Sample records for backbone secondary amide

  1. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes

    PubMed Central

    Sharp, Kim A.; O’Brien, Evan; Kasinath, Vignesh; Wand, A. Joshua

    2015-01-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O2NH) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O2NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O2axis. A calibration curve for backbone entropy vs. O2NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O2NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O2axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. PMID:25739366

  2. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    PubMed

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  3. Interaction Enthalpy of Side Chain and Backbone Amides in Polyglutamine Solution Monomers and Fibrils.

    PubMed

    Punihaole, David; Jakubek, Ryan S; Workman, Riley J; Asher, Sanford A

    2018-04-19

    We determined an empirical correlation that relates the amide I vibrational band frequencies of the glutamine (Q) side chain to the strength of hydrogen bonding, van der Waals, and Lewis acid-base interactions of its primary amide carbonyl. We used this correlation to determine the Q side chain carbonyl interaction enthalpy (Δ H int ) in monomeric and amyloid-like fibril conformations of D 2 Q 10 K 2 (Q10). We independently verified these Δ H int values through molecular dynamics simulations that showed excellent agreement with experiments. We found that side chain-side chain and side chain-peptide backbone interactions in fibrils and monomers are more enthalpically favorable than are Q side chain-water interactions. Q10 fibrils also showed a more favorable Δ H int for side chain-side chain interactions compared to backbone-backbone interactions. This work experimentally demonstrates that interamide side chain interactions are important in the formation and stabilization of polyQ fibrils.

  4. Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals.

    PubMed

    Ye, Shuji; Li, Hongchun; Yang, Weilai; Luo, Yi

    2014-01-29

    Accurate determination of protein structures at the interface is essential to understand the nature of interfacial protein interactions, but it can only be done with a few, very limited experimental methods. Here, we demonstrate for the first time that sum frequency generation vibrational spectroscopy can unambiguously differentiate the interfacial protein secondary structures by combining surface-sensitive amide I and amide III spectral signals. This combination offers a powerful tool to directly distinguish random-coil (disordered) and α-helical structures in proteins. From a systematic study on the interactions between several antimicrobial peptides (including LKα14, mastoparan X, cecropin P1, melittin, and pardaxin) and lipid bilayers, it is found that the spectral profiles of the random-coil and α-helical structures are well separated in the amide III spectra, appearing below and above 1260 cm(-1), respectively. For the peptides with a straight backbone chain, the strength ratio for the peaks of the random-coil and α-helical structures shows a distinct linear relationship with the fraction of the disordered structure deduced from independent NMR experiments reported in the literature. It is revealed that increasing the fraction of negatively charged lipids can induce a conformational change of pardaxin from random-coil to α-helical structures. This experimental protocol can be employed for determining the interfacial protein secondary structures and dynamics in situ and in real time without extraneous labels.

  5. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  6. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data.

    PubMed

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. Graphical Abstract ᅟ.

  7. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-03-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  8. Backbone amide 15N chemical shift tensors report on hydrogen bonding interactions in proteins: A magic angle spinning NMR study.

    PubMed

    Paramasivam, Sivakumar; Gronenborn, Angela M; Polenova, Tatyana

    2018-08-01

    Chemical shift tensors (CSTs) are an exquisite probe of local geometric and electronic structure. 15 N CST are very sensitive to hydrogen bonding, yet they have been reported for very few proteins to date. Here we present experimental results and statistical analysis of backbone amide 15 N CSTs for 100 residues of four proteins, two E. coli thioredoxin reassemblies (1-73-(U- 13 C, 15 N)/74-108-(U- 15 N) and 1-73-(U- 15 N)/74-108-(U- 13 C, 15 N)), dynein light chain 8 LC8, and CAP-Gly domain of the mammalian dynactin. The 15 N CSTs were measured by a symmetry-based CSA recoupling method, ROCSA. Our results show that the principal component δ 11 is very sensitive to the presence of hydrogen bonding interactions due to its unique orientation in the molecular frame. The downfield chemical shift change of backbone amide nitrogen nuclei with increasing hydrogen bond strength is manifested in the negative correlation of the principal components with hydrogen bond distance for both α-helical and β-sheet secondary structure elements. Our findings highlight the potential for the use of 15 N CSTs in protein structure refinement. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus sidechain groups to chain expansion via chemical denaturation

    PubMed Central

    Holehouse, Alex S.; Garai, Kanchan; Lyle, Nicholas; Vitalis, Andreas; Pappu, Rohit V.

    2015-01-01

    In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones and therefore backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of sidechains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that sidechains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of sidechain-mediated interactions as determinants of the

  10. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo

    2017-03-01

    A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification.

  11. Design and Conformational Analysis of Peptoids Containing N-Hydroxy Amides Reveals a Unique Sheet-Like Secondary Structure

    PubMed Central

    Crapster, J. Aaron; Stringer, Joseph R.; Guzei, Ilia A.; Blackwell, Helen E.

    2011-01-01

    N-hydroxy amides can be found in many naturally occurring and synthetic compounds and are known to act as both strong proton donors and chelators of metal cations. We have initiated studies of peptoids, or N-substituted glycines, that contain N-hydroxy amide side chains to investigate the potential effects of these functional groups on peptoid backbone amide rotamer equilibria and local conformations. We reasoned that the propensity of these functional groups to participate in hydrogen bonding could be exploited to enforce intramolecular or intermolecular interactions that yield new peptoid structures. Here, we report the design, synthesis, and detailed conformational analysis of a series of model N-hydroxy peptoids. These peptoids were readily synthesized, and their structures were analyzed in solution by 1D and 2D NMR and in the solid-state by X-ray crystallography. The N-hydroxy amides were found to strongly favor trans conformations with respect to the peptoid backbone in chloroform. More notably, unique sheet-like structures held together via intermolecular hydrogen bonds were observed in the X-ray crystal structures of an N-hydroxy amide peptoid dimer, which to our knowledge represent the first structure of this type reported for peptoids. These results suggest that the N-hydroxy amide can be utilized to control both local backbone geometries and longer-range intermolecular interactions in peptoids, and represents a new functional group in the peptoid design toolbox. PMID:22180908

  12. Chemoselective reductive nucleophilic addition to tertiary amides, secondary amides, and N-methoxyamides.

    PubMed

    Nakajima, Minami; Oda, Yukiko; Wada, Takamasa; Minamikawa, Ryo; Shirokane, Kenji; Sato, Takaaki; Chida, Noritaka

    2014-12-22

    As the complexity of targeted molecules increases in modern organic synthesis, chemoselectivity is recognized as an important factor in the development of new methodologies. Chemoselective nucleophilic addition to amide carbonyl centers is a challenge because classical methods require harsh reaction conditions to overcome the poor electrophilicity of the amide carbonyl group. We have successfully developed a reductive nucleophilic addition of mild nucleophiles to tertiary amides, secondary amides, and N-methoxyamides that uses the Schwartz reagent [Cp2 ZrHCl]. The reaction took place in a highly chemoselective fashion in the presence of a variety of sensitive functional groups, such as methyl esters, which conventionally require protection prior to nucleophilic addition. The reaction will be applicable to the concise synthesis of complex natural alkaloids from readily available amide groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Raman spectra of crystalline secondary amides

    NASA Astrophysics Data System (ADS)

    Kolesov, Boris A.

    2017-05-01

    We present a Raman-spectroscopic study of secondary amides (acetanilide, methacetin, phenacetine, orthorhombic and monoclinic polymorphs of paracetamol) as well as simple amides formanilide and benzanilide. The study was carried out on single crystals and in the temperature range of 5-300 K. The series of compounds with the same molecular fragment - acetamide group - can serve as a model system to study the interrelation between this group and the properties of the intermolecular "peptide-type" NH ⋯ Odbnd C hydrogen bonds. For all of the "acetamide family" of the compounds, similar changes in the Raman spectra were observed upon cooling of the samples: emergence of new Amide I(-) and Amide I(+) bands, which are red and blue shifted, respectively, from the conventional Amide-I band by around of 5-10 cm- 1. Corresponding changes in the same temperature range were observed for the Nsbnd H out-of-plane bending (Amide V) and Nsbnd H stretching vibrations of the Nsbnd H ⋯ Odbnd C hydrogen bond. All of the spectral changes observed upon cooling of the samples can be presumed to result from a delocalization of the Amide-I and Nsbnd H modes and appearance of dynamical (Davydov's) splitting at low temperature.

  14. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope.

    PubMed

    Hamuro, Yoshitomo

    2017-03-01

    A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification. Graphical Abstract ᅟ.

  15. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.

    PubMed

    Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György

    2015-09-01

    The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. © 2015 Wiley Periodicals, Inc.

  16. A semisynthetic strategy leads to alteration of the backbone amidate ligand in the NiSOD active site

    DOE PAGES

    Campeciño, Julius O.; Dudycz, Lech W.; Tumelty, David; ...

    2015-07-01

    Computational investigations have implicated the amidate ligand in nickel superoxide dismutase (NiSOD) in stabilizing Ni-centered redox catalysis and in preventing cysteine thiolate ligand oxidation. To test these predictions, we have used an experimental approach utilizing a semisynthetic scheme that employs native chemical ligation of a pentapeptide (HCDLP) to recombinant S. coelicolor NiSOD lacking these N-terminal residues, NΔ5-NiSOD. Wild-type enzyme produced in this manner exhibits the characteristic spectral properties of recombinant WT-NiSOD and is as catalytically active. The semisynthetic scheme was also employed to construct a variant where the amidate ligand was converted to a secondary amine, H1*-NiSOD, a novel strategymore » that retains a backbone N-donor atom. The H1*-NiSOD variant was found to have only ~1% of the catalytic activity of the recombinant wild-type enzyme, and had altered spectroscopic properties. X-ray absorption spectroscopy reveals a four-coordinate planar site with N 2S 2-donor ligands, consistent with electronic absorption spectroscopic results indicating that the Ni center in H1*-NiSOD is mostly reduced in the as-isolated sample, as opposed to 50:50 Ni(II)/Ni(III) mixture that is typical for the recombinant wild-type enzyme. The EPR spectrum of as-isolated H1*-NiSOD accounts for ~11% of the Ni in the sample and is similar to WT-NiSOD, but more axial, with g z < g x,y. 14N-hyperfine is observed on g z« less

  17. 1H, 13C, and 15N backbone assignment and secondary structure of the receptor-binding domain of vascular endothelial growth factor.

    PubMed Central

    Fairbrother, W. J.; Champe, M. A.; Christinger, H. W.; Keyt, B. A.; Starovasnik, M. A.

    1997-01-01

    Nearly complete sequence-specific 1H, 13C, and 15N resonance assignments are reported for the backbone atoms of the receptor-binding domain of vascular endothelial growth factor (VEGF), a 23-kDa homodimeric protein that is a major regulator of both normal and pathological angiogenesis. The assignment strategy relied on the use of seven 3D triple-resonance experiments [HN(CO)CA, HNCA, HNCO, (HCA)CONH, HN(COCA)HA, HN(CA)HA, and CBCA-(CO)NH] and a 3D 15N-TOCSY-HSQC experiment recorded on a 0.5 mM (12 mg/mL) sample at 500 MHz, pH 7.0, 45 degrees C. Under these conditions, 15N relaxation data show that the protein has a rotational correlation time of 15.0 ns. Despite this unusually long correlation time, assignments were obtained for 94 of the 99 residues; 8 residues lack amide 1H and 15N assignments, presumably due to rapid exchange of the amide 1H with solvent under the experimental conditions used. The secondary structure of the protein was deduced from the chemical shift indices of the 1H alpha, 13C alpha, 13C beta, and 13CO nuclei, and from analysis of backbone NOEs observed in a 3D 15N-NOESY-HSQC spectrum. Two helices and a significant amount of beta-sheet structure were identified, in general agreement with the secondary structure found in a recently determined crystal structure of a similar VEGF construct [Muller YA et al., 1997, Proc Natl Acad Sci USA 94:7192-7197]. PMID:9336848

  18. Synthesis of Secondary Aromatic Amides via Pd-Catalyzed Aminocarbonylation of Aryl Halides Using Carbamoylsilane as an Amide Source.

    PubMed

    Tong, Wenting; Cao, Pei; Liu, Yanhong; Chen, Jianxin

    2017-11-03

    Using N-methoxymethyl-N-organylcarbamoyl(trimethyl)silanes as secondary amides source, the direct transformation of aryl halides into the corresponding secondary aromatic amides via palladium-catalyzed aminocarbonylation is described. The reactions tolerated a broad range of functional groups on the aryl ring except big steric hindrance of substituent. The types and the relative position of substituents on the aryl ring impact the coupling efficiency.

  19. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    PubMed

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  20. Characterization of the unique function of a reduced amide bond in a cytolytic peptide that acts on phospholipid membranes.

    PubMed Central

    Oh, J E; Lee, K H

    2000-01-01

    The incorporation of a reduced amide bond, psi(CH(2)NH), into peptide results in an increase in the net positive charge and the perturbation of alpha-helical structure. By using this characteristic of the reduced amide bond, we designed and synthesized novel pseudopeptides containing reduced amide bonds, which had a great selectivity between bacterial and mammalian cells. A structure-activity relationship study on pseudopeptides indicated that the decrease in alpha-helicity and the increase in net positive charge in the backbone, caused by the incorporation of a reduced amide bond into the peptide, both contributed to an improvement in the selectivity between lipid membranes with various surface charges. However, activity results in vitro indicated that a perturbation of alpha-helical structure rather than an increase in net positive charge in the backbone is more important in the selectivity between bacterial and mammalian cells. The present result revealed that the backbone of membrane-active peptides were important not only in maintaining the secondary structure for the interactions with lipid membranes but also in direct interactions with lipid membranes. The present study showed the unique function of a reduced amide bond in cytolytic peptides and a direction for developing novel anti-bacterial agents from cytolytic peptides that act on the lipid membrane of micro-organisms. PMID:11104671

  1. TROSY of side-chain amides in large proteins

    PubMed Central

    Liu, Aizhuo; Yao, Lishan; Li, Yue; Yan, Honggao

    2012-01-01

    By using the mixed solvent of 50% H2O/50% D2O and employing deuterium decoupling, TROSY experiments exclusively detect NMR signals from semideuterated isotopomers of carboxamide groups with high sensitivities for proteins with molecular weights up to 80 kDa. This isotopomer-selective strategy extends TROSY experiments from exclusively detecting backbone to both backbone and side-chain amides, particularly in large proteins. Because of differences in both TROSY effect and dynamics between 15N–HE{DZ} and 15N–HZ{DE} isotopomers of the same carboxamide, the 15N transverse magnetization of the latter relaxes significantly faster than that of the former, which provides a direct and reliable stereospecific distinction between the two configurations. The TROSY effects on the 15N–HE{DZ} isotopomers of side-chain amides are as significant as on backbone amides. PMID:17347000

  2. Pressure response of protein backbone structure. Pressure-induced amide 15N chemical shifts in BPTI.

    PubMed Central

    Akasaka, K.; Li, H.; Yamada, H.; Li, R.; Thoresen, T.; Woodward, C. K.

    1999-01-01

    The effect of pressure on amide 15N chemical shifts was studied in uniformly 15N-labeled basic pancreatic trypsin inhibitor (BPTI) in 90%1H2O/10%2H2O, pH 4.6, by 1H-15N heteronuclear correlation spectroscopy between 1 and 2,000 bar. Most 15N signals were low field shifted linearly and reversibly with pressure (0.468 +/- 0.285 ppm/2 kbar), indicating that the entire polypeptide backbone structure is sensitive to pressure. A significant variation of shifts among different amide groups (0-1.5 ppm/2 kbar) indicates a heterogeneous response throughout within the three-dimensional structure of the protein. A tendency toward low field shifts is correlated with a decrease in hydrogen bond distance on the order of 0.03 A/2 kbar for the bond between the amide nitrogen atom and the oxygen atom of either carbonyl or water. The variation of 15N shifts is considered to reflect site-specific changes in phi, psi angles. For beta-sheet residues, a decrease in psi angles by 1-2 degrees/2 kbar is estimated. On average, shifts are larger for helical and loop regions (0.553 +/- 0.343 and 0.519 +/- 0.261 ppm/2 kbar, respectively) than for beta-sheet (0.295 +/- 0.195 ppm/2 kbar), suggesting that the pressure-induced structural changes (local compressibilities) are larger in helical and loop regions than in beta-sheet. Because compressibility is correlated with volume fluctuation, the result is taken to indicate that the volume fluctuation is larger in helical and loop regions than in beta-sheet. An important aspect of the volume fluctuation inferred from pressure shifts is that they include motions in slower time ranges (less than milliseconds) in which many biological processes may take place. PMID:10548039

  3. Facile solid-phase synthesis of C-terminal peptide aldehydes and hydroxamates from a common Backbone Amide-Linked (BAL) intermediate.

    PubMed

    Gazal, S; Masterson, L R; Barany, G

    2005-12-01

    C-Terminal peptide aldehydes and hydroxamates comprise two separate classes of effective inhibitors of a number of serine, aspartate, cysteine, and metalloproteases. Presented here is a method for preparation of both classes of peptide derivatives from the same resin-bound Weinreb amide precursor. Thus, 5-[(2 or 4)-formyl-3,5-dimethoxyphenoxy]butyramido-polyethylene glycol-polystyrene (BAL-PEG-PS) was treated with methoxylamine hydrochloride in the presence of sodium cyanoborohydride to provide a resin-bound methoxylamine, which was efficiently acylated by different Fmoc-amino acids upon bromo-tris-pyrrolidone-phosphonium hexafluorophosphate (PyBrOP) activation. Solid-phase chain elongation gave backbone amide-linked (BAL) peptide Weinreb amides, which were cleaved either by trifluoroacetic acid (TFA) in the presence of scavengers to provide the corresponding peptide hydroxamates, or by lithium aluminum hydride in tetrahydrofuran (THF) to provide the corresponding C-terminal peptide aldehydes. With several model sequences, peptide hydroxamates were obtained in crude yields of 68-83% and initial purities of at least 85%, whereas peptide aldehydes were obtained in crude yields of 16-53% and initial purities in the range of 30-40%. Under the LiAlH4 cleavage conditions used, those model peptides containing t-Bu-protected aspartate residues underwent partial side chain reduction to the corresponding homoserine-containing peptides. Similar results were obtained when working with high-load aminomethyl-polystyrene, suggesting that this chemistry will be generally applicable to a range of supporting materials.

  4. Solution, solid phase and computational structures of apicidin and its backbone-reduced analogs.

    PubMed

    Kranz, Michael; Murray, Peter John; Taylor, Stephen; Upton, Richard J; Clegg, William; Elsegood, Mark R J

    2006-06-01

    The recently isolated broad-spectrum antiparasitic apicidin (1) is one of the few naturally occurring cyclic tetrapeptides (CTP). Depending on the solvent, the backbone of 1 exhibits two gamma-turns (in CH(2)Cl(2)) or a beta-turn (in DMSO), differing solely in the rotation of the plane of one of the amide bonds. In the X-ray crystal structure, the peptidic C==Os and NHs are on opposite sides of the backbone plane, giving rise to infinite stacks of cyclotetrapeptides connected by three intermolecular hydrogen bonds between the backbones. Conformational searches (Amber force field) on a truncated model system of 1 confirm all three backbone conformations to be low-energy states. The previously synthesized analogs of 1 containing a reduced amide bond exhibit the same backbone conformation as 1 in DMSO, which is confirmed further by the X-ray crystal structure of a model system of the desoxy analogs of 1. This similarity helps in explaining why the desoxy analogs retain some of the antiprotozoal activities of apicidin. The backbone-reduction approach designed to facilitate the cyclization step of the acyclic precursors of the CTPs seems to retain the conformational preferences of the parent peptide backbone.

  5. Inhibition effect of fatty amides with secondary compound on carbon steel corrosion in hydrodynamic condition

    NASA Astrophysics Data System (ADS)

    Ibrahim, I. M.; Jai, J.; Daud, M.; Hashim, Md A.

    2018-03-01

    The inhibition effect demonstrates an increase in the inhibition performance in presence of a secondary compound in the inhibited solution. This study introduces fatty amides as corrosion inhibitor and oxygen scavenger, namely, sodium sulphite as a secondary compound. The main objective is to determine the synergistic inhibition effect of a system by using fatty amides together with sodium sulphite in hydrodynamic condition. The synergistic inhibition of fatty amides and sodium sulphite on corrosion of carbon steel in 3.5 wt% sodium chloride solution had been studied using linear polarization resistance method and scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX). Electrochemical measurement was carried out using rotating cylinder electrode at different flow regimes (static, laminar, transition and turbulent). Linear polarization resistance experiments showed the changes in polarization resistance when the rotation speed increased. It found that, by addition of fatty amides together with sodium sulphite in test solution, the inhibition efficiency increased when rotation speed increased. The results collected from LPR experiment correlated with results from SEM-EDX. The results showed inhibition efficiency of system was enhanced when fatty amides and oxygen scavengers were present together.

  6. Computational Amide I Spectroscopy for Refinement of Disordered Peptide Ensembles: Maximum Entropy and Related Approaches

    NASA Astrophysics Data System (ADS)

    Reppert, Michael; Tokmakoff, Andrei

    The structural characterization of intrinsically disordered peptides (IDPs) presents a challenging biophysical problem. Extreme heterogeneity and rapid conformational interconversion make traditional methods difficult to interpret. Due to its ultrafast (ps) shutter speed, Amide I vibrational spectroscopy has received considerable interest as a novel technique to probe IDP structure and dynamics. Historically, Amide I spectroscopy has been limited to delivering global secondary structural information. More recently, however, the method has been adapted to study structure at the local level through incorporation of isotope labels into the protein backbone at specific amide bonds. Thanks to the acute sensitivity of Amide I frequencies to local electrostatic interactions-particularly hydrogen bonds-spectroscopic data on isotope labeled residues directly reports on local peptide conformation. Quantitative information can be extracted using electrostatic frequency maps which translate molecular dynamics trajectories into Amide I spectra for comparison with experiment. Here we present our recent efforts in the development of a rigorous approach to incorporating Amide I spectroscopic restraints into refined molecular dynamics structural ensembles using maximum entropy and related approaches. By combining force field predictions with experimental spectroscopic data, we construct refined structural ensembles for a family of short, strongly disordered, elastin-like peptides in aqueous solution.

  7. Microorganisms hydrolyse amide bonds; knowledge enabling read-across of biodegradability of fatty acid amides.

    PubMed

    Geerts, Roy; Kuijer, Patrick; van Ginkel, Cornelis G; Plugge, Caroline M

    2014-07-01

    To get insight in the biodegradation and potential read-across of fatty acid amides, N-[3-(dimethylamino)propyl] cocoamide and N-(1-ethylpiperazine) tall oil amide were used as model compounds. Two bacteria, Pseudomonas aeruginosa PK1 and Pseudomonas putida PK2 were isolated with N-[3-(dimethylamino)propyl] cocoamide and its hydrolysis product N,N-dimethyl-1,3-propanediamine, respectively. In mixed culture, both strains accomplished complete mineralization of N-[3-(dimethylamino)propyl] cocoamide. Aeromonas hydrophila PK3 was enriched with N-(1-ethylpiperazine) tall oil amide and subsequently isolated using agar plates containing dodecanoate. N-(2-Aminoethyl)piperazine, the hydrolysis product of N-(1-ethylpiperazine) tall oil amide, was not degraded. The aerobic biodegradation pathway for primary and secondary fatty acid amides of P. aeruginosa and A. hydrophila involved initial hydrolysis of the amide bond producing ammonium, or amines, where the fatty acids formed were immediately metabolized. Complete mineralization of secondary fatty acid amides depended on the biodegradability of the released amine. Tertiary fatty acid amides were not transformed by P. aeruginosa or A. hydrophila. These strains were able to utilize all tested primary and secondary fatty acid amides independent of the amine structure and fatty acid. Read-across of previous reported ready biodegradability results of primary and secondary fatty acid amides is justified based on the broad substrate specificity and the initial hydrolytic attack of the two isolates PK1 and PK3.

  8. Titanocene(III)-Catalyzed Three-Component Reaction of Secondary Amides, Aldehydes, and Electrophilic Alkenes.

    PubMed

    Zheng, Xiao; He, Jiang; Li, Heng-Hui; Wang, Ao; Dai, Xi-Jie; Wang, Ai-E; Huang, Pei-Qiang

    2015-11-09

    An umpolung Mannich-type reaction of secondary amides, aliphatic aldehydes, and electrophilic alkenes has been disclosed. This reaction features the one-pot formation of C-N and C-C bonds by a titanocene-catalyzed radical coupling of the condensation products, from secondary amides and aldehydes, with electrophilic alkenes. N-substituted γ-amido-acid derivatives and γ-amido ketones can be efficiently prepared by the current method. Extension to the reaction between ketoamides and electrophilic alkenes allows rapid assembly of piperidine skeletons with α-amino quaternary carbon centers. Its synthetic utility has been demonstrated by a facile construction of the tricyclic core of marine alkaloids such as cylindricine C and polycitorol A. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Pd-Catalyzed N-Arylation of Secondary Acyclic Amides: Catalyst Development, Scope, and Computational Study

    PubMed Central

    Hicks, Jacqueline D.; Hyde, Alan M.; Cuezva, Alberto Martinez; Buchwald, Stephen L.

    2009-01-01

    We report the efficient N-arylation of acyclic secondary amides and related nucleophiles with aryl nonaflates, triflates, and chlorides. This method allows for easy variation of the aromatic component in tertiary aryl amides. A new biaryl phosphine with P-bound 3,5-(bis)trifluoromethylphenyl groups was found to be uniquely effective for this amidation. The critical aspects of the ligand were explored through synthetic, mechanistic, and computational studies. Systematic variation of the ligand revealed the importance of (1) a methoxy group on the aromatic carbon of the “top ring” ortho to the phosphorus and (2) two highly electron-withdrawing P-bound 3,5-(bis)trifluoromethylphenyl groups. Computational studies suggest the electron-deficient nature of the ligand is important in facilitating amide binding to the LPd(II)(Ph)(X) intermediate. PMID:19886610

  10. Copoly(imide-amides) containing hexafluoroisopropylidene

    NASA Technical Reports Server (NTRS)

    Irvin, David J.; Cassidy, Patrick E.; Cameron, Mitch L.

    1990-01-01

    The incorporation of the hexafluoroisopropylidene (HFIP or 6F) group into polymer backbones brings about important and useful changes in properties. These differences include increased thermal and environmental resistance and solubility and decreased dielectric constant and color. Several types of backbones have been substrates for the inclusion of HFIP and all results have reflected impressive property benefits. This project involved the incorporation of 6F groups into a poly(imide-amide) backbone by the condensation of a 6F-containing dianhydride with 4-aminobenzoic acid to yield a diimide terminated with two carboxylic acid groups. This diacid trimer was then polymerized with various diamines. The polymers were obtained in yields of 86-94 percent and with viscosities of 0.90-2.26 dL/g. They were stable to above 500 C and clear, colorless films could be cast from DMAc.

  11. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature.

    PubMed

    Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2014-02-05

    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.

  12. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments

    PubMed Central

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-01-01

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure–function relationship. PMID:26978354

  13. Modeling 15N NMR chemical shift changes in protein backbone with pressure

    NASA Astrophysics Data System (ADS)

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-01

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.

  14. Backbone assignment of the little finger domain of a Y-family DNA polymerase.

    PubMed

    Ma, Dejian; Fowler, Jason D; Suo, Zucai

    2011-10-01

    Sulfolobus solfataricus DNA polymerase IV (Dpo4), a prototype Y-family DNA polymerase, contains a unique little finger domain besides a catalytic core. Here, we report the chemical shift assignments for the backbone nitrogens, α and β carbons, and amide protons of the little finger domain of Dpo4. This work and our published backbone assignment for the catalytic core provide the basis for investigating the conformational dynamics of Dpo4 during catalysis using solution NMR spectroscopy.

  15. Simulation of Ames Backbone Network

    NASA Technical Reports Server (NTRS)

    Shahnasser, Hamid

    1998-01-01

    The networking demands of Ames Research Center are dramatically increasing. More and more workstations are requested to run video and audio applications on the network. These applications require a much greater bandwidth than data applications. The existing ARCLAN 2000 network bandwidth is insufficient, due to the use of FDDI as its backbone, for accommodating video applications. Operating at a maximum of 100 Mbps, FDDI can handle only a few workstations running multimedia applications. The ideal solution is to replace the current ARCLAN 2000 FDDI backbone with an ATM backbone. ATM has the capability to handle the increasing traffic loads on the ARCLAN 2000 that results from these new applications. As it can be seen from Figure 1, ARCLAN 2000 have a total of 32 routers (5 being core routers) each connected to the FDDI backbone via a 100 Mbps link. This network serves 34 different locations by using 34 hubs that are connected to secondary routers. End users are connected to the secondary routers with 10 Mbps links.

  16. N-Methylamino Pyrimidyl Amides (MAPA): Highly Reactive, Electronically-Activated Amides in Catalytic N-C(O) Cleavage.

    PubMed

    Meng, Guangrong; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2017-09-01

    Despite recent progress in catalytic cross-coupling technologies, the direct activation of N-alkyl-N-aryl amides has been a challenging transformation. Here, we report the first Suzuki cross-coupling of N-methylamino pyrimidyl amides (MAPA) enabled by the controlled n N → π Ar conjugation and the resulting remodeling of the partial double bond character of the amide bond. The new mode of amide activation is suitable for generating acyl-metal intermediates from unactivated primary and secondary amides.

  17. Modeling {sup 15}N NMR chemical shift changes in protein backbone with pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Penna, Giovanni, E-mail: glapenna@iccom.cnr.it; Mori, Yoshiharu, E-mail: ymori@ims.ac.jp; Kitahara, Ryo, E-mail: ryo@ph.ritsumei.ac.jp

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change inmore » the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.« less

  18. Conformation-Specific IR and UV Spectroscopy of the Amino Acid Glutamine: Amide-Stacking and Hydrogen Bonding in AN Important Residue in Neurodegenerative Diseases

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; Dean, Jacob C.; Zwier, Timothy S.

    2014-06-01

    Glutamine plays an important role in several neurodegenerative diseases including Huntington's disease (HD) and Alzheimer's disease (AD). An intriguing aspect of the structure of glutamine is its incorporation of an amide group in its side chain, thereby opening up the possibility of forming amide-amide H-bonds between the peptide backbone and side chain. In this study the conformational preferences of two capped gluatamines Z(carboxybenzyl)-Glutamine-X (X=OH, NHMe) are studied under jet-cooled conditions in the gas phase in order to unlock the intrinsic structural motifs that are favored by this flexible sidechain. Conformational assignments are made by comparing the hydride stretch ( 3100-3700 cm-1) and amide I and II ( 1400-1800 cm-1) resonant ion-dip infrared spectra with predictions from harmonic frequency calculations. Assigned structures will be compared to previously published results on both natural and unnatural residues. Particular emphasis will be placed on the comparison between glutamine and unconstrained γ-peptides due to the similar three-carbon spacing between backbone and side chain in glutamine to the backbone spacing in γ-peptides. The ability of the glutamine side-chain to form amide stacked conformations will be a main focus, along with the prevalence of extended backbone type structures. W. H. James, III, C W. Müller, E. G. Buchanan, M. G. D. Nix, L. Guo, L. Roskop, M. S. Gordon, L. V. Slipchenko, S. H. Gellman, and T. S. Zwier, J. Am. Chem. Soc., 2009, 131(40), 14243-14245.

  19. Temperature dependence of fast carbonyl backbone dynamics in chicken villin headpiece subdomain

    PubMed Central

    Vugmeyster, Liliya; Ostrovsky, Dmitry

    2012-01-01

    Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination of three NMR relaxation rates: 13C′ longitudinal rate, and two cross-correlated rates involving dipolar and chemical shift anisotropy (CSA) relaxation mechanisms, 13C′/13C′−13Cα CSA/dipolar and 13C′/13C′−15N CSA/dipolar. Order parameters have been extracted using the Lipari-Szabo model-free approach assuming a separation of the time scales of internal and molecular motions in the 2–16°C temperature range. There is a gradual deviation from this assumption from lower to higher temperatures, such that above 16°C the separation of the time scales is inconsistent with the experimental data and, thus, the Lipari-Szabo formalism can not be applied. While there are variations among the residues, on the average the order parameters indicate a markedly steeper temperature dependence at backbone carbonyl carbons compared to that probed at amide nitrogens in an earlier study. This strongly advocates for probing sites other than amide nitrogen for accurate characterization of the potential and other thermodynamics characteristics of protein backbone. PMID:21416162

  20. Rhodium-catalyzed asymmetric hydroboration of γ,δ-unsaturated amide derivatives: δ-borylated amides.

    PubMed

    Hoang, G L; Zhang, S; Takacs, J M

    2018-05-08

    γ,δ-Unsaturated amides in which the alkene moiety bears an aryl or heteroaryl substituent undergo regioselective rhodium-catalyzed δ-borylation by pinacolborane to afford chiral secondary benzylic boronic esters. The results contrast the γ-borylation of γ,δ-unsaturated amides in which the disubstituted alkene moiety bears only alkyl substituents; the reversal in regiochemistry is coupled with a reversal in the sense of π-facial selectivity.

  1. Evidence for cis Amide Bonds in Peptoid Nanosheets.

    PubMed

    Hudson, Benjamin C; Battigelli, Alessia; Connolly, Michael D; Edison, John; Spencer, Ryan K; Whitelam, Stephen; Zuckermann, Ronald N; Paravastu, Anant K

    2018-05-17

    Peptoid nanosheets are supramolecular protein-mimetic materials that form from amphiphilic polypeptoids with aromatic and ionic side chains. Nanosheets have been studied at the nanometer scale, but the molecular structure has been difficult to probe. We report the use of 13 C- 13 C dipolar recoupling solid-state NMR measurements to reveal the configuration of backbone amide bonds selected by 13 C isotopic labeling of adjacent α-carbons. Measurements on the same molecules in the amorphous state and in nanosheets revealed that amide bonds in the center of the amino block of peptoid (NaeNpe) 7 -(NceNpe) 7 (B28) favor the trans configuration in the amorphous state and the cis configuration in the nanosheet. This unexpected result contrasts with previous NMR and theoretical studies of short solvated peptoids. Furthermore, examination of the amide bond at the junction of the two charged blocks within B28 revealed a mixture of both cis and trans configurational states, consistent with the previously predicted brickwork-like intermolecular organization.

  2. Ab initio molecular orbital and infrared spectroscopic study of the conformation of secondary amides: derivatives of formanilide, acetanilide and benzylamides

    NASA Astrophysics Data System (ADS)

    Ilieva, S.; Hadjieva, B.; Galabov, B.

    1999-09-01

    Ab initio molecular orbital calculations at HF/4-31G level and infrared spectroscopic data for the frequencies are applied to analyse the grouping in a series model aromatic secondary amides: formanilide; acetanilide; o-methylacetanilide; 2,6-dimethylformanilide, 2,6-dimethylacetanilide; N-benzylacetamide and N-benzylformamide. The theoretical and experimental data obtained show that the conformational state of the molecules studied is determined by the fine balance of several intramolecular factors: resonance effect between the amide group and the aromatic ring, steric interaction between various substituents around the -NH-CO- grouping in the aromatic ring, conjugation between the carbonyl bond and the nitrogen lone pair as well as direct field influences inside the amide group.

  3. Evaluation of an amide-based stationary phase for supercritical fluid chromatography

    PubMed Central

    Borges-Muñoz, Amaris C.; Colón, Luis A.

    2017-01-01

    A relatively new stationary phase containing a polar group embedded in a hydrophobic backbone (i.e., ACE® C18-amide) was evaluated for use in supercritical fluid chromatography. The amide-based column was compared with columns packed with bare silica, C18 silica, and a terminal-amide silica phase. The system was held at supercritical pressure and temperature with a mobile phase composition of CO2 and methanol as cosolvent. The linear solvation energy relationship model was used to evaluate the behavior of these stationary phases, relating the retention factor of selected probes to specific chromatographic interactions. A five-component test mixture, consisting of a group of drug-like molecules was separated isocratically. The results show that the C18-amide stationary phase provided a combination of interactions contributing to the retention of the probe compounds. The hydrophobic interactions are favorable; however, the electron donating ability of the embedded amide group shows a large positive interaction. Under the chromatographic conditions used, the C18-amide column was able to provide baseline resolution of all the drug-like probe compounds in a text mixture, while the other columns tested did not. PMID:27396487

  4. Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides

    NASA Astrophysics Data System (ADS)

    Bechara, William S.; Pelletier, Guillaume; Charette, André B.

    2012-03-01

    The development of efficient and selective transformations is crucial in synthetic chemistry as it opens new possibilities in the total synthesis of complex molecules. Applying such reactions to the synthesis of ketones is of great importance, as this motif serves as a synthetic handle for the elaboration of numerous organic functionalities. In this context, we report a general and chemoselective method based on an activation/addition sequence on secondary amides allowing the controlled isolation of structurally diverse ketones and ketimines. The generation of a highly electrophilic imidoyl triflate intermediate was found to be pivotal in the observed exceptional functional group tolerance, allowing the facile addition of readily available Grignard and diorganozinc reagents to amides, and avoiding commonly observed over-addition or reduction side reactions. The methodology has been applied to the formal synthesis of analogues of the antineoplastic agent Bexarotene and to the rapid and efficient synthesis of unsymmetrical diketones in a one-pot procedure.

  5. Aminofluorene-Mediated Biomimetic Domino Amination-Oxygenation of Aldehydes to Amides.

    PubMed

    Ghosh, Santanu; Jana, Chandan K

    2016-11-18

    A conceptually novel biomimetic strategy based on a domino amination-oxygenation reaction was developed for direct amidation of aldehydes under metal-free conditions employing molecular oxygen as the oxidant. 9-Aminofluorene derivatives acted as pyridoxamine-5'-phosphate equivalents for efficient, chemoselective, and operationally simple amine-transfer oxygenation reaction. Unprecedented RNH transfer involving secondary amine to produce secondary amides was achieved. In the presence of 18 O 2 , 18 O-amide was formed with excellent (95%) isotopic purity.

  6. Amide or Amine: Determining the Origin of the 3300 cm−1 NH Mode in Protein SFG Spectra Using 15N Isotope Labels

    PubMed Central

    Weidner, Tobias; Breen, Nicholas F.; Drobny, Gary P.; Castner, David G.

    2009-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been employed in biomaterials research and protein adsorption studies with growing success in recent years. A number of studies focusing on understanding SFG spectra of proteins and peptides at different interfaces have laid the foundation for future, more complex studies. In many cases a strong NH mode near 3300 cm−1 is observed in the SFG spectra, but the relationship of this mode to the peptide structure is uncertain since it has been assigned to either a backbone amide mode or a side chain related amine resonance. A thorough understanding of the SFG spectra of these first model systems is an important first step for future experiments. To clarify the origin of the NH SFG mode we studied 15N isotopically labeled 14-amino acid amphiphilic model peptides composed of lysine (K) and leucine (L) in an α-helical secondary structure (LKα14) that were adsorbed onto charged surfaces in situ at the solid-liquid interface. 15N substitution at the terminal amine group of the lysine side chains resulted in a red-shift of the NH mode of 9 cm−1 on SiO2 and 13 cm−1 on CaF2. This clearly shows the 3300 cm−1 NH feature is associated with side chain NH stretches and not with backbone amide modes. PMID:19873996

  7. Amide or amine: determining the origin of the 3300 cm(-1) NH mode in protein SFG spectra using 15N isotope labels.

    PubMed

    Weidner, Tobias; Breen, Nicholas F; Drobny, Gary P; Castner, David G

    2009-11-26

    Sum frequency generation (SFG) vibrational spectroscopy has been employed in biomaterials research and protein adsorption studies with growing success in recent years. A number of studies focusing on understanding SFG spectra of proteins and peptides at different interfaces have laid the foundation for future, more complex studies. In many cases, a strong NH mode near 3300 cm(-1) is observed in the SFG spectra, but the relationship of this mode to the peptide structure is uncertain, since it has been assigned to either a backbone amide mode or a side chain related amine resonance. A thorough understanding of the SFG spectra of these first model systems is an important first step for future experiments. To clarify the origin of the NH SFG mode, we studied (15)N isotopically labeled 14-amino acid amphiphilic model peptides composed of lysine (K) and leucine (L) in an alpha-helical secondary structure (LKalpha14) that were adsorbed onto charged surfaces in situ at the solid-liquid interface. (15)N substitution at the terminal amine group of the lysine side chains resulted in a red-shift of the NH mode of 9 cm(-1) on SiO(2) and 13 cm(-1) on CaF(2). This clearly shows the 3300 cm(-1) NH feature is associated with side chain NH stretches and not with backbone amide modes.

  8. Optical backbone-sidechain charge transfer transitions in proteins sensitive to secondary structure and modifications.

    PubMed

    Mandal, I; Paul, S; Venkatramani, R

    2018-04-17

    The absorption of light by proteins can induce charge transfer (CT) transitions in the UV-visible range of the electromagnetic spectrum. Metal-ligand complexes or active site prosthetic groups which absorb in the visible region exhibit prominent CT transitions. Furthermore, the protein backbone also exhibits CT transitions in the far UV range. In this manuscript, we present a detailed computational study of new near UV-visible CT transitions that involve amino acids with charged side chains. Specifically, using time dependent density functional theory calculations, we examine the absorption spectra of naturally charged amino acids (Lys, Glu, Arg, Asp and His), extracted from solution phase protein structures generated by classical molecular dynamics simulations, and phosphorylated amino acids (Tyr, Thr and Ser) from experimentally determined protein structures. We show that amino acids with charged sidechains present a directed electronic donor-bridge-acceptor paradigm, with the lowest energy optical excitations demonstrating peptide backbone-sidechain charge separations. The UV-visible spectral range of the backbone-sidechain CT transitions is determined by the chemical nature of the donor, bridge and acceptor groups within each amino acid, amino acid conformation and the protein secondary structure where the amino acids are located. Photoinduced CT occurs in opposite directions for the anionic and cationic amino acids along the ground state dipole moment vector for the chromophores. We find that photoinduced charge separation is more facile for the anionic amino acids (Asp, Glu, pSer, pThr and pTyr) relative to that for the cationic amino acids (Lys, Arg and Hsp). Our results provide a foundation for the development of spectroscopic markers based on the recently proposed Protein Charge Transfer Spectra (ProCharTS) which are relevant for the study of DNA-binding or intrinsically disordered proteins that are rich in charged amino acids.

  9. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    PubMed Central

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  10. Correlation between protein secondary structure, backbone bond angles, and side-chain orientations.

    PubMed

    Lundgren, Martin; Niemi, Antti J

    2012-08-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central C(α) carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the C(β) carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the C(α)-C(β) structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.

  11. Poly(Amide-imide) Aerogel Materials Produced via an Ice Templating Process

    PubMed Central

    Gawryla, Matthew D.; Arndt, Eric M.

    2018-01-01

    Low density composites of sodium montmorillonite and poly(amide-imide) polymers have been created using an ice templating method, which serves as an alternative to the often-difficult foaming of high temperature/high performance polymers. The starting polymer was received in the poly(amic acid) form which can be cured using heat, into a water insoluble amide-imide copolymer. The resulting materials have densities in the 0.05 g/cm3 range and have excellent mechanical properties. Using a tertiary amine as a processing aid provides for lower viscosity and allows more concentrated polymer solutions to be used. The concentration of the amine relative to the acid groups on the polymer backbone has been found to cause significant difference in the mechanical properties of the dried materials. The synthesis and characterization of low density versions of two poly(amide-imide) polymers and their composites with sodium montmorillonite clay are discussed in the present work. PMID:29401663

  12. Poly(Amide-imide) Aerogel Materials Produced via an Ice Templating Process.

    PubMed

    Gawryla, Matthew D; Arndt, Eric M; Sánchez-Soto, Miguel; Schiraldi, David A

    2018-02-03

    Low density composites of sodium montmorillonite and poly(amide-imide) polymers have been created using an ice templating method, which serves as an alternative to the often-difficult foaming of high temperature/high performance polymers. The starting polymer was received in the poly(amic acid) form which can be cured using heat, into a water insoluble amide-imide copolymer. The resulting materials have densities in the 0.05 g/cm³ range and have excellent mechanical properties. Using a tertiary amine as a processing aid provides for lower viscosity and allows more concentrated polymer solutions to be used. The concentration of the amine relative to the acid groups on the polymer backbone has been found to cause significant difference in the mechanical properties of the dried materials. The synthesis and characterization of low density versions of two poly(amide-imide) polymers and their composites with sodium montmorillonite clay are discussed in the present work.

  13. Protein Topology Determines Cysteine Oxidation Fate: The Case of Sulfenyl Amide Formation among Protein Families

    PubMed Central

    Defelipe, Lucas A.; Lanzarotti, Esteban; Gauto, Diego; Marti, Marcelo A.; Turjanski, Adrián G.

    2015-01-01

    Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function. PMID:25741692

  14. Oligonuclear ferrocene amides: mixed-valent peptides and potential redox-switchable foldamers.

    PubMed

    Siebler, Daniel; Linseis, Michael; Gasi, Teuta; Carrella, Luca M; Winter, Rainer F; Förster, Christoph; Heinze, Katja

    2011-04-11

    Trinuclear ferrocene tris-amides were synthesized from an Fmoc- or Boc-protected ferrocene amino acid, and hydrogen-bonded zigzag conformations were determined by NMR spectroscopy, molecular modelling, and X-ray diffraction. In these ordered secondary structures orientation of the individual amide dipole moments approximately in the same direction results in a macrodipole moment similar to that of α-helices composed of α-amino acids. Unlike ordinary α-amino acids, the building blocks in these ferrocene amides with defined secondary structure can be sequentially oxidized to mono-, di-, and trications. Singly and doubly charged mixed-valent cations were probed experimentally by Vis/NIR, paramagnetic ¹H NMR and Mössbauer spectroscopy and investigated theoretically by DFT calculations. According to the appearance of intervalence charge transfer (IVCT) bands in solution, the ferrocene/ferrocenium amides are described as Robin-Day class II mixed-valent systems. Mössbauer spectroscopy indicates trapped valences in the solid state. The secondary structure of trinuclear ferrocene tris-amides remains intact (coiled form) upon oxidation to mono- and dications according to DFT calculations, while oxidation to the trication should break the intramolecular hydrogen bonding and unfold the ferrocene peptide (uncoiled form).

  15. Recognition of RNA by amide modified backbone nucleic acids: molecular dynamics simulations of DNA-RNA hybrids in aqueous solution.

    PubMed

    Nina, Mafalda; Fonné-Pfister, Raymonde; Beaudegnies, Renaud; Chekatt, Habiba; Jung, Pierre M J; Murphy-Kessabi, Fiona; De Mesmaeker, Alain; Wendeborn, Sebastian

    2005-04-27

    Thermodynamic and structural properties of a chemically modified DNA-RNA hybrid in which a phosphodiester linkage is replaced by a neutral amide-3 linkage (3'-CH(2)-CONH-5') were investigated using UV melting experiments, molecular dynamics simulations in explicit water, and continuum solvent models. van't Hoff analysis of the experimental UV melting curves suggests that the significant increase of the thermodynamic stability of a 15-mer DNA-RNA with seven alternated amide-3 modifications (+11 degrees C) is mainly due to an increased binding enthalpy. To further evaluate the origin in the observed affinities differences, the electrostatic contribution to the binding free energy was calculated by solving the Poisson-Boltzmann equation numerically. The nonelectrostatic contribution was estimated as the product of a hydrophobic surface tension coefficient and the surface area that is buried upon double strand formation. Structures were taken from 10 ns molecular dynamics simulations computed in a consistent fashion using explicit solvent, counterions, and the particle-mesh Ewald procedure. The present preliminary thermodynamic study suggests that the favorable binding free energy of the amide-3 DNA single strand to the complementary RNA is equally driven by electrostatic and nonpolar contributions to the binding compared to their natural analogues. In addition, molecular dynamics simulations in explicit water were performed on an amide-3 DNA single strand and the corresponding natural DNA. Results from the conformations cluster analysis of the simulated amide-3 DNA single strand ensembles suggest that the 25% of the population sampled within 10 ns has a pre-organized conformation where the sugar C3' endo pucker is favored at the 3'-flanking nucleotides. These structural and thermodynamic features contribute to the understanding of the observed increased affinities of the amide-3 DNA-RNA hybrids at the microscopic level.

  16. NMR Analysis of Amide Hydrogen Exchange Rates in a Pentapeptide-Repeat Protein from A. thaliana.

    PubMed

    Xu, Shenyuan; Ni, Shuisong; Kennedy, Michael A

    2017-05-23

    At2g44920 from Arabidopsis thaliana is a pentapeptide-repeat protein (PRP) composed of 25 repeats capped by N- and C-terminal α-helices. PRP structures are dominated by four-sided right-handed β-helices typically consisting of mixtures of type II and type IV β-turns. PRPs adopt repeated five-residue (Rfr) folds with an Rfr consensus sequence (STAV)(D/N)(L/F)(S/T/R)(X). Unlike other PRPs, At2g44920 consists exclusively of type II β-turns. At2g44920 is predicted to be located in the thylakoid lumen although its biochemical function remains unknown. Given its unusual structure, we investigated the biophysical properties of At2g44920 as a representative of the β-helix family to determine if it had exceptional global stability, backbone dynamics, or amide hydrogen exchange rates. Circular dichroism measurements yielded a melting point of 62.8°C, indicating unexceptional global thermal stability. Nuclear spin relaxation measurements indicated that the Rfr-fold core was rigid with order parameters ranging from 0.7 to 0.9. At2g44920 exhibited a striking range of amide hydrogen exchange rates spanning 10 orders of magnitude, with lifetimes ranging from minutes to several months. A weak correlation was found among hydrogen exchange rates, hydrogen bonding energies, and amino acid solvent-accessible areas. Analysis of contributions from fast (approximately picosecond to nanosecond) backbone dynamics to amide hydrogen exchange rates revealed that the average order parameter of amides undergoing fast exchange was significantly smaller compared to those undergoing slow exchange. Importantly, the activation energies for amide hydrogen exchange were found to be generally higher for the slowest exchanging amides in the central Rfr coil and decreased toward the terminal coils. This could be explained by assuming that the concerted motions of two preceding or following coils required for hydrogen bond disruption and amide hydrogen exchange have a higher activation energy

  17. Catalytic synthesis of amides via aldoximes rearrangement.

    PubMed

    Crochet, Pascale; Cadierno, Victorio

    2015-02-14

    Amide bond formation reactions are among the most important transformations in organic chemistry because of the widespread occurrence of amides in pharmaceuticals, natural products and biologically active compounds. The Beckmann rearrangement is a well-known method to generate secondary amides from ketoximes. However, under the acidic conditions commonly employed, aldoximes RHC=NOH rarely rearrange into the corresponding primary amides RC(=O)NH2. In recent years, it was demonstrated that this atom-economical transformation can be carried out efficiently and selectively with the help of metal catalysts. Several homogeneous and heterogenous systems have been described. In addition, protocols offering the option to generate the aldoximes in situ from the corresponding aldehydes and hydroxylamine, or even from alcohols, have also been developed, as well as a series of tandem processes allowing the access to N-substituted amide products. In this Feature article a comprehensive overview of the advances achieved in this particular research area is presented.

  18. NMR studies of the backbone flexibility and structure of human growth hormone: a comparison of high and low pH conformations.

    PubMed

    Kasimova, Marina R; Kristensen, Søren M; Howe, Peter W A; Christensen, Thorkild; Matthiesen, Finn; Petersen, Jørgen; Sørensen, Hans H; Led, Jens J

    2002-05-03

    (15)N NMR relaxation parameters and amide (1)H/(2)H-exchange rates have been used to characterize the structural flexibility of human growth hormone (rhGH) at neutral and acidic pH. Our results show that the rigidity of the molecule is strongly affected by the solution conditions. At pH 7.0 the backbone dynamics parameters of rhGH are uniform along the polypeptide chain and their values are similar to those of other folded proteins. In contrast, at pH 2.7 the overall backbone flexibility increases substantially compared to neutral pH and the average order parameter approaches the lower limit expected for a folded protein. However, a significant variation of the backbone dynamics through the molecule indicates that under acidic conditions the mobility of the residues becomes more dependent on their location within the secondary structure units. In particular, the order parameters of certain loop regions decrease dramatically and become comparable to those found in unfolded proteins. Furthermore, the HN-exchange rates at low pH reveal that the residues most protected from exchange are clustered at one end of the helical bundle, forming a stable nucleus. We suggest that this nucleus maintains the overall fold of the protein under destabilizing conditions. We therefore conclude that the acid state of rhGH consists of a structurally conserved, but dynamically more flexible helical core surrounded by an aura of highly mobile, unstructured loops. However, in spite of its prominent flexibility the acid state of rhGH cannot be considered a "molten globule" state because of its high stability. It appears from our work that under certain conditions, a protein can tolerate a considerable increase in flexibility of its backbone, along with an increased penetration of water into its core, while still maintaining a stable folded conformation.

  19. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs

    PubMed Central

    Mutisya, Daniel; Selvam, Chelliah; Lunstad, Benjamin D.; Pallan, Pradeep S.; Haas, Amanda; Leake, Devin; Egli, Martin; Rozners, Eriks

    2014-01-01

    RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3′-CH2-CO-NH-5′ amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P–OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5′-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications. PMID:24813446

  20. Cleavage of the main carbon chain backbone of high molecular weight polyacrylamide by aerobic and anaerobic biological treatment.

