analysis. This technique was deployed on the Canadian National Research Council DHC-6 Twin Otter during the 1993 summer intensive of the North Atlantic Regional Experiment. The data obtained on August 28, 1993, during a pollutant transport episode are presented as an example of the performance and capability of this technique.

  11. Characteristics of carbonyl compounds in public vehicles of Beijing city: Concentrations, sources, and personal exposures

    NASA Astrophysics Data System (ADS)

    Pang, Xiaobing; Mu, Yujing

    The characteristics of carbonyl compounds (carbonyls) including concentrations, major sources, and personal exposure were investigated for 29 vehicles including taxi, bus and subway in Beijing. It was found that the taxis (Xiali, TA) and buses (Huanghe, BA) fueled by gasoline with longer service years had the higher indoor carbonyl levels (178±42.7 and 188±31.6 μg m -3) while subways energized by electricity without exhaust and the jingwa buses (BB) driven in the suburb had the lower levels with total concentrations of 98.5±26.3 and 92.1±20.3 μg m -3, respectively. Outdoor carbonyls of taxi cars and buses were nearly at the same level with their total concentrations varying from 80 to 110 μg m -3. The level of outdoor subways carbonyls was equal with the ambient air levels. Exhaust leakage, indoor material emissions, photochemical formation, and infiltration of outdoor air were considered to be the major sources to in-vehicle carbonyls. Personal exposures and cancer risk to formaldehyde and acetaldehyde were calculated for professional bus and taxi drivers, respectively. Taxi drivers had the highest cancer risk with personal exposure to formaldehyde and acetaldehyde of 212 and 243 μg day -1, respectively. The public concern should pay considerable attention to professional drivers' health.

  12. Photosensitized regeneration of carbonyl compounds from oximes.

    PubMed

    de Lijser, H J Peter; Fardoun, Fadia H; Sawyer, Jody R; Quant, Michelle

    2002-07-11

    [reaction: see text] Deprotection of oximes to their corresponding carbonyl compounds through the use of photosensitized electron-transfer reactions proceeds in reasonable to good yields. Better yields are obtained in nonpolar solvents and when triplet sensitizers are used. Preliminary mechanistic studies suggest the involvement of an iminoxyl radical.

  13. Induced helical backbone conformations of self-organizable dendronized polymers.

    PubMed

    Rudick, Jonathan G; Percec, Virgil

    2008-12-01

    Control of function through the primary structure of a molecule presents a significant challenge with valuable rewards for nanoscience. Dendritic building blocks encoded with information that defines their three-dimensional shape (e.g., flat-tapered or conical) and how they associate with each other are referred to as self-assembling dendrons. Self-organizable dendronized polymers possess a flat-tapered or conical self-assembling dendritic side chain on each repeat unit of a linear polymer backbone. When appended to a covalent polymer, the self-assembling dendrons direct a folding process (i.e., intramolecular self-assembly). Alternatively, intermolecular self-assembly of dendrons mediated by noncovalent interactions between apex groups can generate a supramolecular polymer backbone. Self-organization, as we refer to it, is the spontaneous formation of periodic and quasiperiodic arrays from supramolecular elements. Covalent and supramolecular polymers jacketed with self-assembling dendrons self-organize. The arrays are most often comprised of cylindrical or spherical objects. The shape of the object is determined by the primary structure of the dendronized polymer: the structure of the self-assembling dendron and the length of the polymer backbone. It is therefore possible to predictably generate building blocks for single-molecule nanotechnologies or arrays of supramolecules for bottom-up self-assembly. We exploit the self-organization of polymers jacketed with self-assembling dendrons to elucidate how primary structure determines the adopted conformation and fold (i.e., secondary and tertiary structure), how the supramolecules associate (i.e., quaternary structure), and their resulting functions. A combination of experimental techniques is employed to interrogate the primary, secondary, tertiary, and quaternary structure of the self-organizable dendronized polymers. We refer to the process by which we interpolate between the various levels of structural

  14. Synthesis of Diiron(I) Dithiolato Carbonyl Complexes.

    PubMed

    Li, Yulong; Rauchfuss, Thomas B

    2016-06-22

    Virtually all organosulfur compounds react with Fe(0) carbonyls to give the title complexes. These reactions are reviewed in light of major advances over the past few decades, spurred by interest in Fe2(μ-SR)2(CO)x centers at the active sites of the [FeFe]-hydrogenase enzymes. The most useful synthetic route to Fe2(μ-SR)2(CO)6 involves the reaction of thiols with Fe2(CO)9 and Fe3(CO)12. Such reactions can proceed via mono-, di-, and triiron intermediates. The reactivity of Fe(0) carbonyls toward thiols is highly chemoselective, and the resulting dithiolato complexes are fairly rugged. Thus, many complexes tolerate further synthetic elaboration directed at the organic substituents. A second major route involves alkylation of Fe2(μ-S2)(CO)6, Fe2(μ-SH)2(CO)6, and Li2Fe2(μ-S)2(CO)6. This approach is especially useful for azadithiolates Fe2[(μ-SCH2)2NR](CO)6. Elaborate complexes arise via addition of the FeSH group to electrophilic alkenes, alkynes, and carbonyls. Although the first example of Fe2(μ-SR)2(CO)6 was prepared from ferrous reagents, ferrous compounds are infrequently used, although the Fe(II)(SR)2 + Fe(0) condensation reaction is promising. Almost invariably low-yielding, the reaction of Fe3(CO)12, S8, and a variety of unsaturated substrates results in C-H activation, affording otherwise inaccessible derivatives. Thiones and related C═S-containing reagents are highly reactive toward Fe(0), often giving complexes derived from substituted methanedithiolates and C-H activation.

  15. Carbonyls emission from ethanol-blended gasoline and biodiesel-ethanol-diesel used in engines

    NASA Astrophysics Data System (ADS)

    Pang, Xiaobing; Mu, Yujing; Yuan, Juan; He, Hong

    Detailed carbonyls emissions from ethanol-blended gasoline (containing 10% v/v, ethanol, E-10) and biodiesel-ethanol-diesel (BE-diesel) were carefully investigated on an EQ491i gasoline engine equipped with a three-way-catalyst (TWC) and a Commins-4B diesel engine. In engine-out emissions for the gasoline engine, total carbonyls from E-10 varied in the range of 66.7-99.4 mg kW -1 h -1, which was 3.1-8.2% less than those from fossil gasoline (E-0). In tailpipe emissions, total carbonyls from E-10 varied in the range of 9.2-20.7 mg kW -1 h -1, which were 3.0-61.7% higher than those from E-0. The total carbonyls emissions from BE-diesel were 1-22% higher than those from diesel at different engine operating conditions. Compared with fossil fuels, E-10 can slightly reduce CO emission, and BE-diesel can substantially decrease PM emission, while both alternative fuels increased slightly NO x emission.

  16. Protein oxidation and aging. I. Difficulties in measuring reactive protein carbonyls in tissues using 2,4-dinitrophenylhydrazine.

    PubMed

    Cao, G; Cutler, R G

    1995-06-20

    A current hypothesis explaining the aging process implicates the accumulation of oxidized protein in animal tissues. This hypothesis is based on a series of reports showing an age-dependent increase in protein carbonyl content and an age-dependent loss of enzyme function. This hypothesis is also supported by the report of a novel effect of N-tert-butyl-alpha-phenylnitrone (PBN) in reversing these age-dependent changes. Here we specifically study the method that was used to measure reactive protein carbonyls in tissues. This method uses 2,4-dinitrophenylhydrazine (DNPH) and includes a washing procedure. Our results indicate that reactive protein carbonyls in normal crude tissue extracts cannot be reliably measured by this method, although it does reliably measure reactive carbonyls in purified proteins which have been oxidatively modified in vitro. The nucleic acids in tissues could be a major problem encountered in the assay. Using the streptomycin sulfate treatment combined with a dialysis step, we were successful in removing most nucleic acids from a crude tissue extract, but then the reactive carbonyl level in the crude tissue extract was too low to be reliably measured. This streptomycin sulfate treatment procedure, however, had no effect on the reactive carbonyl measurement of an oxidized protein sample. The unwashed free DNPH was another major problem in the assay because of its very strong absorption around 370 nm, where reactive carbonyls were quantitated. Nevertheless, on using the procedure described in the literature to measure total "reactive carbonyls" in rat liver and gerbil brain cortex, no change with age or PBN treatment was found. Then, we investigated a HPLC procedure which uses sodium dodecyl sulfate in the mobile phase but this was also found to be unsuitable for the reactive protein carbonyl assay in tissues.

  17. Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids.

    PubMed

    Dalle-Donne, Isabella; Carini, Marina; Orioli, Marica; Vistoli, Giulio; Regazzoni, Luca; Colombo, Graziano; Rossi, Ranieri; Milzani, Aldo; Aldini, Giancarlo

    2009-05-15

    Most of the assays for detection of carbonylated proteins, the most general and widely used marker of severe protein oxidation, involve derivatization of the carbonyl group with 2,4-dinitrophenylhydrazine (DNPH), which leads to formation of a stable dinitrophenyl hydrazone product. Here, by using a Cys-containing model peptide and high-resolution mass spectrometry, we demonstrate that DNPH is not exclusively selective for carbonyl groups, because it also reacts with sulfenic acids, forming a DNPH adduct, through the acid-catalyzed formation of a thioaldehyde intermediate that is further converted to an aldehyde. beta-Mercaptoethanol prevents the formation of the DNPH derivative because it reacts with the oxidized Cys residue, forming the corresponding disulfide.

  18. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.

    PubMed

    Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A

    2018-06-06

    Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.

  19. Development of High-Performance Chemical Isotope Labeling LC-MS for Profiling the Carbonyl Submetabolome.

    PubMed

    Zhao, Shuang; Dawe, Margot; Guo, Kevin; Li, Liang

    2017-06-20

    Metabolites containing a carbonyl group represent several important classes of molecules including various forms of ketones and aldehydes such as steroids and sugars. We report a high-performance chemical isotope labeling (CIL) LC-MS method for profiling the carbonyl submetabolome with high coverage and high accuracy and precision of relative quantification. This method is based on the use of dansylhydrazine (DnsHz) labeling of carbonyl metabolites to change their chemical and physical properties to such an extent that the labeled metabolites can be efficiently separated by reversed phase LC and ionized by electrospray ionization MS. In the analysis of six standards representing different carbonyl classes, acetaldehyde could be ionized only after labeling and MS signals were significantly increased for other 5 standards with an enhancement factor ranging from ∼15-fold for androsterone to ∼940-fold for 2-butanone. Differential 12 C- and 13 C-DnsHz labeling was developed for quantifying metabolic differences in comparative samples where individual samples were separately labeled with 12 C-labeling and spiked with a 13 C-labeled pooled sample, followed by LC-MS analysis, peak pair picking, and peak intensity ratio measurement. In the replicate analysis of a 1:1 12 C-/ 13 C-labeled human urine mixture (n = 6), an average of 2030 ± 39 pairs per run were detected with 1737 pairs in common, indicating the possibility of detecting a large number of carbonyl metabolites as well as high reproducibility of peak pair detection. The average RSD of the peak pair ratios was 7.6%, and 95.6% of the pairs had a RSD value of less than 20%, demonstrating high precision for peak ratio measurement. In addition, the ratios of most peak pairs were close to the expected value of 1.0 (e.g., 95.5% of them had ratios of between 0.67 and 1.5), showing the high accuracy of the method. For metabolite identification, a library of DnsHz-labeled standards was constructed, including 78 carbonyl

  20. Functionalization of 6-nitrobenzo[1,3]dioxole with carbonyl compounds via TDAE methodology.

    PubMed

    Amiri-Attou, Ouassila; Terme, Thierry; Vanelle, Patrice

    2005-05-13

    We report herein the synthesis of substituted 2-(6-nitrobenzo[1,3]dioxol-5-yl)-1- aryl ethanols and 2-(6-nitrobenzo[1,3]dioxol-5-yl)-propionic acid ethyl esters from the reaction of 5-chloromethyl-6-nitrobenzo[1,3]dioxole with various aromatic carbonyl and alpha- carbonyl ester derivatives using the tetrakis(dimethylamino)ethylene (TDAE) methodology.

  1. Lack of FTSH4 Protease Affects Protein Carbonylation, Mitochondrial Morphology, and Phospholipid Content in Mitochondria of Arabidopsis: New Insights into a Complex Interplay.

    PubMed

    Smakowska, Elwira; Skibior-Blaszczyk, Renata; Czarna, Malgorzata; Kolodziejczak, Marta; Kwasniak-Owczarek, Malgorzata; Parys, Katarzyna; Funk, Christiane; Janska, Hanna

    2016-08-01

    FTSH4 is one of the inner membrane-embedded ATP-dependent metalloproteases in mitochondria of Arabidopsis (Arabidopsis thaliana). In mutants impaired to express FTSH4, carbonylated proteins accumulated and leaf morphology was altered when grown under a short-day photoperiod, at 22°C, and a long-day photoperiod, at 30°C. To provide better insight into the function of FTSH4, we compared the mitochondrial proteomes and oxyproteomes of two ftsh4 mutants and wild-type plants grown under conditions inducing the phenotypic alterations. Numerous proteins from various submitochondrial compartments were observed to be carbonylated in the ftsh4 mutants, indicating a widespread oxidative stress. One of the reasons for the accumulation of carbonylated proteins in ftsh4 was the limited ATP-dependent proteolytic capacity of ftsh4 mitochondria, arising from insufficient ATP amount, probably as a result of an impaired oxidative phosphorylation (OXPHOS), especially complex V. In ftsh4, we further observed giant, spherical mitochondria coexisting among normal ones. Both effects, the increased number of abnormal mitochondria and the decreased stability/activity of the OXPHOS complexes, were probably caused by the lower amount of the mitochondrial membrane phospholipid cardiolipin. We postulate that the reduced cardiolipin content in ftsh4 mitochondria leads to perturbations within the OXPHOS complexes, generating more reactive oxygen species and less ATP, and to the deregulation of mitochondrial dynamics, causing in consequence the accumulation of oxidative damage. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Trace analysis of carbonyl compounds by liquid chromatography-mass spectrometry after collection as 2,4-dinitrophenylhydrazine derivatives.

    PubMed

    Sakuragawa, A; Yoneno, T; Inoue, K; Okutani, T

    1999-06-04

    This study describes the utilization of carbonyl- 2,4-dinitrophenylhydrazine (DNPH) derivatives for the determination of a micro amount of carbonyl compounds in air by liquid chromatography-mass spectrometry (LC-MS). After the carbonyl compounds are collected using a Waters Sep-Pak C18 cartridge column with-impregnated DNPH on octadecylsilica, they are eluted by acetonitrile as carbonyl-DNPH derivatives. A 20-mm3 aliquot of eluent is injected into the LC-MS system. The four derivatives (formaldehyde-, acetaldehyde-, acrolein- and acetone-DNPH) were eluted within 7 min with acetonitrile-water (60:40, v/v) as the mobile phase. The proposed method offers sub-ppb sensitivity and good reproducibility and was applied to the determination of these carbonyl compounds in actual air samples from store rooms, laboratories and offices. The relative standard deviations for these samples (n = 6) were 1 to 3%.

  3. Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen.

    PubMed

    Miyamoto, Sayuri; Nantes, Iseli L; Faria, Priscila A; Cunha, Daniela; Ronsein, Graziella E; Medeiros, Marisa H G; Di Mascio, Paolo

    2012-10-01

    The interaction of cytochrome c (cyt c) with cardiolipin (CL) induces protein conformational changes that favor peroxidase activity. This process has been correlated with CL oxidation and the induction of cell death. Here we report evidence demonstrating the generation of singlet molecular oxygen [O(2)((1)Δ(g))] by a cyt c-CL complex in a model membrane containing CL. The formation of singlet oxygen was directly evidenced by luminescence measurements at 1270 nm and by chemical trapping experiments. Singlet oxygen generation required cyt c-CL binding and occurred at pH values higher than 6, consistent with lipid-protein interactions involving fully deprotonated CL species and positively charged residues in the protein. Moreover, singlet oxygen formation was specifically observed for tetralinoleoyl CL species and was not observed with monounsaturated and saturated CL species. Our results show that there are at least two mechanisms leading to singlet oxygen formation: one with fast kinetics involving the generation of singlet oxygen directly from CL hydroperoxide decomposition and the other involving CL oxidation. The contribution of the first mechanism was clearly evidenced by the detection of labeled singlet oxygen [(18)O(2)((1)Δ(g))] from liposomes supplemented with 18-oxygen-labeled CL hydroperoxides. However quantitative analysis showed that singlet oxygen yield from CL hydroperoxides was minor (<5%) and that most of the singlet oxygen is formed from the second mechanism. Based on these data and previous findings we propose a mechanism of singlet oxygen generation through reactions involving peroxyl radicals (Russell mechanism) and excited triplet carbonyl intermediates (energy transfer mechanism).

  4. Chemical and biological techniques for identifying irradiated foods and food constituents-carbonyls and 2-deoxygluconic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, J.; Esterbauer, H.

    1973-01-01

    From international colloquium: the identification of irradiated foodstuffs; Karlsruhe, Germany (24 Oct 1973). New microbiological and chemical procedures are described for the detection, concentration, and identification of compounds produced in irradiated foods. The microbiological method employs an equation, by which inhibition of cell growth is expressed in a simple, economic, and consistent manner for identification of different classes of growth inhibitors using a single growth index, namely, concentration of substance at which time needed for log phase cells to double is ten times the controls. The chemical procedure permits carbonyl compounds to be spectrophotometrically determined in the presence of carbohydratesmore » without prior separation. The G(carbonyl) yields have been measured in irradiated hexoses and disaccharide solutions in the presence and absence of OH scavengers (KI and formate) and e/sub aq/ scavengers (N/sub 2/O). It has been demonstrated that the cytotoxic carbonyls produced upon carbohydrate irradiation are dicarbonyl sugars which convert to alpha , BETA -unsaturated carbonyl sugars by enolization or dehydration upon heating. Carbonyl yields in various irradiated foods are reported (e.g., strawberries: G = 2.2 and beef, G = 0.8). Both the carbonyl and microbiological techniques are uniquely applicable to the identification of non- volative compounds produced in irradiated foods. By anion exchange, we can rapidly separate enolizable carbonyls and 2-deoxygluconic acid from neutrnl sugars and obtain concentration factors of 50-fold and greater, thus enabling us to differentiate irradiated from nonirradiated foods at low radiation doses (approximately 1 Krad). (GE)« less

  5. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles

    NASA Astrophysics Data System (ADS)

    Zhou, Yingying; Xie, Hui; Zhou, Wancheng; Ren, Zhaowen

    2018-01-01

    SiO2 was successfully coated on the surface of flaky carbonyl iron particles using a chemical bath deposition method in the presence of 3-aminopropyl triethoxysilane (APTES). The morphologies, composition, valence states of elements, as well as antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and microwave network analyzer. TG curve shows the obvious weight gain of carbonyl iron was deferred to 360 °C after SiO2-coated, which can be ascribed to the exits of SiO2 overlayer. Compared with the raw carbonyl iron, SiO2-coated sample shows good wave absorption performance due to its impedance matching. The electromagnetic properties of raw and SiO2-coated carbonyl iron particles were characterized in X band before and after heat treatment at 250 °C for 10 h. It was established that SiO2-coated carbonyl iron demonstrate good thermal stability, indicating SiO2-coating is useful in the usage of microwave absorbers operating at temperature up to 250 °C.

  6. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  7. Effect of molecular conformations on the electronic transport in oxygen-substituted alkanethiol molecular junctions

    NASA Astrophysics Data System (ADS)

    Wang, Minglang; Wang, Hao; Zhang, Guangping; Wang, Yongfeng; Sanvito, Stefano; Hou, Shimin

    2018-05-01

    The relationship between the molecular structure and the electronic transport properties of molecular junctions based on thiol-terminated oligoethers, which are obtained by replacing every third methylene unit in the corresponding alkanethiols with an oxygen atom, is investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Our calculations show that the low-bias conductance depends strongly on the conformation of the oligoethers in the junction. Specifically, in the cases of trans-extended conformation, the oxygen-dominated transmission peaks are very sharp and well below the Fermi energy, EF, thus hardly affect the transmission around EF; the Au-S interface hybrid states couple with σ-bonds in the molecular backbone forming the conduction channel at EF, resulting in a conductance decay against the molecular length close to that for alkanethiols. By contrast, for junctions with oligoethers in helical conformations, some π-type oxygen orbitals coupling with the Au-S interface hybrid states contribute to the transmission around EF. The molecule-electrode electronic coupling is also enhanced at the non-thiol side due to the specific spatial orientation introduced by the twist of the molecular backbone. This leads to a much smaller conductance decay constant. Our findings highlight the important role of the molecular conformation of oligoethers in their electronic transport properties and are also helpful for the design of molecular wires with heteroatom-substituted alkanethiols.

  8. Determination of airborne carbonyls: comparison of a thermal desorption/GC method with the standard DNPH/HPLC method.

    PubMed

    Ho, Steven Sai Hang; Yu, Jian Zhen

    2004-02-01

    The standard method for the determination of gaseous carbonyls is to collect carbonyls onto 2,4-dinitrophenyl hydrazine (DNPH) coated solid sorbent followed by solvent extraction of the solid sorbent and analysis of the derivatives using high-pressure liquid chromatography (HPLC). This paper describes a newly developed approach that involves collection of the carbonyls onto pentafluorophenyl hydrazine (PFPH) coated solid sorbents followed by thermal desorption and gas chromatographic (GC) analysis of the PFPH derivatives with mass spectrometric (MS) detection. Sampling tubes loaded with 510 nmol of PFPH on Tenax sorbent effectively collect gaseous carbonyls, including formaldehyde, acetaldehyde, propanal, butanal, heptanal, octanal, acrolein, 2-furfural, benzaldehyde, p-tolualdehyde, glyoxal, and methylglyoxal, at a flow rate of at least up to 100 mL/min. All of the tested carbonyls are shown to have method detection limits (MDLs) of subnanomoles per sampling tube, corresponding to air concentrations of <0.3 ppbv for a sampled volume of 24 L. These limits are 2-12 times lower than those that can be obtained using the DNPH/HPLC method. The improvement of MDLs is especially pronounced for carbonyls larger than formaldehyde and acetaldehyde. The PFPH/GC method also offers better peak separation and more sensitive and specific detection through the use of MS detection. Comparison studies on ambient samples and kitchen exhaust samples have demonstrated that the two methods do not yield systematic differences in concentrations of the carbonyls that are above their respective MDLs in both methods, including formaldehyde, acetaldehyde, acrolein, and butanal. The lower MDLs afforded by the PFPH/ GC method also enable the determination of a few more carbonyls in both applications.

  9. Analysis of stationary availability factor of two-level backbone computer networks with arbitrary topology

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.

  10. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  11. Carbonyl emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Machado Corrêa, Sérgio; Arbilla, Graciela

    With the use of biodiesel in clear growth, it is important to quantify any potential emission benefits or liabilities of this fuel. Several researches are available concerning the regulated emissions of biodiesel/diesel blends, but there is a lack of information about non-regulated emissions. In a previous paper [Corrêa, S.M., Arbilla, G., 2006. Emissões de formaldeído e acetaldeído de misturas biodiesel/diesel. Periódico Tchê Química, 3, 54-68], the emissions of aromatic hydrocarbons were reported. In this work, seven carbonyl emissions (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, butyraldehyde, and benzaldehyde) were evaluated by a heavy-duty diesel engine fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were conducted using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, in a steady-state condition under 1000, 1500, and 2000 rpm. The exhaust gases were diluted nearly 20 times and the carbonyls were sampled with SiO 2-C18 cartridges, impregnated with acid solution of 2,4-dinitrophenylhydrazine. The chemical analyses were performed by high performance liquid chromatography using UV detection. Using average values for the three modes of operation (1000, 1500, and 2000 rpm) benzaldehyde showed a reduction on the emission (-3.4% for B2, -5.3% for B5, -5.7% for B10, and -6.9% for B20) and all other carbonyls showed a significative increase: 2.6, 7.3, 17.6, and 35.5% for formaldehyde; 1.4, 2.5, 5.4, and 15.8% for acetaldehyde; 2.1, 5.4, 11.1, and 22.0% for acrolein+acetone; 0.8, 2.7, 4.6, and 10.0% for propionaldehyde; 3.3, 7.8, 16.0, and 26.0% for butyraldehyde.

  12. Carbonyl group containing products from nopinone oxidation

    NASA Astrophysics Data System (ADS)

    Kahnt, A.; Iinuma, Y.; Heinold, A.; Böge, O.; Herrmann, H.

    2010-12-01

    Biogenic volatile organic compounds (BVOC) such as isoprene, monoterpenes and sesquiterpenes account for a large fraction of the fluxes of atmospheric non-methane hydrocarbons. Their atmospheric degradation leads to multifunctional oxidation products that can contribute to aerosol growth. In particular, semi-volatile carbonyl compounds that are formed during the early stage of the BVOC oxidation play an important role in the formation of subsequent secondary organic aerosol (SOA) compounds. In this study, a series of aerosol chamber experiments were performed to better understand the OH initiated oxidation of nopinone and subsequent oxidation products in both the gas- and particle-phase. Nopinone is a first generation oxidation product of β-pinene and has been rarely studied for its oxidation products (Calogirou et al., 1999). The gas- and particle-phase products were sampled using a denuder/filter setup. The combination of XAD-4 and 2,4-dinitrophenylhydrazine was applied on the denuder surface to enable in-situ derivatisation of carbonyl compounds. After extraction and sample purification, the derivatised carbonyl compounds were analysed with HPLC/(-)ESI-TOFMS. The data obtained from the denuder sample analysis were compared to the data obtained from the concurrent PTR-MS measurement. The PTR-MS was used in the scan mode during the OH reactions to detect unknown gaseous oxidation products. The selected ion mode was used for some of the experiments to determine the time evolution of certain compounds. The off-line denuder sample analysis enabled us to elucidate the structures of unknown compounds whereas the PTR-MS delivers the time series of oxidation products . The influences of NOx and seed particle acidity on gas- and particle-phase product distributions will be presented. References: A. Calogirou, N.R. Jensen, C.J. Nielsen, D. Kotzias, J. Hjorth, Environmental Science & Technology 33 (1999) 453.

  13. Proteomic evaluation of myofibrillar carbonylation in chilled fish mince and its inhibition by catechin.

    PubMed

    Pazos, Manuel; Maestre, Rodrigo; Gallardo, José M; Medina, Isabel

    2013-01-01

    The present study investigates the susceptibility of individual myofibrillar proteins from mackerel (Scomber scombrus) mince to undergo carbonylation reactions during chilled storage, and the antioxidant capacity of (+)-catechin to prevent oxidative processes of proteins. The carbonylation of each particular protein was quantified by combining the labelling of protein carbonyls by fluorescein-5-thiosemicarbazide (FTSC) with 1-D or 2-D gel electrophoresis. Alpha skeletal actin, glycogen phosphorylase, unnamed protein product (UNP) similar to enolase, pyruvate kinase, isoforms of creatine kinase, aldolase A and an isoform of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) showed elevated oxidation in chilled non-supplemented mince. Myosin heavy chain (MHC) was not carbonylated in chilled muscle, but an extensive MHC degradation was observed in those samples. The supplementation of catechin reduced protein oxidation and lipid oxidation in a concentration-dependent manner: control>25>100≈200ppm. Therefore, the highest catechin concentrations (100 and 200ppm) exhibited the strongest antioxidant activity. Catechin (200ppm) reduced significantly carbonylation of protein spots identified as glycogen phosphorylase, pyruvate kinase muscle isozyme, isoforms of creatine kinase. Conversely, catechin was ineffective to inhibit the oxidation of actin and UNP similar to enolase. These results draw attention to the inefficiency of catechin to prevent actin oxidation, in contrast to the extremely high efficiency of catechin in inhibiting oxidation of lipids and other proteins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters

    PubMed Central

    Zgarbová, Marie; Luque, F. Javier; Šponer, Jiří; Cheatham, Thomas E.; Otyepka, Michal; Jurečka, Petr

    2013-01-01

    We present a refinement of the backbone torsion parameters ε and ζ of the Cornell et al. AMBER force field for DNA simulations. The new parameters, denoted as εζOL1, were derived from quantum-mechanical calculations with inclusion of conformation-dependent solvation effects according to the recently reported methodology (J. Chem. Theory Comput. 2012, 7(9), 2886-2902). The performance of the refined parameters was analyzed by means of extended molecular dynamics (MD) simulations for several representative systems. The results showed that the εζOL1 refinement improves the backbone description of B-DNA double helices and G-DNA stem. In B-DNA simulations, we observed an average increase of the helical twist and narrowing of the major groove, thus achieving better agreement with X-ray and solution NMR data. The balance between populations of BI and BII backbone substates was shifted towards the BII state, in better agreement with ensemble-refined solution experimental results. Furthermore, the refined parameters decreased the backbone RMS deviations in B-DNA MD simulations. In the antiparallel guanine quadruplex (G-DNA) the εζOL1 modification improved the description of non-canonical α/γ backbone substates, which were shown to be coupled to the ε/ζ torsion potential. Thus, the refinement is suggested as a possible alternative to the current ε/ζ torsion potential, which may enable more accurate modeling of nucleic acids. However, long-term testing is recommended before its routine application in DNA simulations. PMID:24058302

  15. Gas-phase ozonolysis of ethene in the presence of carbonyl-oxide scavengers

    NASA Astrophysics Data System (ADS)

    Wolff, Silke; Boddenberg, Axel; Thamm, Jürgen; Turner, Walter V.; Gäb, Siegmar

    Potential carbonyl-oxide scavengers are included in gas-phase ozonolysis experiments in an attempt to determine the extent to which the Criegee mechanism is involved. The scavengers selected are those whose reaction mechanism in the liquid phase is understood; water, hydrogen peroxide, alcohols and carboxylic acids have thus far been examined. The products of the ozonolysis of ethene in the gas phase depend on whether carbonyl-oxide scavengers are present. In the absence of scavengers, formaldehyde and formic acid are the major products, and only minor amounts of H 2O 2 and hydroxymethyl hydroperoxide are found. In the presence of a scavenger, certain products observed in addition to these can be regarded as arising from addition of the scavenger to the carbonyl oxide. Thus, H 2O 2 leads to the formation of hydroperoxymethyl hydroperoxide, while alcohols and formic acid give alkoxymethyl hydroperoxides and hydroperoxymethyl formate, respectively.

  16. Characterization of polycyclic aromatic hydrocarbons and carbonyl compounds in diesel exhaust emissions.

    PubMed

    Mabilia, Rosanna; Cecinato, Angelo; Tomasi Scianò, Maria Concetta; Di Palo, Vincenzo; Possanzini, Massimiliano

    2004-01-01

    Exhaust emissions from a recent model heavy-duty diesel vehicle (city bus) in a chassis dynamometer were measured during a transient driving cycle. Particle-bound polycyclic aromatic hydrocarbons (PAHs) and gaseous carbonyls, substances that create health hazards and are, as yet, unregulated were collected, the former on filters and the latter on dinitrophenylhydrazine (DNPH)-coated silica cartridges and analysed by GC-MS and HPLC, respectively. PAH emission rates decreased with the number of benzene fused rings. They averaged 0.2 mg km(-1) for a total of 11 PAHs ranging from fluoranthene to benzo(ghi)perylene. Fluoranthene and pyrene accounted for 90% of total PAHs. The sum of emission rates of C1 approximately C6 carbonyls averaged 174 mg km(-1), even if formaldehyde alone represented approximately 70% of the total carbonyl mass, followed by acetaldehyde (13%). Results obtained were compared with emission data reported in previous studies.

  17. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes

    PubMed Central

    Arges, Christopher G.; Ramani, Vijay

    2013-01-01

    Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629

  18. Sampling of atmospheric carbonyl compounds for determination by liquid chromatography after 2,4-dinitrophenylhydrazine labelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vairavamurthy, A.; Roberts, J.M.; Newman, L.

    1991-02-01

    Determination of carbonyl compounds in the ambient atmosphere is receiving increasing attention because of the critical role these compounds play as pollutants and as key participants in tropospheric photochemistry. Carbonyls are involved in photochemical reactions as products of the oxidation of hydrocarbons, precursors of oxidants including ozone and peroxycarboxylic nitric anhydrides (PANs), and as sources of free radicals and organic aerosols. A correct understanding and assessment of the role of carbonyls in tropospheric chemistry requires the accurate and precise measurement of these compounds along with their parent and product compounds. Here we discuss some of these important issues along withmore » the different techniques used for time-integrated collection of carbonyls in the DNPH based liquid chromatographic methods because of their complexity, variability and as well their importance; we emphasize the principles, advantages, and limitations of these techniques. 58 refs., 9 figs., 3 tabs.« less

  19. Integrating quantum key distribution with classical communications in backbone fiber network.

    PubMed

    Mao, Yingqiu; Wang, Bi-Xiao; Zhao, Chunxu; Wang, Guangquan; Wang, Ruichun; Wang, Honghai; Zhou, Fei; Nie, Jimin; Chen, Qing; Zhao, Yong; Zhang, Qiang; Zhang, Jun; Chen, Teng-Yun; Pan, Jian-Wei

    2018-03-05

    Quantum key distribution (QKD) provides information-theoretic security based on the laws of quantum mechanics. The desire to reduce costs and increase robustness in real-world applications has motivated the study of coexistence between QKD and intense classical data traffic in a single fiber. Previous works on coexistence in metropolitan areas have used wavelength-division multiplexing, however, coexistence in backbone fiber networks remains a great experimental challenge, as Tbps data of up to 20 dBm optical power is transferred, and much more noise is generated for QKD. Here we present for the first time, to the best of our knowledge, the integration of QKD with a commercial backbone network of 3.6 Tbps classical data at 21 dBm launch power over 66 km fiber. With 20 GHz pass-band filtering and large effective core area fibers, real-time secure key rates can reach 4.5 kbps and 5.1 kbps for co-propagation and counter-propagation at the maximum launch power, respectively. This demonstrates feasibility and represents an important step towards building a quantum network that coexists with the current backbone fiber infrastructure of classical communications.

  20. Evaluation of C4 diphosphine ligands in rhodium catalysed methanol carbonylation under a syngas atmosphere: synthesis, structure, stability and reactivity of rhodium(I) carbonyl and rhodium(III) acetyl intermediates.

    PubMed

    Lamb, Gareth; Clarke, Matthew; Slawin, Alexandra M Z; Williams, Bruce; Key, Lesley

    2007-12-21

    The carbonylation of methanol to acetic acid is a hugely important catalytic process, and there are considerable cost and environmental advantages if a process could be designed that was tolerant of hydrogen impurities in the CO feed gas, while eliminating by-products such as propionic acid and acetaldehyde altogether. This paper reports on an investigation into the application of rhodium complexes of several C(4) bridged diphosphines, namely BINAP, 1,4-bis(diphenylphosphino)butane (dppb), bis(diphenylphosphino)xylene (dppx) and 1,4-bis(dicyclohexylphosphino)butane (dcpb) as catalysts for hydrogen tolerant methanol carbonylation. An investigation into the structure, reactivity and stability of pre-catalysts and catalyst resting states of these complexes has also been carried out in order to understand the observations in catalysis. Rh(I) carbonyl halide complexes of each of the ligands have been prepared from both [Rh(2)(CO)(4)Cl(2)] and dimeric mu-Cl-[Rh(L)Cl](2) complexes. These Rh(I) carbonyl complexes are either dimeric with bridging phosphine ligands (dppb, dcpb, dppx) or monomeric chelate complexes. The reaction of the complexes with methyl iodide at 140 degrees C has been studied, which has revealed clear differences in the stability of the corresponding Rh(III) complexes. Surprisingly, the dimeric Rh(I) carbonyls react cleanly with MeI with rearrangement of the diphosphine to a chelate co-ordination mode to give stable Rh(III) acetyl complexes. The Rh acetyls for L=dppb and dppx have been fully characterised by X-ray crystallography. During the catalytic studies, the more rigid dppx and BINAP ligands were found to be nearly 5 times more hydrogen tolerant than [Rh(CO)(2)I(2)](-), as revealed by by-product analysis. The origin of this hydrogen tolerance is explained based on the differing reactivities of the Rh acetyls with hydrogen gas, and by considering the structure of the complexes.

  1. Process-based network decomposition reveals backbone motif structure

    PubMed Central

    Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen

    2010-01-01

    A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated). PMID:20498084

  2. Highly enantioselective rhodium(I)-catalyzed carbonyl carboacylations initiated by C-C bond activation.

    PubMed

    Souillart, Laetitia; Cramer, Nicolai

    2014-09-01

    The lactone motif is ubiquitous in natural products and pharmaceuticals. The Tishchenko disproportionation of two aldehydes, a carbonyl hydroacylation, is an efficient and atom-economic access to lactones. However, these reaction types are limited to the transfer of a hydride to the accepting carbonyl group. The transfer of alkyl groups enabling the formation of CC bonds during the ester formation would be of significant interest. Reported herein is such asymmetric carbonyl carboacylation of aldehydes and ketones, thus affording complex bicyclic lactones in excellent enantioselectivities. The rhodium(I)-catalyzed transformation is induced by an enantiotopic CC bond activation of a cyclobutanone and the formed rhodacyclic intermediate reacts with aldehyde or ketone groups to give highly functionalized lactones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Computed Regioselectivity and Conjectured Biological Activity of Ene Reactions of Singlet Oxygen with the Natural Product Hyperforin.

    PubMed

    Abramova, Inna; Rudshteyn, Benjamin; Liebman, Joel F; Greer, Alexander

    2017-03-01

    Hyperforin is a constituent of St. John's wort and coexists with the singlet oxygen sensitizer hypericin. Density functional theory, molecular mechanics and Connolly surface calculations show that accessibility in the singlet oxygen "ene" reaction favors the hyperforin "southwest" and "southeast" prenyl (2-methyl-2-butenyl) groups over the northern prenyl groups. While the southern part of hyperforin is initially more susceptible to oxidation, up to 4 "ene" reactions of singlet oxygen can take place. Computational results assist in predicting the fate of adjacent hydroperoxides in hyperforin, where the loss of hydrogen atoms may lead to the formation of a hydrotrioxide and a carbonyl instead of a Russell reaction. © 2017 The American Society of Photobiology.

