Sample records for backbone string neighbors

  1. String mediated phase transitions

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Haws, D.; Rivers, R.; Holbraad, S.

    1988-01-01

    It is demonstrated from first principles how the existence of string-like structures can cause a system to undergo a phase transition. In particular, the role of topologically stable cosmic string in the restoration of spontaneously broken symmetries is emphasized. How the thermodynamic properties of strings alter when stiffness and nearest neighbor string-string interactions are included is discussed.

  2. The role of orthography in the semantic activation of neighbors.

    PubMed

    Hino, Yasushi; Lupker, Stephen J; Taylor, Tamsen E

    2012-09-01

    There is now considerable evidence that a letter string can activate semantic information appropriate to its orthographic neighbors (e.g., Forster & Hector's, 2002, TURPLE effect). This phenomenon is the focus of the present research. Using Japanese words, we examined whether semantic activation of neighbors is driven directly by orthographic similarity alone or whether there is also a role for phonological similarity. In Experiment 1, using a relatedness judgment task in which a Kanji word-Katakana word pair was presented on each trial, an inhibitory effect was observed when the initial Kanji word was related to an orthographic and phonological neighbor of the Katakana word target but not when the initial Kanji word was related to a phonological but not orthographic neighbor of the Katakana word target. This result suggests that phonology plays little, if any, role in the activation of neighbors' semantics when reading familiar words. In Experiment 2, the targets were transcribed into Hiragana, a script they are typically not written in, requiring readers to engage in phonological coding. In that experiment, inhibitory effects were observed in both conditions. This result indicates that phonologically mediated semantic activation of neighbors will emerge when phonological processing is necessary in order to understand a written word (e.g., when that word is transcribed into an unfamiliar script). PsycINFO Database Record (c) 2012 APA, all rights reserved.

  3. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  4. Text String Detection from Natural Scenes by Structure-based Partition and Grouping

    PubMed Central

    Yi, Chucai; Tian, YingLi

    2012-01-01

    Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) Image partition to find text character candidates based on local gradient features and color uniformity of character components. 2) Character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method, and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in non

  5. Text string detection from natural scenes by structure-based partition and grouping.

    PubMed

    Yi, Chucai; Tian, YingLi

    2011-09-01

    Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from a complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) image partition to find text character candidates based on local gradient features and color uniformity of character components and 2) character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset, which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in nonhorizontal

  6. Metal-metal interactions in linear tri-, penta-, hepta-, and nona-nuclear ruthenium string complexes.

    PubMed

    Niskanen, Mika; Hirva, Pipsa; Haukka, Matti

    2012-05-01

    Density functional theory (DFT) methodology was used to examine the structural properties of linear metal string complexes: [Ru(3)(dpa)(4)X(2)] (X = Cl(-), CN(-), NCS(-), dpa = dipyridylamine(-)), [Ru(5)(tpda)(4)Cl(2)], and hypothetical, not yet synthesized complexes [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] (tpda = tri-α-pyridyldiamine(2-), tpta = tetra-α-pyridyltriamine(3-), ppta = penta-α-pyridyltetraamine(4-)). Our specific focus was on the two longest structures and on comparison of the string complexes and unsupported ruthenium backboned chain complexes, which have weaker ruthenium-ruthenium interactions. The electronic structures were studied with the aid of visualized frontier molecular orbitals, and Bader's quantum theory of atoms in molecules (QTAIM) was used to study the interactions between ruthenium atoms. The electron density was found to be highest and distributed most evenly between the ruthenium atoms in the hypothetical [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] string complexes.

  7. String scattering amplitudes and deformed cubic string field theory

    NASA Astrophysics Data System (ADS)

    Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi

    2018-01-01

    We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.

  8. Phase transition and monopole densities in a nearest neighbor two-dimensional spin ice model

    NASA Astrophysics Data System (ADS)

    Morais, C. W.; de Freitas, D. N.; Mota, A. L.; Bastone, E. C.

    2017-12-01

    In this work, we show that, due to the alternating orientation of the spins in the ground state of the artificial square spin ice, the influence of a set of spins at a certain distance of a reference spin decreases faster than the expected result for the long range dipolar interaction, justifying the use of the nearest neighbor two-dimensional square spin ice model as an effective model. Using an extension of the model presented in Y. L. Xie et al., Sci. Rep. 5, 15875 (2015), considering the influence of the eight nearest neighbors of each spin on the lattice, we analyze the thermodynamics of the model and study the dependence of monopoles and string densities as a function of the temperature.

  9. Bifurcation analysis and phase diagram of a spin-string model with buckled states.

    PubMed

    Ruiz-Garcia, M; Bonilla, L L; Prados, A

    2017-12-01

    We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.

  10. Bifurcation analysis and phase diagram of a spin-string model with buckled states

    NASA Astrophysics Data System (ADS)

    Ruiz-Garcia, M.; Bonilla, L. L.; Prados, A.

    2017-12-01

    We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.

  11. [ital N]-string vertices in string field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordes, J.; Abdurrahman, A.; Anton, F.

    1994-03-15

    We give the general form of the vertex corresponding to the interaction of an arbitrary number of strings. The technique employed relies on the comma'' representation of string field theory where string fields and interactions are represented as matrices and operations between them such as multiplication and trace. The general formulation presented here shows that the interaction vertex of [ital N] strings, for any arbitrary [ital N], is given as a function of particular combinations of matrices corresponding to the change of representation between the full string and the half string degrees of freedom.

  12. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    PubMed

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hot string soup: Thermodynamics of strings near the Hagedorn transition

    NASA Astrophysics Data System (ADS)

    Lowe, David A.; Thorlacius, Lárus

    1995-01-01

    Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The averge total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the theory contains open strings the long string phase is suppressed.

  14. String resistance detector

    NASA Technical Reports Server (NTRS)

    Hall, A. Daniel (Inventor); Davies, Francis J. (Inventor)

    2007-01-01

    Method and system are disclosed for determining individual string resistance in a network of strings when the current through a parallel connected string is unknown and when the voltage across a series connected string is unknown. The method/system of the invention involves connecting one or more frequency-varying impedance components with known electrical characteristics to each string and applying a frequency-varying input signal to the network of strings. The frequency-varying impedance components may be one or more capacitors, inductors, or both, and are selected so that each string is uniquely identifiable in the output signal resulting from the frequency-varying input signal. Numerical methods, such as non-linear regression, may then be used to resolve the resistance associated with each string.

  15. The "Magic" String

    ERIC Educational Resources Information Center

    Hoover, Todd F.

    2010-01-01

    The "Magic" String is a discrepant event that includes a canister with what appears to be the end of two strings protruding from opposite sides of it. Due to the way the strings are attached inside the canister, it appears as if the strings can magically switch the way they are connected. When one string end is pulled, the observer's expectation…

  16. A string theory which isn't about strings

    NASA Astrophysics Data System (ADS)

    Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.

    2017-11-01

    Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.

  17. String-driven inflation

    NASA Technical Reports Server (NTRS)

    Turok, Neil

    1988-01-01

    It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation.

  18. String Things.

    ERIC Educational Resources Information Center

    Mesa Public Schools, AZ.

    Designed for music educators instructing grades 4 through 8 in string instruments, this Mesa (Arizona) public schools guide presents information on the string curriculum, orchestras, and practicing. The goals and objectives for string instruments delineate grade levels and how student skills will be verified. Following 17 curriculum goal tests,…

  19. Neighbor-Dependent Ramachandran Probability Distributions of Amino Acids Developed from a Hierarchical Dirichlet Process Model

    PubMed Central

    Mitra, Rajib; Jordan, Michael I.; Dunbrack, Roland L.

    2010-01-01

    Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor, etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp. PMID:20442867

  20. Simulation of Ames Backbone Network

    NASA Technical Reports Server (NTRS)

    Shahnasser, Hamid

    1998-01-01

    The networking demands of Ames Research Center are dramatically increasing. More and more workstations are requested to run video and audio applications on the network. These applications require a much greater bandwidth than data applications. The existing ARCLAN 2000 network bandwidth is insufficient, due to the use of FDDI as its backbone, for accommodating video applications. Operating at a maximum of 100 Mbps, FDDI can handle only a few workstations running multimedia applications. The ideal solution is to replace the current ARCLAN 2000 FDDI backbone with an ATM backbone. ATM has the capability to handle the increasing traffic loads on the ARCLAN 2000 that results from these new applications. As it can be seen from Figure 1, ARCLAN 2000 have a total of 32 routers (5 being core routers) each connected to the FDDI backbone via a 100 Mbps link. This network serves 34 different locations by using 34 hubs that are connected to secondary routers. End users are connected to the secondary routers with 10 Mbps links.

  1. Pointless strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Periwal, V.

    1988-01-01

    The author proves that bosonic string perturbation theory diverges and is not Borel summable. This is an indication of a non-perturbative instability of the bosonic string vacuum. He formulates two-dimensional sigma models in terms of algebras of functions. He extends this formulation to general C* algebras. He illustrates the utility of these algebraic notions by calculating some determinants of interest in the study of string propagation in orbifold backgrounds. He studies the geometry of spaces of field theories and show that the vanishing of the curvature of the natural Gel'fand-Naimark-Segal metric on such spaces is exactly the strong associativity conditionmore » of the operator product expansion.He shows that string scattering amplitudes arise as invariants of renormalization, when he formulates renormalization in terms of rescalings of the metric on the string world-sheet.« less

  2. Hammered Strings

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.

    In the next three chapters we consider the science of hammered string instruments. In this chapter, we present a brief discussion of vibrating strings excited by a hard or soft hammer. Chapter 20 discusses the most important hammered string instrument, the piano - probably the most versatile and popular of all musical instruments. Chapter 21 discusses hammered dulcimers, especially the American folk dulcimer.

  3. How to simulate global cosmic strings with large string tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaer, Vincent B.; Moore, Guy D., E-mail: vklaer@theorie.ikp.physik.tu-darmstadt.de, E-mail: guy.moore@physik.tu-darmstadt.de

    Global string networks may be relevant in axion production in the early Universe, as well as other cosmological scenarios. Such networks contain a large hierarchy of scales between the string core scale and the Hubble scale, ln( f {sub a} / H ) ∼ 70, which influences the network dynamics by giving the strings large tensions T ≅ π f {sub a} {sup 2} ln( f {sub a} / H ). We present a new numerical approach to simulate such global string networks, capturing the tension without an exponentially large lattice.

  4. Coulomb string tension, asymptotic string tension, and the gluon chain

    DOE PAGES

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  5. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    NASA Astrophysics Data System (ADS)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  6. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  7. Cosmic strings and the microwave sky. I - Anisotropy from moving strings

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A method is developed for calculating the component of the microwave anisotropy around cosmic string loops due to their rapidly changing gravitational fields. The method is only valid for impact parameters from the string much smaller than the horizon size at the time the photon passes the string. The method makes it possible to calculate the temperature pattern around arbitrary string configurations numerically in terms of one-dimensional integrals. This method is applied to temperature jump across a string, confirming and extending previous work. It is also applied to cusps and kinks on strings, and to determining the temperature pattern far from a strong loop. The temperature pattern around a few loop configurations is explicitly calculated. Comparisons with the work of Brandenberger et al. (1986) indicates that they have overestimated the MBR anisotropy from gravitational radiation emitted from loops.