    PubMed

    Song, Wenzhe; Zhang, Yu; Gao, Yingxin; Chen, Dong; Yang, Min

    2017-12-01

    High molecular weight partially hydrolyzed polyacrylamide (PAM) can be bio-hydrolyzed on the amide side group, however, solid evidence regarding the biological cleavage of its main carbon chain backbone is limited. In this study, viscometry, flow field-flow fractionation multi-angle light scattering (FFF-MALS), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) analysis were used to investigate the biodegradability of PAM with a nominal molecular weight of 2 × 10 7  Da (Da) in two suspended aerobic (25 and 40 °C) and two upflow anaerobic blanket reactors (35 and 55 °C) operated for 470 d under a hydraulic residence time (HRT) of 2 d. Both anaerobic and aerobic biological treatment reduced the viscosity from 2.02 cp in the influent to 1.45-1.60 cp, and reduced the molecular weight of PAM using FFF-MALS from 2.17 × 10 7  Da to less than one-third its original size. The removals of both the amide group and carbon chain backbone in the PAM molecule were further supported by the FTIR analysis. In comparison with the other conditions, thermophilic anaerobic treatment exhibited higher efficiency for PAM biodegradation. Batch test excluded the influence of temperature on the molecular weight of PAM over the range 25-55 °C, suggesting that cleavage of the main carbon chain backbone was attributed to biological degradation. Our results suggested that high molecular weight PAM was biodegradable, but mineralization did not occur. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Zheng, Xuan; Du, Fenfen

    2017-08-01

    The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.

  2. Backbone ¹H, ¹³C, ¹⁵N NMR assignments of yeast OMP synthase in unliganded form and in complex with orotidine 5'-monophosphate.

    PubMed

    Hansen, Michael Riis; Harris, Richard; Barr, Eric W; Cheng, Hong; Girvin, Mark E; Grubmeyer, Charles

    2014-04-01

    The type I phosphoribosyltransferase OMP synthase (EC 2.4.2.10) is involved in de novo synthesis of pyrimidine nucleotides forming the UMP precursor orotidine 5'-monophosphate (OMP). The homodimeric enzyme has a Rossman α/β core topped by a base-enclosing "hood" domain and a flexible domain-swapped catalytic loop. High-resolution X-ray structures of the homologous Salmonella typhimurium and yeast enzymes show that a general compacting of the core as well as movement of the hood and a major disorder-to-order transition of the loop occur upon binding of ligands MgPRPP and orotate. Here we present backbone NMR assignments for the unliganded yeast enzyme (49 kDa) and its complex with product OMP. We were able to assign 212-213 of the 225 non-proline backbone (15)N and amide proton resonances. Significant difference in chemical shifts of the amide cross peaks occur in regions of the structure that undergo movement upon ligand occupancy in the S. typhimurium enzyme.

  3. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs.

    PubMed

    Mutisya, Daniel; Selvam, Chelliah; Lunstad, Benjamin D; Pallan, Pradeep S; Haas, Amanda; Leake, Devin; Egli, Martin; Rozners, Eriks

    2014-06-01

    RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3'-CH2-CO-NH-5' amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P-OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5'-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Orientation Preferences of Backbone Secondary Amide Functional Groups in Peptide Nucleic Acid Complexes: Quantum Chemical Calculations Reveal an Intrinsic Preference of Cationic D-Amino Acid-Based Chiral PNA Analogues for the P-form

    PubMed Central

    Topham, Christopher M.; Smith, Jeremy C.

    2007-01-01

    Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like basepair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNA·DNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs. PMID:17071666

  5. Highly Chemoselective Reduction of Amides (Primary, Secondary, Tertiary) to Alcohols using SmI2/Amine/H2O under Mild Conditions

    PubMed Central

    2014-01-01

    Highly chemoselective direct reduction of primary, secondary, and tertiary amides to alcohols using SmI2/amine/H2O is reported. The reaction proceeds with C–N bond cleavage in the carbinolamine intermediate, shows excellent functional group tolerance, and delivers the alcohol products in very high yields. The expected C–O cleavage products are not formed under the reaction conditions. The observed reactivity is opposite to the electrophilicity of polar carbonyl groups resulting from the nX → π*C=O (X = O, N) conjugation. Mechanistic studies suggest that coordination of Sm to the carbonyl and then to Lewis basic nitrogen in the tetrahedral intermediate facilitate electron transfer and control the selectivity of the C–N/C–O cleavage. Notably, the method provides direct access to acyl-type radicals from unactivated amides under mild electron transfer conditions. PMID:24460078

  6. Protecting‐Group‐Free Amidation of Amino Acids using Lewis Acid Catalysts

    PubMed Central

    Sabatini, Marco T.; Karaluka, Valerija; Lanigan, Rachel M.; Boulton, Lee T.; Badland, Matthew

    2018-01-01

    Abstract Amidation of unprotected amino acids has been investigated using a variety of ‘classical“ coupling reagents, stoichiometric or catalytic group(IV) metal salts, and boron Lewis acids. The scope of the reaction was explored through the attempted synthesis of amides derived from twenty natural, and several unnatural, amino acids, as well as a wide selection of primary and secondary amines. The study also examines the synthesis of medicinally relevant compounds, and the scalability of this direct amidation approach. Finally, we provide insight into the chemoselectivity observed in these reactions. PMID:29505683

  7. Electrostatic frequency maps for amide-I mode of β-peptide: Comparison of molecular mechanics force field and DFT calculations.

    PubMed

    Cai, Kaicong; Zheng, Xuan; Du, Fenfen

    2017-08-05

    The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines.

    PubMed

    Zultanski, Susan L; Zhao, Jingyi; Stahl, Shannon S

    2016-05-25

    A modular Cu/ABNO catalyst system has been identified that enables efficient aerobic oxidative coupling of alcohols and amines to amides. All four permutations of benzylic/aliphatic alcohols and primary/secondary amines are viable in this reaction, enabling broad access to secondary and tertiary amides. The reactions exhibit excellent functional group compatibility and are complete within 30 min-3 h at rt. All components of the catalyst system are commercially available.

  9. Conformational study of the hydroxyproline-O-glycosidic linkage: sugar-peptide orientation and prolyl amide isomerization in (α/β)-galactosylated 4(R/S)-hydroxyproline.

    PubMed

    Naziga, Emmanuel B; Schweizer, Frank; Wetmore, Stacey D

    2012-01-19

    Glycosylation is a frequent post-translational modification of proteins that has been shown to influence protein structure and function. Glycosylation of hydroxyproline occurs widely in plants, but is absent in humans and animals. Previous experimental studies on model amides have indicated that α/β-galactosylation of 4R-hydroxyproline (Hyp) has no measurable effect on prolyl amide isomerization, while a 7% increase in the trans isomer population, as well as a 25-50% increase in the isomerization rate, was observed for the 4S stereoisomer (hyp). In this work, molecular dynamics simulations in explicit water and implicit solvent DFT optimizations are used to examine the structure of the hydroxyproline-O-galactosyl linkage and the effect of glycosylation on the structure and cis/trans isomerization of the peptide backbone. The calculations show two major minima with respect to the glycosidic linkage in all compounds. The C(γ)-exo puckering observed in 4R compounds projects the sugar away from the peptide backbone, while a twisted C(γ)-endo/C(β)-exo pucker in the 4S compounds brings the peptide and sugar rings together and leads to an intramolecular hydrogen-bonding interaction that is sometimes bridged by a water molecule. This hydrogen bond changes the conformation of the peptide backbone, inducing a favorable n → π* interaction between the oxygen lone pair from the prolyl N-terminal amide and the C═O, which explains the observed increase in trans isomer population in α/β-galactosylated 4S-hydroxyproline. Our results provide the first molecular level information about this important glycosidic linkage, as well as provide an explanation for the previously observed increase in trans isomer population in 4S-hyp compounds. Moreover, this study provides evidence that sugar-mediated long-range hydrogen bonding between hydroxyl groups and the carbonyl peptide backbone can modify the properties of N-terminal prolyl cis/trans isomerization in peptides.

  10. Conservative Secondary Shell Substitution In Cyclooxygenase-2 Reduces Inhibition by Indomethacin Amides and Esters via Altered Enzyme Dynamics

    PubMed Central

    2015-01-01

    The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings. PMID:26704937

  11. Detection of amide I signals of interfacial proteins in situ using SFG.

    PubMed

    Wang, Jie; Even, Mark A; Chen, Xiaoyun; Schmaier, Alvin H; Waite, J Herbert; Chen, Zhan

    2003-08-20

    In this Communication, we demonstrate the novel observation that it is feasible to collect amide signals from polymer/protein solution interfaces in situ using sum frequency generation (SFG) vibrational spectroscopy. Such SFG amide signals allow for acquisition of more detailed molecular level information of entire interfacial protein structures. Proteins investigated include bovine serum albumin, mussel protein mefp-2, factor XIIa, and ubiquitin. Our studies indicate that different proteins generate different SFG amide signals at the polystyrene/protein solution interface, showing that they have different interfacial coverage, secondary structure, or orientation.

  12. Directed-Backbone Dissociation Following Bond-Specific Carbon-Sulfur UVPD at 213 nm

    NASA Astrophysics Data System (ADS)

    Talbert, Lance E.; Julian, Ryan R.

    2018-04-01

    Ultraviolet photodissociation or UVPD is an increasingly popular option for tandem-mass spectrometry experiments. UVPD can be carried out at many wavelengths, and it is important to understand how the results will be impacted by this choice. Here, we explore the utility of 213 nm photons for initiating bond-selective fragmentation. It is found that bonds previously determined to be labile at 266 nm, including carbon-iodine and sulfur-sulfur bonds, can also be cleaved with high selectivity at 213 nm. In addition, many carbon-sulfur bonds that are not subject to direct dissociation at 266 nm can be selectively fragmented at 213 nm. This capability can be used to site-specifically create alaninyl radicals that direct backbone dissociation at the radical site, creating diagnostic d-ions. Furthermore, the additional carbon-sulfur bond fragmentation capability leads to signature triplets for fragmentation of disulfide bonds. Absorption of amide bonds can enhance dissociation of nearby labile carbon-sulfur bonds and can be used for stochastic backbone fragmentation typical of UVPD experiments at shorter wavelengths. Several potential applications of the bond-selective fragmentation chemistry observed at 213 nm are discussed. [Figure not available: see fulltext.

  13. Characteristic conformation of Mosher's amide elucidated using the cambridge structural database.

    PubMed

    Ichikawa, Akio; Ono, Hiroshi; Mikata, Yuji

    2015-07-16

    Conformations of the crystalline 3,3,3-trifluoro-2-methoxy-2-phenylpropanamide derivatives (MTPA amides) deposited in the Cambridge Structural Database (CSD) were examined statistically as Racid-enantiomers. The majority of dihedral angles (48/58, ca. 83%) of the amide carbonyl groups and the trifluoromethyl groups ranged from -30° to 0° with an average angle θ1 of -13°. The other conformational properties were also clarified: (1) one of the fluorine atoms was antiperiplanar (ap) to the amide carbonyl group, forming a staggered conformation; (2) the MTPA amides prepared from primary amines showed a Z form in amide moieties; (3) in the case of the MTPA amide prepared from a primary amine possessing secondary alkyl groups (i.e., Mosher-type MTPA amide), the dihedral angles between the methine groups and the carbonyl groups were syn and indicative of a moderate conformational flexibility; (4) the phenyl plane was inclined from the O-Cchiral bond of the methoxy moiety with an average dihedral angle θ2 of +21°; (5) the methyl group of the methoxy moiety was ap to the ipso-carbon atom of the phenyl group.

  14. Structures of Highly Twisted Amides Relevant to Amide N-C Cross-Coupling: Evidence for Ground-State Amide Destabilization.

    PubMed

    Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2016-10-04

    Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Protein Structure Validation and Refinement Using Amide Proton Chemical Shifts Derived from Quantum Mechanics

    PubMed Central

    Christensen, Anders S.; Linnet, Troels E.; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H.

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3 JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding. PMID:24391900

  16. Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase.

    PubMed

    Kim, In-Hae; Park, Yong-Kyu; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke

    2015-11-15

    Structure-activity relationships of amide-phosphonate derivatives as inhibitors of the human soluble epoxide hydrolase (sEH) were investigated. First, a series of alkyl or aryl groups were substituted on the carbon alpha to the phosphonate function in amide compounds to see whether substituted phosphonates can act as a secondary pharmacophore. A tert-butyl group (16) on the alpha carbon was found to yield most potent inhibition on the target enzyme. A 4-50-fold drop in inhibition was induced by other substituents such as aryls, substituted aryls, cycloalkyls, and alkyls. Then, the modification of the O-substituents on the phosphonate function revealed that diethyl groups (16 and 23) were preferable for inhibition to other longer alkyls or substituted alkyls. In amide compounds with the optimized diethylphosphonate moiety and an alkyl substitution such as adamantane (16), tetrahydronaphthalene (31), or adamantanemethane (36), highly potent inhibitions were gained. In addition, the resulting potent amide-phosphonate compounds had reasonable water solubility, suggesting that substituted phosphonates in amide inhibitors are effective for both inhibition potency on the human sEH and water solubility as a secondary pharmacophore. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Synthesis of chlorophyll-a derivatives possessing various amides as potential sensitizers for photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cui, Yuxiao; Ogasawara, Shin; Tamiaki, Hitoshi

    32-Carboxy-pyropheophorbides-a possessing a variety of N-substituted carbamoyl groups at the 172-position were prepared by modifying naturally occurring chlorophyll-a. 32-Methoxycarbonyl-pyropheophorbide-a was obtained via the protection of the 172-carboxy group with an allyl group, and amidated with various primary and secondary amines at the free 17-propionate residue, followed by the acidic hydrolysis of the methyl ester in the 3-substituent to give the desired pyropheophorbide-a secondary and tertiary amides, respectively, bearing the trans-32-COOH. The synthetic pigments potentially usable for dye-sensitized solar cells gave almost the same optical properties in a solution. 32-Carboxy-pyropheophorbide-a N-monosubstituted or N,N-disubstituted amides were prepared from chemical modification of chlorophyll-a, which are potentially promising as available and environmentally friendly pigments for dye-sensitized solar cells.

  18. Structure and dynamics of a detergent-solubilized membrane protein: measurement of amide hydrogen exchange rates in M13 coat protein by /sub 1/H NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neil, J.D.J.; Sykes, B.D.

    The coat protein of bacteriophage M13 is inserted into the inner membrane of Escherichia coli where it exists as an integral membrane protein during the reproductive cycle of the phage. The protein sequence consists of a highly hydrophobic 19-residue central segment flanked by an acidic 20-residue N-terminus and a basic 11-residue C-terminus. The authors have measured backbone amide hydrogen exchange of the protein solubilized in perdeuteriated sodium dodecyl sulfate using /sup 1/H nuclear magnetic resonance (NMR) spectroscopy. Direct proton exchange-out measurements in D/sub 2/O at 24 /sup 0/C were used to follow the exchange of the slowest amides in themore » protein. Multiple exponential fitting of the exchange data showed that these amides exchanged in two kinetic sets with exchange rates that differed by more than 100-fold. Steady-state saturation-transfer techniques were also used to measure exchange. These methods showed that 15-20 amides in the protein are very stable at 55/sup 0/C and that bout 30 amides have exchange rates retarded by at least 10/sup 5/-fold at 24/sup 0/C. Saturation-transfer studies also showed that the pH dependence of exchange in the hydrophilic termini was unusual. Relaxation and solid-state NMR experiments have previously shown that the majority of the protein backbone is rigid on the picosecond to microsecond time scale, except for the extreme ends of the molecule which are mobile. The hydrogen exchange results, which are sensitive to a much longer time scale, suggest a stable core with a progressive increase in amplitude or frequency of motions as the ends of the protein are approached.« less

  19. Nickel-Catalyzed Phosphine Free Direct N-Alkylation of Amides with Alcohols.

    PubMed

    Das, Jagadish; Banerjee, Debasis

    2018-03-16

    Herein, we developed an operational simple, practical, and selective Ni-catalyzed synthesis of secondary amides. Application of renewable alcohols, earth-abundant and nonprecious nickel catalyst facilitates the transformations, releasing water as byproduct. The catalytic system is tolerant to a variety of functional groups including nitrile, allylic ether, and alkene and could be extended to the synthesis of bis-amide, antiemetic drug Tigan, and dopamine D2 receptor antagonist Itopride. Preliminary mechanistic studies revealed the participation of a benzylic C-H bond in the rate-determining step.

  20. The Synthesis and Structural Characterization of Graft Copolymers Composed of γ-PGA Backbone and Oligoesters Pendant Chains

    NASA Astrophysics Data System (ADS)

    Kwiecień, Iwona; Radecka, Iza; Kowalczuk, Marek; Jelonek, Katarzyna; Orchel, Arkadiusz; Adamus, Grażyna

    2017-10-01

    The novel copolymers composed of poly-γ-glutamic acid (γ-PGA) and oligoesters have been developed. The structures of the obtained copolymers including variety of end groups were determined at the molecular level with the aid of electrospray ionization multistage mass spectrometry (ESI-MSn). The fragmentation experiment performed for the selected sodium adducts of the copolymers confirmed that the developed methods lead to the formation of graft copolymers composed of poly-γ-glutamic acid (γ-PGA) backbone and oligoesters pendant chains. Moreover, it was established that fragmentation of selected sodium adducts of graft copolymers proceeded via random breakage of amide bonds along the backbone and ester bonds of the oligoesters pendant chains. Considering potential applications of the synthesized copolymers in the area of biomaterials, the hydrolytic degradation under laboratory conditions and in vitro cytotoxicity tests were performed. The ESI-MSn technique applied in this study has been proven to be a useful tool in structural studies of novel graft copolymers as well as their degradation products. [Figure not available: see fulltext.

  1. Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded {sup 15}N/{sup 19}F-labeled unnatural amino acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Pan; School of Life Science, University of Science and Technology of China, Hefei, Anhui 230026; Xi, Zhaoyong

    Research highlights: {yields} Chemical synthesis of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine. {yields} Site-specific incorporation of {sup 15}N/{sup 19}F-trifluomethyl phenylalanine to SH3. {yields} Site-specific backbone and side chain chemical shift and relaxation analysis. {yields} Different internal motions at different sites of SH3 domain upon ligand binding. -- Abstract: SH3 is a ubiquitous domain mediating protein-protein interactions. Recent solution NMR structural studies have shown that a proline-rich peptide is capable of binding to the human vinexin SH3 domain. Here, an orthogonal amber tRNA/tRNA synthetase pair for {sup 15}N/{sup 19}F-trifluoromethyl-phenylalanine ({sup 15}N/{sup 19}F-tfmF) has been applied to achieve site-specific labeling of SH3 at threemore » different sites. One-dimensional solution NMR spectra of backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F were obtained for SH3 with three different site-specific labels. Site-specific backbone amide ({sup 15}N){sup 1}H and side-chain {sup 19}F chemical shift and relaxation analysis of SH3 in the absence or presence of a peptide ligand demonstrated different internal motions upon ligand binding at the three different sites. This site-specific NMR analysis might be very useful for studying large-sized proteins or protein complexes.« less

  2. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    PubMed

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Backbone chemical shift assignments for the sensor domain of the Burkholderia pseudomallei histidine kinase RisS: "missing" resonances at the dimer interface.

    PubMed

    Buchko, Garry W; Edwards, Thomas E; Hewitt, Stephen N; Phan, Isabelle Q H; Van Voorhis, Wesley C; Miller, Samuel I; Myler, Peter J

    2015-10-01

    Using a deuterated sample, all the observable backbone (1)H(N), (15)N, (13)C(a), and (13)C' chemical shifts for the dimeric, periplasmic sensor domain of the Burkholderia pseudomallei histidine kinase RisS were assigned. Approximately one-fifth of the amide resonances are "missing" in the (1)H-(15)N HSQC spectrum and map primarily onto α-helices at the dimer interface observed in a crystal structure suggesting this region either undergoes intermediate timescale motion (μs-ms) and/or is heterogeneous.

  4. Geometry motivated alternative view on local protein backbone structures.

    PubMed

    Zacharias, Jan; Knapp, Ernst Walter

    2013-11-01

    We present an alternative to the classical Ramachandran plot (R-plot) to display local protein backbone structure. Instead of the (φ, ψ)-backbone angles relating to the chemical architecture of polypeptides generic helical parameters are used. These are the rotation or twist angle ϑ and the helical rise parameter d. Plots with these parameters provide a different view on the nature of local protein backbone structures. It allows to display the local structures in polar (d, ϑ)-coordinates, which is not possible for an R-plot, where structural regimes connected by periodicity appear disconnected. But there are other advantages, like a clear discrimination of the handedness of a local structure, a larger spread of the different local structure domains--the latter can yield a better separation of different local secondary structure motives--and many more. Compared to the R-plot we are not aware of any major disadvantage to classify local polypeptide structures with the (d, ϑ)-plot, except that it requires some elementary computations. To facilitate usage of the new (d, ϑ)-plot for protein structures we provide a web application (http://agknapp.chemie.fu-berlin.de/secsass), which shows the (d, ϑ)-plot side-by-side with the R-plot. © 2013 The Protein Society.

  5. Induced helical backbone conformations of self-organizable dendronized polymers.

    PubMed

    Rudick, Jonathan G; Percec, Virgil

    2008-12-01

    Control of function through the primary structure of a molecule presents a significant challenge with valuable rewards for nanoscience. Dendritic building blocks encoded with information that defines their three-dimensional shape (e.g., flat-tapered or conical) and how they associate with each other are referred to as self-assembling dendrons. Self-organizable dendronized polymers possess a flat-tapered or conical self-assembling dendritic side chain on each repeat unit of a linear polymer backbone. When appended to a covalent polymer, the self-assembling dendrons direct a folding process (i.e., intramolecular self-assembly). Alternatively, intermolecular self-assembly of dendrons mediated by noncovalent interactions between apex groups can generate a supramolecular polymer backbone. Self-organization, as we refer to it, is the spontaneous formation of periodic and quasiperiodic arrays from supramolecular elements. Covalent and supramolecular polymers jacketed with self-assembling dendrons self-organize. The arrays are most often comprised of cylindrical or spherical objects. The shape of the object is determined by the primary structure of the dendronized polymer: the structure of the self-assembling dendron and the length of the polymer backbone. It is therefore possible to predictably generate building blocks for single-molecule nanotechnologies or arrays of supramolecules for bottom-up self-assembly. We exploit the self-organization of polymers jacketed with self-assembling dendrons to elucidate how primary structure determines the adopted conformation and fold (i.e., secondary and tertiary structure), how the supramolecules associate (i.e., quaternary structure), and their resulting functions. A combination of experimental techniques is employed to interrogate the primary, secondary, tertiary, and quaternary structure of the self-organizable dendronized polymers. We refer to the process by which we interpolate between the various levels of structural

  6. Assessment of the amide-I local modes in gamma- and beta-turns of peptides.

    PubMed

    Wang, Jianping

    2009-07-14

    The amide-I local modes, mainly the C[double bond, length as m-dash]O stretching vibrations, form the structural basis of femtosecond 2D IR spectroscopy in characterizing backbone structures and dynamics of peptides and proteins. In this work, a density functional theory (DFT) level of computational assessment of the amide-I local modes in oligomers mostly in the turn conformations was carried out. It is shown that local mode properties, including transition frequencies and transition dipole magnitudes and orientations, are slightly conformational dependent. However, the distributions of these properties in the peptide oligomers are narrow and have mean values almost identical to those from an isolated peptide monomer, justifying the prevalent use of a uniform local mode in modeling the 1D and 2D IR spectra. In addition, it is shown that the transition dipole magnitude and orientation of the peptide monomer predicted by the DFT calculations can be well approximated by electrostatic potential-based transition charge schemes, e.g. Merz-Singh-Kollman, CHELP, as well as CHELPG.

  7. Engineered Biosynthesis of a Novel Amidated Polyketide, Using the Malonamyl-Specific Initiation Module from the Oxytetracycline Polyketide Synthase

    PubMed Central

    Zhang, Wenjun; Ames, Brian D.; Tsai, Shiou-Chuan; Tang, Yi

    2006-01-01

    Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases (PKSs). Understanding the biochemistry of tetracycline PKSs is an important step toward the rational and combinatorial manipulation of tetracycline biosynthesis. To this end, we have sequenced the gene cluster of oxytetracycline (oxy and otc genes) PKS genes from Streptomyces rimosus. Sequence analysis revealed a total of 21 genes between the otrA and otrB resistance genes. We hypothesized that an amidotransferase, OxyD, synthesizes the malonamate starter unit that is a universal building block for tetracycline compounds. In vivo reconstitution using strain CH999 revealed that the minimal PKS and OxyD are necessary and sufficient for the biosynthesis of amidated polyketides. A novel alkaloid (WJ35, or compound 2) was synthesized as the major product when the oxy-encoded minimal PKS, the C-9 ketoreductase (OxyJ), and OxyD were coexpressed in CH999. WJ35 is an isoquinolone compound derived from an amidated decaketide backbone and cyclized with novel regioselectivity. The expression of OxyD with a heterologous minimal PKS did not afford similarly amidated polyketides, suggesting that the oxy-encoded minimal PKS possesses novel starter unit specificity. PMID:16597959

  8. Mild and Selective Hydrozirconation of Amides to Aldehydes Using Cp2Zr(H)Cl

    PubMed Central

    Spletstoser, Jared T.; White, Jonathan M.; Tunoori, Ashok Rao; Georg, Gunda I.

    2008-01-01

    An investigation of the use of Cp2Zr(H)Cl (Schwartz’s reagent) to reduce a variety of amides to the corresponding aldehydes under very mild reaction conditions and in high yields is reported. A range of tertiary amides, including Weinreb’s amide, can be converted directly to the corresponding aldehydes with remarkable chemoselectivity. Primary and secondary amides proved to be viable substrates for reduction as well, although the yields were somewhat diminished compared to the corresponding tertiary amides. Results from NMR experiments suggested the presence of a stable, 18-electron zirconacycle intermediate that presumably affords the aldehyde upon water or silica gel workup. A series of competition experiments revealed a preference of the reagent for substrates in which the lone pair of the nitrogen is electron releasing and thus more delocalized across the amide bond by resonance. This trend accounts for the observed excellent selectivity for tertiary amides versus esters. Experiments regarding the solvent dependence of the reaction suggested a kinetic profile similar to that postulated for the hydrozirconation of alkenes and alkynes. Addition of p-anisidine to the reaction intermediate resulted in the formation of the corresponding imine mimicking the addition of water that forms the aldehyde. PMID:17315870

  9. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds.

    PubMed

    Hie, Liana; Fine Nathel, Noah F; Shah, Tejas K; Baker, Emma L; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K N; Garg, Neil K

    2015-08-06

    Amides are common functional groups that have been studied for more than a century. They are the key building blocks of proteins and are present in a broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to the resonance stability of the amide bond. Although amides can readily be cleaved by enzymes such as proteases, it is difficult to selectively break the carbon-nitrogen bond of an amide using synthetic chemistry. Here we demonstrate that amide carbon-nitrogen bonds can be activated and cleaved using nickel catalysts. We use this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory calculations provide insight into the thermodynamics and catalytic cycle of the amide-to-ester transformation. Our results provide a way to harness amide functional groups as synthetic building blocks and are expected to lead to the further use of amides in the construction of carbon-heteroatom or carbon-carbon bonds using non-precious-metal catalysis.

  10. Synthesis of sterically hindered enamides via a Ti-mediated condensation of amides with aldehydes and ketones.

    PubMed

    Genovino, Julien; Lagu, Bharat; Wang, Yaping; Touré, B Barry

    2012-07-07

    The first TiCl(4)-mediated condensation of secondary amides with aldehydes and ketones has been achieved. The reaction proceeds at room temperature and is complete within 5 h in most cases. The optimized procedure used 5 equiv of an amine base hinting that the in situ activation of both the amide and the Lewis acid is required. The reaction affords polysubstituted (E)-enamides.

  11. Reversible Twisting of Primary Amides via Ground State N-C(O) Destabilization: Highly Twisted Rotationally Inverted Acyclic Amides.

    PubMed

    Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2018-01-17

    Since the seminal studies by Pauling in 1930s, planarity has become the defining characteristic of the amide bond. Planarity of amides has central implications for the reactivity and chemical properties of amides of relevance to a range of chemical disciplines. While the vast majority of amides are planar, nonplanarity has a profound effect on the properties of the amide bond, with the most common method to restrict the amide bond relying on the incorporation of the amide function into a rigid cyclic ring system. In a major departure from this concept, here, we report the first class of acyclic twisted amides that can be prepared, reversibly, from common primary amides in a single, operationally trivial step. Di-tert-butoxycarbonylation of the amide nitrogen atom yields twisted amides in which the amide bond exhibits nearly perpendicular twist. Full structural characterization of a range of electronically diverse compounds from this new class of twisted amides is reported. Through reactivity studies we demonstrate unusual properties of the amide bond, wherein selective cleavage of the amide bond can be achieved by a judicious choice of the reaction conditions. Through computational studies we evaluate structural and energetic details pertaining to the amide bond deformation. The ability to selectively twist common primary amides, in a reversible manner, has important implications for the design and application of the amide bond nonplanarity in structural chemistry, biochemistry and organic synthesis.

  12. Enantioselective Synthesis of α-Oxy Amides via Umpolung Amide Synthesis

    PubMed Central

    Leighty, Matthew W.; Shen, Bo

    2012-01-01

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes, and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids. PMID:22967461

  13. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.

    PubMed

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N

    2012-09-19

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.

  14. A simple primary amide for the selective recovery of gold from secondary resources

    DOE PAGES

    Doidge, Euan D.; Carson, Innis; Tasker, Peter A.; ...

    2016-08-24

    Waste electrical and electronic equipment (WEEE) such as mobile phones contains a plethora of metals of which gold is by far the most valuable. Herein a simple primary amide is described that achieves the selective separation of gold from a mixture of metals typically found in mobile phones by extraction into toluene from an aqueous HCl solution; unlike current processes, reverse phase transfer is achieved simply using water. Phase transfer occurs by dynamic assembly of protonated and neutral amides with [AuCl 4]– ions through hydrogen bonding in the organic phase, as shown by EXAFS, mass spectrometry measurements, and computational calculations,more » and supported by distribution coefficient analysis. In conclusion, the fundamental chemical understanding gained herein should be integral to the development of metal-recovery processes, in particular through the use of dynamic assembly processes to build complexity from simplicity.« less

  15. Solution NMR Structures of Oxidized and Reduced Ehrlichia chaffeensis thioredoxin: NMR-Invisible Structure Owing to Backbone Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchko, Garry W.; Hewitt, Stephen N.; Van Voorhis, Wesley C.

    Thioredoxins (Trxs) are small ubiquitous proteins that participate in a diverse variety of redox reactions via the reversible oxidation of two cysteine thiol groups in a structurally conserved active site, CGPC. Here, we describe the NMR solution structures of a Trx from Ehrlichia chaffeensis (Ec-Trx, ECH_0218), the etiological agent responsible for human monocytic ehrlichiosis, in both the oxidized and reduced states. The overall topology of the calculated structures is similar in both redox states and similar to other Trx structures, a five-strand, mixed -sheet (1:3:2:4:5) surrounded by four -helices. Unlike other Trxs studied by NMR in both redox states, themore » 1H-15N HSQC spectra of reduced Ec-Trx was missing eight amide cross peaks relative to the spectra of oxidized Ec-Trx. These missing amides correspond to residues C32-E39 in the active site containing helix (2) and S72-I75 in a loop near the active site and suggest a substantial change in the backbone dynamics associated with the formation of an intramolecular C32-C35 disulfide bond.« less

  16. Amide-induced phase separation of hexafluoroisopropanol-water mixtures depending on the hydrophobicity of amides.

    PubMed

    Takamuku, Toshiyuki; Wada, Hiroshi; Kawatoko, Chiemi; Shimomura, Takuya; Kanzaki, Ryo; Takeuchi, Munetaka

    2012-06-21

    Amide-induced phase separation of hexafluoro-2-propanol (HFIP)-water mixtures has been investigated to elucidate solvation properties of the mixtures by means of small-angle neutron scattering (SANS), (1)H and (13)C NMR, and molecular dynamics (MD) simulation. The amides included N-methylformamide (NMF), N-methylacetamide (NMA), and N-methylpropionamide (NMP). The phase diagrams of amide-HFIP-water ternary systems at 298 K showed that phase separation occurs in a closed-loop area of compositions as well as an N,N-dimethylformamide (DMF) system previously reported. The phase separation area becomes wider as the hydrophobicity of amides increases in the order of NMF < NMA < DMF < NMP. Thus, the evolution of HFIP clusters around amides due to the hydrophobic interaction gives rise to phase separation of the mixtures. In contrast, the disruption of HFIP clusters causes the recovery of the homogeneity of the ternary systems. The present results showed that HFIP clusters are evolved with increasing amide content to the lower phase separation concentration in the same mechanism among the four amide systems. However, the disruption of HFIP clusters in the NMP and DMF systems with further increasing amide content to the upper phase separation concentration occurs in a different way from those in the NMF and NMA systems.

  17. Conversion of Amides to Esters by the Nickel-Catalyzed Activation of Amide C–N Bonds

    PubMed Central

    Hie, Liana; Fine Nathel, Noah F.; Shah, Tejas K.; Baker, Emma L.; Hong, Xin; Yang, Yun-Fang; Liu, Peng; Houk, K. N.; Garg, Neil K.

    2015-01-01

    Amides are common functional groups that have been well studied for more than a century.1 They serve as the key building blocks of proteins and are present in an broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to resonance stability of the amide bond.1,2 Whereas Nature can easily cleave amides through the action of enzymes, such as proteases,3 the ability to selectively break the C–N bond of an amide using synthetic chemistry is quite difficult. In this manuscript, we demonstrate that amide C–N bonds can be activated and cleaved using nickel catalysts. We have used this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory (DFT) calculations provide insight into the thermodynamics and catalytic cycle of this unusual transformation. Our results provide a new strategy to harness amide functional groups as synthons and are expected fuel the further use of amides for the construction of carbon–heteroatom or carbon–carbon bonds using non-precious metal catalysis. PMID:26200342

  18. High-Resolution Crystal Structures of Protein Helices Reconciled with Three-Centered Hydrogen Bonds and Multipole Electrostatics

    PubMed Central

    Kuster, Daniel J.; Liu, Chengyu; Fang, Zheng; Ponder, Jay W.; Marshall, Garland R.

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.613 α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.613/10-, Némethy- or N-helix, is proposed. Due to the use of constraints from monopole

  19. High-resolution crystal structures of protein helices reconciled with three-centered hydrogen bonds and multipole electrostatics.

    PubMed

    Kuster, Daniel J; Liu, Chengyu; Fang, Zheng; Ponder, Jay W; Marshall, Garland R

    2015-01-01

    Theoretical and experimental evidence for non-linear hydrogen bonds in protein helices is ubiquitous. In particular, amide three-centered hydrogen bonds are common features of helices in high-resolution crystal structures of proteins. These high-resolution structures (1.0 to 1.5 Å nominal crystallographic resolution) position backbone atoms without significant bias from modeling constraints and identify Φ = -62°, ψ = -43 as the consensus backbone torsional angles of protein helices. These torsional angles preserve the atomic positions of α-β carbons of the classic Pauling α-helix while allowing the amide carbonyls to form bifurcated hydrogen bonds as first suggested by Némethy et al. in 1967. Molecular dynamics simulations of a capped 12-residue oligoalanine in water with AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications), a second-generation force field that includes multipole electrostatics and polarizability, reproduces the experimentally observed high-resolution helical conformation and correctly reorients the amide-bond carbonyls into bifurcated hydrogen bonds. This simple modification of backbone torsional angles reconciles experimental and theoretical views to provide a unified view of amide three-centered hydrogen bonds as crucial components of protein helices. The reason why they have been overlooked by structural biologists depends on the small crankshaft-like changes in orientation of the amide bond that allows maintenance of the overall helical parameters (helix pitch (p) and residues per turn (n)). The Pauling 3.6(13) α-helix fits the high-resolution experimental data with the minor exception of the amide-carbonyl electron density, but the previously associated backbone torsional angles (Φ, Ψ) needed slight modification to be reconciled with three-atom centered H-bonds and multipole electrostatics. Thus, a new standard helix, the 3.6(13/10)-, Némethy- or N-helix, is proposed. Due to the use of constraints from

  20. Amides in Nature and Biocatalysis.

    PubMed

    Pitzer, Julia; Steiner, Kerstin

    2016-10-10

    Amides are widespread in biologically active compounds with a broad range of applications in biotechnology, agriculture and medicine. Therefore, as alternative to chemical synthesis the biocatalytic amide synthesis is a very interesting field of research. As usual, Nature can serve as guide in the quest for novel biocatalysts. Several mechanisms for carboxylate activation involving mainly acyl-adenylate, acyl-phosphate or acyl-enzyme intermediates have been discovered, but also completely different pathways to amides are found. In addition to ribosomes, selected enzymes of almost all main enzyme classes are able to synthesize amides. In this review we give an overview about amide synthesis in Nature, as well as biotechnological applications of these enzymes. Moreover, several examples of biocatalytic amide synthesis are given. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. One-Pot Amide Bond Formation from Aldehydes and Amines via a Photoorganocatalytic Activation of Aldehydes.

    PubMed

    Papadopoulos, Giorgos N; Kokotos, Christoforos G

    2016-08-19

    A mild, one-pot, and environmentally friendly synthesis of amides from aldehydes and amines is described. Initially, a photoorganocatalytic reaction of aldehydes with di-isopropyl azodicarboxylate leads to an intermediate carbonyl imide, which can react with a variety of amines to afford the desired amides. The initial visible light-mediated activation of a variety of monosubstituted or disubstituted aldehydes is usually fast, occurring in a few hours. Following the photocatalytic reaction, addition of the primary amine at room temperature or the secondary amine at elevated temperatures leads to the corresponding amide from moderate to excellent yields without epimerization. This methodology was applied in the synthesis of Moclobemide, a drug against depression and social anxiety.

  2. The structure and dynamics in solution of Cu(I) pseudoazurin from Paracoccus pantotrophus.

    PubMed Central

    Thompson, G. S.; Leung, Y. C.; Ferguson, S. J.; Radford, S. E.; Redfield, C.

    2000-01-01

    The solution structure and backbone dynamics of Cu(I) pseudoazurin, a 123 amino acid electron transfer protein from Paracoccus pantotrophus, have been determined using NMR methods. The structure was calculated to high precision, with a backbone RMS deviation for secondary structure elements of 0.35+/-0.06 A, using 1,498 distance and 55 torsion angle constraints. The protein has a double-wound Greek-key fold with two alpha-helices toward its C-terminus, similar to that of its oxidized counterpart determined by X-ray crystallography. Comparison of the Cu(I) solution structure with the X-ray structure of the Cu(II) protein shows only small differences in the positions of some of the secondary structure elements. Order parameters S2, measured for amide nitrogens, indicate that the backbone of the protein is rigid on the picosecond to nanosecond timescale. PMID:10850794

  3. Unexpected Hydrolytic Instability of N-Acylated Amino Acid Amides and Peptides

    PubMed Central

    2015-01-01

    Remote amide bonds in simple N-acyl amino acid amide or peptide derivatives 1 can be surprisingly unstable hydrolytically, affording, in solution, variable amounts of 3 under mild acidic conditions, such as trifluoroacetic acid/water mixtures at room temperature. This observation has important implications for the synthesis of this class of compounds, which includes N-terminal-acylated peptides. We describe the factors contributing to this instability and how to predict and control it. The instability is a function of the remote acyl group, R2CO, four bonds away from the site of hydrolysis. Electron-rich acyl R2 groups accelerate this reaction. In the case of acyl groups derived from substituted aromatic carboxylic acids, the acceleration is predictable from the substituent’s Hammett σ value. N-Acyl dipeptides are also hydrolyzed under typical cleavage conditions. This suggests that unwanted peptide truncation may occur during synthesis or prolonged standing in solution when dipeptides or longer peptides are acylated on the N-terminus with electron-rich aromatic groups. When amide hydrolysis is an undesired secondary reaction, as can be the case in the trifluoroacetic acid-catalyzed cleavage of amino acid amide or peptide derivatives 1 from solid-phase resins, conditions are provided to minimize that hydrolysis. PMID:24617596

  4. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L. C.

    2011-12-01

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D2O and compare with experimental observations.

  5. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline.

    PubMed

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L C

    2011-12-21

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are not applicable to proline because this amino acid has a tertiary amide unit. Therefore, a new parametrization is required for infrared-spectroscopic studies of proteins that contain proline, such as collagen, the most abundant protein in humans and animals. Here, we construct the electrostatic and dihedral maps accounting for solvent and conformation effects on frequency and coupling for the proline unit. We examine the quality and the applicability of these maps by carrying out spectral simulations of a number of peptides with proline in D(2)O and compare with experimental observations.

  6. Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis.

    PubMed

    Zaccaron, Alex Z; Woloshuk, Charles P; Bluhm, Burton H

    2017-11-01

    Stenocarpella maydis is a plant pathogenic fungus that causes Diplodia ear rot, one of the most destructive diseases of maize. To date, little information is available regarding the molecular basis of pathogenesis in this organism, in part due to limited genomic resources. In this study, a 54.8 Mb draft genome assembly of S. maydis was obtained with Illumina and PacBio sequencing technologies, and analyzed. Comparative genomic analyses with the predominant maize ear rot pathogens Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum revealed an expanded set of carbohydrate-active enzymes for cellulose and hemicellulose degradation in S. maydis. Analyses of predicted genes involved in starch degradation revealed six putative α-amylases, four extracellular and two intracellular, and two putative γ-amylases, one of which appears to have been acquired from bacteria via horizontal transfer. Additionally, 87 backbone genes involved in secondary metabolism were identified, which represents one of the largest known assemblages among Pezizomycotina species. Numerous secondary metabolite gene clusters were identified, including two clusters likely involved in the biosynthesis of diplodiatoxin and chaetoglobosins. The draft genome of S. maydis presented here will serve as a useful resource for molecular genetics, functional genomics, and analyses of population diversity in this organism. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  7. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.

    PubMed

    Liu, Chengwei; Szostak, Michal

    2017-05-29

    The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Amide-N-oxide heterosynthon and amide dimer homosynthon in cocrystals of carboxamide drugs and pyridine N-oxides.

    PubMed

    Babu, N Jagadeesh; Reddy, L Sreenivas; Nangia, Ashwini

    2007-01-01

    The carboxamide-pyridine N-oxide heterosynthon is sustained by syn(amide)N-H...O-(oxide) hydrogen bond and auxiliary (N-oxide)C-H...O(amide) interaction (Reddy, L. S.; Babu, N. J.; Nangia, A. Chem. Commun. 2006, 1369). We evaluate the scope and utility of this heterosynthon in amide-containing molecules and drugs (active pharmaceutical ingredients, APIs) with pyridine N-oxide cocrystal former molecules (CCFs). Out of 10 cocrystals in this study and 7 complexes from previous work, amide-N-oxide heterosynthon is present in 12 structures and amide dimer homosynthon occurs in 5 structures. The amide dimer is favored over amide-N-oxide synthon in cocrystals when there is competition from another H-bonding functional group, e.g., 4-hydroxybenzamide, or because of steric factors, as in carbamazepine API. The molecular organization in carbamazepine.quinoxaline N,N'-dioxide 1:1 cocrystal structure is directed by amide homodimer and anti(amide)N-H...O-(oxide) hydrogen bond. Its X-ray crystal structure matches with the third lowest energy frame calculated in Polymorph Predictor (Cerius(2), COMPASS force field). Apart from generating new and diverse supramolecular structures, hydration is controlled in one substance. 4-Picoline N-oxide deliquesces within a day, but its cocrystal with barbital does not absorb moisture at 50% RH and 30 degrees C up to four weeks. Amide-N-oxide heterosynthon has potential utility in both amide and N-oxide type drug molecules with complementary CCFs. Its occurrence probability in the Cambridge Structural Database is 87% among 27 structures without competing acceptors and 78% in 41 structures containing OH, NH, H(2)O functional groups.

  9. MS/MS Digital Readout: Analysis of Binary Information Encoded in the Monomer Sequences of Poly(triazole amide)s.

    PubMed

    Amalian, Jean-Arthur; Trinh, Thanh Tam; Lutz, Jean-François; Charles, Laurence

    2016-04-05

    Tandem mass spectrometry was evaluated as a reliable sequencing methodology to read codes encrypted in monodisperse sequence-coded oligo(triazole amide)s. The studied oligomers were composed of monomers containing a triazole ring, a short ethylene oxide segment, and an amide group as well as a short alkyl chain (propyl or isobutyl) which defined the 0/1 molecular binary code. Using electrospray ionization, oligo(triazole amide)s were best ionized as protonated molecules and were observed to adopt a single charge state, suggesting that adducted protons were located on every other monomer unit. Upon collisional activation, cleavages of the amide bond and of one ether bond were observed to proceed in each monomer, yielding two sets of complementary product ions. Distribution of protons over the precursor structure was found to remain unchanged upon activation, allowing charge state to be anticipated for product ions in the four series and hence facilitating their assignment for a straightforward characterization of any encoded oligo(triazole amide)s.

  10. New Umami Amides: Structure-Taste Relationship Studies of Cinnamic Acid Derived Amides and the Natural Occurrence of an Intense Umami Amide in Zanthoxylum piperitum.

    PubMed

    Frerot, Eric; Neirynck, Nathalie; Cayeux, Isabelle; Yuan, Yoyo Hui-Juan; Yuan, Yong-Ming

    2015-08-19

    A series of aromatic amides were synthesized from various acids and amines selected from naturally occurring structural frameworks. These synthetic amides were evaluated for umami taste in comparison with monosodium glutamate. The effect of the substitution pattern of both the acid and the amine parts on umami taste was investigated. The only intensely umami-tasting amides were those made from 3,4-dimethoxycinnamic acid. The amine part was more tolerant to structural changes. Amides bearing an alkyl- or alkoxy-substituted phenylethylamine residue displayed a clean umami taste as 20 ppm solutions in water. Ultraperformance liquid chromatography coupled with a high quadrupole-Orbitrap mass spectrometer (UPLC/MS) was subsequently used to show the natural occurrence of these amides. (E)-3-(3,4-Dimethoxyphenyl)-N-(4-methoxyphenethyl)acrylamide was shown to occur in the roots and stems of Zanthoxylum piperitum, a plant of the family Rutaceae growing in Korea, Japan, and China.

  11. Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results.

    PubMed

    Hahn, Seungsoo

    2016-10-28

    The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.

  12. Protein Structure Determination by Assembling Super-Secondary Structure Motifs Using Pseudocontact Shifts.

    PubMed

    Pilla, Kala Bharath; Otting, Gottfried; Huber, Thomas

    2017-03-07

    Computational and nuclear magnetic resonance hybrid approaches provide efficient tools for 3D structure determination of small proteins, but currently available algorithms struggle to perform with larger proteins. Here we demonstrate a new computational algorithm that assembles the 3D structure of a protein from its constituent super-secondary structural motifs (Smotifs) with the help of pseudocontact shift (PCS) restraints for backbone amide protons, where the PCSs are produced from different metal centers. The algorithm, DINGO-PCS (3D assembly of Individual Smotifs to Near-native Geometry as Orchestrated by PCSs), employs the PCSs to recognize, orient, and assemble the constituent Smotifs of the target protein without any other experimental data or computational force fields. Using a universal Smotif database, the DINGO-PCS algorithm exhaustively enumerates any given Smotif. We benchmarked the program against ten different protein targets ranging from 100 to 220 residues with different topologies. For nine of these targets, the method was able to identify near-native Smotifs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Backbone dynamics of a model membrane protein: measurement of individual amide hydrogen-exchange rates in detergent-solubilized M13 coat protein using /sup 13/C NMR hydrogen/deuterium isotope shifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a /sup 13/C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D/sub 2/O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H/sub 2/O solutions; in 1:1 H/sub 2/O/D/sub 2/O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with /sup 13/C at the peptide carbonyls ofmore » alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects, the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule. A model of the detergent-solubilized coat protein is constructed from these H-exchange data which is consistent with circular dichroism and other NMR results.« less

  14. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N-C Cleavage.

    PubMed

    Hu, Feng; Lalancette, Roger; Szostak, Michal

    2016-04-11

    Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fluorine Scan of Inhibitors of the Cysteine Protease Human Cathepsin L: Dipolar and Quadrupolar Effects in the π-Stacking of Fluorinated Phenyl Rings on Peptide Amide Bonds.

    PubMed

    Giroud, Maude; Harder, Michael; Kuhn, Bernd; Haap, Wolfgang; Trapp, Nils; Schweizer, W Bernd; Schirmeister, Tanja; Diederich, François

    2016-05-19

    The π-stacking of fluorinated benzene rings on protein backbone amide groups was investigated, using a dual approach comprising enzyme-ligand binding studies complemented by high-level quantum chemical calculations. In the experimental study, the phenyl substituent of triazine nitrile inhibitors of human cathepsin L (hCatL), which stacks onto the peptide amide bond Gly67-Gly68 at the entrance of the S3 pocket, was systematically fluorinated, and differences in inhibitory potency were measured in a fluorimetric assay. Binding affinity is influenced by lipophilicity (clog P), the dipole and quadrupole moments of the fluorinated rings, but also by additional interactions of the introduced fluorine atoms with the local environment of the pocket. Generally, the higher the degree of fluorination, the better the binding affinities. Gas phase calculations strongly support the contributions of the molecular quadrupole moments of the fluorinated phenyl rings to the π-stacking interaction with the peptide bond. These findings provide useful guidelines for enhancing π-stacking on protein amide fragments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Backbone dynamics in an intramolecular prolylpeptide-SH3 complex from the diphtheria toxin repressor, DtxR

    PubMed Central

    Bhattacharya, Nilakshee; Yi, Myunggi; Zhou, Huan-Xiang; Logan, Timothy M.

    2008-01-01

    Summary The diphtheria toxin repressor contains an SH3-like domain that forms an intramolecular complex with a proline-rich (Pr) peptide segment and stabilizes the inactive state of the repressor. Upon activation of DtxR by transition metals, this intramolecular complex must dissociate as the SH3 domain and Pr segment form different interactions in the active repressor. In this study we investigate the dynamics of this intramolecular complex using backbone amide nuclear spin relaxation rates determined using NMR spectroscopy and molecular dynamics trajectories. The SH3 domain in the unbound and bound states showed typical dynamics in that the secondary structures were fairly ordered with high generalized order parameters and low effective correlation times while residues in the loops connecting β-strands exhibited reduced generalized order parameters and required additional motional terms to adequately model the relaxation rates. Residues forming the Pr segment exhibited low order parameters with internal rotational correlation times on the order of 0.6 – 1 ns. Further analysis showed that the SH3 domain was rich in millisecond timescale motions while the Pr segment was rich in motions on the 100s μs timescale. Molecular dynamics simultations indicated structural rearrangements that may contribute to the observed relaxation rates and, together with the observed relaxation rate data, suggested that the Pr segment exhibits a binding ↔ unbinding equilibrium. The results of this study provide new insights into the nature of the intramolecular complex and provide a better understanding of the biological role of the SH3 domain in regulating DtxR activity. PMID:17976643

  17. Reduced-Amide Inhibitor of Pin1 Binds in a Conformation Resembling a Twisted-Amide Transition State†

    PubMed Central

    Xu, Guoyan G.; Zhang, Yan; Mercedes-Camacho, Ana Y.; Etzkorn, Felicia A.

    2011-01-01

    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R–pSer–Ψ[CH2N]–Pro–2-(indol-3-yl)-ethylamine, 1 (R = fluorenylmethoxycarbonyl, Fmoc), and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC50 value of 6.3 μM, which is 4.5-fold better inhibition for Pin1 than our comparable ground state analogue, a cis-amide alkene isostere containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination, and resulted in an IC50 value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser, and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1. PMID:21980916

  18. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    NASA Astrophysics Data System (ADS)

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre

    2016-06-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.

  19. Cost-effectiveness analysis of dolutegravir plus backbone compared with raltegravir plus backbone, darunavir+ritonavir plus backbone and efavirenz/tenofovir/emtricitabine in treatment naïve and experienced HIV-positive patients.

    PubMed

    Restelli, Umberto; Rizzardini, Giuliano; Antinori, Andrea; Lazzarin, Adriano; Bonfanti, Marzia; Bonfanti, Paolo; Croce, Davide

    2017-01-01

    In January 2014, the European Medicines Agency issued a marketing authorization for dolutegravir (DTG), a second-generation integrase strand transfer inhibitor for HIV treatment. The study aimed at determining the incremental cost-effectiveness ratio (ICER) of the use of DTG+backbone compared with raltegravir (RAL)+backbone, darunavir (DRV)+ritonavir(r)+backbone and efavirenz/tenofovir/emtricitabine (EFV/TDF/FTC) in HIV-positive treatment-naïve patients and compared with RAL+backbone in treatment-experienced patients, from the Italian National Health Service's point of view. A published Monte Carlo Individual Simulation Model (ARAMIS-DTG model) was used to perform the analysis. Patients pass through mutually exclusive health states (defined in terms of diagnosis of HIV with or without opportunistic infections [OIs] and cardiovascular disease [CVD]) and successive lines of therapy. The model considers costs (2014) and quality of life per monthly cycle in a lifetime horizon. Costs and quality-adjusted life years (QALYs) are dependent on OI, CVD, AIDS events, adverse events and antiretroviral therapies. In treatment-naïve patients, DTG dominates RAL; compared with DRV/r, the ICER obtained is of 38,586 €/QALY (6,170 €/QALY in patients with high viral load) and over EFV/TDF/FTC, DTG generates an ICER of 33,664 €/QALY. In treatment-experienced patients, DTG compared to RAL leads to an ICER of 12,074 €/QALY. The use of DTG+backbone may be cost effective in treatment-naïve and treatment-experienced patients compared with RAL+backbone and in treatment-naïve patients compared with DRV/r+backbone and EFV/TDF/FTC considering a threshold of 40,000 €/QALY.

  20. Direct amidation of esters with nitroarenes

    NASA Astrophysics Data System (ADS)

    Cheung, Chi Wai; Ploeger, Marten Leendert; Hu, Xile

    2017-03-01

    Esters are one of the most common functional groups in natural and synthetic products, and the one-step conversion of the ester group into other functional groups is an attractive strategy in organic synthesis. Direct amidation of esters is particularly appealing due to the omnipresence of the amide moiety in biomolecules, fine chemicals, and drug candidates. However, efficient methods for direct amidation of unactivated esters are still lacking. Here we report nickel-catalysed reductive coupling of unactivated esters with nitroarenes to furnish in one step a wide range of amides bearing functional groups relevant to the development of drugs and agrochemicals. The method has been used to expedite the syntheses of bio-active molecules and natural products, as well as their post-synthetic modifications. Preliminary mechanistic study indicates a reaction pathway distinct from conventional amidation methods using anilines as nitrogen sources. The work provides a novel and efficient method for amide synthesis.