  4. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes

    PubMed Central

    Sharp, Kim A.; O’Brien, Evan; Kasinath, Vignesh; Wand, A. Joshua

    2015-01-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O2NH) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O2NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O2axis. A calibration curve for backbone entropy vs. O2NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O2NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O2axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. PMID:25739366

  5. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    PubMed

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  6. Hydrogenation of carbonyl compounds of relevance to hydrogen storage in alcohols

    NASA Astrophysics Data System (ADS)

    Suárez, Andrés

    2018-02-01

    Alcohols are a promising source for the sustainable production of hydrogen that may also serve as rechargeable liquid organic hydrogen carriers (LOHCs). Metal-catalyzed acceptorless dehydrogenation of alcohols produces carbonyl derivatives as H2-depleted by-products, which by means of a hydrogenation reaction can be reconverted to the initial alcohols. Hence, reversible H2-storage systems based on pairs of secondary alcohols/ketones and primary alcohols/carboxylic acid derivatives may be envisaged. In this contribution, the hydrogenation of carbonyl derivatives, including ketones, esters, amides and carboxylic acids, is reviewed from the perspective of the hydrogen storage in alcohols.

  7. Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls

    NASA Astrophysics Data System (ADS)

    Ho, Steven Sai Hang; Ho, K. F.; Liu, W. D.; Lee, S. C.; Dai, W. T.; Cao, J. J.; Ip, H. S. S.

    2011-01-01

    Measurements of aldehydes and ketones are typically conducted by derivatization using sorbent cartridges coated with 2,4-dinitrophenylhydrazine (DNPH). The collected samples are eluted with acetonitrile and analyzed by high-pressure liquid chromatography coupled with an ultra-violet detector (HPLC/UV). This paper intends to examine artifacts about its suitability in identification of unsaturated carbonyls. Kinetic tests for acrolein, crotonaldehyde, methacrolein and methyl vinyl ketone (MVK) showed formations of carbonyl-DNP-hydrazone during sampling, which could further react with DNPH, resulting in undesired UV absorption products [e.g., carbonyl-DNP-hydrazone-DNPH (dimer) and 2(carbonyl-DNP-hydrazone)-DNPH (trimer)]. The dimerization and trimerization occurred for acrolein and MVK whereas only dimerization for crotonaldehyde and methacrolein. The polymerization products undoubtedly affect the integrity of the chromatogram, leading to misidentification and inaccurate quantification. Whether precautions taken during sampling and/or sample treatment could avoid or minimize this artifact has not been thoughtfully investigated. More often, such artifacts are usually overlooked by scientists when the data are reported.

  8. Backbone assignment of the little finger domain of a Y-family DNA polymerase.

    PubMed

    Ma, Dejian; Fowler, Jason D; Suo, Zucai

    2011-10-01

    Sulfolobus solfataricus DNA polymerase IV (Dpo4), a prototype Y-family DNA polymerase, contains a unique little finger domain besides a catalytic core. Here, we report the chemical shift assignments for the backbone nitrogens, α and β carbons, and amide protons of the little finger domain of Dpo4. This work and our published backbone assignment for the catalytic core provide the basis for investigating the conformational dynamics of Dpo4 during catalysis using solution NMR spectroscopy.

  9. Elastic Backbone Defines a New Transition in the Percolation Model

    NASA Astrophysics Data System (ADS)

    Sampaio Filho, Cesar I. N.; Andrade, José S.; Herrmann, Hans J.; Moreira, André A.

    2018-04-01

    The elastic backbone is the set of all shortest paths. We found a new phase transition at peb above the classical percolation threshold at which the elastic backbone becomes dense. At this transition in 2D, its fractal dimension is 1.750 ±0.003 , and one obtains a novel set of critical exponents βeb=0.50 ±0.02 , γeb=1.97 ±0.05 , and νeb=2.00 ±0.02 , fulfilling consistent critical scaling laws. Interestingly, however, the hyperscaling relation is violated. Using Binder's cumulant, we determine, with high precision, the critical probabilities peb for the triangular and tilted square lattice for site and bond percolation. This transition describes a sudden rigidification as a function of density when stretching a damaged tissue.

  10. Methods for determination of low-molecular weight carbonyl compounds in the ambient atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vairavamurthy, A.; Roberts, J.M.; Newman, L.

    1991-01-01

    Determination of carbonyl compounds in the ambient atmosphere is receiving increasing attention because of the critical role these compounds play in tropospheric organic chemistry. Currently, field measurements are very limited mainly because of the analytical challenges posed by trace concentrations and interferences arising from atmospheric copollutants. We review here the methods for used for determination of carbonyl compounds, from an atmospheric chemistry perspective, emphasizing the principles, advantages, and limitations. Since a large number of varied types of methods have been used specifically for determination of formaldehyde, it is considered separately from other carbonyls. It is clear that despite more thanmore » a decade of work, many problems related to sampling, interferences, and artifacts have not been resolved. Because of the increasing demand for time-series measurements in field studies, and automated method for continuous sampling and analysis of carbonyls is very much required. The widely used liquid chromatographic method based on 2,4-dinitrophenylhydrazine derivatization appears unsuitable for this purpose because of the lengthy collection times required to achieve sub-ppbv detection limits. Important issues to be considered in the development of a suitable field method and potential approaches are discussed. 155 refs., 19 figs., 5 tabs.« less

  11. Diurnal and seasonal variations of carbonyls and their effect on ozone concentrations in the atmosphere of Monterrey, Mexico.

    PubMed

    Menchaca-Torre, H Lizette; Mercado-Hernández, Roberto; Rodríguez-Rodríguez, José; Mendoza-Domínguez, Alberto

    2015-04-01

    Few studies have been made regarding carbonyl concentrations in Monterrey, México. The Monterrey Metropolitan Area (MMA) has the third largest population in the country and has increasing pollution issues. The concentrations of 10 aldehydes and two ketones were measured in the MMA, in the spring and fall of 2011 and 2012. Formaldehyde (16-42 ppbv) was the most abundant carbonyl, followed by acetaldehyde (5-15 ppbv) and acetone (7-15 ppbv). The concentrations showed marked diurnal trends with maximum values between 10:00 a.m. and 2:00 p.m., when photochemical activity is intense. Thus, secondary production of carbonyls is statistically significant in the city. Biogenic production of several carbonyls, such as 2-butanone, was supported by their mid correlation with solar radiation and low correlation with propionaldehyde, which is mainly emitted by anthropogenic sources. The seasonal variability of the concentrations was observed in the first three samplings, with the highest levels reached in the fall. The rainy conditions during the fourth sampling did not allow comparison. Carbonyl-NOx-O3 analysis was made. Results indicated a carbonyl-sensitive atmosphere, especially during the midday samplings of 10:00 a. m. to 2:00 p.m. and 2:00 p.m. and 6:00 p.m. because of the intense solar radiation during these periods. Monitoring of carbonyls in Monterrey, Mexico, was performed to quantify the pollutant concentration in the city's atmosphere. Although primary emission is significantly important, the secondary production of the pollutants, along with ozone production being carbonyl sensitive, indicates that air pollution controls must address the direct sources and the precursors of the pollutants to achieve air quality.

  12. Carbonyl compounds in the lower marine troposphere over the Caribbean Sea and Bahamas

    NASA Astrophysics Data System (ADS)

    Zhou, Xianliang; Mopper, Kenneth

    1993-02-01

    A highly sensitive carbonyl trapping technique based on special 2,4-dinitrophenylhydrazine reagent purification and cartridge preparation procedures was used on a cruise to the Orinoco estuary and the Caribbean Sea in order to determine the nature, concentration, and diurnal variation of low molecular weight carbonyl compounds in the lower marine boundary layer. The results suggest that the main source of formaldehyde and acetaldehyde in the lower marine boundary layer in the studied region is photooxidation of locally derived organic matter such as nonmethane hydrocarbons and long-chained lipids. Samples that were influenced by local land masses showed significantly higher concentrations of all carbonyl compounds. The main loss pathway appears to be dilution in the atmosphere as a result of vertical convective mixing, probably followed by photolysis in the upper marine boundary layer and free troposphere.

  13. Effect of carbonyl iron particles composition on the physical characteristics of MR grease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamad, Norzilawati, E-mail: mnorzilawati@gmail.com; Mazlan, Saiful Amri, E-mail: amri.kl@utm.my; Ubaidillah, E-mail: ubaidillah@uns.ac.id

    2016-03-29

    Magnetorheological (MR) grease is an extension of the study of magnetorheological materials. The MR grease can help to reduce the particles sedimentation problem occurred in the MR fluids. Within this study, an effort has been taken to investigate the effect of different weight compositions of carbonyl iron particles on the physical and chemical characteristics of the MR grease under off-state condition (no magnetic field). The MR grease is prepared by mixing carbonyl iron particles having a size range of 1 to 10 µm with commercial NPC Highrex HD-3 grease. Characterizations of MR grease are investigated using Vibrating Sample Magnetometer (VSM), Environmentalmore » Scanning Electron Microscopy (ESEM), Differential Scanning Calorimeter (DSC) and rheometer. The dependency of carbonyl iron particles weight towards the magnetic properties of MR grease and other characterizations are investigated.« less

  14. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    PubMed

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation. © 2015 Wiley Periodicals, Inc.

  15. Structural insights into the backbone-circularized granulocyte colony-stimulating factor containing a short connector.

    PubMed

    Miyafusa, Takamitsu; Shibuya, Risa; Honda, Shinya

    2018-06-02

    Backbone circularization is a powerful approach for enhancing the structural stability of polypeptides. Herein, we present the crystal structure of the circularized variant of the granulocyte colony-stimulating factor (G-CSF) in which the terminal helical region was circularized using a short, two-amino acid connector. The structure revealed that the N- and C-termini were indeed connected by a peptide bond. The local structure of the C-terminal region transited from an α helix to 3 10 helix with a bend close to the N-terminal region, indicating that the structural change offset the insufficient length of the connector. This is the first-ever report of a crystal structure of the backbone of a circularized protein. It will facilitate the development of backbone circularization methodology. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Organocatalytic Hydrophosphonylation Reaction of Carbonyl Groups.

    PubMed

    Herrera, Raquel P

    2017-09-01

    This revision is covering the limited examples reported for a pivotal strategy in the formation of C-P bonds such as the asymmetric organocatalytic hydrophosphonylation of carbonyl groups (Pudovik reaction). The scope and limitations, and the proposed mechanisms for the scarce different possibilities of asymmetric induction are also shown. The recent evolution and future trends of this undeveloped approach are commented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus sidechain groups to chain expansion via chemical denaturation

    PubMed Central

    Holehouse, Alex S.; Garai, Kanchan; Lyle, Nicholas; Vitalis, Andreas; Pappu, Rohit V.

    2015-01-01

    In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones and therefore backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of sidechains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that sidechains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of sidechain-mediated interactions as determinants of the

  18. Hydrogenation of coal liquid utilizing a metal carbonyl catalyst

    DOEpatents

    Feder, Harold M.; Rathke, Jerome W.

    1979-01-01

    Coal liquid having a dissolved transition metal, catalyst as a carbonyl complex such as Co.sub.2 (CO.sub.8) is hydrogenated with hydrogen gas or a hydrogen donor. A dissociating solvent contacts the coal liquid during hydrogenation to form an immiscible liquid mixture at a high carbon monoxide pressure. The dissociating solvent, e.g. ethylene glycol, is of moderate coordinating ability, while sufficiently polar to solvate the transition metal as a complex cation along with a transition metal, carbonyl anion in solution at a decreased carbon monoxide pressure. The carbon monoxide pressure is reduced and the liquids are separated to recover the hydrogenated coal liquid as product. The dissociating solvent with the catalyst in ionized form is recycled to the hydrogenation step at the elevated carbon monoxide pressure for reforming the catalyst complex within fresh coal liquid.

  19. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation

    PubMed Central

    Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura

    2016-01-01

    Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis. PMID:26776680

  20. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong.

    PubMed

    Guo, H; Lee, S C; Louie, P K K; Ho, K F

    2004-12-01

    Ambient air quality measurements of 156 species including 39 alkanes, 32 alkenes, 2 alkynes, 24 aromatic hydrocarbons, 43 halocarbons and 16 carbonyls, were carried out for 120 air samples collected at two sampling stations (CW and TW) in 2001 throughout Hong Kong. Spatial variations of volatile organic compounds (VOCs) in the atmosphere were investigated. Levels of most alkanes and alkenes at TW site were higher than that at the CW site, while the BTEX concentrations at the two sites were close. The BTEX ratios at CW and TW were 1.6:10.1:1.0:1.6 and 2.1:10.8:1.0:2.0, respectively. For major halogenated hydrocarbons, the mean concentrations of chloromethane, CFCs 12 and 22 did not show spatial variations at the two sites. However, site-specific differences were observed for trichloroethene and tetrachloroethene. Furthermore, there were no significant differences for carbonyls such as formaldehyde, acetaldehyde and acetone between the two sites. The levels of selected hydrocarbons in winter were 1-5 times that in summer. There were no common seasonal trends for carbonyls in Hong Kong. The ambient level of formaldehyde, the most abundant carbonyl, was higher in summer. However, levels of acetaldehyde, acetone and benzaldehyde in winter were 1.6-3.8 times that in summer. The levels of CFCs 11 and 12, and chloromethane in summer were higher than that in winter. Strong correlation of most hydrocarbons with propene and n-butane suggested that the primary contributors of hydrocarbons were vehicular emissions in Hong Kong. In addition, gasoline evaporation, use of solvents, leakage of liquefied petroleum gas (LPG), natural gas leakage and other industrial emissions, and even biogenic emissions affected the ambient levels of hydrocarbons. The sources of halocarbons were mainly materials used in industrial processes and as solvents. Correlation analysis suggested that photochemical reactions made significant contributions to the ambient levels of carbonyls in summer whereas

  1. Determination of gaseous and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal, methylglyoxal, nonanal and decanal) in the atmosphere at Mt. Tai

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Okuzawa, K.; Aggarwal, S. G.; Irie, H.; Kanaya, Y.; Wang, Z.

    2013-01-01

    Gaseous and particulate semi-volatile carbonyl compounds were determined every three hours in the atmosphere of Mount Tai (elevation, 1534 m) in the North China Plain during 2-5, 23-24 and 25 June, 2006 under a clear sky condition. Using two-step filter cartridge in a series, particulate carbonyls were first collected on a quartz filter and then gaseous carbonyls were collected on a quartz filter impregnated with O-benzylhydroxylamine (BHA). After the two-step derivatization with BHA and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA), carbonyl derivatives were measured using a gas chromatography. The gaseous concentrations were obtained as follow: glycolaldehyde (range 0-1271 ng m-3, average 555 ng m-3), hydroxyacetone (0-707 ng m-3, 163 ng m-3), glyoxal (198-1396 ng m-3, 720 ng m-3), methylglyoxal (410-3170 ng m-3, 1376 ng m-3), n-nonanal (0-236 ng m-3, 71 ng m-3), and n-decanal (0-159 ng m-3, 31 ng m-3). These concentrations are among the highest ever reported in the urban and forest atmosphere. We found that gaseous carbonyls are more than 10 times more abundant than particulate carbonyls. Time-resolved variations of carbonyls did not show any a clear diurnal pattern, except for hydroxyacetone. We found that glyoxal, methylglyoxal and glycolaldehyde positively correlated with levoglucosan (a tracer of biomass burning), suggesting that a contribution from field burning of agricultural wastes (wheat crops) is significant for the bifunctional carbonyls in the atmosphere of Mt. Tai. Upward transport of the pollutants to the mountaintop from the low lands in the North China Plain is a major process to control the distributions of carbonyls in the upper atmosphere over Mt. Tai.

  2. Contrasting influence of NADPH and a NADPH-regenerating system on the metabolism of carbonyl-containing compounds in hepatic microsomes.

    PubMed

    Mazur, Christopher S; Kenneke, John F; Goldsmith, Michael-Rock; Brown, Cather

    2009-09-01

    Carbonyl containing xenobiotics may be susceptible to NADPH-dependent cytochrome P450 (P450) and carbonyl-reduction reactions. In vitro hepatic microsome assays are routinely supplied NADPH either by direct addition of NADPH or via an NADPH-regenerating system (NRS). In contrast to oxidative P450 transformations, which occur on the periphery of a microsome vesicle, intraluminal carbonyl reduction depends on transport of cofactors across the endoplasmic reticulum (ER) membrane into the lumen. Glucose 6-phosphate, a natural cofactor and component of the NRS matrix, is readily transported across the ER membrane and facilitates intraluminal NADPH production, whereas direct addition of NADPH has limited access to the lumen. In this study, we compared the effects of direct addition of NADPH and use of an NRS on the P450-mediated transformation of propiconazole and 11 beta-hydroxysteroid dehydrogenase type 1 (HSD1) carbonyl reduction of cortisone and the xenobiotic triadimefon in hepatic microsomes. Our results demonstrate that the use of NADPH rather than NRS can underestimate the kinetic rates of intraluminal carbonyl reduction, whereas P450-mediated transformations were unaffected. Therefore, in vitro depletion rates measured for a carbonyl-containing xenobiotic susceptible to both intraluminal carbonyl reduction and P450 processes may not be properly assessed with direct addition of NADPH. In addition, we used in silico predictions as follows: 1) to show that 11 beta-HSD1 carbonyl reduction was energetically more favorable than oxidative P450 transformation; and 2) to calculate chemical binding score and the distance between the carbonyl group and the hydride to be transferred by NADPH to identify other 11 beta-HSD1 substrates for which reaction kinetics may be underestimated by direct addition of NADPH.

  3. Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks.

    PubMed

    Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit

    2014-02-27

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  4. Infrared spectroscopy of extreme coordination: the carbonyls of U(+) and UO(2)(+).

    PubMed

    Ricks, Allen M; Gagliardi, Laura; Duncan, Michael A

    2010-11-17

    Uranium and uranium dioxide carbonyl cations produced by laser vaporization are studied with mass-selected ion infrared spectroscopy in the C-O stretching region. Dissociation patterns, spectra, and quantum chemical calculations establish that the fully coordinated ions are U(CO)(8)(+) and UO(2)(CO)(5)(+), with D(4d) square antiprism and D(5h) pentagonal bipyramid structures. Back-bonding in U(CO)(8)(+) causes a red-shifted CO stretch, but back-donation is inefficient for UO(2)(CO)(5)(+), producing a blue-shifted CO stretch characteristic of nonclassical carbonyls.

  5. C-H carbonylation: In situ acyl triflates ace it

    NASA Astrophysics Data System (ADS)

    Lee, Yong Ho; Morandi, Bill

    2018-02-01

    A simple palladium catalyst has mediated the facile formation of aroyl triflates -- an extremely reactive class of electrophiles. These intermediates, generated in situ, enable the Friedel-Crafts acylation of traditionally unreactive arenes, addressing a significant gap in C-H carbonylation methodology.

  6. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helixmore » bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).« less

  7. Increased carbonylation, protein aggregation and apoptosis in the spinal cord of mice with experimental autoimmune encephalomyelitis

    PubMed Central

    Dasgupta, Anushka; Zheng, Jianzheng; Perrone-Bizzozero, Nora I.; Bizzozero, Oscar A.

    2013-01-01

    Previous work from our laboratory implicated protein carbonylation in the pathophysiology of both MS (multiple sclerosis) and its animal model EAE (experimental autoimmune encephalomyelitis). Subsequent in vitro studies revealed that the accumulation of protein carbonyls, triggered by glutathione deficiency or proteasome inhibition, leads to protein aggregation and neuronal cell death. These findings prompted us to investigate whether their association can be also established in vivo. In the present study, we characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of MOG (myelin-oligodendrocyte glycoprotein)35–55 peptide-induced EAE in C57BL/6 mice. The results show that protein carbonyls accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. We also show a temporal correlation between protein carbonylation (but not oxidative stress) and apoptosis. Furthermore, carbonyl levels are significantly higher in apoptotic cells than in live cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are present during the course of EAE. The LC3 (microtubule-associated protein light chain 3)-II/LC3-I ratio is significantly reduced in both acute and chronic EAE indicating reduced autophagy and explaining why aggresomes accumulate in this disorder. Taken together, the results of the present study suggest a link between protein oxidation and neuronal/glial cell death in vivo, and also demonstrate impaired proteostasis in this widely used murine model of MS. PMID:23489322

  8. On the Reaction of Carbonyl Diphosphonic Acid with Hydroxylamine and O-alkylhydroxylamines: Unexpected Degradation of P-C-P Bridge.

    PubMed

    Khomich, Olga A; Yanvarev, Dmitry V; Novikov, Roman A; Kornev, Alexey B; Puljulla, Elina; Vepsäläinen, Jouko; Khomutov, Alex R; Kochetkov, Sergey N

    2017-06-23

    Derivatives of methylenediphosphonic acid possess wide spectra of biological activities and are used in enzymology as research tools as well as in practical medicine. Carbonyl diphosphonic acid is a promising starting building block for synthesis of functionally substituted methylenediphosphonates. Investigation of the interaction of carbonyl diphosphonic acid with hydroxylamine clearly demonstrates that it is impossible to isolate oxime within the pH range 2-12, while only cyanophosphonic and phosphoric acids are the products of the fast proceeding Beckmann-like fragmentation. In the case of O -alkylhydroxylamines, corresponding alcohols are found in the reaction mixtures in addition to cyanophosphonic and phosphoric acids. Therefore, two residues of phosphonic acid being attached to a carbonyl group provide new properties to this carbonyl group, making its oximes very unstable. This principally differs carbonyl diphosphonic acid from structurally related phosphonoglyoxalic acid and other α-ketophosphonates.

  9. An e.s.c.a. study of atomic oxygen interactions with phosphazene-coated polyimide films

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.; Finney, Lorie

    1991-01-01

    Metallic as well as most nonmetallic materials experience oxidation and mass loss via surface erosion in low earth orbit as shown in previous Space Shuttle flights. This study is an evaluation of select polyphosphazene polymers and their resistance to atomic oxygen attack. Electron spectroscopy for chemical analysis examinations of the surfaces of polyphosphazene coatings were monitored for microstructural changes induced during exposures to atomic oxygen. Sample exposures in oxygen plasmas and O(3P) beam were compared as to their effect on surface compositional changes in the polyphosphazene coating. High resolution line scans revealed rearrangements in the polymer backbone and scissioning reactions involving fluorocarbon units of long chain fluoroalkoxy pendant groups. Atom percents and peak areas of all species provided a detailed profile of the microstructural changes induced in phosphazene polymers as a result of exposures to atomic oxygen.

  10. Seasonal, diurnal and nocturnal behaviors of lower carbonyl compounds in the urban environment of Beirut, Lebanon

    NASA Astrophysics Data System (ADS)

    Moussa, Samar G.; El-Fadel, Mutassem; Saliba, Najat A.

    Lower carbonyl concentrations were measured for the first time in two different sampling sites (American University of Beirut (AUB) and Abdel-Aziz (AA)) in Beirut, Lebanon. Formaldehyde (C1) and acetaldehyde (C2) were the most abundant carbonyls with respective maximum concentrations of 12.2 and 5.2 ppbv at AUB and 8.6 and 5.1 ppbv at AA. Diurnal variations of carbonyls exhibited similar behaviors, suggesting related formation and decomposition routes. Morning levels of carbonyls were either equal or higher than the ones in the afternoon at the coastal site (AUB) due to atmospheric dilution. However, morning levels were mostly lower than noon levels at a three-busy street intersection (AA) due to the enhancement of photochemical activities. Vehicle emissions constituted the dominant source of carbonyls measured as confirmed by the good correlation between C1, C2 and propanal (C3) and the C1/CO and C2/CO ratios in the mornings. Seasonal variation showed the predominance of summertime photolysis and photo-oxidation reactions of aldehydes. Based on the measured formaldehyde levels, ozone and nitrous acid concentrations, morning and afternoon OH radical fluxes are computed and consequently their contribution to photochemical smog processes are assessed.

  11. Anion Photoelectron Spectroscopic Studies of NbCr(CO)_n- (n = 2,3) Heterobimetallic Carbonyl Complexes

    NASA Astrophysics Data System (ADS)

    Baudhuin, Melissa A.; Boopalachandran, Praveenkumar; Leopold, Doreen

    2015-06-01

    Anion photoelectron spectra and density functional calculations are reported for NbCr(CO)2- and NbCr(CO)3- complexes prepared by addition of Cr(CO)6 vapor to a flow tube equipped with a niobium cathode discharge source. Electron affinities (± 0.007 eV) are measured to be 1.668 eV for NbCr(CO)2 and 1.162 eV for NbCr(CO)3, values which exceed the 0.793 eV electron affinity previously measured for ligand-free NbCr. The vibrationally-resolved 488 nm photoelectron spectra are compared with Franck-Condon spectra predicted for various possible isomers and spin states of the anionic and neutral metal carbonyl complexes. Results are also compared with photoelectron spectra of the corresponding chromium carbonyl complexes and of NbCr and NbCr-, which have formal bond orders of 5.5 (2Δ) and 6 (1σ+), respectively. These comparisons help to elucidate the effects of sequential carbonylation on this multiple metal-metal bond, and of the formation of this bond on the chromium-carbonyl interactions.

  12. Dominant Presence of Oxygenated Organic Species in the Remote Southern Hemisphere Troposphere

    NASA Technical Reports Server (NTRS)

    Singh, H.; Chen, Y.; Staudt, A.; Jacob, D.; Blake, D.; Heikes, B.; Snow, J.; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    Oxygenated organic species are intimately involved with the fate of nitrogen oxides (NO(sub x)) and hydrogen oxides (HO(sub x)), which are necessary for tropospheric ozone formation. A recent airborne experiment (March-April, 1999) focused over the southern hemisphere (SH) Pacific Ocean (PEM-tropics-B) provided a first opportunity for a detailed characterization of the oxygenated organic composition of the remote southern hemisphere troposphere. Three co-located multi-channel airborne instruments measured a dozen key oxygenated species (carbonyls, alcohols, organic nitrates, organic pernitrates, peroxides) along with a comprehensive suite of C2-C8 Nonmethane hydrocarbons (NMHC). These measurements reveal that in the tropical SH (0-30 deg south), oxygenated chemical abundances are extremely large and collectively are nearly five times those of NMHC. Even in the NH remote atmospheres their burden is equal to or greater than that of NMHC. The relatively uniform global distribution oxygenates (EPSILON Ox-org) is indicative of the presence of large natural and distributed sources. A global 3-D model, reflecting the present state of science, is unable to correctly simulate the atmospheric distribution and variability of several of these species.

  13. Use of 2,4-dinitrophenylhydrazine for the purification of technical isoprene from carbonyl compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsova, Y.V.; Taranenko, S.A.; Mil'kina, T.N.

    1983-01-01

    Technical isoprene can be freed from carbonyl compounds by conversion into non-volatile derivatives - hydrazones, with subsequent liberation of the purified isoprene during re-evaporation. The reaction takes place at room temperature with a molar ratio of 2,4-dinitrophenylhydrazine/carbonyl compounds in the range 2-10 to 1. This method of purification may also be used in other situations where a hydrocarbon flow freed from aldehydes and ketones is required.

  14. Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.

    Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less

  15. Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating

    DOE PAGES

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; ...

    2017-06-29

    Catalytic fast pyrolysis (CFP) bio-oils with different organic oxygen contents (4-18 wt%) were prepared in a bench-scale dual fluidized bed reactor system by ex situ CFP of southern pine over HZSM-5, and the oils were subsequently hydrotreated over a sulfided CoMo catalyst at 170 bar. The goal was to determine the impact of the CFP oil oxygen content on hydrotreating requirements. The CFP oils with higher oxygen contents included a variety of oxygenates (phenols, methoxyphenols, carbonyls, anhydrosugars) whereas oxygenates in the 4 wt% oxygen oil were almost exclusively phenols. Phenols were the most recalcitrant oxygenates during hydrotreating as well, andmore » the hydrotreated oils consisted mainly of aromatic and partially saturated ring hydrocarbons. The temperature required to produce oil with <1% oxygen was approximately 350 °C for the CFP oil with the lowest oxygen content whereas temperatures around 400 °C were required for the other CFP oils. The carbon efficiency during hydrotreating slightly decreased as the CFP oil oxygen content increased but remained above 90% in all cases, and the carbon efficiency for the integrated process was dominated by the efficiency of the CFP process. In conclusion, a preliminary technoeconomic evaluation suggested that with the current zeolite-based CFP catalysts, it is economically beneficial to preserve carbon during CFP, at the expense of higher oxygen contents in the CFP oil.« less

  16. Probing for and Quantifying Agonist Hydrogen Bonds in α6β2 Nicotinic Acetylcholine Receptors.

    PubMed

    Post, Michael R; Lester, Henry A; Dougherty, Dennis A

    2017-04-04

    Designing subtype-selective agonists for neuronal nicotinic acetylcholine receptors is a challenging and significant goal aided by intricate knowledge of each subtype's binding patterns. We previously reported that in α6β2 receptors, acetylcholine makes a functional cation-π interaction with Trp149, but nicotine and TC299423 do not, suggesting a distinctive binding site. This work explores hydrogen binding at the backbone carbonyl associated with α6β2 Trp149. Substituting residue i + 1, Thr150, with its α-hydroxy analogue (Tah) attenuates the carbonyl's hydrogen bond accepting ability. At α6(T150Tah)β2, nicotine shows a 24-fold loss of function, TC299423 shows a modest loss, and acetylcholine shows no effect. Nicotine was further analyzed via a double-mutant cycle analysis utilizing N'-methylnicotinium, which indicated a hydrogen bond in α6β2 with a ΔΔG of 2.6 kcal/mol. Thus, even though nicotine does not make the conserved cation-π interaction with Trp149, it still makes a functional hydrogen bond to its associated backbone carbonyl.

  17. Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds

    NASA Astrophysics Data System (ADS)

    Singh, H.; Chen, Y.; Staudt, A.; Jacob, D.; Blake, D.; Heikes, B.; Snow, J.

    2001-04-01

    The presence of oxygenated organic compounds in the troposphere strongly influences key atmospheric processes. Such oxygenated species are, for example, carriers of reactive nitrogen and are easily photolysed, producing free radicals-and so influence the oxidizing capacity and the ozone-forming potential of the atmosphere-and may also contribute significantly to the organic component of aerosols. But knowledge of the distribution and sources of oxygenated organic compounds, especially in the Southern Hemisphere, is limited. Here we characterize the tropospheric composition of oxygenated organic species, using data from a recent airborne survey conducted over the tropical Pacific Ocean (30°N to 30°S). Measurements of a dozen oxygenated chemicals (carbonyls, alcohols, organic nitrates, organic pernitrates and peroxides), along with several C2-C8 hydrocarbons, reveal that abundances of oxygenated species are extremely high, and collectively, oxygenated species are nearly five times more abundant than non-methane hydrocarbons in the Southern Hemisphere. Current atmospheric models are unable to correctly simulate these findings, suggesting that large, diffuse, and hitherto-unknown sources of oxygenated organic compounds must therefore exist. Although the origin of these sources is still unclear, we suggest that oxygenated species could be formed via the oxidation of hydrocarbons in the atmosphere, the photochemical degradation of organic matter in the oceans, and direct emissions from terrestrial vegetation.

  18. Improved Method for the Synthesis of β-Carbonyl Silyl-1,3-Dithianes by the Double Conjugate Addition of 1,3-Dithiol to Propargylic Carbonyl Compounds

    PubMed Central

    Mukherjee, Sumit; Kontokosta, Dimitra; Patil, Aditi; Rallapalli, Sivakumar; Lee, Daesung

    2009-01-01

    Base-mediated double conjugate addition of 1,3-propane dithiol to various silylated propargylic aldehydes and ketones allows for an efficient and scalable synthesis of β-carbonyl silyl-1,3-dithianes. PMID:19877611

  19. Analysis of biogenic carbonyl compounds in rainwater by stir bar sorptive extraction technique with chemical derivatization and gas chromatography‐mass spectrometry

    PubMed Central

    Lewis, Alastair C.; Shaw, Marvin D.

    2016-01-01

    Stir bar sorptive extraction is a powerful technique for the extraction and analysis of organic compounds in aqueous matrices. Carbonyl compounds are ubiquitous components in rainwater, however, it is a major challenge to accurately identify and sensitively quantify carbonyls from rainwater due to the complex matrix. A stir bar sorptive extraction technique was developed to efficiently extract carbonyls from aqueous samples following chemical derivatization by O‐(2,3,4,5,6‐pentafluorobenzyl) hydroxylamine hydrochloride. Several commercial stir bars in two sizes were used to simultaneously measure 29 carbonyls in aqueous samples with detection by gas chromatography with mass spectrometry. A 100 mL aqueous sample was extracted by stir bars and the analytes on stir bars were desorbed into a 2 mL solvent solution in an ultrasonic bath. The preconcentration Coefficient for different carbonyls varied between 30 and 45 times. The limits of detection of stir bar sorptive extraction with gas chromatography mass spectrometry for carbonyls (10–30 ng/L) were improved by ten times compared with other methods such as gas chromatography with electron capture detection and stir bar sorptive extraction with high‐performance liquid chromatography and mass spectrometry. The technique was used to determine carbonyls in rainwater samples collected in York, UK, and 20 carbonyl species were quantified including glyoxal, methylglyoxal, isobutenal, 2‐hydroxy ethanal. PMID:27928898

  20. Nickel-Catalyzed Molybdenum-Promoted Carbonylative Synthesis of Benzophenones.

    PubMed

    Peng, Jin-Bao; Wu, Fu-Peng; Li, Da; Qi, Xinxin; Ying, Jun; Wu, Xiao-Feng

    2018-06-01

    A nickel-catalyzed molybdenum-promoted carbonylative coupling reaction for the synthesis of benzophenones from aryl iodides has been developed. Various substituted diaryl ketones were synthesized in moderate to excellent yields under CO-gas-free conditions. A synergetic effect of both nickel and molybdenum has been observed, which is also responsible for the success of this transformation.

  1. Enantioselective gamma- and delta-Borylation of Unsaturated Carbonyl Derivatives: Synthesis, Mechanistic Insights, and Applications

    NASA Astrophysics Data System (ADS)

    Hoang, Gia L.

    Chiral boronic esters are valuable synthetic intermediates widely used in a variety of stereospecific transformations. Transition metal-catalyzed asymmetric hydroboration (CAHB) of alkenes is among the most popular methods for their preparation. Enantioselective hydroboration of activated alkenes (i.e., vinyl arene derivatives or conjugated carbonyl compounds) have been extensively studied by many research groups. We, on the other hand, are interested in enantioselective hydroboration of unactivated alkenes utilizing coordinating functional groups (e.g., carbonyl derivatives) to give functionalized, chiral boronic esters. While conjugate addition and C-H activation methodologies provide efficient alternatives to CAHB for enantioselective beta-borylation of carbonyl compounds, direct gamma- and delta-borylations were essentially unknown prior to our wok on CAHB. The gamma-borylated products were used for understanding stereochemical aspects of Suzuki-Miyaura cross-coupling reactions resulting in stereoretention and in contrast to similar beta-borylated carbonyl derivatives reported in literature. Some other selected transformations were carried out to construct a number of biologically relevant structural motifs, such as lignan precursors, 1,4-amino alcohols, gamma-amino acid derivatives, 5-substitued-gamma-lactone and lactam ring systems. In addition, collaborative experimental and computational studies of the enantioselective desymmetrization via CAHB gain a better understanding of the mechanistic pathways.

  2. The unusually strong hydrogen bond between the carbonyl of Q(A) and His M219 in the Rhodobacter sphaeroides reaction center is not essential for efficient electron transfer from Q(A)(-) to Q(B).

    PubMed

    Breton, Jacques; Lavergne, Jérôme; Wakeham, Marion C; Nabedryk, Eliane; Jones, Michael R

    2007-06-05

    In native reaction centers (RCs) from photosynthetic purple bacteria the primary quinone (QA) and the secondary quinone (QB) are interconnected via a specific His-Fe-His bridge. In Rhodobacter sphaeroides RCs the C4=O carbonyl of QA forms a very strong hydrogen bond with the protonated Npi of His M219, and the Ntau of this residue is in turn coordinated to the non-heme iron atom. The second carbonyl of QA is engaged in a much weaker hydrogen bond with the backbone N-H of Ala M260. In previous work, a Trp side chain was introduced by site-directed mutagenesis at the M260 position in the RC of Rb. sphaeroides, resulting in a complex that is completely devoid of QA and therefore nonfunctional. A photochemically competent derivative of the AM260W mutant was isolated that contains a Cys side chain at the M260 position (denoted AM260(W-->C)). In the present work, the interactions between the carbonyl groups of QA and the protein in the AM260(W-->C) suppressor mutant have been characterized by light-induced FTIR difference spectroscopy of the photoreduction of QA. The QA-/QA difference spectrum demonstrates that the strong interaction between the C4=O carbonyl of QA and His M219 is lost in the mutant, and the coupled CO and CC modes of the QA- semiquinone are also strongly perturbed. In parallel, a band assigned to the perturbation of the C5-Ntau mode of His M219 upon QA- formation in the native RC is lacking in the spectrum of the mutant. Furthermore, a positive band between 2900 and 2400 cm-1 that is related to protons fluctuating within a network of highly polarizable hydrogen bonds in the native RC is reduced in amplitude in the mutant. On the other hand, the QB-/QB FTIR difference spectrum is essentially the same as for the native RC. The kinetics of electron transfer from QA- to QB were measured by the flash-induced absorption changes at 780 nm. Compared to native RCs the absorption transients are slowed by a factor of about 2 for both the slow phase (in the

  3. Mechanistic differences between methanol and dimethyl ether carbonylation in side pockets and large channels of mordenite.