  8. Constraint Reasoning Over Strings

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Golden, Keith; Pang, Wanlin

    2003-01-01

    This paper discusses an approach to representing and reasoning about constraints over strings. We discuss how many string domains can often be concisely represented using regular languages, and how constraints over strings, and domain operations on sets of strings, can be carried out using this representation.

  9. Cost-effectiveness analysis of dolutegravir plus backbone compared with raltegravir plus backbone, darunavir+ritonavir plus backbone and efavirenz/tenofovir/emtricitabine in treatment naïve and experienced HIV-positive patients.

    PubMed

    Restelli, Umberto; Rizzardini, Giuliano; Antinori, Andrea; Lazzarin, Adriano; Bonfanti, Marzia; Bonfanti, Paolo; Croce, Davide

    2017-01-01

    In January 2014, the European Medicines Agency issued a marketing authorization for dolutegravir (DTG), a second-generation integrase strand transfer inhibitor for HIV treatment. The study aimed at determining the incremental cost-effectiveness ratio (ICER) of the use of DTG+backbone compared with raltegravir (RAL)+backbone, darunavir (DRV)+ritonavir(r)+backbone and efavirenz/tenofovir/emtricitabine (EFV/TDF/FTC) in HIV-positive treatment-naïve patients and compared with RAL+backbone in treatment-experienced patients, from the Italian National Health Service's point of view. A published Monte Carlo Individual Simulation Model (ARAMIS-DTG model) was used to perform the analysis. Patients pass through mutually exclusive health states (defined in terms of diagnosis of HIV with or without opportunistic infections [OIs] and cardiovascular disease [CVD]) and successive lines of therapy. The model considers costs (2014) and quality of life per monthly cycle in a lifetime horizon. Costs and quality-adjusted life years (QALYs) are dependent on OI, CVD, AIDS events, adverse events and antiretroviral therapies. In treatment-naïve patients, DTG dominates RAL; compared with DRV/r, the ICER obtained is of 38,586 €/QALY (6,170 €/QALY in patients with high viral load) and over EFV/TDF/FTC, DTG generates an ICER of 33,664 €/QALY. In treatment-experienced patients, DTG compared to RAL leads to an ICER of 12,074 €/QALY. The use of DTG+backbone may be cost effective in treatment-naïve and treatment-experienced patients compared with RAL+backbone and in treatment-naïve patients compared with DRV/r+backbone and EFV/TDF/FTC considering a threshold of 40,000 €/QALY.

  10. Multiflavor string-net models

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Hung

    2017-05-01

    We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.

  11. Tilted string cosmologies

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-04-01

    Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.

  12. p-adic string theories provide lattice Discretization to the ordinary string worldsheet.

    PubMed

    Ghoshal, Debashis

    2006-10-13

    A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p-->1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.

  13. p-adic String Theories Provide Lattice Discretization to the Ordinary String Worldsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghoshal, Debashis

    2006-10-13

    A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p{yields}1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.

  14. Cost-effectiveness analysis of dolutegravir plus backbone compared with raltegravir plus backbone, darunavir+ritonavir plus backbone and efavirenz/tenofovir/emtricitabine in treatment naïve and experienced HIV-positive patients

    PubMed Central

    Restelli, Umberto; Rizzardini, Giuliano; Antinori, Andrea; Lazzarin, Adriano; Bonfanti, Marzia; Bonfanti, Paolo; Croce, Davide

    2017-01-01

    Background In January 2014, the European Medicines Agency issued a marketing authorization for dolutegravir (DTG), a second-generation integrase strand transfer inhibitor for HIV treatment. The study aimed at determining the incremental cost-effectiveness ratio (ICER) of the use of DTG+backbone compared with raltegravir (RAL)+backbone, darunavir (DRV)+ritonavir(r)+backbone and efavirenz/tenofovir/emtricitabine (EFV/TDF/FTC) in HIV-positive treatment-naïve patients and compared with RAL+backbone in treatment-experienced patients, from the Italian National Health Service’s point of view. Materials and methods A published Monte Carlo Individual Simulation Model (ARAMIS-DTG model) was used to perform the analysis. Patients pass through mutually exclusive health states (defined in terms of diagnosis of HIV with or without opportunistic infections [OIs] and cardiovascular disease [CVD]) and successive lines of therapy. The model considers costs (2014) and quality of life per monthly cycle in a lifetime horizon. Costs and quality-adjusted life years (QALYs) are dependent on OI, CVD, AIDS events, adverse events and antiretroviral therapies. Results In treatment-naïve patients, DTG dominates RAL; compared with DRV/r, the ICER obtained is of 38,586 €/QALY (6,170 €/QALY in patients with high viral load) and over EFV/TDF/FTC, DTG generates an ICER of 33,664 €/QALY. In treatment-experienced patients, DTG compared to RAL leads to an ICER of 12,074 €/QALY. Conclusion The use of DTG+backbone may be cost effective in treatment-naïve and treatment-experienced patients compared with RAL+backbone and in treatment-naïve patients compared with DRV/r+backbone and EFV/TDF/FTC considering a threshold of 40,000 €/QALY. PMID:28721059

  15. The Birth of String Theory

    NASA Astrophysics Data System (ADS)

    Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo

    2012-04-01

    Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in

  16. NMRDSP: an accurate prediction of protein shape strings from NMR chemical shifts and sequence data.

    PubMed

    Mao, Wusong; Cong, Peisheng; Wang, Zhiheng; Lu, Longjian; Zhu, Zhongliang; Li, Tonghua

    2013-01-01

    Shape string is structural sequence and is an extremely important structure representation of protein backbone conformations. Nuclear magnetic resonance chemical shifts give a strong correlation with the local protein structure, and are exploited to predict protein structures in conjunction with computational approaches. Here we demonstrate a novel approach, NMRDSP, which can accurately predict the protein shape string based on nuclear magnetic resonance chemical shifts and structural profiles obtained from sequence data. The NMRDSP uses six chemical shifts (HA, H, N, CA, CB and C) and eight elements of structure profiles as features, a non-redundant set (1,003 entries) as the training set, and a conditional random field as a classification algorithm. For an independent testing set (203 entries), we achieved an accuracy of 75.8% for S8 (the eight states accuracy) and 87.8% for S3 (the three states accuracy). This is higher than only using chemical shifts or sequence data, and confirms that the chemical shift and the structure profile are significant features for shape string prediction and their combination prominently improves the accuracy of the predictor. We have constructed the NMRDSP web server and believe it could be employed to provide a solid platform to predict other protein structures and functions. The NMRDSP web server is freely available at http://cal.tongji.edu.cn/NMRDSP/index.jsp.

  17. String theory--the physics of string-bending and other electric guitar techniques.

    PubMed

    Grimes, David Robert

    2014-01-01

    Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed.

  18. String Theory - The Physics of String-Bending and Other Electric Guitar Techniques

    PubMed Central

    Grimes, David Robert

    2014-01-01

    Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880

  19. High-resolution protein design with backbone freedom.

    PubMed

    Harbury, P B; Plecs, J J; Tidor, B; Alber, T; Kim, P S

    1998-11-20

    Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail.

  20. Optical burst switching based satellite backbone network

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Guo, Hongxiang; Wang, Cen; Wu, Jian

    2018-02-01

    We propose a novel time slot based optical burst switching (OBS) architecture for GEO/LEO based satellite backbone network. This architecture can provide high speed data transmission rate and high switching capacity . Furthermore, we design the control plane of this optical satellite backbone network. The software defined network (SDN) and network slice (NS) technologies are introduced. Under the properly designed control mechanism, this backbone network is flexible to support various services with diverse transmission requirements. Additionally, the LEO access and handoff management in this network is also discussed.

  1. Drill string enclosure

    DOEpatents

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  2. Drill string enclosure

    DOEpatents

    Jorgensen, Douglas K.; Kuhns, Douglass J.; Wiersholm, Otto; Miller, Timothy A.

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  3. Computational protein design with backbone plasticity

    PubMed Central

    MacDonald, James T.; Freemont, Paul S.

    2016-01-01

    The computational algorithms used in the design of artificial proteins have become increasingly sophisticated in recent years, producing a series of remarkable successes. The most dramatic of these is the de novo design of artificial enzymes. The majority of these designs have reused naturally occurring protein structures as ‘scaffolds’ onto which novel functionality can be grafted without having to redesign the backbone structure. The incorporation of backbone flexibility into protein design is a much more computationally challenging problem due to the greatly increased search space, but promises to remove the limitations of reusing natural protein scaffolds. In this review, we outline the principles of computational protein design methods and discuss recent efforts to consider backbone plasticity in the design process. PMID:27911735

  4. Subsurface drill string

    DOEpatents

    Casper, William L [Rigby, ID; Clark, Don T [Idaho Falls, ID; Grover, Blair K [Idaho Falls, ID; Mathewson, Rodney O [Idaho Falls, ID; Seymour, Craig A [Idaho Falls, ID

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  5. Live neighbor-joining.

    PubMed

    Telles, Guilherme P; Araújo, Graziela S; Walter, Maria E M T; Brigido, Marcelo M; Almeida, Nalvo F

    2018-05-16

    In phylogenetic reconstruction the result is a tree where all taxa are leaves and internal nodes are hypothetical ancestors. In a live phylogeny, both ancestral and living taxa may coexist, leading to a tree where internal nodes may be living taxa. The well-known Neighbor-Joining heuristic is largely used for phylogenetic reconstruction. We present Live Neighbor-Joining, a heuristic for building a live phylogeny. We have investigated Live Neighbor-Joining on datasets of viral genomes, a plausible scenario for its application, which allowed the construction of alternative hypothesis for the relationships among virus that embrace both ancestral and descending taxa. We also applied Live Neighbor-Joining on a set of bacterial genomes and to sets of images and texts. Non-biological data may be better explored visually when their relationship in terms of content similarity is represented by means of a phylogeny. Our experiments have shown interesting alternative phylogenetic hypothesis for RNA virus genomes, bacterial genomes and alternative relationships among images and texts, illustrating a wide range of scenarios where Live Neighbor-Joining may be used.

  6. Device for balancing parallel strings

    DOEpatents

    Mashikian, Matthew S.

    1985-01-01

    A battery plant is described which features magnetic circuit means in association with each of the battery strings in the battery plant for balancing the electrical current flow through the battery strings by equalizing the voltage across each of the battery strings. Each of the magnetic circuit means generally comprises means for sensing the electrical current flow through one of the battery strings, and a saturable reactor having a main winding connected electrically in series with the battery string, a bias winding connected to a source of alternating current and a control winding connected to a variable source of direct current controlled by the sensing means. Each of the battery strings is formed by a plurality of batteries connected electrically in series, and these battery strings are connected electrically in parallel across common bus conductors.