  1. DNA-Catalyzed Amide Hydrolysis.

    PubMed

    Zhou, Cong; Avins, Joshua L; Klauser, Paul C; Brandsen, Benjamin M; Lee, Yujeong; Silverman, Scott K

    2016-02-24

    DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.

  2. Cyclisation versus 1,1-Carboboration: Reactions of B(C6F5)3 with Propargyl Amides.

    PubMed

    Melen, Rebecca L; Hansmann, Max M; Lough, Alan J; Hashmi, A Stephen K; Stephan, Douglas W

    2013-09-02

    A series of propargyl amides were prepared and their reactions with the Lewis acidic compound B(C6F5)3 were investigated. These reactions were shown to afford novel heterocycles under mild conditions. The reaction of a variety of N-substituted propargyl amides with B(C6F5)3 led to an intramolecular oxo-boration cyclisation reaction, which afforded the 5-alkylidene-4,5-dihydrooxazolium borate species. Secondary propargyl amides gave oxazoles in B(C6F5)3 mediated (catalytic) cyclisation reactions. In the special case of disubstitution adjacent to the nitrogen atom, 1,1-carboboration is favoured as a result of the increased steric hindrance (1,3-allylic strain) in the 5-alkylidene-4,5-dihydrooxazolium borate species. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cost-effectiveness analysis of dolutegravir plus backbone compared with raltegravir plus backbone, darunavir+ritonavir plus backbone and efavirenz/tenofovir/emtricitabine in treatment naïve and experienced HIV-positive patients

    PubMed Central

    Restelli, Umberto; Rizzardini, Giuliano; Antinori, Andrea; Lazzarin, Adriano; Bonfanti, Marzia; Bonfanti, Paolo; Croce, Davide

    2017-01-01

    Background In January 2014, the European Medicines Agency issued a marketing authorization for dolutegravir (DTG), a second-generation integrase strand transfer inhibitor for HIV treatment. The study aimed at determining the incremental cost-effectiveness ratio (ICER) of the use of DTG+backbone compared with raltegravir (RAL)+backbone, darunavir (DRV)+ritonavir(r)+backbone and efavirenz/tenofovir/emtricitabine (EFV/TDF/FTC) in HIV-positive treatment-naïve patients and compared with RAL+backbone in treatment-experienced patients, from the Italian National Health Service’s point of view. Materials and methods A published Monte Carlo Individual Simulation Model (ARAMIS-DTG model) was used to perform the analysis. Patients pass through mutually exclusive health states (defined in terms of diagnosis of HIV with or without opportunistic infections [OIs] and cardiovascular disease [CVD]) and successive lines of therapy. The model considers costs (2014) and quality of life per monthly cycle in a lifetime horizon. Costs and quality-adjusted life years (QALYs) are dependent on OI, CVD, AIDS events, adverse events and antiretroviral therapies. Results In treatment-naïve patients, DTG dominates RAL; compared with DRV/r, the ICER obtained is of 38,586 €/QALY (6,170 €/QALY in patients with high viral load) and over EFV/TDF/FTC, DTG generates an ICER of 33,664 €/QALY. In treatment-experienced patients, DTG compared to RAL leads to an ICER of 12,074 €/QALY. Conclusion The use of DTG+backbone may be cost effective in treatment-naïve and treatment-experienced patients compared with RAL+backbone and in treatment-naïve patients compared with DRV/r+backbone and EFV/TDF/FTC considering a threshold of 40,000 €/QALY. PMID:28721059

  4. 40 CFR 721.3720 - Fatty amide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty amide. 721.3720 Section 721.3720... Fatty amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a fatty amide (PMN P-91-87) is subject to reporting under this section...

  5. 40 CFR 721.2120 - Cyclic amide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cyclic amide. 721.2120 Section 721... Cyclic amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a cyclic amide (PMN P-92-131) is subject to reporting under this section for the...

  6. Discovery of competing anaerobic and aerobic pathways in umpolung amide synthesis allows for site-selective amide 18O-labeling

    PubMed Central

    Shackleford, Jessica P.; Shen, Bo; Johnston, Jeffrey N.

    2012-01-01

    The mechanism of umpolung amide synthesis was probed by interrogating potential sources for the oxygen of the product amide carbonyl that emanates from the α-bromo nitroalkane substrate. Using a series of 18O-labeled substrates and reagents, evidence is gathered to advance two pathways from the putative tetrahedral intermediate. Under anaerobic conditions, a nitro-nitrite isomerization delivers the amide oxygen from nitro oxygen. The same homolytic nitro-carbon fragmentation can be diverted by capture of the carbon radical intermediate with oxygen gas (O2) to deliver the amide oxygen from O2. This understanding was used to develop a straightforward protocol for the preparation of 18O-labeled amides in peptides by simply performing the umpolung amide synthesis reaction under an atmosphere of . PMID:22184227

  7. A reduced-amide inhibitor of Pin1 binds in a conformation resembling a twisted-amide transition state.

    PubMed

    Xu, Guoyan G; Zhang, Yan; Mercedes-Camacho, Ana Y; Etzkorn, Felicia A

    2011-11-08

    The mechanism of the cell cycle regulatory peptidyl prolyl isomerase (PPIase), Pin1, was investigated using reduced-amide inhibitors designed to mimic the twisted-amide transition state. Inhibitors, R-pSer-Ψ[CH(2)N]-Pro-2-(indol-3-yl)ethylamine, 1 [R = fluorenylmethoxycarbonyl (Fmoc)] and 2 (R = Ac), of Pin1 were synthesized and bioassayed. Inhibitor 1 had an IC(50) value of 6.3 μM, which is 4.5-fold better for Pin1 than our comparable ground-state analogue, a cis-amide alkene isostere-containing inhibitor. The change of Fmoc to Ac in 2 improved aqueous solubility for structural determination and resulted in an IC(50) value of 12 μM. The X-ray structure of the complex of 2 bound to Pin1 was determined to 1.76 Å resolution. The structure revealed that the reduced amide adopted a conformation similar to the proposed twisted-amide transition state of Pin1, with a trans-pyrrolidine conformation of the prolyl ring. A similar conformation of substrate would be destabilized relative to the planar amide conformation. Three additional reduced amides, with Thr replacing Ser and l- or d-pipecolate (Pip) replacing Pro, were slightly weaker inhibitors of Pin1.

  8. High-resolution protein design with backbone freedom.

    PubMed

    Harbury, P B; Plecs, J J; Tidor, B; Alber, T; Kim, P S

    1998-11-20

    Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail.

  9. Optical burst switching based satellite backbone network

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian

    2018-02-01

    We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.

  10. Optimization of Protein Backbone Dihedral Angles by Means of Hamiltonian Reweighting

    PubMed Central

    2016-01-01

    Molecular dynamics simulations depend critically on the accuracy of the underlying force fields in properly representing biomolecules. Hence, it is crucial to validate the force-field parameter sets in this respect. In the context of the GROMOS force field, this is usually achieved by comparing simulation data to experimental observables for small molecules. In this study, we develop new amino acid backbone dihedral angle potential energy parameters based on the widely used 54A7 parameter set by matching to experimental J values and secondary structure propensity scales. In order to find the most appropriate backbone parameters, close to 100 000 different combinations of parameters have been screened. However, since the sheer number of combinations considered prohibits actual molecular dynamics simulations for each of them, we instead predicted the values for every combination using Hamiltonian reweighting. While the original 54A7 parameter set fails to reproduce the experimental data, we are able to provide parameters that match significantly better. However, to ensure applicability in the context of larger peptides and full proteins, further studies have to be undertaken. PMID:27559757

  11. Computational protein design with backbone plasticity

    PubMed Central

    MacDonald, James T.; Freemont, Paul S.

    2016-01-01

    The computational algorithms used in the design of artificial proteins have become increasingly sophisticated in recent years, producing a series of remarkable successes. The most dramatic of these is the de novo design of artificial enzymes. The majority of these designs have reused naturally occurring protein structures as ‘scaffolds’ onto which novel functionality can be grafted without having to redesign the backbone structure. The incorporation of backbone flexibility into protein design is a much more computationally challenging problem due to the greatly increased search space, but promises to remove the limitations of reusing natural protein scaffolds. In this review, we outline the principles of computational protein design methods and discuss recent efforts to consider backbone plasticity in the design process. PMID:27911735

  12. Application of mid-infrared free-electron laser tuned to amide bands for dissociation of aggregate structure of protein.

    PubMed

    Kawasaki, Takayasu; Yaji, Toyonari; Ohta, Toshiaki; Tsukiyama, Koichi

    2016-01-01

    A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide II band (N-H bending vibration) and amide III band (C-N stretching vibration). In this study, the irradiation effect of the FEL on keratin aggregate was tested as another model to demonstrate an applicability of the FEL for dissociation of protein aggregates. Synchrotron radiation infrared microscopy analysis showed that the α-helix content in the aggregate structure decreased to almost the same level as that in the monomer state after FEL irradiation tuned to 6.06 µm (amide I band). Both irradiations at 6.51 µm (amide II band) and 8.06 µm (amide III band) also decreased the content of the aggregate but to a lesser extent than for the irradiation at the amide I band. On the contrary, the irradiation tuned to 5.6 µm (non-absorbance region) changed little the secondary structure of the aggregate. Scanning-electron microscopy observation at the submicrometer order showed that the angular solid of the aggregate was converted to non-ordered fragments by the irradiation at each amide band, while the aggregate was hardly deformed by the irradiation at 5.6 µm. These results demonstrate that the amide-specific irradiation by the FEL was effective for dissociation of the protein aggregate to the monomer form.

  13. An Efficient Amide-Aldehyde-Alkene Condensation: Synthesis for the N-Allyl Amides.

    PubMed

    Quan, Zheng-Jun; Wang, Xi-Cun

    2016-02-01

    The allylamine skeleton represents a significant class of biologically active nitrogen compounds that are found in various natural products and drugs with well-recognized pharmacological properties. In this personal account, we will briefly discuss the synthesis of allylamine skeletons. We will focus on showing a general protocol for Lewis acid-catalyzed N-allylation of electron-poor N-heterocyclic amides and sulfonamide via an amide-aldehyde-alkene condensation reaction. The substrate scope with respect to N-heterocyclic amides, aldehydes, and alkenes will be discussed. This method is also capable of preparing the Naftifine motif from N-methyl-1-naphthamide or methyl (naphthalene-1-ylmethyl)carbamate, with paraformaldehyde and styrene in a one-pot manner. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.

    PubMed

    Das, Shoubhik; Li, Yuehui; Bornschein, Christoph; Pisiewicz, Sabine; Kiersch, Konstanze; Michalik, Dirk; Gallou, Fabrice; Junge, Kathrin; Beller, Matthias

    2015-10-12

    Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Hepatoprotective amide constituents from the fruit of Piper chaba: Structural requirements, mode of action, and new amides.

    PubMed

    Matsuda, Hisashi; Ninomiya, Kiyofumi; Morikawa, Toshio; Yasuda, Daisuke; Yamaguchi, Itadaki; Yoshikawa, Masayuki

    2009-10-15

    The 80% aqueous acetone extract from the fruit of Piper chaba (Piperaceae) was found to have hepatoprotective effects on D-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. From the ethyl acetate-soluble fraction, three new amides, piperchabamides E, G, and H, 33 amides, and four aromatic constituents were isolated. Among the isolates, several amide constituents inhibited D-GalN/tumor necrosis factor-alpha (TNF-alpha)-induced death of hepatocytes, and the following structural requirements were suggested: (i) the amide moiety is essential for potent activity; and (ii) the 1,9-decadiene structure between the benzene ring and the amide moiety tended to enhance the activity. Moreover, a principal constituent, piperine, exhibited strong in vivo hepatoprotective effects at doses of 5 and 10 mg/kg, po and its mode of action was suggested to depend on the reduced sensitivity of hepatocytes to TNF-alpha.

  16. Structure elucidation and in vitro cytotoxicity of ochratoxin α amide, a new degradation product of ochratoxin A.

    PubMed

    Bittner, Andrea; Cramer, Benedikt; Harrer, Henning; Humpf, Hans-Ulrich

    2015-05-01

    The mycotoxin ochratoxin A is a secondary metabolite occurring in a wide range of commodities. During the exposure of ochratoxin A to white and blue light, a cleavage between the carbon atom C-14 and the nitrogen atom was described. As a reaction product, the new compound ochratoxin α amide has been proposed based on mass spectrometry (MS) experiments. In the following study, we observed that this compound is also formed at high temperatures such as used for example during coffee roasting and therefore represents a further thermal ochratoxin A degradation product. To confirm the structure of ochratoxin α amide, the compound was prepared in large scale and complete structure elucidation via nuclear magnetic resonance (NMR) and MS was performed. Additionally, first studies on the toxicity of ochratoxin α amide were performed using immortalized human kidney epithelial (IHKE) cells, a cell line known to be sensitive against ochratoxin A with an IC50 value of 0.5 μM. Using this system, ochratoxin α amide revealed no cytotoxicity up to concentrations of 50 μM. Thus, these results propose that the thermal degradation of ochratoxin A to ochratoxin α amide might be a detoxification process. Finally, we present a sample preparation and a HPLC-tandem mass spectrometry (HPLC-MS/MS) method for the analysis of ochratoxin α amide in extrudates and checked its formation during the extrusion of artificially contaminated wheat grits at 150 and 180 °C, whereas no ochratoxin α amide was detectable under these conditions.

  17. Cloning of a Novel Arylamidase Gene from Paracoccus sp. Strain FLN-7 That Hydrolyzes Amide Pesticides

    PubMed Central

    Zhang, Jun; Yin, Jin-Gang; Hang, Bao-Jian; Cai, Shu; Li, Shun-Peng

    2012-01-01

    The bacterial isolate Paracoccus sp. strain FLN-7 hydrolyzes amide pesticides such as diflubenzuron, propanil, chlorpropham, and dimethoate through amide bond cleavage. A gene, ampA, encoding a novel arylamidase that catalyzes the amide bond cleavage in the amide pesticides was cloned from the strain. ampA contains a 1,395-bp open reading frame that encodes a 465-amino-acid protein. AmpA was expressed in Escherichia coli BL21 and homogenously purified using Ni-nitrilotriacetic acid affinity chromatography. AmpA is a homodimer with an isoelectric point of 5.4. AmpA displays maximum enzymatic activity at 40°C and a pH of between 7.5 and 8.0, and it is very stable at pHs ranging from 5.5 to 10.0 and at temperatures up to 50°C. AmpA efficiently hydrolyzes a variety of secondary amine compounds such as propanil, 4-acetaminophenol, propham, chlorpropham, dimethoate, and omethoate. The most suitable substrate is propanil, with Km and kcat values of 29.5 μM and 49.2 s−1, respectively. The benzoylurea insecticides (diflubenzuron and hexaflumuron) are also hydrolyzed but at low efficiencies. No cofactor is needed for the hydrolysis activity. AmpA shares low identities with reported arylamidases (less than 23%), forms a distinct lineage from closely related arylamidases in the phylogenetic tree, and has different biochemical characteristics and catalytic kinetics with related arylamidases. The results in the present study suggest that AmpA is a good candidate for the study of the mechanism for amide pesticide hydrolysis, genetic engineering of amide herbicide-resistant crops, and bioremediation of amide pesticide-contaminated environments. PMID:22544249

  18. Beyond Fourier Transform Infrared Spectroscopy: External Cavity Quantum Cascade Laser-Based Mid-infrared Transmission Spectroscopy of Proteins in the Amide I and Amide II Region.

    PubMed

    Schwaighofer, Andreas; Montemurro, Milagros; Freitag, Stephan; Kristament, Christian; Culzoni, María J; Lendl, Bernhard

    2018-05-24

    In this work, we present a setup for mid-IR measurements of the protein amide I and amide II bands in aqueous solution. Employing a latest generation external cavity-quantum cascade laser (EC-QCL) at room temperature in pulsed operation mode allowed implementing a high optical path length of 31 μm that ensures robust sample handling. By application of a data processing routine, which removes occasionally deviating EC-QCL scans, the noise level could be lowered by a factor of 4. The thereby accomplished signal-to-noise ratio is better by a factor of approximately 2 compared to research-grade Fourier transform infrared (FT-IR) spectrometers at equal acquisition times. Employing this setup, characteristic spectral features of three representative proteins with different secondary structures could be measured at concentrations as low as 1 mg mL -1 . Mathematical evaluation of the spectral overlap confirms excellent agreement of the quantum cascade laser infrared spectroscropy (QCL-IR) transmission measurements with protein spectra acquired by FT-IR spectroscopy. The presented setup combines performance surpassing FT-IR spectroscopy with large applicable optical paths and coverage of the relevant spectral range for protein analysis. This holds high potential for future EC-QCL-based protein studies, including the investigation of dynamic secondary structure changes and chemometrics-based protein quantification in complex matrices.

  19. TACN-based cationic lipids with amino acid backbone and double tails: materials for non-viral gene delivery.

    PubMed

    Wang, Bing; Yi, Wen-Jing; Zhang, Ji; Zhang, Qin-Fang; Xun, Miao-Miao; Yu, Xiao-Qi

    2014-04-01

    Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Facile solvolysis of a surprisingly twisted tertiary amide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomfield, Aaron J.; Chaudhuri, Subhajyoti; Mercado, Brandon Q.

    2016-01-05

    In this study, a bicyclo[2.2.2]octane derivative containing both a tertiary amide and a methyl ester was shown crystallographically to adopt a conformation in which the amide is in the cis configuration, which is sterically disfavored, but electronically favored. The steric strain induces a significant torsion (15.9°) of the amide, thereby greatly increasing the solvolytic lability of the amide to the extent that we see competitive amide solvolysis in the presence of the normally more labile methyl ester also present in the molecule.

  1. Understanding traffic dynamics at a backbone POP

    NASA Astrophysics Data System (ADS)

    Taft, Nina; Bhattacharyya, Supratik; Jetcheva, Jorjeta; Diot, Christophe

    2001-07-01

    Spatial and temporal information about traffic dynamics is central to the design of effective traffic engineering practices for IP backbones. In this paper we study backbone traffic dynamics using data collected at a major POP on a tier-1 IP backbone. We develop a methodology that combines packet-level traces from access links in the POP and BGP routing information to build components of POP-to-POP traffic matrices. Our results show that there is wide disparity in the volume of traffic headed towards different egress POPs. At the same time, we find that current routing practices in the backbone tend to constrain traffic between ingress-egress POP pairs to a small number of paths. As a result, there is a wide variation in the utilization level of links in the backbone. Frequent capacity upgrades of the heavily used links are expensive; the need for such upgrades can be reduced by designing load balancing policies that will route more traffic over less utilized links. We identify traffic aggregates based on destination address prefixes and find that this set of criteria isolates a few aggregates that account for an overwhelmingly large portion of inter-POP traffic. We also demonstrate that these aggregates exhibit stability throughout the day on per-hour time scales, and thus they form a natural basis for splitting traffic over multiple paths in order to improve load balancing.

  2. Amide I SFG Spectral Line Width Probes the Lipid-Peptide and Peptide-Peptide Interactions at Cell Membrane In Situ and in Real Time.

    PubMed

    Zhang, Baixiong; Tan, Junjun; Li, Chuanzhao; Zhang, Jiahui; Ye, Shuji

    2018-06-13

    The balance of lipid-peptide and peptide-peptide interactions at cell membrane is essential to a large variety of cellular processes. In this study, we have experimentally demonstrated for the first time that sum frequency generation vibrational spectroscopy can be used to probe the peptide-peptide and lipid-peptide interactions in cell membrane in situ and in real time by determination of the line width of amide I band of protein backbone. Using a "benchmark" model of α-helical WALP23, it is found that the dominated lipid-peptide interaction causes a narrow line width of the amide I band, whereas the peptide-peptide interaction can markedly broaden the line width. When WALP23 molecules insert into the lipid bilayer, a quite narrow line width of the amide I band is observed because of the lipid-peptide interaction. In contrast, when the peptide lies down on the bilayer surface, the line width of amide I band becomes very broad owing to the peptide-peptide interaction. In terms of the real-time change in the line width, the transition from peptide-peptide interaction to lipid-peptide interaction is monitored during the insertion of WALP23 into 1,2-dipalmitoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DPPG) lipid bilayer. The dephasing time of a pure α-helical WALP23 in 1-palmitoyl-2-oleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) and DPPG bilayer is determined to be 2.2 and 0.64 ps, respectively. The peptide-peptide interaction can largely accelerate the dephasing time.

  3. Reaction mechanism of the acidic hydrolysis of highly twisted amides: Rate acceleration caused by the twist of the amide bond.

    PubMed

    Mujika, Jon I; Formoso, Elena; Mercero, Jose M; Lopez, Xabier

    2006-08-03

    We present an ab initio study of the acid hydrolysis of a highly twisted amide and a planar amide analogue. The aim of these studies is to investigate the effect that the twist of the amide bond has on the reaction barriers and mechanism of acid hydrolysis. Concerted and stepwise mechanisms were investigated using density functional theory and polarizable continuum model calculations. Remarkable differences were observed between the mechanism of twisted and planar amide, due mainly to the preference for N-protonation of the former and O-protonation of the latter. In addition, we were also able to determine that the hydrolytic mechanism of the twisted amide will be pH dependent. Thus, there is a preference for a stepwise mechanism with formation of an intermediate in the acid hydrolysis, whereas the neutral hydrolysis undergoes a concerted-type mechanism. There is a nice agreement between the characterized intermediate and available X-ray data and a good agreement with the kinetically estimated rate acceleration of hydrolysis with respect to analogous undistorted amide compounds. This work, along with previous ab initio calculations, describes a complex and rich chemistry for the hydrolysis of highly twisted amides as a function of pH. The theoretical data provided will allow for a better understanding of the available kinetic data of the rate acceleration of amides upon twisting and the relation of the observed rate acceleration with intrinsic differential reactivity upon loss of amide bond resonance.

  4. Synthesis and structure-activity relationships of fenbufen amide analogs.

    PubMed

    Lin, Kun-I; Yang, Chao-Hsun; Huang, Chia-Wen; Jian, Jhen-Yi; Huang, Yu-Chun; Yu, Chung-Shan

    2010-12-02

    The previous discoveries of butyl fenbufen amide analogs with antitumor effects were further examined. The amide analogs with 1, 3, 4 and 8 carbons chains were prepared in 70-80% yield. Fenbufen had no cytotoxic effects at concentrations ranging from 10 to 100 μM. Methyl fenbufen amide had significant cytotoxic effects at a concentration of 100 μM. As the length of the alkyl amide side chain increased, the cytotoxic effects increased, and the octyl fenbufen amide had the greatest cytotoxic effect. After treatment with 30 μM octyl fenbufen amide, nearly seventy percent of the cells lost their viability. At the concentration of 10 μM, fenbufen amide analogs did not show cytotoxicity according to the MTT assay results. The NO scavenging activities of the fenbufen amide analogs were not significantly different from those of fenbufen.

  5. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    PubMed Central

    Shen, Yang; Bax, Ad

    2013-01-01

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥ 90% fraction of the residues, with an error rate smaller than ca 3.5%, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (φ,ψ) torsion angles of ca 12°. TALOS-N also reports sidechain χ1 rotameric states for about 50% of the residues, and a consistency with reference structures of 89%. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts. PMID:23728592

  6. Large-scale measurement and modeling of backbone Internet traffic

    NASA Astrophysics Data System (ADS)

    Roughan, Matthew; Gottlieb, Joel

    2002-07-01

    There is a brewing controversy in the traffic modeling community concerning how to model backbone traffic. The fundamental work on self-similarity in data traffic appears to be contradicted by recent findings that suggest that backbone traffic is smooth. The traffic analysis work to date has focused on high-quality but limited-scope packet trace measurements; this limits its applicability to high-speed backbone traffic. This paper uses more than one year's worth of SNMP traffic data covering an entire Tier 1 ISP backbone to address the question of how backbone network traffic should be modeled. Although the limitations of SNMP measurements do not permit us to comment on the fine timescale behavior of the traffic, careful analysis of the data suggests that irrespective of the variation at fine timescales, we can construct a simple traffic model that captures key features of the observed traffic. Furthermore, the model's parameters are measurable using existing network infrastructure, making this model practical in a present-day operational network. In addition to its practicality, the model verifies basic statistical multiplexing results, and thus sheds deep insight into how smooth backbone traffic really is.

  7. The Academic Backbone: longitudinal continuities in educational achievement from secondary school and medical school to MRCP(UK) and the specialist register in UK medical students and doctors

    PubMed Central

    2013-01-01

    measures of educational attainment, undergraduate, and post-graduate performance. Women performed better in assessments but were less likely to be on the Specialist Register. Non-white participants generally underperformed in undergraduate and post-graduate assessments, but were equally likely to be on the Specialist Register. There was a suggestion of smaller ethnicity effects in earlier studies. Conclusions The existence of the Academic Backbone concept is strongly supported, with attainment at secondary school predicting performance in undergraduate and post-graduate medical assessments, and the effects spanning many years. The Academic Backbone is conceptualized in terms of the development of more sophisticated underlying structures of knowledge ('cognitive capital’ and 'medical capital’). The Academic Backbone provides strong support for using measures of educational attainment, particularly A-levels, in student selection. PMID:24229333

  8. Amide-transforming activity of Streptomyces: possible application to the formation of hydroxy amides and aminoalcohols.

    PubMed

    Yamada, Shinya; Miyagawa, Taka-Aki; Yamada, Ren; Shiratori-Takano, Hatsumi; Sayo, Noboru; Saito, Takao; Takano, Hideaki; Beppu, Teruhiko; Ueda, Kenji

    2013-07-01

    To develop an efficient bioconversion process for amides, we screened our collection of Streptomyces strains, mostly obtained from soil, for effective transformers. Five strains, including the SY007 (NBRC 109343) and SY435 (NBRC 109344) of Streptomyces sp., exhibited marked conversion activities from the approximately 700 strains analyzed. These strains transformed diverse amide compounds such as N-acetyltetrahydroquinoline, N-benzoylpyrrolidine, and N-benzoylpiperidine into alcohols or N,O-acetals with high activity and regioselectivity. N,O-acetal was transformed into alcohol by serial tautomerization and reduction reactions. As such, Streptomyces spp. can potentially be used for the efficient preparation of hydroxy amides and aminoalcohols.

  9. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity.

    PubMed

    Mofford, David M; Adams, Spencer T; Reddy, G S Kiran Kumar; Reddy, Gadarla Randheer; Miller, Stephen C

    2015-07-15

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain.

  10. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity

    PubMed Central

    2015-01-01

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain. PMID:26120870

  11. Amide Bond Formation Assisted by Vicinal Alkylthio Migration in Enaminones: Metal- and CO-Free Synthesis of α,β-Unsaturated Amides.

    PubMed

    Liu, Zhuqing; Huang, Fei; Wu, Ping; Wang, Quannan; Yu, Zhengkun

    2018-05-18

    Amide bond formation is one of the most important transformations in organic synthesis, drug development, and materials science. Efficient construction of amides has been among the most challenging tasks for organic chemists. Herein, we report a concise methodology for amide bond (-CONH-) formation assisted by vicinal group migration in alkylthio-functionalized enaminones (α-oxo ketene N, S-acetals) under mild conditions. Simple treatment of such enaminones with PhI(OAc) 2 at ambient temperature in air afforded diverse multiply functionalized α,β-unsaturated amides including β-cyclopropylated acrylamides, in which a wide array of functional groups such as aryl, (hetero)aryl, alkenyl, and alkyl can be conveniently introduced to a ketene moiety. The reaction mechanism was investigated by exploring the origins of the amide oxygen and carbon atoms as well as isolation and structural characterization of the reaction intermediates. The amide bond formation reactions could also be efficiently performed under solventless mechanical milling conditions.

  12. How amide hydrogens exchange in native proteins.

    PubMed

    Persson, Filip; Halle, Bertil

    2015-08-18

    Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N-H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N-H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion.

  13. How amide hydrogens exchange in native proteins

    PubMed Central

    Persson, Filip; Halle, Bertil

    2015-01-01

    Amide hydrogen exchange (HX) is widely used in protein biophysics even though our ignorance about the HX mechanism makes data interpretation imprecise. Notably, the open exchange-competent conformational state has not been identified. Based on analysis of an ultralong molecular dynamics trajectory of the protein BPTI, we propose that the open (O) states for amides that exchange by subglobal fluctuations are locally distorted conformations with two water molecules directly coordinated to the N–H group. The HX protection factors computed from the relative O-state populations agree well with experiment. The O states of different amides show little or no temporal correlation, even if adjacent residues unfold cooperatively. The mean residence time of the O state is ∼100 ps for all examined amides, so the large variation in measured HX rate must be attributed to the opening frequency. A few amides gain solvent access via tunnels or pores penetrated by water chains including native internal water molecules, but most amides access solvent by more local structural distortions. In either case, we argue that an overcoordinated N–H group is necessary for efficient proton transfer by Grotthuss-type structural diffusion. PMID:26195754

  14. Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes

    NASA Astrophysics Data System (ADS)

    Raithel, Dominic; Simine, Lena; Pickel, Sebastian; Schötz, Konstantin; Panzer, Fabian; Baderschneider, Sebastian; Schiefer, Daniel; Lohwasser, Ruth; Köhler, Jürgen; Thelakkat, Mukundan; Sommer, Michael; Köhler, Anna; Rossky, Peter J.; Hildner, Richard

    2018-03-01

    The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (˜2,000 cm‑1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron‑hole polarization.

  15. Triazine-based sequence-defined polymers with side-chain diversity and backbone-backbone interaction motifs

    DOE PAGES

    Grate, Jay W.; Mo, Kai -For; Daily, Michael D.

    2016-02-10

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less

  16. Triazine-based sequence-defined polymers with side-chain diversity and backbone-backbone interaction motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Mo, Kai -For; Daily, Michael D.

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less

  17. Inhibition of the α-carbonic anhydrase from Vibrio cholerae with amides and sulfonamides incorporating imidazole moieties.

    PubMed

    De Vita, Daniela; Angeli, Andrea; Pandolfi, Fabiana; Bortolami, Martina; Costi, Roberta; Di Santo, Roberto; Suffredini, Elisabetta; Ceruso, Mariangela; Del Prete, Sonia; Capasso, Clemente; Scipione, Luigi; Supuran, Claudiu T

    2017-12-01

    We discovered novel and selective sulfonamides/amides acting as inhibitors of the α-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae (VchCA). This Gram-negative bacterium is the causative agent of cholera and colonises the upper small intestine where sodium bicarbonate is present at a high concentration. The secondary sulfonamides and amides investigated here were potent, low nanomolar VchCA inhibitors whereas their inhibition of the human cytosolic isoforms CA I and II was in the micromolar range or higher. The molecules represent an interesting lead for antibacterial agents with a possibly new mechanism of action, although their CA inhibition mechanism is unknown for the moment.

  18. Rapid analysis of protein backbone resonance assignments using cryogenic probes, a distributed Linux-based computing architecture, and an integrated set of spectral analysis tools.

    PubMed

    Monleón, Daniel; Colson, Kimberly; Moseley, Hunter N B; Anklin, Clemens; Oswald, Robert; Szyperski, Thomas; Montelione, Gaetano T

    2002-01-01

    Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.

  19. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    PubMed

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().

  20. Gold-Catalyzed Solid-Phase Synthesis of 3,4-Dihydropyrazin-2(1H)-ones: Relevant Pharmacophores and Peptide Backbone Constraints.

    PubMed

    Přibylka, Adam; Krchňák, Viktor

    2017-11-13

    Here, we report the efficient solid-phase synthesis of N-propargyl peptides using Fmoc-amino acids and propargyl alcohol as key building blocks. Gold-catalyzed nucleophilic addition to the triple bond induced C-N bond formation, which triggered intramolecular cyclization, yielding 1,3,4-trisubstituted-5-methyl-3,4-dihydropyrazin-2(1H)-ones. Conformations of acyclic and constrained peptides were compared using a two-step conformer distribution analysis at the molecular mechanics level and density functional theory. The results indicated that the incorporation of heterocyclic molecular scaffold into a short peptide sequence adopted extended conformation of peptide chain. The amide bond adjacent to the constraint did not show significant preference for either cis or trans isomerism. Prepared model compounds demonstrate a proof of concept for gold-catalyzed polymer-supported synthesis of variously substituted 3,4-dihydropyrazin-2(1H)-ones for applications in drug discovery and peptide backbone constraints.

  1. The secondary structure of the ets domain of human Fli-1 resembles that of the helix-turn-helix DNA-binding motif of the Escherichia coli catabolite gene activator protein.

    PubMed Central

    Liang, H; Olejniczak, E T; Mao, X; Nettesheim, D G; Yu, L; Thompson, C B; Fesik, S W

    1994-01-01

    The ets family of eukaryotic transcription factors is characterized by a conserved DNA-binding domain of approximately 85 amino acids for which the three-dimensional structure is not known. By using multidimensional NMR spectroscopy, we have determined the secondary structure of the ets domain of one member of this gene family, human Fli-1, both in the free form and in a complex with a 16-bp cognate DNA site. The secondary structure of the Fli-1 ets domain consists of three alpha-helices and a short four-stranded antiparallel beta-sheet. This secondary structure arrangement resembles that of the DNA-binding domain of the catabolite gene activator protein of Escherichia coli, as well as those of several eukaryotic DNA-binding proteins including histone H5, HNF-3/fork head, and the heat shock transcription factor. Differences in chemical shifts of backbone resonances and amide exchange rates between the DNA-bound and free forms of the Fli-1 ets domain suggest that the third helix is the DNA recognition helix, as in the catabolite gene activator protein and other structurally related proteins. These results suggest that the ets domain is structurally similar to the catabolite gene activator protein family of helix-turn-helix DNA-binding proteins. Images PMID:7972119

  2. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts.

    PubMed

    Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M

    2016-03-08

    The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.

  3. Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens

    PubMed Central

    Kurouski, Dmitry; Postiglione, Thomas; Deckert-Gaudig, Tanja; Deckert, Volker; Lednev, Igor K.

    2013-01-01

    Surface- and tip-enhanced Raman spectroscopy (SERS and TERS) are modern spectroscopic techniques, which are becoming widely used and show a great potential for the structural characterisation of biological systems. Strong enhancement of the Raman signal through localised surface plasmon resonance enables chemical detection at the single-molecule scale. Enhanced Raman spectra collected from biological specimens, such as peptides, proteins or microorganisms, were often observed to lack the amide I band, which is commonly used as a marker for the interpretation of secondary protein structure. The cause of this phenomenon was unclear for many decades. In this work, we investigated this phenomenon for native insulin and insulin fibrils using both TERS and SERS and compared these spectra to the spectra of well-defined homo peptides. The results indicate that the appearance of the amide I Raman band does not correlate with the protein aggregation state, but is instead determined by the size of the amino acid side chain. For short model peptides, the absence of the amide I band in TERS and SERS spectra correlates with the presence of a bulky side chain. Homo-glycine and -alanine, which are peptides with small side chain groups (H and CH3, respectively), exhibited an intense amide I band in almost 100% of the acquired spectra. Peptides with bulky side chains, such as tyrosine and tryptophan, exhibited the amide I band in 70% and 31% of the acquired spectra, respectively. PMID:23330149

  4. Cytotoxic Amides from Fruits of Kawakawa, Macropiper excelsum.

    PubMed

    Lei, Jeremy; Burgess, Elaine J; Richardson, Alistair T B; Hawkins, Bill C; Baird, Sarah K; Smallfield, Bruce M; van Klink, John W; Perry, Nigel B

    2015-08-01

    Cytotoxic amides have been isolated from the fruits of the endemic New Zealand medicinal plant kawakawa, Macropiper excelsum (Piperaceae). The main amide was piperchabamide A and this is the first report of this rare compound outside the genus Piper. Eleven other amides were purified including two new compounds with the unusual 3,4-dihydro-1(2H)-pyridinyl group. The new compounds were fully characterized by 2D NMR spectroscopy, which showed a slow exchange between two rotamers about the amide bond, and they were chemically synthesized. In view of the antitumor activity of the related piperlongumine, all of these amides plus four synthetic analogs were tested for cytotoxicity. The most active was the piperine homolog piperdardine, with an IC50 of 14 µM against HT 29 colon cancer cells. Georg Thieme Verlag KG Stuttgart · New York.

  5. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides.

    PubMed

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-06-16

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  6. Protein-Backbone Thermodynamics across the Membrane Interface.

    PubMed

    Bereau, Tristan; Kremer, Kurt

    2016-07-07

    The thermodynamics of insertion of a protein in a membrane depends on the fine interplay between backbone and side-chain contributions interacting with the lipid environment. Using computer simulations, we probe how different descriptions of the backbone glycyl unit affect the thermodynamics of insertion of individual residues, dipeptides, and entire transmembrane helices. Due to the lack of reference data, we first introduce an efficient methodology to estimate atomistic potential of mean force (PMF) curves from a series of representative and uncorrelated coarse-grained (CG) snapshots. We find strong discrepancies between two CG models, Martini and PLUM, against reference atomistic PMFs and experiments. Atomistic simulations suggest a weak free energy of insertion between water and a POPC membrane for the glycyl unit, in overall agreement with experimental results despite severe assumptions in our calculations. We show that refining the backbone contribution in PLUM significantly improves the PMF of insertion of the WALP16 transmembrane peptide. An improper balance between the glycyl backbone and the attached side chain will lead to energetic artifacts, rationalizing Martini's overstabilization of WALP's adsorbed interfacial state. It illustrates difficulties associated with free-energy-based parametrizations of single-residue models, as the relevant free energy of partitioning used for force-field parametrization does not arise from the entire residue but rather the solvent-accessible chemical groups.

  7. Conversion of Weinreb amides into benzene rings incorporating the amide carbonyl carbon.

    PubMed

    Clive, Derrick L J; Pham, Mai P

    2009-02-20

    Esters, acids and acid chlorides can be converted via the intermediacy of their corresponding Weinreb amides into benzene derivatives that incorporate the original carbonyl carbon as part of the benzene ring. The process involves treatment of the derived Weinreb amides with 3-butenylmagnesium bromide and an allylic Grignard reagent, followed by ring-closing metathesis, dehydration and dehydrogenation. The dehydration-dehydrogenation can be done under acidic conditions with a mixture of TsOH x H(2)O and DDQ or in two steps with SOCl(2)/pyridine, followed by treatment with DDQ. Application of the method to carbohydrates provides a convenient route to C-5 aryl pyranosides.

  8. Salt forms of the pharmaceutical amide dihydrocarbamazepine.

    PubMed

    Buist, Amanda R; Kennedy, Alan R

    2016-02-01

    Carbamazepine (CBZ) is well known as a model active pharmaceutical ingredient used in the study of polymorphism and the generation and comparison of cocrystal forms. The pharmaceutical amide dihydrocarbamazepine (DCBZ) is a less well known material and is largely of interest here as a structural congener of CBZ. Reaction of DCBZ with strong acids results in protonation of the amide functionality at the O atom and gives the salt forms dihydrocarbamazepine hydrochloride {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride, C15H15N2O(+)·Cl(-)}, dihydrocarbamazepine hydrochloride monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium chloride monohydrate, C15H15N2O(+)·Cl(-)·H2O} and dihydrocarbamazepine hydrobromide monohydrate {systematic name: [(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)(hydroxy)methylidene]azanium bromide monohydrate, C15H15N2O(+)·Br(-)·H2O}. The anhydrous hydrochloride has a structure with two crystallographically independent ion pairs (Z' = 2), wherein both cations adopt syn conformations, whilst the two hydrated species are mutually isostructural and have cations with anti conformations. Compared to neutral dihydrocarbamazepine structures, protonation of the amide group is shown to cause changes to both the molecular (C=O bond lengthening and C-N bond shortening) and the supramolecular structures. The amide-to-amide and dimeric hydrogen-bonding motifs seen for neutral polymorphs and cocrystalline species are replaced here by one-dimensional polymeric constructs with no direct amide-to-amide bonds. The structures are also compared with, and shown to be closely related to, those of the salt forms of the structurally similar pharmaceutical carbamazepine.

  9. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    PubMed

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.

  10. Synthesis of nitriles via palladium-catalyzed water shuffling from amides to acetonitrile.

    PubMed

    Zhang, Wandi; Haskins, Christopher W; Yang, Yang; Dai, Mingji

    2014-12-07

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield.

  11. C-terminal N-alkylated peptide amides resulting from the linker decomposition of the Rink amide resin: a new cleavage mixture prevents their formation.

    PubMed

    Stathopoulos, Panagiotis; Papas, Serafim; Tsikaris, Vassilios

    2006-03-01

    Decomposition of the resin linkers during TFA cleavage of the peptides in the Fmoc strategy leads to alkylation of sensitive amino acids. The C-terminal amide alkylation, reported for the first time, is shown to be a major problem in peptide amides synthesized on the Rink amide resin. This side reaction occurs as a result of the Rink amide linker decomposition under TFA treatment of the peptide resin. The use of 1,3-dimethoxybenzene in a cleavage cocktail prevents almost quantitatively formation of C-terminal N-alkylated peptide amides. Oxidized by-product in the tested Cys- and Met-containing peptides were not observed, even if thiols were not used in the cleavage mixture. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.

  12. A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul

    2016-03-01

    The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). For the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a "first-principles" DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.

  13. A polarizable QM/MM approach to the molecular dynamics of amide groups solvated in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwörer, Magnus; Wichmann, Christoph; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de

    2016-03-21

    The infrared (IR) spectra of polypeptides are dominated by the so-called amide bands. Because they originate from the strongly polar and polarizable amide groups (AGs) making up the backbone, their spectral positions sensitively depend on the local electric fields. Aiming at accurate computations of these IR spectra by molecular dynamics (MD) simulations, which derive atomic forces from a hybrid quantum and molecular mechanics (QM/MM) Hamiltonian, here we consider the effects of solvation in bulk liquid water on the amide bands of the AG model compound N-methyl-acetamide (NMA). As QM approach to NMA we choose grid-based density functional theory (DFT). Formore » the surrounding MM water, we develop, largely based on computations, a polarizable molecular mechanics (PMM) model potential called GP6P, which features six Gaussian electrostatic sources (one induced dipole, five static partial charge distributions) and, therefore, avoids spurious distortions of the DFT electron density in hybrid DFT/PMM simulations. Bulk liquid GP6P is shown to have favorable properties at the thermodynamic conditions of the parameterization and beyond. Lennard-Jones (LJ) parameters of the DFT fragment NMA are optimized by comparing radial distribution functions in the surrounding GP6P liquid with reference data obtained from a “first-principles” DFT-MD simulation. Finally, IR spectra of NMA in GP6P water are calculated from extended DFT/PMM-MD trajectories, in which the NMA is treated by three different DFT functionals (BP, BLYP, B3LYP). Method-specific frequency scaling factors are derived from DFT-MD simulations of isolated NMA. The DFT/PMM-MD simulations with GP6P and with the optimized LJ parameters then excellently predict the effects of aqueous solvation and deuteration observed in the IR spectra of NMA. As a result, the methods required to accurately compute such spectra by DFT/PMM-MD also for larger peptides in aqueous solution are now at hand.« less

  14. Synthesis of Nitriles via Palladium-Catalyzed Water Shuffling from Amides to Acetonitrile

    PubMed Central

    Zhang, Wandi; Haskins, Christopher W.; Yang, Yang; Dai, Mingji

    2014-01-01

    Palladium-catalyzed synthesis of nitriles from amides has been described. Two similar, but complementary reaction conditions have been identified to convert various amides including α,β,γ,δ-unsaturated amides, cinnamides, aromatic amides and alkyl amides to the corresponding nitriles in good to excellent yield. PMID:25316145

  15. Titanium(IV) isopropoxide mediated solution phase reductive amination on an automated platform: application in the generation of urea and amide libraries.

    PubMed

    Bhattacharyya, S; Fan, L; Vo, L; Labadie, J

    2000-04-01

    Amine libraries and their derivatives are important targets for high throughput synthesis because of their versatility as medicinal agents and agrochemicals. As a part of our efforts towards automated chemical library synthesis, a titanium(IV) isopropoxide mediated solution phase reductive amination protocol was successfully translated to automation on the Trident(TM) library synthesizer of Argonaut Technologies. An array of 24 secondary amines was prepared in high yield and purity from 4 primary amines and 6 carbonyl compounds. These secondary amines were further utilized in a split synthesis to generate libraries of ureas, amides and sulfonamides in solution phase on the Trident(TM). The automated runs included 192 reactions to synthesize 96 ureas in duplicate and 96 reactions to synthesize 48 amides and 48 sulfonamides. A number of polymer-assisted solution phase protocols were employed for parallel work-up and purification of the products in each step.

  16. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    PubMed

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-02

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.

  17. New screening strategy and analysis for identification of allosteric modulators for glucagon-like peptide-1 receptor using GLP-1 (9-36) amide.

    PubMed

    Nakane, Atsushi; Gotoh, Yusuke; Ichihara, Junji; Nagata, Hidetaka

    2015-12-15

    The glucagon-like peptide-1 receptor (GLP-1R) is an important physiologic regulator of insulin secretion and a major therapeutic target for diabetes mellitus. GLP-1 (7-36) amide (active form of GLP-1) is truncated to GLP-1 (9-36) amide, which has been described as a weak agonist of GLP-1R and the major form of GLP-1 in the circulation. New classes of positive allosteric modulators (PAMs) for GLP-1R may offer improved therapeutic profiles. To identify these new classes, we developed novel and robust primary and secondary high-throughput screening (HTS) systems in which PAMs were identified to enhance the GLP-1R signaling induced by GLP-1 (9-36) amide. Screening enabled identification of two compounds, HIT-465 and HIT-736, which possessed new patterns of modulation of GLP-1R. We investigated the ability of these compounds to modify GLP-1R signaling enhanced GLP-1 (9-36) amide- and/or GLP-1 (7-36) amide-mediated cyclic adenosine monophosphate (cAMP) accumulation. These compounds also had unique profiles with regard to allosteric modulation of multiple downstream signaling (PathHunter β-arrestin signaling, PathHunter internalization signaling, microscopy-based internalization assay). We found allosteric modulation patterns to be obviously different among HIT-465, HIT-736, and Novo Nordisk compound 2. This work may enable the design of new classes of drug candidates by targeting modulation of GLP-1 (7-36) amide and GLP-1 (9-36) amide. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Ionization Cross Sections and Dissociation Channels of the DNA Sugar-Phosphate Backbone by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher; Huo, Winifred M.; Fletcher, Graham D.

    2004-01-01

    It has been suggested that the genotoxic effects of ionizing radiation in living cells are not caused by the highly energetic incident radiation, but rather are induced by less energetic secondary species generated, the most abundant of which are free electrons.' The secondary electrons will further react to cause DNA damage via indirect and direct mechanisms. Detailed knowledge of these mechanisms is ultimately important for the development of global models of cellular radiation damage. We are studying one possible mechanism for the formation cf DNA strand breaks involving dissociative ionization of the DNA sugar-phosphate backbone induced by secondary electron co!lisions. We will present ionization cross sections at electron collision energies between threshold and 10 KeV using the improved binary encounter dipole (iBED) formulation' Preliminary results of the possible dissociative ionization pathways will be presented. It is speculated that radical fragments produced from the dissociative ionization can further react, providing a possible mechanism for double strand breaks and base damage.

  19. Determination of backbone chain direction of PDA using FFM

    NASA Astrophysics Data System (ADS)

    Jo, Sadaharu; Okamoto, Kentaro; Takenaga, Mitsuru

    2010-01-01

    The effect of backbone chains on friction force was investigated on both Langmuir-Blodgett (LB) films of 10,12-heptacosadiynoic acid and the (0 1 0) surfaces of single crystals of 2,4-hexadiene-1,6-diol using friction force microscopy (FFM). It was observed that friction force decreased when the scanning direction was parallel to the [0 0 1] direction in both samples. Moreover, friction force decreased when the scanning direction was parallel to the crystallographic [1 0 2], [1 0 1], [1 0 0] and [1 0 1¯] directions in only the single crystals. For the LB films, the [0 0 1] direction corresponds to the backbone chain direction of 10,12-heptacosadiynoic acid. For the single crystals, both the [0 0 1] and [1 0 1] directions correspond to the backbone chain direction, and the [1 0 2], [1 0 0] and [1 0 1¯] directions correspond to the low-index crystallographic direction. In both the LB films and single crystals, the friction force was minimized when the directions of scanning and the backbone chain were parallel.

  20. Discovery of novel N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides as potent RORγt inhibitors.

    PubMed

    Wang, Yonghui; Cai, Wei; Zhang, Guifeng; Yang, Ting; Liu, Qian; Cheng, Yaobang; Zhou, Ling; Ma, Yingli; Cheng, Ziqiang; Lu, Sijie; Zhao, Yong-Gang; Zhang, Wei; Xiang, Zhijun; Wang, Shuai; Yang, Liuqing; Wu, Qianqian; Orband-Miller, Lisa A; Xu, Yan; Zhang, Jing; Gao, Ruina; Huxdorf, Melanie; Xiang, Jia-Ning; Zhong, Zhong; Elliott, John D; Leung, Stewart; Lin, Xichen

    2014-01-15

    Novel series of N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides were discovered as potent retinoic acid receptor-related orphan receptor-gamma-t (RORγt) inhibitors. SAR studies of the RORγt HTS hit 6a led to identification of thiazole ketone amide 8h and thiophene ketone amide 9g with high binding affinity and inhibitory activity of Th17 cell differentiation. Compound 8h showed in vivo efficacy in both mouse experimental autoimmune encephalomyelitis (EAE) and collagen induced arthritis (CIA) models via oral administration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. 40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amide (generic). 721.10063 Section 721.10063 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under this...

  2. Insertion of benzene rings into the amide bond: one-step synthesis of acridines and acridones from aryl amides.

    PubMed

    Pintori, Didier G; Greaney, Michael F

    2010-01-01

    Insertion of benzene rings into the amide bond using the reactive intermediate benzyne is described. Aromatic amides undergo smooth insertion when treated with O-triflatophenyl silane benzyne precursors, producing versatile aminobenzophenone products in good to excellent yield. The process is entirely metal-free and has been exemplified on the synthesis of biologically active acridones and acridines.

  3. Friedel-Crafts Acylation with Amides

    PubMed Central

    Raja, Erum K.; DeSchepper, Daniel J.; Nilsson Lill, Sten O.; Klumpp, Douglas A.

    2012-01-01

    Friedel-Crafts acylation has been known since the 1870s and it is an important organic synthetic reaction leading to aromatic ketone products. Friedel-Crafts acylation is usually done with carboxylic acid chlorides or anhydrides while amides are generally not useful substrates in these reactions. Despite being the least reactive carboxylic acid derivative, we have found a series of amides capable of providing aromatic ketones in good yields (55–96%, 17 examples). We propose a mechanism involving diminished C-N resonance through superelectrophilic activation and subsequent cleavage to acyl cations. PMID:22690740

  4. Hydrophobic benzyl amines as supports for liquid-phase C-terminal amidated peptide synthesis: application to the preparation of ABT-510.

    PubMed

    Matsumoto, Emiko; Fujita, Yuko; Okada, Yohei; Kauppinen, Esko I; Kamiya, Hidehiro; Chiba, Kazuhiro

    2015-09-01

    C-terminal amidation is one of the most common modification of peptides and frequently found in bioactive peptides. However, the C-terminal modification must be creative, because current chemical synthetic techniques of peptides are dominated by the use of C-terminal protecting supports. Therefore, it must be carried out after the removal of such supports, complicating reaction work-up and product isolation. In this context, hydrophobic benzyl amines were successfully added to the growing toolbox of soluble tag-assisted liquid-phase peptide synthesis as supports, leading to the total synthesis of ABT-510 (2). Although an ethyl amide-forming type was used in the present work, different types of hydrophobic benzyl amines could also be simply designed and prepared through versatile reductive aminations in one step. The standard acidic treatment used in the final deprotection step for peptide synthesis gave the desired C-terminal secondary amidated peptide with no epimerization. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  5. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal-Organic Framework.

    PubMed

    Benson, Oguarabau; da Silva, Ivan; Argent, Stephen P; Cabot, Rafel; Savage, Mathew; Godfrey, Harry G W; Yan, Yong; Parker, Stewart F; Manuel, Pascal; Lennox, Matthew J; Mitra, Tamoghna; Easun, Timothy L; Lewis, William; Blake, Alexander J; Besley, Elena; Yang, Sihai; Schröder, Martin

    2016-11-16

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO 2 uptake of 12.6 mmol g -1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO 2 /CH 4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties.

  6. Biosynthesis and function of simple amides in Xenorhabdus doucetiae.

    PubMed

    Bode, Edna; He, Yue; Vo, Tien Duy; Schultz, Roland; Kaiser, Marcel; Bode, Helge B

    2017-11-01

    Xenorhabdus doucetiae, the bacterial symbiont of the entomopathogenic nematode Steinernema diaprepesi produces several different fatty acid amides. Their biosynthesis has been studied using a combination of analysis of gene deletions and promoter exchanges in X. doucetiae and heterologous expression of candidate genes in E. coli. While a decarboxylase is required for the formation of all observed phenylethylamides and tryptamides, the acyltransferase XrdE encoded in the xenorhabdin biosynthesis gene cluster is responsible for the formation of short chain acyl amides. Additionally, new, long-chain and cytotoxic acyl amides were identified in X. doucetiae infected insects and when X. doucetiae was grown in Galleria Instant Broth (GIB). When the bioactivity of selected amides was tested, a quorum sensing modulating activity was observed for the short chain acyl amides against the two different quorum sensing systems from Chromobacterium and Janthinobacterium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. 40 CFR 721.10191 - Amides, coco, N-[3-(dibutylamino)propyl].

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N-[3-(dibutylamino... Specific Chemical Substances § 721.10191 Amides, coco, N-[3-(dibutylamino)propyl]. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco...