    PubMed

    Boronat, Mercedes; Martínez, Cristina; Corma, Avelino

    2011-02-21

    The activity and selectivity towards carbonylation presented by Brønsted acid sites located inside the 8MR pockets or in the main 12MR channels of mordenite is studied by means of quantum-chemical calculations, and the mechanistic differences between methanol and DME carbonylation are investigated. The selectivity towards carbonylation is higher inside the 8MR pockets, where the competitive formation of DME and hydrocarbons that finally leads to catalyst deactivation is sterically impeded. Moreover, inclusion of dispersion interactions in the calculations leads to agreement between the calculated activation barriers for the rate determining step and the experimentally observed higher reactivity of methoxy groups located inside the 8MR channels.

  4. Comparing Carbonyl Chemistry in Comprehensive Introductory Organic Chemistry Textbooks

    ERIC Educational Resources Information Center

    Nelson, Donna J.; Kumar, Ravi; Ramasamy, Saravanan

    2015-01-01

    Learning the chemistry of compounds containing carbonyl groups is difficult for undergraduate students partly because of a convolution of multiple possible reaction sites, competitive reactions taking place at those sites, different criteria needed to discern between the mechanisms of these reactions, and no straightforward selection method…

  5. Long-term forecasting of internet backbone traffic.

    PubMed

    Papagiannaki, Konstantina; Taft, Nina; Zhang, Zhi-Li; Diot, Christophe

    2005-09-01

    We introduce a methodology to predict when and where link additions/upgrades have to take place in an Internet protocol (IP) backbone network. Using simple network management protocol (SNMP) statistics, collected continuously since 1999, we compute aggregate demand between any two adjacent points of presence (PoPs) and look at its evolution at time scales larger than 1 h. We show that IP backbone traffic exhibits visible long term trends, strong periodicities, and variability at multiple time scales. Our methodology relies on the wavelet multiresolution analysis (MRA) and linear time series models. Using wavelet MRA, we smooth the collected measurements until we identify the overall long-term trend. The fluctuations around the obtained trend are further analyzed at multiple time scales. We show that the largest amount of variability in the original signal is due to its fluctuations at the 12-h time scale. We model inter-PoP aggregate demand as a multiple linear regression model, consisting of the two identified components. We show that this model accounts for 98% of the total energy in the original signal, while explaining 90% of its variance. Weekly approximations of those components can be accurately modeled with low-order autoregressive integrated moving average (ARIMA) models. We show that forecasting the long term trend and the fluctuations of the traffic at the 12-h time scale yields accurate estimates for at least 6 months in the future.

  6. Iron-Sulfur-Carbonyl and -Nitrosyl Complexes: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1985-01-01

    Background information, materials needed, procedures used, and typical results obtained, are provided for an experiment on iron-sulfur-carbonyl and -nitrosyl complexes. The experiment involved (1) use of inert atmospheric techniques and thin-layer and flexible-column chromatography and (2) interpretation of infrared, hydrogen and carbon-13 nuclear…

  7. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  8. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions.

    PubMed

    Suzuki, D; Miyata, T; Saotome, N; Horie, K; Inagi, R; Yasuda, Y; Uchida, K; Izuhara, Y; Yagame, M; Sakai, H; Kurokawa, K

    1999-04-01

    Advanced glycation end products (AGE) include a variety of protein adducts whose accumulation has been implicated in tissue damage associated with diabetic nephropathy (DN). It was recently demonstrated that among AGE, glycoxidation products, whose formation is closely linked to oxidation, such as carboxymethyllysine (CML) and pentosidine, accumulate in expanded mesangial matrix and nodular lesions in DN, in colocalization with malondialdehyde-lysine (MDA-lysine), a lipoxidation product, whereas pyrraline, another AGE structure whose deposition is rather independent from oxidative stress, was not found within diabetic glomeruli. Because CML, pentosidine, and MDA-lysine are all formed under oxidative stress by carbonyl amine chemistry between protein amino group and carbonyl compounds, their colocalization suggests a local oxidative stress and increased protein carbonyl modification in diabetic glomerular lesions. To address this hypothesis, human renal tissues from patients with DN or IgA nephropathy were examined with specific antibodies to characterize most, if not all, carbonyl modifications of proteins by autoxidation products of carbohydrates, lipids, and amino acids: CML (derived from carbohydrates, lipids, and amino acid), pentosidine (derived from carbohydrates), MDA-lysine (derived from lipids), 4-hydroxynonenal-protein adduct (derived from lipids), and acrolein-protein adduct (derived from lipids and amino acid). All of the protein adducts were identified in expanded mesangial matrix and nodular lesions in DN. In IgA nephropathy, another primary glomerular disease leading to end-stage renal failure, despite positive staining for MDA-lysine and 4-hydroxynonenal-protein adduct in the expanded mesangial area, CML, pentosidine, and acrolein-protein adduct immunoreactivities were only faint in glomeruli. These data suggest a broad derangement in nonenzymatic biochemistry in diabetic glomerular lesions, and implicate an increased local oxidative stress and

  9. Characterisation and optimisation of a method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    NASA Astrophysics Data System (ADS)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-01-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds (VOC). Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. Thus a method was systematically characterised and improved to quantify carbonyl compounds. Quantification with the present method can be carried out for each carbonyl compound sampled in the aqueous phase regardless of their source. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). The main advantage of the improved method presented in this study is the low detection limit in the range of 0.01 and 0.17 μmol L-1 depending on carbonyl compounds. Furthermore best results were found for extraction with dichloromethane for 30 min followed by derivatisation with PFBHA for 24 h with 0.43 mg mL-1 PFBHA at a pH value of 3. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione.

  10. Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition

    DOE PAGES

    Bergsman, David S.; Closser, Richard G.; Tassone, Christopher J.; ...

    2017-01-01

    An experimental investigation into the growth of polyurea films by molecular layer deposition was performed by examining trends in the growth rate, crystallinity, and orientation of chains as a function of backbone flexibility. Growth curves obtained for films containing backbones of aliphatic and phenyl groups indicate that an increase in backbone flexibility leads to a reduction in growth rate from 4 to 1 Å/cycle. Crystallinity measurements collected using grazing incidence X-ray diffraction and Fourier transform infrared spectroscopy suggest that some chains form paracrystalline, out-of-plane stacks of polymer segments with packing distances ranging from 4.4 to 3.7 Å depending on themore » monomer size. Diffraction intensity is largely a function of the homogeneity of the backbone. Near-edge X-ray absorption fine structure measurements for thin and thick samples show an average chain orientation of ~25° relative to the substrate across all samples, suggesting that changes in growth rate are not caused by differences in chain angle but instead may be caused by differences in the frequency of chain terminations. In conclusion, these results suggest a model of molecular layer deposition-based chain growth in which films consist of a mixture of upward growing chains and horizontally aligned layers of paracrystalline polymer segments.« less

  11. Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kwang Ho; Dutta, Tanmoy; Ralph, John

    Biomass pretreatment remains an essential step in lignocellulosic biofuel production, largely to facilitate the efficient removal of lignin and increase enzyme accessibility to the polysaccharides. In recent years, there have been significant efforts in planta to reduce lignin content or modify its composition to overcome the inherent recalcitrance that it imposes on lignocellulosic biomass during processing. Here, transgenic poplar lines in which monolignol ferulate conjugates were synthesized during cell wall development to introduce, during lignification, readily cleavable ester linkages into the lignin polymer backbone (i.e., "zip lignin"), along with wild-type (WT) controls, were pretreated with different ionic liquids (ILs). Themore » strategic introduction of ester bonds into the lignin backbone resulted in increased pretreatment efficiency and released more carbohydrates with lower energy input. After pretreatment with any of three different ILs, and after limited saccharification, the transgenic poplars, especially those with relatively higher amounts of incorporated monolignol ferulate conjugates, yielded up to 23% higher sugar levels compared to WT plants. Our findings clearly demonstrate that the introduction of ester linkages into the lignin polymer backbone decreases biomass recalcitrance in poplar has the potential to reduce the energy and/or amount of IL required for effective pretreatment, and could enable the development of an economically viable and sustainable biorefinery process.« less

  12. Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Ralph, John; ...

    2017-04-20

    Biomass pretreatment remains an essential step in lignocellulosic biofuel production, largely to facilitate the efficient removal of lignin and increase enzyme accessibility to the polysaccharides. In recent years, there have been significant efforts in planta to reduce lignin content or modify its composition to overcome the inherent recalcitrance that it imposes on lignocellulosic biomass during processing. Here, transgenic poplar lines in which monolignol ferulate conjugates were synthesized during cell wall development to introduce, during lignification, readily cleavable ester linkages into the lignin polymer backbone (i.e., "zip lignin"), along with wild-type (WT) controls, were pretreated with different ionic liquids (ILs). Themore » strategic introduction of ester bonds into the lignin backbone resulted in increased pretreatment efficiency and released more carbohydrates with lower energy input. After pretreatment with any of three different ILs, and after limited saccharification, the transgenic poplars, especially those with relatively higher amounts of incorporated monolignol ferulate conjugates, yielded up to 23% higher sugar levels compared to WT plants. Our findings clearly demonstrate that the introduction of ester linkages into the lignin polymer backbone decreases biomass recalcitrance in poplar has the potential to reduce the energy and/or amount of IL required for effective pretreatment, and could enable the development of an economically viable and sustainable biorefinery process.« less

  13. Carbonyl compounds in dining areas, kitchens and exhaust streams in restaurants with varying cooking methods in Kaohsiung, Taiwan.

    PubMed

    Cheng, Jen-Hsuan; Lee, Yi-Shiun; Chen, Kang-Shin

    2016-03-01

    Eighteen carbonyl species in C1-C10 were measured in the dining areas, kitchens and exhaust streams of six different restaurant types in Kaohsiung, southern Taiwan. Measured results in the dining areas show that Japanese barbecue (45.06ppb) had the highest total carbonyl concentrations (sum of 18 compounds), followed by Chinese hotpot (38.21ppb), Chinese stir-frying (8.99ppb), Western fast-food (8.22ppb), Chinese-Western mixed style (7.38ppb), and Chinese buffet (3.08ppb), due to their different arrangements for dining and cooking spaces and different cooking methods. On average, low carbon-containing species (C1-C4), e.g., formaldehyde, acetaldehyde, acetone and butyraldehyde were dominant and contributed 55.01%-94.52% of total carbonyls in the dining areas of all restaurants. Meanwhile, Chinese-Western mixed restaurants (45.48ppb) had high total carbonyl concentrations in kitchens mainly because of its small kitchen and poor ventilation. However, high carbon-containing species (C5-C10) such as hexaldehyde, heptaldehyde and nonanaldehyde (16.62%-77.00% of total carbonyls) contributed comparatively with low carbon-containing compounds (23.01%-83.39% of total carbonyls) in kitchens. Furthermore, Chinese stir-frying (132.10ppb), Japanese barbecue (125.62ppb), Western fast-food (122.67ppb), and Chinese buffet (119.96ppb) were the four restaurant types with the highest total carbonyl concentrations in exhaust streams, indicating that stir-frying and grilling are inclined to produce polluted gases. Health risk assessments indicate that Chinese hotpot and Japanese barbecue exceeded the limits of cancer risk (10(-6)) and hazard index (=1), mainly due to high concentrations of formaldehyde. The other four restaurants were below both limits. Copyright © 2015. Published by Elsevier B.V.

  14. Smectic order and backbone anisotropy of a side-chain liquid crystalline polymer by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Pépy, G.; Keller, P.; Benguigui, L.

    1991-07-01

    We have simultaneously measured, for the first time, the extension of the polymer backbone of a side-chain liquid crystalline polymer and the intensity of the 001 Bragg reflection, which gives the smectic order parameter Psi as a function of temperature in the smectic phase. We have qualitatively demonstrated that the more the smectic phase is ordered, the more the polymer backbone is localized between the mesogenic layers. It is shown that the Landau theory allows us to relate the radius of gyration parallel to the magnetic field of the polymer backbone to the smectic order parameter. We also show that the Renz-Warner theory is suitable at low temperatures.

  15. Cytoprotective Effects of Hydrophilic and Lipophilic Extracts of Pistacia vera against Oxidative Versus Carbonyl Stress in Rat Hepatocytes

    PubMed Central

    Shahraki, Jafar; Zareh, Mona; Kamalinejad, Mohammad; Pourahmad, Jalal

    2014-01-01

    This study was conducted to evaluate the cytoprotection of various extracts and bioactive compounds found in Pistacia vera againts cytotoxicity, ROS formation, lipid peroxidation, protein carbonylation, mitochondrial and lysosomal membrane damages in cell toxicity models of diabetes related carbonyl (glyoxal) and oxidative stress (hydroperoxide). Methanol, water and ethyl acetate were used to prepare crude pistachios extracts, which were then used to screen for in-vitro cytoprotection of freshly isolated rat hepatocytes against these toxins. The order of protection by Pistacia vera extracts against both hydroperoxide induced oxidative stress (ROS formation) and glyoxal induced protein carbonylation was: pistachio methanolic extract >pistachio water extract, gallic acid, catechin> α-tochoferol and pistachio ethyl acetate extract. Finally due to higher protection achieved by methanolic extract even compared to sole pretreatment of gallic acid, catechin or α-tochoferol, we suggest that cytoprotection depends on the variety of polar and non-polar compounds found in methanolic extract, it is likely that multiple cytoprotective mechanisms are acting against oxidative and carbonyl induced cytotoxicity. To our knowledge, we are the first to report the cytoprotective activity of Pistacia vera extracts against oxidative and carbonyl stress seen in type 2 diabetes hepatocytes model. PMID:25587316

  16. Characteristics and personal exposures of carbonyl compounds in the subway stations and in-subway trains of Shanghai, China.

    PubMed

    Feng, Yanli; Mu, Cuicui; Zhai, Jinqing; Li, Jian; Zou, Ting

    2010-11-15

    Carbonyl compounds including their concentrations, potential sources, diurnal variations and personal exposure were investigated in six subway stations and in-subway trains in Shanghai in June 2008. The carbonyls were collected onto solid sorbent (Tenax TA) coated with pentafluorophenyl hydrazine (PFPH), followed by solvent extraction and gas chromatography (GC)/mass spectrometry (MS) analysis of the PFPH derivatives. The total carbonyl concentrations of in-subway train were about 1.4-2.5 times lower than in-subway stations. A significant correlation (R>0.5, p<0.01) between the concentrations of the low molecular-weight carbonyl compounds (carbonyls were much higher in the morning rush hour than in other sampling periods. Additionally, pronounced diurnal variations of acetaldehyde concentration before and after the evening peak hour in the subway train suggested that passengers contributed to high acetaldehyde levels. The personal exposure showed that the underground subway stations were important microenvironment for exposure to formaldehyde and acetaldehyde. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls

    PubMed Central

    Singh, Mahavir; Kapoor, Aniruddh; Bhatnagar, Aruni

    2015-01-01

    Extensive research has shown that increased production of reactive oxygen species (ROS) results in tissue injury under a variety of pathological conditions and chronic degenerative diseases. While ROS are highly reactive and can incite significant injury, polyunsaturated lipids in membranes and lipoproteins are their main targets. ROS-triggered lipid peroxidation reactions generate a range of reactive carbonyl species (RCS), and these RCS spread and amplify ROS-related injury. Several RCS generated in oxidizing lipids, such as 4-hydroxy trans-2-nonenal (HNE), 4-oxo-2-(E)-nonenal (ONE), acrolein, malondialdehyde (MDA) and phospholipid aldehydes have been shown to be produced under conditions of oxidative stress and contribute to tissue injury and dysfunction by depleting glutathione and other reductants leading to the modification of proteins, lipids, and DNA. To prevent tissue injury, these RCS are metabolized by several oxidoreductases, including members of the aldo-keto reductase (AKR) superfamily, aldehyde dehydrogenases (ALDHs), and alcohol dehydrogenases (ADHs). Metabolism via these enzymes results in RCS inactivation and detoxification, although under some conditions, it can also lead to the generation of signaling molecules that trigger adaptive responses. Metabolic transformation and detoxification of RCS by oxidoreductases prevent indiscriminate ROS toxicity, while at the same time, preserving ROS signaling. A better understanding of RCS metabolism by oxidoreductases could lead to the development of novel therapeutic interventions to decrease oxidative injury in several disease states and to enhance resistance to ROS-induced toxicity. PMID:25559856

  18. Determination of carbonyls and their sources in three sites of the metropolitan area of Costa Rica, Central America.

    PubMed

    Murillo, Jorge Herrera; Marín, José Félix Rojas; Román, Susana Rodríguez

    2012-01-01

    Ambient levels of carbonyl compounds and their possible sources were studied at three places in the metropolitan area of Costa Rica, including a residential, an industrial, and a commercial downtown area with high vehicular flow, during the periods of April-May and September-December 2009. Fifteen carbonyl compounds were identified in the ambient air, of which acetone was the most abundant carbonyl, followed by formaldehyde and acetaldehyde. Concentrations were highest in rainy season at all sites and lower in dry season. These decreases in concentration are explained by the influences of both photochemical reactions and local meteorological conditions. The strong correlation between C1-C2 and C3 indicated a common origin for these carbonyls. The C1/C2 ratios varied between 0.49 to 1.05, values which can be considered typical of an urban area.

  19. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    NASA Astrophysics Data System (ADS)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  20. Animals without Backbones: The Invertebrate Story. Grade Level 5-9.

    ERIC Educational Resources Information Center

    Jerome, Brian; Fuqua, Paul

    This guide, when used in tandem with the videotape "Animals Without Backbones," helps students learn about invertebrates. These materials promote hands-on discovery and learning. The guide is composed of six curriculum-based teaching units: (1) "Getting Started"; (2) "Porifera"; (3) "Cnidarians"; (4) "Worms"; (5) "Mollusks"; (6) "Arthropods"; and…

  1. FT-IR quantification of the carbonyl functional group in aqueous-phase secondary organic aerosol from phenols

    NASA Astrophysics Data System (ADS)

    George, Kathryn M.; Ruthenburg, Travis C.; Smith, Jeremy; Yu, Lu; Zhang, Qi; Anastasio, Cort; Dillner, Ann M.

    2015-01-01

    Recent findings suggest that secondary organic aerosols (SOA) formed from aqueous-phase reactions of some organic species, including phenols, contribute significantly to particulate mass in the atmosphere. In this study, we employ a Fourier transform infrared (FT-IR) spectroscopic technique to identify and quantify the functional group makeup of phenolic SOA. Solutions containing an oxidant (hydroxyl radical or 3,4-dimethoxybenzaldehyde) and either one phenol (phenol, guaiacol, or syringol) or a mixture of phenols mimicking softwood or hardwood emissions were illuminated to make SOA, atomized, and collected on a filter. We produced laboratory standards of relevant organic compounds in order to develop calibrations for four functional groups: carbonyls (Cdbnd O), saturated C-H, unsaturated C-H and O-H. We analyzed the SOA samples with transmission FT-IR to identify and determine the amounts of the four functional groups. The carbonyl functional group accounts for 3-12% of the SOA sample mass in single phenolic SOA samples and 9-14% of the SOA sample mass in mixture samples. No carbonyl functional groups are present in the initial reactants. Varying amounts of each of the other functional groups are observed. Comparing carbonyls measured by FT-IR (which could include aldehydes, ketones, esters, and carboxylic acids) with eight small carboxylic acids measured by ion chromatography indicates that the acids only account for an average of 20% of the total carbonyl reported by FT-IR.

  2. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    PubMed

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.

  3. Methyl substituted polyimides containing carbonyl and ether connecting groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    Polyimides were prepared from the reaction of aromatic dianhydrides with novel aromatic diamines having carbonyl and ether groups connecting aromatic rings containing pendant methyl groups. The methyl substituent polyimides exhibit good solubility and form tough, strong films. Upon exposure to ultraviolet irradiation and/or heat, the methyl substituted polyimides crosslink to become insoluble.

  4. Influence of carbonyl iron particle coating with silica on the properties of magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Małecki, P.; Królewicz, M.; Hiptmair, F.; Krzak, J.; Kaleta, J.; Major, Z.; Pigłowski, J.

    2016-10-01

    In this paper, the influence of encapsulating carbonyl iron particles with various silica coatings on the properties of magnetorheological elastomers (MREs) was investigated. A soft styrene-ethylene-butylene-styrene thermoplastic elastomer was used as the composite’s polymer matrix. Spherical carbonyl iron powder (CIP) acted as the ferromagnetic filler. In order to improve the metal-polymer interaction, carbonyl iron particles were coated with two types of single and six types of double silica layers. The first layer was created through a TMOS or TEOS hydrolysis whereas the second one was composed of organosilanes. The mechanical properties of MREs containing 38.5 vol% of CIP were analysed under dynamic loading conditions. To investigate the magnetorheological effect in these composites, a 430 mT magnetic field, generated by an array of permanent magnets, was applied during testing. The results revealed that the magnetomechanical response of the MREs differs substantially, depending on the kind of particle coating.

  5. Determination of gaseous and particulate carbonyls (glycolaldehyde, hydroxyacetone, glyoxal, methylglyoxal, nonanal and decanal) in the atmosphere at Mt. Tai

    NASA Astrophysics Data System (ADS)

    Kawamura, K.; Okuzawa, K.; Aggarwal, S. G.; Irie, H.; Kanaya, Y.; Wang, Z.

    2013-05-01

    Gaseous and particulate semi-volatile carbonyl compounds were determined every three hours in the atmosphere of Mount Tai (elevation, 1534 m) in the North China Plain during 2-5, 23-24 and 25 June 2006 under clear sky conditions. Using a two-step filter cartridge in a series, particulate carbonyls were first collected on a quartz filter and then gaseous carbonyls were collected on a quartz filter impregnated with O-benzylhydroxylamine (BHA). After the two-step derivatization with BHA and N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA), carbonyl derivatives were measured using a gas chromatography. The gaseous concentrations were obtained as follow: glycolaldehyde (range 0-826 ng m-3, average 303 ng m-3), hydroxyacetone (0-579 ng m-3, 126 ng m-3), glyoxal (46-1200 ng m-3, 487 ng m-3), methylglyoxal (88-2690 ng m-3, 967 ng m-3), n-nonanal (0-500 ng m-3, 89 ng m-3), and n-decanal (0-230 ng m-3, 39 ng m-3). These concentrations are among the highest ever reported in the urban and forest atmosphere. We found that gaseous α-dicarbonyls (glyoxal and methylglyoxal) are more than 20 times more abundant than particulate carbonyls and that glycolaldehyde is one order of magnitude more abundant than in aerosol phase. In contrast, hydroxyacetone and normal aldehydes (nonanal and decanal) are equally present in both phases. Time-resolved variations of carbonyls did not show any a clear diurnal pattern, except for hydroxyacetone. We found that glyoxal, methylglyoxal and glycolaldehyde positively correlated with levoglucosan (a tracer of biomass burning), suggesting that a contribution from field burning of agricultural wastes (wheat crops) is significant for the bifunctional carbonyls in the atmosphere of Mt. Tai. Upward transport of the pollutants to the mountaintop from the low lands in the North China Plain is a major process to control the distributions of carbonyls in the upper atmosphere over Mt. Tai.

  6. The response of virally infected insect cells to dissolved oxygen concentration: recombinant protein production and oxidative damage.

    PubMed

    Saarinen, Mark A; Murhammer, David W

    2003-01-05

    The effects of dissolved oxygen (DO) concentration on virally infected insect cells were investigated in 3-L bioreactor culture. Specifically, cultures of Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) were infected with Autographa californica multiple nucleopolyhedrovirus expressing secreted alkaline phosphatase (SEAP). Following infection at a DO concentration of 50% air saturation, the DO concentration was adjusted to a final value of either 190%, 50%, or 10% air saturation. Recombinant SEAP production, cell viability, protein carbonyl content, and thiobarbituric acid reactive substances (TBARS) content were monitored. The increases in protein carbonyl and TBARS contents are taken to be indicators of protein oxidation and lipid oxidation, respectively. DO concentration was found to have no noticeable effect on SEAP production or cell viability decline in the Sf-9 cell line. In the Tn-5B1-4 cell line, cells displayed an increased peak SEAP production rate for 190% air saturation and displayed an increased rate of viability decline at increased DO concentration. Protein carbonyl content showed no significant increase in the Sf-9 cell line by 72 h postinfection (pi) at any DO concentration but showed a twofold increase at 10% and 50% DO concentration and a threefold increase at 190% DO concentration by 72 h pi in Tn-5B1-4 cells. TBARS content was found to increase by approximately 50% in Sf-9 cells and by approximately twofold in Tn-5B1-4 cells by 72 h pi with no clear relationship to DO concentration. It is hypothesized that oxygen uptake changes due to the viral infection process may bear a relation to the observed increases in protein and lipid oxidation and that lipid oxidation may play an important role in the death of virally infected insect cells. Copyright 2002 Wiley Periodicals, Inc.

  7. Reductive alkylation of active methylene compounds with carbonyl derivatives, calcium hydride and a heterogeneous catalyst.

    PubMed

    Guyon, Carole; Duclos, Marie-Christine; Sutter, Marc; Métay, Estelle; Lemaire, Marc

    2015-07-07

    A one-pot two-step reaction (Knoevenagel condensation - reduction of the double bond) has been developed using calcium hydride as a reductant in the presence of a supported noble metal catalyst. The reaction between carbonyl compounds and active methylene compounds such as methylcyanoacetate, 1,3-dimethylbarbituric acid, dimedone and the more challenging dimethylmalonate, affords the corresponding monoalkylated products in moderate to good yields (up to 83%) with minimal reduction of the starting carbonyl compounds.

  8. Carbonyl Compounds Produced by Vaporizing Cannabis Oil Thinning Agents.

    PubMed

    Troutt, William D; DiDonato, Matthew D

    2017-11-01

    Cannabis use has increased in the United States, particularly the use of vaporized cannabis oil, which is often mixed with thinning agents for use in vaporizing devices. E-cigarette research shows that heated thinning agents produce potentially harmful carbonyls; however, similar studies have not been conducted (1) with agents that are commonly used in the cannabis industry and (2) at temperatures that are appropriate for cannabis oil vaporization. The goal of this study was to determine whether thinning agents used in the cannabis industry produce potentially harmful carbonyls when heated to a temperature that is appropriate for cannabis oil vaporization. Four thinning agents (propylene glycol [PG], vegetable glycerin [VG], polyethylene glycol 400 [PEG 400], and medium chain triglycerides [MCT]) were heated to 230°C and the resulting vapors were tested for acetaldehyde, acrolein, and formaldehyde. Each agent was tested three times. Testing was conducted in a smoking laboratory. Carbonyl levels were measured in micrograms per puff block. Analyses showed that PEG 400 produced significantly higher levels of acetaldehyde and formaldehyde than PG, MCT, and VG. Formaldehyde production was also significantly greater in PG compared with MCT and VG. Acrolein production did not differ significantly across the agents. PG and PEG 400 produced high levels of acetaldehyde and formaldehyde when heated to 230°C. Formaldehyde production from PEG 400 isolate was particularly high, with one inhalation accounting for 1.12% of the daily exposure limit, nearly the same exposure as smoking one cigarette. Because PG and PEG 400 are often mixed with cannabis oil, individuals who vaporize cannabis oil products may risk exposure to harmful formaldehyde levels. Although more research is needed, consumers and policy makers should consider these potential health effects before use and when drafting cannabis-related legislation.

  9. Connectivity of glass structure. Oxygen number

    NASA Astrophysics Data System (ADS)

    Medvedev, E. F.; Min'ko, N. I.

    2018-03-01

    With reference to mathematics, crystal chemistry and chemical technology of synthesis of glass structures in the solution (sol-gel technology), the paper is devoted to the study of the degree of connectivity of a silicon-oxygen backbone (fSi) and the oxygen number (R) [1]. It reveals logical contradictions and uncertainty of mathematical expressions of parameters, since fSi is not similar to the oxygen number. The connectivity of any structure is a result of various types of bonds: ion-covalent, donor-acceptor, hydrogen bonds, etc. Besides, alongside with SiO2, many glass compositions contain other glass-forming elements due to tetrahedral sites thus formed. The connectivity function of a glassy network with any set of glass-forming elements is roughly ensured by connectivity factor Y [2], which has monovalent elements loosening a glassy network. The paper considers the existence of various structural motives in hydrogen-impermeable glasses containing B2O3, Al2O3, PbO, Na2O, K2O and rare-earth elements. Hence, it also describes gradual nucleation, change of crystal forms, and structure consolidation in the process of substance intake from a matrix solution according to sol-gel technology. The crystal form varied from two-dimensional plates to three-dimensional and dendritical ones [3]. Alternative parameters, such as the oxygen number (O) and the structure connectivity factor (Y), were suggested. Functional dependence of Y=f(O) to forecast the generated structures was obtained for two- and multicomponent glass compositions.

  10. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  11. Measurement and source characteristics of carbonyl compounds in the atmosphere in Kaohsiung city, Taiwan.

    PubMed

    Wang, H K; Huang, C H; Chen, K S; Peng, Y P; Lai, C H

    2010-07-15

    The concentrations of eighteen atmospheric carbonyls species were measured by the LpDNPH-Cartridge and the microcomputer air sampling device at Nan-Chie (northern part) and Hsiung-Kong (southern part) sites in Kaohsiung city, southern Taiwan. These samples were then analyzed using a high performance liquid chromatography (HPLC). Measurements showed that the highest concentrations of carbonyls were formaldehyde (18.33 and 18.74 microg m(-3)) at the Nan-Chie and Hsiung-Kong site, followed by acetaldehyde (14.90 and 15.71 microg m(-3)). The concentrations of total carbonyls were higher at Hsiung-Kong site (66.96 microg m(-3)) than at Nan-Chie site (60.41 microg m(-3)). The concentrations of total carbonyls at Nan-Chie site (or Hsiung-Kong site) were 74.06 microg m(-3) (89.99 microg m(-3)) in summer and 37.14 microg m(-3) (46.50 microg m(-3)) in winter, due to the fact that photochemical activities are stronger in summer than in winter. The results of principal component analysis (PCA)/absolute principal component scores (APCS) suggest that the primary pollution sources at Nan-Chie were vehicle exhausts (gasoline and diesel engines), stationary emissions (petrochemical and food industry) and restaurant emissions, and the primary pollution sources at Hsiung-Kong were vehicle exhausts (gasoline and diesel engines), stationary emissions (metal assembly and petrochemical industry) and restaurant emissions. 2010 Elsevier B.V. All rights reserved.

  12. A study on the antimicrobial efficacy of RF oxygen plasma and neem extract treated cotton fabrics

    NASA Astrophysics Data System (ADS)

    Vaideki, K.; Jayakumar, S.; Thilagavathi, G.; Rajendran, R.

    2007-06-01

    The paper deals with a thorough investigation on the antimicrobial activity of RF oxygen plasma and Azadirachtin (neem extract) treated cotton fabric. The hydrophilicity of cotton fabric was found to improve when treated with RF oxygen plasma. The process parameters such as electrode gap, time of exposure and oxygen pressure have been varied to study their effect on improving the hydrophilicity of the cotton fabric. The static immersion test has been carried out to assess the hydrophilicity of the oxygen plasma treated samples and the process parameters were optimized based on these test results. The formation of carbonyl group during surface modification in the plasma treated sample was analysed using FTIR studies. The surface morphology has been studied using SEM micrographs. The antimicrobial activity was imparted to the RF oxygen plasma treated samples using methanolic extract of neem leaves containing Azadirachtin. The antimicrobial activity of these samples has been analysed and compared with the activity of the cotton fabric treated with neem extract alone. The investigation reveals that the surface modification due to RF oxygen plasma was found to increase the hydrophilicity and hence the antimicrobial activity of the cotton fabric when treated with Azadirachtin.

  13. NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A-T phosphoramidite building blocks.

    PubMed

    Schmidtgall, Boris; Höbartner, Claudia; Ducho, Christian

    2015-01-01

    Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T-T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X-T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A-T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues.

  14. Conformations of peptoids in nanosheets result from the interplay of backbone energetics and intermolecular interactions.

    PubMed

    Edison, John R; Spencer, Ryan K; Butterfoss, Glenn L; Hudson, Benjamin C; Hochbaum, Allon I; Paravastu, Anant K; Zuckermann, Ronald N; Whitelam, Stephen

    2018-05-29

    The conformations adopted by the molecular constituents of a supramolecular assembly influence its large-scale order. At the same time, the interactions made in assemblies by molecules can influence their conformations. Here we study this interplay in extended flat nanosheets made from nonnatural sequence-specific peptoid polymers. Nanosheets exist because individual polymers can be linear and untwisted, by virtue of polymer backbone elements adopting alternating rotational states whose twists oppose and cancel. Using molecular dynamics and quantum mechanical simulations, together with experimental data, we explore the design space of flat nanostructures built from peptoids. We show that several sets of peptoid backbone conformations are consistent with their being linear, but the specific combination observed in experiment is determined by a combination of backbone energetics and the interactions made within the nanosheet. Our results provide a molecular model of the peptoid nanosheet consistent with all available experimental data and show that its structure results from a combination of intra- and intermolecular interactions.

  15. Electron-impact total ionization cross sections of DNA sugar-phosphate backbone and an additivity principle

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.

    2005-01-01

    The improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)l is used to study the total ionization cross sections of the DNA sugar-phosphate backbone by electron impact. Calculations using neutral fragments found that the total ionization cross sections of C3' - and C5', -deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3' - and C5" -deoxyribose-phospate cross sections, differing by less than 10%. The result implies that certain properties of the-DNA, like the total singly ionization cross section, are localized properties and a building-up or additivity principle may apply. This allows us to obtain accurate properties of larger molecular systems built up from the results of smaller subsystem fragments. Calculations are underway using a negatively charged sugar-phosphate backbone with a metal counter-ion.

  16. Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine.

    PubMed

    Smith, M A; Sayre, L M; Anderson, V E; Harris, P L; Beal, M F; Kowall, N; Perry, G

    1998-06-01

    Formation of carbonyls derived from lipids, proteins, carbohydrates, and nucleic acids is common during oxidative stress. For example, metal-catalyzed, "site-specific" oxidation of several amino acid side-chains produces aldehydes or ketones, and peroxidation of lipids generates reactive aldehydes such as malondialdehyde and hydroxynonenal. Here, using in situ 2,4-dinitrophenylhydrazine labeling linked to an antibody system, we describe a highly sensitive and specific cytochemical technique to specifically localize biomacromolecule-bound carbonyl reactivity. When this technique was applied to tissues from cases of Alzheimer disease, in which oxidative events including lipoperoxidative, glycoxidative, and other oxidative protein modifications have been reported, we detected free carbonyls not only in the disease-related intraneuronal lesions but also in other neurons. In marked contrast, free carbonyls were not found in neurons or glia in age-matched control cases. Importantly, this assay was highly specific for detecting disease-related oxidative damage because the site of oxidative damage can be assessed in the midst of concurrent age-related increases in free carbonyls in vascular basement membrane that would contaminate biochemical samples subjected to bulk analysis. These findings demonstrate that oxidative imbalance and stress are key elements in the pathogenesis of Alzheimer disease.

  17. Ionic Attachment as a Feasible Approach to Heterogenizing Anionic Solution Catalysts. The Carbonylation of Methanol,

    DTIC Science & Technology

    1980-08-01

    carbonylation of methanol to acetic acid reaction is well suited for a demonstration of the feasibility and value of ionically binding a catalyst to a...approximate doubling of the reaction rate. This result suggests that a liquid flow system design in which there is a large catalyst to methanol ratio could...Heterogenizing Anionic Solution Catalysts . The Carbonylation of Methanol by Russell S. Drago, Eric D. Nyberg, Anton El A’mma and Alan Zombeck ABSTRACT -’Few

  18. Can a proton be encapsulated in tetraamido/diamino quaternized macrocycles in aqueous solution and electric field?

    PubMed

    Jiang, Nan; Ma, Jing

    2011-09-12

    The proton-binding behavior of solvated tetraamido/diamino quaternized macrocyclic compounds with rigid phenyl and flexible phenyl bridges in the absence or presence of an external electric field is investigated by molecular dynamics simulation. The proton can be held through H-bonding interactions with the two carbonyl oxygen atoms in macrocycles containing rigid (phenyl) and flexible (propyl) bridges. The solute-solvent H-bonding interactions cause the macrocyclic backbones to twist to different extents, depending on the different bridges. The macrocycle with the rigid phenyl linkages folds into a cuplike shape due to π-π interaction, while the propyl analogue still maintains the ellipsoidal ringlike shape with just a slight distortion. The potential energy required for proton transfer is larger in the phenyl-containing macrocycle than in the compound with propyl units. When an external electric field with a strength of 2.5 V nm(-1) is exerted along the carbonyl oxygen atoms, a difference in proton encircling is exhibited for macrocycles with rigid and flexible bridges. In contrast to encapsulation of a proton in the propyl analogue, the intermolecular solute-solvent H-bonding and intramolecular π-π stacking between the two rigid phenyl spacers leads to loss of the proton from the highly distorted cuplike macrocycle with phenyl bridges. The competition between intra- and intermolecular interactions governs the behavior of proton encircling in macrocycles. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. CARBONYL SULFIDE INHALATION PRODUCES BRAIN LESIONS IN F344 RATS.

    EPA Science Inventory

    Carbonyl sulfide (COS) is an intermediate in the production of pesticides and herbicides, and is a metabolite of the neurotoxicant carbon disulfide. The potential neurotoxicity of inhaled COS was investigated in F344 rats. Male rats were exposed to 0, 75, 150, 300, or 600 ppm COS...