  7. Understanding traffic dynamics at a backbone POP

    NASA Astrophysics Data System (ADS)

    Taft, Nina; Bhattacharyya, Supratik; Jetcheva, Jorjeta; Diot, Christophe

    2001-07-01

    Spatial and temporal information about traffic dynamics is central to the design of effective traffic engineering practices for IP backbones. In this paper we study backbone traffic dynamics using data collected at a major POP on a tier-1 IP backbone. We develop a methodology that combines packet-level traces from access links in the POP and BGP routing information to build components of POP-to-POP traffic matrices. Our results show that there is wide disparity in the volume of traffic headed towards different egress POPs. At the same time, we find that current routing practices in the backbone tend to constrain traffic between ingress-egress POP pairs to a small number of paths. As a result, there is a wide variation in the utilization level of links in the backbone. Frequent capacity upgrades of the heavily used links are expensive; the need for such upgrades can be reduced by designing load balancing policies that will route more traffic over less utilized links. We identify traffic aggregates based on destination address prefixes and find that this set of criteria isolates a few aggregates that account for an overwhelmingly large portion of inter-POP traffic. We also demonstrate that these aggregates exhibit stability throughout the day on per-hour time scales, and thus they form a natural basis for splitting traffic over multiple paths in order to improve load balancing.

  8. Large-scale measurement and modeling of backbone Internet traffic

    NASA Astrophysics Data System (ADS)

    Roughan, Matthew; Gottlieb, Joel

    2002-07-01

    There is a brewing controversy in the traffic modeling community concerning how to model backbone traffic. The fundamental work on self-similarity in data traffic appears to be contradicted by recent findings that suggest that backbone traffic is smooth. The traffic analysis work to date has focused on high-quality but limited-scope packet trace measurements; this limits its applicability to high-speed backbone traffic. This paper uses more than one year's worth of SNMP traffic data covering an entire Tier 1 ISP backbone to address the question of how backbone network traffic should be modeled. Although the limitations of SNMP measurements do not permit us to comment on the fine timescale behavior of the traffic, careful analysis of the data suggests that irrespective of the variation at fine timescales, we can construct a simple traffic model that captures key features of the observed traffic. Furthermore, the model's parameters are measurable using existing network infrastructure, making this model practical in a present-day operational network. In addition to its practicality, the model verifies basic statistical multiplexing results, and thus sheds deep insight into how smooth backbone traffic really is.

  9. Hydroball string sensing system

    DOEpatents

    Hurwitz, Michael J.; Ekeroth, Douglas E.; Squarer, David

    1991-01-01

    A hydroball string sensing system for a nuclear reactor that includes stainless tubes positioned to guide hydroball strings into and out of the nuclear reactor core. A sensor such as an ultrasonic transducer transmitter and receiver is positioned outside of the nuclear reactor core and adjacent to the tube. The presence of an object such a bullet member positioned at an end a hydroball string, or any one of the hydroballs interrupts the transmission of ultrasound from the transmitter to the receiver. Alternatively, if the bullet member and hydroballs include a ferritic material, either a Hall effect sensor or other magnetic field sensors such as a magnetic field rate of change sensor can be used to detect the location and position of a hydroball string. Placing two sensors along the tube with a known distance between the sensors enables the velocity of a hydroball string to be determined. This determined velocity can be used to control the flow rate of a fluid within the tube so as to control the velocity of the hydroball string.

  10. Dualities in String Cosmology

    NASA Astrophysics Data System (ADS)

    Meissner, K. A.

    We describe in this chapter a set of duality symmetries present in the string-inspired theory of gravity coupled to the dilaton. These dualities are the cornerstones of String Cosmology, which provides alternatives to the usual inflation scenario. The crucial role of Prof. Gabriele Veneziano in the discovery and the development of string dualities is described and emphasized.

  11. Cosmological cosmic strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1988-01-01

    The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.

  12. Current balancing for battery strings

    DOEpatents

    Galloway, James H.

    1985-01-01

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  13. NanoStringNormCNV: pre-processing of NanoString CNV data.

    PubMed

    Sendorek, Dorota H; Lalonde, Emilie; Yao, Cindy Q; Sabelnykova, Veronica Y; Bristow, Robert G; Boutros, Paul C

    2018-03-15

    The NanoString System is a well-established technology for measuring RNA and DNA abundance. Although it can estimate copy number variation, relatively few tools support analysis of these data. To address this gap, we created NanoStringNormCNV, an R package for pre-processing and copy number variant calling from NanoString data. This package implements algorithms for pre-processing, quality-control, normalization and copy number variation detection. A series of reporting and data visualization methods support exploratory analyses. To demonstrate its utility, we apply it to a new dataset of 96 genes profiled on 41 prostate tumour and 24 matched normal samples. NanoStringNormCNV is implemented in R and is freely available at http://labs.oicr.on.ca/boutros-lab/software/nanostringnormcnv. paul.boutros@oicr.on.ca. Supplementary data are available at Bioinformatics online.

  14. Triazine-based sequence-defined polymers with side-chain diversity and backbone-backbone interaction motifs

    DOE PAGES

    Grate, Jay W.; Mo, Kai -For; Daily, Michael D.

    2016-02-10

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less

  15. Triazine-based sequence-defined polymers with side-chain diversity and backbone-backbone interaction motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Mo, Kai -For; Daily, Michael D.

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone–backbone interactions, including H-bonding motifs and pi–pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. In conclusion, the synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone–backbone hydrogen-bonding motifs, and willmore » thus enable new macromolecules and materials with useful functions.« less

  16. Hairy strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahakian, Vatche

    Zero modes of the world-sheet spinors of a closed string can source higher order moments of the bulk supergravity fields. In this work, we analyze various configurations of closed strings focusing on the imprints of the quantized spinor vacuum expectation values onto the tails of bulk fields. We identify supersymmetric arrangements for which all multipole charges vanish; while for others, we find that one is left with Neveu-Schwarz-Neveu-Schwarz, and Ramond-Ramond dipole and quadrupole moments. Our analysis is exhaustive with respect to all the bosonic fields of the bulk and to all higher order moments. We comment on the relevance ofmore » these results to entropy computations of hairy black holes of a single charge or more, and to open/closed string duality.« less

  17. Factorization of chiral string amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less

  18. Factorization of chiral string amplitudes

    DOE PAGES

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-16

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less

  19. Perturbations from strings don't look like strings!

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1991-01-01

    A systematic analysis is challenging popular ideas about perturbation from cosmic strings. One way in which the picture has changed is reviewed. It is concluded that, while the scaling properties of cosmic strings figure significantly in the analysis, care must be taken when thinking in terms of single time snapshots. The process of seeding density perturbations is not fundamentally localized in time, and this fact can wash out many of the details which appear in a single snapshot.

  20. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.

  1. Finite-g Strings

    NASA Astrophysics Data System (ADS)

    Vicedo, Benoit

    2008-10-01

    In view of one day proving the AdS/CFT correspondence, a deeper understanding of string theory on certain curved backgrounds such as AdS_5xS^5 is required. In this dissertation we make a step in this direction by focusing on RxS^3. It was discovered in recent years that string theory on AdS_5xS^5 admits a Lax formulation. However, the complete statement of integrability requires not only the existence of a Lax formulation, but also that the resulting integrals of motion are in pairwise involution. This idea is central to the first part of this thesis. Exploiting this integrability we apply algebro-geometric methods to string theory on RxS^3 and obtain the general finite-gap solution. The construction is based on an invariant algebraic curve previously found in the AdS_5xS^5 case. However, encoding the dynamics of the solution requires specification of additional marked points. By restricting the symplectic structure of the string to this algebro-geometric data we derive the action-angle variables of the system. We then perform a first-principle semiclassical quantisation of string theory on RxS^3 as a toy model for strings on AdS_5xS^5. The result is exactly what one expects from the dual gauge theory perspective, namely the underlying algebraic curve discretises in a natural way. We also derive a general formula for the fluctuation energies around the generic finite-gap solution. The ideas used can be generalised to AdS_5xS^5.

  2. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    NASA Technical Reports Server (NTRS)

    Caldwell, R. R.; Gates, Evalyn

    1993-01-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and mu, the cosmic string mass-per-unit length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and mu is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict mu, and therefore limit the viability of the cosmic string large-scale structure scenario.

  3. On Ramachandran angles, closed strings and knots in protein structure

    NASA Astrophysics Data System (ADS)

    Chen, Si; Niemi, Antti J.

    2016-08-01

    The Ramachandran angles (φ,\\psi ) of a protein backbone form the vertices of a piecewise geodesic curve on the surface of a torus. When the ends of the curve are connected to each other similarly, by a geodesic, the result is a closed string that in general wraps around the torus a number of times both in the meridional and the longitudinal directions. The two wrapping numbers are global characteristics of the protein structure. A statistical analysis of the wrapping numbers in terms of crystallographic x-ray structures in the protein data bank (PDB) reveals that proteins have no net chirality in the ϕ direction but in the ψ direction, proteins prefer to display chirality. A comparison between the wrapping numbers and the concept of folding index discloses a non-linearity in their relationship. Thus these three integer valued invariants can be used in tandem, to scrutinize and classify the global loop structure of individual PDB proteins, in terms of the overall fold topology.

  4. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  5. Surface operators from M -strings

    NASA Astrophysics Data System (ADS)

    Mori, Hironori; Sugimoto, Yuji

    2017-01-01

    It has been found that surface operators have a significant role in Alday-Gaiotto-Tachikawa (AGT) relation. This duality is an outstanding consequence of M -theory, but it is actually encoded into the brane web for which the topological string can work. From this viewpoint, the surface defect in AGT relation is geometrically engineered as a toric brane realization. Also, there is a class of the brane configuration in M -theory called M -strings which can be translated into the language of the topological string. In this work, we propose a new M -string configuration which can realize AGT relation in the presence of the surface defect by utilizing the geometric transition in the refined topological string.

  6. Minimal string theories and integrable hierarchies

    NASA Astrophysics Data System (ADS)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non

  7. Worldsheet factorization for twistor-strings

    NASA Astrophysics Data System (ADS)

    Adamo, Tim

    2014-04-01

    We study the multiparticle factorization properties of two worldsheet theories which — at tree-level — describe the scattering of massless particles in four dimensions: the Berkovits-Witten twistor-string for = 4 super-Yang-Mills coupled to = 4 conformal supergravity, and the Skinner twistor-string for = 8 supergravity. By considering these string-like theories, we can study factorization at the level of the worldsheet before any Wick contractions or integrals have been performed; this is much simpler than considering the factorization properties of the amplitudes themselves. In Skinner's twistor-string this entails the addition of worldsheet gravity as well as a formalism that represents all external states in a manifestly symmetric way, which we develop explicitly at genus zero. We confirm that the scattering amplitudes of Skinner's theory, as well as the gauge theory amplitudes for the planar sector of the Berkovits-Witten theory, factorize appropriately at genus zero. In the non-planar sector, we find behavior indicative of conformal gravity in the Berkovits-Witten twistor-string. We contrast factorization in twistor-strings with the story in ordinary string theory, and also make some remarks on higher genus factorization and disconnected prescriptions.