  8. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...

  9. 40 CFR 721.720 - Alkoxylated fatty acid amide, alkylsulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkoxylated fatty acid amide... Specific Chemical Substances § 721.720 Alkoxylated fatty acid amide, alkylsulfate salt. (a) Chemical... as an alkoxylated fatty acid amide, alkylsulfate salt (PMN P-97-136) is subject to reporting under...

  10. TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences

    PubMed Central

    Song, Jiangning; Tan, Hao; Wang, Mingjun; Webb, Geoffrey I.; Akutsu, Tatsuya

    2012-01-01

    Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the Cα-N bond (Phi) and the Cα-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the Phi and Psi angle prediction are 27.8° and 44.6°, respectively, which are 1% and 3% respectively lower than that using one of the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random predictor that was built on the amino acid-specific basis, with the p-value<1.46e-147 and 7.97e-150, respectively by the Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/TANGLE/. PMID:22319565

  11. Amides Do Not Always Work: Observation of Guest Binding in an Amide-Functionalized Porous Metal–Organic Framework

    PubMed Central

    2016-01-01

    An amide-functionalized metal organic framework (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g–1 at 20 bar and 298 K. MFM-136 is the first example of an acylamide pyrimidyl isophthalate MOF without open metal sites and, thus, provides a unique platform to study guest binding, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed unambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not necessarily induce specific guest–host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties. PMID:27665845

  12. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    PubMed

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  13. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    PubMed Central

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-01-01

    Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components. PMID:28042825

  14. Synthesis of amide isosteres of schweinfurthin-based stilbenes.

    PubMed

    Stockdale, David P; Beutler, John A; Wiemer, David F

    2017-10-15

    The schweinfurthins are plant-derived stilbenes with an intriguing profile of anti-cancer activity. To obtain analogues of the schweinfurthins that might preserve the biological activity but have greater water solubility, a formal replacement of the central olefin with an amide has been explored. Two pairs of amides have been prepared, each containing the same hexahydroxanthene "left half" joined through an amide linkage to two different "right halves." In each series, the amide has been inserted in both possible orientations, placing the carbonyl group on the tricyclic ABC ring system and the amine on the D-ring, or placing the amine on the hexahydroxanthene and the carbonyl group on the D-ring. The four new schweinfurthin analogues have been tested in the NCI 60 cell line screen, and in both cases the more active isomer carried the carbonyl group on the C-ring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    PubMed Central

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  16. Influence of intermolecular amide hydrogen bonding on the geometry, atomic charges, and spectral modes of acetanilide: An ab initio study

    NASA Astrophysics Data System (ADS)

    Binoy, J.; Prathima, N. B.; Murali Krishna, C.; Santhosh, C.; Hubert Joe, I.; Jayakumar, V. S.

    2006-08-01

    Acetanilide, a compound of pharmaceutical importance possessing pain-relieving properties due to its blocking the pulse dissipating along the nerve fiber, is subjected to vibrational spectral investigation using NIR FT Raman, FT-IR, and SERS. The geometry, Mulliken charges, and vibrational spectrum of acetanilide have been computed using the Hartree-Fock theory and density functional theory employing the 6-31G (d) basis set. To investigate the influence of intermolecular amide hydrogen bonding, the geometry, charge distribution, and vibrational spectrum of the acetanilide dimer have been computed at the HF/6-31G (d) level. The computed geometries reveal that the acetanilide molecule is planar, while twisting of the secondary amide group with respect to the phenyl ring is found upon hydrogen bonding. The trans isomerism and “amido” form of the secondary amide, hyperconjugation of the C=O group with the adjacent C-C bond, and donor-acceptor interaction have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of the phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation, and hyperconjugation. A decrease in the NH and C=O bond orders and increase in the C-N bond orders due to donor-acceptor interaction can be observed in the vibrational spectra. The SERS spectral analysis reveals that the flat orientation of the molecule on the adsorption plane is preferred.

  17. ExScal Backbone Network Architecture

    DTIC Science & Technology

    2005-01-01

    802.11 battery powered nodes was laid over the sensor network. We adopted the Stargate platform for the backbone tier to serve as the basis for...its head. XSS Hardware and Network: XSS stands for eXtreme Scaling Stargate . A stargate is a linux-based single board computer. It has a 400 MHz

  18. Electrochemical reduction of nitrate in the presence of an amide

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2002-01-01

    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  19. Underestimated Halogen Bonds Forming with Protein Backbone in Protein Data Bank.

    PubMed

    Zhang, Qian; Xu, Zhijian; Shi, Jiye; Zhu, Weiliang

    2017-07-24

    Halogen bonds (XBs) are attracting increasing attention in biological systems. Protein Data Bank (PDB) archives experimentally determined XBs in biological macromolecules. However, no software for structure refinement in X-ray crystallography takes into account XBs, which might result in the weakening or even vanishing of experimentally determined XBs in PDB. In our previous study, we showed that side-chain XBs forming with protein side chains are underestimated in PDB on the basis of the phenomenon that the proportion of side-chain XBs to overall XBs decreases as structural resolution becomes lower and lower. However, whether the dominant backbone XBs forming with protein backbone are overlooked is still a mystery. Here, with the help of the ratio (R F ) of the observed XBs' frequency of occurrence to their frequency expected at random, we demonstrated that backbone XBs are largely overlooked in PDB, too. Furthermore, three cases were discovered possessing backbone XBs in high resolution structures while losing the XBs in low resolution structures. In the last two cases, even at 1.80 Å resolution, the backbone XBs were lost, manifesting the urgent need to consider XBs in the refinement process during X-ray crystallography study.

  20. LETTER TO THE EDITOR: Backbones of traffic jams

    NASA Astrophysics Data System (ADS)

    Shikhar Gupta, Himadri; Ramaswamy, Ramakrishna

    1996-11-01

    We study the jam phase of the deterministic traffic model in two dimensions. Within the jam phase, there is a phase transition, from a self-organized jam (formed by initial synchronization followed by jamming), to a random-jam structure. The backbone of the jam is defined and used to analyse self-organization in the jam. The fractal dimension and interparticle correlations on the backbone indicate a continous phase transition at density 0305-4470/29/21/003/img1 with critical exponent 0305-4470/29/21/003/img2, which are characterized through simulations.

  1. The Graphical Representation of the Digital Astronaut Physiology Backbone

    NASA Technical Reports Server (NTRS)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  2. Metal-free one-pot oxidative amination of aldehydes to amides.

    PubMed

    Ekoue-Kovi, Kekeli; Wolf, Christian

    2007-08-16

    Metal-free oxidative amination of aromatic aldehydes in the presence of TBHP provides convenient access to amides in 85-99% under mild reaction conditions within 5 h. This method avoids free carboxylic acid intermediates and integrates aldehyde oxidation and amide bond formation, which are usually accomplished separately, into a single operation. Proline-derived amides can be prepared in excellent yields without noticeable racemization.

  3. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fluorinated alkylaryl amide. 721.9075 Section 721.9075 Protection of Environment ENVIRONMENTAL PROTECTION... amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688) is...

  4. Non-amidated and amidated members of the C-type allatostatin (AST-C) family are differentially distributed in the stomatogastric nervous system of the American lobster, Homarus americanus.

    PubMed

    Christie, Andrew E; Miller, Alexandra; Fernandez, Rebecca; Dickinson, Evyn S; Jordan, Audrey; Kohn, Jessica; Youn, Mina C; Dickinson, Patsy S

    2018-01-13

    The crustacean stomatogastric nervous system (STNS) is a well-known model for investigating neuropeptidergic control of rhythmic behavior. Among the peptides known to modulate the STNS are the C-type allatostatins (AST-Cs). In the lobster, Homarus americanus, three AST-Cs are known. Two of these, pQIRYHQCYFNPISCF (AST-C I) and GNGDGRLYWRCYFNAVSCF (AST-C III), have non-amidated C-termini, while the third, SYWKQCAFNAVSCFamide (AST-C II), is C-terminally amidated. Here, antibodies were generated against one of the non-amidated peptides (AST-C I) and against the amidated isoform (AST-C II). Specificity tests show that the AST-C I antibody cross-reacts with both AST-C I and AST-C III, but not AST-C II; the AST-C II antibody does not cross-react with either non-amidated peptide. Wholemount immunohistochemistry shows that both subclasses (non-amidated and amidated) of AST-C are distributed throughout the lobster STNS. Specifically, the antibody that cross-reacts with the two non-amidated peptides labels neuropil in the CoGs and the stomatogastric ganglion (STG), axons in the superior esophageal (son) and stomatogastric (stn) nerves, and ~ 14 somata in each commissural ganglion (CoG). The AST-C II-specific antibody labels neuropil in the CoGs, STG and at the junction of the sons and stn, axons in the sons and stn, ~ 42 somata in each CoG, and two somata in the STG. Double immunolabeling shows that, except for one soma in each CoG, the non-amidated and amidated peptides are present in distinct sets of neuronal profiles. The differential distributions of the two AST-C subclasses suggest that the two peptide groups are likely to serve different modulatory roles in the lobster STNS.

  5. Structural study of salt forms of amides; paracetamol, benzamide and piperine

    NASA Astrophysics Data System (ADS)

    Kennedy, Alan R.; King, Nathan L. C.; Oswald, Iain D. H.; Rollo, David G.; Spiteri, Rebecca; Walls, Aiden

    2018-02-01

    Single crystal x-ray diffraction has been used to investigate the structures of six complexes containing O-atom protonated cations derived from the pharmaceutically relevant amides benzamide (BEN), paracetamol (PAR) and piperine (PIP). The structures of the salt forms [PAR(H)][SO3C6H4Cl], [BEN(H)][O3SC6H4Cl] and [BEN(H)][Br]·H2O are reported along with those of the hemi-halide salt forms [PAR(H)][I3]. PAR, [PIP(H)][I3]·PIP and [PIP(H)][I3]0·5[I]0.5. PIP. The structure of the cocrystal BEN. HOOCCH2Cl is also presented for comparison. The geometry of the amide group is found to systematically change upon protonation, with the Cdbnd O distance increasing and the Csbnd N distance decreasing. The hemi-halide species all feature strongly hydrogen bonded amide(H)/amide pairs. The amide group Cdbnd O and Csbnd N distances for both elements of each such pair are intermediate between those found for simple neutral amide and protonated amide forms. It was found that crystallising paracetamol from aqueous solutions containing Ba2+ ions gave orthorhombic paracetamol.

  6. Predicting protein amidation sites by orchestrating amino acid sequence features

    NASA Astrophysics Data System (ADS)

    Zhao, Shuqiu; Yu, Hua; Gong, Xiujun

    2017-08-01

    Amidation is the fourth major category of post-translational modifications, which plays an important role in physiological and pathological processes. Identifying amidation sites can help us understanding the amidation and recognizing the original reason of many kinds of diseases. But the traditional experimental methods for predicting amidation sites are often time-consuming and expensive. In this study, we propose a computational method for predicting amidation sites by orchestrating amino acid sequence features. Three kinds of feature extraction methods are used to build a feature vector enabling to capture not only the physicochemical properties but also position related information of the amino acids. An extremely randomized trees algorithm is applied to choose the optimal features to remove redundancy and dependence among components of the feature vector by a supervised fashion. Finally the support vector machine classifier is used to label the amidation sites. When tested on an independent data set, it shows that the proposed method performs better than all the previous ones with the prediction accuracy of 0.962 at the Matthew's correlation coefficient of 0.89 and area under curve of 0.964.

  7. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    PubMed

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-05

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N-[3-(dibutylamino... Specific Chemical Substances § 721.10192 Amides, coco, N-[3-(dibutylamino)propyl], acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides...

  9. Local Conformational Stability of HIV-1 gp120 in Unliganded and CD4-Bound States as Defined by Amide Hydrogen/Deuterium Exchange▿ †

    PubMed Central

    Kong, Leopold; Huang, Chih-chin; Coales, Stephen J.; Molnar, Kathleen S.; Skinner, Jeff; Hamuro, Yoshitomo; Kwong, Peter D.

    2010-01-01

    The binding reaction of the HIV-1 gp120 envelope glycoprotein to the CD4 receptor involves exceptional changes in enthalpy and entropy. Crystal structures of gp120 in unliganded and various ligand-bound states, meanwhile, reveal an inner domain able to fold into diverse conformations, a structurally invariant outer domain, and, in the CD4-bound state, a bridging sheet minidomain. These studies, however, provide only hints as to the flexibility of each state. Here we use amide hydrogen/deuterium exchange coupled to mass spectrometry to provide quantifications of local conformational stability for HIV-1 gp120 in unliganded and CD4-bound states. On average, unliganded core gp120 displayed >10,000-fold slower exchange of backbone-amide hydrogens than a theoretically unstructured protein of the same composition, with binding by CD4 reducing the rate of gp120 amide exchange a further 10-fold. For the structurally constant CD4, alterations in exchange correlated well with alterations in binding surface (P value = 0.0004). For the structurally variable gp120, however, reductions in flexibility extended outside the binding surface, and regions of expected high structural diversity (inner domain/bridging sheet) displayed roughly 20-fold more rapid exchange in the unliganded state than regions of low diversity (outer domain). Thus, despite an extraordinary reduction in entropy, neither unliganded gp120 nor free CD4 was substantially unstructured, suggesting that most of the diverse conformations that make up the gp120 unliganded state are reasonably ordered. The results provide a framework for understanding how local conformational stability influences entropic change, conformational diversity, and structural rearrangements in the gp120-CD4 binding reaction. PMID:20660185

  10. Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross-Coupling of Amide Derivatives.

    PubMed

    Liu, Chengwei; Szostak, Michal

    2017-10-02

    Considering the ubiquity of organophosphorus compounds in organic synthesis, pharmaceutical discovery agrochemical crop protection and materials chemistry, new methods for their construction hold particular significance. A conventional method for the synthesis of C-P bonds involves cross-coupling of aryl halides and dialkyl phosphites (the Hirao reaction). We report a catalytic deamidative phosphorylation of a wide range of amides using a palladium or nickel catalyst giving aryl phosphonates in good to excellent yields. The present method tolerates a wide range of functional groups. The reaction constitutes the first example of a transition-metal-catalyzed generation of C-P bonds from amides. This redox-neutral protocol can be combined with site-selective conventional cross-coupling for the regioselective synthesis of potential pharmacophores. Mechanistic studies suggest an oxidative addition/transmetallation pathway. In light of the importance of amides and phosphonates as synthetic intermediates, we envision that this Pd and Ni-catalyzed C-P bond forming method will find broad application. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Gas-phase fragmentation of peptides by MALDI in-source decay with limited amide hydrogen (1H/2H) scrambling.

    PubMed

    Bache, Nicolai; Rand, Kasper D; Roepstorff, Peter; Jørgensen, Thomas J D

    2008-08-15

    To achieve a fundamental understanding of the function of proteins and protein complexes at the molecular level, it is crucial to obtain a detailed knowledge about their dynamic and structural properties. The kinetics of backbone amide hydrogen exchange is intimately linked to the structural dynamics of the protein, and in recent years, the monitoring of the isotopic exchange of these hydrogens by mass spectrometry has become a recognized method. At present, the resolution of this method is, however, limited and single-residue resolution is typically only obtained for a few residues in a protein. It would therefore be desirable if gas-phase fragmentation could be used to localize incorporated deuterons as this would ultimately lead to single-residue resolution. A central obstacle for this approach is, however, the occurrence of intramolecular migration of amide hydrogens upon activation of the gaseous protein (i.e., hydrogen scrambling). Here we investigate the occurrence of scrambling in selectively labeled peptides upon fragmentation by matrix-assisted laser desorption/ionization in-source decay (MALDI ISD). We have utilized peptides with a unique regioselective deuterium incorporation that allows us to accurately determine the extent of scrambling upon fragmentation. Our results show that the level of scrambling upon MALDI ISD is so low that the solution deuteration pattern is readily apparent in the gas-phase fragment ions. These results suggest that MALDI ISD may prove useful for hydrogen exchange studies of purified peptides and small proteins.

  12. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network.

    PubMed

    Lyons, James; Dehzangi, Abdollah; Heffernan, Rhys; Sharma, Alok; Paliwal, Kuldip; Sattar, Abdul; Zhou, Yaoqi; Yang, Yuedong

    2014-10-30

    Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between C(αi-1)-C(αi)-C(αi+1) (θ) and a dihedral angle rotated about the C(αi)-C(αi+1) bond (τ). θ and τ angles, as the representative of structural properties of three to four amino-acid residues, offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9Å from their corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template-based as well as template-free structure prediction. The deep neural network learning technique is available as an on-line server called Structural Property prediction with Integrated DEep neuRal network (SPIDER) at http://sparks-lab.org. Copyright © 2014 Wiley Periodicals, Inc.

  13. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity.

    PubMed

    Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr

    2013-08-22

    We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.

  14. Cooperative UAV-Based Communications Backbone for Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs aremore » used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.« less

  15. Nonribosomal biosynthesis of backbone-modified peptides

    NASA Astrophysics Data System (ADS)

    Niquille, David L.; Hansen, Douglas A.; Mori, Takahiro; Fercher, David; Kries, Hajo; Hilvert, Donald

    2018-03-01

    Biosynthetic modification of nonribosomal peptide backbones represents a potentially powerful strategy to modulate the structure and properties of an important class of therapeutics. Using a high-throughput assay for catalytic activity, we show here that an L-Phe-specific module of an archetypal nonribosomal peptide synthetase can be reprogrammed to accept and process the backbone-modified amino acid (S)-β-Phe with near-native specificity and efficiency. A co-crystal structure with a non-hydrolysable aminoacyl-AMP analogue reveals the origins of the 40,000-fold α/β-specificity switch, illuminating subtle but precise remodelling of the active site. When the engineered catalyst was paired with downstream module(s), (S)-β-Phe-containing peptides were produced at preparative scale in vitro (~1 mmol) and high titres in vivo (~100 mg l-1), highlighting the potential of biosynthetic pathway engineering for the construction of novel nonribosomal β-frameworks.

  16. Borate esters: Simple catalysts for the sustainable synthesis of complex amides

    PubMed Central

    Sabatini, Marco T.; Boulton, Lee T.; Sheppard, Tom D.

    2017-01-01

    Chemical reactions for the formation of amide bonds are among the most commonly used transformations in organic chemistry, yet they are often highly inefficient. A novel protocol for amidation using a simple borate ester catalyst is reported. The process presents significant improvements over other catalytic amidation methods in terms of efficiency and safety, with an unprecedented substrate scope including functionalized heterocycles and even unprotected amino acids. The method was used to access a wide range of functionalized amide derivatives, including pharmaceutically relevant targets, important synthetic intermediates, a catalyst, and a natural product. PMID:28948222

  17. Short-distance probes for protein backbone structure based on energy transfer between bimane and transition metal ions

    PubMed Central

    Taraska, Justin W.; Puljung, Michael C.; Zagotta, William N.

    2009-01-01

    The structure and dynamics of proteins underlies the workings of virtually every biological process. Existing biophysical methods are inadequate to measure protein structure at atomic resolution, on a rapid time scale, with limited amounts of protein, and in the context of a cell or membrane. FRET can measure distances between two probes, but depends on the orientation of the probes and typically works only over long distances comparable with the size of many proteins. Also, common probes used for FRET can be large and have long, flexible attachment linkers that position dyes far from the protein backbone. Here, we improve and extend a fluorescence method called transition metal ion FRET that uses energy transfer to transition metal ions as a reporter of short-range distances in proteins with little orientation dependence. This method uses a very small cysteine-reactive dye monobromobimane, with virtually no linker, and various transition metal ions bound close to the peptide backbone as the acceptor. We show that, unlike larger fluorophores and longer linkers, this donor–acceptor pair accurately reports short-range distances and changes in backbone distances. We further extend the method by using cysteine-reactive metal chelators, which allow the technique to be used in protein regions of unknown secondary structure or when native metal ion binding sites are present. This improved method overcomes several of the key limitations of classical FRET for intramolecular distance measurements. PMID:19805285

  18. New organic semiconductors with imide/amide-containing molecular systems.

    PubMed

    Liu, Zitong; Zhang, Guanxin; Cai, Zhengxu; Chen, Xin; Luo, Hewei; Li, Yonghai; Wang, Jianguo; Zhang, Deqing

    2014-10-29

    Due to their high electron affinities, chemical and thermal stabilities, π-conjugated molecules with imide/amide frameworks have received considerable attentions as promising candidates for high-performance optoelectronic materials, particularly for organic semiconductors with high carrier mobilities. The purpose of this Research News is to give an overview of recent advances in development of high performance imide/amide based organic semiconductors for field-effect transistors. It covers naphthalene diimide-, perylene diimide- and amide-based conjugated molecules and polymers for organic semiconductors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone.

    PubMed

    Gui, Meng; Song, Juyi; Zhang, Lu; Wang, Shun; Wu, Ruiyun; Ma, Changwei; Li, Pinglan

    2015-06-05

    Chondroitin sulfates (CSs) were extracted from sturgeon skull and backbone, and their chemical composition, anticoagulant, anti-platelet and thrombolysis activities were evaluated. The average molecular weights of CS from sturgeon skull and backbone were 38.5kDa and 49.2kDa, respectively. Disaccharide analysis indicated that the sturgeon backbone CS was primarily composed of disaccharide monosulfated in position four of the GalNAc (37.8%) and disaccharide monosulfated in position six of the GalNAc (59.6%) while sturgeon skull CS was primarily composed of nonsulfated disaccharide (74.2%). Sturgeon backbone CS showed stronger antithrombotic effect than sturgeon skull CS. Sturgeon backbone CS could significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT), inhibited ADP-induced platelet aggregation and dissolved platelet plasma clots in vitro. The results suggested that sturgeon backbone CS can be explored as a functional food with antithrombotic function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. On the unconventional amide I band in acetanilide

    NASA Astrophysics Data System (ADS)

    Tenenbaum, Alexander; Campa, Alessandro; Giansanti, Andrea

    1987-04-01

    We developed a new model to study the molecular dynamics of the acetanilide (ACN) crystal by computer simulation. Low-frequency oscillations of the molecules as a whole were considered with high-frequency vibrations of the amidic degrees of freedom involved in hydrogen bonding. The low-temperature power spectrum has two peaks, shifted by 15 cm -1, in the region of the amide I band: one of them corresponds to the so-called anomalous amide I band in the IR and Raman spectra of ACN. We found that this peak is due to the coupling of the low-frequency motion in the chain of molecules with the motion of the hydrogen-bonded protons, at variance with current suggestions.

  1. The Influence of Varied Amide Bond Positions on Hydraphile Ion Channel Activity

    PubMed Central

    Weber, Michelle E.; Wang, Wei; Steinhardt, Sarah E.; Gokel, Michael R.; Leevy, W. Matthew; Gokel, George W.

    2008-01-01

    Hydraphile compounds have been prepared in which certain of the amine nitrogens have been replaced by amide residues. The amide bonds are present either in the sidearm, the side chain, or the central relay. Sodium cation transport through phospholipid vesicles mediated by each hydraphile was assessed. All of the amide-containing hydraphiles showed increased levels of Na+ transport compared to the parent compound, but the most dramatic rate increase was observed for sidearm amine to amide replacement. We attribute this enhancement to stabilization of the sidearm in the bilayer to achieve a better conformation for ion conduction. Biological studies of the amide hydraphiles with E. coli and B. subtilis showed significant toxicity only with the latter. Further, the consistency between the efficacies of ion transport and toxicity previously observed for non-amidic hydraphiles was not in evidence. PMID:19169369

  2. Phase-separable aqueous amide solutions as a thermal history indicator.

    PubMed

    Kitsunai, Makoto; Miyajima, Kentaro; Mikami, Yuzuru; Kim, Shokaku; Hirasawa, Akira; Chiba, Kazuhiro

    2008-12-01

    Aqueous solutions of several new amide compounds for use as simple thermal history indicators in the low-temperature transport of food and other products were synthesized. The phase transition temperatures of the aqueous solutions can be freely adjusted by changing the amide-water ratio in solution, the sodium chloride concentration of the water, and the type of amide compound. It is expected that these aqueous solutions can be applied as new thermal history indicators.

  3. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.

    PubMed

    Mohy El Dine, Tharwat; Erb, William; Berhault, Yohann; Rouden, Jacques; Blanchet, Jérôme

    2015-05-01

    An efficient method has been developed for direct amide bond synthesis between carboxylic acids and amines via (2-(thiophen-2-ylmethyl)phenyl)boronic acid as a highly active bench-stable catalyst. This catalyst was found to be very effective at room temperature for a large range of substrates with slightly higher temperatures required for challenging ones. This methodology can be applied to aliphatic, α-hydroxyl, aromatic, and heteroaromatic acids as well as primary, secondary, heterocyclic, and even functionalized amines. Notably, N-Boc-protected amino acids were successfully coupled in good yields with very little racemization. An example of catalytic dipeptide synthesis is reported.

  4. Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties.

    PubMed

    Fonseca, Ana C; Coelho, Jorge F J; Valente, Joana F A; Correia, Tiago R; Correia, Ilídio J; Gil, Maria H; Simões, Pedro N

    2013-01-01

    Novel biodegradable and low cytotoxic poly(ester amide)s (PEAs) based on α-amino acids and (L)-lactic acid (L-LA) oligomers were successfully synthesized by interfacial polymerization. The chemical structure of the new polymers was confirmed by spectroscopic analyses. Further characterization suggests that the α-amino acid plays a critical role on the final properties of the PEA. L-phenylalanine provides PEAs with higher glass transition temperature, whereas glycine enhances the crystallinity. The hydrolytic degradation in PBS (pH = 7.4) at 37 °C also depends on the α-amino acid, being faster for glycine-based PEAs. The cytotoxic profiles using fibroblast human cells indicate that the PEAs did not elicit an acute cytotoxic effect. The strategy presented in this work opens the possibility of synthesizing biodegradable PEAs with low citotoxicity by an easy and fast method. It is worth to mention also that the properties of these materials can be fine-tuned only by changing the α-amino acid.

  5. Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides

    PubMed Central

    Strieter, Eric R.; Bhayana, Brijesh; Buchwald, Stephen L.

    2009-01-01

    The copper-catalyzed N-arylation of amides, i.e., the Goldberg reaction, is an efficient method for the construction of products relevant to both industry and academic settings. Herein, we present mechanistic details concerning the catalytic and stoichiometric N-arylation of amides. In the context of the catalytic reaction, our findings reveal the importance of chelating diamine ligands in controlling the concentration of the active catalytic species. The consistency between the catalytic and stoichiometric results suggest that the activation of aryl halides occurs through a 1,2-diamine-ligated copper(I) amidate complex. Kinetic studies on the stoichiometric N-arylation of aryl iodides using 1,2-diamine ligated Cu(I) amidates also provide insights into the mechanism of aryl halide activation. PMID:19072233

  6. AMIDE: a free software tool for multimodality medical image analysis.

    PubMed

    Loening, Andreas Markus; Gambhir, Sanjiv Sam

    2003-07-01

    Amide's a Medical Image Data Examiner (AMIDE) has been developed as a user-friendly, open-source software tool for displaying and analyzing multimodality volumetric medical images. Central to the package's abilities to simultaneously display multiple data sets (e.g., PET, CT, MRI) and regions of interest is the on-demand data reslicing implemented within the program. Data sets can be freely shifted, rotated, viewed, and analyzed with the program automatically handling interpolation as needed from the original data. Validation has been performed by comparing the output of AMIDE with that of several existing software packages. AMIDE runs on UNIX, Macintosh OS X, and Microsoft Windows platforms, and it is freely available with source code under the terms of the GNU General Public License.

  7. Facile access to amides and hydroxamic acids directly from nitroarenes.

    PubMed

    Jain, Shreyans K; Aravinda Kumar, K A; Bharate, Sandip B; Vishwakarma, Ram A

    2014-09-07

    A new method for synthesis of amides and hydroxamic acids from nitroarenes and aldehydes is described. The MnO2 catalyzed thermal deoxygenation of nitrobenzene resulted in formation of a reactive nitroso intermediate which on reaction with aldehydes provided amides and hydroxamic acids. The thermal neat reaction in the presence of 0.01 mmol KOH predominantly led to formation of hydroxamic acid whereas reaction in the presence of 1 mmol acetic acid produced amides as the only product.

  8. Probing the Production of Amidated Peptides following Genetic and Dietary Copper Manipulations

    PubMed Central

    Yin, Ping; Bousquet-Moore, Danielle; Annangudi, Suresh P.; Southey, Bruce R.; Mains, Richard E.; Eipper, Betty A.; Sweedler, Jonathan V.

    2011-01-01

    Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM+/−) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM+/− mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM+/− mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides. PMID:22194882

  9. Polyimides Containing Amide And Perfluoroisopropyl Links

    NASA Technical Reports Server (NTRS)

    Dezem, James F.

    1993-01-01

    New polyimides synthesized from reactions of aromatic hexafluoroisopropyl dianhydrides with asymmetric amide diamines. Soluble to extent of at least 10 percent by weight at temperature of about 25 degrees C in common amide solvents such as N-methylpyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide. Polyimides form tough, flexible films, coatings, and moldings. Glass-transition temperatures ranged from 300 to 365 degrees C, and crystalline melting temperatures observed between 543 and 603 degrees C. Display excellent physical, chemical, and electrical properties. Useful as adhesives, laminating resins, fibers, coatings for electrical and decorative purposes, films, wire enamels, and molding compounds.

  10. Synthesis and biological activity of pyridazine amides, hydrazones and hydrazides.

    PubMed

    Buysse, Ann M; Yap, Maurice Ch; Hunter, Ricky; Babcock, Jonathan; Huang, Xinpei

    2017-04-01

    Optimization studies on compounds initially designed to be herbicides led to the discovery of a series of [6-(3-pyridyl)pyridazin-3-yl]amides exhibiting aphicidal properties. Systematic modifications of the amide moiety as well as the pyridine and pyridazine rings were carried out to determine if these changes could improve insecticidal potency. Structure-activity relationship (SAR) studies showed that changes to the pyridine and pyridazine rings generally resulted in a significant loss of insecticidal potency against green peach aphids [Myzus persicae (Sulzer)] and cotton aphids [(Aphis gossypii (Glover)]. However, replacement of the amide moiety with hydrazines, hydrazones, or hydrazides appeared to be tolerated, with small aliphatic substituents being especially potent. A series of aphicidal [6-(3-pyridyl)pyridazin-3-yl]amides were discovered as a result of random screening of compounds that were intially investigated as herbicides. Follow-up studies of the structure-activity relationship of these [6-(3-pyridyl)pyridazin-3-yl]amides showed that biosteric replacement of the amide moiety was widely tolerated suggesting that further opportunities for exploitation may exist for this new area of insecticidal chemistry. Insecticidal efficacy from the original hit, compound 1, to the efficacy of compound 14 produced greater than 10-fold potency improvement against Aphis gossypii and greater than 14-fold potency improvement against Myzus persicae. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  12. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis.

    PubMed

    Pisithkul, Tippapha; Jacobson, Tyler B; O'Brien, Thomas J; Stevenson, David M; Amador-Noguez, Daniel

    2015-09-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using (13)C-labeled sugars and [(15)N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. Copyright © 2015, Pisithkul et al.

  13. Phenolic Amides Are Potent Inhibitors of De Novo Nucleotide Biosynthesis

    PubMed Central

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; Stevenson, David M.

    2015-01-01

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposure leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. The results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals. PMID:26070680

  14. Phenolic amides are potent inhibitors of De Novo nucleotide biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposuremore » leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [ 15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. Furthermore, the results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals.« less

  15. Phenolic amides are potent inhibitors of De Novo nucleotide biosynthesis

    DOE PAGES

    Pisithkul, Tippapha; Jacobson, Tyler B.; O'Brien, Thomas J.; ...

    2015-06-12

    An outstanding challenge toward efficient production of biofuels and value-added chemicals from plant biomass is the impact that lignocellulose-derived inhibitors have on microbial fermentations. Elucidating the mechanisms that underlie their toxicity is critical for developing strategies to overcome them. Here, using Escherichia coli as a model system, we investigated the metabolic effects and toxicity mechanisms of feruloyl amide and coumaroyl amide, the predominant phenolic compounds in ammonia-pretreated biomass hydrolysates. Using metabolomics, isotope tracers, and biochemical assays, we showed that these two phenolic amides act as potent and fast-acting inhibitors of purine and pyrimidine biosynthetic pathways. Feruloyl or coumaroyl amide exposuremore » leads to (i) a rapid buildup of 5-phosphoribosyl-1-pyrophosphate (PRPP), a key precursor in nucleotide biosynthesis, (ii) a rapid decrease in the levels of pyrimidine biosynthetic intermediates, and (iii) a long-term generalized decrease in nucleotide and deoxynucleotide levels. Tracer experiments using 13C-labeled sugars and [ 15N]ammonia demonstrated that carbon and nitrogen fluxes into nucleotides and deoxynucleotides are inhibited by these phenolic amides. We found that these effects are mediated via direct inhibition of glutamine amidotransferases that participate in nucleotide biosynthetic pathways. In particular, feruloyl amide is a competitive inhibitor of glutamine PRPP amidotransferase (PurF), which catalyzes the first committed step in de novo purine biosynthesis. Finally, external nucleoside supplementation prevents phenolic amide-mediated growth inhibition by allowing nucleotide biosynthesis via salvage pathways. Furthermore, the results presented here will help in the development of strategies to overcome toxicity of phenolic compounds and facilitate engineering of more efficient microbial producers of biofuels and chemicals.« less

  16. ‘Umpolung’ Reactivity in Semiaqueous Amide and Peptide Synthesis

    PubMed Central

    Shen, Bo; Makley, Dawn M.; Johnston, Jeffrey N.

    2010-01-01

    The amide functional group is one of Nature’s key functional and structural elements, most notably within peptides. Amides are also key intermediates in the preparation of a diverse range of therapeutic small molecules. Its construction using available methods focuses principally upon dehydrative approaches, although oxidative and radical-based methods are representative alternatives. During the carbon-nitrogen bond forming step in most every example, the carbon and nitrogen bear electrophilic and nucleophilic character, respectively. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source in wet THF can lead directly to amide products. Preliminary observations support a mechanistic construct in which reactant polarity is reversed (umpolung) during C-N bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents provides a conceptually innovative approach to amide and peptide synthesis, and one that might ultimately provide for efficient peptide synthesis that is fully reliant on enantioselective methods. PMID:20577205

  17. Stability of Medium-Bridged Twisted Amides in Aqueous Solutions

    PubMed Central

    Szostak, Michal; Yao, Lei; Aubé, Jeffrey

    2012-01-01

    “Twisted” amides containing non-standard dihedral angles are typically hypersensitive to hydrolysis, a feature that has stringently limited their utility in water. We have synthesized a series of bridged lactams that contain a twisted amide linkage but which exhibit enhanced stability in aqueous environments. Many of these compounds were extracted unchanged from aqueous mixtures ranging from the strongly basic to the strongly acidic. NMR experiments showed that tricyclic lactams undergo reversible hydrolysis at extreme pH ranges, but that a number of compounds in this structure class are indefinitely stable under physiologically relevant pH conditions; one bicyclic example was additionally water-soluble. We examined the effect of structure on the reversibility of amide bond hydrolysis, which we attributed to the transannular nature of the amino acid analogs. These data suggest that medium-bridged lactams of these types should provide useful platforms for studying the behavior of twisted amides in aqueous systems. PMID:19178141

  18. Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluharova, Eva; Baer, Marcel D.; Mundy, Christopher J.

    2014-07-03

    Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkali earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the IR shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinitiesmore » and in different geometries. Since sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water. Support from the Czech Ministry of Education (grant LH12001) is gratefully acknowledged. EP thanks the International Max-Planck Research School for support and the Alternative Sponsored Fellowship program at Pacific Northwest National Laboratory (PNNL). PJ acknowledges the Praemium Academie award from the Academy of Sciences. Calculations of the free energy profiles were made possible through generous allocation of computer time from the North-German Supercomputing Alliance (HLRN). Calculations of vibrational spectra were performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Berkeley National Laboratory. This work was supported by National Science Foundation grant CHE-0431312. CJM is supported by the U.S. Department of Energy`s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle

  19. Comparative experimental investigation on the actuation mechanisms of ionic polymer–metal composites with different backbones and water contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zicai; Chang, Longfei; Wang, Yanjie

    2014-03-28

    Water-based ionic polymer–metal composites (IPMCs) exhibit complex deformation properties, especially when the water content changes. To explore the general actuation mechanisms, both Nafion and Flemion membranes are used as the polymer backbones. IPMC deformation includes three stages: fast anode deformation, relaxation deformation, and slow anode deformation, which is mainly dependent on the water content and the backbone. When the water content decreases from 21 to 14 wt. %, Nafion–IPMC exhibits a large negative relaxation deformation, zero deformation, a positive relaxation deformation, and a positive steady deformation without relaxation in sequence. Despite the slow anode deformation, Flemion–IPMC also shows a slight relaxation deformation,more » which disappears when the water content is less than 13 wt. %. The different water states are investigated at different water contents using nuclear magnetic resonance spectroscopy. The free water, which decreases rapidly at the beginning through evaporation, is proven to be critical for relaxation deformation. For the backbone, indirect evidence from the steady current response is correlated with the slow anode deformation of Flemion-IPMC. The latter is explained by the secondary dissociation of the weak acid group –COOH. Finally, we thoroughly explain not only the three deformations by swelling but also their evolvement with decreasing water content. A fitting model is also presented based on a multi-diffusion equation to reveal the deformation processes more clearly, the results from which are in good agreement with the experimental results.« less

  20. Nine of 16 stereoisomeric polyhydroxylated proline amides are potent β-N-acetylhexosaminidase inhibitors.

    PubMed

    Ayers, Benjamin J; Glawar, Andreas F G; Martínez, R Fernando; Ngo, Nigel; Liu, Zilei; Fleet, George W J; Butters, Terry D; Nash, Robert J; Yu, Chu-Yi; Wormald, Mark R; Nakagawa, Shinpei; Adachi, Isao; Kato, Atsushi; Jenkinson, Sarah F

    2014-04-18

    All 16 stereoisomeric N-methyl 5-(hydroxymethyl)-3,4-dihydroxyproline amides have been synthesized from lactones accessible from the enantiomers of glucuronolactone. Nine stereoisomers, including all eight with a (3R)-hydroxyl configuration, are low to submicromolar inhibitors of β-N-acetylhexosaminidases. A structural correlation between the proline amides is found with the ADMDP-acetamide analogues bearing an acetamidomethylpyrrolidine motif. The proline amides are generally more potent than their ADMDP-acetamide equivalents. β-N-Acetylhexosaminidase inhibition by an azetidine ADMDP-acetamide analogue is compared to an azetidine carboxylic acid amide. None of the amides are good α-N-acetylgalactosaminidase inhibitors.

  1. Determination of Structures and Energetics of Small- and Medium-Sized One-Carbon-Bridged Twisted Amides using ab Initio Molecular Orbital Methods: Implications for Amidic Resonance along the C-N Rotational Pathway.

    PubMed

    Szostak, Roman; Aubé, Jeffrey; Szostak, Michal

    2015-08-21

    Twisted amides containing nitrogen at the bridgehead position are attractive practical prototypes for the investigation of the electronic and structural properties of nonplanar amide linkages. Changes that occur during rotation around the N-C(O) axis in one-carbon-bridged twisted amides have been studied using ab initio molecular orbital methods. Calculations at the MP2/6-311++G(d,p) level performed on a set of one-carbon-bridged lactams, including 20 distinct scaffolds ranging from [2.2.1] to [6.3.1] ring systems, with the C═O bond on the shortest bridge indicate significant variations in structures, resonance energies, proton affinities, core ionization energies, frontier molecular orbitals, atomic charges, and infrared frequencies that reflect structural changes corresponding to the extent of resonance stabilization during rotation along the N-C(O) axis. The results are discussed in the context of resonance theory and activation of amides toward N-protonation (N-activation) by distortion. This study demonstrates that one-carbon-bridged lactams-a class of readily available, hydrolytically robust twisted amides-are ideally suited to span the whole spectrum of the amide bond distortion energy surface. Notably, this study provides a blueprint for the rational design and application of nonplanar amides in organic synthesis. The presented findings strongly support the classical amide bond resonance model in predicting the properties of nonplanar amides.

  2. Copper(II)-catalyzed amidations of alkynyl bromides as a general synthesis of ynamides and Z-enamides. An intramolecular amidation for the synthesis of macrocyclic ynamides.

    PubMed

    Zhang, Xuejun; Zhang, Yanshi; Huang, Jian; Hsung, Richard P; Kurtz, Kimberly C M; Oppenheimer, Jossian; Petersen, Matthew E; Sagamanova, Irina K; Shen, Lichun; Tracey, Michael R

    2006-05-26

    A general and efficient method for the coupling of a wide range of amides with alkynyl bromides is described here. This novel amidation reaction involves a catalytic protocol using copper(II) sulfate-pentahydrate and 1,10-phenanthroline to direct the sp-C-N bond formation, leading to a structurally diverse array of ynamides including macrocyclic ynamides via an intramolecular amidation. Given the surging interest in ynamide chemistry, this atom economical synthesis of ynamides should invoke further attention from the synthetic organic community.

  3. 1H NMR spectra. Part 30(+): 1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group.

    PubMed

    Abraham, Raymond J; Griffiths, Lee; Perez, Manuel

    2013-03-01

    The (1)H spectra of 37 amides in CDCl(3) solvent were analysed and the chemical shifts obtained. The molecular geometries and conformational analysis of these amides were considered in detail. The NMR spectral assignments are of interest, e.g. the assignments of the formamide NH(2) protons reverse in going from CDCl(3) to more polar solvents. The substituent chemical shifts of the amide group in both aliphatic and aromatic amides were analysed using an approach based on neural network data for near (≤3 bonds removed) protons and the electric field, magnetic anisotropy, steric and for aromatic systems π effects of the amide group for more distant protons. The electric field is calculated from the partial atomic charges on the N.C═O atoms of the amide group. The magnetic anisotropy of the carbonyl group was reproduced with the asymmetric magnetic anisotropy acting at the midpoint of the carbonyl bond. The values of the anisotropies Δχ(parl) and Δχ(perp) were for the aliphatic amides 10.53 and -23.67 (×10(-6) Å(3)/molecule) and for the aromatic amides 2.12 and -10.43 (×10(-6) Å(3)/molecule). The nitrogen anisotropy was 7.62 (×10(-6) Å(3)/molecule). These values are compared with previous literature values. The (1)H chemical shifts were calculated from the semi-empirical approach and also by gauge-independent atomic orbital calculations with the density functional theory method and B3LYP/6-31G(++) (d,p) basis set. The semi-empirical approach gave good agreement with root mean square error of 0.081 ppm for the data set of 280 entries. The gauge-independent atomic orbital approach was generally acceptable, but significant errors (ca. 1 ppm) were found for the NH and CHO protons and also for some other protons. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Experimental and theoretical understanding of the gas phase oxidation of atmospheric amides with OH radicals: kinetics, products, and mechanisms.

    PubMed

    Borduas, Nadine; da Silva, Gabriel; Murphy, Jennifer G; Abbatt, Jonathan P D

    2015-05-14

    Atmospheric amides have primary and secondary sources and are present in ambient air at low pptv levels. To better assess the fate of amides in the atmosphere, the room temperature (298 ± 3 K) rate coefficients of five different amides with OH radicals were determined in a 1 m(3) smog chamber using online proton-transfer-reaction mass spectrometry (PTR-MS). Formamide, the simplest amide, has a rate coefficient of (4.44 ± 0.46) × 10(-12) cm(3) molec(-1) s(-1) against OH, translating to an atmospheric lifetime of ∼1 day. N-methylformamide, N-methylacetamide and propanamide, alkyl versions of formamide, have rate coefficients of (10.1 ± 0.6) × 10(-12), (5.42 ± 0.19) × 10(-12), and (1.78 ± 0.43) × 10(-12) cm(3) molec(-1) s(-1), respectively. Acetamide was also investigated, but due to its slow oxidation kinetics, we report a range of (0.4-1.1) × 10(-12) cm(3) molec(-1) s(-1) for its rate coefficient with OH radicals. Oxidation products were monitored and quantified and their time traces were fitted using a simple kinetic box model. To further probe the mechanism, ab initio calculations are used to identify the initial radical products of the amide reactions with OH. Our results indicate that N-H abstractions are negligible in all cases, in contrast to what is predicted by structure-activity relationships. Instead, the reactions proceed via C-H abstraction from alkyl groups and from formyl C(O)-H bonds when available. The latter process leads to radicals that can readily react with O2 to form isocyanates, explaining the detection of toxic compounds such as isocyanic acid (HNCO) and methyl isocyanate (CH3NCO). These contaminants of significant interest are primary oxidation products in the photochemical oxidation of formamide and N-methylformamide, respectively.

  5. Cluster Bean—A Ureide- or Amide-Producing Legume? 1

    PubMed Central

    Sheoran, Inder S.; Luthra, Yash P.; Kuhad, Mohinder S.; Singh, Randhir

    1982-01-01

    Xylem sap of cluster bean (Cyamopsis tetragonoloba L. cv FS-277) and pigeonpea (Cajanus cajan cv UPAS-120) were analyzed for total nitrogen, amide nitrogen, and ureide nitrogen at flowering stage. Nitrogenase, uricase, and allantoinase were compared in nodules of cluster bean and pigeonpea. Xylem sap of cluster bean exhibited higher amounts of amides as compared to ureides, and the activities of uricase and allantoinase (ureide-producing enzymes) in nodules were also low, whereas the reverse was the case for pigeonpea. Based on these investigations, it has been concluded that cluster bean is an amide-producing legume rather than ureide-producing as had been reported earlier. PMID:16662600

  6. (E)-α,β-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation.

    PubMed

    Shi, Renyi; Zhang, Hua; Lu, Lijun; Gan, Pei; Sha, Yuchen; Zhang, Heng; Liu, Qiang; Beller, Matthias; Lei, Aiwen

    2015-02-21

    A novel Pd/Cu-catalyzed chemoselective aerobic oxidative N-dealkylation/carbonylation reaction has been developed. Tertiary amines are utilized as a "reservoir" of "active" secondary amines in this transformation, which inhibits the formation of undesired by-products and the deactivation of the catalysts. This protocol allows for an efficient and straightforward construction of synthetically useful and bioactive (E)-α,β-unsaturated amide derivatives from easily available tertiary amines, olefins and CO.

  7. Physicochemical and electrochemical properties of N-methyl-N-methoxymethylpyrrolidinium bis(fluorosulfonyl)amide and its lithium salt composites

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shunsuke; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2016-09-01

    The ionic liquid (IL) N-Methyl-N-methoxymethylpyrrolidinium bis(fluorosulfonyl)amide ([Pyr1,1O1][FSA]) was synthesized, and its physicochemical and electrochemical properties were investigated with respect to its application as an electrolyte in lithium-ion secondary batteries operating over a wide temperature range. [Pyr1,1O1][FSA]/Li salt (0.34 mol kg-1) composites were prepared by adding lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) into the IL. [Pyr1,1O1][FSA] and [Pyr1,1O1][FSA]/LiTFSA exhibited melting temperatures (Tm) below -30 °C. [Pyr1,1O1][FSA] exhibited a higher ionic conductivity value as compared with that of the corresponding IL with only alkyl substituents. The electrochemical window for both [Pyr1,1O1][FSA] and [Pyr1,1O1][FSA]/LiTFSA was 5.1 V. Stable lithium deposition and dissolution occurred on a Ni electrode at 25 °C.

  8. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    NASA Astrophysics Data System (ADS)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  9. Biosynthesis, degradation and pharmacological importance of the fatty acid amides.

    PubMed

    Farrell, Emma K; Merkler, David J

    2008-07-01

    The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics.

  10. Chelate effects in sulfate binding by amide/urea-based ligands.

    PubMed

    Jia, Chuandong; Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin

    2015-07-07

    The influence of chelate and mini-chelate effects on sulfate binding was explored for six amide-, amide/amine-, urea-, and urea/amine-based ligands. Two of the urea-based hosts were selective for SO4(2-) in water-mixed DMSO-d6 systems. Results indicated that the mini-chelate effect provided by a single urea group with two NH binding sites appears to provide enhanced binding over two amide groups. Furthermore, additional urea binding sites incorporated into the host framework appeared to overcome to some extent competing hydration effects with increasing water content.

  11. Biosynthesis, degradation, and pharmacological importance of the fatty acid amides

    PubMed Central

    Farrell, Emma K.; Merkler, David J.

    2008-01-01

    The identification of two biologically active fatty acid amides, N-arachidonoylethanolamine (anandamide) and oleamide, has generated a great deal of excitement and stimulated considerable research. However, anandamide and oleamide are merely the best-known and best-understood members of a much larger family of biologically-occurring fatty acid amides. In this review, we will outline which fatty acid amides have been isolated from mammalian sources, detail what is known about how these molecules are made and degraded in vivo, and highlight their potential for the development of novel therapeutics. PMID:18598910

  12. Conformation-Specific Spectroscopy of a Prototypical γ-PEPTIDE-WATER Complex: Ac-γ2-hPhe-NHMe-(H2O)1

    NASA Astrophysics Data System (ADS)

    Buchanan, Evan G.; James, William H., III; Zwier, Timothy S.; Guo, Li; Gellman, Samuel H.

    2010-06-01

    The prototypical γ-peptide, Ac-γ2-hPhe-NHMe, has been previously studied in a supersonic jet expansion, with three different conformers observed. Two of the monomers form nine atom, intramolecular hydrogen bonded rings, which differ by the position of the aromatic chromophore relative to the backbone. The third monomer conformer has no intramolecular H-bonds, but forms instead an intramolecular, amide-amide stacked structure unique to the γ-peptide backbone. This talk focuses attention on the conformation-specific IR spectra of the Ac-γ2-hPhe-NHMe-(H2O)1 complex, which is observed to form six unique conformational isomers, all of which preserve the two distinct monomer structural motifs. Three conformers are assigned to the nine atom intramolecular hydrogen bond family with the water hydrogen bonded to it as donor in different locations. The other three belong to the amide-amide stacking family with the water forming a bridge between the two amide planes. Infrared photodissocation of the water molecule from the complex to form γ-peptide monomer conformations will also be discussed.

  13. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness (h)

    PubMed Central

    2017-01-01

    The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom—the backbone dihedral angles φ and ψ (Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function of φ and ψ has not been completely described for both cis and trans backbones. Additionally, little intuitive understanding is available about a peptide’s conformation simply from knowing the φ and ψ values of a peptide (e.g., is the regular peptide defined by φ = ψ =  − 100°  left-handed or right-handed?). This report provides a new metric for backbone handedness (h) based on interpreting a peptide backbone as a helix with axial displacement d and angular displacement θ, both of which are derived from a peptide backbone’s internal coordinates, especially dihedral angles φ, ψ and ω. In particular, h equals sin(θ)d∕|d|, with range [−1, 1] and negative (or positive) values indicating left(or right)-handedness. The metric h is used to characterize the handedness of every region of the Ramachandran plot for both cis (ω = 0°) and trans (ω = 180°) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ, ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013), this report presents a new plot based on d and θ that serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone including cis

  14. Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azoitei, Mihai L.; Correia, Bruno E.; Ban, Yih-En Andrew

    2012-02-07

    The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.

  15. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajari, Timir; Vegt, Nico F. A. van der, E-mail: vandervegt@csi.tu-darmstadt.de

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvationmore » free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar

  16. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    NASA Astrophysics Data System (ADS)

    Hajari, Timir; van der Vegt, Nico F. A.

    2015-04-01

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side

  17. Insecticidal, repellent and fungicidal properties of novel trifluoromethylphenyl amides.

    PubMed

    Tsikolia, Maia; Bernier, Ulrich R; Coy, Monique R; Chalaire, Katelyn C; Becnel, James J; Agramonte, Natasha M; Tabanca, Nurhayat; Wedge, David E; Clark, Gary G; Linthicum, Kenneth J; Swale, Daniel R; Bloomquist, Jeffrey R

    2013-09-01

    Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (1c) was most active (24 h LD50 19.182 nM, 0.5 μL/insect). However, the 24 h LC50 and LD50 values of fipronil against Ae. aegypti larvae and adults were significantly lower: 13.55 nM and 0.787 × 10(-4) nM, respectively. Compound 1c was also active against Drosophila melanogaster adults with 24 h LC50 values of 5.6 and 4.9 μg/cm(2) for the Oregon-R and 1675 strains, respectively. Fipronil had LC50 values of 0.004 and 0.017 μg/cm(2) against the two strains of D. melanogaster, respectively. In repellency bioassays against female Ae. aegypti, 2,2,2-trifluoro-N-(2-(trifluoromethyl)phenyl)acetamide (4c) had the highest repellent potency with a minimum effective dosage (MED) of 0.039 μmol/cm(2) compared to DEET (MED of 0.091 μmol/cm(2)). Compound N-(2-(trifluoromethyl)phenyl)hexanamide (4a) had an MED of 0.091 μmol/cm(2) which was comparable to DEET. Compound 4c was the most potent fungicide against Phomopsis obscurans. Several trends were discerned between the structural configuration of these molecules and the effect of structural changes on toxicity and repellency. Para- or meta- trifluoromethylphenyl amides with an aromatic ring attached to the carbonyl carbon showed higher toxicity against Ae. aegypti larvae, than ortho- trifluoromethylphenyl amides. Ortho- trifluoromethylphenyl amides with trifluoromethyl or alkyl group attached to the carbonyl carbon produced higher repellent activity against female Ae. aegypti and Anopheles albimanus than meta- or para- trifluoromethylphenyl amides. The presence of 2,6-dichloro- substitution on the phenyl ring of the amide had an influence on larvicidal and repellent

  18. H-localized mode in chains of hydrogen-bonded amide groups

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Kellouai, Hassan; Page, Gabriel; Moret, Jacques; Johnson, Susanna W.; Eckert, Juergen

    1993-09-01

    New infrared measurements of the anomalous amide modes in acetanilide and its derivatives are presented. Preliminary results of structural data obtained by neutron diffraction at low temperature are also described. Besides the well-known anomalous amide-1 mode (1650 cm -1), it is shown that the NH out-of-plane bend (770 cm -1) and the “H-bond strain” (at about 105 cm -1) exhibit an anomalous increase of intensity proportional to the law exp(- T2/ Θ2), suggesting that the amide proton bears a significant electronic distribution as formerly observed for H - localized modes. Structural data, moreover, show that the thermal ellips of the amide proton has an increasing anisotropy at 15 K. Considering these new results, the theoretical model of a self-trapped “polaronic” state seems to be the most consistent with the whole set of observed anomalies in this family of crystals.