  20. A discrete search algorithm for finding the structure of protein backbones and side chains.

    PubMed

    Sallaume, Silas; Martins, Simone de Lima; Ochi, Luiz Satoru; Da Silva, Warley Gramacho; Lavor, Carlile; Liberti, Leo

    2013-01-01

    Some information about protein structure can be obtained by using Nuclear Magnetic Resonance (NMR) techniques, but they provide only a sparse set of distances between atoms in a protein. The Molecular Distance Geometry Problem (MDGP) consists in determining the three-dimensional structure of a molecule using a set of known distances between some atoms. Recently, a Branch and Prune (BP) algorithm was proposed to calculate the backbone of a protein, based on a discrete formulation for the MDGP. We present an extension of the BP algorithm that can calculate not only the protein backbone, but the whole three-dimensional structure of proteins.

  1. Palladium-catalysed carbonylative α-arylation of nitromethane.

    PubMed

    Lian, Zhong; Friis, Stig D; Skrydstrup, Troels

    2015-02-28

    A simple and mild Pd-catalysed carbonylative α-arylation of nitromethane has been realised providing access to α-nitro aryl ketones from an array of aryl and heteroaryl iodides. The methodology requires only a mild base and uses the convenient solid CO releasing molecule, COgen in a two-chamber system. Changing to the isotopically labelled (13)COgen, [(13)C]-acyl labelling can be effected through the generation of a near stoichiometric amount of (13)CO. Lastly, the significance of the generated products as synthetic intermediates is demonstrated.

  2. DEVELOPMENT AND APPLICATION OF A SENSITIVE METHOD TO DETERMINE CONCENTRATIONS OF ACROLEIN AND OTHER CARBONYLS IN AMBIENT AIR

    EPA Science Inventory

    The sampler developed by Charles and Cahill, with Dr. Vincent Seaman, consists of a custom-built glass mist chamber in which air enters at a high flow rate and carbonyls are trapped in a solution of sodium bisulfite as carbonyl-bisulfite adducts. This reaction is rapid (on ...

  3. Alterations in nonenzymatic biochemistry in uremia: origin and significance of "carbonyl stress" in long-term uremic complications.

    PubMed

    Miyata, T; van Ypersele de Strihou, C; Kurokawa, K; Baynes, J W

    1999-02-01

    Advanced glycation end products (AGEs), formed during Maillard or browning reactions by nonenzymatic glycation and oxidation (glycoxidation) of proteins, have been implicated in the pathogenesis of several diseases, including diabetes and uremia. AGEs, such as pentosidine and carboxymethyllysine, are markedly elevated in both plasma proteins and skin collagen of uremic patients, irrespective of the presence of diabetes. The increased chemical modification of proteins is not limited to AGEs, because increased levels of advanced lipoxidation end products (ALEs), such as malondialdehydelysine, are also detected in plasma proteins in uremia. The accumulation of AGEs and ALEs in uremic plasma proteins is not correlated with increased blood glucose or triglycerides, nor is it determined by a decreased removal of chemically modified proteins by glomerular filtration. It more likely results from increased plasma concentrations of small, reactive carbonyl precursors of AGEs and ALEs, such as glyoxal, methylglyoxal, 3-deoxyglucosone, dehydroascorbate, and malondialdehyde. Thus, uremia may be described as a state of carbonyl overload or "carbonyl stress" resulting from either increased oxidation of carbohydrates and lipids (oxidative stress) or inadequate detoxification or inactivation of reactive carbonyl compounds derived from both carbohydrates and lipids by oxidative and nonoxidative chemistry. Carbonyl stress in uremia may contribute to the long-term complications associated with chronic renal failure and dialysis, such as dialysis-related amyloidosis and accelerated atherosclerosis. The increased levels of AGEs and ALEs in uremic blood and tissue proteins suggest a broad derangement in the nonenzymatic biochemistry of both carbohydrates and lipids.

  4. Urban-air-toxics Monitoring Program carbonyl results, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-07-01

    The report summarizes the results of sampling ambient air for selected carbonyl containing compounds in 12 urban centers in the contiguous United States as part of the Urban Air Toxics Monitoring Program (UATMP). Formaldehyde, acetaldehyde, and acetone concentrations were measured using 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges to collect the carbonyls for subsequent analysis. Sampling and analysis followed guidance provided in U.S. Environmental Protection Agency (EPA) compendium method TO-11. Formaldehyde concentrations ranged from 0.42 to 34.5 ppbv with an average concentration for all sites of 4.2 ppbv. Site average formaldehyde concentrations ranged from 1.5 ppbv for Houston, TX (H1TX) to 7.9 formore » Washington, DC (W2DC). Acetaldehyde concentrations ranged from 0.37 to 9.5 ppbv, averaging 1.7 ppbv over all 1990 UATMP sites. Site average acetaldehyde concentrations ranged from 0.76 ppbv at Houston, TX (H1TX) to 2.5 ppbv at Baton Rouge, LA (BRLA). Acetone concentrations ranged from 0.37 to 10.8 ppbv and averaged 1.8 ppbv over all sites. Site average acetone concentrations ranged from 0.68 ppbv at Houston, TX (H1TX) to 2.9 ppbv at Chicago, IL (C4IL).« less

  5. Specific reaction of alpha,beta-unsaturated carbonyl compounds such as 6-shogaol with sulfhydryl groups in tubulin leading to microtubule damage.

    PubMed

    Ishiguro, Kazuhiro; Ando, Takafumi; Watanabe, Osamu; Goto, Hidemi

    2008-10-15

    6-Shogaol and 6-gingerol are ginger components with similar chemical structures. However, while 6-shogaol damages microtubules, 6-gingerol does not. We have investigated the molecular mechanism of 6-shogaol-induced microtubule damage and found that the action of 6-shogaol results from the structure of alpha,beta-unsaturated carbonyl compounds. alpha,beta-Unsaturated carbonyl compounds such as 6-shogaol react with sulfhydryl groups of cysteine residues in tubulin, and impair tubulin polymerization. The reaction with sulfhydryl groups depends on the chain length of alpha,beta-unsaturated carbonyl compounds. In addition, alpha,beta-unsaturated carbonyl compounds are more reactive with sulfhydryl groups in tubulin than in 2-mercaptoethanol, dithiothreitol, glutathione and papain, a cysteine protease.

  6. Detection of Cyclooxygenase-2-Derived Oxygenation Products of the Endogenous Cannabinoid 2-Arachidonoylglycerol in Mouse Brain.

    PubMed

    Morgan, Amanda J; Kingsley, Philip J; Mitchener, Michelle M; Altemus, Megan; Patrick, Toni A; Gaulden, Andrew D; Marnett, Lawrence J; Patel, Sachin

    2018-05-09

    Cyclooxygenase-2 (COX-2) catalyzes the formation of prostaglandins, which are involved in immune regulation, vascular function, and synaptic signaling. COX-2 also inactivates the endogenous cannabinoid (eCB) 2-arachidonoylglycerol (2-AG) via oxygenation of its arachidonic acid backbone to form a variety of prostaglandin glyceryl esters (PG-Gs). Although this oxygenation reaction is readily observed in vitro and in intact cells, detection of COX-2-derived 2-AG oxygenation products has not been previously reported in neuronal tissue. Here we show that 2-AG is metabolized in the brain of transgenic COX-2-overexpressing mice and mice treated with lipopolysaccharide to form multiple species of PG-Gs that are detectable only when monoacylglycerol lipase is concomitantly blocked. Formation of these PG-Gs is prevented by acute pharmacological inhibition of COX-2. These data provide evidence that neuronal COX-2 is capable of oxygenating 2-AG to form a variety PG-Gs in vivo and support further investigation of the physiological functions of PG-Gs.

  7. Contrasting Influence of NADPH and a NADPH-Regenerating System on the Metabolism of Carbonyl-Containing Compounds in Hepatic Microsomes

    EPA Science Inventory

    Carbonyl containing xenobiotics may be susceptible to NADPH-dependent cytochrome P450 (P450) and carbonyl-reduction reactions. In vitro hepatic microsome assays are routinely supplied NADPH either by direct addition of NADPH or via an NADPH-regenerating system (NRS). In contrast ...

  8. Excited state characterization of carbonyl containing carotenoids: a comparison between single and multireference descriptions

    NASA Astrophysics Data System (ADS)

    Spezia, Riccardo; Knecht, Stefan; Mennucci, Benedetta

    Carotenoids can play multiple roles in biological photoreceptors thanks to their rich photophysics. In the present work, we have investigated six of the most common carbonyl containing carotenoids: Echinenone, Canthaxanthin, Astaxanthin, Fucoxanthin, Capsanthin and Capsorubin. Their excitation properties are investigated by means of a hybrid density functional theory (DFT) and multireference configuration interaction (MRCI) approach to elucidate the role of the carbonyl group: the bright transition is of {\\pi}{\\pi}* character, as expected, but the presence of a C=O moiety reduces the energy of n{\\pi}* transitions which may become closer to the {\\pi}{\\pi}* transition, in particular as the conjugation chain decreases. This can be related to the presence of a low-lying charge transfer state typical of short carbonyl- containing carotenoids. The DFT/MRCI results are finally used to benchmark single- reference time-dependent DFT-based methods: among the investigated functionals, the meta- GGA (and in particular M11L and MN12L) functionals show to perform the best for all six investigated systems.

  9. Modeling backbone flexibility to achieve sequence diversity: The design of novel alpha-helical ligands for Bcl-xL

    PubMed Central

    Fu, Xiaoran; Apgar, James R.; Keating, Amy E.

    2007-01-01

    Computational protein design can be used to select sequences that are compatible with a fixed-backbone template. This strategy has been used in numerous instances to engineer novel proteins. However, the fixed-backbone assumption severely restricts the sequence space that is accessible via design. For challenging problems, such as the design of functional proteins, this may not be acceptable. In this paper, we present a method for introducing backbone flexibility into protein design calculations and apply it to the design of diverse helical BH3 ligands that bind to the anti-apoptotic protein Bcl-xL, a member of the Bcl-2 protein family. We demonstrate how normal mode analysis can be used to sample different BH3 backbones, and show that this leads to a larger and more diverse set of low-energy solutions than can be achieved using a native high-resolution Bcl-xL complex crystal structure as a template. We tested several of the designed solutions experimentally and found that this approach worked well when normal mode calculations were used to deform a native BH3 helix structure, but less well when they were used to deform an idealized helix. A subsequent round of design and testing identified a likely source of the problem as inadequate sampling of the helix pitch. In all, we tested seventeen designed BH3 peptide sequences, including several point mutants. Of these, eight bound well to Bcl-xL and four others showed weak but detectable binding. The successful designs showed a diversity of sequences that would have been difficult or impossible to achieve using only a fixed backbone. Thus, introducing backbone flexibility via normal mode analysis effectively broadened the set of sequences identified by computational design, and provided insight into positions important for binding Bcl-xL. PMID:17597151

  10. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, J.W.; Klingler, R.J.

    1993-03-30

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  11. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  12. [Defects in TOR regulatory complexes retard aging and carbonyl/oxidative stress development in yeast Saccharomyces cerevisiae].

    PubMed

    Homza, B V; Vasyl'kovs'ka, R A; Semchyshyn, H M

    2014-01-01

    TOR signaling pathway first described in yeast S. cerevisiae is the highly conserved regulator of eukaryotic cell growth, aging and stress resistance. The effect of nitrogen sources, in particular amino acids, on the activity of TOR signaling pathway is well studied, however its relation to carbohydrates is poor understood. The aim of the present study is expanding of our understanding of potential role of TOR regulatory complexes in development of carbonyl/oxidative stress that can result from yeast cultivation on glucose and fructose. It has been shown that the level of alpha-dicarbonyl compounds and protein carbonyl groups increased with time of yeast cultivation and was higher in cells grown on fructose that demonstrated their accelerated aging and carbonyl/oxidative stress development as compared with cells grown on glucose. The strains defective in TOR proteins cultivated in the presence of glucose as well as fructose demonstrated lower markers of the stress and aging than parental strain. Thus these data confirmed the previous conclusion on fructose more potent ability to cause carbonyl/oxidative stress and accelerated aging in S. cerevisiae as compared with glucose. However, defects in TOR regulatory complexes retard aging and development of the stress in yeast independent on the type of carbohydrate in the cultivation medium.

  13. New method to determine the total carbonyl functional group content in extractable particulate organic matter by tandem mass spectrometry.

    PubMed

    Dron, J; Zheng, W; Marchand, N; Wortham, H

    2008-08-01

    A functional group analysis method was developed to determine the quantitative content of carbonyl functional groups in atmospheric particulate organic matter (POM) using constant neutral loss scanning-tandem mass spectrometry (CNLS-MS/MS). The neutral loss method consists in monitoring the loss of a neutral fragment produced by the fragmentation of a precursor ion in a collision cell. The only ions detected are the daughter ions resulting from the loss of the neutral fragment under study. Then, scanning the loss of a neutral fragment characteristic of a functional group enables the selective detection of the compounds bearing the chemical function under study within a complex mixture. The selective detection of carbonyl functional groups was achieved after derivatization with pentafluorophenylhydrazine (PFPH) by monitoring the neutral loss of C(6)F(5)N (181 amu), which was characteristic of a large panel of derivatized carbonyl compounds. The method was tested on 25 reference mixtures of different composition, all containing 24 carbonyl compounds at randomly determined concentrations. The repeatability and calibration tests were satisfying as they resulted in a relative standard deviation below 5% and a linear range between 0.01 and 0.65 mM with a calculated detection limit of 0.0035 mM. Also, the relative deviation induced by changing the composition of the mixture while keeping the total concentration of carbonyl functional groups constant was less than 20%. These reliability experiments demonstrate the high robustness of the developed procedure for accurate carbonyl functional group measurement, which was applied to atmospheric POM samples. Copyright (c) 2008 John Wiley & Sons, Ltd.

  14. Sampling of atmospheric carbonyl compounds for determination by liquid chromatography after 2,4-dinitrophenylhydrazine labelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vairavamurthy, A.; Roberts, J.M.; Newman, L.

    1991-06-01

    Carbonyl compounds are both primary (directly emitted) and secondary (formed in situ) atmospheric species, which play a major role in tropospheric photochemistry. Because of trace concentrations (parts-per-billion and lower), ambient air measurements of carbonyls pose serious analytical problems. Generally, chromatographic approaches combined with chemical derivatization have been used to enhance sensitivity and selectivity in analysis. Currently, the liquid chromatographic method coupled to 2,4-dinitrophenylhydrazine derivatization (DNPH-LC) is in widespread use. Interferences arising from similar compounds are greatly minimized by chromatographic separation; however, those in the air sampling step, especially with ozone, continue to be problematic and remain to be resolved. Wemore » discuss here the different sampling techniques used for time-integrated collection of carbonyls in the DNPH-LC methods. Emphasis is placed on addressing: (1) the principles, advantages, and limitations of sampling techniques; (2) problems associated with reagent blank and sampling instrument; and (3) effects of atmospheric co-pollutants, especially ozone. 58 refs., 8 figs., 3 tabs.« less

  15. Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes

    NASA Astrophysics Data System (ADS)

    Raithel, Dominic; Simine, Lena; Pickel, Sebastian; Schötz, Konstantin; Panzer, Fabian; Baderschneider, Sebastian; Schiefer, Daniel; Lohwasser, Ruth; Köhler, Jürgen; Thelakkat, Mukundan; Sommer, Michael; Köhler, Anna; Rossky, Peter J.; Hildner, Richard

    2018-03-01

    The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (˜2,000 cm‑1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron‑hole polarization.

  16. Simple catalytic mechanism for the direct coupling of α-carbonyls with functionalized amines: a one-step synthesis of Plavix.

    PubMed

    Evans, Ryan W; Zbieg, Jason R; Zhu, Shaolin; Li, Wei; MacMillan, David W C

    2013-10-30

    The direct α-amination of ketones, esters, and aldehydes has been accomplished via copper catalysis. In the presence of catalytic copper(II) bromide, a diverse range of carbonyl and amine substrates undergo fragment coupling to produce synthetically useful α-amino-substituted motifs. The transformation is proposed to proceed via a catalytically generated α-bromo carbonyl species; nucleophilic displacement of the bromide by the amine then delivers the α-amino carbonyl adduct while the catalyst is reconstituted. The practical value of this transformation is highlighted through one-step syntheses of two high-profile pharmaceutical agents, Plavix and amfepramone.

  17. Effect of oligonucleic acid (ONA) backbone features on assembly of ONA-star polymer conjugates: a coarse-grained molecular simulation study.

    PubMed

    Condon, Joshua E; Jayaraman, Arthi

    2017-10-04

    Understanding the impact of incorporating new physical and chemical features in oligomeric DNA mimics, termed generally as "oligonucleic acids" (ONAs), on their structure and thermodynamics will be beneficial in designing novel materials for a variety of applications. In this work, we conduct coarse-grained molecular simulations of ONA-star polymer conjugates with varying ONA backbone flexibility, ONA backbone charge, and number of arms in the star polymer at a constant ONA strand volume fraction to elucidate the effect of these design parameters on the thermodynamics and assembly of multi-arm ONA-star polymer conjugates. We quantify the thermo-reversible behavior of the ONA-star polymer conjugates by quantifying the hybridization of the ONA strands in the system as a function of temperature (i.e. melting curve). Additionally, we characterize the assembly of the ONA-star polymer conjugates by tracking cluster formation and percolation as a function of temperature, as well as cluster size distribution at temperatures near the assembly transition region. The key results are as follows. The melting temperature (T m ) of the ONA strands decreases upon going from a neutral to a charged ONA backbone and upon increasing flexibility of the ONA backbone. Similar behavior is seen for the assembly transition temperature (T a ) with varying ONA backbone charge and flexibility. While the number of arms in the ONA-star polymer conjugate has a negligible effect on the ONA T m in these systems, as the number of ONA-star polymer arms increase, the assembly temperature T a increases and local ordering in the assembled state improves. By understanding how factors like ONA backbone charge, backbone flexibility, and ONA-star polymer conjugate architecture impact the behavior of ONA-star polymer conjugate systems, we can better inform how the selection of ONA chemistry will influence resulting ONA-star polymer assembly.

  18. Grape skin extracts from winemaking by-products as a source of trapping agents for reactive carbonyl species.

    PubMed

    Sri Harsha, Pedapati S C; Mesias, Marta; Lavelli, Vera; Morales, Francisco J

    2016-01-30

    Clinical evidence supports the relationship between carbonyl stress and type II diabetes and its related pathologies. Methylglyoxal (MGO) is the major dicarbonyl compound involved in carbonyl stress. Efforts are therefore being made to find dietary compounds from natural sources that could exert an MGO trapping response. The in vitro MGO trapping capacity of six red and seven white grape skin extracts (GSE) obtained from winemaking by-products was investigated. Methanolic GSE exhibited a promising MGO trapping capacity that was higher in red GSE (IC50 2.8 mg mL(-1)) when compared with white GSE (IC50 3.2 mg mL(-1)). The trapping ability for red GSE correlated significantly with total phenolic content and antioxidant capacity. However, no correlations were observed for white GSE, which suggests that other compounds were involved in the trapping activity. GSE may be considered a natural source of carbonyl stress inhibitors, thus opening up its possible utilization as a nutraceutical ingredient. Further investigations are required to understand the mechanism involved in the carbonyl trapping ability of red and white grape skin samples and their relationship with glycation. © 2015 Society of Chemical Industry.

  19. Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine and their subsequent determination by high-performance liquid chromatography.

    PubMed

    Uchiyama, Shigehisa; Inaba, Yohei; Kunugita, Naoki

    2011-05-15

    Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine (DNPH) is one of the most widely used analytical methods. In this article, we highlight recent advances using DNPH provided by our studies over past seven years. DNPH reacts with carbonyls to form corresponding stable 2,4-DNPhydrazone derivatives (DNPhydrazones). This method may result in analytical error because DNPhydrazones have both E- and Z-stereoisomers caused by the CN double bond. Purified aldehyde-2,4-DNPhydrazone demonstrated only the E-isomer, but under UV irradiation and the addition of acid, both E- and Z-isomers were seen. In order to resolve the isometric problem, a method for transforming the CN double bond of carbonyl-2,4-DNPhydrazone into a C-N single bond, by reductive amination using 2-picoline borane, has been developed. The amination reactions of C1-C10 aldehyde DNPhydrazones are completely converted into the reduced forms and can be analyzed with high-performance liquid chromatography. As a new application using DNPH derivatization, the simultaneous measurement of carbonyls with carboxylic acids or ozone is described in this review. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Metal carbonyl vapor generation coupled with dielectric barrier discharge to avoid plasma quench for optical emission spectrometry.

    PubMed

    Cai, Yi; Li, Shao-Hua; Dou, Shuai; Yu, Yong-Liang; Wang, Jian-Hua

    2015-01-20

    The scope of dielectric barrier discharge (DBD) microplasma as a radiation source for optical emission spectrometry (OES) is extended by nickel carbonyl vapor generation. We proved that metal carbonyl completely avoids the extinguishing of plasma, and it is much more suitable for matching the DBD excitation and OES detection with respect to significant DBD quenching by concomitant hydrogen when hydride generation is used. A concentric quartz UV reactor allows sample solution to flow through the central channel wherein to efficiently receive the uniformly distributed UV irradiation in the confined cylindrical space between the concentric tubes, which facilitates effective carbonyl generation in a nickel solution. The carbonyl is transferred into the DBD excitation chamber by an argon stream for nickel excitation, and the characteristic emission of nickel at 232.0 nm is detected by a charge-coupled device (CCD) spectrometer. A 1.0 mL sample solution results in a linear range of 5-100 μg L(-1) along with a detection limit of 1.3 μg L(-1) and a precision of 2.4% RSD at 50 μg L(-1). The present DBD-OES system is validated by nickel in certified reference materials.

  1. Using Excel To Study The Relation Between Protein Dihedral Angle Omega And Backbone Length

    NASA Astrophysics Data System (ADS)

    Shew, Christopher; Evans, Samari; Tao, Xiuping

    How to involve the uninitiated undergraduate students in computational biophysics research? We made use of Microsoft Excel to carry out calculations of bond lengths, bond angles and dihedral angles of proteins. Specifically, we studied protein backbone dihedral angle omega by examining how its distribution varies with the length of the backbone length. It turns out Excel is a respectable tool for this task. An ordinary current-day desktop or laptop can handle the calculations for midsized proteins in just seconds. Care has to be taken to enter the formulas for the spreadsheet column after column to minimize the computing load. Supported in part by NSF Grant #1238795.

  2. Solid state nuclear magnetic resonance investigation of polymer backbone dynamics in poly(ethylene oxide) based lithium and sodium polyether-ester-sulfonate ionomers.

    PubMed

    Roach, David J; Dou, Shichen; Colby, Ralph H; Mueller, Karl T

    2013-05-21

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T(g)) have been investigated using solid-state nuclear magnetic resonance. Experiments detecting (13)C with (1)H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) (1)H-(13)C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and (1)H spin-lattice relaxation rate measurements. Previous (1)H and (7)Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of (13)C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time (1)H-(13)C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from (1)H to (13)C nuclei, becomes similar for T≳1.1 T(g) in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of

  3. The magnetorheological fluid of carbonyl iron suspension blended with grafted MWCNT or graphene

    NASA Astrophysics Data System (ADS)

    Rwei, Syang-Peng; Ranganathan, Palraj; Chiang, Whe-Yi; Wang, Tza-Yi

    2017-12-01

    In this work, the magnetorheological (MR) fluids containing MWCNT/CI (carbonyl iron) complex and graphene/CI complex were prepared and have the better dispersity in silicone oil than CI powders alone. 1, 4-Aminobenzoic acid (PABA) was used as a grafting agent to modify CI powders to have NH2-end-group so that such nanoparticles can adsorb to acid-treated MWCNT or graphene via attraction of NH2 and COOH groups. The MWCNT/CI complex and graphene/CI complex have a structure of carbonyl iron nanoparticles adsorbed to MWCNT and graphene by self assembly, respectively. Because the carbonyl iron particles possessing magnetic permeability in nanometer scale adsorb to MWCNT or graphene which usually has a nanometer-scaled diameter and a micrometer-scaled length in this work, the dispersity of MWCNT/CI or graphene/CI complex in silicone oil is superior than the previous report [15] that the micrometer-scaled carbonyl iron microspheres were coated with multiwalled carbon nanotubes. Among CI (unmodified), MWCNT/CI and graphene/CI, graphene/CI has the best dispersity while MWCNT/CI still has the better dispersity than unmodified CI. At the temperature T = 300 K, the saturation magnetizations of CI, MWCNT/CI, graphene/CI are 208, 211 emu/g, and 204 emu/g, respectively, indicating that MWCNT/CI complex and graphene/CI complex still maintain the saturation magnetization as high as CI without being interfered by the blended MWCNT or graphene. A wide dynamic range of the yield stress adjusted through varying the electric current can be achieved by the MR fluids containing 69 wt% MWCNT/CI and graphene/CI which is useful in a shock absorber or damper. The result of the yield stress indicates the suspended MWCNT/CI particles are oriented more easily toward the direction perpendicular to the flow direction to block the flow stream lines.

  4. Influences of sampling volume and sample concentration on the analysis of atmospheric carbonyls by 2,4-dinitrophenylhydrazine cartridge.

    PubMed

    Pal, Raktim; Kim, Ki-Hyun

    2008-03-10

    In this study, the analytical bias involved in the application of the 2,4-dinitrophenylhydrazine (2,4-DNPH)-coated cartridge sampling method was investigated for the analysis of five atmospheric carbonyl species (i.e., acetaldehyde, propionaldehyde, butyraldehyde, isovaleraldehyde, and valeraldehyde). In order to evaluate the potential bias of the sampling technique, a series of the laboratory experiments were conducted to cover a wide range of volumes (1-20 L) and concentration levels (approximately 100-2000 ppb in case of acetaldehyde). The results of these experiments were then evaluated in terms of the recovery rate (RR) for each carbonyl species. The detection properties of these carbonyls were clearly distinguished between light and heavy species in terms of RR and its relative standard error (R.S.E.). It also indicates that the studied analytical approach can yield the most reliable pattern for light carbonyls, especially acetaldehyde. When these experimental results were tested further by a two-factor analysis of variance (ANOVA), the analysis based on the cartridge sampling method is affected more sensitively by the concentration levels of samples rather than the sampling volume.

  5. DETERMINATION OF NEW CARBONYL-CONTAINING DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Only a subset of all disinfection by-products were targeted for an intense occurrence study during the Information Collection Rule. Among 50 additional compounds selected for study because of their potential for significant toxicity, a group of carbonyl-containing compounds is be...

  6. External Tank - The Structure Backbone

    NASA Technical Reports Server (NTRS)

    Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle

    2011-01-01

    The External Tank forms the structural backbone of the Space Shuttle in the launch configuration. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. Choice of lightweight materials both for structure and thermal conditioning was necessary. The tank is large, and unique manufacturing facilities, tooling, handling, and transportation operations were required. Weld processes and tooling evolved with the design as it matured through several block changes, to reduce weight. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the 40 year program. The final configuration and tank weight enabled international space station assembly in a high inclination orbit allowing international cooperation with the Russian Federal Space Agency. Numerous process controls were implemented to assure product quality, and innovative proof testing was accomplished prior to delivery. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to

  7. Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification.

    PubMed

    Scharf, Brian; Clement, Cristina C; Yodmuang, Supansa; Urbanska, Aleksandra M; Suadicani, Sylvia O; Aphkhazava, David; Thi, Mia M; Perino, Giorgio; Hardin, John A; Cobelli, Neil; Vunjak-Novakovic, Gordana; Santambrogio, Laura

    2013-07-25

    Aging-related oxidative stress has been linked to degenerative modifications in different organs and tissues. Using redox proteomic analysis and illustrative tandem mass spectrometry mapping, we demonstrate oxidative posttranslational modifications in structural proteins of intervertebral discs (IVDs) isolated from aging mice. Increased protein carbonylation was associated with protein fragmentation and aggregation. Complementing these findings, a significant loss of elasticity and increased stiffness was measured in fibrocartilage from aging mice. Studies using circular dichroism and intrinsic tryptophan fluorescence revealed a significant loss of secondary and tertiary structures of purified collagens following oxidation. Collagen unfolding and oxidation promoted both nonenzymatic and enzymatic degradation. Importantly, induction of oxidative modification in healthy fibrocartilage recapitulated the biochemical and biophysical modifications observed in the aging IVD. Together, these results suggest that protein carbonylation, glycation, and lipoxidation could be early events in promoting IVD degenerative changes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operando SSITKA/DRIFTS/MS study.

    PubMed

    Engeldinger, Jana; Richter, Manfred; Bentrup, Ursula

    2012-02-21

    The simultaneous combination of steady state isotopic transient kinetic analysis (SSITKA) with diffuse reflectance Fourier transform spectroscopy (DRIFTS) and mass spectrometric (MS) analysis was applied to study the oxidative carbonylation of methanol (MeOH) to dimethyl carbonate (DMC) on a CuY zeolite catalyst prepared by incipient-wetness impregnation of commercial zeolite NH(4)-Y. The interaction of the catalyst with different reactants and reactant mixtures (O(2), CO, CO/O(2), MeOH/O(2), MeOH/CO, and MeOH/CO/O(2)) was studied in detail using (16)O(2)/(18)O(2) as well as (12)CO/(13)CO containing gas mixtures. DMC is produced via a monodentate monomethyl carbonate (MMC) species as intermediate which is formed by the concerted action of adsorbed methoxide and CO with gas phase MeOH. Adsorbed bidentate MMC species were found to be inactive. Lattice oxygen supplied by CuO(x) species is involved in the formation of MMC. Gas phase oxygen is needed to re-oxidize the catalyst but favours also the oxidation of CO to CO(2) and unselective oxidation reactions of MeOH to methyl formate, dimethoxymethane, and CO(2). The appropriate choice of reaction temperature and of the oxygen content in the reactant gas mixture was found to be indispensable for reaching high DMC selectivities.

  9. Determination of carbonyl compounds generated from the E-cigarette using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography.

    PubMed

    Uchiyama, Shigehisa; Ohta, Kazushi; Inaba, Yohei; Kunugita, Naoki

    2013-01-01

    Carbonyl compounds in E-cigarette smoke mist were measured using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography. A total of 363 E-cigarettes (13 brands) were examined. Four of the 13 E-cigarette brands did not generate any carbonyl compounds, while the other nine E-cigarette brands generated various carbonyl compounds. However, the carbonyl concentrations of the E-cigarette products did not show typical distributions, and the mean values were largely different from the median values. It was elucidated that E-cigarettes incidentally generate high concentrations of carbonyl compounds.

  10. Lipidomic analysis for carbonyl species derived from fish oil using liquid chromatography-tandem mass spectrometry.

    PubMed

    Suh, Joon Hyuk; Niu, Yue S; Hung, Wei-Lun; Ho, Chi-Tang; Wang, Yu

    2017-06-01

    Lipid peroxidation gives rise to carbonyl species, some of which are reactive and play a role in the pathogenesis of numerous human diseases. Oils are ubiquitous sources that can be easily oxidized to generate these compounds under oxidative stress. In this present work, we developed a targeted lipidomic method for the simultaneous determination of thirty-five aldehydes and ketones derived from fish oil, the omega-3 fatty acid-rich source, by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The analytes include highly toxic reactive carbonyl species (RCS) such as acrolein, crotonaldehyde, trans-4-hydroxy-2-hexenal (HHE), trans-4-hydroxy-2-nonenal (HNE), trans-4-oxo-2-nonenal (ONE), glyoxal and methylglyoxal, all of which are promising biomarkers of lipid peroxidation. They were formed using in vitro Fe(II)-mediated oxidation, and derivatized using 2,4-dinitrophenylhydrazine (DNPH) for the feasibility of quantitative assay. Before analysis, solid phase extraction (SPE) was used to clean samples further. Uniquely different patterns of carbonyl compound generation between omega-3 and 6 fatty acids were observed using this lipidomic approach. The method developed was both validated, and successfully applied to monitor formation of carbonyl species by lipid peroxidation using ten different fish oil products. Hypotheses of correlations between the monitored dataset of analytes and their parent fatty acids were also tested using the Pearson's correlation test. Results indicate our method is a useful analytical tool for lipid peroxidation studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Asymmetric Iridium Catalyzed C-C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition

    PubMed Central

    Shin, Inji; Krische, Michael J.

    2015-01-01

    Cyclometalated π-allyliridium C,O-benzoate complexes modified by axially chiral chelating phosphine ligands display a pronounced kinetic preference for primary alcohol dehydrogenation, enabling highly site-selective redox-triggered carbonyl additions of chiral primary-secondary 1,3-diols with exceptional levels of catalyst-directed diastereoselectivity. Unlike conventional methods for carbonyl allylation, the present redox-triggered alcohol C-H functionalizations bypass the use of protecting groups, premetalated reagents, and discrete alcohol-to-aldehyde redox reactions. PMID:26187028

  12. Qualitative carbonyl profile in coffee beans through GDME-HPLC-DAD-MS/MS for coffee preliminary characterization.

    PubMed

    Cordeiro, Liliana; Valente, Inês M; Santos, João Rodrigo; Rodrigues, José A

    2018-05-01

    In this work, an analytical methodology for volatile carbonyl compounds characterization in green and roasted coffee beans was developed. The methodology relied on a recent and simple sample preparation technique, gas diffusion microextraction for extraction of the samples' volatiles, followed HPLC-DAD-MS/MS analysis. The experimental conditions in terms of extraction temperature and extraction time were studied. A profile for carbonyl compounds was obtained for both arabica and robusta coffee species (green and roasted samples). Twenty-seven carbonyl compounds were identified and further discussed, in light of reported literature, with different coffee characteristics: coffee ageing, organoleptic impact, presence of defective beans, authenticity, human's health implication, post-harvest coffee processing and roasting. The applied methodology showed to be a powerful analytical tool to be used for coffee characterization as it measures marker compounds of different coffee characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions

    PubMed Central

    Barreiro, Esther

    2016-01-01

    Muscle dysfunction, characterized by a reductive remodeling of muscle fibers, is a common systemic manifestation in highly prevalent conditions such as chronic heart failure (CHF), chronic obstructive pulmonary disease (COPD), cancer cachexia, and critically ill patients. Skeletal muscle dysfunction and impaired muscle mass may predict morbidity and mortality in patients with chronic diseases, regardless of the underlying condition. High levels of oxidants may alter function and structure of key cellular molecules such as proteins, DNA, and lipids, leading to cellular injury and death. Protein oxidation including protein carbonylation was demonstrated to modify enzyme activity and DNA binding of transcription factors, while also rendering proteins more prone to proteolytic degradation. Given the relevance of protein oxidation in the pathophysiology of many chronic conditions and their comorbidities, the current review focuses on the analysis of different studies in which the biological and clinical significance of the modifications induced by reactive carbonyls on proteins have been explored so far in skeletal muscles of patients and animal models of chronic conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and physiological aging. Future research will elucidate the specific impact and sites of reactive carbonyls on muscle protein content and function in human conditions. PMID:28248228

  14. Uncertainties of polynuclear aromatic hydrocarbon and carbonyl measurements in heavy-duty diesel emission.

    PubMed

    Mabilia, Rosanna; Cecinato, Angelo; Guerriero, Ettore; Possanzini, Massimiliano

    2006-02-01

    In this note we describe the speciated particle-phase PM2.5 polynuclear aromatic hydrocarbon (PAH) and gas-phase carbonyl emissions as collected from a heavy-duty diesel bus outfitted with an oxidation catalyst for exhaust after-treatment. The vehicle was run on a chassis dynamometer during a transient cycle test reproducing a typical city bus route (Azienda Tramviaria Municipalizzata cycle). The diluted tailpipe emissions were sampled for PAH using a 2.5 microm cut size cyclone glass fiber filter assembly, while carbonyls were absorbed onto dinitrophenyl hydrazine-coated silica cartridges. The former compounds were analysed by CGC-MS, the latter by HPLC-UV. Combining the two sets of speciation data resulting from 15 identical dynamometer tests provided a profile of both unregulated organic emissions. PAH emission rates decreased with the number of benzene fused rings. Fluoranthene and pyrene amounted to 90% of total PAHs quantified; six-ring PAHs accounted only for 0.5%. Similarly, formaldehyde and acetaldehyde accounted for approximately 80% of the total carbonyl emissions. Uncertainties of the method in the determination of individual emission factors were calculated. Statistical data processing revealed that all the measurements were quite unaffected by systematic errors and repeatability percentages did not exceed 50% for the majority of components of both groups.

  15. 40 CFR 721.10705 - Aromatic amine with cyclo amino carbonyls (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10705 Aromatic amine with cyclo amino carbonyls (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  16. Zirconia coated carbonyl iron particle-based magnetorheological fluid for polishing

    NASA Astrophysics Data System (ADS)

    Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C.; Shen, Rui; Yang, Hong; Jacobs, Stephen D.

    2009-08-01

    Aqueous magnetorheological (MR) polishing fluids used in magnetorheological finishing (MRF) have a high solids concentration consisting of magnetic carbonyl iron particles and nonmagnetic polishing abrasives. The properties of MR polishing fluids are affected over time by corrosion of CI particles. Here we report on MRF spotting experiments performed on optical glasses using a zirconia coated carbonyl iron (CI) particle-based MR fluid. The zirconia coated magnetic CI particles were prepared via sol-gel synthesis in kg quantities. The coating layer was ~50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long term stability against aqueous corrosion. "Free" nano-crystalline zirconia polishing abrasives were co-generated in the coating process, resulting in an abrasivecharged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses over a period of 3 weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

  17. Preparation of Carboxylato-Coordinated Titanium Alkoxides from Carboxylic Anhydrides: Alkoxido Group Transfer from Metal Atom to Carbonyl Group.