  8. The nearest neighbor and next nearest neighbor effects on the thermodynamic and kinetic properties of RNA base pair

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Wang, Zhen; Wang, Yanli; Liu, Taigang; Zhang, Wenbing

    2018-01-01

    The thermodynamic and kinetic parameters of an RNA base pair with different nearest and next nearest neighbors were obtained through long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The results indicate that thermodynamic parameters of GC base pair are dependent on the nearest neighbor base pair, and the next nearest neighbor base pair has little effect, which validated the nearest-neighbor model. The closing and opening rates of the GC base pair also showed nearest neighbor dependences. At certain temperature, the closing and opening rates of the GC pair with nearest neighbor AU is larger than that with the nearest neighbor GC, and the next nearest neighbor plays little role. The free energy landscape of the GC base pair with the nearest neighbor GC is rougher than that with nearest neighbor AU.

  9. Embellished String Prints. Cover Story.

    ERIC Educational Resources Information Center

    Smith, Mary Ruth

    1999-01-01

    Focuses on a printmaking activity in which students create embellished string prints using the relief process of string glued to chip board. Explains that string prints can easily be embellished with oil pastels. Provides a description of the procedure and a list of materials and methods. (CMK)

  10. Cosmic string catalysis of skyrmion decay

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Davis, Anne-Christine; Brandenberger, Robert

    1988-01-01

    The Callan-Witten picture is developed for monopole catalyzed skyrmion decay in order to analyze the corresponding cosmic string scenario. It is discovered that cosmic strings (both ordinary and superconducting) can catalyze proton decay, but that this catalysis only occurs on the scale of the core of the string. In order to do this we have to develop a vortex model for the superconducting string. An argument is also given for the difference in the enhancement factors for monopoles and strings.

  11. Dynamical AdS strings across horizons

    DOE PAGES

    Ishii, Takaaki; Murata, Keiju

    2016-03-01

    We examine the nonlinear classical dynamics of a fundamental string in anti-deSitter spacetime. The string is dual to the flux tube between an external quark-antiquark pair in $N = 4$ super Yang-Mills theory. We perturb the string by shaking the endpoints and compute its time evolution numerically. We find that with sufficiently strong perturbations the string continues extending and plunges into the Poincare´ horizon. In the evolution, effective horizons are also dynamically created on the string worldsheet. The quark and antiquark are thus causally disconnected, and the string transitions to two straight strings. The forces acting on the endpoints vanishmore » with a power law whose slope depends on the perturbations. Lastly, the condition for this transition to occur is that energy injection exceeds the static energy between the quark-antiquark pair.« less

  12. Black string in dRGT massive gravity

    NASA Astrophysics Data System (ADS)

    Tannukij, Lunchakorn; Wongjun, Pitayuth; Ghosh, Suchant G.

    2017-12-01

    We present a cylindrically symmetric solution, both charged and uncharged, which is known as a black string solution to the nonlinear ghost-free massive gravity found by de Rham, Gabadadze, and Tolley (dRGT). This "dRGT black string" can be thought of as a generalization of the black string solution found by Lemos. Moreover, the dRGT black string solution includes other classes of black string solution such as the monopole-black string ones since the graviton mass contributes to the global monopole term as well as the cosmological-constant term. To investigate the solution, we compute mass, temperature, and entropy of the dRGT black string. We found that the existence of the graviton mass drastically affects the thermodynamics of the black string. Furthermore, the Hawking-Page phase transition is found to be possible for the dRGT black string as well as the charged dRGT black string. The dRGT black string solution is thermodynamically stable for r>r_c with negative thermodynamical potential and positive heat capacity while it is unstable for r

  13. Neighboring and Urbanism: Commonality versus Friendship.

    ERIC Educational Resources Information Center

    Silverman, Carol J.

    1986-01-01

    Examines a dimension of neighboring that need not assume friendship as the role model. When the model assumes only a sense of connectedness as defining neighboring, then the residential correlation, shown in many studies between urbanism and neighboring, disappears. Theories of neighboring, study variables, methods, and analysis are discussed.…

  14. Elliptic genus of E-strings

    NASA Astrophysics Data System (ADS)

    Kim, Joonho; Kim, Seok; Lee, Kimyeong; Park, Jaemo; Vafa, Cumrun

    2017-09-01

    We study a family of 2d N=(0, 4) gauge theories which describes at low energy the dynamics of E-strings, the M2-branes suspended between a pair of M5 and M9 branes. The gauge theory is engineered using a duality with type IIA theory, leading to the D2-branes suspended between an NS5-brane and 8 D8-branes on an O8-plane. We compute the elliptic genus of this family of theories, and find agreement with the known results for single and two E-strings. The partition function can in principle be computed for arbitrary number of E-strings, and we compute them explicitly for low numbers. We test our predictions against the partially known results from topological strings, as well as from the instanton calculus of 5d Sp(1) gauge theory. Given the relation to topological strings, our computation provides the all genus partition function of the refined topological strings on the canonical bundle over 1/2K3.

  15. Experimental observation of Bethe strings

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wu, Jianda; Yang, Wang; Bera, Anup Kumar; Kamenskyi, Dmytro; Islam, A. T. M. Nazmul; Xu, Shenglong; Law, Joseph Matthew; Lake, Bella; Wu, Congjun; Loidl, Alois

    2018-02-01

    Almost a century ago, string states—complex bound states of magnetic excitations—were predicted to exist in one-dimensional quantum magnets. However, despite many theoretical studies, the experimental realization and identification of string states in a condensed-matter system have yet to be achieved. Here we use high-resolution terahertz spectroscopy to resolve string states in the antiferromagnetic Heisenberg-Ising chain SrCo2V2O8 in strong longitudinal magnetic fields. In the field-induced quantum-critical regime, we identify strings and fractional magnetic excitations that are accurately described by the Bethe ansatz. Close to quantum criticality, the string excitations govern the quantum spin dynamics, whereas the fractional excitations, which are dominant at low energies, reflect the antiferromagnetic quantum fluctuations. Today, Bethe’s result is important not only in the field of quantum magnetism but also more broadly, including in the study of cold atoms and in string theory; hence, we anticipate that our work will shed light on the study of complex many-body systems in general.

  16. std::string Append

    DTIC Science & Technology

    2015-10-01

    UNCLASSIFIED AD-E403 689 Technical Report ARWSE-TR-14026 STD::STRING APPEND Tom Nealis...DATES COVERED (From – To) 4. TITLE AND SUBTITLE STD::STRING APPEND 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Appending

  17. Protein-Backbone Thermodynamics across the Membrane Interface.

    PubMed

    Bereau, Tristan; Kremer, Kurt

    2016-07-07

    The thermodynamics of insertion of a protein in a membrane depends on the fine interplay between backbone and side-chain contributions interacting with the lipid environment. Using computer simulations, we probe how different descriptions of the backbone glycyl unit affect the thermodynamics of insertion of individual residues, dipeptides, and entire transmembrane helices. Due to the lack of reference data, we first introduce an efficient methodology to estimate atomistic potential of mean force (PMF) curves from a series of representative and uncorrelated coarse-grained (CG) snapshots. We find strong discrepancies between two CG models, Martini and PLUM, against reference atomistic PMFs and experiments. Atomistic simulations suggest a weak free energy of insertion between water and a POPC membrane for the glycyl unit, in overall agreement with experimental results despite severe assumptions in our calculations. We show that refining the backbone contribution in PLUM significantly improves the PMF of insertion of the WALP16 transmembrane peptide. An improper balance between the glycyl backbone and the attached side chain will lead to energetic artifacts, rationalizing Martini's overstabilization of WALP's adsorbed interfacial state. It illustrates difficulties associated with free-energy-based parametrizations of single-residue models, as the relevant free energy of partitioning used for force-field parametrization does not arise from the entire residue but rather the solvent-accessible chemical groups.

  18. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.

  19. Ghost vertices for the bosonic string using the group-theoretic approach to string theory

    NASA Astrophysics Data System (ADS)

    Freeman, M. D.; West, P.

    1988-04-01

    The N-string tree-level scattering vertices for the bosonic string are extended to include anticommuting (ghost) oscillators. These vertices behave correctly under the action of the BRST charge Q and reproduce the known results for the scattering of physical states. This work is an application of the group-theoretic approach to string theory. Permanent address: Mathematics Department, King's College, Strand, London WC2R 2LS, UK.

  20. Integrated hydraulic booster/tool string technology for unfreezing of stuck downhole strings in horizontal wells

    NASA Astrophysics Data System (ADS)

    Tian, Q. Z.

    2017-12-01

    It is common to use a jarring tool to unfreeze stuck downhole string. However, in a horizontal well, influenced by the friction caused by the deviated section, jarring effect is poor; on the other hand, the forcing point can be located in the horizontal section by a hydraulic booster and the friction can be reduced, but it is time-consuming and easy to break downhole string using a large-tonnage and constant pull force. A hydraulic booster - jar tool string has been developed for unfreezing operation in horizontal wells. The technical solution involves three elements: a two-stage parallel spring cylinder structure for increasing the energy storage capacity of spring accelerators; multiple groups of spring accelerators connected in series to increase the working stroke; a hydraulic booster intensifying jarring force. The integrated unfreezing tool string based on these three elements can effectively overcome the friction caused by a deviated borehole, and thus unfreeze a stuck string with the interaction of the hydraulic booster and the mechanical jar which form an alternatively dynamic load. Experimental results show that the jarring performance parameters of the hydraulic booster-jar unfreezing tool string for the horizontal wells are in accordance with original design requirements. Then field technical parameters were developed based on numerical simulation and experimental data. Field application shows that the hydraulic booster-jar unfreezing tool string is effective to free stuck downhole tools in a horizontal well, and it reduces hook load by 80% and lessens the requirement of workover equipment. This provides a new technology to unfreeze stuck downhole string in a horizontal well.

  1. Windings of twisted strings

    NASA Astrophysics Data System (ADS)

    Casali, Eduardo; Tourkine, Piotr

    2018-03-01

    Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.

  2. Spontaneous knotting of an agitated string.

    PubMed

    Raymer, Dorian M; Smith, Douglas E

    2007-10-16

    It is well known that a jostled string tends to become knotted; yet the factors governing the "spontaneous" formation of various knots are unclear. We performed experiments in which a string was tumbled inside a box and found that complex knots often form within seconds. We used mathematical knot theory to analyze the knots. Above a critical string length, the probability P of knotting at first increased sharply with length but then saturated below 100%. This behavior differs from that of mathematical self-avoiding random walks, where P has been proven to approach 100%. Finite agitation time and jamming of the string due to its stiffness result in lower probability, but P approaches 100% with long, flexible strings. We analyzed the knots by calculating their Jones polynomials via computer analysis of digital photos of the string. Remarkably, almost all were identified as prime knots: 120 different types, having minimum crossing numbers up to 11, were observed in 3,415 trials. All prime knots with up to seven crossings were observed. The relative probability of forming a knot decreased exponentially with minimum crossing number and Möbius energy, mathematical measures of knot complexity. Based on the observation that long, stiff strings tend to form a coiled structure when confined, we propose a simple model to describe the knot formation based on random "braid moves" of the string end. Our model can qualitatively account for the observed distribution of knots and dependence on agitation time and string length.

  3. Gödel universes in string theory

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Dabrowski, Mariusz P.