  19. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    PubMed

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. No-Enclave Percolation Corresponds to Holes in the Cluster Backbone.

    PubMed

    Hu, Hao; Ziff, Robert M; Deng, Youjin

    2016-10-28

    The no-enclave percolation (NEP) model introduced recently by Sheinman et al. can be mapped to a problem of holes within a standard percolation backbone, and numerical measurements of such holes give the same size-distribution exponent τ=1.82(1) as found for the NEP model. An argument is given that τ=1+d_{B}/2≈1.822 for backbone holes, where d_{B} is the backbone dimension. On the other hand, a model of simple holes within a percolation cluster yields τ=1+d_{f}/2=187/96≈1.948, where d_{f} is the fractal dimension of the cluster, and this value is consistent with the experimental results of gel collapse of Sheinman et al., which give τ=1.91(6). This suggests that the gel clusters are of the universality class of percolation cluster holes. Both models give a discontinuous maximum hole size at p_{c}, signifying explosive percolation behavior.

  1. Gas-Phase Amidation of Carboxylic Acids with Woodward’s Reagent K Ions

    PubMed Central

    Peng, Zhou; Pilo, Alice L.; Luongo, Carl A.; McLuckey, Scott A.

    2015-01-01

    Gas-phase amidation of carboxylic acids in multiply-charged peptides is demonstrated via ion/ion reactions with Woodward’s reagent K (wrk) in both positive and negative mode. Woodward’s reagent K, N-ethyl-3-phenylisoxazolium-3′-sulfonate, is a commonly used reagent that activates carboxylates to form amide bonds with amines in solution. Here, we demonstrate that the analogous gas-phase chemistry occurs upon reaction of the wrk ions and doubly protonated (or doubly deprotonated) peptide ions containing the carboxylic acid functionality. The reaction involves the formation of the enol ester intermediate in the electrostatic complex. Upon collisional activation, the ethyl amine on the reagent is transferred to the activated carbonyl carbon on the peptide, resulting in the formation of an ethyl amide (addition of 27 Da to the peptide) with loss of a neutral ketene derivative. Further collision-induced dissociation (CID) of the products and comparison with solution-phase amidation product confirms the structure of the ethyl amide. PMID:26122523

  2. Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melánová, Klára, E-mail: klara.melanova@upce.cz; Beneš, Ludvík; Trchová, Miroslava

    2013-06-15

    A set of layered ester and amide derivatives of titanium(IV) carboxymethylphosphonate was prepared by solvothermal treatment of amorphous titanium(IV) carboxymethylphosphonate with corresponding 1-alkanols, 1,ω-alkanediols, 1-aminoalkanes, 1,ω-diaminoalkanes and 1,ω-amino alcohols and characterized by powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Whereas alkyl chains with one functional group form bilayers tilted to the layers, 1,ω-diaminoalkanes and most of 1,ω-alkanediols form bridges connecting the adjacent layers. In the case of amino alcohols, the alkyl chains form bilayer and either hydroxyl or amino group is used for bonding. This simple method for the synthesis of ester and amide derivatives does not require preparationmore » of acid chloride derivative as a precursor or pre-intercalation with alkylamines and can be used also for the preparation of ester and amide derivatives of titanium carboxyethylphosphonate and zirconium carboxymethylphosphonate. - Graphical abstract: Ester and amide derivatives of layered titanium carboxymethylphosphonate were prepared by solvothermal treatment of amorphous solid with alkanol or alkylamine. - Highlights: • Ester and amide derivatives of titanium carboxymethylphosphonate. • Solvothermal treatment of amorphous solid with alkanol or alkylamine. • Ester and amide formation confirmed by IR spectroscopy.« less

  3. Sequence-specific sup 1 H NMR resonance assignments of Bacillus subtilis HPr: Use of spectra obtained from mutants to resolve spectral overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittekind, M.; Klevit, R.E.; Reizer, J.

    1990-08-07

    On the basis of an analysis of two-dimensional {sup 1}H NMR spectra, the complete sequence-specific {sup 1}H NMR assignments are presented for the phosphocarrier protein HPr from the Gram-positive bacterium Bacillus subtilis. During the assignment procedure, extensive use was made of spectra obtained from point mutants of HPr in order to resolve spectral overlap and to provide verification of assignments. Regions of regular secondary structure were identified by characteristic patterns of sequential backbone proton NOEs and slowly exchanging amide protons. B subtilis HPr contains four {beta}-strands that form a single antiparallel {beta}-sheet and two well-defined {alpha}-helices. There are two stretchesmore » of extended backbone structure, one of which contains the active site His{sub 15}. The overall fold of the protein is very similar to that of Escherichia coli HPr determined by NMR studies.« less

  4. Cytotoxic cassaine diterpenoid-diterpenoid amide dimers and diterpenoid amides from the leaves of Erythrophleum fordii.

    PubMed

    Du, Dan; Qu, Jing; Wang, Jia-Ming; Yu, Shi-Shan; Chen, Xiao-Guang; Xu, Song; Ma, Shuang-Gang; Li, Yong; Ding, Guang-Zhi; Fang, Lei

    2010-10-01

    Detailed phytochemical investigation from the leaves of Erythrophleum fordii resulted in the isolation of 13 compounds, including three cassaine diterpenoid-diterpenoid amide dimers (1, 3 and 5), and seven cassaine diterpenoid amides (6 and 8-13), together with three previously reported ones, erythrophlesins D (2), C (4) and 3beta-hydroxynorerythrosuamide (7). Compounds 1, 3 and 5 are further additions to the small group of cassaine diterpenoid dimers represented by erythrophlesins A-D. Their structures were determined by analysis of extensive one- and two-dimensional NMR experiments and ESIMS methods. Cytotoxic activities of the isolated compounds were tested against HCT-8, Bel-7402, BGC-823, A549 and A2780 human cancer cell lines in the MTT test. Results showed that compounds 1 and 3-5 exhibited significantly selective cytotoxic activities (IC(50)<10 microM) against these cells, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Pain and beyond: fatty acid amides and fatty acid amide hydrolase inhibitors in cardiovascular and metabolic diseases.

    PubMed

    Pillarisetti, Sivaram; Alexander, Christopher W; Khanna, Ish

    2009-12-01

    Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of several important endogenous fatty acid amides (FAAs), including anandamide, oleoylethanolamide and palmitoylethanolamide. Because specific FAAs interact with cannabinoid and vanilloid receptors, they are often referred to as 'endocannabinoids' or 'endovanilloids'. Initial interest in this area, therefore, has focused on developing FAAH inhibitors to augment the actions of FAAs and reduce pain. However, recent literature has shown that these FAAs - through interactions with unique receptors (extracellular and intracellular) - can induce a diverse array of effects that include appetite suppression, modulation of lipid and glucose metabolism, vasodilation, cardiac function and inflammation. This review gives an overview of FAAs and diverse FAAH inhibitors and their potential therapeutic utility in pain and non-pain indications.

  6. Water-stable helical structure of tertiary amides of bicyclic β-amino acid bearing 7-azabicyclo[2.2.1]heptane. Full control of amide cis-trans equilibrium by bridgehead substitution.

    PubMed

    Hosoya, Masahiro; Otani, Yuko; Kawahata, Masatoshi; Yamaguchi, Kentaro; Ohwada, Tomohiko

    2010-10-27

    Helical structures of oligomers of non-natural β-amino acids are significantly stabilized by intramolecular hydrogen bonding between main-chain amide moieties in many cases, but the structures are generally susceptible to the environment; that is, helices may unfold in protic solvents such as water. For the generation of non-hydrogen-bonded ordered structures of amides (tertiary amides in most cases), control of cis-trans isomerization is crucial, even though there is only a small sterical difference with respect to cis and trans orientations. We have established methods for synthesis of conformationally constrained β-proline mimics, that is, bridgehead-substituted 7-azabicyclo[2.2.1]heptane-2-endo-carboxylic acids. Our crystallographic, 1D- and 2D-NMR, and CD spectroscopic studies in solution revealed that a bridgehead methoxymethyl substituent completely biased the cis-trans equilibrium to the cis-amide structure along the main chain, and helical structures based on the cis-amide linkage were generated independently of the number of residues, from the minimalist dimer through the tetramer, hexamer, and up to the octamer, and irrespective of the solvent (e.g., water, alcohol, halogenated solvents, and cyclohexane). Generality of the control of the amide equilibrium by bridgehead substitution was also examined.

  7. Negative Differential Conductance in Polyporphyrin Oligomers with Nonlinear Backbones.

    PubMed

    Kuang, Guowen; Chen, Shi Zhang; Yan, Linghao; Chen, Ke Qiu; Shang, Xuesong; Liu, Pei Nian; Lin, Nian

    2018-01-17

    We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink. Aided by density functional theory with nonequilibrium Green's functions simulations, we attributed this backbone-dependent NDC to bias-modulated hybridization of the electrode states with the resonant transport molecular orbital. We argue this mechanism is generic in molecular systems, which opens a new route of designing molecular NDC devices.

  8. Flexible Xxx–Asp/Asn and Gly–Xxx Residues of Equine Cytochrome c in Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mass Spectrometry

    PubMed Central

    Takayama, Mitsuo

    2012-01-01

    The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx–Asp/Asn and Gly–Xxx, were identified from the discontinuous intense peak of c′-ions originating from specific cleavage at N–Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c′-ions originating from N–Cα bond cleavage at Xxx–Asp/Asn and Gly–Xxx residues, but also C-terminal side complement z′-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX. PMID:24349908

  9. Flexible xxx-asp/asn and gly-xxx residues of equine cytochrome C in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.

    PubMed

    Takayama, Mitsuo

    2012-01-01

    The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx-Asp/Asn and Gly-Xxx, were identified from the discontinuous intense peak of c'-ions originating from specific cleavage at N-Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c'-ions originating from N-Cα bond cleavage at Xxx-Asp/Asn and Gly-Xxx residues, but also C-terminal side complement z'-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX.

  10. Hydrolysis of an orally active platelet inhibitory prostanoid amide in the plasma of several species.

    PubMed

    Honohan, T; Fitzpatrick, F A; Booth, D G; McGrath, J P; Morton, D R; Nishizawa, E

    1980-01-01

    The prostanoid 3-oxa-4,5,6-trinor-3,7-inter-m-phenylene-PGE1-amide (OI-PGE1-amide) has a prolonged duration of oral platelet aggregation inhibitory activity when compared to the parent free acid (OI-PGE1) in the rat. When incubated in rat plasma at 1 microgram/ml for 30 seconds prior to addition of ADP, OI-PGE1-amide inhibits in vitro rat platelet aggregation approximately 50%. OI-PGE1 inhibits at 1 ng/ml. Inhibition of platelet aggregation by plasma incubated with OI-PGE1-amide (1 microgram/ml) increases with time and the rate of this increase differs with species. Incubation of OI-PGE1 in plasma does not result in an increase of platelet inhibitory activity with time. The increase of platelet inhibitory activity was assumed to indicate hydrolysis of OI-PGE1-amide to the more active OI-PGE1. A compound, different from OI-PGE1-amide, was isolated by an ion exchange/silica gel separation sequence from an incubation of OI-PGE1-amide in rat plasma. It had potent platelet aggregation inhibitory activity. This material was shown to be OI-PGE1 by thin-layer chromatography, gas chromatography and mass spectral analysis. Studies with [3H]-OI-PGE1-amide confirmed the formation of OI-PGE1 in plasma incubations. Amide hydrolytic activity was significantly different between species, the rank order being: rat greater than guine pig greater than monkey = human greater than dog. This relationship corresponded with that determined by measuring the increase in platelet inhibitory activity with time in plasma incubations of OI-PGE1-amide reported above. Present data indicate that (a) OI-PGE1-amide is hydrolyzed to the parent acid by plasma enzymes of several species and (b) hydrolytic activity of plasma varies widely between species.

  11. Characterization of cationic polymers by asymmetric flow field-flow fractionation and multi-angle light scattering-A comparison with traditional techniques.

    PubMed

    Wagner, Michael; Pietsch, Christian; Tauhardt, Lutz; Schallon, Anja; Schubert, Ulrich S

    2014-01-17

    In the field of nanomedicine, cationic polymers are the subject of intensive research and represent promising carriers for genetic material. The detailed characterization of these carriers is essential since the efficiency of gene delivery strongly depends on the properties of the used polymer. Common characterization methods such as size exclusion chromatography (SEC) or mass spectrometry (MS) suffer from problems, e.g. missing standards, or even failed for cationic polymers. As an alternative, asymmetrical flow field-flow fractionation (AF4) was investigated. Additionally, analytical ultracentrifugation (AUC) and (1)H NMR spectroscopy, as well-established techniques, were applied to evaluate the results obtained by AF4. In this study, different polymers of molar masses between 10 and 120kgmol(-1) with varying amine functionalities in the side chain or in the polymer backbone were investigated. To this end, some of the most successful gene delivery agents, namely linear poly(ethylene imine) (LPEI) (only secondary amines in the backbone), branched poly(ethylene imine) (B-PEI) (secondary and tertiary amino groups in the backbone, primary amine end groups), and poly(l-lysine) (amide backbone and primary amine side chains), were characterized. Moreover, poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), poly(2-(amino)ethyl methacrylate) (PAEMA), and poly(2-(tert-butylamino)ethyl methacrylate) (PtBAEMA) as polymers with primary, secondary, and tertiary amines in the side chain, have been investigated. Reliable results were obtained for all investigated polymers by AF4. In addition, important factors for all methods were evaluated, e.g. the influence of different elution buffers and AF4 membranes. Besides this, the correct determination of the partial specific volume and the suppression of the polyelectrolyte effect are the most critical issues for AUC investigations. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Condensation Reactions and Formation of Amides, Esters, and Nitriles Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2004-06-01

    Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300°C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.

  13. Structure of poly(ethylene glycol)-modified horseradish peroxidase in organic solvents: infrared amide I spectral changes upon protein dehydration are largely caused by protein structural changes and not by water removal per se.

    PubMed Central

    Al-Azzam, Wasfi; Pastrana, Emil A; Ferrer, Yancy; Huang, Qing; Schweitzer-Stenner, Reinhard; Griebenow, Kai

    2002-01-01

    Fourier transform infrared (FTIR) spectroscopy has emerged as a powerful tool to guide the development of stable lyophilized protein formulations by providing information on the structure of proteins in amorphous solids. The underlying assumption is that IR spectral changes in the amide I and III region upon protein dehydration are caused by protein structural changes. However, it has been claimed that amide I IR spectral changes could be the result of water removal per se. Here, we investigated whether such claims hold true. The structure of horseradish peroxidase (HRP) and poly(ethylene glycol)-modified HRP (HRP-PEG) has been investigated under various conditions (in aqueous solution, the amorphous dehydrated state, and dissolved/suspended in toluene and benzene) by UV-visible (UV-Vis), FTIR, and resonance Raman spectroscopy. The resonance Raman and UV-Vis spectra of dehydrated HRP-PEG dissolved in neat toluene or benzene were very similar to that of HRP in aqueous buffer, and thus the heme environment (heme iron spin, coordination, and redox state) was essentially the same under both conditions. Therefore, the three-dimensional structure of HRP-PEG dissolved in benzene and toluene was similar to that in aqueous solution. The amide I IR spectra of HRP-PEG in aqueous buffer and of dehydrated HRP-PEG dissolved in neat benzene and toluene were also very similar, and the secondary structure compositions (percentages of alpha-helices and beta-sheets) were within the standard error the same. These results are irreconcilable with recent claims that water removal per se could cause substantial amide I IR spectral changes (M. van de Weert, P.I. Haris, W.E. Hennink, and D.J. Crommelin. 2001. Anal. Biochem. 297:160-169). On the contrary, amide I IR spectral changes upon protein dehydration are caused by perturbations in the secondary structure. PMID:12496131

  14. Proteins regulating the biosynthesis and inactivation of neuromodulatory fatty acid amides.

    PubMed

    Patricelli, M P; Cravatt, B F

    2001-01-01

    Fatty acid amides (FAAs) represent a growing family of biologically active lipids implicated in a diverse range of cellular and physiological processes. At present, two general types of fatty acid amides, the N-acylethanolamines (NAEs) and the fatty acid primary amides (FAPAs), have been identified as potential physiological neuromodulators/neurotransmitters in mammals. Representative members of these two subfamilies include the endocannabinoid NAE anandamide and the sleep-inducing FAPA oleamide. In this Chapter, molecular mechanisms proposed for the biosynthesis and inactivation of FAAs are critically evaluated, with an emphasis placed on the biochemical and cell biological properties of proteins thought to mediate these processes.

  15. Asymmetric Synthesis of β-Amino Amides by Catalytic Enantioconvergent 2-Aza-Cope Rearrangement

    PubMed Central

    Goodman, C. Guy; Johnson, Jeffrey S.

    2015-01-01

    Dynamic kinetic resolutions of α-stereogenic-β-formyl amides in asymmetric 2-aza-Cope rearrangements are described. Chiral phosphoric acids catalyze this rare example of a non-hydrogenative DKR of a β-oxo acid derivative. The [3,3]-rearrangement occurs with high diastereo- and enantiocontrol, forming β-imino amides that can be deprotected to the primary β-amino amide or reduced to the corresponding diamine. PMID:26561873

  16. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    DOEpatents

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  17. Amide-based inhibitors of p38alpha MAP kinase. Part 2: design, synthesis and SAR of potent N-pyrimidyl amides.

    PubMed

    Tester, Richland; Tan, Xuefei; Luedtke, Gregory R; Nashashibi, Imad; Schinzel, Kurt; Liang, Weiling; Jung, Joon; Dugar, Sundeep; Liclican, Albert; Tabora, Jocelyn; Levy, Daniel E; Do, Steven

    2010-04-15

    Optimization of a tri-substituted N-pyridyl amide led to the discovery of a new class of potent N-pyrimidyl amide based p38alpha MAP kinase inhibitors. Initial SAR studies led to the identification of 5-dihydrofuran as an optimal hydrophobic group. Additional side chain modifications resulted in the introduction of hydrogen bond interactions. Through extensive SAR studies, analogs bearing free amino groups and alternatives to the parent (S)-alpha-methyl benzyl moiety were identified. These compounds exhibited improved cellular activities and maintained balance between p38alpha and CYP3A4 inhibition. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness ( h )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannige, Ranjan V.

    The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom—the backbone dihedral anglesφandψ(Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function ofφandψhas not been completely described for bothcisandtransbackbones. Additionally, little intuitive understanding is available about a peptide’s conformation simply from knowing theφandψvalues of a peptide (e.g., is the regular peptide defined byφ = ψ =  - 100°  left-handed or right-handed?). This report provides a new metric for backbone handednessmore » (h) based on interpreting a peptide backbone as a helix with axial displacementdand angular displacementθ, both of which are derived from a peptide backbone’s internal coordinates, especially dihedral anglesφ,ψandω. In particular,hequals sin(θ)d/d|, with range [-1, 1] and negative (or positive) values indicating left(or right)-handedness. The metrichis used to characterize the handedness of every region of the Ramachandran plot for bothcis(ω = 0°) and trans (ω = 180°) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ,ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013), this report presents a new plot based ondandθthat serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone includingcisandtransbackbones. The intuitiveness

  19. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness ( h )

    DOE PAGES

    Mannige, Ranjan V.

    2017-05-16

    The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom—the backbone dihedral anglesφandψ(Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function ofφandψhas not been completely described for bothcisandtransbackbones. Additionally, little intuitive understanding is available about a peptide’s conformation simply from knowing theφandψvalues of a peptide (e.g., is the regular peptide defined byφ = ψ =  - 100°  left-handed or right-handed?). This report provides a new metric for backbone handednessmore » (h) based on interpreting a peptide backbone as a helix with axial displacementdand angular displacementθ, both of which are derived from a peptide backbone’s internal coordinates, especially dihedral anglesφ,ψandω. In particular,hequals sin(θ)d/d|, with range [-1, 1] and negative (or positive) values indicating left(or right)-handedness. The metrichis used to characterize the handedness of every region of the Ramachandran plot for bothcis(ω = 0°) and trans (ω = 180°) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ,ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013), this report presents a new plot based ondandθthat serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone includingcisandtransbackbones. The intuitiveness

  20. Preservice Secondary Mathematics Teachers' Statistical Knowledge: A Snapshot of Strengths and Weaknesses

    ERIC Educational Resources Information Center

    Lovett, Jennifer N.; Lee, Hollylynne S.

    2017-01-01

    Amid the implementation of new curriculum standard regarding statistics and new recommendations for preservice secondary mathematics teachers [PSMTs] to teach statistics, there is a need to examine the current state of PSMTs' common statistical knowledge. This study reports on the statistical knowledge 217 PSMTs from a purposeful sample of 18…

  1. A Community of Congruence among Secondary Social Studies Teachers: A Case Study

    ERIC Educational Resources Information Center

    Province, Rachael

    2012-01-01

    The purpose of this case study was to explore the community of one purposely selected department of secondary social studies teachers. I aimed to provide insight into the nature of one community of congruence amid the many constraints and systemic pressures in school systems today. Many have suggested that education is a microcosm of larger…

  2. Catalytic asymmetric epoxidation of alpha,beta-unsaturated amides: efficient synthesis of beta-aryl alpha-hydroxy amides using a one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process.

    PubMed

    Nemoto, Tetsuhiro; Kakei, Hiroyuki; Gnanadesikan, Vijay; Tosaki, Shin-Ya; Ohshima, Takashi; Shibasaki, Masakatsu

    2002-12-11

    The catalytic asymmetric epoxidation of alpha,beta-unsaturated amides using Sm-BINOL-Ph3As=O complex was succeeded. Using 5-10 mol % of the asymmetric catalyst, a variety of amides were epoxidized efficiently, yielding the corresponding alpha,beta-epoxy amides in up to 99% yield and in more than 99% ee. Moreover, the novel one-pot tandem process, one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process, was developed. This method was successfully utilized for the efficient synthesis of beta-aryl alpha-hydroxy amides, including beta-aryllactyl-leucine methyl esters. Interestingly, it was found that beneficial modifications on the Pd catalyst were achieved by the constituents of the first epoxidation, producing a more suitable catalyst for the Pd-catalyzed epoxide opening reaction in terms of chemoselectivity.

  3. Biosynthesis and NMR-studies of a double transmembrane domain from the Y4 receptor, a human GPCR.

    PubMed

    Zou, Chao; Naider, Fred; Zerbe, Oliver

    2008-12-01

    The human Y4 receptor, a class A G-protein coupled receptor (GPCR) primarily targeted by the pancreatic polypeptide (PP), is involved in a large number of physiologically important functions. This paper investigates a Y4 receptor fragment (N-TM1-TM2) comprising the N-terminal domain, the first two transmembrane (TM) helices and the first extracellular loop followed by a (His)(6) tag, and addresses synthetic problems encountered when recombinantly producing such fragments from GPCRs in Escherichia coli. Rigorous purification and usage of the optimized detergent mixture 28 mM dodecylphosphocholine (DPC)/118 mM% 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LPPG) resulted in high quality TROSY spectra indicating protein conformational homogeneity. Almost complete assignment of the backbone, including all TM residue resonances was obtained. Data on internal backbone dynamics revealed a high secondary structure content for N-TM1-TM2. Secondary chemical shifts and sequential amide proton nuclear Overhauser effects defined the TM helices. Interestingly, the properties of the N-terminal domain of this large fragment are highly similar to those determined on the isolated N-terminal domain in the presence of DPC micelles.

  4. Positional effects of second-sphere amide pendants on electrochemical CO2 reduction catalyzed by iron porphyrins† †Electronic supplementary information (ESI) available: Procedures for synthetic, spectroscopic, and electrochemical experiments. CCDC 1582750. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04682k

    PubMed Central

    Nichols, Eva M.; Derrick, Jeffrey S.; Nistanaki, Sepand K.; Smith, Peter T.

    2018-01-01

    The development of catalysts for electrochemical reduction of carbon dioxide offers an attractive approach to transforming this greenhouse gas into value-added carbon products with sustainable energy input. Inspired by natural bioinorganic systems that feature precisely positioned hydrogen-bond donors in the secondary coordination sphere to direct chemical transformations occurring at redox-active metal centers, we now report the design, synthesis, and characterization of a series of iron tetraphenylporphyrin (Fe-TPP) derivatives bearing amide pendants at various positions at the periphery of the metal core. Proper positioning of the amide pendants greatly affects the electrocatalytic activity for carbon dioxide reduction to carbon monoxide. In particular, derivatives bearing proximal and distal amide pendants on the ortho position of the phenyl ring exhibit significantly larger turnover frequencies (TOF) compared to the analogous para-functionalized amide isomers or unfunctionalized Fe-TPP. Analysis of TOF as a function of catalyst standard reduction potential enables first-sphere electronic effects to be disentangled from second-sphere through-space interactions, suggesting that the ortho-functionalized porphyrins can utilize the latter second-sphere property to promote CO2 reduction. Indeed, the distally-functionalized ortho-amide isomer shows a significantly larger through-space interaction than its proximal ortho-amide analogue. These data establish that proper positioning of secondary coordination sphere groups is an effective design element for breaking electronic scaling relationships that are often observed in electrochemical CO2 reduction. PMID:29732079

  5. Highly Stereoselective Intermolecular Haloetherification and Haloesterification of Allyl Amides

    PubMed Central

    Soltanzadeh, Bardia; Jaganathan, Arvind; Staples, Richard J.

    2016-01-01

    An organocatalytic and highly regio-, diastereo-, and enantioselective intermolecular haloetherification and haloesterification reaction of allyl amides is reported. A variety of alkene substituents and substitution patterns are compatible with this chemistry. Notably, electronically unbiased alkene substrates exhibit exquisite regio- and diastereoselectivity for the title transformation. We also demonstrate that the same catalytic system can be used in both chlorination and bromination reactions of allyl amides with a variety of nucleophiles with little or no modification. PMID:26110812

  6. Structural test of the parameterized-backbone method for protein design.

    PubMed

    Plecs, Joseph J; Harbury, Pehr B; Kim, Peter S; Alber, Tom

    2004-09-03

    Designing new protein folds requires a method for simultaneously optimizing the conformation of the backbone and the side-chains. One approach to this problem is the use of a parameterized backbone, which allows the systematic exploration of families of structures. We report the crystal structure of RH3, a right-handed, three-helix coiled coil that was designed using a parameterized backbone and detailed modeling of core packing. This crystal structure was determined using another rationally designed feature, a metal-binding site that permitted experimental phasing of the X-ray data. RH3 adopted the intended fold, which has not been observed previously in biological proteins. Unanticipated structural asymmetry in the trimer was a principal source of variation within the RH3 structure. The sequence of RH3 differs from that of a previously characterized right-handed tetramer, RH4, at only one position in each 11 amino acid sequence repeat. This close similarity indicates that the design method is sensitive to the core packing interactions that specify the protein structure. Comparison of the structures of RH3 and RH4 indicates that both steric overlap and cavity formation provide strong driving forces for oligomer specificity.

  7. Impact of aggregation on scaling behavior of Internet backbone traffic

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Li; Ribeiro, Vinay J.; Moon, Sue B.; Diot, Christophe

    2002-07-01

    We study the impact of aggregation on the scaling behavior of Internet backbone tra ffic, based on traces collected from OC3 and OC12 links in a tier-1 ISP. We make two striking observations regarding the sub-second small time scaling behaviors of Internet backbone traffic: 1) for a majority of these traces, the Hurst parameters at small time scales (1ms - 100ms) are fairly close to 0.5. Hence the traffic at these time scales are nearly uncorrelated; 2) the scaling behaviors at small time scales are link-dependent, and stay fairly invariant over changing utilization and time. To understand the scaling behavior of network traffic, we develop analytical models and employ them to demonstrate how traffic composition -- aggregation of traffic with different characteristics -- affects the small-time scalings of network traffic. The degree of aggregation and burst correlation structure are two major factors in traffic composition. Our trace-based data analysis confirms this. Furthermore, we discover that traffic composition on a backbone link stays fairly consistent over time and changing utilization, which we believe is the cause for the invariant small-time scalings we observe in the traces.

  8. Dehydrogenation of secondary amines: synthesis, and characterization of rare-earth metal complexes incorporating imino- or amido-functionalized pyrrolyl ligands.

    PubMed

    Li, Qinghai; Zhou, Shuangliu; Wang, Shaowu; Zhu, Xiancui; Zhang, Lijun; Feng, Zhijun; Guo, Liping; Wang, Fenhua; Wei, Yun

    2013-02-28

    The dehydrogenation of pyrrolyl-functionalized secondary amines initiated by rare-earth metal amides was systematically studied. Reactions of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with pyrrolyl-functionalized secondary amines 2-(t)BuNHCH(2)-5-R-C(4)H(2)NH (R = H (1), R = (t)Bu (2)) led to dehydrogenation of the secondary amines with isolation of imino-functionalized pyrrolyl rare-earth metal complexes [2-(t)BuN=CH-5-R-C(4)H(2)N](2)REN(SiMe(3))(2) (R = H, RE = Y (3a), Dy (3b), Yb (3c), Eu (3d); R = (t)Bu, RE = Y (4a), Dy (4b), Er (4c)). The mixed ligands erbium complex [2-(t)BuNCH(2)-5-(t)Bu-C(4)H(2)N]Er[2-(t)BuN=CH-5-(t)BuC(4)H(2)N](2)ClLi(2)(THF) (4c') was isolated in a short reaction time for the synthesis of complex 4c. Reaction of the deuterated pyrrolyl-functionalized secondary amine 2-((t)BuNHCHD)C(4)H(3)NH with yttrium amide [(Me(3)Si)(2)N](3)Y(μ-Cl)Li(THF)(3) further proved that pyrrolyl-amino ligands were transferred to pyrrolyl-imino ligands. Treatment of 2-((t)BuNHCH(2))C(4)H(3)NH (1) with excess (Me(3)Si)(2)NLi gave the only pyrrole deprotonated product {[η(5):η(2):η(1)-2-((t)BuNHCH(2))C(4)H(3)N]Li(2)N(SiMe(3))(2)}(2) (5), indicating that LiN(SiMe(3))(2) could not dehydrogenate the secondary amines to imines and rare-earth metal ions had a decisive effect on the dehydrogenation. The reaction of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with 1 equiv. of more bulky pyrrolyl-functionalized secondary amine 2-[(2,6-(i)Pr(2)C(6)H(3))NHCH(2)](C(4)H(3)NH) (6) in toluene afforded the only amine and pyrrole deprotonated dinuclear rare-earth metal amido complexes {(μ-η(5):η(1)):η(1)-2-[(2,6-(i)Pr(2)C(6)H(3))NCH(2)]C(4)H(3)N]LnN(SiMe(3))(2)}(2) (RE = Nd (7a), Sm (7b), Er (7c)), no dehydrogenation of secondary amine to imine products were observed. On the basis of experimental results, a plausible mechanism for the dehydrogenation of secondary amines to imines was proposed.

  9. A new characterization of three-dimensional conductivity backbone above and below the percolation threshold

    NASA Astrophysics Data System (ADS)

    Skal, Asya S.

    1996-08-01

    A new definition of three-dimensional conductivity backbone, obtained from a distribution function of Joule heat and the Hall coefficient is introduced. The fractal dimension d fB = d - ( {g}/{v}) = 2.25 of conductivity backbone for both sides of the threshold is obtained from a critical exponent of the Hall coefficient g = 0.6. This allows one to construct, below the threshold, a new order parameter of metal-conductor transition—the two-component infinite conductivity back-bone and tested scaling relation, proposed by Alexander and Orbach [ J. Phys. Rev. Lett.43, 1982, L625] for both sides of a threshold.

  10. Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.

    PubMed

    Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong

    2018-01-01

    Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.

  11. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C4-amide)-[anti-EGFR] in Dual-combination with Epirubicin-(C3-amide)-[anti-HER2/neu] against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3) and the Complementary Effect of Mebendazole

    PubMed Central

    Coyne, CP; Jones, Toni; Bear, Ryan

    2015-01-01

    Aims Delineate the feasibility of simultaneous, dual selective “targeted” chemotherapeutic delivery and determine if this molecular strategy can promote higher levels anti-neoplastic cytotoxicity than if only one covalent immunochemotherapeutic is selectively “targeted” for delivery at a single membrane associated receptor over-expressed by chemotherapeutic-resistant mammary adenocarcinoma. Methodology Gemcitabine and epirubicin were covalently bond to anti-EGFR and anti-HER2/neu utilizing a rapid multi-phase synthetic organic chemistry reaction scheme. Determination that 96% or greater gemcitabine or epirubicin content was covalently bond to immunoglobulin fractions following size separation by micro-scale column chromatography was established by methanol precipitation analysis. Residual binding-avidity of gemcitabine-(C4-amide)-[anti-EG-FR] applied in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu] was determined by cell-ELIZA utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) populations. Lack of fragmentation or polymerization was validated by SDS-PAGE/immunodetection/chemiluminescent autoradiography. Anti-neoplastic cytotoxic potency was determined by vitality stain analysis of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) monolayers known to uniquely over-express EGFR (2 × 105/cell) and HER2/neu (1 × 106/cell) receptor complexes. The covalent immunochemotherapeutics gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] were applied simultaneously in dual-combination to determine their capacity to collectively evoke elevated levels of anti-neoplastic cytotoxicity. Lastly, the tubulin/microtubule inhibitor mebendazole evaluated to determine if it’s potential to complemented the anti-neoplastic cytotoxic properties of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. Results Dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with

  12. Rhodium(III)-Catalyzed Amidation of Unactivated C(sp(3) )-H Bonds.

    PubMed

    Wang, He; Tang, Guodong; Li, Xingwei

    2015-10-26

    Nitrogenation by direct functionalization of C-H bonds represents an important strategy for constructing C-N bonds. Rhodium(III)-catalyzed direct amidation of unactivated C(sp(3) )-H bonds is rare, especially under mild reaction conditions. Herein, a broad scope of C(sp(3) )-H bonds are amidated under rhodium catalysis in high efficiency using 3-substituted 1,4,2-dioxazol-5-ones as the amide source. The protocol broadens the scope of rhodium(III)-catalyzed C(sp(3) )-H activation chemistry, and is applicable to the late-stage functionalization of natural products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Copper-Catalyzed Carbonylative Coupling of Cycloalkanes and Amides.

    PubMed

    Li, Yahui; Dong, Kaiwu; Zhu, Fengxiang; Wang, Zechao; Wu, Xiao-Feng

    2016-06-13

    Carbonylation reactions are a most powerful method for the synthesis of carbonyl-containing compounds. However, most known carbonylation procedures still require noble-metal catalysts and the use of activated compounds and good nucleophiles as substrates. Herein, we developed a copper-catalyzed carbonylative transformation of cycloalkanes and amides. Imides were prepared in good yields by carbonylation of a C(sp(3) )-H bond of the cycloalkane with the amides acting as weak nucleophiles. Notably, this is the first report of copper-catalyzed carbonylative C-H activation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 40 CFR 721.10176 - Amides, peanut-oil, N-[3-(dimethylamino)propyl].

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, peanut-oil, N-[3... Specific Chemical Substances § 721.10176 Amides, peanut-oil, N-[3-(dimethylamino)propyl]. (a) Chemical..., peanut-oil, N-[3-(dimethylamino)propyl] (PMN P-04-144; CAS No. 691400-76-7) is subject to reporting under...

  15. 40 CFR 721.10176 - Amides, peanut-oil, N-[3-(dimethylamino)propyl].

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amides, peanut-oil, N-[3... Specific Chemical Substances § 721.10176 Amides, peanut-oil, N-[3-(dimethylamino)propyl]. (a) Chemical..., peanut-oil, N-[3-(dimethylamino)propyl] (PMN P-04-144; CAS No. 691400-76-7) is subject to reporting under...

  16. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides.

    PubMed

    Antoszczak, Michał; Maj, Ewa; Napiórkowska, Agnieszka; Stefańska, Joanna; Augustynowicz-Kopeć, Ewa; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam

    2014-11-25

    A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL) was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE), and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.

  17. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.

    PubMed

    Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A

    2018-06-06

    Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.

  18. A case study on the myth of emission from aliphatic amides

    NASA Astrophysics Data System (ADS)

    Singh, Avinash Kumar; Das, Sreyashi; Datta, Anindya

    2016-12-01

    For several decades, aliphatic amidic compounds have been believed to be emissive. We report that this contention is incorrect and that the anomalous emission from amides originates in fluorescent impurities generated during their synthesis. In order to make this point, we have synthesized fluorescent compounds and have compared the absorption spectra with excitation spectra.

  19. Sixty-five years of the long march in protein secondary structure prediction: the final stretch?

    PubMed Central

    Yang, Yuedong; Gao, Jianzhao; Wang, Jihua; Heffernan, Rhys; Hanson, Jack; Paliwal, Kuldip; Zhou, Yaoqi

    2018-01-01

    Abstract Protein secondary structure prediction began in 1951 when Pauling and Corey predicted helical and sheet conformations for protein polypeptide backbone even before the first protein structure was determined. Sixty-five years later, powerful new methods breathe new life into this field. The highest three-state accuracy without relying on structure templates is now at 82–84%, a number unthinkable just a few years ago. These improvements came from increasingly larger databases of protein sequences and structures for training, the use of template secondary structure information and more powerful deep learning techniques. As we are approaching to the theoretical limit of three-state prediction (88–90%), alternative to secondary structure prediction (prediction of backbone torsion angles and Cα-atom-based angles and torsion angles) not only has more room for further improvement but also allows direct prediction of three-dimensional fragment structures with constantly improved accuracy. About 20% of all 40-residue fragments in a database of 1199 non-redundant proteins have <6 Å root-mean-squared distance from the native conformations by SPIDER2. More powerful deep learning methods with improved capability of capturing long-range interactions begin to emerge as the next generation of techniques for secondary structure prediction. The time has come to finish off the final stretch of the long march towards protein secondary structure prediction. PMID:28040746

  20. Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice

    PubMed Central

    Giles, Kurt; Berry, David B.; Condello, Carlo; Dugger, Brittany N.; Li, Zhe; Oehler, Abby; Bhardwaj, Sumita; Elepano, Manuel; Guan, Shenheng; Silber, B. Michael; Olson, Steven H.

    2016-01-01

    Developing therapeutics for neurodegenerative diseases (NDs) prevalent in the aging population remains a daunting challenge. With the growing understanding that many NDs progress by conformational self-templating of specific proteins, the prototypical prion diseases offer a platform for ND drug discovery. We evaluated high-throughput screening hits with the aryl amide scaffold and explored the structure–activity relationships around three series differing in their N-aryl core: benzoxazole, benzothiazole, and cyano. Potent anti-prion compounds were advanced to pharmacokinetic studies, and the resulting brain-penetrant leads from each series, together with a related N-aryl piperazine lead, were escalated to long-term dosing and efficacy studies. Compounds from each of the four series doubled the survival of mice infected with a mouse-passaged prion strain. Treatment with aryl amides altered prion strain properties, as evidenced by the distinct patterns of neuropathological deposition of prion protein and associated astrocytic gliosis in the brain; however, none of the aryl amide compounds resulted in drug-resistant prion strains, in contrast to previous studies on compounds with the 2-aminothiazole (2-AMT) scaffold. As seen with 2-AMTs and other effective anti-prion compounds reported to date, the novel aryl amides reported here were ineffective in prolonging the survival of transgenic mice infected with human prions. Most encouraging is our discovery that aryl amides show that the development of drug resistance is not an inevitable consequence of efficacious anti-prion therapeutics. PMID:27317802

  1. Superactive amidated COOH-terminal glucagon analogues with no methionine or tryptophan.

    PubMed

    Murphy, W A; Coy, D H; Lance, V A

    1986-01-01

    The functions of the Trp-25 and Met-27 residues and the free carboxy terminus of glucagon have been debated for many years. Despite some semi-synthetic data to the contrary, comparison of the glucagon sequence with the other 5 members of this family of peptides, all of them amides and particularly growth hormone-releasing factor(1-29) amide and its recently described analogues, suggests that alterations to these positions should be quite well tolerated in terms of biological activity. To test this prediction, [Phe-25,Leu-27]-glucagon amide was synthesized in high yield and was found to actually have superior glycogenolytic activity (196%) to glucagon in the rat. Replacement of Gly-4 by D-Phe, which has been shown to give much enhanced glycogenolytic activity than glucagon itself, also increased the activity of [D-Phe-4,Phe-25,Leu-27]-glucagon amide (518%). The L-Phe-4-analogue, [Phe-4,25,Leu-27]-glucagon amide, in contrast, was 20 times less active (30%), strongly suggesting the presence of a beta-bend in this N-terminal region of glucagon. This was supported by Chou-Fasman structural predictions which indicate extensive folding in the 1-15 region. Indeed, additional conformational restriction by substitution of D-Ser in position 2 of glucagon also increased activity to 226%. [D-Gln-3]-glucagon was slightly less active (74%) than glucagon. Chou-Fasman calculations on glucagon were compared to similar treatments of the VIP, secretin, PHI, and GRF(1-29) sequences.

  2. Intramolecular amide bonds stabilize pili on the surface of bacilli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzik, Jonathan M.; Poor, Catherine B.; Faull, Kym F.

    Gram-positive bacteria elaborate pili and do so without the participation of folding chaperones or disulfide bond catalysts. Sortases, enzymes that cut pilin precursors, form covalent bonds that link pilin subunits and assemble pili on the bacterial surface. We determined the x-ray structure of BcpA, the major pilin subunit of Bacillus cereus. The BcpA precursor encompasses 2 Ig folds (CNA{sub 2} and CNA{sub 3}) and one jelly-roll domain (XNA) each of which synthesizes a single intramolecular amide bond. A fourth amide bond, derived from the Ig fold of CNA{sub 1}, is formed only after pilin subunits have been incorporated into pili.more » We report that the domains of pilin precursors have evolved to synthesize a discrete sequence of intramolecular amide bonds, thereby conferring structural stability and protease resistance to pili.« less

  3. Public Elementary and Secondary School Arts Education Instructors. Stats in Brief. NCES 2015-085

    ERIC Educational Resources Information Center

    Sparks, Dinah; Zhang, Jizhi; Bahr, Steven

    2015-01-01

    Amid reports of decreased instructional time in music and art in some districts (Heilig, Cole, and Aguilar 2010; McMurrer 2008; Rabkin and Hedberg 2011), researchers, policymakers, and practitioners have questioned the status of arts education in the United States (Sabol 2013). Evidence about how elementary and secondary schools staff their arts…

  4. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  5. Neutral glycoconjugated amide-based calix[4]arenes: complexation of alkali metal cations in water.

    PubMed

    Cindro, Nikola; Požar, Josip; Barišić, Dajana; Bregović, Nikola; Pičuljan, Katarina; Tomaš, Renato; Frkanec, Leo; Tomišić, Vladislav

    2018-02-07

    Cation complexation in water presents a unique challenge in calixarene chemistry, mostly due to the fact that a vast majority of calixarene-based cation receptors is not soluble in water or their solubility has been achieved by introducing functionalities capable of (de)protonation. Such an approach inevitably involves the presence of counterions which compete with target cations for the calixarene binding site, and also rather often requires the use of ion-containing buffer solutions in order to control the pH. Herein we devised a new strategy towards the solution of this problem, based on introducing carbohydrate units at the lower or upper rim of calix[4]arenes which comprise efficient cation binding sites. In this context, we prepared neutral, water-soluble receptors with secondary or tertiary amide coordinating groups, and studied their complexation with alkali metal cations in aqueous and methanol (for the comparison purpose) solutions. Complexation thermodynamics was quantitatively characterized by UV spectrometry and isothermal titration calorimetry, revealing that one of the prepared tertiary amide derivatives is capable of remarkably efficient (log K ≈ 5) and selective binding of sodium cations among alkali metal cations in water. Given the ease of the synthetic procedure used, and thus the variety of accessible analogues, this study can serve as a platform for the development of reagents for diverse purposes in aqueous media.

  6. Analysis of stationary availability factor of two-level backbone computer networks with arbitrary topology

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.

  7. Change in Glutenin Macropolymer Secondary Structure in Wheat Sourdough Fermentation by FTIR.

    PubMed

    Wang, Jinshui; Yue, Yuanyuan; Liu, Tiantian; Zhang, Bin; Wang, Zhenlei; Zhang, Changfu

    2017-06-01

    Wheat sourdough was prepared by fermentation with Lactobacillus plantarum M616 and yeast in the present study. The change in secondary structure of glutenin macropolymer (GMP) in wheat sourdough fermentation for 4 and 12 h was determined using Fourier transform infrared spectroscopy, and then the resultant spectra were Fourier self-deconvoluted of the amide I band in the region from 1600 to 1700 cm -1 . Significant different spectra especially in the amide I band for GMP from sourdough fermented with L. plantarum M616 (SL) and with L. plantarum M616 and yeast (SLY) were found in respect of control dough (CK), dough with acids (SA), and sourdough fermented with yeast (SY) at 4 and 12 h of fermentation. The loss of α-helix structure in SL, SLY, and SA samples was noticed during fermentation. Compared with CK and SY, SL, SLY, and SA samples showed significant decrease (p < 0.05) in the relative areas of α-helix at the same stage of fermentation. In addition, β-turns in SL sourdough decrease, and the relative areas of random coil increase significantly (p < 0.05). These changes in the secondary structure mean that the flexibility of glutenin macropolymer in sourdough increases and it makes GMP degradation easier during fermentation. The modified secondary structure of GMP makes more sensitive to proteolysis by means of cereal enzymes.

  8. Occurrence of N-phenylpropenoyl-L-amino acid amides in different herbal drugs and their influence on human keratinocytes, on human liver cells and on adhesion of Helicobacter pylori to the human stomach.

    PubMed

    Hensel, A; Deters, A M; Müller, G; Stark, T; Wittschier, N; Hofmann, T

    2007-02-01

    Thirty commonly used medicinal plants were screened by a selective and specific LC-MS/MS method for the occurrence of N-phenylpropenoyl- L-amino acid amides, a new homologous class of secondary products. In 15 plants, one or more of the respective derivatives (1 to 12) were found and quantitated. Especially roots from Angelica archangelica, fruits of Cassia angustifolia, C. senna, Coriandrum sativum, leaves from Hedera helix, flowers from Lavandula spec. and from Sambucus nigra contained high amounts (1 to 11 microg/g) of mixtures of the different amides 1 to 12. For functional investigations on potential activity in cellular physiology, two amides with an aliphatic (8) and an aromatic amino acid residue (5) were used. N-(E)-Caffeic acid L-aspartic acid amide (8) and N-(E)-caffeic acid L-tryptophan amide (5) stimulated mitochondrial activity as well as the proliferation rate of human liver cells (HepG2) at 10 microg/mL significantly. When monitoring the influence of selected phase I and II metabolizing enzymes, both compounds did not influence CYP3A4 gene expression, but stimulated CYP1A2 gene expression and inhibited GST expression. Also, the proliferation of human keratinocytes (NHK) was increased up to 150% by both amides 5 and 8; this stimulation was also detectable on the level of gene expression by an up-regulation of the transcription factor STAT6. The aliphatic aspartic compound 8 showed strong antiadhesive properties on the adhesion of Helicobacter pylori to human stomach tissue.

  9. Characterization of Ascentis RP-Amide column: Lipophilicity measurement and linear solvation energy relationships.

    PubMed

    Benhaim, Deborah; Grushka, Eli

    2010-01-01

    This study investigates lipophilicity determination by chromatographic measurements using the polar embedded Ascentis RP-Amide stationary phase. As a new generation of amide-functionalized silica stationary phase, the Ascentis RP-Amide column is evaluated as a possible substitution to the n-octanol/water partitioning system for lipophilicity measurements. For this evaluation, extrapolated retention factors, log k'w, of a set of diverse compounds were determined using different methanol contents in the mobile phase. The use of n-octanol enriched mobile phase enhances the relationship between the slope (S) of the extrapolation lines and the extrapolated log k'w (the intercept of the extrapolation),as well as the correlation between log P values and the extrapolated log k'w (1:1 correlation, r2 = 0.966).In addition, the use of isocratic retention factors, at 40% methanol in the mobile phase, provides a rapid tool for lipophilicity determination. The intermolecular interactions that contribute to the retention process in the Ascentis RP-Amide phase are characterized using the solvation parameter model of Abraham.The LSER system constants for the column are very similar to the LSER constants of the n-octanol/water extraction system. Tanaka radar plots are used for quick visual comparison of the system constants of the Ascentis RP-Amide column and the n-octanol/water extraction system. The results all indicate that the Ascentis RP-Amide stationary phase can provide reliable lipophilic data. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters

    PubMed Central

    Zgarbová, Marie; Luque, F. Javier; Šponer, Jiří; Cheatham, Thomas E.; Otyepka, Michal; Jurečka, Petr

    2013-01-01

    We present a refinement of the backbone torsion parameters ε and ζ of the Cornell et al. AMBER force field for DNA simulations. The new parameters, denoted as εζOL1, were derived from quantum-mechanical calculations with inclusion of conformation-dependent solvation effects according to the recently reported methodology (J. Chem. Theory Comput. 2012, 7(9), 2886-2902). The performance of the refined parameters was analyzed by means of extended molecular dynamics (MD) simulations for several representative systems. The results showed that the εζOL1 refinement improves the backbone description of B-DNA double helices and G-DNA stem. In B-DNA simulations, we observed an average increase of the helical twist and narrowing of the major groove, thus achieving better agreement with X-ray and solution NMR data. The balance between populations of BI and BII backbone substates was shifted towards the BII state, in better agreement with ensemble-refined solution experimental results. Furthermore, the refined parameters decreased the backbone RMS deviations in B-DNA MD simulations. In the antiparallel guanine quadruplex (G-DNA) the εζOL1 modification improved the description of non-canonical α/γ backbone substates, which were shown to be coupled to the ε/ζ torsion potential. Thus, the refinement is suggested as a possible alternative to the current ε/ζ torsion potential, which may enable more accurate modeling of nucleic acids. However, long-term testing is recommended before its routine application in DNA simulations. PMID:24058302

  11. Normal Mode Analysis of Polytheonamide B

    NASA Astrophysics Data System (ADS)

    Mori, Takaharu; Kokubo, Hironori; Shimizu, Hirofumi; Iwamoto, Masayuki; Oiki, Shigetoshi; Okamoto, Yuko

    2007-09-01

    Polytheonamide B is a linear 48-residue peptide which forms a single β-helix structure with alternating d- and l-amino acids and contains methylated and hydroxy variants of proteinogenic amino acids. To investigate the dynamical properties of polytheonamide B we perform the normal mode analysis. Root-mean-square displacements of all backbone atoms, root-mean-square fluctuations of the backbone dihedral angles (φ,\\psi), and correlation factors for the Cα atom fluctuations and for the dihedral angle fluctuations are calculated. The normal mode analysis reveals that polytheonamide B shows the elastic rod behavior in the very low-frequency regions and that librational motions of backbone amide planes have the modes with relatively low frequencies, which is relevant to the function of polytheonamide B. In addition, these librational motions occur almost independently and weakly anticorrelate with those of the hydrogen-bonded neighboring amide planes. Calculations of the backbone fluctuations show that the flexibility of polytheonamide B is roughly uniform over the entire helix. We compare our results with those of gramicidin A, the analogue of polytheonamide B, to discuss the structures and functions, and obtain some common features in the flexibilities and dynamics of the backbone atoms. These results present important clues for clarifying the function of polytheonamide B at the atomic level.

  12. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes

    PubMed Central

    Arges, Christopher G.; Ramani, Vijay

    2013-01-01

    Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629

  13. PrAS: Prediction of amidation sites using multiple feature extraction.

    PubMed

    Wang, Tong; Zheng, Wei; Wuyun, Qiqige; Wu, Zhenfeng; Ruan, Jishou; Hu, Gang; Gao, Jianzhao

    2017-02-01

    Amidation plays an important role in a variety of pathological processes and serious diseases like neural dysfunction and hypertension. However, identification of protein amidation sites through traditional experimental methods is time consuming and expensive. In this paper, we proposed a novel predictor for Prediction of Amidation Sites (PrAS), which is the first software package for academic users. The method incorporated four representative feature types, which are position-based features, physicochemical and biochemical properties features, predicted structure-based features and evolutionary information features. A novel feature selection method, positive contribution feature selection was proposed to optimize features. PrAS achieved AUC of 0.96, accuracy of 92.1%, sensitivity of 81.2%, specificity of 94.9% and MCC of 0.76 on the independent test set. PrAS is freely available at https://sourceforge.net/p/praspkg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.

    PubMed

    Cravatt, B F; Giang, D K; Mayfield, S P; Boger, D L; Lerner, R A; Gilula, N B

    1996-11-07

    Endogenous neuromodulatory molecules are commonly coupled to specific metabolic enzymes to ensure rapid signal inactivation. Thus, acetylcholine is hydrolysed by acetylcholine esterase and tryptamine neurotransmitters like serotonin are degraded by monoamine oxidases. Previously, we reported the structure and sleep-inducing properties of cis-9-octadecenamide, a lipid isolated from the cerebrospinal fluid of sleep-deprived cats. cis-9-Octadecenamide, or oleamide, has since been shown to affect serotonergic systems and block gap-junction communication in glial cells (our unpublished results). We also identified a membrane-bound enzyme activity that hydrolyses oleamide to its inactive acid, oleic acid. We now report the mechanism-based isolation, cloning and expression of this enzyme activity, originally named oleamide hydrolase, from rat liver plasma membranes. We also show that oleamide hydrolase converts anandamide, a fatty-acid amide identified as the endogenous ligand for the cannabinoid receptor, to arachidonic acid, indicating that oleamide hydrolase may serve as the general inactivating enzyme for a growing family of bioactive signalling molecules, the fatty-acid amides. Therefore we will hereafter refer to oleamide hydrolase as fatty-acid amide hydrolase, in recognition of the plurality of fatty-acid amides that the enzyme can accept as substrates.