    PubMed

    Czakler, Matthias; Artner, Christine; Schubert, Ulrich

    2012-07-01

    Reaction of titanium(IV) isopropoxide, Ti(O i Pr) 4 , with an equimolar amount of phthalic anhydride resulted in the transfer of an isopropoxido group from the metal atom to one carbonyl group of the anhydride and coordination of the thus formed monoester to the titanium atom. One monoester ligand in Ti 2 (O i Pr) 6 (μ 2 -OOC-C 6 H 4 -COO i Pr)(η 1 -OOC-C 6 H 4 -COO i Pr)( i PrOH) is bridging and the other is η 1 -coordinated. When the reaction is performed in the presence of 1 mol-equiv. of acetic acid, the oxido cluster Ti 6 (μ 3 -O) 6 (O i Pr) 6 (μ 2 -OOC-C 6 H 4 -COO i Pr) 6 was instead obtained. The μ 3 -oxygen groups in the latter compound are due to esterification of acetic acid by the cleaved isopropyl alcohol.

  18. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation.

    PubMed

    Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D; Xia, Lan-Qin

    2016-01-01

    Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium -mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.

  19. Unexpected high yields of carbonyl and peroxide products of aqueous isoprene ozonolysis and implications

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Huang, D.; Zhang, X.; Zhao, Y.; Chen, Z. M.

    2012-03-01

    The aqueous phase reaction of volatile organic compounds (VOCs) has not been considered in most analyses of atmospheric chemical processes. However, some experimental evidence has shown that, compared to the corresponding gas phase reaction, the aqueous chemical processes of VOCs in the bulk solutions and surfaces of ambient wet particles (cloud, fog, and wet aerosols) may potentially contribute to the products and formation of secondary organic aerosol (SOA). In the present study, we performed a laboratory experiment of the aqueous ozonolysis of isoprene at different pHs (3-7) and temperatures (4-25 °C). We detected three important kinds of products, including carbonyl compounds, peroxide compounds, and organic acids. Our results showed that the molar yields of these products were nearly independent of the investigated pHs and temperatures. These products included (1) carbonyls: 56.7 ± 6.7% formaldehyde, 42.8 ± 2.5% methacrolein (MAC), and 57.7 ± 3.4% methyl vinyl ketone (MVK); (2) peroxides: 53.4 ± 4.1% hydrogen peroxide (H2O2) and 15.1 ± 3.1% hydroxylmethyl hydroperoxide (HMHP); and (3) organic acids: undetectable (< 1% estimated by the detection limit). Based on the amounts of products formed and the isoprene consumed, the total carbon yield was estimated to be 95 ± 4%. This implied that most of the products in the reaction system were detected. Of note, the combined yields of both MAC + MVK and H2O2 + HMHP in the aqueous isoprene ozonolysis were much higher than those observed in the corresponding gas phase reaction. We suggested that these unexpected high yields of carbonyls and peroxides were related to the greater capability of condensed water, compared to water vapor, to stabilize energy-rich Criegee radicals. This aqueous ozonolysis of isoprene (and possibly other biogenic VOCs) could potentially occur on the surfaces of ambient wet particles and plants. Moreover, the high-yield carbonyl and peroxide products might provide a considerable source of

  20. Measurement of sub-parts-per-billion levels of carbonyl compounds in marine air by a simple cartridge trapping procedure followed by liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xianliang, Zhou; Mopper, K.

    1990-10-01

    Carbonyl compounds in clean marine air were trapped onto 2,4-dinitrophenylhydrazine- (DNPH-) coated cartridges, and their hydrazone derivatives were separated by HPLC and detected by UV absorbance. More than 20 carbonyl compounds were isolated from marine air with >92% collection efficiency. The technique employs a highly effective reagent purification procedure, which results in much lower blanks compared to previously reported trapping techniques for carbonyl compounds. Blanks were routinely <0.07 ppb for formaldehyde and acetone and <0.02 ppb for the others. Humidity and reactive gases have no detectable effect on collection efficiencies. Carbonyl-DNPH derivatives eluted from the cartridges are stable in acetonitrilemore » for at least 2 weeks, which facilitates field studies. Several previously undetected unknown carbonyl compounds were found in marine air by this technique. Typical results for open ocean and coastal marine air are shown.« less

  1. Interdisciplinary neurotoxicity inhalation studies: Carbon disulfide and carbonyl sulfide research in F344 rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sills, Robert C.; Harry, G. Jean; Valentine, William M.

    2005-09-01

    Inhalation studies were conducted on the hazardous air pollutants, carbon disulfide, which targets the central nervous system (spinal cord) and peripheral nervous system (distal portions of long myelinated axons), and carbonyl sulfide, which targets the central nervous system (brain). The objectives were to investigate the neurotoxicity of these compounds by a comprehensive evaluation of function, structure, and mechanisms of disease. Through interdisciplinary research, the major finding in the carbon disulfide inhalation studies was that carbon disulfide produced intra- and intermolecular protein cross-linking in vivo. The observation of dose-dependent covalent cross-linking in neurofilament proteins prior to the onset of lesions ismore » consistent with this process contributing to the development of the neurofilamentous axonal swellings characteristic of carbon disulfide neurotoxicity. Of significance is that valine-lysine thiourea cross-linking on rat globin and lysine-lysine thiourea cross-linking on erythrocyte spectrin reflect cross-linking events occurring within the axon and could potentially serve as biomarkers of carbon disulfide exposure and effect. In the carbonyl sulfide studies, using magnetic resonance microscopy (MRM), we determined that carbonyl sulfide targets the auditory pathway in the brain. MRM allowed the examination of 200 brain slices and made it possible to identify the most vulnerable sites of neurotoxicity, which would have been missed in our traditional neuropathology evaluations. Electrophysiological studies were focused on the auditory system and demonstrated decreases in auditory brain stem evoked responses. Similarly, mechanistic studies focused on evaluating cytochrome oxidase activity in the posterior colliculus and parietal cortex. A decrease in cytochrome oxidase activity was considered to be a contributing factor to the pathogenesis of carbonyl sulfide neurotoxicity.« less

  2. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization

    NASA Astrophysics Data System (ADS)

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Burjor, Captain; Sortino, Salvatore; Callan, John F.; Raymo, Françisco M.

    2015-08-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.An amphiphilic

  3. Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity.

    PubMed

    Trevino, Simon G; Zhang, Na; Elenko, Mark P; Lupták, Andrej; Szostak, Jack W

    2011-08-16

    Multiple lines of evidence support the hypothesis that the early evolution of life was dominated by RNA, which can both transfer information from generation to generation through replication directed by base-pairing, and carry out biochemical activities by folding into functional structures. To understand how life emerged from prebiotic chemistry we must therefore explain the steps that led to the emergence of the RNA world, and in particular, the synthesis of RNA. The generation of pools of highly pure ribonucleotides on the early Earth seems unlikely, but the presence of alternative nucleotides would support the assembly of nucleic acid polymers containing nonheritable backbone heterogeneity. We suggest that homogeneous monomers might not have been necessary if populations of heterogeneous nucleic acid molecules could evolve reproducible function. For such evolution to be possible, function would have to be maintained despite the repeated scrambling of backbone chemistry from generation to generation. We have tested this possibility in a simplified model system, by using a T7 RNA polymerase variant capable of transcribing nucleic acids that contain an approximately 11 mixture of deoxy- and ribonucleotides. We readily isolated nucleotide-binding aptamers by utilizing an in vitro selection process that shuffles the order of deoxy- and ribonucleotides in each round. We describe two such RNA/DNA mosaic nucleic acid aptamers that specifically bind ATP and GTP, respectively. We conclude that nonheritable variations in nucleic acid backbone structure may not have posed an insurmountable barrier to the emergence of functionality in early nucleic acids.

  4. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    DOE PAGES

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; ...

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechainmore » conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.« less

  5. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    PubMed

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Polyamideimides containing carbonyl and ether connecting groups

    NASA Technical Reports Server (NTRS)

    Havens, S. J.; Hergenrother, P. M.

    1990-01-01

    Polyamidenimides were prepared from the reaction of trimellitic anhydride chloride with seven diamines containing carbonyl and ether groups between the aromatic rings. Several of these polyamideimides were semicrystalline as evidenced by wide-angle X-ray diffraction and differential scanning calorimetry. Glass transition temperatures ranged between 187 and 245 C, and crystalline transition temperatures ranged between 317 and 416 C. A series of copolyamideimides from a mixture of 1,3-bis(4-aminophenoxy 4-prime-benzoyl) benzene and 1,4-bis(4-aminophenoxy 4-prime-benzoyl)benzene were similarly prepared. These copolyamideimides were semicrystalline and formed tough, solvent resistant films with good tensile properties.

  7. A Simple Catalytic Mechanism for the Direct Coupling of α-Carbonyls with Functionalized Amines: A One-Step Synthesis of Plavix

    PubMed Central

    Evans, Ryan W.; Zbieg, Jason R.; Zhu, Shaolin; Li, Wei; MacMillan, David W. C.

    2014-01-01

    The direct α-amination of ketones, esters, and aldehydes has been accomplished via copper catalysis. In the presence of catalytic copper(II) bromide, a diverse range of carbonyl and amine substrates undergo fragment coupling to produce synthetically useful α-amino substituted motifs. The transformation is proposed to proceed via a catalytically generated α-bromo carbonyl species; nucleophilic displacement of the bromide by the amine then delivers the α-amino carbonyl adduct while the catalyst is reconstituted. The practical value of this transformation is highlighted through one-step syntheses of two high–profile pharmaceutical agents, Plavix and amfepramone. PMID:24107144

  8. Sample preparation for radiocarbon ( 14C) measurements of carbonyl compounds in the atmosphere . quantifying the biogenic contribution

    NASA Astrophysics Data System (ADS)

    Larsen, B. R.; Brussol, C.; Kotzias, D.; Veltkamp, T.; Zwaagstra, O.; Slanina, J.

    A method has been developed for the preparation of samples for radiocarbon ( 14C) measurements of carbonyl compounds in the atmosphere. Sampling on 25 ml 2,4-dinitrophenylhydrazine (DNPH)- coated silica gel cartridges can be carried out with up to 10.000 ℓ of ambient air with no adverse effects on sample integrity. Methods for the selective clean-up of the extracts have been investigated. This is a necessary step in preparing ambient carbonyl samples for a measurement of the radiocarbon ( 14C) content. The method which gave the best results include extraction of the DNPH cartridge with CH 3CN and purification of the carbonyl hydrazones over activated silica gel to remove excess DNPH and non target compounds. This method has been validated with laboratory samples and has been proved to give reliable results The radiocarbon data from the first field experiment showed that ambient air over a semi-rural test site in Ispra, Italy on a late summer day contained mainly five carbonyls (formaldehyde>acetaldehyde>acetone>propanal>butanal) of a mixed biogenic (41-57%) and anthropogenic (43-59%) origin. The method will be used in future monitoring of radiocarbon ( 14C) on a number of test sites in Europe.

  9. Optimization of Protein Backbone Dihedral Angles by Means of Hamiltonian Reweighting

    PubMed Central

    2016-01-01

    Molecular dynamics simulations depend critically on the accuracy of the underlying force fields in properly representing biomolecules. Hence, it is crucial to validate the force-field parameter sets in this respect. In the context of the GROMOS force field, this is usually achieved by comparing simulation data to experimental observables for small molecules. In this study, we develop new amino acid backbone dihedral angle potential energy parameters based on the widely used 54A7 parameter set by matching to experimental J values and secondary structure propensity scales. In order to find the most appropriate backbone parameters, close to 100 000 different combinations of parameters have been screened. However, since the sheer number of combinations considered prohibits actual molecular dynamics simulations for each of them, we instead predicted the values for every combination using Hamiltonian reweighting. While the original 54A7 parameter set fails to reproduce the experimental data, we are able to provide parameters that match significantly better. However, to ensure applicability in the context of larger peptides and full proteins, further studies have to be undertaken. PMID:27559757

  10. Determination of acrolein and other carbonyls in cigarette smoke using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine.

    PubMed

    Uchiyama, Shigehisa; Inaba, Yohei; Kunugita, Naoki

    2010-06-25

    A new method for the determination of acrolein and other carbonyls in cigarette smoke using a dual cartridge system has been developed. Each cartridge consists of reagent-impregnated silica particles. The first contains hydroquinone (HQ) for the inhibition of acrolein polymerization, while the second contains 2,4-dinitrophenylhydrazine (DNPH) for the derivatization of carbonyls. Smoke samples were firstly drawn through the cartridge containing HQ-impregnated silica (HQ-silica) and then through the DNPH-impregnated silica (DNPH-silica). Acrolein in the sample was completely trapped in the first HQ-silica cartridge. Some other airborne carbonyls were also trapped by the HQ-silica, and those that pass through were trapped in the second DNPH-silica cartridge. Extraction was performed in the reverse direction to air sampling. When solvent was eluted through the dual-cartridges, excess DNPH was washed into the HQ bed where it reacted with acrolein and other trapped carbonyls to form the corresponding hydrazone derivatives. All of the hydrazones derived from airborne carbonyls were completely separated and measured using high-performance liquid chromatography. This HQ-DNPH-method can be applied for the determination of acrolein and other alpha,beta-unsaturated aldehydes, such as crotonaldehyde, in cigarette smoke. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Evaluation of a diffusive sampler for measurement of carbonyl compounds in air

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shigehisa; Aoyagi, Shohei; Ando, Masanori

    A diffusive sampling device (DSD-DNPH) has been developed for collection of ppb levels of 21 carbonyl compounds in indoor air. It is comprised of silica gel coated with 2,4-dinitrophenylhydrazine (DNPH) as the absorbent, a porous sintered polyethylene tube (PSP-diffusion filter) which acts as a diffusive membrane, and a small polypropylene syringe (PP-reservoir) which is used for the elution of the analytes from the absorbent. As the diffusive membrane comprises the entire cylindrical surface of the tube, it allows 'radial' exposure from all sides. A side-by-side comparison was made with active samplers, demonstrating good correlation (formaldehyde r2=0.992). The sampling rate (71.9 ml min -1) of formaldehyde was determined from comparison with an active sampling method and the sampling rates of other carbonyl compounds were calculated from their diffusion coefficients. These calculated sampling rates agreed with the experimental values. Little influence of wind velocity on the sampler was observed. The relative standard deviations for formaldehyde and acetaldehyde concentrations were 5.5% and 8.6%, respectively, with face velocity from 0 to 5.0 m/s. The DSD-DNPH enables the estimation of time-weighted average concentration of carbonyl compounds. Concentrations of formaldehyde estimated by the 7-day sampling method were nearly equal to the mean value calculated from the 24-hour sampling method measured over 7 days. This confirmed that the concentration of formaldehyde could be precisely monitored by 7-day continuous sampling.

  12. A comprehensive evaluation of the toxicology of cigarette ingredients: aliphatic carbonyl compounds.

    PubMed

    Coggins, Christopher R E; Jerome, Ann M; Edmiston, Jeffery S; Oldham, Michael J

    2011-06-01

    Aliphatic carbonyl compounds are used as ingredients in cigarette tobacco or cigarette filters. A battery of tests was used to compare toxicity of mainstream smoke from experimental cigarettes containing 15 aliphatic carbonyl compounds that were added individually to experimental cigarettes at three different levels. Smoke from experimental and control cigarettes were evaluated using analytical chemistry, in vitro cytotoxicity (neutral red uptake), and mutagenicity (five bacterial strains) studies. For one compound, glycerol triacetate (GTA), two 90-day inhalation studies were also performed, using different inclusion levels into either tobacco or cigarette filter. Several smoke constituent concentrations were reduced with the highest inclusion level of GTA in tobacco; incorporation of GTA into the filter, and the other compounds into tobacco, produced effectively no changes. Cytotoxicity was reduced by the highest inclusion of GTA into tobacco for both gas-vapor and particulate phases of smoke; incorporation of GTA into the filter, and the other compounds into tobacco, showed no changes. Mutagenicity was reduced by the middle and high inclusion levels of GTA into tobacco (TA1537 strain with S9); incorporation of GTA into the filter, and the other compounds into tobacco, showed no changes. Inclusion of GTA in tobacco at 100,000 ppm reduced the biological effects of the smoke in the various test systems reported in this study, although inclusion into the filter did not appear to have any major effect on the endpoints studied. The other 14 aliphatic carbonyl compounds that were tested lacked a toxicological response.

  13. Effect of fiber material on ozone removal and carbonyl production from carpets

    NASA Astrophysics Data System (ADS)

    Abbass, Omed A.; Sailor, David J.; Gall, Elliott T.

    2017-01-01

    Indoor air quality is affected by indoor materials such as carpets that may act as sources and/or sinks of gas-phase air pollutants. Heterogeneous reactions of ozone with carpets may result in potentially harmful products. In this study, indoor residential carpets of varying fiber types were tested to evaluate their ability to remove ozone, and to assess their role in the production of carbonyls when exposed to elevated levels of ozone. Tests were conducted with six types of new unused carpets. Two sets of experiments were conducted, the first measured ozone removal and ozone deposition velocities, and the second measured primary carbonyl production and secondary production as a result of exposure to ozone. The tests were conducted using glass chambers with volume of 52 L each. Air exchange rates for all tests were 3 h-1. The ozone removal tests show that, for the conditions tested, the polyester carpet sample had the lowest ozone removal (40%), while wool carpet had the greatest ozone removal (65%). Most carpet samples showed higher secondary than primary carbonyl emissions, with carpets containing polypropylene fibers being a notable exception. Carpets with polyester fibers had both the highest primary and secondary emissions of formaldehyde among all samples tested. While it is difficult to make blanket conclusions about the relative air quality merits of various carpet fiber options, it is clear that ozone removal percentages and emissions of volatile organic compounds can vary drastically as a function of fiber type.

  14. Kinetics and Mechanism of the Gas-Phase Reaction of Selected Carbonyls with Cl Atoms between 250 and 340 K

    NASA Astrophysics Data System (ADS)

    Hasson, A. S.; Algrim, L.; Abdelhamid, A.; Tyndall, G. S.; Orlando, J. J.

    2013-12-01

    Carbonyls are important products from the gas phase degradation of most volatile organic compounds. Their atmospheric reactions therefore have a significant impact on atmospheric composition, particularly in aged air masses. While the reactions of short-chain linear carbonyls are well understood, the chemistry of larger (> C6) and branched carbonyl is more uncertain. To provide insight into these reactions, the reactions of three carbonyls (methyl isopropyl ketone, MIK; di-isopropyl ketone, DIK; and diethyl ketone, DEK) with chlorine atoms were investigated between 250 and 340 K and 1 atm in the presence and absence of NOx and an HO2 source (methanol). Experiments were performed in a photochemical reactor using a combination of long-path Fourier transform infra-red spectroscopy, proton transfer reaction mass spectrometry and gas chromatography with flame ionization detection. The kinetics were studied using the relative rate technique with butanone and isopropanol as the reference compounds. The Arrhenius expression for the three rate coefficients was determined to be k(DEK+Cl) = 3.87 x 10-11e(2 × 7 kJ/mol)/RT cm3 molecules-1 s-1 , k(MIPK+Cl) = 7.20 x 10-11e(0.2× 8 kJ/mol)/RT cm3 molecules-1 s-1 , and k(DIPK+Cl) = 3.33 x 10-10e(-3× 8 kJ/mol)/RT cm3 molecules-1 s-1 . Measured reaction products accounted for 38-72 % of the reacted carbon and were consistent with strong deactivation of the carbon atom adjacent to the carbonyl group with respect to H-atom abstraction by Cl atoms. The product distributions also provide insight into radical recycling from the organic peroxy + HO2 reaction, and the relative rates of isomerization, fragmentation and reaction with O2 for carbonyl-containing alkoxy radicals. Implications of these results will be discussed.

  15. Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1.

    PubMed

    Wu, Bing; Yu, Lu; Wang, Yishi; Wang, Hongtao; Li, Chen; Yin, Yue; Yang, Jingrun; Wang, Zhifa; Zheng, Qiangsun; Ma, Heng

    2016-01-19

    Cardiac aging is characterized by accumulation of damaged proteins and decline of autophagic efficiency. Here, by forestalling SIRT1 carbonylated inactivation in aged heart, we determined the benefits of activation of aldehyde dehydrogenase 2 (ALDH2) on the autophagy. In this study, the ALDH2 KO mice progressively developed age-related heart dysfunction and showed reduction in the life span, which strongly suggests that ALDH2 ablation leads to cardiac aging. What's more, aged hearts displayed a significant decrease ALDH2 activity, resulting in accumulation of 4-HNE-protein adducts and protein carbonyls, impairment in the autophagy flux, and, consequently, deteriorated cardiac function after starvation. Sustained Alda-1 (selective ALDH2 activator) treatment increased cardiac ALDH2 activity and abrogated these effects. Using SIRT1 deficient heterozygous (Sirt1+/-) mice, we found that SIRT1 was necessary for ALDH2 activation-induced autophagy. We further demonstrated that ALDH2 activation attenuated SIRT1 carbonylation and improved SIRT1 activity, thereby increasing the deacetylation of nuclear LC3 and FoxO1. Sequentially, ALDH2 enhanced SIRT1 regulates LC3-Atg7 interaction and FoxO1 increased Rab7 expression, which were both necessary and sufficient for restoring autophagy flux. These results highlight that both accumulation of proteotoxic carbonyl stress linkage with autophagy decline contribute to heart senescence. ALDH2 activation is adequate to improve the autophagy flux by reducing the carbonyl modification on SIRT1, which in turn plays an important role in maintaining cardiac health during aging.

  16. Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti-β-Amyloid Aggregation, and Microglial Neuroprotective Effects.

    PubMed

    Ma, Hang; Johnson, Shelby L; Liu, Weixi; DaSilva, Nicholas A; Meschwitz, Susan; Dain, Joel A; Seeram, Navindra P

    2018-02-03

    Glycation is associated with several neurodegenerative disorders, including Alzheimer's disease (AD), where it potentiates the aggregation and toxicity of proteins such as β-amyloid (Aβ). Published studies support the anti-glycation and neuroprotective effects of several polyphenol-rich fruits, including berries, which are rich in anthocyanins. Herein, blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts were evaluated for: (1) total phenolic and anthocyanins contents, (2) free radical (DPPH) scavenging and reactive carbonyl species (methylglyoxal; MGO) trapping, (3) anti-glycation (using BSA-fructose and BSA-MGO models), (4) anti-Aβ aggregation (using thermal- and MGO-induced fibrillation models), and, (5) murine microglia (BV-2) neuroprotective properties. Berry crude extracts (CE) were fractionated to yield anthocyanins-free (ACF) and anthocyanins-enriched (ACE) extracts. The berry ACEs (at 100 μg/mL) showed superior free radical scavenging, reactive carbonyl species trapping, and anti-glycation effects compared to their respective ACFs. The berry ACEs (at 100 μg/mL) inhibited both thermal- and MGO-induced Aβ fibrillation. In addition, the berry ACEs (at 20 μg/mL) reduced H₂O₂-induced reactive oxygen species production, and lipopolysaccharide-induced nitric oxide species in BV-2 microglia as well as decreased H₂O₂-induced cytotoxicity and caspase-3/7 activity in BV-2 microglia. The free radical scavenging, reactive carbonyl trapping, anti-glycation, anti-Aβ fibrillation, and microglial neuroprotective effects of these berry extracts warrant further in vivo studies to evaluate their potential neuroprotective effects against AD.

  17. Characterisation and optimisation of a sample preparation method for the detection and quantification of atmospherically relevant carbonyl compounds in aqueous medium

    NASA Astrophysics Data System (ADS)

    Rodigast, M.; Mutzel, A.; Iinuma, Y.; Haferkorn, S.; Herrmann, H.

    2015-06-01

    Carbonyl compounds are ubiquitous in the atmosphere and either emitted primarily from anthropogenic and biogenic sources or they are produced secondarily from the oxidation of volatile organic compounds. Despite a number of studies about the quantification of carbonyl compounds a comprehensive description of optimised methods is scarce for the quantification of atmospherically relevant carbonyl compounds. The method optimisation was conducted for seven atmospherically relevant carbonyl compounds including acrolein, benzaldehyde, glyoxal, methyl glyoxal, methacrolein, methyl vinyl ketone and 2,3-butanedione. O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was used as derivatisation reagent and the formed oximes were detected by gas chromatography/mass spectrometry (GC/MS). With the present method quantification can be carried out for each carbonyl compound originating from fog, cloud and rain or sampled from the gas- and particle phase in water. Detection limits between 0.01 and 0.17 μmol L-1 were found, depending on carbonyl compounds. Furthermore, best results were found for the derivatisation with a PFBHA concentration of 0.43 mg mL-1 for 24 h followed by a subsequent extraction with dichloromethane for 30 min at pH = 1. The optimised method was evaluated in the present study by the OH radical initiated oxidation of 3-methylbutanone in the aqueous phase. Methyl glyoxal and 2,3-butanedione were found to be oxidation products in the samples with a yield of 2% for methyl glyoxal and 14% for 2,3-butanedione after a reaction time of 5 h.

  18. Improving the accuracy of protein stability predictions with multistate design using a variety of backbone ensembles.

    PubMed

    Davey, James A; Chica, Roberto A

    2014-05-01

    Multistate computational protein design (MSD) with backbone ensembles approximating conformational flexibility can predict higher quality sequences than single-state design with a single fixed backbone. However, it is currently unclear what characteristics of backbone ensembles are required for the accurate prediction of protein sequence stability. In this study, we aimed to improve the accuracy of protein stability predictions made with MSD by using a variety of backbone ensembles to recapitulate the experimentally measured stability of 85 Streptococcal protein G domain β1 sequences. Ensembles tested here include an NMR ensemble as well as those generated by molecular dynamics (MD) simulations, by Backrub motions, and by PertMin, a new method that we developed involving the perturbation of atomic coordinates followed by energy minimization. MSD with the PertMin ensembles resulted in the most accurate predictions by providing the highest number of stable sequences in the top 25, and by correctly binning sequences as stable or unstable with the highest success rate (≈90%) and the lowest number of false positives. The performance of PertMin ensembles is due to the fact that their members closely resemble the input crystal structure and have low potential energy. Conversely, the NMR ensemble as well as those generated by MD simulations at 500 or 1000 K reduced prediction accuracy due to their low structural similarity to the crystal structure. The ensembles tested herein thus represent on- or off-target models of the native protein fold and could be used in future studies to design for desired properties other than stability. Copyright © 2013 Wiley Periodicals, Inc.

  19. Spectroscopic and theoretical studies on the aromaticity of pyrrol-2-yl-carbonyl conformers

    NASA Astrophysics Data System (ADS)

    Dubis, Alina T.; Wojtulewski, Sławomir; Filipkowski, Karol

    2013-06-01

    The aromaticity of s-cis and s-trans pyrrol-2-yl carbonyl conformers was studied by FT-IR, 1H NMR spectroscopy and DFT calculations at the B3LYP/6-311++G(d,p) level of theory. The Harmonic Oscillator Model of Aromaticity (HOMA) and Nucleus Independent Chemical Shift (NICS) indices were calculated to estimate π-electron delocalization in the pyrrole ring. The usefulness of infrared spectroscopy in the evaluation of the aromaticity of the homogeneous set of pyrroles is discussed. The influence of 2-substitution on different aspects of aromaticity and stability of the pyrrol-2-yl carbonyl conformers is also discussed. It is concluded that the substitution effect of the title pyrrole derivatives can be explained on the basis of theoretical and experimental measurements of π-electron delocalization, including IR data.

  20. Brown carbon formation by aqueous-phase carbonyl compound reactions with amines and ammonium sulfate.

    PubMed

    Powelson, Michelle H; Espelien, Brenna M; Hawkins, Lelia N; Galloway, Melissa M; De Haan, David O

    2014-01-21

    Reactions between small water-soluble carbonyl compounds, ammonium sulfate (AS), and/or amines were evaluated for their ability to form light-absorbing species in aqueous aerosol. Aerosol chemistry was simulated with bulk phase reactions at pH 4, 275 K, initial concentrations of 0.05 to 0.25 M, and UV-vis and fluorescence spectroscopy monitoring. Glycolaldehyde-glycine mixtures produced the most intense absorbance. In carbonyl compound reactions with AS, methylamine, or AS/glycine mixtures, product absorbance followed the order methylglyoxal > glyoxal > glycolaldehyde > hydroxyacetone. Absorbance extended into the visible, with a wavelength dependence fit by absorption Ångstrom coefficients (Å(abs)) of 2 to 11, overlapping the Å(abs) range of atmospheric, water-soluble brown carbon. Many reaction products absorbing between 300 and 400 nm were strongly fluorescent. On a per mole basis, amines are much more effective than AS at producing brown carbon. In addition, methylglyoxal and glyoxal produced more light-absorbing products in reactions with a 5:1 AS-glycine mixture than with AS or glycine alone, illustrating the importance of both organic and inorganic nitrogen in brown carbon formation. Through comparison to biomass burning aerosol, we place an upper limit on the contribution of these aqueous carbonyl-AS-amine reactions of ≤ 10% of global light absorption by brown carbon.

  1. Interaction of plasmalogens and their diacyl analogs with singlet oxygen in selected model systems

    PubMed Central

    Broniec, Agnieszka; Klosinski, Radoslaw; Pawlak, Anna; Wrona-Krol, Marta; Thompson, David; Sarna, Tadeusz

    2011-01-01

    Plasmalogens (Plg) are phospholipids containing vinyl ether linkage at the sn-1 position of the glycerophospholipid backbone. In spite of being quite abundant in humans, the biological role of plasmalogens remains speculative. It has been postulated that plasmalogens are physiological antioxidants with the vinyl ether functionality serving as sacrificial trap for free radicals and singlet oxygen. However, no quantitative data on the efficiency of plasmalogens to scavenge these reactive species are available. In this study, rate constants of quenching of singlet oxygen, generated by photosensitized energy transfer, by several plasmalogens and, for comparison, by their diacyl analogs, were determined by time-resolved detection of phosphorescence at 1270 nm. Relative rates of the interaction of singlet oxygen, with plasmalogens and other lipids in solution and liposomal membranes were measured by electron paramagnetic resonance oximetry and product analysis, employing HPLC-EC detection of cholesterol hydroperoxides and iodometric assay of lipid hydroperoxides. Results show that singlet oxygen interacts with plasmalogens significantly faster than with the other lipids, with he corresponding rate constants being by one-two orders of magnitude greater. The quenching of singlet oxygen by plasmalogens is mostly reactive in nature and results from its preferential interaction with the vinyl ether bond. The data suggest that plasmalogens could protect unsaturated membrane lipids against oxidation induced by singlet oxygen, providing that the oxidation products are not excessively cytotoxic. PMID:21236336

  2. Dinuclear PhotoCORMs: Dioxygen-Assisted Carbon Monoxide Uncaging from Long-Wavelength-Absorbing Metal-Metal-Bonded Carbonyl Complexes.

    PubMed

    Li, Zhi; Pierri, Agustin E; Huang, Po-Ju; Wu, Guang; Iretskii, Alexei V; Ford, Peter C

    2017-06-05

    We describe a new strategy for triggering the photochemical release of caged carbon monoxide (CO) in aerobic media using long-wavelength visible and near-infrared (NIR) light. The dinuclear rhenium-manganese carbonyl complexes (CO) 5 ReMn(CO) 3 (L), where L = phenanthroline (1), bipyridine (2), biquinoline (3), or phenanthrolinecarboxaldehyde (4), each show a strong metal-metal-bond-to-ligand (σ MM → π L *) charge-transfer absorption band at longer wavelengths. Photolysis with deep-red (1 and 2) or NIR (3 and 4) light leads to homolytic cleavage of the Re-Mn bonds to give mononuclear metal radicals. In the absence of trapping agents, these radicals primarily recombine to reform dinuclear complexes. In oxygenated media, however, the radicals react with dioxygen to form species much more labile toward CO release via secondary thermal and/or photochemical reactions. Conjugation of 4, with an amine-terminated poly(ethylene glycol) oligomer, gives a water-soluble derivative with similar photochemistry. In this context, we discuss the potential applications of these dinuclear complexes as visible/NIR-light-photoactivated CO-releasing moieties (photoCORMs).

  3. Dermal carbonyl modification is related to the yellowish color change of photo-aged Japanese facial skin.

    PubMed

    Ogura, Yuki; Kuwahara, Tomohiro; Akiyama, Minoru; Tajima, Shingo; Hattori, Kazuhisa; Okamoto, Kouhei; Okawa, Shinpei; Yamada, Yukio; Tagami, Hachiro; Takahashi, Motoji; Hirao, Tetsuji

    2011-10-01

    The photo-aged facial skin is characterized by various unique features such as dark spots, wrinkles, and sagging. Elderly people, particularly Asians, tend to show a yellowish skin color change with photo-aging. However, there has been no analytical study conducted on this unique skin color change of the aged facial skin. The purpose of the present study is to examine whether the carbonyl modification in the dermal protein is involved in the yellowish color change that occurs in the photo-aged skin. Normal skin samples excised from the face, abdomen and buttock of variously aged Japanese were separated into the epidermal and the dermal portions. These skin samples were histologically examined for carbonyl modification. Moreover, an in vitro constructed dermis model composed of a contracted collagen gel was treated with acrolein or 4-hydroxynonenal. All these samples were also studied colorimetrically. The dermal samples obtained from the photo-aged facial skin exhibited an appearance of yellowish color, whereas neither the facial epidermis nor the dermis obtained from the abdomen or buttock showed such a yellowish discoloration. The upper layer of the dermis that revealed the yellowish color showed elastosis whose elastic fibers were found to colocalize with carbonyl protein as detected by a labeled hydrazide, as well as by an immunohistochemical examination using the antibody against acrolein adduct. Experimental induction of carbonyl modification in a dermis model in vitro by a long-term treatment with acrolein or 4-hydroxynonenal was found to show the appearance of the yellowish change which was also proven by an increase in b* value of colorimetry. It was more pronounced than that induced by glycation. Our present results strongly suggest that carbonyl modification of the dermal protein is involved in the production of the yellowish color change that is noted in the photo-aged facial skin. Copyright © 2011 Japanese Society for Investigative Dermatology

  4. Gas phase carbonyl compounds in ship emissions: Differences between diesel fuel and heavy fuel oil operation

    NASA Astrophysics Data System (ADS)

    Reda, Ahmed A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R.

    2014-09-01

    Gas phase emission samples of carbonyl compounds (CCs) were collected from a research ship diesel engine at Rostock University, Germany. The ship engine was operated using two different types of fuels, heavy fuel oil (HFO) and diesel fuel (DF). Sampling of CCs was performed from diluted exhaust using cartridges and impingers. Both sampling methods involved the derivatization of CCs with 2,4-Dinitrophenylhydrazine (DNPH). The CCs-hydrazone derivatives were analyzed by two analytical techniques: High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) and Gas Chromatography-Selective Ion Monitoring-Mass Spectrometry (GC-SIM-MS). Analysis of DNPH cartridges by GC-SIM-MS method has resulted in the identification of 19 CCs in both fuel operations. These CCs include ten aliphatic aldehydes (formaldehyde, acetaldehyde, propanal, isobutanal, butanal, isopentanal, pentanal, hexanal, octanal, nonanal), three unsaturated aldehydes (acrolein, methacrolein, crotonaldehyde), three aromatic aldehyde (benzaldehyde, p-tolualdehyde, m,o-molualdehyde), two ketones (acetone, butanone) and one heterocyclic aldehyde (furfural). In general, all CCs under investigation were detected with higher emission factors in HFO than DF. The total carbonyl emission factor was determined and found to be 6050 and 2300 μg MJ-1 for the operation with HFO and DF respectively. Formaldehyde and acetaldehyde were found to be the dominant carbonyls in the gas phase of ship engine emission. Formaldehyde emissions factor varied from 3500 μg MJ-1 in HFO operation to 1540 μg MJ-1 in DF operation, which is 4-30 times higher than those of other carbonyls. Emission profile contribution of CCs showed also a different pattern between HFO and DF operation. The contribution of formaldehyde was found to be 58% of the emission profile of HFO and about 67% of the emission profile of DF. Acetaldehyde showed opposite behavior with higher contribution of 16% in HFO compared to 11% for DF. Heavier carbonyls

  5. Oxygen compounds in the Irati Shale oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonso, J.C.; Schmal, M.; Cardoso, J.N.

    1992-04-01

    This paper reports the principal alkylphenols (4 wt %) and carboxylic acids (1.2 wt %) present in the Irati Shale oil S[tilde a]o Mateus do Sul, Paran acute (a) by means of a combination of gas chromatography-mass spectrometry (GC-MS) and retention time-data of standard compounds. it appears that the phenols are essentially monocyclic in nature with methyl groups as the main substituents. Carboxylic acids are principally linear and predominantly of the range C[sub 14]--C[sub 20]. After catalytic hydrotreatment (400 [degrees]C, 125 atm) high hydrodeoxygenation levels were obtained (87 wt %) for phenols and carboxylic acids, although the relative distribution ofmore » the various compounds was not significantly changed. Oxygen is present in the carbonaceous residue as several functionalities xanthenes, phenols, aryl ethers, carbonyl compounds, and furanic structures. The remaining acidic compounds may cause instability of the treated shale oil.« less

  6. 40 CFR 721.9517 - Siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethyl amino) propyl] amino]carbonyl]-2-oxo-1...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Siloxanes and silicones, de-Me, 3-[4... Siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethyl amino) propyl] amino]carbonyl]-2-oxo-1-pyrrolidinyl... substance identified as siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethylamino) propyl]amino] carbonyl]-2...

  7. 40 CFR 721.9517 - Siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethyl amino) propyl] amino]carbonyl]-2-oxo-1...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Siloxanes and silicones, de-Me, 3-[4... Siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethyl amino) propyl] amino]carbonyl]-2-oxo-1-pyrrolidinyl... substance identified as siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethylamino) propyl]amino] carbonyl]-2...

  8. 40 CFR 721.9517 - Siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethyl amino) propyl] amino]carbonyl]-2-oxo-1...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Siloxanes and silicones, de-Me, 3-[4... Siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethyl amino) propyl] amino]carbonyl]-2-oxo-1-pyrrolidinyl... substance identified as siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethylamino) propyl]amino] carbonyl]-2...

  9. 40 CFR 721.9517 - Siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethyl amino) propyl] amino]carbonyl]-2-oxo-1...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Siloxanes and silicones, de-Me, 3-[4... Siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethyl amino) propyl] amino]carbonyl]-2-oxo-1-pyrrolidinyl... substance identified as siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethylamino) propyl]amino] carbonyl]-2...