    1998-11-01

    We show that homogeneous Gödel spacetimes need not contain closed timelike curves in low-energy-effective string theories. We find exact solutions for the Gödel metric in string theory for the full O(α') action including both dilaton and axion fields. The results are valid for bosonic, heterotic and super-strings. To first order in the inverse string tension α', these solutions display a simple relation between the angular velocity of the Gödel universe, Ω, and the inverse string tension of the form α'=1/Ω2 in the absence of the axion field. The generalization of this relationship is also found when the axion field is present.

  4. Remarks on entanglement entropy in string theory

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; Parrikar, Onkar

    2018-03-01

    Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.

  5. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    PubMed

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.

  6. Aspects of some dualities in string theory

    NASA Astrophysics Data System (ADS)

    Kim, Bom Soo

    AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma

  7. Charting the landscape of supercritical string theory.

    PubMed

    Hellerman, Simeon; Swanson, Ian

    2007-10-26

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories.

  8. Whiteheadian Actual Entitities and String Theory

    NASA Astrophysics Data System (ADS)

    Bracken, Joseph A.

    2012-06-01

    In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.

  9. Experimenting with string musical instruments

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  10. E(lementary)-strings in six-dimensional heterotic F-theory

    NASA Astrophysics Data System (ADS)

    Choi, Kang-Sin; Rey, Soo-Jong

    2017-09-01

    Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small instantons generate most of known six-dimensional superconformal theories, their affinizations and little string theories. Taking account of global structure of compact internal geometry, we also show that special combinations of E-strings play an important role in constructing six-dimensional theories of D- and E-types. We check global consistency conditions from anomaly cancellation conditions, both from five-branes and strings, and show that they are given in terms of elementary E-string combinations.

  11. Final Report: "Strings 2014"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witten, Edward

    2015-10-21

    The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.

  12. String Formatting Considered Harmful for Novice Programmers

    ERIC Educational Resources Information Center

    Hughes, Michael C.; Jadud, Matthew C.; Rodrigo, Ma. Mercedes T.

    2010-01-01

    In Java, "System.out.printf" and "String.format" consume a specialised kind of string commonly known as a format string. In our study of first-year students at the Ateneo de Manila University, we discovered that format strings present a substantial challenge for novice programmers. Focusing on their first laboratory we found…

  13. Identifying influential neighbors in animal flocking

    PubMed Central

    Jiang, Li; Giuggioli, Luca; Escobedo, Ramón; Sire, Clément; Han, Zhangang

    2017-01-01

    Schools of fish and flocks of birds can move together in synchrony and decide on new directions of movement in a seamless way. This is possible because group members constantly share directional information with their neighbors. Although detecting the directionality of other group members is known to be important to maintain cohesion, it is not clear how many neighbors each individual can simultaneously track and pay attention to, and what the spatial distribution of these influential neighbors is. Here, we address these questions on shoals of Hemigrammus rhodostomus, a species of fish exhibiting strong schooling behavior. We adopt a data-driven analysis technique based on the study of short-term directional correlations to identify which neighbors have the strongest influence over the participation of an individual in a collective U-turn event. We find that fish mainly react to one or two neighbors at a time. Moreover, we find no correlation between the distance rank of a neighbor and its likelihood to be influential. We interpret our results in terms of fish allocating sequential and selective attention to their neighbors. PMID:29161269

  14. Spin chains and string theory.

    PubMed

    Kruczenski, Martin

    2004-10-15

    Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.

  15. Segmented strings in AdS 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas

    We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We studymore » several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. Here, we also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.« less

  16. Segmented strings in AdS 3

    DOE PAGES

    Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas; ...

    2015-11-17

    We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We studymore » several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. Here, we also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.« less

  17. Mechanical Properties of Nylon Harp Strings.

    PubMed

    Lynch-Aird, Nicolas; Woodhouse, Jim

    2017-05-04

    Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young's modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young's modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings.

  18. A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA

    PubMed Central

    Lavery, Richard; Zakrzewska, Krystyna; Beveridge, David; Bishop, Thomas C.; Case, David A.; Cheatham, Thomas; Dixit, Surjit; Jayaram, B.; Lankas, Filip; Laughton, Charles; Maddocks, John H.; Michon, Alexis; Osman, Roman; Orozco, Modesto; Perez, Alberto; Singh, Tanya; Spackova, Nada; Sponer, Jiri

    2010-01-01

    It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein–DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive structural and dynamic dataset which is currently unavailable from experiment. A consortium of laboratories was consequently formed to obtain this information using molecular simulations. This article describes results providing information not only on all 10 unique base pair steps, but also on all possible nearest-neighbor effects on these steps. These results are derived from simulations of 50–100 ns on 39 different DNA oligomers in explicit solvent and using a physiological salt concentration. We demonstrate that the simulations are converged in terms of helical and backbone parameters. The results show that nearest-neighbor effects on base pair steps are very significant, implying that dinucleotide models are insufficient for predicting sequence-dependent behavior. Flanking base sequences can notably lead to base pair step parameters in dynamic equilibrium between two conformational sub-states. Although this study only provides limited data on next-nearest-neighbor effects, we suggest that such effects should be analyzed before attempting to predict the sequence-dependent behavior of DNA. PMID:19850719

  19. Null cosmological singularities and free strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, K.

    2010-03-15

    We continue exploring free strings in the background of null Kasner-like cosmological singularities, following K. Narayan, arXiv:0904.4532. We study the free string Schrodinger wave functional along the lines of K. Narayan, arXiv:0807.1517. We find the wave functional to be nonsingular in the vicinity of singularities whose Kasner exponents satisfy certain relations. We compare this with the description in other variables. We then study certain regulated versions of these singularities where the singular region is replaced by a substringy but nonsingular region and study the string spectra in these backgrounds. The string modes can again be solved for exactly, giving somemore » insight into how string oscillator states get excited near the singularity.« less

  20. CMB temperature trispectrum of cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2010-03-01

    We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent ℓ-ρ with 6<ρ<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite and trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.

  1. Gravitational waves and cosmic strings

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2002-08-01

    Cosmic strings are potential candidates for a variety of interesting cosmological phenomena such as gamma ray bursts, gravitational wave bursts and ultra high energy cosmic rays. The predictions of cosmic string models, however, depend sensitively on the so far unresolved question of the size of the small-scale structure. This thesis deals largely with this problem. First, I present a gravitational back-reaction model that assumes the interaction between all Fourier modes that make up a given perturbation on a long cosmic string. This calculation leads to the generally accepted value of the small scale structure cutoff. It also, however, leads to paradoxical behaviour when applied to two oppositely moving modes: As one of the modes is stretched conformally the gravitational power radiated approaches a constant. This result is in contradiction with our expectation for the straight string limit in which no power is radiated. A more careful investigation of this problem reveals that, in the case of two oppositely moving modes, the gravitational power is exponentially suppressed when the wavelengths of the modes are sufficiently different. I use this result to construct an improved gravitational back-reaction model in which modes of very different wavelengths do not interact. This model leads to a new small scale structure cutoff which is sensitive to the initial spectrum of perturbations present on the string. I also tentatively examine the consequences of this result for the evolution of cosmic string loops. Finally, I investigate the effect of the presence of small scale structure on the gravitational wave-bursts produced at cosmic string cusps.

  2. Determination of backbone chain direction of PDA using FFM

    NASA Astrophysics Data System (ADS)

    Jo, Sadaharu; Okamoto, Kentaro; Takenaga, Mitsuru

    2010-01-01

    The effect of backbone chains on friction force was investigated on both Langmuir-Blodgett (LB) films of 10,12-heptacosadiynoic acid and the (0 1 0) surfaces of single crystals of 2,4-hexadiene-1,6-diol using friction force microscopy (FFM). It was observed that friction force decreased when the scanning direction was parallel to the [0 0 1] direction in both samples. Moreover, friction force decreased when the scanning direction was parallel to the crystallographic [1 0 2], [1 0 1], [1 0 0] and [1 0 1¯] directions in only the single crystals. For the LB films, the [0 0 1] direction corresponds to the backbone chain direction of 10,12-heptacosadiynoic acid. For the single crystals, both the [0 0 1] and [1 0 1] directions correspond to the backbone chain direction, and the [1 0 2], [1 0 0] and [1 0 1¯] directions correspond to the low-index crystallographic direction. In both the LB films and single crystals, the friction force was minimized when the directions of scanning and the backbone chain were parallel.

  3. CMB ISW-lensing bispectrum from cosmic strings

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro

    2014-02-01

    We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation of the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10-7, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.

  4. Classical theory of radiating strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  5. Plucked String on a Shoestring Budget

    NASA Astrophysics Data System (ADS)

    Gluck, Paul

    2009-01-01

    The physics of the plucked string has been treated in many articles and books.1-4 For our 12th-grade high school physics laboratory, we have built a cheap, simple sonometer apparatus for each pair of students on which they may investigate some interesting phenomena that arise when a string is plucked. Among these are the generation of harmonics (overtones) and the way their number depends on the length of a string and on where one plucks, the relation between the frequencies of the fundamental and those of the harmonics, and the way these are affected by changes in the length and the tension in the string. Such an experiment will help students appreciate the working of stringed musical instruments and, in particular, the contribution of overtones to the richness of sound produced.

  6. CMB temperature trispectrum of cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2010-03-15

    We provide an analytical expression for the trispectrum of the cosmic microwave background (CMB) temperature anisotropies induced by cosmic strings. Our result is derived for the small angular scales under the assumption that the temperature anisotropy is induced by the Gott-Kaiser-Stebbins effect. The trispectrum is predicted to decay with a noninteger power-law exponent l{sup -{rho}}with 6<{rho}<7, depending on the string microstructure, and thus on the string model. For Nambu-Goto strings, this exponent is related to the string mean square velocity and the loop distribution function. We then explore two classes of wave number configuration in Fourier space, the kite andmore » trapezium quadrilaterals. The trispectrum can be of any sign and appears to be strongly enhanced for all squeezed quadrilaterals.« less

  7. Entanglement branes in a two-dimensional string theory

    DOE PAGES

    Donnelly, William; Wong, Gabriel

    2017-09-20

    What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less

  8. Mechanical Properties of Nylon Harp Strings

    PubMed Central

    Lynch-Aird, Nicolas; Woodhouse, Jim

    2017-01-01

    Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young’s modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young’s modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings. PMID:28772858

  9. CMB ISW-lensing bispectrum from cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Daisuke; Sendouda, Yuuiti; Takahashi, Keitaro, E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: sendouda@cc.hirosaki-u.ac.jp, E-mail: keitaro@sci.kumamoto-u.ac.jp

    2014-02-01

    We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so-called Gott-Kaiser-Stebbins (GKS) effect, to the CMB temperature fluctuation, which are thus naturally cross-correlated. We point out that, in the presence of such a correlation, yet another kind of the post-recombination CMB temperature bispectra, the ISW-lensing bispectra, will arise in the form of products of the auto- and cross-power spectra. We first present an analytic method to calculate the autocorrelation ofmore » the temperature fluctuations induced by the strings, and the cross-correlation between the temperature fluctuation and the lensing potential both due to the string network. In our formulation, the evolution of the string network is assumed to be characterized by the simple analytic model, the velocity-dependent one scale model, and the intercommutation probability is properly incorporated in order to characterize the possible superstringy nature. Furthermore, the obtained power spectra are dominated by the Poisson-distributed string segments, whose correlations are assumed to satisfy the simple relations. We then estimate the signal-to-noise ratios of the string-induced ISW-lensing bispectra and discuss the detectability of such CMB signals from the cosmic string network. It is found that in the case of the smaller string tension, Gμ << 10{sup -7}, the ISW-lensing bispectrum induced by a cosmic string network can constrain the string-model parameters even more tightly than the purely GKS-induced bispectrum in the ongoing and future CMB observations on small scales.« less