  15. Vanishing amplitude of backbone dynamics causes a true protein dynamical transition: H2 NMR studies on perdeuterated C-phycocyanin

    NASA Astrophysics Data System (ADS)

    Kämpf, Kerstin; Kremmling, Beke; Vogel, Michael

    2014-03-01

    Using a combination of H2 nuclear magnetic resonance (NMR) methods, we study internal rotational dynamics of the perdeuterated protein C-phycocyanin (CPC) in dry and hydrated states over broad temperature and dynamic ranges with high angular resolution. Separating H2 NMR signals from methyl deuterons, we show that basically all backbone deuterons exhibit highly restricted motion occurring on time scales faster than microseconds. The amplitude of this motion increases when a hydration shell exists, while it decreases upon cooling and vanishes near 175 K. We conclude that the vanishing of the highly restricted motion marks a dynamical transition, which is independent of the time window and of a fundamental importance. This conclusion is supported by results from experimental and computational studies of the proteins myoglobin and elastin. In particular, we argue based on findings in molecular dynamics simulations that the behavior of the highly restricted motion of proteins at the dynamical transition resembles that of a characteristic secondary relaxation of liquids at the glass transition, namely the nearly constant loss. Furthermore, H2 NMR studies on perdeuterated CPC reveal that, in addition to highly restricted motion, small fractions of backbone segments exhibit weakly restricted dynamics when temperature and hydration are sufficiently high.

  16. Physical attributes of some clouds amid a forest ecosystem's trees

    USGS Publications Warehouse

    DeFelice, Thomas P.

    2002-01-01

    Cloud or fog water collected by forest canopies of any elevation could represent significant sources of required moisture and nutrients for forest ecosystems, human consumption, and as an alternative source of water for agriculture and domestic use. The physical characteristics of fogs and other clouds have been well studied, and this information can be useful to water balance or canopy–cloud interaction model verification and to calibration or training of satellite-borne sensors to recognize atmospheric attributes, such as optical thickness, albedo, and cloud properties. These studies have taken place above-canopy or within canopy clearings and rarely amid the canopy. Simultaneous physical and chemical characteristics of clouds amid and above the trees of a mountain forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the physical characteristics of the cloud portions amid the trees. The characteristic cloud amid the trees (including cloud and precipitation periods) contained 250 droplet/cm3 with a mean diameter of 9.5 μm and liquid water content (LWC) of 0.11 g m−3. The cloud droplets exhibited a bimodal distribution with modes at about 2 and 8 μm and a mean diameter near 5 μm during precipitation-free periods, whereas the concurrent above-canopy cloud droplets had a unimodal distribution with a mode near 6 μm and a mean diameter of 6 μm. The horizontal cloud water flux is nonlinearly related to the rate of collection onto that surface amid the trees, especially for the Atmospheric Sciences Research Center (ASRC) sampling device, whereas it is linear when the forward scattering spectrometer probe (FSSP) are is used. These findings suggest that statements about the effects clouds have on surfaces they encounter, which are based on above-canopy or canopy-clearing data, can be misleading, if not erroneous.

  17. Integrating quantum key distribution with classical communications in backbone fiber network.

    PubMed

    Mao, Yingqiu; Wang, Bi-Xiao; Zhao, Chunxu; Wang, Guangquan; Wang, Ruichun; Wang, Honghai; Zhou, Fei; Nie, Jimin; Chen, Qing; Zhao, Yong; Zhang, Qiang; Zhang, Jun; Chen, Teng-Yun; Pan, Jian-Wei

    2018-03-05

    Quantum key distribution (QKD) provides information-theoretic security based on the laws of quantum mechanics. The desire to reduce costs and increase robustness in real-world applications has motivated the study of coexistence between QKD and intense classical data traffic in a single fiber. Previous works on coexistence in metropolitan areas have used wavelength-division multiplexing, however, coexistence in backbone fiber networks remains a great experimental challenge, as Tbps data of up to 20 dBm optical power is transferred, and much more noise is generated for QKD. Here we present for the first time, to the best of our knowledge, the integration of QKD with a commercial backbone network of 3.6 Tbps classical data at 21 dBm launch power over 66 km fiber. With 20 GHz pass-band filtering and large effective core area fibers, real-time secure key rates can reach 4.5 kbps and 5.1 kbps for co-propagation and counter-propagation at the maximum launch power, respectively. This demonstrates feasibility and represents an important step towards building a quantum network that coexists with the current backbone fiber infrastructure of classical communications.

  18. 40 CFR 721.10410 - Polyether ester acid compound with a polyamine amide (generic) (P-05-714).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyamine amide (generic) (P-05-714). 721.10410 Section 721.10410 Protection of Environment ENVIRONMENTAL... polyamine amide (generic) (P-05-714). (a) Chemical substance and significant new uses subject to reporting... amide (PMN P-05-714) is subject to reporting under this section for the significant new uses described...

  19. Process-based network decomposition reveals backbone motif structure

    PubMed Central

    Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen

    2010-01-01

    A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated). PMID:20498084

  20. Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice.

    PubMed

    Giles, Kurt; Berry, David B; Condello, Carlo; Dugger, Brittany N; Li, Zhe; Oehler, Abby; Bhardwaj, Sumita; Elepano, Manuel; Guan, Shenheng; Silber, B Michael; Olson, Steven H; Prusiner, Stanley B

    2016-09-01

    Developing therapeutics for neurodegenerative diseases (NDs) prevalent in the aging population remains a daunting challenge. With the growing understanding that many NDs progress by conformational self-templating of specific proteins, the prototypical prion diseases offer a platform for ND drug discovery. We evaluated high-throughput screening hits with the aryl amide scaffold and explored the structure-activity relationships around three series differing in their N-aryl core: benzoxazole, benzothiazole, and cyano. Potent anti-prion compounds were advanced to pharmacokinetic studies, and the resulting brain-penetrant leads from each series, together with a related N-aryl piperazine lead, were escalated to long-term dosing and efficacy studies. Compounds from each of the four series doubled the survival of mice infected with a mouse-passaged prion strain. Treatment with aryl amides altered prion strain properties, as evidenced by the distinct patterns of neuropathological deposition of prion protein and associated astrocytic gliosis in the brain; however, none of the aryl amide compounds resulted in drug-resistant prion strains, in contrast to previous studies on compounds with the 2-aminothiazole (2-AMT) scaffold. As seen with 2-AMTs and other effective anti-prion compounds reported to date, the novel aryl amides reported here were ineffective in prolonging the survival of transgenic mice infected with human prions. Most encouraging is our discovery that aryl amides show that the development of drug resistance is not an inevitable consequence of efficacious anti-prion therapeutics. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Practical copper(I)-catalysed amidation of aldehydes.

    PubMed

    Chang, Joyce Wei Wei; Ton, Thi My Uyen; Tania, Stefani; Taylor, Paul C; Chan, Philip Wai Hong

    2010-02-14

    The direct synthesis of amides by insertion into the C-H bond of aldehydes is shown to be a practical procedure through application of cheap, readily available catalysts generated in situ from copper(i) halides and pyridine.

  2. The hydration of amides in helices; a comprehensive picture from molecular dynamics, IR, and NMR

    PubMed Central

    Walsh, Scott T.R.; Cheng, Richard P.; Wright, Wayne W.; Alonso, Darwin O.V.; Daggett, Valerie; Vanderkooi, Jane M.; DeGrado, William F.

    2003-01-01

    We examined the hydration of amides of α3D, a simple, designed three-helix bundle protein. Molecular dynamics calculations show that the amide carbonyls on the surface of the protein tilt away from the helical axis to interact with solvent water, resulting in a lengthening of the hydrogen bonds on this face of the helix. Water molecules are bonded to these carbonyl groups with partial occupancy (∼50%–70%), and their interaction geometries show a large variation in their hydrogen bond lengths and angles on the nsec time scale. This heterogeneity is reflected in the carbonyl stretching vibration (amide I′ band) of a group of surface Ala residues. The surface-exposed amides are broad, and shift to lower frequency (reflecting strengthening of the hydrogen bonds) as the temperature is decreased. By contrast, the amide I′ bands of the buried 13C-labeled Leu residues are significantly sharper and their frequencies are consistent with the formation of strong hydrogen bonds, independent of temperature. The rates of hydrogen-deuterium exchange and the proton NMR chemical shifts of the helical amide groups also depend on environment. The partial occupancy of the hydration sites on the surface of helices suggests that the interaction is relatively weak, on the order of thermal energy at room temperature. One unexpected feature that emerged from the dynamics calculations was that a Thr side chain subtly disrupted the helical geometry 4–7 residues N-terminal in sequence, which was reflected in the proton chemical shifts and the rates of amide proton exchange for several amides that engage in a mixed 310/α/π-helical conformation. PMID:12592022

  3. Synthesis and antituberculosis activity of new fatty acid amides.

    PubMed

    D'Oca, Caroline Da Ros Montes; Coelho, Tatiane; Marinho, Tamara Germani; Hack, Carolina Rosa Lopes; Duarte, Rodrigo da Costa; da Silva, Pedro Almeida; D'Oca, Marcelo Gonçalves Montes

    2010-09-01

    This work reports the synthesis of new fatty acid amides from C16:0, 18:0, 18:1, 18:1 (OH), and 18:2 fatty acids families with cyclic and acyclic amines and demonstrate for the first time the activity of these compounds as antituberculosis agents against Mycobacterium tuberculosis H(37)Rv, M. tuberculosis rifampicin resistance (ATCC 35338), and M. tuberculosis isoniazid resistance (ATCC 35822). The fatty acid amides derivate from ricinoleic acid were the most potent one among a series of tested compounds, with a MIC 6.25 microg/mL for resistance strains. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. The temperature dependent amide I band of crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Leonor; Freedman, Holly

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump-probe experiments.

  5. Direct amide formation using radiofrequency heating.

    PubMed

    Houlding, Thomas K; Tchabanenko, Kirill; Rahman, Md Taifur; Rebrov, Evgeny V

    2013-07-07

    We present a simple method for direct and solvent-free formation of amides from carboxylic acids and amines using radiofrequency heating. The direct energy coupling of the AC magnetic field via nickel ferrite magnetic nanoparticles enables fast and controllable heating, as well as enabling facile work-up via magnetic separation.

  6. Biomimetic L-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering.

    PubMed

    Knight, Darryl K; Gillies, Elizabeth R; Mequanint, Kibret

    2014-08-01

    Functionalization of polymeric biomaterials permits the conjugation of cell signaling molecules capable of directing cell function. In this study, l-phenylalanine and l-aspartic acid were used to synthesize poly(ester amide)s (PEAs) with pendant carboxylic acid groups through an interfacial polycondensation approach. Human coronary artery smooth muscle cell (HCASMC) attachment, spreading and proliferation was observed on all PEA films. Vinculin expression at the cell periphery suggested that HCASMCs formed focal adhesions on the functional PEAs, while the absence of smooth muscle α-actin (SMαA) expression implied the cells adopted a proliferative phenotype. The PEAs were also electrospun to yield nanoscale three-dimensional (3-D) scaffolds with average fiber diameters ranging from 130 to 294nm. Immunoblotting studies suggested a potential increase in SMαA and calponin expression from HCASMCs cultured on 3-D fibrous scaffolds when compared to 2-D films. X-ray photoelectron spectroscopy and immunofluorescence demonstrated the conjugation of transforming growth factor-β1 to the surface of the functional PEA through the pendant carboxylic acid groups. Taken together, this study demonstrates that PEAs containing aspartic acid are viable biomaterials for further investigation in vascular tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts

    PubMed Central

    Hafsa, Noor E.; Arndt, David; Wishart, David S.

    2015-01-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I′, II′ and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. PMID:25979265

  8. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    PubMed

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Thio-amide functionalized polymers via polymerization or post-polymerization modification

    NASA Astrophysics Data System (ADS)

    Ozcam, Ali; Henke, Adam; Stibingerova, Iva; Srogl, Jiri; Genzer, Jan

    2011-03-01

    Decreasing supplies of fresh water and increasing population necessitates development of advanced water cleaning technologies, which would facilitate the removal of water pollutants. Amongst the worst of such contaminants are heavy metals and cyanides, infamous for their high toxicity. To assist the water purification processes, we aim to synthesize functionalized macromolecules that would contribute in the decontamination processes by scavenging detrimental chemicals. Epitomizing this role thio-amide unit features remarkable chemical flexibility that facilitates reversible catch-release of the ions, where the behavior controlled by subtle red-ox changes in the environment. Chemical tunability of the thio-amide moiety enables synthesis of thio-amide based monomers and post-polymerization modification agents. Two distinct synthetic pathways, polymerization and post-polymerization modification, have been exploited, leading to functional thioamide-based macromolecules: thioamide-monomers were copolymerized with N-isopropylacrylamide and post-polymerization modifications of poly(dimethylaminoethyl methacrylate) and poly(propargyl methacrylate) were accomplished via quarternization and ``click'' reactions, respectively.

  10. Multicomponent Approach to the Synthesis of Oxidized Amides through Nitrile Hydrozirconation

    PubMed Central

    Wan, Shuangyi; Green, Michael E.; Park, Jung-Hyun; Floreancig, Paul E.

    2008-01-01

    “Oxidized” amides, as represented by acyl aminals and acyl hemiaminals, are integral subunits of several natural products that exhibit useful biological activity. In this manuscript a multicomponent approach to these groups from acylimine intermediates is demonstrated. The acylimines are accessed through a sequence of nitrile hydrozirconation and acylation, making this highly versatile amide synthesis useful for a range of range of applications in target- and diversity-oriented synthesis. PMID:18020344

  11. Comparing Amide-Forming Reactions Using Green Chemistry Metrics in an Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Fennie, Michael W.; Roth, Jessica M.

    2016-01-01

    In this laboratory experiment, upper-division undergraduate chemistry and biochemistry majors investigate amide-bond-forming reactions from a green chemistry perspective. Using hydrocinnamic acid and benzylamine as reactants, students perform three types of amide-forming reactions: an acid chloride derivative route; a coupling reagent promoted…

  12. Generation of a novel monoclonal antibody that recognizes the alpha (α)-amidated isoform of a valine residue.

    PubMed

    Antón Palma, Benito; Leff Gelman, Philippe; Medecigo Ríos, Mayra; Calva Nieves, Juan Carlos; Acevedo Ortuño, Rodolfo; Matus Ortega, Maura Epifanía; Hernández Calderón, Jorge Alberto; Hernández Miramontes, Ricardo; Flores Zamora, Anabel; Salazar Juárez, Alberto

    2015-10-13

    Alpha (α)-amidation of peptides is a mechanism required for the conversion of prohormones into functional peptide sequences that display biological activities, receptor recognition and signal transduction on target cells. Alpha (α)-amidation occurs in almost all species and amino acids identified in nature. C-terminal valine amide neuropeptides constitute the smallest group of functional peptide compounds identified in neurosecretory structures in vertebrate and invertebrate species. The α-amidated isoform of valine residue (Val-CONH2) was conjugated to KLH-protein carrier and used to immunize mice. Hyperimmune animals displaying high titers of valine amide antisera were used to generate stable hybridoma-secreting mAbs. Three productive hybridoma (P15A4, P17C11, and P18C5) were tested against peptides antigens containing both the C-terminal α-amidated (-CONH2) and free α-carboxylic acid (-COO(-)) isovariant of the valine residue. P18C5 mAb displayed the highest specificity and selectivity against C-terminal valine amidated peptide antigens in different immunoassays. P18C5 mAb-immunoreactivity exhibited a wide distribution along the neuroaxis of the rat brain, particularly in brain areas that did not cross-match with the neuronal distribution of known valine amide neuropeptides (α-MSH, adrenorphin, secretin, UCN1-2). These brain regions varied in the relative amount of putative novel valine amide peptide immunoreactive material (nmol/μg protein) estimated through a fmol-sensitive solid-phase radioimmunoassay (RIA) raised for P18C5 mAb. Our results demonstrate the versatility of a single mAb able to differentiate between two structural subdomains of a single amino acid. This mAb offers a wide spectrum of potential applications in research and medicine, whose uses may extend from a biological reagent (used to detect valine amidated peptide substances in fluids and tissues) to a detoxifying reagent (used to neutralize exogenous toxic amide peptide compounds) or

  13. Elastic Backbone Defines a New Transition in the Percolation Model

    NASA Astrophysics Data System (ADS)

    Sampaio Filho, Cesar I. N.; Andrade, José S.; Herrmann, Hans J.; Moreira, André A.

    2018-04-01

    The elastic backbone is the set of all shortest paths. We found a new phase transition at peb above the classical percolation threshold at which the elastic backbone becomes dense. At this transition in 2D, its fractal dimension is 1.750 ±0.003 , and one obtains a novel set of critical exponents βeb=0.50 ±0.02 , γeb=1.97 ±0.05 , and νeb=2.00 ±0.02 , fulfilling consistent critical scaling laws. Interestingly, however, the hyperscaling relation is violated. Using Binder's cumulant, we determine, with high precision, the critical probabilities peb for the triangular and tilted square lattice for site and bond percolation. This transition describes a sudden rigidification as a function of density when stretching a damaged tissue.

  14. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.

    PubMed

    Armentrout, P B; Yang, Bo; Rodgers, M T

    2014-04-24

    Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu

  15. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    PubMed

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation. © 2015 Wiley Periodicals, Inc.

  16. Structural insights into the backbone-circularized granulocyte colony-stimulating factor containing a short connector.

    PubMed

    Miyafusa, Takamitsu; Shibuya, Risa; Honda, Shinya

    2018-06-02

    Backbone circularization is a powerful approach for enhancing the structural stability of polypeptides. Herein, we present the crystal structure of the circularized variant of the granulocyte colony-stimulating factor (G-CSF) in which the terminal helical region was circularized using a short, two-amino acid connector. The structure revealed that the N- and C-termini were indeed connected by a peptide bond. The local structure of the C-terminal region transited from an α helix to 3 10 helix with a bend close to the N-terminal region, indicating that the structural change offset the insufficient length of the connector. This is the first-ever report of a crystal structure of the backbone of a circularized protein. It will facilitate the development of backbone circularization methodology. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Predicting beta-turns and their types using predicted backbone dihedral angles and secondary structures.

    PubMed

    Kountouris, Petros; Hirst, Jonathan D

    2010-07-31

    Beta-turns are secondary structure elements usually classified as coil. Their prediction is important, because of their role in protein folding and their frequent occurrence in protein chains. We have developed a novel method that predicts beta-turns and their types using information from multiple sequence alignments, predicted secondary structures and, for the first time, predicted dihedral angles. Our method uses support vector machines, a supervised classification technique, and is trained and tested on three established datasets of 426, 547 and 823 protein chains. We achieve a Matthews correlation coefficient of up to 0.49, when predicting the location of beta-turns, the highest reported value to date. Moreover, the additional dihedral information improves the prediction of beta-turn types I, II, IV, VIII and "non-specific", achieving correlation coefficients up to 0.39, 0.33, 0.27, 0.14 and 0.38, respectively. Our results are more accurate than other methods. We have created an accurate predictor of beta-turns and their types. Our method, called DEBT, is available online at http://comp.chem.nottingham.ac.uk/debt/.

  18. An Efficient Computational Model to Predict Protonation at the Amide Nitrogen and Reactivity along the C–N Rotational Pathway

    PubMed Central

    Szostak, Roman; Aubé, Jeffrey

    2015-01-01

    N-protonation of amides is critical in numerous biological processes, including amide bonds proteolysis and protein folding, as well as in organic synthesis as a method to activate amide bonds towards unconventional reactivity. A computational model enabling prediction of protonation at the amide bond nitrogen atom along the C–N rotational pathway is reported. Notably, this study provides a blueprint for the rational design and application of amides with a controlled degree of rotation in synthetic chemistry and biology. PMID:25766378

  19. Cleavage of an amide bond by a ribozyme

    NASA Technical Reports Server (NTRS)

    Dai, X.; De Mesmaeker, A.; Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1995-01-01

    A variant form of a group I ribozyme, optimized by in vitro evolution for its ability to catalyze magnesium-dependent phosphoester transfer reactions involving DNA substrates, also catalyzes the cleavage of an unactivated alkyl amide when that linkage is presented in the context of an oligodeoxynucleotide analog. Substrates containing an amide bond that joins either two DNA oligos, or a DNA oligo and a short peptide, are cleaved in a magnesium-dependent fashion to generate the expected products. The first-order rate constant, kcat, is 0.1 x 10(-5) min-1 to 1 x 10(-5) min-1 for the DNA-flanked substrates, which corresponds to a rate acceleration of more than 10(3) as compared with the uncatalyzed reaction.

  20. Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes

    PubMed Central

    2015-01-01

    We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C–H bonds over tertiary C–H bonds and even occur at primary C–H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 °C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO)2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from β-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C–H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C–H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product

  1. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions.

    PubMed

    Quillet, Raphaëlle; Ayachi, Safia; Bihel, Frédéric; Elhabazi, Khadija; Ilien, Brigitte; Simonin, Frédéric

    2016-04-01

    RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks.

    PubMed

    Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit

    2014-02-27

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  3. Barbier Continuous Flow Preparation and Reactions of Carbamoyllithiums for Nucleophilic Amidation.

    PubMed

    Ganiek, Maximilian A; Becker, Matthias R; Berionni, Guillaume; Zipse, Hendrik; Knochel, Paul

    2017-08-01

    An ambient temperature continuous flow method for nucleophilic amidation and thioamidation is described. Deprotonation of formamides by lithium diisopropylamine (LDA) affords carbamoyllithium intermediates that are quenched in situ with various electrophiles such as ketones, allyl bromides, Weinreb and morpholino amides. The nature of the reactive lithium intermediates and the thermodynamics of the metalation were further investigated by ab initio calculations and kinetic experiments. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Orientation and Order of the Amide Group of Sphingomyelin in Bilayers Determined by Solid-State NMR

    PubMed Central

    Matsumori, Nobuaki; Yamaguchi, Toshiyuki; Maeta, Yoshiko; Murata, Michio

    2015-01-01

    Sphingomyelin (SM) and cholesterol (Chol) are considered essential for the formation of lipid rafts; however, the types of molecular interactions involved in this process, such as intermolecular hydrogen bonding, are not well understood. Since, unlike other phospholipids, SM is characterized by the presence of an amide group, it is essential to determine the orientation of the amide and its order in the lipid bilayers to understand the nature of the hydrogen bonds in lipid rafts. For this study, 1′-13C-2-15N-labeled and 2′-13C-2-15N-labeled SMs were prepared, and the rotational-axis direction and order parameters of the SM amide in bilayers were determined based on 13C and 15N chemical-shift anisotropies and intramolecular 13C-15N dipole coupling constants. Results revealed that the amide orientation was minimally affected by Chol, whereas the order was enhanced significantly in its presence. Thus, Chol likely promotes the formation of an intermolecular hydrogen-bond network involving the SM amide without significantly changing its orientation, providing a higher order to the SM amide. To our knowledge, this study offers new insight into the significance of the SM amide orientation with regard to molecular recognition in lipid rafts, and therefore provides a deeper understanding of the mechanism of their formation. PMID:26083921

  5. Iron(II) cage complexes of N-heterocyclic amide and bis(trimethylsilyl)amide ligands: synthesis, structure, and magnetic properties.

    PubMed

    Sulway, Scott A; Collison, David; McDouall, Joseph J W; Tuna, Floriana; Layfield, Richard A

    2011-03-21

    Metallation of hexahydropyrimidopyrimidine (hppH) by [Fe{N(SiMe(3))(2)}(2)] (1) produces the trimetallic iron(II) amide cage complex [{(Me(3)Si)(2)NFe}(2)(hpp)(4)Fe] (2), which contains three iron(II) centers, each of which resides in a distorted tetrahedral environment. An alternative, one-pot route that avoids use of the highly air-sensitive complex 1 is described for the synthesis of the iron(II)-lithium complex [{(Me(3)Si)(2)N}(2)Fe{Li(bta)}](2) (3) (where btaH = benzotriazole), in which both iron(II) centers reside in 3-coordinated pyramidal environments. The structure of 3 is also interpreted in terms of the ring laddering principle developed for alkali metal amides. Magnetic susceptibility measurements reveal that both compounds display very weak antiferromagnetic exchange between the iron(II) centers, and that the iron(II) centers in 2 and 3 possess large negative axial zero-field splittings.

  6. Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility.

    PubMed

    Heffernan, Rhys; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-09-15

    The accuracy of predicting protein local and global structural properties such as secondary structure and solvent accessible surface area has been stagnant for many years because of the challenge of accounting for non-local interactions between amino acid residues that are close in three-dimensional structural space but far from each other in their sequence positions. All existing machine-learning techniques relied on a sliding window of 10-20 amino acid residues to capture some 'short to intermediate' non-local interactions. Here, we employed Long Short-Term Memory (LSTM) Bidirectional Recurrent Neural Networks (BRNNs) which are capable of capturing long range interactions without using a window. We showed that the application of LSTM-BRNN to the prediction of protein structural properties makes the most significant improvement for residues with the most long-range contacts (|i-j| >19) over a previous window-based, deep-learning method SPIDER2. Capturing long-range interactions allows the accuracy of three-state secondary structure prediction to reach 84% and the correlation coefficient between predicted and actual solvent accessible surface areas to reach 0.80, plus a reduction of 5%, 10%, 5% and 10% in the mean absolute error for backbone ϕ , ψ , θ and τ angles, respectively, from SPIDER2. More significantly, 27% of 182724 40-residue models directly constructed from predicted C α atom-based θ and τ have similar structures to their corresponding native structures (6Å RMSD or less), which is 3% better than models built by ϕ and ψ angles. We expect the method to be useful for assisting protein structure and function prediction. The method is available as a SPIDER3 server and standalone package at http://sparks-lab.org . yaoqi.zhou@griffith.edu.au or yuedong.yang@griffith.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email

  7. First Novozym 435 lipase-catalyzed Morita-Baylis-Hillman reaction in the presence of amides.

    PubMed

    Tian, Xuemei; Zhang, Suoqin; Zheng, Liangyu

    2016-03-01

    The first Novozym 435 lipase-catalyzed Morita-Baylis-Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides.

    PubMed

    Bolla, Geetha; Nangia, Ashwini

    2016-03-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ-NAM-2HP (1:1:1).

  9. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helixmore » bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).« less

  10. Lanthanide-binding peptides with two pendant aminodiacetate arms: impact of the sequence on chelation.

    PubMed

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Gateau, Christelle; Delangle, Pascale

    2012-03-21

    Lanthanide complexes with a series of hexapeptides-incorporating two unnatural chelating amino acids with aminodiacetate groups, Ada(1) and Ada(2)-have been examined in terms of their speciation, structure, stability and luminescence properties. Whereas Ada(2) acts as a tridentate donor in all cases, Ada(1) may act as a tetradentate donor thanks to the coordination of the amide carbonyl function assisted by the formation of a six-membered chelate ring. The position of the Ada(1) residue in the sequence is demonstrated to be critical for the lanthanide complex speciation and structure. Ada(1) promotes the coordination of the backbone amide function to afford a highly dehydrated Ln complex and an S-shape structure of the peptide backbone, only when found in position 2.

  11. Quantitative structure-cytotoxicity relationship of phenylpropanoid amides.

    PubMed

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Saito, Takayuki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-07-01

    A total of 12 phenylpropanoid amides were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to investigate on their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean CC50 (50% cytotoxic concentration) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of CC50 to EC50 (50% cytoprotective concentration from HIV infection). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method followed by density functional theory (DFT) method. Twelve phenylpropanoid amides showed moderate cytotoxicity against both normal and OSCC cell lines. N-Caffeoyl derivatives coupled with vanillylamine and tyramine exhibited relatively higher tumor selectivity. Cytotoxicity against normal cells was correlated with descriptors related to electrostatic interaction such as polar surface area and chemical hardness, whereas cytotoxicity against tumor cells correlated with free energy, surface area and ellipticity. The tumor-selective cytotoxicity correlated with molecular size (surface area) and electrostatic interaction (the maximum electrostatic potential). The molecular size, shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of phenylpropanoid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Quantifying Interactions of Nucleobase Atoms with Model Compounds for the Peptide Backbone and Glutamine and Asparagine Side Chains in Water.

    PubMed

    Cheng, Xian; Shkel, Irina A; Molzahn, Cristen; Lambert, David; Karim, Rezwana; Record, M Thomas

    2018-04-17

    Alkylureas display hydrocarbon and amide groups, the primary functional groups of proteins. To obtain the thermodynamic information that is needed to analyze interactions of amides and proteins with nucleobases and nucleic acids, we quantify preferential interactions of alkylureas with nucleobases differing in the amount and composition of water-accessible surface area (ASA) by solubility assays. Using an established additive ASA-based analysis, we interpret these thermodynamic results to determine interactions of each alkylurea with five types of nucleobase unified atoms (carbonyl sp 2 O, amino sp 3 N, ring sp 2 N, methyl sp 3 C, and ring sp 2 C). All alkylureas interact favorably with nucleobase sp 2 C and sp 3 C atoms; these interactions become more favorable with an increasing level of alkylation of urea. Interactions with nucleobase sp 2 O are most favorable for urea, less favorable for methylurea and ethylurea, and unfavorable for dialkylated ureas. Contributions to overall alkylurea-nucleobase interactions from interactions with each nucleobase atom type are proportional to the ASA of that atom type with proportionality constant (interaction strength) α, as observed previously for urea. Trends in α-values for interactions of alkylureas with nucleobase atom types parallel those for corresponding amide compound atom types, offset because nucleobase α-values are more favorable. Comparisons between ethylated and methylated ureas show interactions of amide compound sp 3 C with nucleobase sp 2 C, sp 3 C, sp 2 N, and sp 3 N atoms are favorable while amide sp 3 C-nucleobase sp 2 O interactions are unfavorable. Strongly favorable interactions of urea with nucleobase sp 2 O but weakly favorable interactions with nucleobase sp 3 N indicate that amide sp 2 N-nucleobase sp 2 O and nucleobase sp 3 N-amide sp 2 O hydrogen bonding (NH···O═C) interactions are favorable while amide sp 2 N-nucleobase sp 3 N interactions are unfavorable. These favorable amide

  13. Multidrug resistance-selective antiproliferative activity of Piper amide alkaloids and synthetic analogues.

    PubMed

    Wang, Yue-Hu; Goto, Masuo; Wang, Li-Ting; Hsieh, Kan-Yen; Morris-Natschke, Susan L; Tang, Gui-Hua; Long, Chun-Lin; Lee, Kuo-Hsiung

    2014-10-15

    Twenty-five amide alkaloids (1-25) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (39-48) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50=4.94 μM) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 μM) against MDA-MB-231 and SK-BR-3. Structure-activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Predicting β-turns and their types using predicted backbone dihedral angles and secondary structures

    PubMed Central

    2010-01-01

    Background β-turns are secondary structure elements usually classified as coil. Their prediction is important, because of their role in protein folding and their frequent occurrence in protein chains. Results We have developed a novel method that predicts β-turns and their types using information from multiple sequence alignments, predicted secondary structures and, for the first time, predicted dihedral angles. Our method uses support vector machines, a supervised classification technique, and is trained and tested on three established datasets of 426, 547 and 823 protein chains. We achieve a Matthews correlation coefficient of up to 0.49, when predicting the location of β-turns, the highest reported value to date. Moreover, the additional dihedral information improves the prediction of β-turn types I, II, IV, VIII and "non-specific", achieving correlation coefficients up to 0.39, 0.33, 0.27, 0.14 and 0.38, respectively. Our results are more accurate than other methods. Conclusions We have created an accurate predictor of β-turns and their types. Our method, called DEBT, is available online at http://comp.chem.nottingham.ac.uk/debt/. PMID:20673368

  15. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s

    PubMed Central

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-01-01

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758

  16. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides

    PubMed Central

    Bolla, Geetha; Nangia, Ashwini

    2016-01-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ–NAM–2HP (1:1:1). PMID:27006778

  17. C-terminal Amidation of an Osteocalcin-derived Peptide Promotes Hydroxyapatite Crystallization*

    PubMed Central

    Hosseini, Samaneh; Naderi-Manesh, Hossein; Mountassif, Driss; Cerruti, Marta; Vali, Hojatollah; Faghihi, Shahab

    2013-01-01

    Genesis of natural biocomposite-based materials, such as bone, cartilage, and teeth, involves interactions between organic and inorganic systems. Natural biopolymers, such as peptide motif sequences, can be used as a template to direct the nucleation and crystallization of hydroxyapatite (HA). In this study, a natural motif sequence consisting of 13 amino acids present in the first helix of osteocalcin was selected based on its calcium binding ability and used as substrate for nucleation of HA crystals. The acidic (acidic osteocalcin-derived peptide (OSC)) and amidic (amidic osteocalcin-derived peptide (OSN)) forms of this sequence were synthesized to investigate the effects of different C termini on the process of biomineralization. Electron microscopy analyses show the formation of plate-like HA crystals with random size and shape in the presence of OSN. In contrast, spherical amorphous calcium phosphate is formed in the presence of OSC. Circular dichroism experiments indicate conformational changes of amidic peptide to an open and regular structure as a consequence of interaction with calcium and phosphate. There is no conformational change detectable in OSC. It is concluded that HA crystal formation, which only occurred in OSN, is attributable to C-terminal amidation of a natural peptide derived from osteocalcin. It is also proposed that natural peptides with the ability to promote biomineralization have the potential to be utilized in hard tissue regeneration. PMID:23362258

  18. Benzoylureas as removable cis amide inducers: synthesis of cyclic amides via ring closing metathesis (RCM).

    PubMed

    Brady, Ryan M; Khakham, Yelena; Lessene, Guillaume; Baell, Jonathan B

    2011-02-07

    Rapid and high yielding synthesis of medium ring lactams was made possible through the use of a benzoylurea auxiliary that serves to stabilize a cisoid amide conformation, facilitating cyclization. The auxiliary is released after activation under the mild conditions required to deprotect a primary amine, such as acidolysis of a Boc group in the examples given here. This methodology is a promising tool for the synthesis of medium ring lactams, macrocyclic natural products and peptides.

  19. Nitrotriazole- and Imidazole-Based Amides and Sulfonamides as Antitubercular Agents

    PubMed Central

    Bloomer, William D.; Rosenzweig, Howard S.; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C. J.; Smith, Diane K.

    2014-01-01

    Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. PMID:25182645

  20. Fatty Amide Determination in Neutral Molecular Fractions of Green Crude Hydrothermal Liquefaction Oils From Algal Biomass

    DOE PAGES

    Palardy, Oliver; Behnke, Craig; Laurens, Lieve M. L.

    2017-07-05

    Even though hydrothermal liquefaction (HTL) is a promising route to produce crude oils (referred to as 'green crude'), the molecular composition of the nitrogen fraction of such green crude oils is not fully understood. The goal of this work was to identify and quantify the fraction of fatty amides in green crude oils obtained from five different samples derived from Desmodesmus armatus, Tetraselmis sp., and Chlorella sp. biomass treated under different HTL conditions (260 or 340 degrees C as batch or continuous processes). The goal of this work was to elucidate the nature of the high nitrogen content of themore » green crude oils. We identified at least 19 distinct fatty amides present in green crude oils and quantified them based on relevant standards in purified fractions after functional group-based separation and enrichment. It was not known how much these compounds contributed to the oils or which molecular fraction they are associated with. We found that fatty amides exclusively partitioned with the neutral fraction of the oils and belonged mainly to one of five categories, based on their functional group substitution, i.e., fatty amides, monomethyl, dimethyl, monoethanolamide, and diethanolamide. The quantification of fatty amides in the neutral oil fraction was based on respective fatty amide standards, after verification of consistency in response factors between molecules with different substitutions of the amide group. Here, we found that the amount of fatty amides found in each of the five samples varied considerably and ranged between 1.4 and 3.0% of the green crude oils, with the highest levels detected in the sample with the highest oil content, after HTL of biomass derived from a nutrient deprived Chlorella sp. culture.« less

  1. Simple amides of oleanolic acid as effective penetration enhancers.

    PubMed

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented.

  2. Simple Amides of Oleanolic Acid as Effective Penetration Enhancers

    PubMed Central

    Bednarczyk-Cwynar, Barbara; Partyka, Danuta; Zaprutko, Lucjusz

    2015-01-01

    Transdermal transport is now becoming one of the most convenient and safe pathways for drug delivery. In some cases it is necessary to use skin penetration enhancers in order to allow for the transdermal transport of drugs that are otherwise insufficiently skin-permeable. A series of oleanolic acid amides as potential transdermal penetration enhancers was formed by multistep synthesis and the synthesis of all newly prepared compounds is presented. The synthetized amides of oleanolic acid were tested for their in vitro penetration promoter activity. The above activity was evaluated by means of using the Fürst method. The relationships between the chemical structure of the studied compounds and penetration activity are presented. PMID:26010090

  3. Direct Reaction of Amides with Nitric Oxide To Form Diazeniumdiolates

    PubMed Central

    2015-01-01

    We report the apparently unprecedented direct reaction of nitric oxide (NO) with amides to generate ions of structure R(C=O)NH–N(O)=NO–, with examples including R = Me (1a) or 3-pyridyl (1b). The sodium salts of both released NO in pH 7.4 buffer, with 37 °C half-lives of 1–3 min. As NO-releasing drug candidates, diazeniumdiolated amides would have the advantage of generating only 1 equiv of base on hydrolyzing exhaustively to NO, in contrast to their amine counterparts, which generate 2 equiv of base. PMID:25210948

  4. One-pot synthesis of polyunsaturated fatty acid amides with anti-proliferative properties.

    PubMed

    Tremblay, Hugo; St-Georges, Catherine; Legault, Marc-André; Morin, Caroline; Fortin, Samuel; Marsault, Eric

    2014-12-15

    A one-pot environmentally friendly transamidation of ω-3 fatty acid ethyl esters to amides and mono- or diacylglycerols was investigated via the use of a polymer-supported lipase. The method was used to synthesize a library of fatty acid monoglyceryl esters and amides. These new derivatives were found to have potent growth inhibition effects against A549 lung cancer cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.

    PubMed

    Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J

    2015-07-30

    Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.

  6. Enzymatically and reductively degradable α-amino acid-based poly(ester amide)s: synthesis, cell compatibility, and intracellular anticancer drug delivery.

    PubMed

    Sun, Huanli; Cheng, Ru; Deng, Chao; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2015-02-09

    A novel and versatile family of enzymatically and reductively degradable α-amino acid-based poly(ester amide)s (SS-PEAs) were developed from solution polycondensation of disulfide-containing di-p-toluenesulfonic acid salts of bis-l-phenylalanine diesters (SS-Phe-2TsOH) with di-p-nitrophenyl adipate (NA) in N,N-dimethylformamide (DMF). SS-PEAs with Mn ranging from 16.6 to 23.6 kg/mol were obtained, depending on NA/SS-Phe-2TsOH molar ratios. The chemical structures of SS-PEAs were confirmed by (1)H NMR and FTIR spectra. Thermal analyses showed that the obtained SS-PEAs were amorphous with a glass transition temperature (Tg) in the range of 35.2-39.5 °C. The in vitro degradation studies of SS-PEA films revealed that SS-PEAs underwent surface erosion in the presence of 0.1 mg/mL α-chymotrypsin and bulk degradation under a reductive environment containing 10 mM dithiothreitol (DTT). The preliminary cell culture studies displayed that SS-PEA films could well support adhesion and proliferation of L929 fibroblast cells, indicating that SS-PEAs have excellent cell compatibility. The nanoparticles prepared from SS-PEA with PVA as a surfactant had an average size of 167 nm in phosphate buffer (PB, 10 mM, pH 7.4). SS-PEA nanoparticles while stable under physiological environment undergo rapid disintegration under an enzymatic or reductive condition. The in vitro drug release studies showed that DOX release was accelerated in the presence of 0.1 mg/mL α-chymotrypsin or 10 mM DTT. Confocal microscopy observation displayed that SS-PEA nanoparticles effectively transported DOX into both drug-sensitive and -resistant MCF-7 cells. MTT assays revealed that DOX-loaded SS-PEA nanoparticles had a high antitumor activity approaching that of free DOX in drug-sensitive MCF-7 cells, while more than 10 times higher than free DOX in drug-resistant MCF-7/ADR cells. These enzymatically and reductively degradable α-amino acid-based poly(ester amide)s have provided an appealing platform for

  7. Optimized Reaction Conditions for Amide Bond Formation in DNA-Encoded Combinatorial Libraries.

    PubMed

    Li, Yizhou; Gabriele, Elena; Samain, Florent; Favalli, Nicholas; Sladojevich, Filippo; Scheuermann, Jörg; Neri, Dario

    2016-08-08

    DNA-encoded combinatorial libraries are increasingly being used as tools for the discovery of small organic binding molecules to proteins of biological or pharmaceutical interest. In the majority of cases, synthetic procedures for the formation of DNA-encoded combinatorial libraries incorporate at least one step of amide bond formation between amino-modified DNA and a carboxylic acid. We investigated reaction conditions and established a methodology by using 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide, 1-hydroxy-7-azabenzotriazole and N,N'-diisopropylethylamine (EDC/HOAt/DIPEA) in combination, which provided conversions greater than 75% for 423/543 (78%) of the carboxylic acids tested. These reaction conditions were efficient with a variety of primary and secondary amines, as well as with various types of amino-modified oligonucleotides. The reaction conditions, which also worked efficiently over a broad range of DNA concentrations and reaction scales, should facilitate the synthesis of novel DNA-encoded combinatorial libraries.

  8. Polymer amide as an early topology.

    PubMed

    McGeoch, Julie E M; McGeoch, Malcolm W

    2014-01-01

    Hydrophobic polymer amide (HPA) could have been one of the first normal density materials to accrete in space. We present ab initio calculations of the energetics of amino acid polymerization via gas phase collisions. The initial hydrogen-bonded di-peptide is sufficiently stable to proceed in many cases via a transition state into a di-peptide with an associated bound water molecule of condensation. The energetics of polymerization are only favorable when the water remains bound. Further polymerization leads to a hydrophobic surface that is phase-separated from, but hydrogen bonded to, a small bulk water complex. The kinetics of the collision and subsequent polymerization are discussed for the low-density conditions of a molecular cloud. This polymer in the gas phase has the properties to make a topology, viz. hydrophobicity allowing phase separation from bulk water, capability to withstand large temperature ranges, versatility of form and charge separation. Its flexible tetrahedral carbon atoms that alternate with more rigid amide groups allow it to deform and reform in hazardous conditions and its density of hydrogen bonds provides adhesion that would support accretion to it of silicon and metal elements to form a stellar dust material.

  9. Biodegradable gadolinium-chelated cationic poly(urethane amide) copolymers for gene transfection and magnetic resonance imaging.

    PubMed

    Gao, Xiaolong; Wang, Gangmin; Shi, Ting; Shao, Zhihong; Zhao, Peng; Shi, Donglu; Ren, Jie; Lin, Chao; Wang, Peijun

    2016-08-01

    Theranostic nano-polyplexes containing gene and imaging agents hold a great promise for tumor diagnosis and therapy. In this work, we develop a group of new gadolinium (Gd)-chelated cationic poly(urethane amide)s for gene delivery and T1-weighted magnetic resonance (MR) imaging. Cationic poly(urethane amide)s (denoted as CPUAs) having multiple disulfide bonds, urethane and amide linkages were synthesized by stepwise polycondensation reaction between 1,4-bis(3-aminopropyl)piperazine and a mixture of di(4-nitrophenyl)-2, 2'-dithiodiethanocarbonate (DTDE-PNC) and diethylenetriaminepentaacetic acid (DTPA) dianhydride at varied molar ratios. Then, Gd-chelated CPUAs (denoted as GdCPUAs) were produced by chelating Gd(III) ions with DTPA residues of CPUAs. These GdCPUAs could condense gene into nanosized and positively-charged polyplexes in a physiological condition and, however, liberated gene in an intracellular reductive environment. In vitro transfection experiments revealed that the GdCPUA at a DTDE-PNC/DTPA residue molar ratio of 85/15 induced the highest transfection efficiency in different cancer cells. This efficiency was higher than that yielded with 25kDa branched polyethylenimine as a positive control. GdCPUAs and their polyplexes exhibited low cytotoxicity when an optimal transfection activity was detected. Moreover, GdCPUAs may serve as contrast agents for T1-weighted magnetic resonance imaging. The results of this work indicate that biodegradable Gd-chelated cationic poly(urethane amide) copolymers have high potential for tumor theranostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas.

    PubMed

    Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-24

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.

  11. Backbone conformational preferences of an intrinsically disordered protein in solution.

    PubMed

    Espinoza-Fonseca, L Michel; Ilizaliturri-Flores, Ian; Correa-Basurto, José

    2012-06-01

    We have performed a 4-μs molecular dynamics simulation to investigate the native conformational preferences of the intrinsically disordered kinase-inducible domain (KID) of the transcription factor CREB in solution. There is solid experimental evidence showing that KID does not possess a bound-like structure in solution; however, it has been proposed that coil-to-helix transitions upon binding to its binding partner (CBP) are template-driven. While these studies indicate that IDPs possess a bias towards the bound structure, they do not provide direct evidence on the time-dependent conformational preferences of IDPs in atomic detail. Our simulation captured intrinsic conformational characteristics of KID that are in good agreement with experimental data such as a very small percentage of helical structure in its segment α(B) and structural disorder in solution. We used dihedral principal component analysis dPCA to map the conformations of KID in the microsecond timescale. By using principal components as reaction coordinates, we further constructed dPCA-based free energy landscapes of KID. Analysis of the free energy landscapes showed that KID is best characterized as a conformational ensemble of rapidly interconverting conformations. Interestingly, we found that despite the conformational heterogeneity of the backbone and the absence of substantial secondary structure, KID does not randomly sample the conformational space in solution: analysis of the (Φ, Ψ) dihedral angles showed that several individual residues of KID possess a strong bias toward the helical region of the Ramachandran plot. We suggest that the intrinsic conformational preferences of KID provide a bias toward the folded state without having to populate bound-like conformations before binding. Furthermore, we argue that these conformational preferences do not represent actual structural constraints which drive binding through a single pathway, which allows for specific interactions with multiple

  12. Long-term forecasting of internet backbone traffic.

    PubMed

    Papagiannaki, Konstantina; Taft, Nina; Zhang, Zhi-Li; Diot, Christophe

    2005-09-01

    We introduce a methodology to predict when and where link additions/upgrades have to take place in an Internet protocol (IP) backbone network. Using simple network management protocol (SNMP) statistics, collected continuously since 1999, we compute aggregate demand between any two adjacent points of presence (PoPs) and look at its evolution at time scales larger than 1 h. We show that IP backbone traffic exhibits visible long term trends, strong periodicities, and variability at multiple time scales. Our methodology relies on the wavelet multiresolution analysis (MRA) and linear time series models. Using wavelet MRA, we smooth the collected measurements until we identify the overall long-term trend. The fluctuations around the obtained trend are further analyzed at multiple time scales. We show that the largest amount of variability in the original signal is due to its fluctuations at the 12-h time scale. We model inter-PoP aggregate demand as a multiple linear regression model, consisting of the two identified components. We show that this model accounts for 98% of the total energy in the original signal, while explaining 90% of its variance. Weekly approximations of those components can be accurately modeled with low-order autoregressive integrated moving average (ARIMA) models. We show that forecasting the long term trend and the fluctuations of the traffic at the 12-h time scale yields accurate estimates for at least 6 months in the future.

  13. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.

  14. SPPS of protected peptidyl aminoalkyl amides.

    PubMed

    Karavoltsos, Manolis; Mourtas, Spyros; Gatos, Dimitrios; Barlos, Kleomenis

    2002-11-01

    Monophthaloyl diamines derived from naturally occurring amino acids were attached through their free amino functions to resins of the trityl type. The phthaloyl groups were removed by hydrazinolysis, and peptide chains were assembled using Fmoc/tBu-amino acids on the liberated amino functions. The peptidyl aminoalkyl amides obtained were cleaved from the resins by mild acidolysis, with the tBu-side chain protection remaining intact.

  15. Nitrotriazole- and imidazole-based amides and sulfonamides as antitubercular agents.

    PubMed

    Papadopoulou, Maria V; Bloomer, William D; Rosenzweig, Howard S; Arena, Alexander; Arrieta, Francisco; Rebolledo, Joseph C J; Smith, Diane K

    2014-11-01

    Twenty-three 3-nitrotriazole-based and 2-nitroimidazole-based amides and sulfonamides were screened for antitubercular (anti-TB) activity in aerobic Mycobacterium tuberculosis H37Rv by using the BacTiter-Glo (BTG) microbial cell viability assay. In general, 3-nitrotriazole-based sulfonamides demonstrated anti-TB activity, whereas 3-nitrotriazole-based amides and 2-nitroimidazole-based amides and sulfonamides were inactive. Three 3-nitrotriazole-based sulfonamides (compounds 4, 2, and 7) demonstrated 50% inhibitory concentration (IC50), IC90, and MIC values of 0.38, 0.43, and 1.56 μM (compound 4), 0.57, 0.98, and 3.13 μM (compound 2), and 0.79, 0.87, and 3.13 μM (compound 7), respectively. For 3-nitrotriazole-based sulfonamides, anti-TB activity increased with lipophilicity, whereas the one-electron reduction potential (E1/2) did not play a role. 2-Nitroimidazole-based analogs, which were inactive in the BTG assay, were significantly more active in the low-oxygen assay and more active than the 3-nitrotriazoles. All active nitrotriazoles in the BTG assay were similarly active or more potent (lower MIC values) against resistant strains, with the exception of compounds 2, 3, 4, and 8, which demonstrated greater MIC values against isoniazid-resistant strains. Five 3-nitrotriazole-based sulfonamides demonstrated activity in infected murine J774 macrophages, causing log reductions similar to those seen with rifampin. However, some compounds caused toxicity in uninfected macrophages. In conclusion, the classes of 3-nitrotriazole-based amides and sulfonamides merit further investigation as potential antitubercular agents. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition

    DOE PAGES

    Bergsman, David S.; Closser, Richard G.; Tassone, Christopher J.; ...

    2017-01-01

    An experimental investigation into the growth of polyurea films by molecular layer deposition was performed by examining trends in the growth rate, crystallinity, and orientation of chains as a function of backbone flexibility. Growth curves obtained for films containing backbones of aliphatic and phenyl groups indicate that an increase in backbone flexibility leads to a reduction in growth rate from 4 to 1 Å/cycle. Crystallinity measurements collected using grazing incidence X-ray diffraction and Fourier transform infrared spectroscopy suggest that some chains form paracrystalline, out-of-plane stacks of polymer segments with packing distances ranging from 4.4 to 3.7 Å depending on themore » monomer size. Diffraction intensity is largely a function of the homogeneity of the backbone. Near-edge X-ray absorption fine structure measurements for thin and thick samples show an average chain orientation of ~25° relative to the substrate across all samples, suggesting that changes in growth rate are not caused by differences in chain angle but instead may be caused by differences in the frequency of chain terminations. In conclusion, these results suggest a model of molecular layer deposition-based chain growth in which films consist of a mixture of upward growing chains and horizontally aligned layers of paracrystalline polymer segments.« less

  17. Pregna-5,17(20)-dien-21-oyl amides affecting sterol and triglyceride biosynthesis in Hep G2 cells.

    PubMed

    Stulov, Sergey V; Mankevich, Olga V; Dugin, Nikita O; Novikov, Roman A; Timofeev, Vladimir P; Misharin, Alexander Yu

    2013-04-01

    Synthesis of series [17(20)Z]- and [17(20)E]-pregna-5,17(20)-dien-21-oyl amides, containing polar substituents in amide moiety, based on rearrangement of 17α-bromo-21-iodo-3β-acetoxypregn-5-en-20-one caused by amines, is presented. The titled compounds were evaluated for their potency to regulate sterol and triglyceride biosynthesis in human hepatoma Hep G2 cells in comparison with 25-hydroxycholesterol. Three [17(20)E]-pregna-5,17(20)-dien-21-oyl amides at a concentrations of 5 μM inhibited sterol biosynthesis and stimulated triglyceride biosynthesis; their regulatory potency was dependent on the structure of amide moiety; the isomeric [17(20)Z]-pregna-5,17(20)-dien-21-oyl amides were inactive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kwang Ho; Dutta, Tanmoy; Ralph, John

    Biomass pretreatment remains an essential step in lignocellulosic biofuel production, largely to facilitate the efficient removal of lignin and increase enzyme accessibility to the polysaccharides. In recent years, there have been significant efforts in planta to reduce lignin content or modify its composition to overcome the inherent recalcitrance that it imposes on lignocellulosic biomass during processing. Here, transgenic poplar lines in which monolignol ferulate conjugates were synthesized during cell wall development to introduce, during lignification, readily cleavable ester linkages into the lignin polymer backbone (i.e., "zip lignin"), along with wild-type (WT) controls, were pretreated with different ionic liquids (ILs). Themore » strategic introduction of ester bonds into the lignin backbone resulted in increased pretreatment efficiency and released more carbohydrates with lower energy input. After pretreatment with any of three different ILs, and after limited saccharification, the transgenic poplars, especially those with relatively higher amounts of incorporated monolignol ferulate conjugates, yielded up to 23% higher sugar levels compared to WT plants. Our findings clearly demonstrate that the introduction of ester linkages into the lignin polymer backbone decreases biomass recalcitrance in poplar has the potential to reduce the energy and/or amount of IL required for effective pretreatment, and could enable the development of an economically viable and sustainable biorefinery process.« less

  19. Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Ralph, John; ...