  10. 40 CFR 721.9517 - Siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethyl amino) propyl] amino]carbonyl]-2-oxo-1...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Siloxanes and silicones, de-Me, 3-[4... Siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethyl amino) propyl] amino]carbonyl]-2-oxo-1-pyrrolidinyl... substance identified as siloxanes and silicones, de-Me, 3-[4-[[[3-(dimethylamino) propyl]amino] carbonyl]-2...

  11. Carbonyl reductase of dog liver: purification, properties, and kinetic mechanism.

    PubMed

    Hara, A; Nakayama, T; Deyashiki, Y; Kariya, K; Sawada, H

    1986-01-01

    A carbonyl reductase has been extracted into 0.5 M KCl from dog liver and purified to apparent homogeneity by a three-step procedure consisting of chromatography on CM-Sephadex, Matrex green A, and Sephadex G-100 in high-ionic-strength buffers. The enzyme is a dimer composed of two identical subunits of molecular weight 27,000. The pH optimum is 5.5 and the isoelectric point of the enzyme is 9.3. The enzyme reduces aromatic ketones and aldehydes; the aromatic ketones with adjacent medium alkyl chains are the best substrates. Quinones, ketosteroids, prostaglandins, and aliphatic carbonyl compounds are poor or inactive substrates for the enzyme. As a cofactor the enzyme utilizes NADPH, the pro-S hydrogen atom of which is transferred to the substrate. Two moles of NADPH bind to one mole of the enzyme molecule, causing a blue shift and enhancement of the cofactor fluorescence. The reductase reaction is reversible and the equilibrium constant determined at pH 7.0 is 12.8. Steady-state kinetic measurements in both directions suggest that the reaction proceeds through a di-iso ordered bi-bi mechanism.

  12. Contrasting recovery patterns of 2, 4-dinitrophenylhydrazones (DNPH) derivative of carbonyls between liquid and gas phase standards using HPLC-based analysis

    NASA Astrophysics Data System (ADS)

    Saha, Subbroto Kumar; Jo, Sang-Hee; Song, Hee-Nam; Brown, Richard J. C.; Kim, Ki-Hyun

    2012-12-01

    This study evaluates the relative recovery (RR) of five different carbonyls (CCs) (i.e., acetaldehyde, propionaldehyde, butyraldehyde, isovaleraldehyde, and valeraldehyde) following their reaction as 2, 4-dinitrophenylhydrazine (DNPH) derivatives when using gas phase and liquid phase standards. To this end, relative efficiency of CC-DNPH derivatization is compared between two liquid-phase standards (commercially available vs. lab made mixture) and between liquid and gas-phase standard. If the results are compared in terms of response factors (RF) derived for five carbonyls from all different standard phases, the recovery of gaseous CC standard was distinguished from that of liquid counterparts. The RR of the heavier carbonyls (propionaldehyde, butyraldehyde, isovaleraldehyde, and valeraldehyde) was approximately 60% low relative to their liquid counterparts; however, it was not the case for the lighter carbonyls (acetaldehyde) with the RR of ˜92%. This study thus suggests that the quantification of heavy carbonyls in ambient air, unless made by standards of the same matrix (i.e., gas phase) or compensated by the proper correction factor, may be subject to a large bias due to difference in derivatization reaction efficiency between matrix types. Hence, consideration of the matrix effect at the calibration stage is of particular importance to measure CC quantitatively.

  13. Unveiling stomata 24/7: can we use carbonyl sulfide (COS) and oxygen isotopes (18O) to constrain estimates of nocturnal transpiration across different evolutionary plant forms?

    NASA Astrophysics Data System (ADS)

    Gimeno, Teresa E.; Ogee, Jerome; Bosc, Alexander; Genty, Bernard; Wohl, Steven; Wingate, Lisa

    2015-04-01

    Numerous studies have reported a continued flux of water through plants at night, suggesting that stomata are not fully closed. Growing evidence indicates that this nocturnal flux of transpiration might constitute an important fraction of total ecosystem water use in certain environments. However, because evaporative demand is usually low at night, nocturnal transpiration fluxes are generally an order of magnitude lower than rates measured during the day and perilously close to the measurement error of traditional gas-exchange porometers. Thus estimating rates of stomatal conductance in the dark (gnight) precisely poses a significant methodological challenge. As a result, we lack accurate field estimates of gnight and how it responds to different atmospheric drivers, indicating the need for a different measurement approach. In this presentation we propose a novel method to obtain detectable and robust estimates of gnight. We will demonstrate using mechanistic theory how independent tracers including the oxygen isotope composition of CO2 (δ18O) and carbonyl sulfide (COS) can be combined to obtain robust estimates of gnight. This is because COS and CO18O exchange within leaves are controlled by the light insensitive enzyme carbonic anhydrase. Thus, if plant stomata are open in the dark we will continue to observe COS and CO18O exchange. Using our theoretical model we will demonstrate that the exchange of these tracers can now be measured using advances in laser spectrometry techniques at a precision high enough to determine robust estimates of gnight. We will also present our novel experimental approach designed to measure simultaneously the exchange of CO18O and COS alongside the conventional technique that relies on measuring the total water flux from leaves in the dark. Using our theoretical approach we will additionally explore the feasibility of our proposed experimental design to detect variations in gnight during drought stress and across a variety of plant

  14. A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect

    NASA Astrophysics Data System (ADS)

    Regazzoni, Luca; de Courten, Barbora; Garzon, Davide; Altomare, Alessandra; Marinello, Cristina; Jakubova, Michaela; Vallova, Silvia; Krumpolec, Patrik; Carini, Marina; Ukropec, Jozef; Ukropcova, Barbara; Aldini, Giancarlo

    2016-06-01

    Carnosine is a natural dipeptide able to react with reactive carbonyl species, which have been recently associated with the onset and progression of several human diseases. Herein, we report an intervention study in overweight individuals. Carnosine (2 g/day) was orally administered for twelve weeks in order to evaluate its bioavailability and metabolic fate. Two carnosine adducts were detected in the urine samples of all subjects. Such adducts are generated from a reaction with acrolein, which is one of the most toxic and reactive compounds among reactive carbonyl species. However, neither carnosine nor adducts have been detected in plasma. Urinary excretion of adducts and carnosine showed a positive correlation although a high variability of individual response to carnosine supplementation was observed. Interestingly, treated subjects showed a significant decrease in the percentage of excreted adducts in reduced form, accompanied by a significant increase of the urinary excretion of both carnosine and carnosine-acrolein adducts. Altogether, data suggest that acrolein is entrapped in vivo by carnosine although the response to its supplementation is possibly influenced by individual diversities in terms of carnosine dietary intake, metabolism and basal production of reactive carbonyl species.

  15. Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts.

    PubMed

    Peng, Xiaofang; Cheng, Ka-Wing; Ma, Jinyu; Chen, Bo; Ho, Chi-Tang; Lo, Clive; Chen, Feng; Wang, Mingfu

    2008-03-26

    Cinnamon bark has been reported to be effective in the alleviation of diabetes through its antioxidant and insulin-potentiating activities. In this study, the inhibitory effect of cinnamon bark on the formation of advanced glycation endproducts (AGEs) was investigated in a bovine serum albumin (BSA)-glucose model. Several phenolic compounds, such as catechin, epicatechin, and procyanidin B2, and phenol polymers were identified from the subfractions of aqueous cinnamon extract. These compounds showed significant inhibitory effects on the formation of AGEs. Their antiglycation activities were not only brought about by their antioxidant activities but also related to their trapping abilities of reactive carbonyl species such as methylglyoxal (MGO), an intermediate reactive carbonyl of AGE formation. Preliminary study on the reaction between MGO and procyanidin B2 revealed that MGO-procyanidin B2 adducts are primary products which are supposed to be stereoisomers. This is the first report that proanthocyanidins can effectively scavenge reactive carbonyl species and thus inhibit the formation of AGEs. As proanthocyanidins behave in a similar fashion as aminoguanidine (AG), the first AGE inhibitor explored in clinical trials, they show great potential to be developed as agents to alleviate diabetic complications.

  16. Systematic study of anharmonic features in a principal component analysis of gramicidin A.

    PubMed

    Kurylowicz, Martin; Yu, Ching-Hsing; Pomès, Régis

    2010-02-03

    We use principal component analysis (PCA) to detect functionally interesting collective motions in molecular-dynamics simulations of membrane-bound gramicidin A. We examine the statistical and structural properties of all PCA eigenvectors and eigenvalues for the backbone and side-chain atoms. All eigenvalue spectra show two distinct power-law scaling regimes, quantitatively separating large from small covariance motions. Time trajectories of the largest PCs converge to Gaussian distributions at long timescales, but groups of small-covariance PCs, which are usually ignored as noise, have subdiffusive distributions. These non-Gaussian distributions imply anharmonic motions on the free-energy surface. We characterize the anharmonic components of motion by analyzing the mean-square displacement for all PCs. The subdiffusive components reveal picosecond-scale oscillations in the mean-square displacement at frequencies consistent with infrared measurements. In this regime, the slowest backbone mode exhibits tilting of the peptide planes, which allows carbonyl oxygen atoms to provide surrogate solvation for water and cation transport in the channel lumen. Higher-frequency modes are also apparent, and we describe their vibrational spectra. Our findings expand the utility of PCA for quantifying the essential features of motion on the anharmonic free-energy surface made accessible by atomistic molecular-dynamics simulations. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Intrinsic Conformational Preferences of Cα,α-Dibenzylglycine

    PubMed Central

    Casanovas, Jordi; Nussinov, Ruth; Alemán, Carlos

    2009-01-01

    The intrinsic conformational preferences of Cα,α-dibenzylglycine, a symmetric α,α-dialkylated amino acid bearing two benzyl substituents on the α-carbon atom, have been determined using quantum chemical calculations at the B3LYP/6-31+G(d,p) level. A total of 46 minimum energy conformations were found for the N-acetyl-N'-methylamide derivative, even though only 9 of them showed a relative energy lower than 5.0 kcal/mol. The latter involves C7, C5 and α' backbone conformations stabilized by intramolecular hydrogen bonds and/or N-H…π interactions. Calculation of the conformational free energies in different environments (gas-phase, carbon tetrachloride, chloroform, methanol and water solutions) indicates that four different minima (two C5 and two C7) are energetically accessible at room temperature in the gas-phase, while in methanol and aqueous solutions one such minimum (C5) becomes the only significant conformation. Comparison with results recently reported for Cα,α-diphenylglycine indicates that substitution of phenyl side groups by benzyl enhances the conformational flexibility leading to (i) a reduction of the strain of the peptide backbone; and (ii) alleviating the repulsive interactions between the π electron density of the phenyl groups and the lone pairs of the carbonyl oxygen atoms. PMID:18465898

  18. Determination of carbonyl pollutants adsorbed on ambient particulate matter of type PM2.5 by using magnetic molecularly imprinted microspheres for sample pretreatment and capillary electrophoresis for separation and quantitation.

    PubMed

    Li, Yunling; Sun, Hui; Lai, Jiaping; Chang, Xiangyang; Zhang, Ping; Chen, Shili

    2018-01-19

    The authors describe a method for the determination of carbonyl pollutants adsorbed on ambient particulate matter (diameter < 2.5 μm; PM2.5). 2,4-Dinitrophenylhydrazine (DNPH) was used to derivatize carbonyl compounds. Magnetic molecularly imprinted polymers (MMIPs) selective for 2,4-DNPH were synthesized to remove excess of the derivatization reagent 2,4-DNPH. Micellar electrokinetic chromatography (MEKC) was then applied to the separation of DNPH-derivatized carbonyl compounds. The increased sensitivity of MEKC with UV detection and the sample cleanup resulted in drastically reduced sampling times (15 min) with detection limits ranging from 0.005-0.068 μg·m -3 for different carbonyls. The method was applied to continuous monitoring of carbonyl compounds on ambient PM 2.5 for two consecutive months. The concentrations and gas-to-particle ratios of carbonyls were determined, and a statistical method was used to evaluate the correlation among different carbonyls. It was observed that the total concentration of carbonyls, especially of multi-carbon carbonyls, increases with the level of air pollution. The level of isovaleraldehyde rises sharply and accounts for 37% of total carbonyls on days with extremely humid haze. The ratio of acetaldehyde to propionaldehyde (C2/C3) decreases with the duration and heaviness of haze conditions. Results indicate that anthropogenic emissions and the characteristics of the atmosphere (e.g. temperature, sunlight, and relative humidity) are the main factors that lead to abnormally high levels of isovaleraldehyde and other carbonyls in ambient PM 2.5. Graphical abstract Schematic of a method for the determination of carbonyl pollutants adsorbed on ambient fine particle of type PM2.5. Magnetic molecularly imprinted polymers (MMIPs) were synthesized to remove the excess derivatization reagent (2,4-DNPH) in air sample prior to CE separation.

  19. High-Resolution Crystal Structures of Protein Helices Reconciled with Three-Centered Hydrogen Bonds and Multipole Electrostatics

    PubMed Central

    Kuster, Daniel J.; Liu, Chengyu; Fang, Zheng; Ponder, Jay W.; Marshall, Garland R.

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.613 α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.613/10-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole

  20. High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.

    PubMed

    Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from

  1. Conjugated-Backbone Effect of Organic Small Molecules for n-Type Thermoelectric Materials with ZT over 0.2.

    PubMed

    Huang, Dazhen; Yao, Huiying; Cui, Yutao; Zou, Ye; Zhang, Fengjiao; Wang, Chao; Shen, Hongguang; Jin, Wenlong; Zhu, Jia; Diao, Ying; Xu, Wei; Di, Chong-An; Zhu, Daoben

    2017-09-20

    Conjugated backbones play a fundamental role in determining the electronic properties of organic semiconductors. On the basis of two solution-processable dihydropyrrolo[3,4-c]pyrrole-1,4-diylidenebis(thieno[3,2-b]thiophene) derivatives with aromatic and quinoid structures, we have carried out a systematic study of the relationship between the conjugated-backbone structure and the thermoelectric properties. In particular, a combination of UV-vis-NIR spectra, photoemission spectroscopy, and doping optimization are utilized to probe the interplay between energy levels, chemical doping, and thermoelectric performance. We found that a moderate change in the conjugated backbone leads to varied doping mechanisms and contributes to dramatic changes in the thermoelectric performance. Notably, the chemically doped A-DCV-DPPTT, a small molecule with aromatic structure, exhibits an electrical conductivity of 5.3 S cm -1 and a high power factor (PF 373 K ) up to 236 μW m -1 K -2 , which is 50 times higher than that of Q-DCM-DPPTT with a quinoid structure. More importantly, the low thermal conductivity enables A-DCV-DPPTT to possess a figure of merit (ZT) of 0.23 ± 0.03, which is the highest value reported to date for thermoelectric materials based on organic small molecules. These results demonstrate that the modulation of the conjugated backbone represents a powerful strategy for tuning the electronic structure and mobility of organic semiconductors toward a maximum thermoelectric performance.

  2. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    PubMed

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels.

    PubMed

    Zhong, Linlin; Liu, Ziwen; Yan, Ruilan; Johnson, Stephen; Zhao, Yupei; Fang, Xiubin; Cao, Deliang

    2009-09-18

    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 microM, 4-hydroxynonenal (HNE) at 0.10 microM, trans-2-hexanal at 0.10 microM, and trans-2,4-hexadienal at 0.05 microM, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 microM (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.

  4. Heterogeneous epoxide carbonylation by cooperative ion-pair catalysis in Co(CO) 4 –-incorporated Cr-MIL-101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hoyoung D.; Dinca, Mircea; Roman-Leshkov, Yuriy

    Here, despite the commercial desirability of epoxide carbonylation to β-lactones, the reliance of this process on homogeneous catalysts makes its industrial application challenging. Here we report the preparation and use of a Co(CO) 4 –-incorporated Cr-MIL-101 (Co(CO) 4cCr-MIL-101, Cr-MIL-101 = Cr 3O(BDC) 3F, H2BDC = 1,4-benzenedicarboxylic acid) heterogeneous catalyst for the ring-expansion carbonylation of epoxides, whose activity, selectivity, and substrate scope are on par with those of the reported homogeneous catalysts. We ascribe the observed performance to the unique cooperativity between the postsynthetically introduced Co(CO) 4 – and the site-isolated Lewis acidic Cr(III) centers in the metal–organic framework (MOF). Themore » heterogeneous nature of Co(CO) 4cCr-MIL-101 allows the first demonstration of gas-phase continuous-flow production of β-lactones from epoxides, attesting to the potential applicability of the heterogeneous epoxide carbonylation strategy.« less

  5. Heterogeneous epoxide carbonylation by cooperative ion-pair catalysis in Co(CO) 4 –-incorporated Cr-MIL-101

    DOE PAGES

    Park, Hoyoung D.; Dinca, Mircea; Roman-Leshkov, Yuriy

    2017-03-21

    Here, despite the commercial desirability of epoxide carbonylation to β-lactones, the reliance of this process on homogeneous catalysts makes its industrial application challenging. Here we report the preparation and use of a Co(CO) 4 –-incorporated Cr-MIL-101 (Co(CO) 4cCr-MIL-101, Cr-MIL-101 = Cr 3O(BDC) 3F, H2BDC = 1,4-benzenedicarboxylic acid) heterogeneous catalyst for the ring-expansion carbonylation of epoxides, whose activity, selectivity, and substrate scope are on par with those of the reported homogeneous catalysts. We ascribe the observed performance to the unique cooperativity between the postsynthetically introduced Co(CO) 4 – and the site-isolated Lewis acidic Cr(III) centers in the metal–organic framework (MOF). Themore » heterogeneous nature of Co(CO) 4cCr-MIL-101 allows the first demonstration of gas-phase continuous-flow production of β-lactones from epoxides, attesting to the potential applicability of the heterogeneous epoxide carbonylation strategy.« less

  6. Biogenic carbonyl compounds within and above a coniferous forest in Germany

    NASA Astrophysics Data System (ADS)

    Müller, Konrad; Haferkorn, Sylvia; Grabmer, Wolfgang; Wisthaler, Armin; Hansel, Armin; Kreuzwieser, Jürgen; Cojocariu, Cristian; Rennenberg, Heinz; Herrmann, Hartmut

    Diurnal mixing ratios of aldehydes and ketones were investigated during two joint experiments in summer months to identify biogenic contributions from coniferous forests to tropospheric chemistry. In a Norway spruce forest, the diurnal variation of carbonyl compounds was measured at 12 m (in the treetop) and at 24 m (above the canopy). The main findings of the experiment are that acetone (up to 9.1 ppbv), formaldehyde (up to 6.5 ppbv), acetaldehyde (up to 5.5 ppbv) and methyl ethyl ketone (MEK, up to 1.8 ppbv) were found in highest concentrations. For all major compounds with the exception of MEK, primary emissions are supposed. From α-pinene oxidation, pinonaldehyde was found with its peak concentrations (up to 0.15 ppbv) during the early morning hours. The diurnal variation of concentrations for most other compounds shows maximum concentrations near midday in 2,4-dinitrophenylhydrazine (DNPH) measurements but not for proton-transfer reaction mass spectrometry (PTR-MS) measurements of acetaldehyde and acetone. A clear correlation of carbonyl compound concentration to the radiation intensity and the temperature ( R2=0.66) was found. However, formaldehyde did not show distinct diurnal variations. A very high correlation was observed for both heights between mixing ratios of acetaldehyde and acetone ( R2=0.84), acetone and MEK ( R2=0.90) as well as acetaldehyde and MEK ( R2=0.88) but not for formaldehyde and the others. For the most time, the observed carbonyl compound concentrations above the canopy are higher than within the forest stand. This indicates an additional secondary formation in the atmosphere above the forest. The differences of acetone and acetaldehyde mixing ratios detected by DNPH technique and the PTR-MS could not be fully clarified by a laboratory intercomparison.

  7. Carbonylation Induces Heterogeneity in Cardiac Ryanodine Receptor Function in Diabetes Mellitus

    PubMed Central

    Shao, Chun Hong; Tian, Chengju; Ouyang, Shouqiang; Moore, Caronda J.; Alomar, Fadhel; Nemet, Ina; D'Souza, Alicia; Nagai, Ryoji; Kutty, Shelby; Rozanski, George J.; Ramanadham, Sasanka; Singh, Jaipaul

    2012-01-01

    Heart failure and arrhythmias occur at 3 to 5 times higher rates among individuals with diabetes mellitus, compared with age-matched, healthy individuals. Studies attribute these defects in part to alterations in the function of cardiac type 2 ryanodine receptors (RyR2s), the principal Ca2+-release channels on the internal sarcoplasmic reticulum (SR). To date, mechanisms underlying RyR2 dysregulation in diabetes remain poorly defined. A rat model of type 1 diabetes, in combination with echocardiography, in vivo and ex vivo hemodynamic studies, confocal microscopy, Western blotting, mass spectrometry, site-directed mutagenesis, and [3H]ryanodine binding, lipid bilayer, and transfection assays, was used to determine whether post-translational modification by reactive carbonyl species (RCS) represented a contributing cause. After 8 weeks of diabetes, spontaneous Ca2+ release in ventricular myocytes increased ∼5-fold. Evoked Ca2+ release from the SR was nonuniform (dyssynchronous). Total RyR2 protein levels remained unchanged, but the ability to bind the Ca2+-dependent ligand [3H]ryanodine was significantly reduced. Western blotting and mass spectrometry revealed RCS adducts on select basic residues. Mutation of residues to delineate the physiochemical impact of carbonylation yielded channels with enhanced or reduced cytoplasmic Ca2+ responsiveness. The prototype RCS methylglyoxal increased and then decreased the RyR2 open probability. Methylglyoxal also increased spontaneous Ca2+ release and induced Ca2+ waves in healthy myocytes. Treatment of diabetic rats with RCS scavengers normalized spontaneous and evoked Ca2+ release from the SR, reduced carbonylation of RyR2s, and increased binding of [3H]ryanodine to RyR2s. From these data, we conclude that post-translational modification by RCS contributes to the heterogeneity in RyR2 activity that is seen in experimental diabetes. PMID:22648972

  8. Production of recombinant protein by a novel oxygen-induced system in Escherichia coli.

    PubMed

    Baez, Antonino; Majdalani, Nadim; Shiloach, Joseph

    2014-04-07

    The SoxRS regulon of E. coli is activated in response to elevated dissolved oxygen concentration likely to protect the bacteria from possible oxygen damage. The soxS expression can be increased up to 16 fold, making it a possible candidate for recombinant protein expression. Compared with the existing induction approaches, oxygen induction is advantageous because it does not involve addition or depletion of growth factors or nutrients, addition of chemical inducers or temperature changes that can affect growth and metabolism of the producing bacteria. It also does not affect the composition of the growth medium simplifying the recovery and purification processes. The soxS promoter was cloned into the commercial pGFPmut3.1 plasmid creating pAB49, an expression vector that can be induced by increasing oxygen concentration. The efficiency and the regulatory properties of the soxS promoter were characterized by measuring the GFP expression when the culture dissolved oxygen concentration was increased from 30% to 300% air saturation. The expression level of recombinant GFP was proportional to the oxygen concentration, demonstrating that pAB49 is a controllable expression vector. A possible harmful effect of elevated oxygen concentration on the recombinant product was found to be negligible by determining the protein-carbonyl content and its specific fluorescence. By performing high density growth in modified LB medium, the cells were induced by increasing the oxygen concentration. After 3 hours at 300% air saturation, GFP fluorescence reached 109000 FU (494 mg of GFP/L), representing 3.4% of total protein, and the cell concentration reached 29.1 g/L (DW). Induction of recombinant protein expression by increasing the dissolved oxygen concentration was found to be a simple and efficient alternative expression strategy that excludes the use of chemical, nutrient or thermal inducers that have a potential negative effect on cell growth or the product recovery.

  9. Protein backbone engineering as a strategy to advance foldamers toward the frontier of protein-like tertiary structure.

    PubMed

    Reinert, Zachary E; Horne, W Seth

    2014-11-28

    A variety of non-biological structural motifs have been incorporated into the backbone of natural protein sequences. In parallel work, diverse unnatural oligomers of de novo design (termed "foldamers") have been developed that fold in defined ways. In this Perspective article, we survey foundational studies on protein backbone engineering, with a focus on alterations made in the context of complex tertiary folds. We go on to summarize recent work illustrating the potential promise of these methods to provide a general framework for the construction of foldamer mimics of protein tertiary structures.

  10. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air

    NASA Astrophysics Data System (ADS)

    Lui, K. H.; Ho, Steven Sai Hang; Louie, Peter K. K.; Chan, C. S.; Lee, S. C.; Hu, Di; Chan, P. W.; Lee, Jeffrey Chi Wai; Ho, K. F.

    2017-03-01

    Gas-phase formaldehyde (HCHO) is an intermediate and a sensitive indicator for volatile organic compounds (VOCs) oxidation, which drives tropospheric ozone production. Effective photochemical pollution control strategies demand a thorough understanding of photochemical oxidation precursors, making differentiation between sources of primary and secondary generated HCHO inevitable. Spatial and seasonal variations of airborne carbonyls based on two years of measurements (2012-2013), coupled with a correlation-based HCHO source apportionment analysis, were determined for three sampling locations in Hong Kong (denoted HT, TC, and YL). Formaldehyde and acetaldehyde were the two most abundant compounds of the total quantified carbonyls. Pearson's correlation analysis (r > 0.7) implies that formaldehyde and acetaldehyde possibly share similar sources. The total carbonyl concentration trends (HT < TC < YL) reflect location characteristics (urban > rural). A regression analysis further quantifies the relative primary HCHO source contributions at HT (∼13%), TC (∼21%), and YL (∼40%), showing more direct vehicular emissions in urban than rural areas. Relative secondary source contributions at YL (∼36%) and TC (∼31%) resemble each other, implying similar urban source contributions. Relative background source contributions at TC could be due to a closed structure microenvironment that favors the trapping of HCHO. Comparable seasonal differences are observed at all stations. The results of this study will aid in the development of a new regional ozone (O3) control policy, as ambient HCHO can enhance O3 production and also be produced from atmospheric VOCs oxidation (secondary HCHO).

  11. Metal-free carbonylations by photoredox catalysis.

    PubMed

    Majek, Michal; Jacobi von Wangelin, Axel

    2015-02-09

    The synthesis of benzoates from aryl electrophiles and carbon monoxide is a prime example of a transition-metal-catalyzed carbonylation reaction which is widely applied in research and industrial processes. Such reactions proceed in the presence of Pd or Ni catalysts, suitable ligands, and stoichiometric bases. We have developed an alternative procedure that is free of any metal, ligand, and base. The method involves a redox reaction driven by visible light and catalyzed by eosin Y which affords alkyl benzoates from arene diazonium salts, carbon monoxide, and alcohols under mild conditions. Tertiary esters can also be prepared in high yields. DFT calculations and radical trapping experiments support a catalytic photoredox pathway without the requirement for sacrificial redox partners. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Glycation, carbonyl stress and AGEs inhibitors: a patent review.

    PubMed

    Jahan, Humera; Choudhary, M Iqbal

    2015-01-01

    The glycation process, comprising a series of reactions, results in the formation of heterogeneous adducts, known as advanced glycation end products (AGEs). AGEs are involved in several pathologies, including diabetes-associated late complications, atherosclerosis, Alzheimer's disease and inflammatory arthritis. Several inhibitors of AGEs and/or reactive carbonyl species have been identified from various sources, including natural products and synthetic molecules, and have been investigated for their mechanism of action. This review covers the literature on AGEs inhibitors published as patents between 2001 and 2014. Initially, the earlier reported molecules with AGEs inhibitory properties, their mechanism of actions and reported adverse effects are discussed. The main focus has been on the chemical structures, methods for evaluation of the activity, modes of action, pharmacokinetics and therapeutic outcomes. The potential of these AGEs inhibitors in the treatment and management of a number of diseases are also discussed in this review. The reactive carbonyl species and AGEs have recently emerged as novel therapeutic targets for the prevention and treatment of several diseases. Currently, the major concerns with the use of AGEs inhibitors as therapeutic agents are low effectiveness, poor pharmacokinetics and undesirable side effects. Many of the AGEs inhibitors reviewed here possess potent antiglycation activity and are devoid of undesirable side effects. These small molecules inhibitors can, therefore, serve as scaffolds for the development and designing of new AGEs inhibitors as clinical agents.

  13. Singlet oxygen-induced photodegradation of the polymers and dyes in optical sensing materials and the effect of stabilizers on these processes.

    PubMed

    Enko, Barbara; Borisov, Sergey M; Regensburger, Johannes; Bäumler, Wolfgang; Gescheidt, Georg; Klimant, Ingo

    2013-09-12

    A comprehensive study of photodegradation processes in optical sensing materials caused by photosensitized singlet oxygen in different polymers is presented. The stabilities of the polymers are accessed in the oxygen consumption measurements performed with help of optical oxygen sensors. Polystyrene and poly(phenylsilesquioxane) are found to be the most stable among the polymers investigated, whereas poly(2,6-dimethyl-p-phenylene oxide) and particularly poly(methyl methacrylate) and their derivatives show the fastest oxygen consumption. The effect of the stabilizers (singlet oxygen quenchers) on the oxygen consumption rates, the photostability of the sensitizer, and the total photon emission (TPE) by singlet oxygen is studied. 1,4-Diazabicyclo[2.2.2]octane (DABCO) was found to significantly reduce both the TPE and the oxygen consumption rates, indicating its role as a physical quencher of singlet oxygen. The addition of DABCO also significantly improved the photostability of the sensitizer. The N-alkylated derivative of DABCO and DABCO covalently grafted to the polystyrene backbone are prepared in an attempt to overcome the volatility and water solubility of the quencher. These derivatives as well as other tertiary amines investigated were found to be inefficient as stabilizing agents, and some of them even negatively affected the oxygen consumption rates.

  14. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-01

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of Cα atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  15. Phosphorylation effects on cis/trans isomerization and the backbone conformation of serine-proline motifs: accelerated molecular dynamics analysis.

    PubMed

    Hamelberg, Donald; Shen, Tongye; McCammon, J Andrew

    2005-02-16

    The presence of serine/threonine-proline motifs in proteins provides a conformational switching mechanism of the backbone through the cis/trans isomerization of the peptidyl-prolyl (omega) bond. The reversible phosphorylation of the serine/threonine modulates this switching in regulatory proteins to alter signaling and transcription. However, the mechanism is not well understood. This is partly because cis/trans isomerization is a very slow process and, hence, difficult to study. We have used our accelerated molecular dynamics method to study the cis/trans proline isomerization, preferred backbone conformation of a serine-proline motif, and the effects of phosphorylation of the serine residue. We demonstrate that, unlike normal molecular dynamics, the accelerated molecular dynamics allows for the system to escape very easily from the trans isomer to cis isomer, and vice versa. Moreover, for both the unphosphorylated and phosphorylated peptides, the statistical thermodynamic properties are recaptured, and the results are consistent with experimental values. Isomerization of the proline omega bond is shown to be asymmetric and strongly dependent on the psi backbone angle before and after phosphorylation. The rates of escape decrease after phosphorylation. Also, the alpha-helical backbone conformation is more favored after phosphorylation. This accelerated molecular dynamics approach provides a general approach for enhancing the conformational transitions of molecular systems without having prior knowledge of the location of the minima and barriers on the potential-energy landscape.

  16. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    PubMed

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  17. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics.

    PubMed

    Krokhotin, Andrey; Niemi, Antti J; Peng, Xubiao

    2013-05-07

    We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.

  18. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics

    NASA Astrophysics Data System (ADS)

    Krokhotin, Andrey; Niemi, Antti J.; Peng, Xubiao

    2013-05-01

    We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.

  19. First-principles study of the effect of functional groups on polyaniline backbone

    PubMed Central

    Chen, X. P.; Jiang, J. K.; Liang, Q. H.; Yang, N.; Ye, H. Y.; Cai, M.; Shen, L.; Yang, D. G.; Ren, T. L.

    2015-01-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity. PMID:26584671

  20. REACTIVE CARBONYL SPECIES AND THEIR ROLES IN SARCOPLASMIC RETICULUM Ca2+ CYCLING DEFECT IN THE DIABETIC HEART

    PubMed Central

    Tian, Chengju; Alomar, Fadhel; Moore, Caronda J; Shao, Chun Hong; Kutty, Shelby; Singh, Jaipaul; Bidasee, Keshore R.

    2016-01-01

    Efficient and rhythmic cardiac contractions depend critically on the adequate and synchronized release of Ca2+ from the sarcoplasmic reticulum (SR) via ryanodine receptor Ca2+ release channels (RyR2) and its reuptake via sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a). It is well established that this orchestrated process becomes compromised in diabetes. What remain incompletely defined are the molecular mechanisms responsible for the dysregulation of RyR2 and SERCA2a in diabetes. Earlier, found elevated levels of carbonyl adducts on RyR2 and SERCA2a isolated from hearts of type 1 diabetic rats and showed the presence of these post-translational modifications compromised their functions. We also showed that these mono- and di-carbonyl reactive carbonyl species (RCS) do not indiscriminately react with all basic amino acid residues on RyR2 and SERCA2a; some residues are more susceptible to carbonylation (modification by RCS) than others. A key unresolved question in the field is which of the many RCS that are upregulated in the heart in diabetes chemically react with RyR2 and SERCA2a? This brief review introduces readers to the field of RCS and their roles in perturbing SR Ca2+ cycling in diabetes. It also provides new experimental evidence that not all RCS that are upregulated in the heart in diabetes chemically react with RyR2 and SERCA2a, methylglyoxal and glyoxal preferentially do. PMID:23430128

  1. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation.

    PubMed

    Riisager, Anders; Jørgensen, Betina; Wasserscheid, Peter; Fehrmann, Rasmus

    2006-03-07

    A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)2I2]-[BMIM]I-SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation.

  2. Catalytic performance of heterogeneous Rh/C3N4 for the carbonylation of methanol

    NASA Astrophysics Data System (ADS)

    Budiman, Anatta Wahyu; Choi, Myoung Jae; Nur, Adrian

    2018-02-01

    The excess of water in homogeneous the carbonylation of methanol system could increase the amount of by-products formed through water-gas shift reaction and could accelerate the rusting of equipment. Many scientists tried to decrease the content of water in the carbonylation of methanol system by using lithium and iodide promoter that results a moderate catalytic activity in the water content at 2wt%. The heterogenized catalyst offers several distinct advantages such as it was enables increased catalyst concentration in the reaction mixture, which is directly proportional to acetic acid production rate, without the addition of an alkali iodide salt promoter. The heterogeneous catalyst also results in reduced by-product formation. This study is aimed to produce a novel catalyst (Rh/C3N4) with a high selectivity of acetic acid in a relatively lower water and halide content. This novel catalyst performs high conversion and selectivity of acetic acid as the result of the strong ionic bonding of melamine and rhodium complex species that was caused by the presence of methyl iodide species. The CO2 in feed gas significantly decreases the catalytic activity of Rh-melamine because of its inert characteristics. The kinetic test was performed as that the first order kinetic equation. The kinetic tests revealed the reaction route of the the carbonylation of methanol in this system was performed trough the methyl acetate.

  3. High-cost, high-capacity backbone for global brain communication.

    PubMed

    van den Heuvel, Martijn P; Kahn, René S; Goñi, Joaquín; Sporns, Olaf

    2012-07-10

    Network studies of human brain structural connectivity have identified a specific set of brain regions that are both highly connected and highly central. Recent analyses have shown that these putative hub regions are mutually and densely interconnected, forming a "rich club" within the human brain. Here we show that the set of pathways linking rich club regions forms a central high-cost, high-capacity backbone for global brain communication. Diffusion tensor imaging (DTI) data of two sets of 40 healthy subjects were used to map structural brain networks. The contributions to network cost and communication capacity of global cortico-cortical connections were assessed through measures of their topology and spatial embedding. Rich club connections were found to be more costly than predicted by their density alone and accounted for 40% of the total communication cost. Furthermore, 69% of all minimally short paths between node pairs were found to travel through the rich club and a large proportion of these communication paths consisted of ordered sequences of edges ("path motifs") that first fed into, then traversed, and finally exited the rich club, while passing through nodes of increasing and then decreasing degree. The prevalence of short paths that follow such ordered degree sequences suggests that neural communication might take advantage of strategies for dynamic routing of information between brain regions, with an important role for a highly central rich club. Taken together, our results show that rich club connections make an important contribution to interregional signal traffic, forming a central high-cost, high-capacity backbone for global brain communication.

  4. The 30 kDa protein co-purified with chick liver glutathione S-transferases is a carbonyl reductase.

    PubMed

    Tsai, S P; Wang, L Y; Yeh, H I; Tam, M F

    1996-02-08

    An unidentified 30 kDa protein was co-purified with chick liver glutathione S-transferases from S-hexylglutathione affinity column. The protein was isolated to apparent homogeneity with chromatofocusing. The molecular mass of the protein was determined to be 30 277 +/- 3 dalton by mass spectrometry. The protein was digested with Achromobacter proteinase I. Amino-acid sequence analyses of the resulting peptides show a high degree of identity with those of human carbonyl reductase. The protein is active with menadione as substrate. Thus, it is identified as chick liver carbonyl reductase.

  5. An ``Alternating-Curvature'' Model for the Nanometer-scale Structure of the Nafion Ionomer, Based on Backbone Properties Detected by NMR

    NASA Astrophysics Data System (ADS)

    Schmidt-Rohr, Klaus; Chen, Q.