  10. STRING 3: An Advanced Groundwater Flow Visualization Tool

    NASA Astrophysics Data System (ADS)

    Schröder, Simon; Michel, Isabel; Biedert, Tim; Gräfe, Marius; Seidel, Torsten; König, Christoph

    2016-04-01

    neighboring faces is extracted. Similar algorithms help to find the 2D boundary of cuts through the 3D model. As interactivity plays a big role for an exploration tool the speed of the drawing routines is also important. To achieve this, different pathlet rendering solutions have been developed and benchmarked. These provide a trade-off between the usage of geometry and fragment shaders. We show that point sprite shaders have superior performance and visual quality over geometry-based approaches. Admittedly, the point sprite-based approach has many non-trivial problems of joining the different parts of the pathlet geometry. This research is funded by the Federal Ministry for Economic Affairs and Energy (Germany). [1] T. Seidel, C. König, M. Schäfer, I. Ostermann, T. Biedert, D. Hietel (2014). Intuitive visualization of transient groundwater flow. Computers & Geosciences, Vol. 67, pp. 173-179 [2] I. Michel, S. Schröder, T. Seidel, C. König (2015). Intuitive Visualization of Transient Flow: Towards a Full 3D Tool. Geophysical Research Abstracts, Vol. 17, EGU2015-1670 [3] S. Schröder, I. Michel, T. Seidel, C.M. König (2015). STRING 3: Full 3D visualization of groundwater Flow. In Proceedings of IAMG 2015 Freiberg, pp. 813-822

  11. Document retrieval on repetitive string collections.

    PubMed

    Gagie, Travis; Hartikainen, Aleksi; Karhu, Kalle; Kärkkäinen, Juha; Navarro, Gonzalo; Puglisi, Simon J; Sirén, Jouni

    2017-01-01

    Most of the fastest-growing string collections today are repetitive, that is, most of the constituent documents are similar to many others. As these collections keep growing, a key approach to handling them is to exploit their repetitiveness, which can reduce their space usage by orders of magnitude. We study the problem of indexing repetitive string collections in order to perform efficient document retrieval operations on them. Document retrieval problems are routinely solved by search engines on large natural language collections, but the techniques are less developed on generic string collections. The case of repetitive string collections is even less understood, and there are very few existing solutions. We develop two novel ideas, interleaved LCPs and precomputed document lists , that yield highly compressed indexes solving the problem of document listing (find all the documents where a string appears), top- k document retrieval (find the k documents where a string appears most often), and document counting (count the number of documents where a string appears). We also show that a classical data structure supporting the latter query becomes highly compressible on repetitive data. Finally, we show how the tools we developed can be combined to solve ranked conjunctive and disjunctive multi-term queries under the simple [Formula: see text] model of relevance. We thoroughly evaluate the resulting techniques in various real-life repetitiveness scenarios, and recommend the best choices for each case.

  12. Worldsheet geometries of ambitwistor string

    NASA Astrophysics Data System (ADS)

    Ohmori, Kantaro

    2015-06-01

    Mason and Skinner proposed the ambitwistor string theory which directly reproduces the formulas for the amplitudes of massless particles proposed by Cachazo, He and Yuan. In this paper we discuss geometries of the moduli space of worldsheets associated to the bosonic or the RNS ambitwistor string. Further, we investigate the factorization properties of the amplitudes when an internal momentum is near on-shell in the abstract CFT language. Along the way, we propose the existence of the ambitwistor strings with three or four fermionic worldsheet currents.

  13. Scaling properties of cosmic (super)string networks

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.

    2014-10-01

    I use a combination of state-of-the-art numerical simulations and analytic modelling to discuss the scaling properties of cosmic defect networks, including superstrings. Particular attention is given to the role of extra degrees of freedom in the evolution of these networks. Compared to the 'plain vanilla' case of Goto-Nambu strings, three such extensions play important but distinct roles in the network dynamics: the presence of charges/currents on the string worldsheet, the existence of junctions, and the possibility of a hierarchy of string tensions. I also comment on insights gained from studying simpler defect networks, including Goto-Nambu strings themselves, domain walls and semilocal strings.

  14. Light Z' in heterotic string standardlike models

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, P.; Faraggi, A. E.; Mehta, V. M.

    2014-05-01

    The discovery of the Higgs boson at the LHC supports the hypothesis that the Standard Model provides an effective parametrization of all subatomic experimental data up to the Planck scale. String theory, which provides a viable perturbative approach to quantum gravity, requires for its consistency the existence of additional gauge symmetries beyond the Standard Model. The construction of heterotic string models with a viable light Z' is, however, highly constrained. We outline the construction of standardlike heterotic string models that allow for an additional Abelian gauge symmetry that may remain unbroken down to low scales. We present a string inspired model, consistent with the string constraints.

  15. Solution, solid phase and computational structures of apicidin and its backbone-reduced analogs.

    PubMed

    Kranz, Michael; Murray, Peter John; Taylor, Stephen; Upton, Richard J; Clegg, William; Elsegood, Mark R J

    2006-06-01

    The recently isolated broad-spectrum antiparasitic apicidin (1) is one of the few naturally occurring cyclic tetrapeptides (CTP). Depending on the solvent, the backbone of 1 exhibits two gamma-turns (in CH(2)Cl(2)) or a beta-turn (in DMSO), differing solely in the rotation of the plane of one of the amide bonds. In the X-ray crystal structure, the peptidic C==Os and NHs are on opposite sides of the backbone plane, giving rise to infinite stacks of cyclotetrapeptides connected by three intermolecular hydrogen bonds between the backbones. Conformational searches (Amber force field) on a truncated model system of 1 confirm all three backbone conformations to be low-energy states. The previously synthesized analogs of 1 containing a reduced amide bond exhibit the same backbone conformation as 1 in DMSO, which is confirmed further by the X-ray crystal structure of a model system of the desoxy analogs of 1. This similarity helps in explaining why the desoxy analogs retain some of the antiprotozoal activities of apicidin. The backbone-reduction approach designed to facilitate the cyclization step of the acyclic precursors of the CTPs seems to retain the conformational preferences of the parent peptide backbone.

  16. Compression of strings with approximate repeats.

    PubMed

    Allison, L; Edgoose, T; Dix, T I

    1998-01-01

    We describe a model for strings of characters that is loosely based on the Lempel Ziv model with the addition that a repeated substring can be an approximate match to the original substring; this is close to the situation of DNA, for example. Typically there are many explanations for a given string under the model, some optimal and many suboptimal. Rather than commit to one optimal explanation, we sum the probabilities over all explanations under the model because this gives the probability of the data under the model. The model has a small number of parameters and these can be estimated from the given string by an expectation-maximization (EM) algorithm. Each iteration of the EM algorithm takes O(n2) time and a few iterations are typically sufficient. O(n2) complexity is impractical for strings of more than a few tens of thousands of characters and a faster approximation algorithm is also given. The model is further extended to include approximate reverse complementary repeats when analyzing DNA strings. Tests include the recovery of parameter estimates from known sources and applications to real DNA strings.

  17. Transplanckian censorship and global cosmic strings

    NASA Astrophysics Data System (ADS)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-04-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections be-tween various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants f < M p and large winding numbers n > M p /f , the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t ˜ e Δ a/ M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  18. String theory of the Regge intercept.

    PubMed

    Hellerman, S; Swanson, I

    2015-03-20

    Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.

  19. Geometry, topology, and string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varadarajan, Uday

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  20. String junction as a baryonic constituent

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Yu. S.; Nefediev, A. V.

    1996-02-01

    We extend the model for QCD string with quarks to consider the Mercedes Benz string configuration describing the three-quark baryon. Under the assumption of adiabatic separation of quark and string junction motion we formulate and solve the classical equation of motion for the junction. We dare to quantize the motion of the junction, and discuss the impact of these modes on the baryon spectra.

  1. Non-perturbative String Theory from Water Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.

    2012-06-14

    We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theoriesmore » coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.« less

  2. Axion string dynamics I: 2+1D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleury, Leesa M.; Moore, Guy D.

    2016-05-03

    If the axion exists and if the initial axion field value is uncorrelated at causally disconnected points, then it should be possible to predict the efficiency of cosmological axion production, relating the axionic dark matter density to the axion mass. The main obstacle to making this prediction is correctly treating the axion string cores. We develop a new algorithm for treating the axionic string cores correctly in 2+1 dimensions. When the axionic string cores are given their full physical string tension, axion production is about twice as efficient as in previous simulations. We argue that the string network in 2+1more » dimensions should behave very differently than in 3+1 dimensions, so this result cannot be simply carried over to the physical case. We outline how to extend our method to 3+1D axion string dynamics.« less

  3. Aspects of String Dualities

    NASA Astrophysics Data System (ADS)

    Orgera, Jacopo

    In this thesis we investigate some aspects of String Dualities. In particular, in the context of Twistor-String/Field Theories duality, we present some partial results toward the understanding of Conformal Supergravity amplitudes. Also, in the context of AdS/CFT duality, we investigate: the role of Euclidean Wormholes in quantum de-coherence and the semiclassical decay of certain non-supersimmetric vacua.

  4. Noncommutative-geometry model for closed bosonic strings

    NASA Technical Reports Server (NTRS)

    Sen, Siddhartha; Holman, R.

    1987-01-01

    It is shown how Witten's (1986) noncommutative geometry may be extended to describe the closed bosonic string. For closed strings, an explicit representation is provided of the integral operator needed to construct an action and of an associative product on string fields. The proper choice of the action of the integral operator and the associative product in order to give rise to a reasonable theory is explained, and the consequences of such a choice are discussed. It is shown that the ghost numbers of the operator and associative product can be chosen arbitrarily for both open and closed strings, and that this construct can be used as an action for interacting closed bosonic strings.

  5. ExScal Backbone Network Architecture

    DTIC Science & Technology

    2005-01-01

    802.11 battery powered nodes was laid over the sensor network. We adopted the Stargate platform for the backbone tier to serve as the basis for...its head. XSS Hardware and Network: XSS stands for eXtreme Scaling Stargate . A stargate is a linux-based single board computer. It has a 400 MHz

  6. Effects of overlapping strings in pp collisions

    DOE PAGES

    Bierlich, Christian; Gustafson, Gösta; Lönnblad, Leif; ...