    2017-04-20

    Biomass pretreatment remains an essential step in lignocellulosic biofuel production, largely to facilitate the efficient removal of lignin and increase enzyme accessibility to the polysaccharides. In recent years, there have been significant efforts in planta to reduce lignin content or modify its composition to overcome the inherent recalcitrance that it imposes on lignocellulosic biomass during processing. Here, transgenic poplar lines in which monolignol ferulate conjugates were synthesized during cell wall development to introduce, during lignification, readily cleavable ester linkages into the lignin polymer backbone (i.e., "zip lignin"), along with wild-type (WT) controls, were pretreated with different ionic liquids (ILs). Themore » strategic introduction of ester bonds into the lignin backbone resulted in increased pretreatment efficiency and released more carbohydrates with lower energy input. After pretreatment with any of three different ILs, and after limited saccharification, the transgenic poplars, especially those with relatively higher amounts of incorporated monolignol ferulate conjugates, yielded up to 23% higher sugar levels compared to WT plants. Our findings clearly demonstrate that the introduction of ester linkages into the lignin polymer backbone decreases biomass recalcitrance in poplar has the potential to reduce the energy and/or amount of IL required for effective pretreatment, and could enable the development of an economically viable and sustainable biorefinery process.« less

  20. Acylated apelin-13 amide analogues exhibit enzyme resistance and prolonged insulin releasing, glucose lowering and anorexic properties.

    PubMed

    O'Harte, Finbarr P M; Parthsarathy, Vadivel; Hogg, Christopher; Flatt, Peter R

    2017-12-15

    The adipokine, apelin has many biological functions but its activity is curtailed by rapid plasma degradation. Fatty acid derived apelin analogues represent a new and exciting avenue for the treatment of obesity-diabetes. This study explores four novel fatty acid modified apelin-13 analogues, namely, (Lys 8 GluPAL)apelin-13 amide, pGlu(Lys 8 GluPAL)apelin-13 amide, Lys 8 GluPAL(Tyr 13 )apelin-13 and Lys 8 GluPAL(Val 13 )apelin-13. Fatty acid modification extended the half-life of native apelin-13 to >24 h in vitro. pGlu(Lys 8 GluPAL)apelin-13 amide was the most potent insulinotropic analogue in BRIN-BD11 cells and isolated islets with maximal stimulatory effects of up to 2.7-fold (p < .001). (Lys 8 GluPAL)apelin-13 amide (1.9-fold) and Lys 8 GluPAL(Tyr 13 )apelin-13 (1.7-fold) were less effective, whereas Lys 8 GluPAL(Val 13 )apelin-13 had an inhibitory effect on insulin secretion. Similarly, pGlu(Lys 8 GluPAL)apelin-13 amide was most potent in increasing beta-cell intracellular Ca 2+ concentrations (1.8-fold, p < .001) and increasing glucose uptake in 3T3-L1 adipocytes (2.3-fold, p < .01). Persistent biological action was observed with both pGlu(Lys 8 GluPAL)apelin-13 amide and (Lys 8 GluPAL)apelin-13 amide significantly reducing blood glucose (39-43%, p < .01) and enhancing insulin secretion (43-56%, p < .001) during glucose tolerance tests in diet-induced obese mice. pGlu(Lys 8 GluPAL)apelin-13 amide and (Lys 8 GluPAL)apelin-13 amide also inhibited feeding (28-40%, p < .001), whereas Lys 8 GluPAL(Val 13 )apelin-13 increased food intake (8%, p < .05) in mice. These data indicate that novel enzymatically stable analogues of apelin-13 may be suitable for future development as therapeutic agents for obesity-diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles: Specific characteristics of the condensed phases.

    PubMed

    Vollhardt, D

    2015-08-01

    For understanding the role of amide containing amphiphiles in inherently complex biological processes, monolayers at the air-water interface are used as simple biomimetic model systems. The specific characteristics of the condensed phases and phase transition in insoluble and adsorbed monolayers of amide amphiphiles are surveyed to highlight the effect of the chemical structure of the amide amphiphiles on the interfacial interactions in model monolayers. The mesoscopic topography and/or two-dimensional lattice structures of selected amino acid amphiphiles, amphiphilic N-alkylaldonamide, amide amphiphiles with specific tailored headgroups, such as amide amphiphiles based on derivatized ethanolamine, e.g. acylethanolamines (NAEs) and N-,O-diacylethanolamines (DAEs) are presented. Special attention is devoted the dominance of N,O-diacylated ethanolamine in mixed amphiphilic acid amide monolayers. The evidence that a first order phase transition can occur in adsorption layers and that condensed phase domains of mesoscopic scale can be formed in adsorption layers was first obtained on the basis of the experimental characteristics of a tailored amide amphiphile. New thermodynamic and kinetic concepts for the theoretical description of the characteristics of amide amphiphile's monolayers were developed. In particular, the equation of state for Langmuir monolayers generalized for the case that one, two or more phase transitions occur, and the new theory for phase transition in adsorbed monolayers are experimentally confirmed at first by amide amphiphile monolayers. Despite the significant progress made towards the understanding the model systems, these model studies are still limited to transfer the gained knowledge to biological systems where the fundamental physical principles are operative in the same way. The study of biomimetic systems, as described in this review, is only a first step in this direction. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2)*

    PubMed Central

    Elguindy, Mahmoud M.; Nakamaru-Ogiso, Eiko

    2015-01-01

    Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O2 activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC50 = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O2 activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O2 activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells. PMID:26063804

  3. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-sensitive NADH:Ubiquinone Oxidoreductases (NDH-2).

    PubMed

    Elguindy, Mahmoud M; Nakamaru-Ogiso, Eiko

    2015-08-21

    Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O₂ activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC₅₀ = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O₂ activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O₂ activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. α-Fluorovinyl Weinreb Amides and α- Fluoroenones from a Common Fluorinated Building Block

    PubMed Central

    Ghosh, Arun K.; Banerjee, Shaibal; Sinha, Saikat; Kang, Soon Bang; Zajc, Barbara

    2009-01-01

    Synthesis and reactivity of N-methoxy-N-methyl-(1,3-benzothiazol-2-ylsulfonyl)fluoroacetamide, a building block for Julia olefination, is reported. This reagent undergoes condensation reactions with aldehydes and cyclic ketones, to give α-fluorovinyl Weinreb amides. Olefination reactions proceed under mild, DBU-mediated conditions, or in the presence of NaH. DBU-mediated condensations proceed with either E or Z-selectivity, depending upon reaction conditions, whereas NaH-mediated reactions are ≥98% Z-stereoselective. Conversion of the Weinreb amide moiety in N-methoxy-N-methyl-(1,3-benzothiazol-2-ylsulfanyl)fluoroacetamide to ketones, followed by oxidation, resulted in another set of olefination reagents, namely (1,3-benzothiazol-2-ylsulfonyl)fluoromethyl phenyl and propyl ketones. In the presence of DBU, these compounds react with aldehydes tested to give α-fluoroenones with high Z-selectivity. The use of N-methoxy-N-methyl-(1,3-benzothiazol-2-ylsulfanyl)fluoroacetamide as a common fluorinated intermediate in the synthesis of α-fluorovinyl Weinreb amides and α-fluoroenones has been demonstrated. Application of the Weinreb amide to α-fluoro allyl amine synthesis is also shown. PMID:19361189

  5. Novel amide-based inhibitors of inosine 5'-monophosphate dehydrogenase.

    PubMed

    Watterson, Scott H; Liu, Chunjian; Dhar, T G Murali; Gu, Henry H; Pitts, William J; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-10-21

    A series of novel amide-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are described.

  6. Smectic order and backbone anisotropy of a side-chain liquid crystalline polymer by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Pépy, G.; Keller, P.; Benguigui, L.

    1991-07-01

    We have simultaneously measured, for the first time, the extension of the polymer backbone of a side-chain liquid crystalline polymer and the intensity of the 001 Bragg reflection, which gives the smectic order parameter Psi as a function of temperature in the smectic phase. We have qualitatively demonstrated that the more the smectic phase is ordered, the more the polymer backbone is localized between the mesogenic layers. It is shown that the Landau theory allows us to relate the radius of gyration parallel to the magnetic field of the polymer backbone to the smectic order parameter. We also show that the Renz-Warner theory is suitable at low temperatures.

  7. Animals without Backbones: The Invertebrate Story. Grade Level 5-9.

    ERIC Educational Resources Information Center

    Jerome, Brian; Fuqua, Paul

    This guide, when used in tandem with the videotape "Animals Without Backbones," helps students learn about invertebrates. These materials promote hands-on discovery and learning. The guide is composed of six curriculum-based teaching units: (1) "Getting Started"; (2) "Porifera"; (3) "Cnidarians"; (4) "Worms"; (5) "Mollusks"; (6) "Arthropods"; and…

  8. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1.

    PubMed

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo

    2016-03-01

    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses. Copyright © 2016. Published by Elsevier B.V.

  9. Selective hydrogenation of amides to alcohols in water solvent over a heterogeneous CeO2-supported Ru catalyst.

    PubMed

    Tamura, Masazumi; Ishikawa, Susumu; Betchaku, Mii; Nakagawa, Yoshinao; Tomishige, Keiichi

    2018-06-20

    CeO2-supported Ru (Ru/CeO2) worked as an effective and reusable heterogeneous catalyst for the selective dissociation of the C-N bond in amides, particularly primary amides, with H2 in water solvent at low reaction temperature of 333 K, and high yields of the corresponding alcohols were obtained from primary amides.

  10. Engineering Escherichia coli Nicotinic Acid Mononucleotide Adenylyltransferase for Fully Active Amidated NAD Biosynthesis.

    PubMed

    Wang, Xueying; Zhou, Yongjin J; Wang, Lei; Liu, Wujun; Liu, Yuxue; Peng, Chang; Zhao, Zongbao K

    2017-07-01

    NAD and its reduced form NADH function as essential redox cofactors and have major roles in determining cellular metabolic features. NAD can be synthesized through the deamidated and amidated pathways, for which the key reaction involves adenylylation of nicotinic acid mononucleotide (NaMN) and nicotinamide mononucleotide (NMN), respectively. In Escherichia coli , NAD de novo biosynthesis depends on the protein NadD-catalyzed adenylylation of NaMN to nicotinic acid adenine dinucleotide (NaAD), followed by NAD synthase-catalyzed amidation. In this study, we engineered NadD to favor NMN for improved amidated pathway activity. We designed NadD mutant libraries, screened by a malic enzyme-coupled colorimetric assay, and identified two variants, 11B4 (Y84V/Y118D) and 16D8 (A86W/Y118N), with a high preference for NMN. Whereas in the presence of NMN both variants were capable of enabling the viability of cells of E. coli BW25113-derived NAD-auxotrophic strain YJE003, for which the last step of the deamidated pathway is blocked, the 16D8 expression strain could grow without exogenous NMN and accumulated a higher cellular NAD(H) level than BW25113 in the stationary phase. These mutants established fully active amidated NAD biosynthesis and offered a new opportunity to manipulate NAD metabolism for biocatalysis and metabolic engineering. IMPORTANCE Adenylylation of nicotinic acid mononucleotide (NaMN) and adenylylation of nicotinamide mononucleotide (NMN), respectively, are the key steps in the deamidated and amidated pathways for NAD biosynthesis. In most organisms, canonical NAD biosynthesis follows the deamidated pathway. Here we engineered Escherichia coli NaMN adenylyltransferase to favor NMN and expressed the mutant enzyme in an NAD-auxotrophic E. coli strain that has the last step of the deamidated pathway blocked. The engineered strain survived in M9 medium, which indicated the implementation of a functional amidated pathway for NAD biosynthesis. These results enrich

  11. Synthesis, Antifungal Evaluation and In Silico Study of N-(4-Halobenzyl)amides.

    PubMed

    Montes, Ricardo Carneiro; Perez, Ana Luiza A L; Medeiros, Cássio Ilan S; Araújo, Marianna Oliveira de; Lima, Edeltrudes de Oliveira; Scotti, Marcus Tullius; Sousa, Damião Pergentino de

    2016-12-13

    A collection of 32 structurally related N -(4-halobenzyl)amides were synthesized from cinnamic and benzoic acids through coupling reactions with 4-halobenzylamines, using (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) as a coupling agent. The compounds were identified by spectroscopic methods such as infrared, ¹H- and 13 C- Nuclear Magnetic Resonance (NMR) and high-resolution mass spectrometry. The compounds were then submitted to antimicrobial tests by the minimum inhibitory concentration method (MIC) and nystatin was used as a control in the antifungal assays. The purpose of the tests was to evaluate the influence of structural changes in the cinnamic and benzoic acid substructures on the inhibitory activity against strains of Candida albicans , Candida tropicalis , and Candida krusei . A quantitative structure-activity relationship (QSAR) study with KNIME v. 3.1.0 and Volsurf v. 1.0.7 softwares were realized, showing that descriptors DRDRDR, DRDRAC, L4LgS, IW4 and DD2 influence the antifungal activity of the haloamides. In general, 10 benzamides revealed fungal sensitivity, especially a vanillic amide which enjoyed the lowest MIC. The results demonstrate that a hydroxyl group in the para position, and a methoxyl at the meta position enhance antifungal activity for the amide skeletal structure. In addition, the double bond as a spacer group appears to be important for the activity of amide structures.

  12. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    PubMed

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.

  13. Secondary School Students' Preferences for Popular Music and Perceptions of Popular Music Learned in School Music Education in Mainland China

    ERIC Educational Resources Information Center

    Ho, Wai-Chung

    2017-01-01

    This study examined popular music and school music education as cultural constructs of teenage students amid the shifting cultural and social dynamics of contemporary China. Data were drawn from questionnaires completed by 6,780 secondary students (mainly ages 12 through 17) from three cities--Beijing, Changsha, and Shanghai. The survey results…

  14. Amides and Hydrazides from Amine and Hydrazine Hydrochlorides.

    ERIC Educational Resources Information Center

    Shama, Sami A.; Tran, Thuan L.

    1978-01-01

    This safe and efficient procedure for the synthesis of N-substituted amides and hydrazides is a modification of the Schotten-Bausmann procedure in which the amine or hydrazide is replaced by the corresponding hydrochloride salt, and the use of alkali is eliminated. (Author/BB)

  15. N,N-Diethylurea-Catalyzed Amidation between Electron-Defficient Aryl Azides and Phenylacetaldehydes

    PubMed Central

    Xie, Sheng; Ramström, Olof; Yan, Mingdi

    2015-01-01

    Urea structures, of which N,N-diethylurea (DEU) proved to be the most efficient, were discovered to catalyze amidation reactions between electron-defficient aryl azides and phenylacetaldehydes. Experimental data support 1,3-dipolar cycloaddition between DEU-activated enols and electrophilic phenyl azides, especially perfluoroaryl azides, followed by rearrangement of the triazoline intermediate. The activation of the aldehyde under near-neutral conditions was of special importance in inhibiting dehydration/aromatization of the triazoline intermediate, thus promoting the rearrangement to form aryl amides. PMID:25616121

  16. Rapid Vortex Fluidics: Continuous Flow Synthesis of Amides and Local Anesthetic Lidocaine.

    PubMed

    Britton, Joshua; Chalker, Justin M; Raston, Colin L

    2015-07-20

    Thin film flow chemistry using a vortex fluidic device (VFD) is effective in the scalable acylation of amines under shear, with the yields of the amides dramatically enhanced relative to traditional batch techniques. The optimized monophasic flow conditions are effective in ≤80 seconds at room temperature, enabling access to structurally diverse amides, functionalized amino acids and substituted ureas on multigram scales. Amide synthesis under flow was also extended to a total synthesis of local anesthetic lidocaine, with sequential reactions carried out in two serially linked VFD units. The synthesis could also be executed in a single VFD, in which the tandem reactions involve reagent delivery at different positions along the rapidly rotating tube with in situ solvent replacement, as a molecular assembly line process. This further highlights the versatility of the VFD in organic synthesis, as does the finding of a remarkably efficient debenzylation of p-methoxybenzyl amines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Safety Assessment of Amino Acid Alkyl Amides as Used in Cosmetics.

    PubMed

    Burnett, Christina L; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the product use, formulation, and safety data of 115 amino acid alkyl amides, which function as skin and hair conditioning agents and as surfactants-cleansing agents in personal care products. Safety test data on dermal irritation and sensitization for the ingredients with the highest use concentrations, lauroyl lysine and sodium lauroyl glutamate, were reviewed and determined to adequately support the safe use of the ingredients in this report. The Panel concluded that amino acid alkyl amides are safe in the present practices of use and concentration in cosmetics, when formulated to be nonirritating.

  18. A 3D-structural model of unsulfated chondroitin from high-field NMR: 4-sulfation has little effect on backbone conformation

    PubMed Central

    Sattelle, Benedict M.; Shakeri, Javad; Roberts, Ian S.; Almond, Andrew

    2010-01-01

    The glycosaminoglycan chondroitin sulfate is essential in human health and disease but exactly how sulfation dictates its 3D-strucutre at the atomic level is unclear. To address this, we have purified homogenous oligosaccharides of unsulfated chondroitin (with and without 15N-enrichment) and analysed them by high-field NMR to make a comparison published chondroitin sulfate and hyaluronan 3D-structures. The result is the first full assignment of the tetrasaccharide and an experimental 3D-model of the hexasaccharide (PDB code 2KQO). In common with hyaluronan, we confirm that the amide proton is not involved in strong, persistent inter-residue hydrogen bonds. However, in contrast to hyaluronan, a hydrogen bond is not inferred between the hexosamine OH-4 and the glucuronic acid O5 atoms across the β(1→3) glycosidic linkage. The unsulfated chondroitin bond geometry differs slightly from hyaluronan by rotation about the β(1→3) ψ dihedral (as previously predicted by simulation), while the β(1→4) linkage is unaffected. Furthermore, comparison shows that this glycosidic linkage geometry is similar in chondroitin-4-sulfate. We therefore hypothesise that both hexosamine OH-4 and OH-6 atoms are solvent exposed in chondroitin, explaining why it is amenable to sulfation and hyaluronan is not, and also that 4-sulfation has little effect on backbone conformation. Our conclusions exemplify the value of the 3D-model presented here and progress our understanding of glycosaminoglycan molecular properties. PMID:20022001

  19. Synthesis and preliminary biological evaluations of (+)-isocampholenic acid-derived amides.

    PubMed

    Grošelj, Uroš; Golobič, Amalija; Knez, Damijan; Hrast, Martina; Gobec, Stanislav; Ričko, Sebastijan; Svete, Jurij

    2016-08-01

    The synthesis of two novel (+)-isocampholenic acid-derived amines has been realized starting from commercially available (1S)-(+)-10-camphorsulfonic acid. The novel amines as well as (+)-isocampholenic acid have been used as building blocks in the construction of a library of amides using various aliphatic, aromatic, and amino acid-derived coupling partners using BPC and CDI as activating agents. Amide derivatives have been assayed against several enzymes that hold potential for the development of new drugs to battle bacterial infections and Alzheimer's disease. Compounds 20c and 20e showed promising selective sub-micromolar inhibition of human butyrylcholinesterase [Formula: see text] ([Formula: see text] values [Formula: see text] and [Formula: see text], respectively).

  20. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  1. Design, synthesis, and fungicidal activities of imino diacid analogs of valine amide fungicides.

    PubMed

    Sun, Man; Yang, Hui-Hui; Tian, Lei; Li, Jian-Qiang; Zhao, Wei-Guang

    2015-12-15

    The novel imino diacid analogs of valine amides were synthesized via several steps, including the protection, amidation, deprotection, and amino alkylation of valine, with the resulting structures confirmed by (1)H and (13)C NMR and HRMS. Bioassays showed that some of these compounds exhibited good fungicidal activity. Notably, isopropyl 2-((1-((1-(3-fluorophenyl)ethyl)amino)-3-methyl-1-oxobutan-2-yl)amino)propanoate 5i displayed significant levels of control, at 50%, against Erysiphe graminis at 3.9μM as well as a level of potency very similar to the reference azoxystrobin, which gave 60% activity at this concentration. The present work demonstrates that imino diacid analogs of valine amides could be potentially useful key compounds for the development of novel fungicides against wheat powdery mildew. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. NAA-modified DNA oligonucleotides with zwitterionic backbones: stereoselective synthesis of A-T phosphoramidite building blocks.

    PubMed

    Schmidtgall, Boris; Höbartner, Claudia; Ducho, Christian

    2015-01-01

    Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T-T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X-T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A-T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues.

  3. Conformations of peptoids in nanosheets result from the interplay of backbone energetics and intermolecular interactions.

    PubMed

    Edison, John R; Spencer, Ryan K; Butterfoss, Glenn L; Hudson, Benjamin C; Hochbaum, Allon I; Paravastu, Anant K; Zuckermann, Ronald N; Whitelam, Stephen

    2018-05-29

    The conformations adopted by the molecular constituents of a supramolecular assembly influence its large-scale order. At the same time, the interactions made in assemblies by molecules can influence their conformations. Here we study this interplay in extended flat nanosheets made from nonnatural sequence-specific peptoid polymers. Nanosheets exist because individual polymers can be linear and untwisted, by virtue of polymer backbone elements adopting alternating rotational states whose twists oppose and cancel. Using molecular dynamics and quantum mechanical simulations, together with experimental data, we explore the design space of flat nanostructures built from peptoids. We show that several sets of peptoid backbone conformations are consistent with their being linear, but the specific combination observed in experiment is determined by a combination of backbone energetics and the interactions made within the nanosheet. Our results provide a molecular model of the peptoid nanosheet consistent with all available experimental data and show that its structure results from a combination of intra- and intermolecular interactions.

  4. Electron-impact total ionization cross sections of DNA sugar-phosphate backbone and an additivity principle

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.

    2005-01-01

    The improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)l is used to study the total ionization cross sections of the DNA sugar-phosphate backbone by electron impact. Calculations using neutral fragments found that the total ionization cross sections of C3' - and C5', -deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3' - and C5" -deoxyribose-phospate cross sections, differing by less than 10%. The result implies that certain properties of the-DNA, like the total singly ionization cross section, are localized properties and a building-up or additivity principle may apply. This allows us to obtain accurate properties of larger molecular systems built up from the results of smaller subsystem fragments. Calculations are underway using a negatively charged sugar-phosphate backbone with a metal counter-ion.

  5. A discrete search algorithm for finding the structure of protein backbones and side chains.

    PubMed

    Sallaume, Silas; Martins, Simone de Lima; Ochi, Luiz Satoru; Da Silva, Warley Gramacho; Lavor, Carlile; Liberti, Leo

    2013-01-01

    Some information about protein structure can be obtained by using Nuclear Magnetic Resonance (NMR) techniques, but they provide only a sparse set of distances between atoms in a protein. The Molecular Distance Geometry Problem (MDGP) consists in determining the three-dimensional structure of a molecule using a set of known distances between some atoms. Recently, a Branch and Prune (BP) algorithm was proposed to calculate the backbone of a protein, based on a discrete formulation for the MDGP. We present an extension of the BP algorithm that can calculate not only the protein backbone, but the whole three-dimensional structure of proteins.

  6. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...

  7. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...

  8. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow...

  9. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    PubMed Central

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  10. Amides are novel protein modifications formed by physiological sugars.

    PubMed

    Glomb, M A; Pfahler, C

    2001-11-09

    The Maillard reaction, or nonenzymatic browning, proceeds in vivo, and the resulting protein modifications (advanced glycation end products) have been associated with various pathologies. Despite intensive research only very few structures have been established in vivo. We report here for the first time N(6)-[2-[(5-amino-5-carboxypentyl)amino]-2-oxoethyl]lysine (GOLA) and N(6)-glycoloyllysine (GALA) as prototypes for novel amide protein modifications produced by reducing sugars. Their identity was confirmed by independent synthesis and coupled liquid chromatography/mass spectrometry. Model reactions with N(alpha)-t-butoxycarbonyl-lysine showed that glyoxal and glycolaldehyde are immediate precursors, and reaction pathways are directly linked to N(epsilon)-carboxymethyllysine via glyoxal-imine structures. GOLA, the amide cross-link, and 1,3-bis(5-amino-5-carboxypentyl)imidazolium salt (GOLD), the imidazolium cross-link, share a common intermediate. The ratio of GOLA to GOLD is greater when glyoxal levels are low at constant lysine concentrations. GOLA and GALA formation from the Amadori product of glucose and lysine depends directly upon oxidation. With the advanced glycation end product inhibitors aminoguanidine and pyridoxamine we were able to dissect oxidative fragmentation of the Amadori product as a second mechanism of GOLA formation exactly coinciding with N(epsilon)-carboxymethyllysine synthesis. In contrast, the formation of GALA appears to depend solely upon glyoxal-imines. After enzymatic hydrolysis GOLA was found at 66 pmol/mg of brunescent lens protein. This suggests amide protein modifications as important markers of pathophysiological processes.

  11. Expression and purification of antimicrobial peptide adenoregulin with C-amidated terminus in Escherichia coli.

    PubMed

    Cao, Wei; Zhou, Yuxun; Ma, Yushu; Luo, Qingping; Wei, Dongzhi

    2005-04-01

    Adenoregulin is a 33 amino acid antimicrobial peptide isolated from the skin of the arboreal frog Phyllomedusa bicolor. Natural adenoregulin is synthesized with an amidated valine residue at C-terminus and shows lethal effects against filamentous fungi, as well as a broad spectrum of pathogenic microorganisms. A synthetic gene for adenoregulin (ADR) with an additional amino acid glutamine at C-terminus was cloned into pET32a vector to allow expression of ADR as a Trx fusion protein in Escherichia coli BL21(DE3). The resulting expression level of the fusion protein could reach up to 20% of the total cell proteins. The fusion protein could be purified effectively by Ni2+-chelating chromatography. Released from the fusion protein by enterokinase cleavage and purified to homogeneity, the recombinant ADR displayed antimicrobial activity similar to that of the synthetic ADR reported earlier. Comparing the antimicrobial activities of the recombinant adenoregulin with C-amidated terminus to that without an amidated C-terminus, we found that the amide of glutamine at C-terminus of ADR improved its potency on certain microorganisms such as Tritirachium album and Saccharomyces cerevisiae.

  12. Probing structure-antifouling activity relationships of polyacrylamides and polyacrylates.

    PubMed

    Zhao, Chao; Zhao, Jun; Li, Xiaosi; Wu, Jiang; Chen, Shenfu; Chen, Qiang; Wang, Qiuming; Gong, Xiong; Li, Lingyan; Zheng, Jie

    2013-07-01

    We have synthesized two different polyacrylamide polymers with amide groups (polySBAA and polyHEAA) and two corresponding polyacrylate polymers without amide groups (polySBMA and polyHEA), with particular attention to the evaluation of the effect of amide group on the hydration and antifouling ability of these systems using both computational and experimental approaches. The influence of polymer architectures of brushes, hydrogels, and nanogels, prepared by different polymerization methods, on antifouling performance is also studied. SPR and ELISA data reveal that all polymers exhibit excellent antifouling ability to repel proteins from undiluted human blood serum/plasma, and such antifouling ability can be further enhanced by presenting amide groups in polySBAA and polyHEAA as compared to polySBMA and polyHEA. The antifouling performance is positively correlated with the hydration properties. Simulations confirm that four polymers indeed have different hydration characteristics, while all presenting a strong hydration overall. Integration of amide group with pendant hydroxyl or sulfobetaine group in polymer backbones is found to increase their surface hydration of polymer chains and thus to improve their antifouling ability. Importantly, we present a proof-of-concept experiment to synthesize polySBAA nanogels, which show a switchable property between antifouling and pH-responsive functions driven by acid-base conditions, while still maintaining high stability in undiluted fetal bovine serum and minimal toxicity to cultured cells. This work provides important structural insights into how very subtle structural changes in polymers can yield great improvement in biological activity, specifically the inclusion of amide group in polymer backbone/sidechain enables to obtain antifouling materials with better performance for biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Energetically Unfavorable Amide Conformations for N6-Acetyllysine Side Chains in Refined Protein Structures

    PubMed Central

    Genshaft, Alexander; Moser, Joe-Ann S.; D'Antonio, Edward L.; Bowman, Christine M.; Christianson, David W.

    2013-01-01

    The reversible acetylation of lysine to form N6-acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N-alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein-protein interactions. We now report the analysis of 381 N6-acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6-acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6-acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6-acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cis-trans isomerization. In contrast, 109 unique N-alkylacetamide groups contained in 84 highly-accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6-acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. PMID:23401043

  14. MICROBIAL DEGRADATION OF SEVEN AMIDES BY SUSPENDED BACTERIAL POPULATIONS

    EPA Science Inventory

    Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the...

  15. Silver-catalyzed synthesis of amides from amines and aldehydes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madix, Robert J; Zhou, Ling; Xu, Bingjun

    The invention provides a method for producing amides via the reaction of aldehydes and amines with oxygen adsorbed on a metallic silver or silver alloy catalyst. An exemplary reaction is shown in Scheme 1: (I), (II), (III). ##STR00001##

  16. Effects of hydrogen bonding on amide-proton chemical shift anisotropy in a proline-containing model peptide

    NASA Astrophysics Data System (ADS)

    Pichumani, Kumar; George, Gijo; Hebbar, Sankeerth; Chatterjee, Bhaswati; Raghothama, Srinivasarao

    2015-05-01

    Longitudinal relaxation due to cross-correlation between dipolar (1HN-1Hα) and amide-proton chemical shift anisotropy (1HN CSA) has been measured in a model tripeptide Piv-LPro-LPro-LPhe-OMe. The peptide bond across diproline segment is known to undergo cis/trans isomerization and only in the cis form does the lone Phe amide-proton become involved in intramolecular hydrogen bonding. The strength of the cross correlated relaxation interference is found to be significantly different between cis and trans forms, and this difference is shown as an influence of intramolecular hydrogen bonding on the amide-proton CSA.

  17. Design of Phthalazinone Amide Histamine H1 Receptor Antagonists for Use in Rhinitis

    PubMed Central

    2017-01-01

    The synthesis of potent amide-containing phthalazinone H1 histamine receptor antagonists is described. Three analogues 3e, 3g, and 9g were equipotent with azelastine and were longer-acting in vitro. Amide 3g had low oral bioavailability, low brain-penetration, high metabolic clearance, and long duration of action in vivo, and it was suitable for once-daily dosing intranasally, with a predicted dose for humans of approximately 0.5 mg per day. PMID:28523114

  18. Photoinduced gelation by stilbene oxalyl amide compounds.

    PubMed

    Miljanić, Snezana; Frkanec, Leo; Meić, Zlatko; Zinić, Mladen

    2005-03-29

    Oxalyl amide derivatives bearing 4-dodecyloxy-stilbene as a cis-trans photoisomerizing unit were synthesized. The trans derivative acted as a versatile gelator of various organic solvents, whereas the corresponding cis derivative showed a poor gelation ability or none at all. In diluted solution (c = 2.0 x10(-5) mol dm(-3), ethanol), the cis isomer was photochemically converted into the trans isomer within 4 min. Depending on the radiation wavelength, the trans isomer was stable or liable to photodecomposition. When exposed to irradiation, a concentrated solution of the cis isomer (c = 2.0 x 10(-2) mol dm(-3), ethanol) turned into a gel. The FT-Raman, FT-IR, and 1H NMR spectra demonstrated that the gelation process occurred because of a rapid cis --> trans photoisomerization followed by a self-assembly of the trans molecules. Apart from the formation of hydrogen bonding between the oxalyl amide parts of the molecules, confirmed by FT-IR spectroscopy, it was assumed that the pi-pi stacking between the trans-stilbene units of the molecule and a lipophilic interaction between long alkyl chains were the interactions responsible for gelation.

  19. Identification of fatty acids and fatty acid amides in human meibomian gland secretions.

    PubMed

    Nichols, Kelly K; Ham, Bryan M; Nichols, Jason J; Ziegler, Corrie; Green-Church, Kari B

    2007-01-01

    The complex superficial lipid layer of the tear film functions to prevent evaporation and maintain tear stability. Although classes of lipids found in the tear film have been reported, individual lipid species are currently being studied with more sophisticated. The purpose of this work was to show the identification of fatty acids and the fatty acid amides in human meibomian gland secretions by using electrospray mass spectrometry. methods. Human meibomian gland secretions (meibum) were analyzed by electrospray quadrupole time-of-flight mass spectrometry (positive- and negative-ion mode). Accurate mass determination and collision-induced dissociation of meibum, and lipid standards were used to identify lipid species. Mass analysis of meibum in an acidic chloroform-methanol solution in positive-ion mode revealed a mass peak of m/z 282.3, which was identified as the protonated molecule of oleamide [C(18)H(35)NO+H](+). The high-resolution mass analysis of the m/z 282.2788 peak (oleamide) demonstrated a mass accuracy of 3.2 parts per million (ppm). Collision-induced dissociation of this species from meibum, compared with an oleamide standard, confirmed its identification. Myristic, palmitic, stearic, and oleic free fatty acids were identified in a similar manner, as were the other fatty acid amides (myristamide, palmitamide, stearamide, and erucamide). The findings indicate that oleamide (cis-9-octadecenamide), an endogenous fatty acid primary amide, is a predominant component of meibum when examined by electrospray mass spectrometry. The novel finding of oleamide and other members of the fatty acid amide family in the tear film could lead to additional insights into the role of fatty acid amide activity in human biological systems and may indicate a new function for this lipid class of molecules in ocular surface signaling and/or in the maintenance of the complex tear film.

  20. Effect of SDS on human hair: Study on the molecular structure and morphology.

    PubMed

    Singh, Bhawana; Umapathy, Siva

    2011-05-01

    This paper presents a model study to understand the effect of surfactants on the physicochemical properties of human hair. FT-IR ATR spectroscopy has been employed to understand the chemical changes induced by sodium dodecyl sulfate (SDS) on human scalp hair. In particular, the SDS induced changes in the secondary structure of protein present in the outer protective layer of hair, i.e. cuticle, have been investigated. Conformational changes in the secondary structure of protein were studied by curve fitting of the amide I band after every phase of SDS treatment. It has been found that SDS brings rearrangements in the protein backbone conformations by transforming β -sheet structure to random coil and β -turn. Additionally, AFM and SEM studies were carried out to understand the morphological changes induced on the hair surface. SEM and AFM images demonstrated the rupture and partial erosion of cuticle sublayers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Modeling backbone flexibility to achieve sequence diversity: The design of novel alpha-helical ligands for Bcl-xL

    PubMed Central

    Fu, Xiaoran; Apgar, James R.; Keating, Amy E.

    2007-01-01

    Computational protein design can be used to select sequences that are compatible with a fixed-backbone template. This strategy has been used in numerous instances to engineer novel proteins. However, the fixed-backbone assumption severely restricts the sequence space that is accessible via design. For challenging problems, such as the design of functional proteins, this may not be acceptable. In this paper, we present a method for introducing backbone flexibility into protein design calculations and apply it to the design of diverse helical BH3 ligands that bind to the anti-apoptotic protein Bcl-xL, a member of the Bcl-2 protein family. We demonstrate how normal mode analysis can be used to sample different BH3 backbones, and show that this leads to a larger and more diverse set of low-energy solutions than can be achieved using a native high-resolution Bcl-xL complex crystal structure as a template. We tested several of the designed solutions experimentally and found that this approach worked well when normal mode calculations were used to deform a native BH3 helix structure, but less well when they were used to deform an idealized helix. A subsequent round of design and testing identified a likely source of the problem as inadequate sampling of the helix pitch. In all, we tested seventeen designed BH3 peptide sequences, including several point mutants. Of these, eight bound well to Bcl-xL and four others showed weak but detectable binding. The successful designs showed a diversity of sequences that would have been difficult or impossible to achieve using only a fixed backbone. Thus, introducing backbone flexibility via normal mode analysis effectively broadened the set of sequences identified by computational design, and provided insight into positions important for binding Bcl-xL. PMID:17597151

  2. Nucleoside phosphorylation in amide solutions

    NASA Technical Reports Server (NTRS)

    Schoffstall, A. M.; Kokko, B.

    1978-01-01

    The paper deals with phosphorylation in possible prebiotic nonaqueous solvents. To this end, phosphorylation of nucleosides using inorganic phosphates in amide solutions is studied at room and elevated temperatures. Reaction proceeds most readily in formamide and N-methylformamide. Products obtained at elevated temperature are nucleotides, nucleoside 2',3'-cyclic phosphates, and when the phosphate concentration is high, nucleoside diphosphates. At room temperature, adenosine afforded a mixture of nucleotides, but none of the cyclic nucleotide. Conditions leading to the highest relative percentage of cyclic nucleotide involve the use of low concentrations of phosphate and an excess of nucleoside.

  3. Effect of oligonucleic acid (ONA) backbone features on assembly of ONA-star polymer conjugates: a coarse-grained molecular simulation study.

    PubMed

    Condon, Joshua E; Jayaraman, Arthi

    2017-10-04

    Understanding the impact of incorporating new physical and chemical features in oligomeric DNA mimics, termed generally as "oligonucleic acids" (ONAs), on their structure and thermodynamics will be beneficial in designing novel materials for a variety of applications. In this work, we conduct coarse-grained molecular simulations of ONA-star polymer conjugates with varying ONA backbone flexibility, ONA backbone charge, and number of arms in the star polymer at a constant ONA strand volume fraction to elucidate the effect of these design parameters on the thermodynamics and assembly of multi-arm ONA-star polymer conjugates. We quantify the thermo-reversible behavior of the ONA-star polymer conjugates by quantifying the hybridization of the ONA strands in the system as a function of temperature (i.e. melting curve). Additionally, we characterize the assembly of the ONA-star polymer conjugates by tracking cluster formation and percolation as a function of temperature, as well as cluster size distribution at temperatures near the assembly transition region. The key results are as follows. The melting temperature (T m ) of the ONA strands decreases upon going from a neutral to a charged ONA backbone and upon increasing flexibility of the ONA backbone. Similar behavior is seen for the assembly transition temperature (T a ) with varying ONA backbone charge and flexibility. While the number of arms in the ONA-star polymer conjugate has a negligible effect on the ONA T m in these systems, as the number of ONA-star polymer arms increase, the assembly temperature T a increases and local ordering in the assembled state improves. By understanding how factors like ONA backbone charge, backbone flexibility, and ONA-star polymer conjugate architecture impact the behavior of ONA-star polymer conjugate systems, we can better inform how the selection of ONA chemistry will influence resulting ONA-star polymer assembly.

  4. Insight into the SEA amide thioester equilibrium. Application to the synthesis of thioesters at neutral pH.

    PubMed

    Pira, S L; El Mahdi, O; Raibaut, L; Drobecq, H; Dheur, J; Boll, E; Melnyk, O

    2016-07-26

    The bis(2-sulfanylethyl)amide (SEA) N,S-acyl shift thioester surrogate has found a variety of useful applications in the field of protein total synthesis. Here we present novel insights into the SEA amide/thioester equilibrium in water which is an essential step in any reaction involving the thioester surrogate properties of the SEA group. We also show that the SEA amide thioester equilibrium can be efficiently displaced at neutral pH for accessing peptide alkylthioesters, i.e. the key components of the native chemical ligation (NCL) reaction.

  5. Visible-light-promoted redox neutral C-H amidation of heteroarenes with hydroxylamine derivatives.

    PubMed

    Qin, Qixue; Yu, Shouyun

    2014-07-03

    A room temperature redox neutral direct C-H amidation of heteroarenes has been achieved. Hydroxylamine derivatives, which are easily accessed, have been employed as tunable nitrogen sources. These reactions were enabled by a visible-light-promoted single-electron transfer pathway without a directing group. A variety of heteroarenes, such as indoles, pyrroles, and furans, could go through this amidation with high yields (up to 98%). These reactions are highly regioselective, and all the products were isolated as a single regioisomer.

  6. Using Excel To Study The Relation Between Protein Dihedral Angle Omega And Backbone Length

    NASA Astrophysics Data System (ADS)

    Shew, Christopher; Evans, Samari; Tao, Xiuping

    How to involve the uninitiated undergraduate students in computational biophysics research? We made use of Microsoft Excel to carry out calculations of bond lengths, bond angles and dihedral angles of proteins. Specifically, we studied protein backbone dihedral angle omega by examining how its distribution varies with the length of the backbone length. It turns out Excel is a respectable tool for this task. An ordinary current-day desktop or laptop can handle the calculations for midsized proteins in just seconds. Care has to be taken to enter the formulas for the spreadsheet column after column to minimize the computing load. Supported in part by NSF Grant #1238795.

  7. Insecticidal, repellent and fungicidal properties of novel trifluoromethylphenyl amides

    USDA-ARS?s Scientific Manuscript database

    Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, (trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults (trifluoromethyl)phenyl)-...

  8. Solid state nuclear magnetic resonance investigation of polymer backbone dynamics in poly(ethylene oxide) based lithium and sodium polyether-ester-sulfonate ionomers.

    PubMed

    Roach, David J; Dou, Shichen; Colby, Ralph H; Mueller, Karl T

    2013-05-21

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T(g)) have been investigated using solid-state nuclear magnetic resonance. Experiments detecting (13)C with (1)H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) (1)H-(13)C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and (1)H spin-lattice relaxation rate measurements. Previous (1)H and (7)Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of (13)C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time (1)H-(13)C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from (1)H to (13)C nuclei, becomes similar for T≳1.1 T(g) in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of

  9. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features.

    PubMed

    Liljeblad, Arto; Kallio, Pauli; Vainio, Marita; Niemi, Jarmo; Kanerva, Liisa T

    2010-02-21

    Various commercial lyophilized and immobilized preparations of lipase A from Candida antarctica (CAL-A) were studied for their ability to catalyze the hydrolysis of amide bonds in N-acylated alpha-amino acids, 3-butanamidobutanoic acid (beta-amino acid) and its ethyl ester. The activity toward amide bonds is highly untypical of lipases, despite the close mechanistic analogy to amidases which normally catalyze the corresponding reactions. Most CAL-A preparations cleaved amide bonds of various substrates with high enantioselectivity, although high variations in substrate selectivity and catalytic rates were detected. The possible role of contaminant protein species on the hydrolytic activity toward these bonds was studied by fractionation and analysis of the commercial lyophilized preparation of CAL-A (Cat#ICR-112, Codexis). In addition to minor impurities, two equally abundant proteins were detected, migrating on SDS-PAGE a few kDa apart around the calculated size of CAL-A. Based on peptide fragment analysis and sequence comparison both bands shared substantial sequence coverage with CAL-A. However, peptides at the C-terminal end constituting a motile domain described as an active-site flap were not identified in the smaller fragment. Separated gel filtration fractions of the two forms of CAL-A both catalyzed the amide bond hydrolysis of ethyl 3-butanamidobutanoate as well as the N-acylation of methyl pipecolinate. Hydrolytic activity towards N-acetylmethionine was, however, solely confined to the fractions containing the truncated form of CAL-A. These fractions were also found to contain a trace enzyme impurity identified in sequence analysis as a serine carboxypeptidase. The possible role of catalytic impurities versus the function of CAL-A in amide bond hydrolysis is further discussed in the paper.

  10. Peptoid nanosheets exhibit a new secondary-structure motif.

    PubMed

    Mannige, Ranjan V; Haxton, Thomas K; Proulx, Caroline; Robertson, Ellen J; Battigelli, Alessia; Butterfoss, Glenn L; Zuckermann, Ronald N; Whitelam, Stephen

    2015-10-15

    A promising route to the synthesis of protein-mimetic materials that are capable of complex functions, such as molecular recognition and catalysis, is provided by sequence-defined peptoid polymers--structural relatives of biologically occurring polypeptides. Peptoids, which are relatively non-toxic and resistant to degradation, can fold into defined structures through a combination of sequence-dependent interactions. However, the range of possible structures that are accessible to peptoids and other biological mimetics is unknown, and our ability to design protein-like architectures from these polymer classes is limited. Here we use molecular-dynamics simulations, together with scattering and microscopy data, to determine the atomic-resolution structure of the recently discovered peptoid nanosheet, an ordered supramolecular assembly that extends macroscopically in only two dimensions. Our simulations show that nanosheets are structurally and dynamically heterogeneous, can be formed only from peptoids of certain lengths, and are potentially porous to water and ions. Moreover, their formation is enabled by the peptoids' adoption of a secondary structure that is not seen in the natural world. This structure, a zigzag pattern that we call a Σ('sigma')-strand, results from the ability of adjacent backbone monomers to adopt opposed rotational states, thereby allowing the backbone to remain linear and untwisted. Linear backbones tiled in a brick-like way form an extended two-dimensional nanostructure, the Σ-sheet. The binary rotational-state motif of the Σ-strand is not seen in regular protein structures, which are usually built from one type of rotational state. We also show that the concept of building regular structures from multiple rotational states can be generalized beyond the peptoid nanosheet system.

  11. Interaction of Thioamides, Selenoamides, and Amides With Diiodine

    PubMed Central

    Hadjikakou, Sotiris K.; Hadjiliadis, Nick

    2006-01-01

    We review the results of our work on the iodine interaction with thioamides, selenoamides, and amides. Complexes with (i) “spoke” or “extended spoke” structures, D · I2 and D · I2 · I2, respectively, (D is the ligand donor) (ii) iodonium salts of {[D2 − I]+[In]−} (n = 3, 7) and {[D2 − I]+[FeCl4]−} formulae and (iii) disulfides of the categories (a) [D − D], (b) {[D − DH]+[I3]−} have been isolated and characterized. A compound of formula {[D2 − I]+[I3]−[D · I2]} containing both types of complexes (i) and (ii) was also isolated. The interaction of diiodine with selenium analogs of the antithyroid drug 6-n-propyl-2-thiouracil (PTU), of formulae RSeU (6-alkyl-2-Selenouracil) results in the formation of complexes with formulae [(RSeU)I2]. All these results are correlated with the mechanism of action of antithyroid drugs. Finally, we review here our work on the diiodine interaction with the amides (LO). PMID:17497011

  12. Amide and Ester-Functionalized Humic Acid for Fuel Combustion Enhancement

    NASA Astrophysics Data System (ADS)

    Riggs, Mark

    Humic acid is a class of naturally occurring molecules composed of large sheet-like regions of cyclic aromatic hydrocarbon networks with surface and edge functional groups including phenols, carboxylic acids, and epoxides. These naturally occurring molecules are found in brown coal deposits near lignite formations. Humic acid has gained attention from the scientific community as a precursor for graphene. Graphene is a 2-dimensional honeycomb structure of fully unsaturated carbon atoms that has exceptional material properties and inherent aromaticity. Graphene's incredible properties are matched by the difficulty associated with reproducibly manufacturing it on a large scale. This issue has limited the use of graphene for commercial applications. The polar functional groups of humic acid contribute to the hydrophilic nature of the molecule, limiting its miscibility in any alkyl-based solvent. Surfactants containing long alkyl chains can affect the miscibility of the molecule in an organic solvent. Surfactants are often difficult to remove from the system. It is theorized that alkylation of the functional sites of humic acid can affect the hydrophilic nature of the molecule, and effectively enable its dispersion into organic solvents without simultaneous incorporation of surfactants. This dissertation investigated the amidation and esterification of humic acid molecules extracted from leonardite. The resulting change in the modified humic acid dispersibility in organic solvents and its potential usage as a fuel additive were evaluated. Butyl, hexyl, octyl, and decyl amide-modified and ester-modified humic acids were synthesized. These products were characterized to confirm successful chemical reaction through thermogravimetric analysis, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The decyl-modified humic acids remained suspended in kerosene mixtures for longer than 1 week. Other organo-humic acids showed varying degrees of flocculation

  13. Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole.

    PubMed

    Dai, Li; Zang, Chengxu; Tian, Shujuan; Liu, Wei; Tan, Shanlun; Cai, Zhan; Ni, Tingjunhong; An, Maomao; Li, Ran; Gao, Yue; Zhang, Dazhi; Jiang, Yuanying

    2015-01-01

    A series of caffeic acid amides were designed, synthesized, and their synergistic activity with fluconazole against fluconazole-resistant Candida albicans was evaluated in vitro. The title caffeic acid amides 3-30 except 26 exhibited potent activity, and the subsequent SAR study was conducted. Compound 3, 5, 21, and 34c, at a concentration of 1.0 μg/ml, decreased the MIC₈₀ of fluconazole from 128.0 μg/ml to 1.0-0.5 μg/ml against the fluconazole-resistant C. albicans. This result suggests that the caffeic acid amides, as synergists, can sensitize drug-resistant fungi to fluconazole. The SAR study indicated that the dihydroxyl groups and the amido groups linking to phenyl or heterocyclic rings are the important pharmacophores of the caffeic acid amides.

  14. Polyimides containing amide and perfluoroisopropylidene connecting groups

    NASA Technical Reports Server (NTRS)

    Dezern, James F. (Inventor)

    1993-01-01

    New, thermooxidatively stable polyimides were prepared from the reaction of aromatic dianhydrides containing isopropylidene bridging groups with aromatic diamines containing amide connecting groups between the rings. Several of these polyimides were shown to be semi-crystalline as evidenced by wide angle x ray scattering and differential scanning calorimetry. Most of the polyimides form tough, flexible films with high tensile properties. These polyimide films exhibit enhanced solubility in organic solvents.

  15. Synthesis, spectroscopy, magnetic and redox behaviors of copper(II) complexes with tert-butylated salen type ligands bearing bis(4-aminophenyl)ethane and bis(4-aminophenyl)amide backbones.

    PubMed

    Kasumov, Veli T; Yerli, Yusuf; Kutluay, Aysegul; Aslanoglu, Mehmet

    2013-03-01

    New salen type ligands, N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-ethylenedianiline [(X=H (1), 5-tert-butyl (2)] and N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-amidedianiline [X=H (3), 5-tert (4)] and their copper(II) complexes 5-8, have been synthesized. Their spectroscopic (IR, (1)H NMR, UV/vis, ESR) properties, as well as magnetic and redox-reactivity behavior are reported. IR spectra of 7 and 8 indicate the coordination of amide oxygen atoms of 3 and 4 ligands to Cu(II). The solid state ESR spectra of 5-8 exhibits less informative exchange narrowed isotropic or anisotropic signals with weak unresolved low field patterns. The magnetic moments of 5 (2.92 μ(B) per Cu(II)) and 6 (2.79 μ(B) per Cu(II)) are unusual for copper(II) complexes and considerably higher than those for complexes 7 and 8. Cryogenic measurements (300-10 K) show weak antiferromagnetic exchange interactions between the copper(II) centers in complexes 6 and 8. The results of electrochemical and chemical redox-reactivity studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation.

    PubMed

    Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D; Xia, Lan-Qin

    2016-01-01

    Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium -mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.

  17. Hidden Markov model approach for identifying the modular framework of the protein backbone.

    PubMed

    Camproux, A C; Tuffery, P; Chevrolat, J P; Boisvieux, J F; Hazout, S

    1999-12-01

    The hidden Markov model (HMM) was used to identify recurrent short 3D structural building blocks (SBBs) describing protein backbones, independently of any a priori knowledge. Polypeptide chains are decomposed into a series of short segments defined by their inter-alpha-carbon distances. Basically, the model takes into account the sequentiality of the observed segments and assumes that each one corresponds to one of several possible SBBs. Fitting the model to a database of non-redundant proteins allowed us to decode proteins in terms of 12 distinct SBBs with different roles in protein structure. Some SBBs correspond to classical regular secondary structures. Others correspond to a significant subdivision of their bounding regions previously considered to be a single pattern. The major contribution of the HMM is that this model implicitly takes into account the sequential connections between SBBs and thus describes the most probable pathways by which the blocks are connected to form the framework of the protein structures. Validation of the SBBs code was performed by extracting SBB series repeated in recoding proteins and examining their structural similarities. Preliminary results on the sequence specificity of SBBs suggest promising perspectives for the prediction of SBBs or series of SBBs from the protein sequences.

  18. Carbamoyl anion-initiated cascade reaction for stereoselective synthesis of substituted α-hydroxy-β-amino amides.

    PubMed

    Lin, Chao-Yang; Ma, Peng-Ju; Sun, Zhao; Lu, Chong-Dao; Xu, Yan-Jun

    2016-01-18

    A carbamoyl anion-initiated cascade reaction with acylsilanes and imines has been used to rapidly construct substituted α-hydroxy-β-amino amides. The Brook rearrangement-mediated cascade allows the formation of two C-C bonds and one O-Si bond in a single pot. Using this approach, a range of α-aryl α-hydroxy-β-amino amides has been synthesized in high yields with excellent diastereoselectivities.

  19. Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity.

    PubMed

    Trevino, Simon G; Zhang, Na; Elenko, Mark P; Lupták, Andrej; Szostak, Jack W

    2011-08-16

    Multiple lines of evidence support the hypothesis that the early evolution of life was dominated by RNA, which can both transfer information from generation to generation through replication directed by base-pairing, and carry out biochemical activities by folding into functional structures. To understand how life emerged from prebiotic chemistry we must therefore explain the steps that led to the emergence of the RNA world, and in particular, the synthesis of RNA. The generation of pools of highly pure ribonucleotides on the early Earth seems unlikely, but the presence of alternative nucleotides would support the assembly of nucleic acid polymers containing nonheritable backbone heterogeneity. We suggest that homogeneous monomers might not have been necessary if populations of heterogeneous nucleic acid molecules could evolve reproducible function. For such evolution to be possible, function would have to be maintained despite the repeated scrambling of backbone chemistry from generation to generation. We have tested this possibility in a simplified model system, by using a T7 RNA polymerase variant capable of transcribing nucleic acids that contain an approximately 11 mixture of deoxy- and ribonucleotides. We readily isolated nucleotide-binding aptamers by utilizing an in vitro selection process that shuffles the order of deoxy- and ribonucleotides in each round. We describe two such RNA/DNA mosaic nucleic acid aptamers that specifically bind ATP and GTP, respectively. We conclude that nonheritable variations in nucleic acid backbone structure may not have posed an insurmountable barrier to the emergence of functionality in early nucleic acids.

  20. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    DOE PAGES

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; ...

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechainmore » conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.« less

  1. Fine structure of the amide i band in acetanilide

    NASA Astrophysics Data System (ADS)

    Careri, G.; Gratton, E.; Shyamsunder, E.

    1988-05-01

    Their absorption spectrum of both single crystals and powdered samples of acetanilide (a model system for proteins) has been studied in the amide i region, where a narrow band has been identified as a highly trapped soliton state. The powder-sample spectra have been decomposed using four Lorentzian bands. A strong temperature dependence has been found for the intensity of two of the subbands, which also show a complementary behavior. Polarization studies performed on thin crystals have shown that the subbands have the same polarization. Low-temperature spectra of partially deuterated samples show the presence of the subbands at the same absorption frequencies found using the fitting procedure in the spectra of nondeuterated samples. The soliton model currently proposed to explain the origin of the anomalous amide i component at 1650 cm-1 still holds, but some modification of the model is required to account for the new features revealed by this study.