    2006-03-01

    The perfluorinated ionomer, Nafion, which consists of a (-CF2-)n backbone and charged side branches, is useful as a proton exchange membrane in H2/O2 fuel cells. A modified model of the nanometer-scale structure of hydrated Nafion will be presented. It features hydrated ionic clusters familiar from some previous models, but is based most prominently on pronounced backbone rigidity between branch points and limited orientational correlation of local chain axes. These features have been revealed by solid-state NMR measurements, which take advantage of fast rotations of the backbones around their local axes. The resulting alternating curvature of the backbones towards the hydrated clusters also better satisfies the requirement of dense space filling in solids. Simulations based on this ``alternating curvature'' model reproduce orientational correlation data from NMR, as well as scattering features such as the ionomer peak and the I(q) ˜ 1/q power law at small q values, which can be attributed to modulated cylinders resulting from the chain stiffness. The shortcomings of previous models, including Gierke's cluster model and more recent lamellar or bundle models, in matching all requirements imposed by the experimental data will be discussed.

  6. Backbone resonance assignments of the PRYSPRY domain of TRIM25.

    PubMed

    Kong, Chen; Penumutchu, Srinivasa R; Hung, Kuo-Wei; Huang, Huiying; Lin, Tianwei; Yu, Chin

    2015-10-01

    TRIM25 is a member of the tripartite motif (TRIM) family and has been implicated in the regulation of innate immune signaling via the RIG-I (retinoic acid-inducible gene-I) pathway for antiviral defense. As the essential first step towards the structural and functional characterization of the TRIM25/RIG-I interaction, the backbone resonance of the PRYSPRY domain of TRIM25 is assigned here based on triple-resonance experiments using uniformly [(2)H, (13)C, (15)N]-labeled protein.

  7. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

    PubMed

    Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

  8. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-04-02

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  9. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  10. Multi-step oxidations catalyzed by cytochrome P450 enzymes: Processive vs. distributive kinetics and the issue of carbonyl oxidation in chemical mechanisms

    PubMed Central

    Guengerich, F. Peter; Sohl, Christal D.; Chowdhury, Goutam

    2010-01-01

    Catalysis of sequential oxidation reactions is not unusual in cytochrome P450 (P450) reactions, not only in steroid metabolism but also with many xenobiotics. One issue is how processive/distributive these reactions are, i.e. how much do the “intermediate” products dissociate. Our work with human P450s 2E1, 2A6, and 19A1 on this subject has revealed a mixture of systems, surprisingly with a more distributive mechanism with an endogenous substrate (P450 19A1) than for some xenobiotics (P450s 2E1, 2A6). One aspect of this research involves carbonyl intermediates, and the choice of catalytic mechanism is linked to the hydration state of the aldehyde. The non-enzymatic rates of hydration and dehydration of carbonyls are not rapid and whether P450s catalyze the reversible hydration is unknown. If carbonyl hydration and dehydration are slow, the mechanism may be set by the carbonyl hydration status. PMID:20804723

  11. Comparison of the dynamics of substrate access channels in three cytochrome P450s reveals different opening mechanisms and a novel functional role for a buried arginine

    PubMed Central

    Winn, Peter J.; Lüdemann, Susanna K.; Gauges, Ralph; Lounnas, Valère; Wade, Rebecca C.

    2002-01-01

    Understanding the mechanism and specificity of substrate binding in the cytochrome P450 (P450) superfamily is an important step toward explaining its key role in drug metabolism, toxicity, xenobiotic degradation, and several biosynthetic pathways. Here we investigate the ligand exit pathways and mechanisms of P450cam (CYP101), P450BM-3 (CYP102), and P450eryF (CYP107A1) by using random expulsion molecular dynamics and classical molecular dynamics simulations. Although several different pathways are found for each protein, one pathway is common to all three. The mechanism of ligand exit along this pathway is, however, quite different in the three different proteins. For P450cam, small backbone conformational changes, in combination with aromatic side chain rotation, allow for the passage of the rather rigid, compact, and hydrophobic substrate, camphor. In P450BM-3, larger transient backbone changes are observed on ligand exit. R47, situated at the entrance to the channel, appears important in guiding negatively charged fatty acid substrates in and out of the active site. In P450eryF, an isolated buried arginine, R185, stabilized by four hydrogen bonds to backbone carbonyl oxygen atoms, is located in the exit channel and is identified as having a particularly unusual functionality, dynamically gating channel opening. The results for these three P450s suggest that the channel opening mechanisms are adjusted to the physico-chemical properties of the substrate and can kinetically modulate protein-substrate specificity. PMID:11959989

  12. Consideration of reactivity to acute fish toxicity of α,β-unsaturated carbonyl ketones and aldehydes.

    PubMed

    Furuhama, A; Aoki, Y; Shiraishi, H

    2012-01-01

    To understand the key factor for fish toxicity of 11 α,β-unsaturated carbonyl aldehydes and ketones, we used quantum chemical calculations to investigate their Michael reactions with methanethiol or glutathione. We used two reaction schemes, with and without an explicit water molecule (Scheme-1wat and Scheme-0wat, respectively), to account for the effects of a catalytic water molecule on the reaction pathway. We determined the energies of the reactants, transition states (TS), and products, as well as the activation energies of the reactions. The acute fish toxicities of nine of the carbonyl compounds were evaluated to correlate with their hydrophobicities; no correlation was observed for acrolein and crotonaldehyde. The most toxic compound, acrolein, had the lowest activation energy. The activation energy of the reaction could be estimated with Scheme-1wat but not with Scheme-0wat. The complexity of the reaction pathways of the compounds was reflected in the difficulty of the TS structure searches when Scheme-1wat was used with the polarizable continuum model. The theoretical estimations of activation energies of α,β-unsaturated carbonyl compounds with catalytic molecules or groups including hydrogen-bond networks may complement traditional tools for predicting the acute aquatic toxicities of compounds that cannot be easily obtained experimentally.

  13. Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti-β-Amyloid Aggregation, and Microglial Neuroprotective Effects

    PubMed Central

    Johnson, Shelby L.; Liu, Weixi; DaSilva, Nicholas A.; Meschwitz, Susan; Dain, Joel A.; Seeram, Navindra P.

    2018-01-01

    Glycation is associated with several neurodegenerative disorders, including Alzheimer’s disease (AD), where it potentiates the aggregation and toxicity of proteins such as β-amyloid (Aβ). Published studies support the anti-glycation and neuroprotective effects of several polyphenol-rich fruits, including berries, which are rich in anthocyanins. Herein, blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts were evaluated for: (1) total phenolic and anthocyanins contents, (2) free radical (DPPH) scavenging and reactive carbonyl species (methylglyoxal; MGO) trapping, (3) anti-glycation (using BSA-fructose and BSA-MGO models), (4) anti-Aβ aggregation (using thermal- and MGO-induced fibrillation models), and, (5) murine microglia (BV-2) neuroprotective properties. Berry crude extracts (CE) were fractionated to yield anthocyanins-free (ACF) and anthocyanins-enriched (ACE) extracts. The berry ACEs (at 100 μg/mL) showed superior free radical scavenging, reactive carbonyl species trapping, and anti-glycation effects compared to their respective ACFs. The berry ACEs (at 100 μg/mL) inhibited both thermal- and MGO-induced Aβ fibrillation. In addition, the berry ACEs (at 20 μg/mL) reduced H2O2-induced reactive oxygen species production, and lipopolysaccharide-induced nitric oxide species in BV-2 microglia as well as decreased H2O2-induced cytotoxicity and caspase-3/7 activity in BV-2 microglia. The free radical scavenging, reactive carbonyl trapping, anti-glycation, anti-Aβ fibrillation, and microglial neuroprotective effects of these berry extracts warrant further in vivo studies to evaluate their potential neuroprotective effects against AD. PMID:29401686

  14. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Linlin; Department of Neurobiology and Anatomy, China Medical University, Shenyang 110001; Liu, Ziwen

    2009-09-18

    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 {mu}M, 4-hydroxynonenal (HNE) at 0.10 {mu}M, trans-2-hexanal at 0.10 {mu}M, and trans-2,4-hexadienal at 0.05 {mu}M, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 {mu}M (toxic) by converting to 1,4-dihydroxynonene,more » protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.« less

  15. CASTNet Air Toxics Monitoring Program (CATMP): VOC and carbonyl data for July, 1993 through March, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harlos, D.P.; Edgerton, E.S.

    1994-12-31

    The US EPA has, under the auspices of the CASTNet program (Clean Air Status and Trends Network), initiated the CASTNet Air Toxics Monitoring Program (CATMP). Volatile Organic Compounds (VOC) and carbonyls and metals are sampled for 24-hour periods on a 12-day schedule using TO-14 samplers (SUMMA canisters) and dinitrophenylhydrazine-coated (dmph) sorbent cartridges and high volume particle samplers. Sampling was begun at most sites in July of 1993. The sites are operated by state and local air pollution control programs and all analysis is performed by Environmental Science and Engineering (ESE) in Gainesville, Florida. The network currently supports 15 VOC sites,more » of which 7 also sample carbonyls. Three sites sample metals only in Pinellas County, Florida. The limits of detection of 0.05 ppb for VOCs allow routine tracking of a wide range of pollutants including several greenhouse gases, transportation pollutants and photochemically-derived compounds. The sites range from major urban areas (Chicago, St. Louis) to a rural village (Waterbury, Vermont). Results of the first three quarters of VOC and carbonyl data collection are summarized in this presentation.« less

  16. The structural features of hemicelluloses dissolved out at different cooking stages of active oxygen cooking process.

    PubMed

    Shi, Jianbin; Yang, Qiulin; Lin, Lu

    2014-04-15

    This work described the morphologic changes of corn stalk and the structural characterization of its hemicelluloses dissolved in yellow liquor at different cooking stages. The results showed that active oxygen cooking process was an efficient method to depolymerize the corn stalk into cellulose, hemicelluloses, and lignin as a pretreatment of biomass conversion. This cooking process can also be divided into three phases: bulk delignification, extended delignification, and residual delignification. During the heating-up period 57.67% of hemicelluloses and 62.31% of lignin were removed from the raw material. However, only 15% of hemicelluloses and 23.21% of lignin were removed during at temperature' period. The hemicelluloses from the corn stalk and yellow liquor were composed of (1→4)-β-D-xylopyranose backbones substituted with α-l-arabinofuranosyl, 4-O-methyl-α-D-glucuronic acid, and some methoxyl residues. The backbones of hemicelluloses were gradually cleaved during the cooking process. The acetyl groups substituted with xylopyranosyl residues were completely cleaved during the cooking process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases

    PubMed Central

    Haupt, V. Joachim; Schroeder, Michael; Labudde, Dirk

    2018-01-01

    The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes. PMID:29659563

  18. TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences

    PubMed Central

    Song, Jiangning; Tan, Hao; Wang, Mingjun; Webb, Geoffrey I.; Akutsu, Tatsuya

    2012-01-01

    Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the Cα-N bond (Phi) and the Cα-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the Phi and Psi angle prediction are 27.8° and 44.6°, respectively, which are 1% and 3% respectively lower than that using one of the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random predictor that was built on the amino acid-specific basis, with the p-value<1.46e-147 and 7.97e-150, respectively by the Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/TANGLE/. PMID:22319565

  19. Characterization of a backbone cleavage product of BMS-196854 (Oncostatin M), a recombinant anti-inflammatory cytokine.

    PubMed

    Zhao, F; Stein, D J; Paborji, M; Cash, P W; Root, B J; Wei, Z; Knupp, C J

    2001-01-01

    BMS-196843 (Oncostatin M) is a therapeutic recombinant protein in development. Scale-up process changes led to unexpected instability of the bulk drug substance solution during storage. A product with an apparent higher MW than the parent protein was observed by the size-exclusion chromatography (SEC). This study was aimed to fully characterize the product and to identify a solution to stabilize the protein. SEC, SDS-PAGE, tryptic mapping, and N-terminal sequencing were performed to characterize the unknown product. The effect of pH, temperature, bulk concentration, and immobilized trypsin inhibitor on the degradation rate was studied to elucidate the mechanism and to identify stabilization strategies. Despite the apparent high MW indicated initially by SEC, the unknown was characterized to be a degradation product resulted from a backbone cleavage between residues Arg145-Gly146. The resulting fragments from the backbone cleavage were, however, still linked through an intramolecular disulfide bond. Thus, the final product had a more open structure with an increased hydrodynamic radius compared to the parent protein, which explains the initial SEC results. The site-specific backbone cleavage was suspected to be catalyzed by trypsin-like protease impurities in the bulk solution. The bulk drug substance solution was subsequently treated with immobilized soybean trypsin inhibitor, and the degradation rate was significantly reduced. Furthermore, increasing the solution pH from 5 to 8 led to an increase in the degradation rate, which was consistent with the expected pH dependency of trypsin activity. In addition, the effect of bulk concentration also supported the involvement of protease impurities rather than a spontaneous peptide bond hydrolysis reaction. Trace trypsin-like protease impurities led to an unusual site-specific backbone cleavage of BMS-196854. The proteolytic degradation can be minimized by treating the bulk solution with immobilized soybean trypsin

  20. RosettaRemodel: A Generalized Framework for Flexible Backbone Protein Design

    PubMed Central

    Huang, Po-Ssu; Ban, Yih-En Andrew; Richter, Florian; Andre, Ingemar; Vernon, Robert; Schief, William R.; Baker, David

    2011-01-01

    We describe RosettaRemodel, a generalized framework for flexible protein design that provides a versatile and convenient interface to the Rosetta modeling suite. RosettaRemodel employs a unified interface, called a blueprint, which allows detailed control over many aspects of flexible backbone protein design calculations. RosettaRemodel allows the construction and elaboration of customized protocols for a wide range of design problems ranging from loop insertion and deletion, disulfide engineering, domain assembly, loop remodeling, motif grafting, symmetrical units, to de novo structure modeling. PMID:21909381

  1. Association between biomarkers of carbonyl stress with increased systemic inflammatory response in different stages of chronic kidney disease and after renal transplantation.

    PubMed

    Aveles, Paulo R; Criminácio, Ciro R; Gonçalves, Simone; Bignelli, Alexandre T; Claro, Ligia Maria; Siqueira, Sérgio S; Nakao, Lia S; Pecoits-Filho, Roberto

    2010-01-01

    Chronic kidney disease (CKD) is characterized by progressive kidney dysfunction accompanied by accumulation of uremic toxins and a potential disequilibrium between the redox status and the generation of prooxidants, resulting in oxidative stress and chronic inflammation which is associated with complications (particularly cardiovascular disease) in this population. We aimed to analyze the concentration of total plasma thiols (indicator of antioxidant capacity) and the protein carbonyl content (a marker of carbonyl stress) in relation to kidney function and inflammation in a group of patients with CKD. A group of 68 patients with CKD (stages 2-5; mean age 57 ± 12 years, 46% male, 34% diabetics) and another group of 21 patients who underwent living donor kidney transplantation (mean age 36 ± 17 years, 50% male, 10% diabetics, and 9 ± 2 months after renal transplantation) were included in the study. Total plasma thiol and protein carbonyl levels were determined by the DTNB and DNPH methods, respectively, and were adjusted to the plasma albumin concentrations. Plasma levels of fibrinogen and C-reactive protein (CRP) were measured by routine methods and used as markers of inflammation. Mean glomerular filtration rate (GFR) was 48 ml/min, and there was a positive correlation between GFR and thiol (r = 0.25, p < 0.05) and a negative correlation between GFR and carbonyl (r = -0.26, p < 0.05), fibrinogen (r = -0.45, p < 0.0001) and CRP (r = -0.14, p = ns). Carbonyl strongly correlated with CRP (0.49, p < 0.0001) and fibrinogen (0.30, p < 0.01). There was a significant reduction in plasma carbonyl after renal transplantation (1.4 ± 0.4 nmol/mg albumin), compared with the levels before the procedure (2.0 ± 1.4 nmol/mg albumin, p < 0.05), which parallels an improvement in thiol levels (15 ± 4 vs. 21 ± 5 nmol/mg albumin, p < 0.001). In addition, there was a significant correlation between CRP and carbonyl after the transplantation (r = 0.65; p < 0.005). We observed that

  2. A High Resolution/Accurate Mass (HRAM) Data-Dependent MS3 Neutral Loss Screening, Classification, and Relative Quantitation Methodology for Carbonyl Compounds in Saliva

    NASA Astrophysics Data System (ADS)

    Dator, Romel; Carrà, Andrea; Maertens, Laura; Guidolin, Valeria; Villalta, Peter W.; Balbo, Silvia

    2017-04-01

    Reactive carbonyl compounds (RCCs) are ubiquitous in the environment and are generated endogenously as a result of various physiological and pathological processes. These compounds can react with biological molecules inducing deleterious processes believed to be at the basis of their toxic effects. Several of these compounds are implicated in neurotoxic processes, aging disorders, and cancer. Therefore, a method characterizing exposures to these chemicals will provide insights into how they may influence overall health and contribute to disease pathogenesis. Here, we have developed a high resolution accurate mass (HRAM) screening strategy allowing simultaneous identification and relative quantitation of DNPH-derivatized carbonyls in human biological fluids. The screening strategy involves the diagnostic neutral loss of hydroxyl radical triggering MS3 fragmentation, which is only observed in positive ionization mode of DNPH-derivatized carbonyls. Unique fragmentation pathways were used to develop a classification scheme for characterizing known and unanticipated/unknown carbonyl compounds present in saliva. Furthermore, a relative quantitation strategy was implemented to assess variations in the levels of carbonyl compounds before and after exposure using deuterated d 3 -DNPH. This relative quantitation method was tested on human samples before and after exposure to specific amounts of alcohol. The nano-electrospray ionization (nano-ESI) in positive mode afforded excellent sensitivity with detection limits on-column in the high-attomole levels. To the best of our knowledge, this is the first report of a method using HRAM neutral loss screening of carbonyl compounds. In addition, the method allows simultaneous characterization and relative quantitation of DNPH-derivatized compounds using nano-ESI in positive mode.

  3. Backbone-only restraints for fast determination of the protein fold: The role of paramagnetism-based restraints. Cytochrome b562 as an example

    NASA Astrophysics Data System (ADS)

    Banci, Lucia; Bertini, Ivano; Felli, Isabella C.; Sarrou, Josephine

    2005-02-01

    CH α residual dipolar couplings (Δ rdc's) were measured for the oxidized cytochrome b562 from Escherichia coli as a result of its partial self-orientation in high magnetic fields due to the anisotropy of the overall magnetic susceptibility tensor. Both the low spin iron (III) heme and the four-helix bundle fold contribute to the magnetic anisotropy tensor. CH α Δ rdc's, which span a larger range than the analogous NH values (already available in the literature) sample large space variations at variance with NH Δ rdc's, which are largely isooriented within α helices. The whole structure is now significantly refined with the chemical shift index and CH α Δ rdc's. The latter are particularly useful also in defining the molecular magnetic anisotropy parameters. It is shown here that the backbone folding can be conveniently and accurately determined using backbone restraints only, which include NOEs, hydrogen bonds, residual dipolar couplings, pseudocontact shifts, and chemical shift index. All these restraints are easily and quickly determined from the backbone assignment. The calculated backbone structure is comparable to that obtained by using also side chain restraint. Furthermore, the structure obtained with backbone only restraints is, in its whole, very similar to that obtained with the complete set of restraints. The paramagnetism based restraints are shown to be absolutely relevant, especially for Δ rdc's.

  4. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, George A.; Nelson, David A.; Molton, Peter M.

    1992-01-01

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium.

  5. Bracing the Infantry’s Backbone for 21st Century Operations

    DTIC Science & Technology

    2010-04-27

    TERMS Strategic Corporal, NCO Training and Education, Enlisted Retention. 16 . SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER ABSTRACT OF...Demographics and Why We Must Change .......... 9 Building the Backbone One Vertebrae at a Time: Fixing NCO Training and Education .. 16 Don’t Let a Good Thing...scorn of nearly everything on earth. .... They were the Leathernecks, the Old Timers: collected from ship’s guards and shore stations all over the

  6. Effects of counterion size and backbone rigidity on the dynamics of ionic polymer melts and glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yao; Bocharova, Vera; Ma, Mengze

    Backbone rigidity, counterion size and the static dielectric constant affect the glass transition temperature, segmental relaxation time and decoupling between counterion and segmental dynamics in significant manners.

  7. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    NASA Astrophysics Data System (ADS)

    Qing, Yuchang; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2010-02-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  8. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine: An anticancer agent targeting hypoxic cells

    PubMed Central

    Seow, Helen A.; Penketh, Philip G.; Shyam, Krishnamurthy; Rockwell, Sara; Sartorelli, Alan C.

    2005-01-01

    To target malignant cells residing in hypoxic regions of solid tumors, we have designed and synthesized prodrugs generating the cytotoxic alkylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) after bioreductive activation. We postulate that one of these agents, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119), requires enzymatic nitro reduction to produce 90CE, whereas another agent, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(4-nitrobenzyloxy)carbonyl]hydrazine (PNBC), can also be activated by nucleophilic attack by thiols such as glutathione (GSH)/GST. We demonstrated that these agents selectively kill hypoxic EMT6 mouse mammary carcinoma and CHO cells. In hypoxia, 50 μM KS119 produced 5 logs of kill of EMT6 cells without discernable cytotoxicity in air; similar effects were observed with CHO cells. PNBC was less efficacious against hypoxic tumor cells and also had some toxicity to aerobic cells, presumably because of GST/thiol activation, making PNBC less interesting as a selective hypoxic-cell cytotoxin. BALB/c mice with established EMT6 solid tumors were used to demonstrate that KS119 could reach and kill hypoxic cells in solid tumors. To gain information on bioreductive enzymes involved in the activation of KS119, cytotoxicity was measured in CHO cell lines overexpressing NADH:cytochrome b5 reductase (NBR), NADPH:cytochrome P450 reductase (NPR), or NAD(P)H: quinone oxidoreductase 1 (NQO1). Increased cytotoxicity occurred in cells overexpressing NBR and NPR, whereas overexpressed NQO1 had no effect. These findings were supported by enzymatic studies using purified NPR and xanthine oxidase to activate KS119. KS119 has significant potential as a hypoxia-selective tumor-cell cytotoxin and is unlikely to cause major toxicity to well oxygenated normal tissues. PMID:15964988

  9. Detection of innersphere interactions between magnesium hydrate and the phosphate backbone of the HDV ribozyme using Raman crystallography.

    PubMed

    Gong, Bo; Chen, Yuanyuan; Christian, Eric L; Chen, Jui-Hui; Chase, Elaine; Chadalavada, Durga M; Yajima, Rieko; Golden, Barbara L; Bevilacqua, Philip C; Carey, Paul R

    2008-07-30

    A Raman microscope and Raman difference spectroscopy are used to detect the vibrational signature of RNA-bound magnesium hydrate in crystals of hepatitis delta virus (HDV) ribozyme and to follow the effects of magnesium hydrate binding to the nonbridging phosphate oxygens in the phosphodiester backbone. There is a correlation between the Raman intensity of the innersphere magnesium hydrate signature peak, near 322 cm-1, and the intensity of the PO2- symmetric stretch, near 1100 cm-1, perturbed by magnesium binding, demonstrating direct observation of -PO2-...Mg2+(H2O)x innersphere complexes. The complexes may be pentahydrates (x = 5) and tetrahydrates (x = 4). The assignment of the Raman feature near 322 cm-1 to a magnesium hydrate species is confirmed by isotope shifts observed in D2O and H218O that are semiquantitatively reproduced by calculations. The standardized intensity changes in the 1100 cm-1 PO2- feature seen upon magnesium hydrate binding indicates that there are approximately 5 innersphere Mg2+...-O2P contacts per HDV molecule when the crystal is exposed to a solution containing 20 mM magnesium.

  10. Directed-Backbone Dissociation Following Bond-Specific Carbon-Sulfur UVPD at 213 nm

    NASA Astrophysics Data System (ADS)

    Talbert, Lance E.; Julian, Ryan R.

    2018-04-01

    Ultraviolet photodissociation or UVPD is an increasingly popular option for tandem-mass spectrometry experiments. UVPD can be carried out at many wavelengths, and it is important to understand how the results will be impacted by this choice. Here, we explore the utility of 213 nm photons for initiating bond-selective fragmentation. It is found that bonds previously determined to be labile at 266 nm, including carbon-iodine and sulfur-sulfur bonds, can also be cleaved with high selectivity at 213 nm. In addition, many carbon-sulfur bonds that are not subject to direct dissociation at 266 nm can be selectively fragmented at 213 nm. This capability can be used to site-specifically create alaninyl radicals that direct backbone dissociation at the radical site, creating diagnostic d-ions. Furthermore, the additional carbon-sulfur bond fragmentation capability leads to signature triplets for fragmentation of disulfide bonds. Absorption of amide bonds can enhance dissociation of nearby labile carbon-sulfur bonds and can be used for stochastic backbone fragmentation typical of UVPD experiments at shorter wavelengths. Several potential applications of the bond-selective fragmentation chemistry observed at 213 nm are discussed. [Figure not available: see fulltext.

  11. The mechanism of epoxide carbonylation by [Lewis Acid]+[Co(CO)4]- catalysts.

    PubMed

    Church, Tamara L; Getzler, Yutan D Y L; Coates, Geoffrey W

    2006-08-09

    A detailed mechanistic investigation of epoxide carbonylation by the catalyst [(salph)Al(THF)2]+ [Co(CO)4]- (1, salph = N,N'-o-phenylenebis(3,5-di-tert-butylsalicylideneimine), THF = tetrahydrofuran) is reported. When the carbonylation of 1,2-epoxybutane (EB) to beta-valerolactone is performed in 1,2-dimethoxyethane solution, the reaction rate is independent of the epoxide concentration and the carbon monoxide pressure but first order in 1. The rate of lactone formation varies considerably in different solvents and depends primarily on the coordinating ability of the solvent. In mixtures of THF and cis/trans-2,5-dimethyltetrahydrofuran, the reaction is first order in THF. From spectroscopic and kinetic data, the catalyst resting state was assigned to be the neutral (beta-aluminoxy)acylcobalt species (salph)AlOCH(Et)CH2COCo(CO)4 (3a), which was successfully trapped with isocyanates. As the formation of 3a from EB, CO, and 1 is rapid, lactone ring closing is rate-determining. The favorable impact of donating solvents was attributed to the necessity of stabilizing the aluminum cation formed upon generation of the lactone.

  12. A conceptual DFT study of the molecular properties of glycating carbonyl compounds.

    PubMed

    Frau, Juan; Glossman-Mitnik, Daniel

    2017-01-01

    Several glycating carbonyl compounds have been studied by resorting to the latest Minnesota family of density functional with the objective of determinating their molecular properties. In particular, the chemical reactivity descriptors that arise from conceptual density functional theory and chemical reactivity theory have been calculated through a [Formula: see text]SCF protocol. The validity of the KID (Koopmans' in DFT) procedure has been checked by comparing the reactivity descriptors obtained from the values of the HOMO and LUMO with those calculated through vertical energy values. The reactivity sites have been determined by means of the calculation of the Fukui function indices, the condensed dual descriptor [Formula: see text] and the electrophilic and nucleophilic Parr functions. The glycating power of the studied compounds have been compared with the same property for simple carbohydrates.Graphical abstractSeveral glycating carbonyl compounds have been studied by resorting to the latest Minnesota family of density functional with the objective of determinating their molecular properties, the chemical reactivity descriptors and the validity of the KID (Koopmans' in DFT) procedure.

  13. Simultaneous determination of gaseous and particulate carbonyls in air by coupling micellar electrokinetic capillary chromatography with molecular imprinting solid-phase extraction.

    PubMed

    Sun, Hui; Lai, Jia-Ping; Fung, Ying Sing

    2014-09-05

    A novel method coupling molecular imprinting solid-phase extraction (MISPE) and micellar electrokinetic capillary chromatography (MEKC) was developed to enable the hourly determination of low level of ambient carbonyls, and study their partition between gaseous phase and particulate phase. With 2,4-dinitroaniline (DNAN) as dummy imprinting template, the unreacted 2,4-Dinitrophenylhydrazine (DNPH) in sampling solution could be removed effectively using MISPE, and an average recovery of 97±5.3% (n=5) for the carbonyl-DNPH derivatives was achieved. Owing to the high enrichment due to sample clean-up, and the improvement of MEKC separation efficiency, many low abundant carbonyls could be detected by hourly in the field study. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Iron Dextran treatment does not induce serum protein carbonyls in the newborn pig

    USDA-ARS?s Scientific Manuscript database

    Oxidation of serum proteins can lead to carbonyl formation which alters their function and is often associated with stress-related diseases. Since it is recommended that all pigs reared in modern production facilities be given supplemental iron at birth to prevent anemia, and metals can catalyze th...

  15. Polyimides containing carbonyl and ether connecting groups - II

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Havens, S. J.

    1989-01-01

    In a study of polyimides containing carbonyl and ether connecting groups between aromatic rings, several new polyimides were prepared and characterized. A few of these polymers were semicrystalline. Glass transition temperatures ranged from 164 to 258 C, and crystalline melt temperatures were observed between 350 and 424 C. The semicrystalline polyimide from the reaction of 3.3',4,4'-benzophenonetetracarboxylic dianhydride and 1,3-bis(4-aminophenoxy-4'-benzoyl)benzene provided transparent orange films with excellent tensile properties, exceptional resistance to solvents and strong base, and high thermooxidative stability. In addition, this polyimide provided excellent adhesive strength for joining titanium (6Al-4V) to titanium.

  16. Effect of Backbone Design on Hybridization Thermodynamics of Oligo-nucleic Acids: A Coarse-Grained Molecular Dynamics Simulation Study

    NASA Astrophysics Data System (ADS)

    Ghobadi, Ahmadreza F.; Jayaraman, Arthi

    DNA hybridization is the basis of various bio-nano technologies, such as DNA origami and assembly of DNA-functionalized nanoparticles. A hybridized double stranded (ds) DNA is formed when complementary nucleobases on hybridizing strands exhibit specific and directional hydrogen bonds through canonical Watson-Crick base-pairing interactions. In recent years, the need for cheaper alternatives and significant synthetic advances have driven design of DNA mimics with new backbone chemistries. However, a fundamental understanding of how these backbone modifications in the oligo-nucleic acids impact the hybridization and melting behavior of the duplex is still lacking. In this talk, we present our recent findings on impact of varying backbone chemistry on hybridization of oligo-nucleic acid duplexes. We use coarse-grained molecular dynamics simulations to isolate the effect of strand flexibility, electrostatic interactions and nucleobase spacing on the melting curves for duplexes with various strand sequences and concentrations. Since conjugation of oligo-nucleic acids with polymers serve as building blocks for thermo-responsive polymer networks and gels, we also present the effect of such conjugation on hybridization thermodynamics and polymer conformation.

  17. Human aldo-keto reductases 1B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds.

    PubMed

    Shen, Yi; Zhong, Linlin; Johnson, Stephen; Cao, Deliang

    2011-05-30

    Aldo-keto reductase family 1 member B1 (AKR1B1, 1B1 in brief) and aldo-keto reductase family 1 member B10 (AKR1B10, 1B10 in brief) are two proteins with high similarities in their amino acid sequences, stereo structures, and substrate specificity. However, these two proteins exhibit distinct tissue distributions; 1B10 is primarily expressed in the gastrointestinal tract and adrenal gland, whereas 1B1 is ubiquitously present in all tissues/organs, suggesting their difference in biological functions. This study evaluated in parallel the enzyme activity of 1B1 and 1B10 toward alpha, beta-unsaturated carbonyl compounds with cellular and dietary origins, including acrolein, crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, and trans-2,4-hexadienal. Our results showed that 1B10 had much better enzyme activity and turnover rates toward these chemicals than 1B1. By detecting the enzymatic products using high-performance liquid chromatography, we measured their activity to carbonyl compounds at low concentrations. Our data showed that 1B10 efficiently reduced the tested carbonyl compounds at physiological levels, but 1B1 was less effective. Ectopically expressed 1B10 in 293T cells effectively eliminated 4-hydroxynonenal at 5 μM by reducing to 1,4-dihydroxynonene, whereas endogenously expressed 1B1 did not. The 1B1 and 1B10 both showed enzyme activity to glutathione-conjugated carbonyl compounds, but 1B1 appeared more active in general. Together our data suggests that 1B10 is more effectual in eliminating free electrophilic carbonyl compounds, but 1B1 seems more important in the further detoxification of glutathione-conjugated carbonyl compounds. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. 1-Ethyl-3-methylimidazolium acetate as a highly efficient organocatalyst for cyanosilylation of carbonyl compounds with trimethylsilyl cyanide

    PubMed Central

    Ullah, Bakhtar; Chen, Jingwen; Zhang, Zhiguo; Xing, Huabin; Yang, Qiwei; Bao, Zongbi; Ren, Qilong

    2017-01-01

    1-Ethyl-3-methylimidazolium acetate is introduced as a robust organocatalyst for solvent-free cyanosilylation of carbonyl compounds with trimethylsilyl cyanide (TMSCN). The catalyst loading can be reduced to as low as 0.1–0.0001 mol % under mild reaction conditions, giving considerably high TOF values from 10,843 h−1 to 10,602,410 h−1 in the field of organocatalyzed transformations. The present protocol not only tolerates with extensive carbonyl compounds but also provides somewhat insight into the mechanism of ionic liquids (ILs)-catalyzed reactions. PMID:28198462

  19. Protein carbonyl: An oxidative stress marker in gingival crevicular fluid in healthy, gingivitis, and chronic periodontitis subjects

    PubMed Central

    Pradeep, Avani R.; Ramchandraprasad, M. V.; Bajaj, Pavan; Rao, Nishanth S.; Agarwal, Esha

    2013-01-01

    Background: A defined role for reactive oxygen species (ROS) in the tissue destruction that characterizes periodontitis has been described. Protein carbonyl (PC) is the most widely used biomarker for oxidative damage to proteins, and reflects cellular damage induced by multiple forms of ROS. The purpose of this study is to determine the presence of PC in gingival crevicular fluid (GCF) in healthy, gingivitis, and chronic periodontitis (CP) subjects and to find an association, if any. Materials and Methods: A total number of 75 subjects (38 males and 37 females) were selected based on their clinical parameters into three groups: Group 1 (25 healthy subjects), Group 2 (25 gingivitis subjects), and Group 3 (25 CP subjects). GCF samples were collected to estimate the levels of PC. Results: The PC concentration in GCF was highest in subjects with CP as compared to gingivitis and healthy subjects and a significant association was observed between GCF PC levels and all periodontal parameters. Conclusion: There was an increase in PC levels in GCF as the disease process progressed from healthy to gingivitis and CP, suggesting a role for increased oxidative stress in CP. PMID:23853448

  20. The backbone N-(4-azidobutyl) linker for the preparation of peptide chimera.

    PubMed

    Fernández-Llamazares, Ana I; García, Jesús; Adan, Jaume; Meunier, David; Mitjans, Francesc; Spengler, Jan; Albericio, Fernando

    2013-09-06

    A robust synthetic strategy for the introduction of the N-(4-azidobutyl) linker into peptides using standard SPPS techniques is described. Based on the example of Cilengitide it is shown that the N-(4-azidobutyl) group exerts similar conformational restraints as a backbone N-Me group and allows conjugation of a desired molecule either via click chemistry or-after azide reduction-via acylation or reductive alkylation.

  1. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.

    PubMed

    Dudev, Todor; Lin, Yen-lin; Dudev, Minko; Lim, Carmay

    2003-03-12

    The role of the second shell in the process of metal binding and selectivity in metalloproteins has been elucidated by combining Protein Data Bank (PDB) surveys of Mg, Mn, Ca, and Zn binding sites with density functional theory/continuum dielectric methods (DFT/CDM). Peptide backbone groups were found to be the most common second-shell ligand in Mg, Mn, Ca, and Zn binding sites, followed (in decreasing order) by Asp/Glu, Lys/Arg, Asn/Gln, and Ser/Thr side chains. Aromatic oxygen- or nitrogen-containing side chains (Tyr, His, and Trp) and sulfur-containing side chains (Cys and Met) are seldom found in the second coordination layer. The backbone and Asn/Gln side chain are ubiquitous in the metal second coordination layer as their carbonyl oxygen and amide hydrogen can act as a hydrogen-bond acceptor and donor, respectively, and can therefore partner practically every first-shell ligand. The second most common outer-shell ligand, Asp/Glu, predominantly hydrogen bonds to a metal-bound water or Zn-bound histidine and polarizes the H-O or H-N bond. In certain cases, a second-shell Asp/Glu could affect the protonation state of the metal ligand. It could also energetically stabilize a positively charged metal complex more than a neutral ligand such as the backbone and Asn/Gln side chain. As for the first shell, the second shell is predicted to contribute to the metal selectivity of the binding site by discriminating between metal cations of different ionic radii and coordination geometries. The first-shell-second-shell interaction energies decay rapidly with increasing solvent exposure of the metal binding site. They are less favorable but are of the same order of magnitude as compared to the respective metal-first-shell interaction energies. Altogether, the results indicate that the structure and properties of the second shell are dictated by those of the first layer. The outer shell is apparently designed to stabilize/protect the inner-shell and complement/enhance its

  2. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone.

    PubMed

    Doucet, Christine M; Esmery, Nina; de Saint-Jean, Maud; Antonny, Bruno

    2015-01-01

    Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests

  3. Fe(OTf)3-catalysed Friedel–Crafts reaction of benzenoid arenes with α,β-unsaturated carbonyl compounds: easy access to 1,1-diarylalkanes

    PubMed Central

    Bhattacharya, Aditya; Shukla, Pushpendra Mani

    2017-01-01

    A simple and efficient method for the synthesis of 1,1-diarylalkanes via the Friedel–Crafts-type alkylation reaction of electron-rich arenes with cinnamic acid ester derivatives or chalcones is reported. Iron triflate has been found to be the best catalyst for the Friedel–Crafts-type alkylation reaction with α,β-unsaturated carbonyl compounds. This reaction afforded β,β-diaryl carbonyl compounds in good yields (65–93%) and with excellent regioselectivities. Remarkably, this method is also compatible with a variety of indoles to provide 3-indolyl-aryl carbonyl compounds in excellent yields. Great efforts have been made to deduce a plausible reaction mechanism based on isotopic labelling experiments. PMID:29134078

  4. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  5. Small molecule-mediated duplex formation of nucleic acids with 'incompatible' backbones.