    2015-03-26

    In models for hadron collisions based on string hadronization, the strings are usually treated as independent, allowing no interaction between the confined colour fields. In studies of nucleus collisions it has been suggested that strings close in space can fuse to form "colour ropes." Such ropes are expected to give more strange particles and baryons, which also has been suggested as a signal for plasma formation. Overlapping strings can also be expected in pp collisions, where usually no phase transition is expected. In particular at the high LHC energies the expected density of strings is quite high. To investigate possiblemore » effects of rope formation, we present a model in which strings are allowed to combine into higher multiplets, giving rise to increased production of baryons and strangeness, or recombine into singlet structures and vanish. Also a crude model for strings recombining into junction structures is considered, again giving rise to increased baryon production. The models are implemented in the DIPSY MC event generator, using PYTHIA8 for hadronization, and comparison to pp minimum bias data, reveals improvement in the description of identified particle spectra.« less

  7. A Platonic Sextet for Strings

    ERIC Educational Resources Information Center

    Schaffer, Karl

    2012-01-01

    The use of traditional string figures by the Dr. Schaffer and Mr. Stern Dance Ensemble led to experimentation with polyhedral string constructions. This article presents a series of polyhedra made with six loops of three colors which sequence through all the Platonic Solids.

  8. Superconducting Strings in High Density QCD

    NASA Astrophysics Data System (ADS)

    Buckley, Kirk B. W.

    2003-02-01

    Recently it has been argued that the ground state of high density QCD is likely to be a combination of the CFL-phase along with condensation of the K0 field. This state spontaneously breaks a global U(1)Y symmetry, therefore one would expect the formation of U(1)Y global strings. We discuss the core structure of these strings and demonstrate that under some conditions the global U(1)Y symmetry may not be restored inside the string. Instead, K+ condensation occurs inside the core of the string if a relevant parameter \\cos θ {K0 } ≡ {{m{K0 }2 } {/ {{m{K0 }2 } {μ eff2 }}} ; . } {μ eff2 }} is larger than some critical value θ ≥ θcrit. If this phenomenon happens, the U(1)Y strings become superconducting and may considerably influence the magnetic properties of dense quark matter, in particular in neutron stars.

  9. Underestimated Halogen Bonds Forming with Protein Backbone in Protein Data Bank.

    PubMed

    Zhang, Qian; Xu, Zhijian; Shi, Jiye; Zhu, Weiliang

    2017-07-24

    Halogen bonds (XBs) are attracting increasing attention in biological systems. Protein Data Bank (PDB) archives experimentally determined XBs in biological macromolecules. However, no software for structure refinement in X-ray crystallography takes into account XBs, which might result in the weakening or even vanishing of experimentally determined XBs in PDB. In our previous study, we showed that side-chain XBs forming with protein side chains are underestimated in PDB on the basis of the phenomenon that the proportion of side-chain XBs to overall XBs decreases as structural resolution becomes lower and lower. However, whether the dominant backbone XBs forming with protein backbone are overlooked is still a mystery. Here, with the help of the ratio (R F ) of the observed XBs' frequency of occurrence to their frequency expected at random, we demonstrated that backbone XBs are largely overlooked in PDB, too. Furthermore, three cases were discovered possessing backbone XBs in high resolution structures while losing the XBs in low resolution structures. In the last two cases, even at 1.80 Å resolution, the backbone XBs were lost, manifesting the urgent need to consider XBs in the refinement process during X-ray crystallography study.

  10. Electron string phenomenon: physics and use

    NASA Astrophysics Data System (ADS)

    Donets, Evgeny D.

    2004-01-01

    Electron string phenomenon arises as a result of phase transition of a state of multiply reflected electron beam to this new discovered state of one component electron plasma and can be easily observed in the reflex mode of EBIS operation. The transition goes via a strong instability, which causes considerable electron energy spread, which in its turn suppresses the instability. Electron string state is a stationary state of hot pure electron plasma, which is heated by injected electron beam and cooled because of electron loses. Electron string is quiet in broad regions of experimental parameters, so that it is used for confinement and ionization of positive ions by electron impact to highly charge states similar to electron beams in EBIS. Application of electron strings instead of electron beams for ion production allows to save about 99% of electric power of electron beam and simultaneously to improve reliability of an ion source considerably. The JINR EBIS `Krion-2' in the string mode of operation is used for production of N7+, Ar16+ and Fe24+ ion beams and their acceleration to relativistic energies on the facility of the JINR super conducting one turn injection synchrotron `Nuklotron'. The tubular electron string possibly can exist and it is under study now theoretically and experiments are prepared now. Estimations show that a Tubular Electron String Ion Source (TESIS) could have up to three orders of magnitude higher ion output then a Linear one (LESIS). In frames of nuclear astrophysics electron strings can be used for research of fusion nuclear reactions at low energies in conditions when both beam and target nuclei do not carry orbital electrons. The project NARITA — Nuclear Astrophysics Researches in an Ion Trap Apparatus is proposed. Polarization effects also can be studied.

  11. LETTER TO THE EDITOR: Backbones of traffic jams

    NASA Astrophysics Data System (ADS)

    Shikhar Gupta, Himadri; Ramaswamy, Ramakrishna

    1996-11-01

    We study the jam phase of the deterministic traffic model in two dimensions. Within the jam phase, there is a phase transition, from a self-organized jam (formed by initial synchronization followed by jamming), to a random-jam structure. The backbone of the jam is defined and used to analyse self-organization in the jam. The fractal dimension and interparticle correlations on the backbone indicate a continous phase transition at density 0305-4470/29/21/003/img1 with critical exponent 0305-4470/29/21/003/img2, which are characterized through simulations.

  12. Noncommutative Field Theories and (super)string Field Theories

    NASA Astrophysics Data System (ADS)

    Aref'eva, I. Ya.; Belov, D. M.; Giryavets, A. A.; Koshelev, A. S.; Medvedev, P. B.

    2002-11-01

    In this lecture notes we explain and discuss some ideas concerning noncommutative geometry in general, as well as noncommutative field theories and string field theories. We consider noncommutative quantum field theories emphasizing an issue of their renormalizability and the UV/IR mixing. Sen's conjectures on open string tachyon condensation and their application to the D-brane physics have led to wide investigations of the covariant string field theory proposed by Witten about 15 years ago. We review main ingredients of cubic (super)string field theories using various formulations: functional, operator, conformal and the half string formalisms. The main technical tools that are used to study conjectured D-brane decay into closed string vacuum through the tachyon condensation are presented. We describe also methods which are used to study the cubic open string field theory around the tachyon vacuum: construction of the sliver state, "comma" and matrix representations of vertices.

  13. The Graphical Representation of the Digital Astronaut Physiology Backbone

    NASA Technical Reports Server (NTRS)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  14. Bonder for Solar-Cell Strings

    NASA Technical Reports Server (NTRS)

    Garwood, G.; Frasch, W.

    1982-01-01

    String bonder for solar-cell arrays eliminates tedious manual assembly procedure that could damage cell face. Vacuum arm picks up face-down cell from cell-inverting work station and transfers it to string conveyor without changing cell orientation. Arm is activated by signal from microprocessor.

  15. Type-I cosmic-string network

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Takashi; Sendouda, Yuuiti; Takahashi, Keitaro; Yamauchi, Daisuke; Yoo, Chul-Moon

    2013-10-01

    We study the network of Type-I cosmic strings using the field-theoretic numerical simulations in the Abelian-Higgs model. For Type-I strings, the gauge field plays an important role, and thus we find that the correlation length of the strings is strongly dependent upon the parameter β, the ratio between the masses of the scalar field and the gauge field, namely, β=mφ2/mA2. In particular, if we take the cosmic expansion into account, the network becomes densest in the comoving box for a specific value of β for β<1.

  16. Large-D gravity and low-D strings.

    PubMed

    Emparan, Roberto; Grumiller, Daniel; Tanabe, Kentaro

    2013-06-21

    We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α' expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.

  17. Perceiving the affordance of string tension for power strokes in badminton: expertise allows effective use of all string tensions.

    PubMed

    Zhu, Qin

    2013-01-01

    Affordances mean opportunities for action. These affordances are important for sports performance and relevant to the abilities developed by skilled athletes. In racquet sports such as badminton, different players prefer widely different string tension because it is believed to provide opportunities for effective strokes. The current study examined whether badminton players can perceive the affordance of string tension for power strokes and whether the perception of affordance itself changed as a function of skill level. The results showed that string tension constrained the striking performance of both novice and recreational players, but not of expert players. When perceptual capability was assessed, perceptual mode did not affect perception of the optimal string tension. Skilled players successfully perceived the affordance of string tension, but only experts were concerned about saving energy. Our findings demonstrated that perception of the affordance of string tension in badminton was determined by action abilities. Furthermore, experts could adjust the action to maintain a superior level of performance based on the perception of affordance.

  18. Classical probes of string/gauge theory duality

    NASA Astrophysics Data System (ADS)

    Ishizeki, Riei

    The AdS/CFT correspondence has played an important role in the recent development of string theory. The reason is that it proposes a description of certain gauge theories in terms of string theory. It is such that simple string theory computations give information about the strong coupling regime of the gauge theory. Vice versa, gauge theory computations give information about string theory and quantum gravity. Although much is known about AdS/CFT, the precise map between the two sides of the correspondence is not completely understood. In the unraveling of such map classical string solutions play a vital role. In this thesis, several classical string solutions are proposed to help understand the AdS/CFT duality. First, rigidly rotating strings on a two-sphere are studied. Taking special limits of such solutions leads to two cases: the already known giant magnon solution, and a new solution which we call the single spike solution. Next, we compute the scattering phase shift of the single spike solutions and compare the result with the giant magnon solutions. Intriguingly, the results are the same up to non-logarithmic terms, indicating that the single spike solution should have the same rich spin chain structure as the giant magnon solution. Afterward, we consider open string solutions ending on the boundary of AdS5. The lines traced by the ends of such open strings can be viewed as Wilson loops in N = 4 SYM theory. After applying an inversion transformation, the open Wilson loops become closed Wilson loops whose expectation value is consistent with previously conjectured results. Next, several Wilson loops for N = 4 SYM in an AdS5 pp-wave background are considered and translated to the pure AdS 5 background and their interpretation as forward quark-gluon scattering is suggested. In the last part of this thesis, a class of classical solutions for closed strings moving in AdS3 x S 1 ⊂ AdS5 x S5 with energy E and spin S in AdS3 and angular momentum J and winding m

  19. Gravitational lensing effects of vacuum strings - Exact solutions

    NASA Technical Reports Server (NTRS)

    Gott, J. R., III

    1985-01-01

    Exact interior and exterior solutions to Einstein's field equations are derived for vacuum strings. The exterior solution for a uniform density vacuum string corresponds to a conical space while the interior solution is that of a spherical cap. For Mu equals 0-1/4 the external metric is ds-squared = -dt-squared + dr-squared + (1-4 Mu)-squared r-squared dphi-squared + dz-squared, where Mu is the mass per unit length in the string in Planck masses per Planck length. A maximum mass per unit length for a string is 6.73 x 10 to the 27th g/cm. It is shown that strings cause temperature fluctuations in the cosmic microwave background and produce equal brightness double QSO images separated by up to several minutes of arc. Formulae for lensing probabilities, image splittings, and time delays are derived for strings in a realistic cosmological setting. String searches using ST, the VLA, and the COBE satellite are discussed.