  2. Hydrogen/deuterium exchange studies of native rabbit MM-CK dynamics.

    PubMed

    Mazon, Hortense; Marcillat, Olivier; Forest, Eric; Vial, Christian

    2004-02-01

    Creatine kinase (CK) isoenzymes catalyse the reversible transfer of a phosphoryl group from ATP onto creatine. This reaction plays a very important role in the regulation of intracellular ATP concentrations in excitable tissues. CK isoenzymes are highly resistant to proteases in native conditions. To appreciate localized backbone dynamics, kinetics of amide hydrogen exchange with deuterium was measured by pulse-labeling the dimeric cytosolic muscle CK isoenzyme. Upon exchange, the protein was digested with pepsin, and the deuterium content of the resulting peptides was determined by liquid chromatography coupled to mass spectrometry (MS). The deuteration kinetics of 47 peptides identified by MS/MS and covering 96% of the CK backbone were analyzed. Four deuteration patterns have been recognized: The less deuterated peptides are located in the saddle-shaped core of CK, whereas most of the highly deuterated peptides are close to the surface and located around the entrance to the active site. Their exchange kinetics are discussed by comparison with the known secondary and tertiary structures of CK with the goal to reveal the conformational dynamics of the protein. Some of the observed dynamic motions may be linked to the conformational changes associated with substrate binding and catalytic mechanism.

  3. Coarse-grained, foldable, physical model of the polypeptide chain.

    PubMed

    Chakraborty, Promita; Zuckermann, Ronald N

    2013-08-13

    Although nonflexible, scaled molecular models like Pauling-Corey's and its descendants have made significant contributions in structural biology research and pedagogy, recent technical advances in 3D printing and electronics make it possible to go one step further in designing physical models of biomacromolecules: to make them conformationally dynamic. We report here the design, construction, and validation of a flexible, scaled, physical model of the polypeptide chain, which accurately reproduces the bond rotational degrees of freedom in the peptide backbone. The coarse-grained backbone model consists of repeating amide and α-carbon units, connected by mechanical bonds (corresponding to ϕ and ψ) that include realistic barriers to rotation that closely approximate those found at the molecular scale. Longer-range hydrogen-bonding interactions are also incorporated, allowing the chain to readily fold into stable secondary structures. The model is easily constructed with readily obtainable parts and promises to be a tremendous educational aid to the intuitive understanding of chain folding as the basis for macromolecular structure. Furthermore, this physical model can serve as the basis for linking tangible biomacromolecular models directly to the vast array of existing computational tools to provide an enhanced and interactive human-computer interface.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogh, R.H.; Mabbutt, B.C.; Kem, W.R.

    Sequence-specific assignments are reported for the 500-MHz H nuclear magnetic resonance (NMR) spectrum of the 48-residue polypeptide neurotoxin I from the sea anemone Stichodactyla helianthus (Sh I). Spin systems were first identified by using two-dimensional relayed or multiple quantum filtered correlation spectroscopy, double quantum spectroscopy, and spin lock experiments. Specific resonance assignments were then obtained from nuclear Overhauser enhancement (NOE) connectivities between protons from residues adjacent in the amino acid sequence. Of a total of 265 potentially observable resonances, 248 (i.e., 94%) were assigned, arising from 39 completely and 9 partially assigned amino acid spin systems. The secondary structure ofmore » Sh I was defined on the basis of the pattern of sequential NOE connectivities. NOEs between protons on separate strands of the polypeptide backbone, and backbone amide exchange rates. Sh I contains a four-stranded antiparallel {beta}-sheet encompassing residues 1-5, 16-24, 30-33, and 40-46, with a {beta}-bulge at residues 17 and 18 and a reverse turn, probably a type II {beta}-turn, involving residues 27-30. No evidence of {alpha}-helical structure was found.« less

  5. Stereoselective reactions. XXXII. Enantioselective deprotonation of 4-tert-butylcyclohexanone by fluorine-containing chiral lithium amides derived from 1-phenylethylamine and 1-(1-naphthyl)ethylamine.

    PubMed

    Aoki, K; Koga, K

    2000-04-01

    Enantioselective deprotonation of 4-tert-butylcyclohexanone was examined using 1-phenylethylamine- and 1-(1-naphthyl)ethylamine-derived chiral lithium amides having an alkyl or a fluoroalkyl substituent at the amide nitrogen. The lithium amides having a 2,2,2-trifluoroethyl group on the amide nitrogen are easily accessible in both enantiomeric forms, and were found to induce good enantioselectivity in the present reaction.

  6. Doxorubicin attached to HPMA copolymer via amide bond modifies the glycosylation pattern of EL4 cells.

    PubMed

    Kovar, Lubomir; Etrych, Tomas; Kabesova, Martina; Subr, Vladimir; Vetvicka, David; Hovorka, Ondrej; Strohalm, Jiri; Sklenar, Jan; Chytil, Petr; Ulbrich, Karel; Rihova, Blanka

    2010-08-01

    To avoid the side effects of the anti-cancer drug doxorubicin (Dox), we conjugated this drug to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone. Dox was conjugated via an amide bond (Dox-HPMA(AM), PK1) or a hydrazone pH-sensitive bond (Dox-HPMA(HYD)). In contrast to Dox and Dox-HPMA(HYD), Dox-HPMA(AM) accumulates within the cell's intracellular membranes, including those of the Golgi complex and endoplasmic reticulum, both involved in protein glycosylation. Flow cytometry was used to determine lectin binding and cell death, immunoblot to characterize the presence of CD7, CD43, CD44, and CD45, and high-performance anion exchange chromatography with pulsed amperometric detector analysis for characterization of plasma membrane saccharide composition. Incubation of EL4 cells with Dox-HPMA(AM) conjugate, in contrast to Dox or Dox-HPMA(HYD), increased the amounts of membrane surface-associated glycoproteins, as well as saccharide moieties recognized by peanut agglutinin, Erythrina cristagalli, or galectin-1 lectins. Only Dox-HPMA(AM) increased expression of the highly glycosylated membrane glycoprotein CD43, while expression of others (CD7, CD44, and CD45) was unaffected. The binding sites for galectin-1 are present on CD43 molecule. Furthermore, we present that EL4 treated with Dox-HPMA(AM) possesses increased sensitivity to galectin-1-induced apoptosis. In this study, we demonstrate that Dox-HPMA(AM) treatment changes glycosylation of the EL4 T cell lymphoma surface and sensitizes the cells to galectin-1-induced apoptosis.

  7. Amide I vibrational circular dichroism of dipeptide: Conformation dependence and fragment analysis

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2004-03-01

    The amide I vibrational circular dichroic response of alanine dipeptide analog (ADA) was theoretically investigated and the density functional theory calculation and fragment analysis results are presented. A variety of vibrational spectroscopic properties, local and normal mode frequencies, coupling constant, dipole, and rotational strengths, are calculated by varying two dihedral angles determining the three-dimensional ADA conformation. Considering two monopeptide fragments separately, we show that the amide I vibrational circular dichroism of the ADA can be quantitatively predicted. For several representative conformations of the model ADA, vibrational circular dichroism spectra are calculated by using both the density functional theory calculation and fragment analysis methods.

  8. Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons.

    PubMed

    Bythell, Benjamin J; Suhai, Sándor; Somogyi, Arpád; Paizs, Béla

    2009-10-07

    The mobile proton model (Dongre, A. R., Jones, J. L., Somogyi, A. and Wysocki, V. H. J. Am. Chem. Soc. 1996, 118 , 8365-8374) of peptide fragmentation states that the ionizing protons play a critical role in the gas-phase fragmentation of protonated peptides upon collision-induced dissociation (CID). The model distinguishes two classes of peptide ions, those with or without easily mobilizable protons. For the former class mild excitation leads to proton transfer reactions which populate amide nitrogen protonation sites. This enables facile amide bond cleavage and thus the formation of b and y sequence ions. In contrast, the latter class of peptide ions contains strongly basic functionalities which sequester the ionizing protons, thereby often hindering formation of sequence ions. Here we describe the proton-driven amide bond cleavages necessary to produce b and y ions from peptide ions lacking easily mobilizable protons. We show that this important class of peptide ions fragments by different means from those with easily mobilizable protons. We present three new amide bond cleavage mechanisms which involve salt-bridge, anhydride, and imine enol intermediates, respectively. All three new mechanisms are less energetically demanding than the classical oxazolone b(n)-y(m) pathway. These mechanisms offer an explanation for the formation of b and y ions from peptide ions with sequestered ionizing protons which are routinely fragmented in large-scale proteomics experiments.

  9. Synthesis, HPLC measurement and bioavailability of the phenolic amide amkamide

    USDA-ARS?s Scientific Manuscript database

    Amkamide, oretamide, becatamide, enferamide and veskamide are phenolic amides whose analogues are found in plants. Recently, becatamide was reported to have very potent mitochondria protective activity. In this study, becatamide and analogues (amkamide, oretamide, enferamide and veskamide) were chem...

  10. Thermal decomposition of sodium amide, NaNH2, and sodium amide hydroxide composites, NaNH2-NaOH.

    PubMed

    Jepsen, Lars H; Wang, Peikun; Wu, Guotao; Xiong, Zhitao; Besenbacher, Flemming; Chen, Ping; Jensen, Torben R

    2016-09-14

    Sodium amide, NaNH 2 , has recently been shown to be a useful catalyst to decompose NH 3 into H 2 and N 2 , however, sodium hydroxide is omnipresent and commercially available NaNH 2 usually contains impurities of NaOH (<2%). The thermal decomposition of NaNH 2 and NaNH 2 -NaOH composites is systematically investigated and discussed. NaNH 2 is partially dissolved in NaOH at T > 100 °C, forming a non-stoichiometric solid solution of Na(OH) 1-x (NH 2 ) x (0 < x < ∼0.30), which crystallizes in an orthorhombic unit cell with the space group P2 1 2 1 2 1 determined by synchrotron powder X-ray diffraction. The composite xNaNH 2 -(1 - x)NaOH (∼0.70 < x < 0.72) shows a lowered melting point, ∼160 °C, compared to 200 and 318 °C for neat NaNH 2 and NaOH, respectively. We report that 0.36 mol of NH 3 per mol of NaNH 2 is released below 400 °C during heating in an argon atmosphere, initiated at its melting point, T = 200 °C, possibly due to the formation of the mixed sodium amide imide solid solution. Furthermore, NaOH reacts with NaNH 2 at elevated temperatures and provides the release of additional NH 3 .

  11. Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry.

    PubMed

    Nayar, Divya; Folberth, Angelina; van der Vegt, Nico F A

    2017-07-19

    Osmolytes affect hydrophobic collapse and protein folding equilibria. The underlying mechanisms are, however, not well understood. We report large-scale conformational sampling of two hydrophobic polymers with secondary and tertiary amide side chains using extensive molecular dynamics simulations. The calculated free energy of unfolding increases with urea for the secondary amide, yet decreases for the tertiary amide, in agreement with experiment. The underlying mechanism is rooted in opposing entropic driving forces: while urea screens the hydrophobic macromolecular interface and drives unfolding of the tertiary amide, urea's concomitant loss in configurational entropy drives collapse of the secondary amide. Only at sufficiently high urea concentrations bivalent urea hydrogen bonding interactions with the secondary amide lead to further stabilisation of its collapsed state. The observations provide a new angle on the interplay between side chain chemistry, urea hydrogen bonding, and the role of urea in attenuating or strengthening the hydrophobic effect.

  12. Synthesis and evaluation of novel amide amino-β-lactam derivatives as cholesterol absorption inhibitors.

    PubMed

    Dražić, Tonko; Sachdev, Vinay; Leopold, Christina; Patankar, Jay V; Malnar, Martina; Hećimović, Silva; Levak-Frank, Sanja; Habuš, Ivan; Kratky, Dagmar

    2015-05-15

    The β-lactam cholesterol absorption inhibitor ezetimibe is so far the only representative of this class of compounds on the market today. The goal of this work was to synthesize new amide ezetimibe analogs from trans-3-amino-(3R,4R)-β-lactam and to test their cytotoxicity and activity as cholesterol absorption inhibitors. We synthesized six new amide ezetimibe analogs. All new compounds exhibited low toxicity in MDCKIIwt, hNPC1L1/MDCKII and HepG2 cell lines and showed significant inhibition of cholesterol uptake in hNPC1L1/MDCKII cells. In addition, we determined the activity of the three compounds to inhibit cholesterol absorption in vivo. Our results demonstrate that these compounds considerably reduce cholesterol concentrations in liver and small intestine of mice. Thus, our newly synthesized amide ezetimibe analogs are cholesterol absorption inhibitors in vitro and in vivo. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Preparation and Evaluation at the Delta Opioid Receptor of a Series of Linear Leu-Enkephalin Analogues Obtained by Systematic Replacement of the Amides

    PubMed Central

    2013-01-01

    Leu-enkephalin analogues, in which the amide bonds were sequentially and systematically replaced either by ester or N-methyl amide bonds, were prepared using classical organic chemistry as well as solid phase peptide synthesis (SPPS). The peptidomimetics were characterized using competition binding, ERK1/2 phosphorylation, receptor internalization, and contractility assays to evaluate their pharmacological profile over the delta opioid receptor (DOPr). The lipophilicity (LogD7.4) and plasma stability of the active analogues were also measured. Our results revealed that the last amide bond can be successfully replaced by either an ester or an N-methyl amide bond without significantly decreasing the biological activity of the corresponding analogues when compared to Leu-enkephalin. The peptidomimetics with an N-methyl amide function between residues Phe and Leu were found to be more lipophilic and more stable than Leu-enkephalin. Findings from the present study further revealed that the hydrogen-bond donor properties of the fourth amide of Leu-enkephalin are not important for its biological activity on DOPr. Our results show that the systematic replacement of amide bonds by isosteric functions represents an efficient way to design and synthesize novel peptide analogues with enhanced stability. Our findings further suggest that such a strategy can also be useful to study the biological roles of amide bonds. PMID:23650868

  14. Solution structure and backbone dynamics of the N-terminal region of the calcium regulatory domain from soybean calcium-dependent protein kinase alpha.

    PubMed

    Weljie, Aalim M; Gagné, Stéphane M; Vogel, Hans J

    2004-12-07

    Ca(2+)-dependent protein kinases (CDPKs) are vital Ca(2+)-signaling proteins in plants and protists which have both a kinase domain and a self-contained calcium regulatory calmodulin-like domain (CLD). Despite being very similar to CaM (>40% identity) and sharing the same fold, recent biochemical and structural evidence suggests that the behavior of CLD is distinct from its namesake, calmodulin. In this study, NMR spectroscopy is employed to examine the structure and backbone dynamics of a 168 amino acid Ca(2+)-saturated construct of the CLD (NtH-CLD) in which almost the entire C-terminal domain is exchange broadened and not visible in the NMR spectra. Structural characterization of the N-terminal domain indicates that the first Ca(2+)-binding loop is significantly more open than in a recently reported structure of the CLD complexed with a putative intramolecular binding region (JD) in the CDPK. Backbone dynamics suggest that parts of the third helix exhibit unusually high mobility, and significant exchange, consistent with previous findings that this helix interacts with the C-terminal domain. Dynamics data also show that the "tether" region, consisting of the first 11 amino acids of CLD, is highly mobile and these residues exhibit distinctive beta-type secondary structure, which may help to position the JD and CLD. Finally, the unusual global dynamic behavior of the protein is rationalized on the basis of possible interdomain rearrangements and the highly variable environments of the C- and N-terminal domains.

  15. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    PubMed Central

    2015-01-01

    Summary The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams. PMID:25977728

  16. Structure-activity relationship in 34 trifluoromethylphenyl amides against Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    As part of our mission to discover new mosquito insecticides, 34 trifluoromethylphenyl amides were designed and synthesized. These compounds have trifluoromethyl- groups located in the ortho-, meta- or para- positions on the phenyl ring and have various substituents attached to the carbonyl carbon, ...

  17. Improving the accuracy of protein stability predictions with multistate design using a variety of backbone ensembles.

    PubMed

    Davey, James A; Chica, Roberto A

    2014-05-01

    Multistate computational protein design (MSD) with backbone ensembles approximating conformational flexibility can predict higher quality sequences than single-state design with a single fixed backbone. However, it is currently unclear what characteristics of backbone ensembles are required for the accurate prediction of protein sequence stability. In this study, we aimed to improve the accuracy of protein stability predictions made with MSD by using a variety of backbone ensembles to recapitulate the experimentally measured stability of 85 Streptococcal protein G domain β1 sequences. Ensembles tested here include an NMR ensemble as well as those generated by molecular dynamics (MD) simulations, by Backrub motions, and by PertMin, a new method that we developed involving the perturbation of atomic coordinates followed by energy minimization. MSD with the PertMin ensembles resulted in the most accurate predictions by providing the highest number of stable sequences in the top 25, and by correctly binning sequences as stable or unstable with the highest success rate (≈90%) and the lowest number of false positives. The performance of PertMin ensembles is due to the fact that their members closely resemble the input crystal structure and have low potential energy. Conversely, the NMR ensemble as well as those generated by MD simulations at 500 or 1000 K reduced prediction accuracy due to their low structural similarity to the crystal structure. The ensembles tested herein thus represent on- or off-target models of the native protein fold and could be used in future studies to design for desired properties other than stability. Copyright © 2013 Wiley Periodicals, Inc.

  18. Picolyl amides of betulinic acid as antitumor agents causing tumor cell apoptosis.

    PubMed

    Bildziukevich, Uladzimir; Rárová, Lucie; Šaman, David; Wimmer, Zdeněk

    2018-02-10

    A series of picolyl amides of betulinic acid (3a-3c and 6a-6c) was prepared and subjected to the cytotoxicity screening tests. Structure-activity relationships studies resulted in finding differences in biological activity in dependence on o-, m- and p-substitution of the pyridine ring in the target amides, when cytotoxicity data of 3a-3c and 6a-6c were obtained and compared. The amides 3b and 3a displayed cytotoxicity (given in the IC 50 values) in G-361 (0.5 ± 0.1 μM and 2.4 ± 0.0 μM, respectively), MCF7 (1.4 ± 0.1 μM and 2.2 ± 0.2 μM, respectively), HeLa (2.4 ± 0.4 μM and 2.3 ± 0.5 μM, respectively) and CEM (6.5 ± 1.5 μM and 6.9 ± 0.4 μM, respectively) tumor cell lines, and showed weak effect in the normal human fibroblasts (BJ). Selectivity against all tested cancer cells was determined and compared to normal cells with therapeutic index (TI) between 7 and 100 for compounds 3a and 3b. The therapeutic index (TI = 100) was calculated for human malignant melanoma cell line (G-361) versus normal human fibroblasts (BJ). The cytotoxicity of other target amides (3c and 6a-6c) revealed lower effects than 3a and 3b in the tested cancer cell lines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Diverse amide analogs of sulindac for cancer treatment and prevention.

    PubMed

    Mathew, Bini; Hobrath, Judith V; Connelly, Michele C; Kiplin Guy, R; Reynolds, Robert C

    2017-10-15

    Sulindac is a non-steroidal anti-inflammatory drug (NSAID) that has shown significant anticancer activity. Sulindac sulfide amide (1) possessing greatly reduced COX-related inhibition relative to sulindac displayed in vivo antitumor activity that was comparable to sulindac in a human colon tumor xenograft model. Inspired by these observations, a panel of diverse sulindac amide derivatives have been synthesized and their activity probed against three cancer cell lines (prostate, colon and breast). A neutral analog, compound 79 was identified with comparable potency relative to lead 1 and activity against a panel of lymphoblastic leukemia cell lines. Several new series also show good activity relative to the parent (1), including five analogs that also possess nanomolar inhibitory potencies against acute lymphoblastic leukemia cells. Several new analogs identified may serve as anticancer lead candidates for further development. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones.

    PubMed

    Aral, Hayriye; Aral, Tarık; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep

    2013-11-15

    A novel amide-bonded silica stationary phase was prepared starting from N-Boc-phenylalanine, cyclohexylamine and spherical silica gel (4 µm, 60 Å). The amide ligand was synthesised with high yield. The resulting amide bonded stationary phase was characterised by SEM, IR and elemental analysis. The resulting selector bearing a polar amide group is used for the reversed-phase chromatography separation of different classes of thirteen phytohormones (plant hormones). The chromatographic behaviours of these analytes on the amide-silica stationary phase were compared with those of RP-C18 column under same conditions. The effects of different separation conditions, such as mobile phase, pH value, flow rate and temperature, on the separation and retention behaviours of the 13 phytohormones in this system were studied. The optimum separation was achieved using reversed-phase HPLC gradient elution with an aqueous mobile phase containing pH=6.85 potassium phosphate buffer (20 mM) and acetonitrile with a 22 °C column temperature. Under these experimental conditions, the 12 phytohormones could be separated and detected at 230 or 270 nm within 26 min. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Is there any difference in Amide and NOE CEST effects between white and gray matter at 7 T?

    NASA Astrophysics Data System (ADS)

    Khlebnikov, Vitaliy; Siero, Jeroen C. W.; Wijnen, Jannie; Visser, Fredy; Luijten, Peter R.; Klomp, Dennis W. J.; Hoogduin, Hans

    2016-11-01

    Measurement of Chemical Exchange Saturation Transfer (CEST) is providing tissue physiology dependent contrast, e.g. by looking at Amide and NOE (Nuclear Overhauser Enhancement) effects. CEST is unique in providing quantitative metabolite information at high imaging resolution. However, direct comparison of Amide and NOE effects between different tissues may result in wrong conclusions on the metabolite concentration due to the additional contributors to the observed CEST contrast, such as water content (WC) and water T1 relaxation (T1w). For instance, there are multiple contradictory reports in the literature on Amide and NOE effects in white matter (WM) and gray matter (GM) at 7 T. This study shows that at 7 T, tissue water T1 relaxation is a stronger contributor to CEST contrasts than WC. After water T1 correction, there was no difference in Amide effects between WM and GM, whereas WM/GM contrast was enhanced for NOE effects.

  2. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John, George; Nagarajan, Subbiah; Chapman, Kent

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.

  3. Investigating the role of MRGPRC11 and capsaicin-sensitive afferent nerves in the anti-influenza effects exerted by SLIGRL-amide in murine airways.

    PubMed

    Chang, Amy Y; Mann, Tracy S; McFawn, Peter K; Han, Liang; Dong, Xinzhong; Henry, Peter J

    2016-05-23

    The hexapeptide SLIGRL-amide activates protease-activated receptor-2 (PAR-2) and mas-related G protein-coupled receptor C11 (MRGPRC11), both of which are known to be expressed on populations of sensory nerves. SLIGRL-amide has recently been reported to inhibit influenza A (IAV) infection in mice independently of PAR-2 activation, however the explicit roles of MRGPRC11 and sensory nerves in this process are unknown. Thus, the principal aim of this study was to determine whether SLIGRL-amide-induced inhibition of influenza infection is mediated by MRGPRC11 and/or by capsaicin-sensitive sensory nerves. The inhibitory effect of SLIGRL-amide on IAV infection observed in control mice in vivo was compared to effects produced in mice that did not express MRGPRC11 (mrgpr-cluster∆ (-/-) mice) or had impaired sensory nerve function (induced by chronic pre-treatment with capsaicin). Complementary mechanistic studies using both in vivo and ex vivo approaches investigated whether the anti-IAV activity of SLIGRL-amide was (1) mimicked by either activators of MRGPRC11 (BAM8-22) or by activators (acute capsaicin) or selected mediators (substance P, CGRP) of sensory nerve function, or (2) suppressed by inhibitors of sensory nerve function (e.g. NK1 receptor antagonists). SLIGRL-amide and BAM8-22 dose-dependently inhibited IAV infection in mrgpr-cluster∆ (-/-) mice that do not express MRGPRC11. In addition, SLIGRL-amide and BAM8-22 each inhibited IAV infection in capsaicin-pre-treated mice that lack functional sensory nerves. Furthermore, the anti-IAV activity of SLIGRL-amide was not mimicked by the sensory neuropeptides substance P or CGRP, nor blocked by either NK1 (L-703,606, RP67580) and CGRP receptor (CGRP8-37) antagonists. Direct stimulation of airway sensory nerves through acute exposure to the TRPV1 activator capsaicin also failed to mimic SLIGRL-amide-induced inhibition of IAV infectivity. The anti-IAV activity of SLIGRL-amide was mimicked by the purinoceptor agonist ATP

  4. Molecular mechanical studies of DNA flexibility: Coupled backbone torsion angles and base-pair openings

    PubMed Central

    Keepers, Joe W.; Kollman, Peter A.; Weiner, Paul K.; James, Thomas L.

    1982-01-01

    Molecular mechanics studies have been carried out on “B-DNA-like” structures of [d(C-G-C-G-A-A-T-T-C-G-C-G)]2 and [d(A)]12·[d(T)]12. Each of the backbone torsion angles (ψ, φ, ω, ω′, φ′) has been “forced” to alternative values from the normal B-DNA values (g+, t, g-, g-, t conformations). Compensating torsion angle changes preserve most of the base stacking energy in the double helix. In a second part of the study, one purine N3-pyrimidine N1 distance at a time has been forced to a value of 6 Å in an attempt to simulate the base opening motions required to rationalize proton exchange data for DNA. When the 6-Å constraint is removed, many of the structures revert to the normal Watson-Crick hydrogen-bonded structure, but a number are trapped in structures ≈5 kcal/mol higher in energy than the starting B-DNA structure. The relative energy of these structures, some of which involve a non-Watson-Crick thymine C2(carbonyl)[unk]adenine 6NH2 hydrogen bond, are qualitatively consistent with the ΔH for a “base pair-open state” suggested by Mandal et al. of 4-6 kcal/mol [Mandal, C., Kallenbach, N. R. & Englander, S. W. (1979) J. Mol. Biol. 135, 391-411]. The picture of DNA flexibility emerging from this study depicts the backbone as undergoing rapid motion between local torsional minima on a nanosecond time scale. Backbone motion is mainly localized within a dinucleoside segment and generally not conformationally coupled along the chain or across the base pairs. Base motions are much smaller in magnitude than backbone motions. Base sliding allows imino N—H exchange, but it is localized, and only a small fraction of the N—H groups is exposed at any one time. Stacking and hydrogen bonding cause a rigid core of bases in the center of the molecule accounting for the hydrodynamic properties of DNA. PMID:6957879

  5. Conjugated-Backbone Effect of Organic Small Molecules for n-Type Thermoelectric Materials with ZT over 0.2.

    PubMed

    Huang, Dazhen; Yao, Huiying; Cui, Yutao; Zou, Ye; Zhang, Fengjiao; Wang, Chao; Shen, Hongguang; Jin, Wenlong; Zhu, Jia; Diao, Ying; Xu, Wei; Di, Chong-An; Zhu, Daoben

    2017-09-20

    Conjugated backbones play a fundamental role in determining the electronic properties of organic semiconductors. On the basis of two solution-processable dihydropyrrolo[3,4-c]pyrrole-1,4-diylidenebis(thieno[3,2-b]thiophene) derivatives with aromatic and quinoid structures, we have carried out a systematic study of the relationship between the conjugated-backbone structure and the thermoelectric properties. In particular, a combination of UV-vis-NIR spectra, photoemission spectroscopy, and doping optimization are utilized to probe the interplay between energy levels, chemical doping, and thermoelectric performance. We found that a moderate change in the conjugated backbone leads to varied doping mechanisms and contributes to dramatic changes in the thermoelectric performance. Notably, the chemically doped A-DCV-DPPTT, a small molecule with aromatic structure, exhibits an electrical conductivity of 5.3 S cm -1 and a high power factor (PF 373 K ) up to 236 μW m -1 K -2 , which is 50 times higher than that of Q-DCM-DPPTT with a quinoid structure. More importantly, the low thermal conductivity enables A-DCV-DPPTT to possess a figure of merit (ZT) of 0.23 ± 0.03, which is the highest value reported to date for thermoelectric materials based on organic small molecules. These results demonstrate that the modulation of the conjugated backbone represents a powerful strategy for tuning the electronic structure and mobility of organic semiconductors toward a maximum thermoelectric performance.

  6. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    PubMed

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted

  7. Protein backbone engineering as a strategy to advance foldamers toward the frontier of protein-like tertiary structure.

    PubMed

    Reinert, Zachary E; Horne, W Seth

    2014-11-28

    A variety of non-biological structural motifs have been incorporated into the backbone of natural protein sequences. In parallel work, diverse unnatural oligomers of de novo design (termed "foldamers") have been developed that fold in defined ways. In this Perspective article, we survey foundational studies on protein backbone engineering, with a focus on alterations made in the context of complex tertiary folds. We go on to summarize recent work illustrating the potential promise of these methods to provide a general framework for the construction of foldamer mimics of protein tertiary structures.

  8. Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs

    PubMed Central

    Mutisya, Daniel; Hardcastle, Travis; Cheruiyot, Samwel K.; Pallan, Pradeep S.; Kennedy, Scott D.; Egli, Martin; Kelley, Melissa L.; Smith, Anja van Brabant

    2017-01-01

    Abstract While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 and 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA–DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs. PMID:28854734

  9. Amide Link Scission in the Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms.

    PubMed

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2015-10-20

    The volume-averaged amide link scission in the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine was quantified at a variety of free chlorine exposure times, concentrations, and pH and rinsing conditions. The results showed that (i) hydroxyl ions are needed for scission to occur, (ii) hydroxide-induced amide link scission is a strong function of exposure to hypochlorous acid, (iii) the ratio between amide links broken and chlorine atoms taken up increased with the chlorination pH and reached a maximum of ∼25%, (iv) polyamide disintegration occurs when high free chlorine concentrations, alkaline conditions, and high exposure times are combined, (v) amide link scission promotes further chlorine uptake, and (vi) scission at the membrane surface is unrepresentative of volume-averaged scission in the active layer. Our observations are consistent with previously proposed mechanisms describing amide link scission as a result of the hydrolysis of the N-chlorinated amidic N-C bond due to nucleophilic attack by hydroxyl ions. This study increases the understanding of the physicochemical changes that could occur for membranes in treatment plants using chlorine as an upstream disinfectant and the extent and rate at which those changes would occur.

  10. Characterization of the sleep-wake patterns in mice lacking fatty acid amide hydrolase.

    PubMed

    Huitron-Resendiz, Salvador; Sanchez-Alavez, Manuel; Wills, Derek N; Cravatt, Benjamin F; Henriksen, Steven J

    2004-08-01

    Oleamide and anandamide are fatty acid amides implicated in the regulatory mechanisms of sleep processes. However, due to their prompt catabolism by fatty acid amide hydrolase (FAAH), their pharmacologic and behavioral effects, in vivo, disappear rapidly. To determine if, in the absence of FAAH, the hypnogenic fatty acid amides induce an increase of sleep, we characterized the sleep-wake patters in FAAH-knockout mice [FAAH (-/-)] before and after sleep deprivation. FAAH (-/-), FAAH (+/-), and FAAH (+/+) mice were implanted chronically for sleep, body temperature (Tb), and locomotor activity (LMA) recordings. Sleep-wake states were recorded during a 24-hour baseline session followed by 8 hours of sleep deprivation. Recovery recordings were done during the 16 hours following sleep deprivation. Total amount of wake, slow-wave sleep, and rapid eye movement sleep were calculated and compared between genotypes. The electroencephalographic spectral analysis was performed by fast Fourier transform analysis. Telemetry recordings of Tb and LMA were carried out continuously during 4 days under baseline conditions. N/A. FAAH (-/-) mice and their heterozygote (+/-) and control (+/+) littermates were used. Sleep deprivation. FAAH (-/-) mice possess higher values of slow-wave sleep and more intense episodes of slow-wave sleep than do control littermates under baseline conditions that are not related to differences in Tb and LMA. A rebound of slow-wave sleep and rapid eye movement sleep as well an increase in the levels of slow-wave activity were observed after sleep deprivation in all genotypes. These findings support the role of fatty acid amides as possible modulators of sleep and indicate that the homeostatic mechanisms of sleep in FAAH (-/-) mice are not disrupted.

  11. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    PubMed

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Pd-Catalyzed Cross-Coupling Reactions of Amides and Aryl Mesylates

    PubMed Central

    Dooleweerdt, Karin; Fors, Brett P.; Buchwald, Stephen L.

    2010-01-01

    A catalyst, based on a biarylphosphine ligand, for the Pd-catalyzed cross-coupling reactions of amides and aryl mesylates is described. This system allows an array of aryl and heteroaryl mesylates to be transformed into the corresponding N-arylamides in moderate to excellent yields. PMID:20420379

  13. Natural polypeptide scaffolds: beta-sheets, beta-turns, and beta-hairpins.

    PubMed

    Rotondi, Kenneth S; Gierasch, Lila M

    2006-01-01

    This paper provides an introduction to fundamental conformational states of polypeptides in the beta-region of phi,psi space, in which the backbone is extended near to its maximal length, and to more complex architectures in which extended segments are linked by turns and loops. There are several variants on these conformations, and they comprise versatile scaffolds for presentation of side chains and backbone amides for molecular recognition and designed catalysts. In addition, the geometry of these fundamental folds can be readily mimicked in peptidomimetics. Copyright 2005 Wiley Periodicals, Inc.

  14. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-01

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of Cα atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  15. Phosphorylation effects on cis/trans isomerization and the backbone conformation of serine-proline motifs: accelerated molecular dynamics analysis.

    PubMed

    Hamelberg, Donald; Shen, Tongye; McCammon, J Andrew

    2005-02-16

    The presence of serine/threonine-proline motifs in proteins provides a conformational switching mechanism of the backbone through the cis/trans isomerization of the peptidyl-prolyl (omega) bond. The reversible phosphorylation of the serine/threonine modulates this switching in regulatory proteins to alter signaling and transcription. However, the mechanism is not well understood. This is partly because cis/trans isomerization is a very slow process and, hence, difficult to study. We have used our accelerated molecular dynamics method to study the cis/trans proline isomerization, preferred backbone conformation of a serine-proline motif, and the effects of phosphorylation of the serine residue. We demonstrate that, unlike normal molecular dynamics, the accelerated molecular dynamics allows for the system to escape very easily from the trans isomer to cis isomer, and vice versa. Moreover, for both the unphosphorylated and phosphorylated peptides, the statistical thermodynamic properties are recaptured, and the results are consistent with experimental values. Isomerization of the proline omega bond is shown to be asymmetric and strongly dependent on the psi backbone angle before and after phosphorylation. The rates of escape decrease after phosphorylation. Also, the alpha-helical backbone conformation is more favored after phosphorylation. This accelerated molecular dynamics approach provides a general approach for enhancing the conformational transitions of molecular systems without having prior knowledge of the location of the minima and barriers on the potential-energy landscape.

  16. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  17. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    PubMed

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  18. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics.

    PubMed

    Krokhotin, Andrey; Niemi, Antti J; Peng, Xubiao

    2013-05-07

    We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.

  19. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics

    NASA Astrophysics Data System (ADS)

    Krokhotin, Andrey; Niemi, Antti J.; Peng, Xubiao

    2013-05-01

    We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.

  20. First-principles study of the effect of functional groups on polyaniline backbone

    PubMed Central

    Chen, X. P.; Jiang, J. K.; Liang, Q. H.; Yang, N.; Ye, H. Y.; Cai, M.; Shen, L.; Yang, D. G.; Ren, T. L.

    2015-01-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity. PMID:26584671

  1. Decomposition of poly(amide-imide) film enameled on solid copper wire using atmospheric pressure non-equilibrium plasma.

    PubMed

    Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko

    2009-01-01

    The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.

  2. Precision synthesis of colloidal inorganic nanocrystals using metal and metalloid amides

    NASA Astrophysics Data System (ADS)

    Yarema, Maksym; Caputo, Riccarda; Kovalenko, Maksym V.

    2013-08-01

    Rational selection of molecular precursors is the key consideration in the synthesis of inorganic nanocrystals and nanoparticles. This review highlights the state-of-the-art and future potential of metal amides as precursors in the solution-phase synthesis of monodisperse colloidal nanocrystals of metals and metal alloys, as well as metal oxides and chalcogenides. We exclusively focus on homoleptic metal and metalloid alkylamides M(NR2)n and silylamides M[N(SiMe3)2]n as predominant choice of element-nitrogen bonded precursors, which are often advantageous to commonly used metal-oxygen and metal-carbon bonded counterparts. In particular, these amides are highly reactive in oxidation, reduction and metathesis reactions; they are oxygen-free, easy-to-make and/or commercially available. A comprehensive literature review is complemented by our theoretical studies on the thermal stability of metal silylamides using molecular dynamics simulations.

  3. Fluorine walk: The impact of fluorine in quinolone amides on their activity against African sleeping sickness.

    PubMed

    Berninger, Michael; Erk, Christine; Fuß, Antje; Skaf, Joseph; Al-Momani, Ehab; Israel, Ina; Raschig, Martina; Güntzel, Paul; Samnick, Samuel; Holzgrabe, Ulrike

    2018-05-25

    Human African Trypanosomiasis, also known as African sleeping sickness, is caused by the parasitic protozoa of the genus Trypanosoma. If there is no pharmacological intervention, the parasites can cross the blood-brain barrier (BBB), inevitably leading to death of the patients. Previous investigation identified the quinolone amide GHQ168 as a promising lead compound having a nanomolar activity against T. b. brucei. Here, the role of a fluorine substitution at different positions was investigated in regard to toxicity, pharmacokinetics, and antitrypanosomal activity. This 'fluorine walk' led to new compounds with improved metabolic stability and consistent activity against T. b. brucei. The ability of the new quinolone amides to cross the BBB was confirmed using an 18 F-labelled quinolone amide derivative by means of ex vivo autoradiography of a murine brain. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Secondary benzylation with benzyl alcohols catalyzed by a high-valent heterobimetallic Ir-Sn complex.

    PubMed

    Podder, Susmita; Choudhury, Joyanta; Roy, Sujit

    2007-04-13

    A highly efficient secondary benzylation procedure has been demonstrated using a high-valent heterobimetallic complex [Ir2(COD)2(SnCl3)2(Cl)2(mu-Cl)2] 1 as the catalyst in 1,2-dichloroethane to afford the corresponding benzylated products in moderate to excellent yields. The reaction was performed not only with carbon nucleophiles (arenes and heteroarenes) but also with oxygen (alcohol), nitrogen (amide and sulfonamide), and sulfur (thiol) nucleophiles. Mechanistic investigation showed the intermediacy of the ether in this reaction. An electrophilic mechanism is proposed from Hammett correlation.

  5. Direct Synthesis of Medium-Bridged Twisted Amides via a Transannular Cyclization Strategy

    PubMed Central

    Szostak, Michal; Aubé, Jeffrey

    2009-01-01

    The sequential RCM to construct a challenging medium-sized ring followed by a transannular cyclization across a medium-sized ring delivers previously unattainable twisted amides from simple acyclic precursors. PMID:19708701

  6. Life estimation and analysis of dielectric strength, hydrocarbon backbone and oxidation of high voltage multi stressed EPDM composites

    NASA Astrophysics Data System (ADS)

    Khattak, Abraiz; Amin, Muhammad; Iqbal, Muhammad; Abbas, Naveed

    2018-02-01

    Micro and nanocomposites of ethylene propylene diene monomer (EPDM) are recently studied for different characteristics. Study on life estimation and effects of multiple stresses on its dielectric strength and backbone scission and oxidation is also vital for endorsement of these composites for high voltage insulation and other outdoor applications. In order to achieve these goals, unfilled EPDM and its micro and nanocomposites are prepared at 23 phr micro silica and 6 phr nanosilica loadings respectively. Prepared samples are energized at 2.5 kV AC voltage and subjected for a long time to heat, ultraviolet radiation, acid rain, humidity and salt fog in accelerated manner in laboratory. Dielectric strength, leakage current and intensity of saturated backbone and carbonyl group are periodically measured. Loss in dielectric strength, increase in leakage current and backbone degradation and oxidation were observed in all samples. These effects were least in the case of EPDM nanocomposite. The nanocomposite sample also demonstrated longest shelf life.

  7. First LC/MS determination of cyanazine amide, cyanazine acid, and cyanazine in groundwater samples

    USGS Publications Warehouse

    Ferrer, Imma; Thurman, E.M.; Barceló, Damià

    2000-01-01

    Cyanazine and two of its major metabolites, cyanazine amide and cyanazine acid, were measured at trace levels in groundwater using liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry (LC/APCI/MS). Solid-phase extraction was carried out by passing 20 mL of groundwater sample through a cartridge containing a polymeric phase (PLRP-s), with recoveries ranging from 99 to 108% (n = 5). Using LC/MS detection in positive ion mode, useful structural information was obtained by increasing the fragmentor voltage, thus permitting the unequivocal identification of these compounds in groundwater samples with low sample volumes. The fragmentation of the amide, carboxylic acid, and cyano group was observed for both metabolites and cyanazine, respectively, leading to a diagnostic ion at m/z 214. Method detection limits were in the range of 0.002−0.005 μg/L for the three compounds. Finally, the newly developed method was evaluated for the analysis of groundwater samples from New York containing the compounds under study and presents evidence that the metabolites, cyanazine acid, and cyanazine amide may leach to groundwater and serve as sources for deisopropylatrazine. The combination of on-line SPE and LC/APCI/MS represents an important advance in environmental analysis of herbicide metabolites in groundwater since it demonstrates that trace amounts of polar metabolites may be determined rapidly. Furthermore, the presence of both cyanazine amide and cyanazine acid indicate that another degradation product, deisopropylatrazine, may be occurring at depth because of the subsequent degradation of cyanazine.

  8. Pyridyl-Amides as a Multimode Self-Assembly Driver for the Design of a Stimuli-Responsive π-Gelator.

    PubMed

    Kartha, Kalathil K; Praveen, Vakayil K; Babu, Sukumaran Santhosh; Cherumukkil, Sandeep; Ajayaghosh, Ayyappanpillai

    2015-10-01

    An oligo(p-phenylenevinylene) (OPV) derivative connected to pyridyl end groups through an amide linkage (OPV-Py) resulted in a multistimuli-responsive π-gelator. When compared to the corresponding OPV π-gelator terminated by a phenyl-amide (OPV-Ph), the aggregation properties of OPV-Py were found to be significantly different, leading to multistimuli gelation and other morphological properties. The pyridyl moiety in OPV-Py initially interferes with the amide H-bonded assembly and gelation, however, protonation of the pyridyl moiety with trifluoroacetic acid (TFA) facilitated the formation of amide H-bonded assembly leading to gelation, which is reversible by the addition of N,N-diisopropyethylamine (DiPEA). Interestingly, addition of Ag(+) ions to a solution of OPV-Py facilitated the formation of a metallo-supramolecular assembly leading to gelation. Surprisingly, ultrasound-induced gelation was observed when OPV-Py was mixed with a dicarboxylic acid (A1). A detailed study using different spectroscopic and microscopic experimental techniques revealed the difference in the mode of assembly in the two molecules and the multistimuli-responsive nature of the OPV-Py gelation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High-cost, high-capacity backbone for global brain communication.

    PubMed

    van den Heuvel, Martijn P; Kahn, René S; Goñi, Joaquín; Sporns, Olaf

    2012-07-10

    Network studies of human brain structural connectivity have identified a specific set of brain regions that are both highly connected and highly central. Recent analyses have shown that these putative hub regions are mutually and densely interconnected, forming a "rich club" within the human brain. Here we show that the set of pathways linking rich club regions forms a central high-cost, high-capacity backbone for global brain communication. Diffusion tensor imaging (DTI) data of two sets of 40 healthy subjects were used to map structural brain networks. The contributions to network cost and communication capacity of global cortico-cortical connections were assessed through measures of their topology and spatial embedding. Rich club connections were found to be more costly than predicted by their density alone and accounted for 40% of the total communication cost. Furthermore, 69% of all minimally short paths between node pairs were found to travel through the rich club and a large proportion of these communication paths consisted of ordered sequences of edges ("path motifs") that first fed into, then traversed, and finally exited the rich club, while passing through nodes of increasing and then decreasing degree. The prevalence of short paths that follow such ordered degree sequences suggests that neural communication might take advantage of strategies for dynamic routing of information between brain regions, with an important role for a highly central rich club. Taken together, our results show that rich club connections make an important contribution to interregional signal traffic, forming a central high-cost, high-capacity backbone for global brain communication.

  10. Two-dimensional sup 1 H nuclear magnetic resonance study of AaH IT, an anti-insect toxin from the scorpion Androctonus australis Hector. Sequential resonance assignments and folding of the polypeptide chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darbon, H.; Weber, C.; Braun, W.

    1991-02-19

    Sequence-specific nuclear magnetic resonance assignments for the polypeptide backbone and for most of the amino acid side-chain protons, as well as the general folding of AaH IT, are described. AaH IT is a neurotoxin purified from the venom of the scorpion Androctonus australis Hector and is specifically active on the insect nervous system. The secondary structure and the hydrogen-bonding patterns in the regular secondary structure elements are deduced from nuclear Overhauser effects and the sequence locations of the slowly exchanging amide protons. The backbone folding is determined by distance geometry calculations with the DISMAN program. The regular secondary structure includesmore » two and a half turns of {alpha}-helix running from residues 21 to 30 and a three-stranded antiparallel {beta}-sheet including peptides 3-5, 34-38, and 41-46. Two tight turns are present, one connecting the end of the {alpha}-helix to an external strand of the {beta}-sheet, i.e., turn 31-34, and another connecting this same strand to the central one, i.e., turn 38-41. The differences in the specificity of these related proteins, which are able to discriminate between mammalian and insect voltage-dependent sodium channels of excitable tissues, are most probably brought about by the position of the C-terminal peptide with regard to a hydrophobic surface common to all scorpion toxins examined thus far. Thus, the interaction of a given scorpion toxin with its receptor might well be governed by the presence of this solvent-exposed hydrophobic surface, whereas adjacent areas modulate the specificity of the interaction.« less

  11. An ``Alternating-Curvature'' Model for the Nanometer-scale Structure of the Nafion Ionomer, Based on Backbone Properties Detected by NMR

    NASA Astrophysics Data System (ADS)

    Schmidt-Rohr, Klaus; Chen, Q.

    2006-03-01

    The perfluorinated ionomer, Nafion, which consists of a (-CF2-)n backbone and charged side branches, is useful as a proton exchange membrane in H2/O2 fuel cells. A modified model of the nanometer-scale structure of hydrated Nafion will be presented. It features hydrated ionic clusters familiar from some previous models, but is based most prominently on pronounced backbone rigidity between branch points and limited orientational correlation of local chain axes. These features have been revealed by solid-state NMR measurements, which take advantage of fast rotations of the backbones around their local axes. The resulting alternating curvature of the backbones towards the hydrated clusters also better satisfies the requirement of dense space filling in solids. Simulations based on this ``alternating curvature'' model reproduce orientational correlation data from NMR, as well as scattering features such as the ionomer peak and the I(q) ˜ 1/q power law at small q values, which can be attributed to modulated cylinders resulting from the chain stiffness. The shortcomings of previous models, including Gierke's cluster model and more recent lamellar or bundle models, in matching all requirements imposed by the experimental data will be discussed.

  12. Backbone resonance assignments of the PRYSPRY domain of TRIM25.

    PubMed

    Kong, Chen; Penumutchu, Srinivasa R; Hung, Kuo-Wei; Huang, Huiying; Lin, Tianwei; Yu, Chin

    2015-10-01

    TRIM25 is a member of the tripartite motif (TRIM) family and has been implicated in the regulation of innate immune signaling via the RIG-I (retinoic acid-inducible gene-I) pathway for antiviral defense. As the essential first step towards the structural and functional characterization of the TRIM25/RIG-I interaction, the backbone resonance of the PRYSPRY domain of TRIM25 is assigned here based on triple-resonance experiments using uniformly [(2)H, (13)C, (15)N]-labeled protein.

  13. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

    PubMed

    Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

  14. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins.

    PubMed

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-05

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm(-1) and 1545 cm(-1), respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs.

    PubMed

    Mutisya, Daniel; Hardcastle, Travis; Cheruiyot, Samwel K; Pallan, Pradeep S; Kennedy, Scott D; Egli, Martin; Kelley, Melissa L; Smith, Anja van Brabant; Rozners, Eriks

    2017-08-21

    While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 and 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA-DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Amide linkages mimic phosphates in RNA interactions with proteins and are well tolerated in the guide strand of short interfering RNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutisya, Daniel; Hardcastle, Travis; Cheruiyot, Samwel K.

    While the use of RNA interference (RNAi) in molecular biology and functional genomics is a well-established technology, in vivo applications of synthetic short interfering RNAs (siRNAs) require chemical modifications. We recently found that amides as non-ionic replacements for phosphodiesters may be useful modifications for optimization of siRNAs. Herein, we report a comprehensive study of systematic replacement of a single phosphate with an amide linkage throughout the guide strand of siRNAs. The results show that amides are surprisingly well tolerated in the seed and central regions of the guide strand and increase the silencing activity when placed between nucleosides 10 andmore » 12, at the catalytic site of Argonaute. A potential explanation is provided by the first crystal structure of an amide-modified RNA–DNA with Bacillus halodurans RNase H1. The structure reveals how small changes in both RNA and protein conformation allow the amide to establish hydrogen bonding interactions with the protein. Molecular dynamics simulations suggest that these alternative binding modes may compensate for interactions lost due to the absence of a phosphodiester moiety. Our results suggest that an amide can mimic important hydrogen bonding interactions with proteins required for RNAi activity and may be a promising modification for optimization of biological properties of siRNAs.« less

  17. Pestalotiopamide E, a new amide from the endophytic fungus Pestalotiopsis sp.

    PubMed

    Xu, Jing; Lin, Qiang; Wang, Bin; Wray, Victor; Lin, Wen-Han; Proksch, Peter

    2011-04-01

    Chemical examination of the endophytic fungus Pestalotiopsis sp., isolated from the leaves of the Chinese mangrove Rhizophora mucronata, yielded a new amide called pestalotiopamide E (1). The structure of the new compound was unambiguously elucidated on the basis of extensive spectroscopic data analysis.

  18. Combination of Peptide YY3–36 with GLP-17–36 amide Causes an Increase in First-Phase Insulin Secretion after IV Glucose

    PubMed Central

    Tan, Tricia M.; Salem, Victoria; Troke, Rachel C.; Alsafi, Ali; Field, Benjamin C. T.; De Silva, Akila; Misra, Shivani; Baynes, Kevin C. R.; Donaldson, Mandy; Minnion, James; Ghatei, Mohammad A.; Godsland, Ian F.

    2014-01-01

    Context: The combination of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) has been proposed as a potential treatment for diabetes and obesity. However, the combined effects of these hormones, PYY3–36 and GLP-17–36 amide, on glucose homeostasis are unknown. Objective: This study sought to investigate the acute effects of PYY3–36 and GLP-17–36 amide, individually and in combination, on insulin secretion and sensitivity. Setting and Design: Using a frequently sampled iv glucose tolerance test (FSIVGTT) and minimal modeling, this study measured the effects of PYY3–36 alone, GLP-17–36 amide alone, and a combination of PYY3–36 and GLP-17–36 amide on acute insulin response to glucose (AIRg) and insulin sensitivity index (SI) in 14 overweight human volunteers, studied in a clinical research facility. Results: PYY3–36 alone caused a small but nonsignificant increase in AIRg. GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide did increase AIRg significantly. No significant differences in SI were observed with any intervention. Conclusions: PYY3–36 lacks any significant acute effects on first-phase insulin secretion or SI when tested using an FSIVGTT. Both GLP-17–36 amide alone and the combination of PYY3–36 and GLP-17–36 amide increase first-phase insulin secretion. There does not seem to be any additive or synergistic effect between PYY3–36 and GLP-17–36 amide on first-phase insulin secretion. Neither hormone alone nor the combination had any significant effects on SI. PMID:25144632

  19. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases

    PubMed Central

    Haupt, V. Joachim; Schroeder, Michael; Labudde, Dirk

    2018-01-01

    The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes. PMID:29659563

  20. Characterization of a backbone cleavage product of BMS-196854 (Oncostatin M), a recombinant anti-inflammatory cytokine.

    PubMed

    Zhao, F; Stein, D J; Paborji, M; Cash, P W; Root, B J; Wei, Z; Knupp, C J

    2001-01-01

    BMS-196843 (Oncostatin M) is a therapeutic recombinant protein in development. Scale-up process changes led to unexpected instability of the bulk drug substance solution during storage. A product with an apparent higher MW than the parent protein was observed by the size-exclusion chromatography (SEC). This study was aimed to fully characterize the product and to identify a solution to stabilize the protein. SEC, SDS-PAGE, tryptic mapping, and N-terminal sequencing were performed to characterize the unknown product. The effect of pH, temperature, bulk concentration, and immobilized trypsin inhibitor on the degradation rate was studied to elucidate the mechanism and to identify stabilization strategies. Despite the apparent high MW indicated initially by SEC, the unknown was characterized to be a degradation product resulted from a backbone cleavage between residues Arg145-Gly146. The resulting fragments from the backbone cleavage were, however, still linked through an intramolecular disulfide bond. Thus, the final product had a more open structure with an increased hydrodynamic radius compared to the parent protein, which explains the initial SEC results. The site-specific backbone cleavage was suspected to be catalyzed by trypsin-like protease impurities in the bulk solution. The bulk drug substance solution was subsequently treated with immobilized soybean trypsin inhibitor, and the degradation rate was significantly reduced. Furthermore, increasing the solution pH from 5 to 8 led to an increase in the degradation rate, which was consistent with the expected pH dependency of trypsin activity. In addition, the effect of bulk concentration also supported the involvement of protease impurities rather than a spontaneous peptide bond hydrolysis reaction. Trace trypsin-like protease impurities led to an unusual site-specific backbone cleavage of BMS-196854. The proteolytic degradation can be minimized by treating the bulk solution with immobilized soybean trypsin