    PubMed

    Cafferty, Brian J; Musetti, Caterina; Kim, Keunsoo; Horowitz, Eric D; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-04-07

    Proflavine, a known intercalator of DNA and RNA, promotes duplex formation by nucleic acids with natural and non-natural backbones that otherwise form duplexes with low thermal stability, and even some that show no sign of duplex formation in the absence of proflavine. These findings demonstrate the potential for intercalators to be used as cofactors for the assembly of rationally designed nucleic acid structures, and could provide fundamental insights regarding intercalation of natural nucleic acid duplexes.

  6. Protein and cell wall polysaccharide carbonyl determination by a neutral pH 2,4-dinitrophenylhydrazine-based photometric assay.

    PubMed

    Georgiou, Christos D; Zisimopoulos, Dimitrios; Argyropoulou, Vasiliki; Kalaitzopoulou, Electra; Salachas, George; Grune, Tilman

    2018-04-10

    A new 2,4-dinitrophenylhydrazine (DNPH)-based photometric assay is developed for the quantification of carbonyls in protein samples from any biological source by protein carbonyl-DNPH hydrazone formation at acidic pH in the presence of denaturing urea, and subsequent hydrazone solubilization in the presence of SDS and stabilization from acid hydrolysis at pH 7.0. At this neutral (ntr) pH, interfering unreacted DNPH is uncharged and its thus increased hydrophobicity permits its 100% effective removal from the solubilizate with ethyl acetate/hexane wash. The ntrDNPH assay is more reliable and sensitive than the standard (std) DNPH photometric assay because it eliminates its main limitations: (i) interfering unreacted DNPH (pKa 1.55) that is nonspecifically bound to the TCA (pKa 0.7)-protein pellet is not effectively removed after wash with EtOH: ethyl acetate because it is positively charged, (ii) acid (TCA-induced) hydrolysis of the protein carbonyl-DNPH hydrazone, (iii) sample protein concentration re-determination, (iv) loss of sample acid (TCA)-soluble proteins, (v) DNA interference, and (vi) requires high protein quantity samples (≥ 1 mg). Considering ntrDNPH assay's very low protein limit (1 µg), its cumulative and functional sensitivities are 2600- and 2000-fold higher than those of the stdDNPH assay, respectively. The present study elucidates the DNA interference mechanism on the stdDNPH assay, and also develops a standardized protocol for sample protein treatment and fractionation (into cytoplasmic/aqueous, membrane/lipid-bound, and histone/DNA-bound proteins; see Supplement section V) in order to ensure reproducible carbonyl determination on defined cell protein fractions, and to eliminate assay interference from protein samples containing (i) Cys sulfenic acid groups (via their neutralization with dithiothreitol), and (ii) DNA (via its removal by streptomycin sulfate precipitation). Lastly, the ntrDNPH assay determines carbonyl groups on cell wall

  7. Copper(I) Complexes of N-(2-{[(2E)-2-(4-Nitrobenzylidenyl)Hydrazinyl]Carbonyl}Phenyl)Benzamide and Triphenylphosphine: Synthesis, Characterization and Luminescence Properties.

    PubMed

    Chavan, S S; Pawal, S B; More, M S; Willis, A C

    2016-11-01

    Copper(I) complexes of the formula [Cu(L)(PPh 3 ) 2 ]X (1-4) (X = Cl(1), ClO 4 (2), BF 4 (3) and PF 6 (4)) [where L = N-(2-{[(2E)-2-(4-nitrobenzylidenyl)hydrazinyl]carbonyl}phenyl)benzamide; PPh 3  = triphenylphosphine] have been prepared by the condensation of N-[2-(hydrazinocarbonyl)phenyl]benzamide with 4-nitrobenzaldehyde followed by the reaction with CuCl, [Cu(MeCN) 4 ]ClO 4 , [Cu(MeCN) 4 ]BF 4 and [Cu(MeCN) 4 ]PF 6 in presence of triphenylphosphine as a coligand. Complexes 1-4 were then characterized by elemental analyses, FTIR, UV-visible and 1 H NMR spectroscopy. Mononuclear copper(I) complexes 1-4 were formed with L in its keto form by involvement of azomethine nitrogen and the carbonyl oxygen along with two PPh 3 groups. A single crystal X-ray diffraction study of the representative complex [(Cu(L)(PPh 3 ) 2 ]CIO 4 (2) reveals a distorted tetrahedral geometry around Cu(I). Crystal data of (2): space group = C2/c, a = 42.8596 (9) Å, b = 14.6207 (3) Å, c = 36.4643 (7) Å, V = 20,653.7 (7) Å 3 , Z = 16. Complexes 1-4 exhibit quasireversible redox behaviour corresponding to a Cu(I)/Cu(II) couple. All complexes show blue-green emission as a result of fluorescence from an intra-ligand charge transition (ILCT), ligand to ligand charge transfer transition (LLCT) or mixture of both. Significant increase in size of the counter anion shows marked effect on quantum efficiency and lifetime of the complexes in solution.

  8. Synthesis of an Epoxide Carbonylation Catalyst: Exploration of Contemporary Chemistry for Advanced Undergraduates

    ERIC Educational Resources Information Center

    Getzler, Yutan D. Y. L.; Schmidt, Joseph A. R.; Coates, Geoffrey W.

    2005-01-01

    A class of highly active, well-defined compounds for the catalytic carbonylation of epoxides and aziridines to beta-lactones and beta-lactams are introduced. The synthesis of one of the catalysts involves a simple imine condensation to form the ligand followed by air-sensitive metalation and salt metathesis steps.

  9. Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity.

    PubMed

    Ollikainen, Noah; de Jong, René M; Kortemme, Tanja

    2015-01-01

    Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein-ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art "fixed backbone" design methods perform poorly on these tests, we develop a new "coupled moves" design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein-ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.

  10. Mixed pyruvate labeling enables backbone resonance assignment of large proteins using a single experiment.

    PubMed

    Robson, Scott A; Takeuchi, Koh; Boeszoermenyi, Andras; Coote, Paul W; Dubey, Abhinav; Hyberts, Sven; Wagner, Gerhard; Arthanari, Haribabu

    2018-01-24

    Backbone resonance assignment is a critical first step in the investigation of proteins by NMR. This is traditionally achieved with a standard set of experiments, most of which are not optimal for large proteins. Of these, HNCA is the most sensitive experiment that provides sequential correlations. However, this experiment suffers from chemical shift degeneracy problems during the assignment procedure. We present a strategy that increases the effective resolution of HNCA and enables near-complete resonance assignment using this single HNCA experiment. We utilize a combination of 2- 13 C and 3- 13 C pyruvate as the carbon source for isotope labeling, which suppresses the one bond ( 1 J αβ ) coupling providing enhanced resolution for the Cα resonance and amino acid-specific peak shapes that arise from the residual coupling. Using this approach, we can obtain near-complete (>85%) backbone resonance assignment of a 42 kDa protein using a single HNCA experiment.

  11. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    PubMed Central

    Shen, Yang; Bax, Ad

    2013-01-01

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥ 90% fraction of the residues, with an error rate smaller than ca 3.5%, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (φ,ψ) torsion angles of ca 12°. TALOS-N also reports sidechain χ1 rotameric states for about 50% of the residues, and a consistency with reference structures of 89%. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts. PMID:23728592

  12. iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC.

    PubMed

    Jia, Jianhua; Liu, Zi; Xiao, Xuan; Liu, Bingxiang; Chou, Kuo-Chen

    2016-06-07

    Carbonylation is a posttranslational modification (PTM or PTLM), where a carbonyl group is added to lysine (K), proline (P), arginine (R), and threonine (T) residue of a protein molecule. Carbonylation plays an important role in orchestrating various biological processes but it is also associated with many diseases such as diabetes, chronic lung disease, Parkinson's disease, Alzheimer's disease, chronic renal failure, and sepsis. Therefore, from the angles of both basic research and drug development, we are facing a challenging problem: for an uncharacterized protein sequence containing many residues of K, P, R, or T, which ones can be carbonylated, and which ones cannot? To address this problem, we have developed a predictor called iCar-PseCp by incorporating the sequence-coupled information into the general pseudo amino acid composition, and balancing out skewed training dataset by Monte Carlo sampling to expand positive subset. Rigorous target cross-validations on a same set of carbonylation-known proteins indicated that the new predictor remarkably outperformed its existing counterparts. For the convenience of most experimental scientists, a user-friendly web-server for iCar-PseCp has been established at http://www.jci-bioinfo.cn/iCar-PseCp, by which users can easily obtain their desired results without the need to go through the complicated mathematical equations involved. It has not escaped our notice that the formulation and approach presented here can also be used to analyze many other problems in computational proteomics.

  13. Manganese-Catalyzed Carbonylative Annulations for Redox-Neutral Late-Stage Diversification.

    PubMed

    Liang, Yu-Feng; Steinbock, Ralf; Münch, Annika; Stalke, Dietmar; Ackermann, Lutz

    2018-05-04

    An inexpensive, nontoxic manganese catalyst enabled unprecedented redox-neutral carbonylative annulations under ambient pressure. The manganese catalyst outperformed all other typically used base and precious-metal catalysts. The outstanding versatility of the manganese catalysis manifold was reflected by ample substrate scope, setting the stage for effective late-stage manipulations under racemization-free conditions of a wealth of marketed drugs and natural products, including alkaloids, amino acids, steroids, and carbohydrates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High microwave attenuation performance of planar carbonyl iron particles with orientation of shape anisotropy field

    NASA Astrophysics Data System (ADS)

    Guo, Cheng; Yang, Zhihong; Shen, Shile; Liang, Juan; Xu, Guoyue

    2018-05-01

    Planar anisotropy carbonyl iron (PACI) particles were prepared from commercial spherical carbonyl iron particles through a high performance ball-milling technique. The paraffin composites with orientation of shape anisotropy field for these PACI particles were obtained by applying an external magnetic field during the fabrication process. The frequency-dependent complex permeability values of these prepared paraffin composites have been investigated in the frequency range of 1-18 GHz. The results demonstrate that the orientation of shape anisotropy field for these PACI particles can effectively increase the complex permeability and decrease the complex permittivity values. Benefit from the enhancement in the complex permeability and reduction in the complex permittivity, the better impedance matching condition can be obtained and thus the good microwave absorption performance can be achieved for the samples with enough magnetic field orientation time.

  15. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs

    PubMed Central

    Mutisya, Daniel; Selvam, Chelliah; Lunstad, Benjamin D.; Pallan, Pradeep S.; Haas, Amanda; Leake, Devin; Egli, Martin; Rozners, Eriks

    2014-01-01

    RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3′-CH2-CO-NH-5′ amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P–OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5′-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications. PMID:24813446

  16. HYDROGENATION OF UNSATURATED CARBONYLS IN SCCO2 AS REACTION MEDIUM OVER NI-SUPPORTED CATALYSTS

    EPA Science Inventory

    Selective hydrogenation of a, a unsaturated carbonyls where molecules containing C=C and C=O double bonds has both practical importance for fine chemicals industry and theoretical significance. Various studies are reported to enhance the selective hydrogenation of C=O over group...

  17. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  18. Enantioselective Desymmetrization via Carbonyl-Directed Catalytic Asymmetric Hydroboration and Suzuki-Miyaura Cross-Coupling

    PubMed Central

    Hoang, Gia L.; Yang, Zhao-Di; Smith, Sean M.; Pal, Rhitankar; Miska, Judy L.; Pérez, Damaris E.; Pelter, Libbie S. W.; Zeng, Xiao Cheng; Takacs, James M.

    2015-01-01

    The rhodium-catalyzed enantioselective desymmetrization of symmetric γ,δ–unsaturated amides via carbonyl-directed catalytic asymmetric hydroboration (directed CAHB) affords chiral secondary organoboronates with up to 98% ee. The chiral γ–borylated products undergo palladium-catalyzed Suzuki-Miyaura cross-coupling via the trifluoroborate salt with stereoretention. PMID:25642639

  19. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.

    PubMed

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-11-01

    The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations. © 2015 Wiley Periodicals, Inc.

  20. Experimental determination of torsion angles in the polypeptide backbone of the gramicidin A channel by solid state nuclear magnetic resonance.

    PubMed

    Teng, Q; Nicholson, L K; Cross, T A

    1991-04-05

    An analytical method for the determination of torsion angles from solid state 15N nuclear magnetic resonance (n.m.r.) spectroscopic data is demonstrated. Advantage is taken of the 15N-1H and 15N-13C dipolar interactions as well as the 15N chemical shift interaction in oriented samples. The membrane-bound channel conformation of gramicidin A has eluded an atomic resolution structure determination by more traditional approaches. Here, the torsion angles for the Ala3 site are determined by obtaining the n.m.r. data for both the Gly2-Ala3 and Ala3-Leu4 peptide linkages. Complete utilization of the orientational constraints derived from these orientation-dependent nuclear spin interactions in restricting the conformational space is most effectively achieved by utilizing spherical trigonometry. Two possible sets of torsion angles for the Ala3 site are obtained (phi, psi = -129 degrees, 153 degrees and -129 degrees, 122 degrees), both of which are consistent with a right-handed beta-helix. Other functional and computational evidence strongly supports the set for which the carbonyl oxygen atom of the Ala3-Leu4 linkage is rotated into the channel lumen.

  1. Protein Carbonylation in Human Smokers and Mammalian Models of Exposure to Cigarette Smoke: Focus on Redox Proteomic Studies.

    PubMed

    Dalle-Donne, Isabella; Colombo, Graziano; Gornati, Rosalba; Garavaglia, Maria L; Portinaro, Nicola; Giustarini, Daniela; Bernardini, Giovanni; Rossi, Ranieri; Milzani, Aldo

    2017-03-10

    Oxidative stress is one mechanism whereby tobacco smoking affects human health, as reflected by increased levels of several biomarkers of oxidative stress/damage isolated from tissues and biological fluids of active and passive smokers. Many investigations of cigarette smoke (CS)-induced oxidative stress/damage have been carried out in mammalian animal and cellular models of exposure to CS. Animal models allow the investigation of many parameters that are similar to those measured in human smokers. In vitro cell models may provide new information on molecular and functional differences between cells of smokers and nonsmokers. Recent Advances: Over the past decade or so, a growing number of researches highlighted that CS induces protein carbonylation in different tissues and body fluids of smokers as well as in in vivo and in vitro models of exposure to CS. We review recent findings on protein carbonylation in smokers and models thereof, focusing on redox proteomic studies. We also discuss the relevance and limitations of these models of exposure to CS and critically assess the congruence between the smoker's condition and laboratory models. The identification of protein targets is crucial for understanding the mechanism(s) by which carbonylated proteins accumulate and potentially affect cellular functions. Recent progress in redox proteomics allows the enrichment, identification, and characterization of specific oxidative protein modifications, including carbonylation. Therefore, redox proteomics can be a powerful tool to gain new insights into the onset and/or progression of CS-related diseases and to develop strategies to prevent and/or treat them. Antioxid. Redox Signal. 26, 406-426.

  2. Sulfur isotopic analysis of carbonyl sulfide and its application for biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Hattori, Shohei; Kamezaki, Kazuki; Ogawa, Takahiro; Toyoda, Sakae; Katayama, Yoko; Yoshida, Naohiro

    2016-04-01

    Carbonyl sulfide (OCS or COS) is the most abundant gas containing sulfur in the atmosphere, with an average mixing ratio of 500 p.p.t.v. in the troposphere. OCS is suggested as a sulfur source of the stratospheric sulfate aerosols (SSA) which plays an important role in Earth's radiation budget and ozone depletion. Therefore, OCS budget should be validated for prediction of climate change, but the global OCS budget is imbalance. Recently we developed a promising new analytical method for measuring the stable sulfur isotopic compositions of OCS using nanomole level samples: the direct isotopic analytical technique of on-line gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions S+ (Hattori et al., 2015). The first measurement of the δ34S value for atmospheric OCS coupled with isotopic fractionation for OCS sink reactions in the stratosphere (Hattori et al., 2011; Schmidt et al., 2012; Hattori et al., 2012) explains the reported δ34S value for background stratospheric sulfate, suggesting that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols. This new method measuring δ34S values of OCS can be used to investigate OCS sources and sinks in the troposphere to better understand its cycle. It is known that some microorganisms in soil can degrade OCS, but the mechanism and the contribution to the OCS in the air are still uncertain. In order to determine sulfur isotopic enrichment factor of OCS during degradation via microorganisms, incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia and Cupriavidus, isolated from natural soil environments (Kato et al., 2008). As a result, sulfur isotope ratios of OCS were increased during degradation of OCS, indicating that reaction for OC32S is faster than that for OC33S and OC34S. OCS degradation via microorganisms is not mass-independent fractionation (MIF) process, suggesting that this

  3. Personal exposure and health risk assessment of carbonyls in family cars and public transports-a comparative study in Nanjing, China.

    PubMed

    Xu, Huaizhou; Zhang, Qin; Song, Ninghui; Guo, Min; Zhang, Shenghu; Ji, Guixiang; Shi, Lili

    2017-11-01

    To evaluate passenger health risks associated with inhalation exposure to carbonyl compounds mainly emitted from decoration materials of vehicles, we tested the carbonyl concentrations in interior air of 20 family cars, 6 metro lines, and 5 buses in the city of Nanjing. To assess non-carcinogenic health risks, we compared the data to the health guidelines of China, US Environmental Protection Agency (EPA), and Office of Environmental Health Hazard Assessment (OEHHA), respectively. To assess carcinogenic risks, we followed a standard approach proposed by the OEHHA to calculate lifetime cancer risks (LCR) of formaldehyde and acetaldehyde for various age groups. The results showed that there are formaldehyde, acetaldehyde, and acrolein concentrations in 40, 35, and 50% of family car samples exceeded the reference concentrations (RfCs) provided by Chinese guidelines (GB/T 27630-2011 and GB/T 18883-2002). Whereas, in the tested public transports, concentrations of the three carbonyls were all below the Chinese RfCs. Fifty and 90% of family cars had formaldehyde and acrolein concentrations exceeding the guidelines of OEHHA. Only one public transport sample (one bus) possesses formaldehyde and acetaldehyde concentrations above the chronic inhalation reference exposure limits (RELs). Furthermore, the assessments of carcinogenic risk of formaldehyde and acetaldehyde showed that lifetime cancer risks were higher than the limits of EPA for some family cars and public transports. In the study, buses and metros appear to be relatively clean environments, with total carbonyl concentrations that do not exceed 126 μg/m 3 . In family cars, carbonyl levels showed significant variations from 6.1 to 811 μg/m 3 that was greatly influenced by direct emissions from materials inside the vehicles. Public transports seemed to be the first choice for resident trips as compared to family cars. Graphical abstract ᅟ.

  4. Extracting the Information Backbone in Online System

    PubMed Central

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such “less can be more” feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  5. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  6. Stereocontrolled syntheses of the nemorensic acids using 6-diazoheptane-2,5-dione in carbonyl ylide cycloadditions.

    PubMed

    Hodgson, David M; Le Strat, Frédéric; Avery, Thomas D; Donohue, Andrew C; Brückl, Tobias

    2004-12-10

    Levulinic acid-derived 6-diazoheptane-2,5-dione (9) serves as a common precursor in a formal synthesis of frontalin 19, and in syntheses of cis-nemorensic acid 1, 4-hydroxy-cis-nemorensic acid 2, 3-hydroxy-cis-nemorensic acid 3, and nemorensic acid 4. The key step in these syntheses is the Rh(2)(OAc)(4)-catalyzed tandem carbonyl ylide formation-intermolecular 1,3-dipolar cycloadditions of diazodione 9 with formaldehyde, alkynes or allene, which occur with high regioselectivity. Subsequent oxidative cleavage of the ring originally derived from the cyclic carbonyl ylide intermediate provides a straightforward access to polysubstituted tetrahydrofurans, and in particular an efficient entry to the nemorensic acids. Enantioselective cycloadditions with diazodione 9, using chiral rhodium catalysts, gave cycloadducts in up to 51% ee.

  7. A combined application of thermal desorber and gas chromatography to the analysis of gaseous carbonyls with the aid of two internal standards.

    PubMed

    Kim, Ki-Hyun; Anthwal, A; Pandey, Sudhir Kumar; Kabir, Ehsanul; Sohn, Jong Ryeul

    2010-11-01

    In this study, a series of GC calibration experiments were conducted to examine the feasibility of the thermal desorption approach for the quantification of five carbonyl compounds (acetaldehyde, propionaldehyde, butyraldehyde, isovaleraldehyde, and valeraldehyde) in conjunction with two internal standard compounds. The gaseous working standards of carbonyls were calibrated with the aid of thermal desorption as a function of standard concentration and of loading volume. The detection properties were then compared against two types of external calibration data sets derived by fixed standard volume and fixed standard concentration approach. According to this comparison, the fixed standard volume-based calibration of carbonyls should be more sensitive and reliable than its fixed standard concentration counterpart. Moreover, the use of internal standard can improve the analytical reliability of aromatics and some carbonyls to a considerable extent. Our preliminary test on real samples, however, indicates that the performance of internal calibration, when tested using samples of varying dilution ranges, can be moderately different from that derivable from standard gases. It thus suggests that the reliability of calibration approaches should be examined carefully with the considerations on the interactive relationships between the compound-specific properties and the operation conditions of the instrumental setups.

  8. Polyimides with carbonyl and ether connecting groups between the aromatic rings

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1992-01-01

    New polyimides have been prepared from the reaction of aromatic dianhydrides with novel aromatic diamines containing carbonyl and ether connecting groups between the aromatic rings. Several of these polyimides are shown to be semi-crystalline as evidenced by wide angle x ray diffraction and differential scanning calorimetry. Most of the polyimides form tough solvent resistant films with high tensile properties. Several of these materials can be thermally processed to form solvent and base resistant moldings.

  9. Denuder sampling techniques for the determination of gas-phase carbonyl compounds: a comparison and characterisation of in situ and ex situ derivatisation methods.

    PubMed

    Kahnt, Ariane; Iinuma, Yoshiteru; Böge, Olaf; Mutzel, Anke; Herrmann, Hartmut

    2011-05-15

    Two denuder sampling techniques have been compared for the analysis of gaseous carbonyl compounds. One type of denuder was coated with XAD-4 resin and the other type of denuder was coated with XAD-4 and 2,4-dinitrophenylhydrazine (DNPH) to derivatise gaseous carbonyl compounds to their hydrazone forms simultaneously. A detailed protocol for the denuder coating procedure is described. The collection efficiency under dry (RH <3%) and humid conditions (RH 50%) as well as filter positive artefacts were evaluated. The XAD-4/DNPH coated denuders showed significantly less break-through potential and hence collection than the XAD-4-only coated denuders. The performance of the XAD-4/DNPH denuder was better under humid conditions with no detected break-through for hydroxyacetone, methacrolein, methylglyoxal, campholenic aldehyde and nopinone. Calibration experiments were performed in a simulation chamber and carbonyl-hydrazone concentrations determined in the extracts of both the denuder types were related to the mixing ratios of gaseous carbonyl compounds in the chamber to overcome losses and errors associating with the denuder sampling, extraction and sample preparation. The application of on-tube conversion for the XAD-4/DNPH denuders resulted in higher R(2) values than the XAD-4 denuder, ranging up to 0.991 for nopinone. The XAD-4-only coated denuders showed acceptable calibration curves only for lower vapour pressure carbonyl compounds though larger relative standard deviations (RSD) were observed. Carbonyl compounds that were formed during the oxidation of nopinone were collected using the XAD-4/DNPH denuders. The results showed that the denuder sampling device was able to provide reproducible nopinone mixing ratios that remained in the chamber after about 1h of the oxidation. One isomer of oxo-nopinones was tentatively identified from off-line HPLC/(-)ESI-TOFMS analysis. Based on the TOFMS response of the nopinone-DNPH derivative, the oxo-nopinone molar yield of 0.7

  10. Simultaneous determination of ozone and carbonyls using trans-1,2-bis(4-pyridyl)ethylene as an ozone scrubber for 2,4-dinitrophenylhydrazine-impregnated silica cartridge.

    PubMed

    Uchiyama, Shigehisa; Otsubo, Yasufumi

    2008-05-01

    A new method for the simultaneous determination of ozone and carbonyls in air using a two-bed cartridge system has been developed. Each bed consists of reagent-impregnated silica particles. The first contains trans-1,2-bis-(4-pyridyl) ethylene (BPE) while the second contains 2,4-dinitrophenylhydrazine (DNPH). Air samples are drawn through the cartridge first through the BPE and then through the DNPH. Ozone in the air sample is trapped in the first bed by the BPE-coated silica particles and produce pyridine-4-aldehyde. Airborne carbonyls pass unimpeded thorough the BPE and are trapped in the second bed by the DNPH-coated silica particles. They produce carbonyl 2,4-DNPhydrazones. DNPH and carbonyl 2,4-DNPhydrazones are not influenced by ozone because of effective trapping by the BPE. Extraction is performed in the direction reverse to air sampling. When solvent is eluted through the BEP/DNPH cartridge, excess DNPH is washed into the BPE bed where it reacted with pyridine-4-aldehyde and forms the corresponding hydrazone derivative. All of the hydrazones derived from airborne carbonyls and pyridine-4-aldehyde (derived from ozone) are completely separated and measured using high-performance liquid chromatography. An Ascentis RP-Amide column is used, and the mobile phase is 40% aqueous acetonitrile containing 2 mmol/L ammonium acetate. The use of a BPE/DNPH cartridge has made possible the simultaneous determination of ozone and carbonyls. A separate ozone scrubber is not necessary with the BPE/DNPH cartridge because the BPE portion of the sampler serves this function.

  11. Efficiency of High Molecular Weight Backbone Degradable HPMA Copolymer – Prostaglandin E1 Conjugate in Promotion of Bone Formation in Ovariectomized Rats

    PubMed Central

    Pan, Huaizhong; Sima, Monika; Miller, Scott C.; Kopečková, Pavla; Yang, Jiyuan; Kopeček, Jindřich

    2013-01-01

    Multiblock, high molecular weight, linear, backbone degradable HPMA copolymer-prostaglandin E1 (PGE1) conjugate has been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA), which contains an enzymatically degradable oligopeptide sequence flanked by two dithiobenzoate groups, followed by post-polymerization aminolysis and thiol-ene chain extension. The multiblock conjugate contains Asp8 as the bone-targeting moiety and enzymatically degradable bonds in the polymer backbone; in vivo degradation produces cleavage products that are below the renal threshold. Using an ovariectomized (OVX) rat model, the accumulation in bone and efficacy to promote bone formation was evaluated; low molecular weight conjugates served as control. The results indicated a higher accumulation in bone, greater enhancement of bone density, and higher plasma osteocalcin levels for the backbone degradable conjugate. PMID:23731780

  12. NMR Studies of Structure-Reactivity Relationships in Carbonyl Reduction: A Collaborative Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Marincean, Simona; Smith, Sheila R.; Fritz, Michael; Lee, Byung Joo; Rizk, Zeinab

    2012-01-01

    An upper-division laboratory project has been developed as a collaborative investigation of a reaction routinely taught in organic chemistry courses: the reduction of carbonyl compounds by borohydride reagents. Determination of several trends regarding structure-activity relationship was possible because each student contributed his or her results…

  13. In-situ micro-FTIR Study of Thermal Changes of Organics in Tagish Lake Meteorite: Behavior of Aliphatic Oxygenated Functions and Effects of Minerals

    NASA Technical Reports Server (NTRS)

    Kebukawa, Yoko; Nakashima, Satoru; Nakamura-Messenger, Keiko; Zolensky, Michael E.

    2007-01-01

    Systematic in-situ FTIR heating experiments of Tagish Lake meteorite grains have been performed in order to study thermal stability of chondritic organics. Some aliphatic model organic substances have also been used to elucidate effects of hydrous phyllosilicate minerals on the thermal stability of organics. The experimental results indicated that organic matter in the Tagish Lake meteorite might contain oxygenated aliphatic hydrocarbons which are thermally stable carbonyls such as ester and/or C=O in ring compounds. The presence of hydrous phyllosilicate minerals has a pronounced effect on the increase of the thermal stability of aliphatic and oxygenated functions. These oxygenated aliphatic organics in Tagish Lake can be formed during the aqueous alteration in the parent body and the formation temperature condition might be less than 200 C, based especially on the thermal stability of C-O components. The hydrous phyllosilicates might provide sites for organic globule formation and protected some organic decomposition

  14. Molecular Active Sites in Heterogeneous Ir-La/C-Catalyzed Carbonylation of Methanol to Acetates.

    PubMed

    Kwak, Ja Hun; Dagle, Robert; Tustin, Gerald C; Zoeller, Joseph R; Allard, Lawrence F; Wang, Yong

    2014-02-06

    We report that when Ir and La halides are deposited on carbon, exposure to CO spontaneously generates a discrete molecular heterobimetallic structure, containing an Ir-La covalent bond that acts as a highly active, selective, and stable heterogeneous catalyst for the carbonylation of methanol to produce acetic acid. This catalyst exhibits a very high productivity of ∼1.5 mol acetyl/mol Ir·s with >99% selectivity to acetyl (acetic acid and methyl acetate) without detectable loss in activity or selectivity for more than 1 month of continuous operation. The enhanced activity can be mechanistically rationalized by the presence of La within the ligand sphere of the discrete molecular Ir-La heterobimetallic structure, which acts as a Lewis acid to accelerate the normally rate-limiting CO insertion in Ir-catalyzed carbonylation. Similar approaches may provide opportunities for attaining molecular (single site) behavior similar to homogeneous catalysis on heterogeneous surfaces for other industrial applications.

  15. Isotope Dilution-Based Targeted and Nontargeted Carbonyl Neurosteroid/Steroid Profiling.

    PubMed

    Sharp, Sheila; Mitchell, Scott J; Vallée, Monique; Kuzmanova, Elena; Cooper, Michelle; Belelli, Delia; Lambert, Jeremy J; Huang, Jeffrey T-J

    2018-04-17

    Neurosteroids are brain-derived steroids, capable of rapidly modulating neuronal excitability in a nongenomic manner. Dysregulation of their synthesis or metabolism has been implicated in many pathological conditions. Here, we describe an isotope dilution based targeted and nontargeted (ID-TNT) profiling of carbonyl neurosteroids/steroids. The method combines stable isotope dilution, hydroxylamine derivatization, high-resolution MS scanning, and data-dependent MS/MS analysis, allowing absolute quantification of pregnenolone, progesterone, 5α-dihydroprogesterone, 3α,5α-tetrahydroprogesterone, and 3β,5α-tetrahydroprogesterone, and relative quantification of other carbonyl containing steroids. The utility and validity of this approach was tested in an acute stress mouse model and via pharmacological manipulation of the steroid metabolic pathway with finasteride. We report that brain levels of 3α,5α-tetrahydroprogesterone, a potent enhancer of GABA A receptor (GABA A R-mediated inhibitory function, from control mice is in the 5-40 pmol/g range, a value greater than previously reported. The approach allows the use of data from targeted analysis to guide the normalization strategy for nontargeted data. Furthermore, novel findings, including a striking increase of brain pregnenolone following finasteride administration were discovered in this study. Collectively, our results indicate that this approach has distinct advantages for examining targeted and nontargeted neurosteroid/steroid pathways in animal models and could facilitate a better understanding of the physiological and pathological roles of neurosteroids as modulators of brain excitability.

  16. Effects of disulfide bridges and backbone connectivity on water sorption by protein matrices.

    PubMed

    Kim, Sang Beom; Singh, Rakesh S; Paul, Prem K C; Debenedetti, Pablo G

    2017-08-11

    Understanding the water sorption behavior of protein powders is important in applications such as the preservation of protein-based pharmaceuticals. Most globular proteins exhibit a characteristic sigmoidal water adsorption isotherm at ambient conditions. However, it is not well understood how water sorption behavior is influenced by intrinsic factors that are related to structural properties of proteins. We investigate computationally how structural constraints on proteins influence the water sorption isotherms of amorphous protein powders. Specifically, we study the effects of non-local disulfide linkages and backbone connectivity using pheromone ER-23 and lysozyme as model proteins. We find that non-local disulfide linkages can significantly restrict structural changes during hydration and dehydration, and this in turn greatly reduces the extent of hysteresis between the adsorption and desorption branches. Upon removing the backbone connectivity by breaking all peptide bonds in lysozyme, we find that the hysteresis shifts towards the lower humidity regime, and the water uptake capacity is significantly enhanced. We attribute these changes to the higher aggregation propensity of the constraint-free amino acids in dehydrated condition, and the formation of a spanning water network at high hydration levels.

  17. [The curative effects of different drugs on liver cell damage of rats induced by acute nickel carbonyl poisoning].

    PubMed

    Liu, Jing; Wang, Qiu-ying; Wang, Bei; Xuan, Xiao-qiang; Chen, Qiong; Xu, Dong-wei; Cheng, Ning

    2011-02-01

    To assess the curative effects of different drugs on liver cell damage of rats induced by acute nickel carbonyl poisoning. In present study 220 SD rats were divided into control group (10 rats), carbonyl nickel group (10 rats), 20 mg/kg methylprednisolone group (40 rats), 100 mg/kg DDC group (40 rats), 10 µmol/kg sodium selenite group (40 rats), 0.25 ml shenfuhuiyangtang group (40 rats) and 20 mg/kg methylprednisolone with 100 mg/kg DDC group (40 rats). All rats except for control group inhaled passively 250 mg/m(3) carbonyl nickel for 30 minutes. At 4h and 30h after exposure, the drugs were given intraperitoneally to the rats. On the 3rd and 7th days after exposure, the liver samples were taken from 10 rats each group. The DNA damage of liver cells was detected using comet assay, the ultrastructure changes in liver cells were examined under an electronmicroscope. Compared to carbonyl nickel group, the tail lengths of liver cells in 5 groups administrated at 4 h or 30 h and tested on the 3rd or 7th day after exposure decreased significantly (P < 0.05). Compared to the control group, the tail lengths of liver cells in sodium selenite and shenfuhuiyangtang groups administrated at 4h after exposure or sodium selenite, shenfuhuiyangtang and methylprednisolone with DDC groups administrated at 30h after exposure increased significantly (P < 0.05 or P < 0.01), when tested on the 3rd day after exposure. Except from methylprednisolone sub-group administrated at 4h and tested on the 7th day after exposure, the tail lengths of liver cells in other groups administrated at 4 h or 30 h and tested on the 7th day after exposure increased significantly (P < 0.05). Compared to carbonyl nickel group, the Olive moment of liver cells in 5 groups administrated at 4 h or 30 h tested on the 3rd or 7th day after exposure decreased significantly (P < 0.05 or P < 0.01). Compared to the control group, the Olive moment of liver cells in following groups (selenite and shenfuhuiyangtang groups

  18. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2017-01-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature ( T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature ( T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  19. Optical backbone-sidechain charge transfer transitions in proteins sensitive to secondary structure and modifications.

    PubMed

    Mandal, I; Paul, S; Venkatramani, R

    2018-04-17

    The absorption of light by proteins can induce charge transfer (CT) transitions in the UV-visible range of the electromagnetic spectrum. Metal-ligand complexes or active site prosthetic groups which absorb in the visible region exhibit prominent CT transitions. Furthermore, the protein backbone also exhibits CT transitions in the far UV range. In this manuscript, we present a detailed computational study of new near UV-visible CT transitions that involve amino acids with charged side chains. Specifically, using time dependent density functional theory calculations, we examine the absorption spectra of naturally charged amino acids (Lys, Glu, Arg, Asp and His), extracted from solution phase protein structures generated by classical molecular dynamics simulations, and phosphorylated amino acids (Tyr, Thr and Ser) from experimentally determined protein structures. We show that amino acids with charged sidechains present a directed electronic donor-bridge-acceptor paradigm, with the lowest energy optical excitations demonstrating peptide backbone-sidechain charge separations. The UV-visible spectral range of the backbone-sidechain CT transitions is determined by the chemical nature of the donor, bridge and acceptor groups within each amino acid, amino acid conformation and the protein secondary structure where the amino acids are located. Photoinduced CT occurs in opposite directions for the anionic and cationic amino acids along the ground state dipole moment vector for the chromophores. We find that photoinduced charge separation is more facile for the anionic amino acids (Asp, Glu, pSer, pThr and pTyr) relative to that for the cationic amino acids (Lys, Arg and Hsp). Our results provide a foundation for the development of spectroscopic markers based on the recently proposed Protein Charge Transfer Spectra (ProCharTS) which are relevant for the study of DNA-binding or intrinsically disordered proteins that are rich in charged amino acids.

  20. Structural characterization of lignin in the process of cooking of cornstalk with solid alkali and active oxygen.

    PubMed

    Yang, Qiulin; Shi, Jianbin; Lin, Lu; Zhuang, Junping; Pang, Chunsheng; Xie, Tujun; Liu, Ying

    2012-05-09

    A novel, efficient, and environmentally friendly technology is used in cornstalk cooking, active oxygen (O₂ and H₂O₂) cooking with solid alkali (MgO). After the cooking, the milled wood lignin in the raw material and pulp and the water-soluble and insoluble lignin in the yellow liquor were all characterized by attenuated total reflectance Fourier transform infrared spectroscopy and two-dimensional heteronuclear single-quantum coherence NMR. The results showed that the cooking procedure with solid alkali and active oxygen had a high selectivity for delignification, which could remove 85.5% of the lignin from the raw material. The syringyl (S/S'/S') units could be dissolved preferentially because of their high reactivity, and a novel guaiacyl unit with a carbonyl group (G') was generated in the cooking process. Moreover, during the cooking, the β-O-4' (A/A'/A″) structures as the main side-chain linkages in all the lignins could be partly broken and the β-O-4' (A') with a ring-conjugated structure was readily attacked by oxygen, whereas the H unit and β-5' and β-β' structures were found to stay stable without characteristic reaction.