  20. Diffusion of massive particles around an Abelian-Higgs string

    NASA Astrophysics Data System (ADS)

    Saha, Abhisek; Sanyal, Soma

    2018-03-01

    We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.

  1. Near-Neighbor Algorithms for Processing Bearing Data

    DTIC Science & Technology

    1989-05-10

    neighbor algorithms need not be universally more cost -effective than brute force methods. While the data access time of near-neighbor techniques scales with...the number of objects N better than brute force, the cost of setting up the data structure could scale worse than (Continues) 20...for the near neighbors NN2 1 (i). Depending on the particular NN algorithm, the cost of accessing near neighbors for each ai E S1 scales as either N

  2. Bell's Inequalities, Superquantum Correlations, and String Theory

    DOE PAGES

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; ...

    2011-01-01

    We offermore » an interpretation of superquantum correlations in terms of a “doubly” quantum theory. We argue that string theory, viewed as a quantum theory with two deformation parameters, the string tension α ' , and the string coupling constant g s , is such a superquantum theory that transgresses the usual quantum violations of Bell's inequalities. We also discuss the ℏ → ∞ limit of quantum mechanics in this context. As a superquantum theory, string theory should display distinct experimentally observable supercorrelations of entangled stringy states.« less

  3. Improving Upon String Methods for Transition State Discovery.

    PubMed

    Chaffey-Millar, Hugh; Nikodem, Astrid; Matveev, Alexei V; Krüger, Sven; Rösch, Notker

    2012-02-14

    Transition state discovery via application of string methods has been researched on two fronts. The first front involves development of a new string method, named the Searching String method, while the second one aims at estimating transition states from a discretized reaction path. The Searching String method has been benchmarked against a number of previously existing string methods and the Nudged Elastic Band method. The developed methods have led to a reduction in the number of gradient calls required to optimize a transition state, as compared to existing methods. The Searching String method reported here places new beads on a reaction pathway at the midpoint between existing beads, such that the resolution of the path discretization in the region containing the transition state grows exponentially with the number of beads. This approach leads to favorable convergence behavior and generates more accurate estimates of transition states from which convergence to the final transition states occurs more readily. Several techniques for generating improved estimates of transition states from a converged string or nudged elastic band have been developed and benchmarked on 13 chemical test cases. Optimization approaches for string methods, and pitfalls therein, are discussed.

  4. Excited cosmic strings with superconducting currents

    NASA Astrophysics Data System (ADS)

    Hartmann, Betti; Michel, Florent; Peter, Patrick

    2017-12-01

    We present a detailed analysis of excited cosmic string solutions that possess superconducting currents. These currents can be excited inside the string core, and—if the condensate is large enough—can lead to the excitations of the Higgs field. Next to the case with global unbroken symmetry, we discuss also the effects of the gauging of this symmetry and show that excited condensates persist when coupled to an electromagnetic field. The space-time of such strings is also constructed by solving the Einstein equations numerically and we show how the local scalar curvature is modified by the excitation. We consider the relevance of our results on the cosmic string network evolution as well as observations of primordial gravitational waves and cosmic rays.

  5. Confusing the heterotic string

    NASA Astrophysics Data System (ADS)

    Benett, D.; Brene, N.; Mizrachi, Leah; Nielsen, H. B.

    1986-10-01

    A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model.

  6. Instantons in string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlén, Olof, E-mail: olof.ahlen@aei.mpg.de

    2015-12-17

    These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.

  7. Stochastic gravitational wave background from light cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePies, Matthew R.; Hogan, Craig J.

    2007-06-15

    Spectra of the stochastic gravitational wave backgrounds from cosmic strings are calculated and compared with present and future experimental limits. Motivated by theoretical expectations of light cosmic strings in superstring cosmology, improvements in experimental sensitivity, and recent demonstrations of large, stable loop formation from a primordial network, this study explores a new range of string parameters with masses lighter than previously investigated. A standard 'one-scale' model for string loop formation is assumed. Background spectra are calculated numerically for dimensionless string tensions G{mu}/c{sup 2} between 10{sup -7} and 10{sup -18}, and initial loop sizes as a fraction of the Hubble radiusmore » {alpha} from 0.1 to 10{sup -6}. The spectra show a low frequency power-law tail, a broad spectral peak due to loops decaying at the present epoch (including frequencies higher than their fundamental mode, and radiation associated with cusps), and a flat (constant energy density) spectrum at high frequencies due to radiation from loops that decayed during the radiation-dominated era. The string spectrum is distinctive and unlike any other known source. The peak of the spectrum for light strings appears at high frequencies, significantly affecting predicted signals. The spectra of the cosmic string backgrounds are compared with current millisecond pulsar limits and Laser Interferometer Space Antenna (LISA) sensitivity curves. For models with large stable loops ({alpha}=0.1), current pulsar-timing limits exclude G{mu}/c{sup 2}>10{sup -9}, a much tighter limit on string tension than achievable with other techniques, and within the range of current models based on brane inflation. LISA may detect a background from strings as light as G{mu}/c{sup 2}{approx_equal}10{sup -16}, corresponding to field theory strings formed at roughly 10{sup 11} GeV.« less

  8. Cooperative UAV-Based Communications Backbone for Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs aremore » used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.« less

  9. Specifications for Managed Strings, Second Edition

    DTIC Science & Technology

    2010-05-01

    const char * cstr , const size_t maxsize, const char *charset); 10 | CMU/SEI-2010-TR-018 Runtime-Constraints s shall not be a null pointer...strcreate_m function creates a managed string, referenced by s, given a conventional string cstr (which may be null or empty). maxsize specifies the...characters to those in the null-terminated byte string cstr (which may be empty). If charset is a null pointer, no restricted character set is defined. If

  10. Cosmic Strings Stabilized by Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Weigel, H.

    2017-03-01

    Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.

  11. Self-gravitating strings in 2+1 dimensions

    NASA Astrophysics Data System (ADS)

    Ben-Menahem, Shahar

    1993-05-01

    We present a family of classical spacetimes in 2+1 dimensions. Such a spacetime is produced by a Nambu-Goto self-gravitating string. Because of the special properties of three-dimensional gravity, the metric is completely described as a Minkowski space with two identified world sheets. In the flat limit, the standard string is recovered. The formalism is developed for an open string with massive end points, but applies to other boundary conditions as well. We consider another limit, where the string tension vanishes in geometrical units but the end masses produce finite deficit angles. In this limit, our open string reduces to the free-masses solution of Gott, which possesses closed timelike curves when the relative motion of the two masses is sufficiently rapid. It is shown that the induced world sheet Liouville mode obeys (-classically)- a sinh- or cosh-Gordon differential equation, which reduces to the Liouville equation in the flat limit. A quadratic-action formulation of this system is presented. The possibility and significance of quantizing the self-gravitating string is discussed.

  12. The illusive sound of a Bundengan string

    NASA Astrophysics Data System (ADS)

    Parikesit, Gea O. F.; Kusumaningtyas, Indraswari

    2017-09-01

    The acoustics of a vibrating string is frequently used as a simple example of how physics can be applied in the field of art. In this paper we describe a simple experiment and analysis using a clipped string. This experiment can generate scientific curiosity among students because the sound generated by the string seem surprising to our senses. The first surprise comes from the gong-like sounds produced by the string, which we usually associate with metallic instruments rather than string instruments. The second surprise comes from the fact that when we shift the clip we perceive an increase of pitch, even though the measured value of the frequency with the maximum amplitude is actually decreased. We use high-speed video recording as well as audio spectral analysis to elucidate the physics behind these two surprises. A set of student activities is prepared to help them follow up their curiosity. Students can make their own clipped string, which is found in Indonesia in an instrument called Bundengan, by setting up their own prepared piano as invented by John Cage.

  13. Nonribosomal biosynthesis of backbone-modified peptides

    NASA Astrophysics Data System (ADS)

    Niquille, David L.; Hansen, Douglas A.; Mori, Takahiro; Fercher, David; Kries, Hajo; Hilvert, Donald

    2018-03-01

    Biosynthetic modification of nonribosomal peptide backbones represents a potentially powerful strategy to modulate the structure and properties of an important class of therapeutics. Using a high-throughput assay for catalytic activity, we show here that an L-Phe-specific module of an archetypal nonribosomal peptide synthetase can be reprogrammed to accept and process the backbone-modified amino acid (S)-β-Phe with near-native specificity and efficiency. A co-crystal structure with a non-hydrolysable aminoacyl-AMP analogue reveals the origins of the 40,000-fold α/β-specificity switch, illuminating subtle but precise remodelling of the active site. When the engineered catalyst was paired with downstream module(s), (S)-β-Phe-containing peptides were produced at preparative scale in vitro (~1 mmol) and high titres in vivo (~100 mg l-1), highlighting the potential of biosynthetic pathway engineering for the construction of novel nonribosomal β-frameworks.

  14. String solutions in spherically-symmetric f(R) gravity vacuum

    NASA Astrophysics Data System (ADS)

    Dil, Emre

    Dynamical evolution of the cosmic string in a spherically symmetric f(R) gravity vacuum is studied for a closed and straight string. We first set the background spacetime metric for a constant curvature scalar R = R0, and obtain the Killing fields for it. Using the standard gauge coordinates and constraints for both closed and straight strings, we present the equation of motions and find the solutions of them. We then analyze the dynamics of the string by studying the behavior of the string radius and periastron radius, with respect to both proper time and azimuthal angle, for various values of f(R) functions. Consequently, we conclude that the value of f(R) dramatically affects the closed string collapse time and the straight string angular deviation.

  15. Deforming baryons into confining strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartnoll, Sean A.; Portugues, Ruben

    2004-09-15

    We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in N=1 gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G{sub 2} holonomy M theory background. The relation between these deformed baryons and confining strings is not as straightforward.

  16. Formation of Electron Strings in Narrow Band Polar Semiconductors

    NASA Astrophysics Data System (ADS)

    Kusmartsev, F. V.

    2000-01-01

    We show that linear electron strings may arise in polar semiconductors. A single string consists of M spinless fermions trapped by an extended polarization well of a cigar shape. Inside the string the particles are free although they interact with each other via Coulomb forces. The strings arise as a result of an electronic phase separation associated with an instability of small adiabatic polarons. We have found the length of the string which depends on dielectric constants of semiconductors. The appearance of these electron strings may have an impact on the effect of stripe formation observed in a variety of high- Tc experiments.

  17. The Illusive Sound of a Bundengan String

    ERIC Educational Resources Information Center

    Parikesit, Gea O. F.; Kusumaningtyas, Indraswari

    2017-01-01

    The acoustics of a vibrating string is frequently used as a simple example of how physics can be applied in the field of art. In this paper we describe a simple experiment and analysis using a clipped string. This experiment can generate scientific curiosity among students because the sound generated by the string seem surprising to our senses.…

  18. Reconstruction of piano hammer force from string velocity.

    PubMed

    Chaigne, Antoine

    2016-11-01

    A method is presented for reconstructing piano hammer forces through appropriate filtering of the measured string velocity. The filter design is based on the analysis of the pulses generated by the hammer blow and propagating along the string. In the five lowest octaves, the hammer force is reconstructed by considering two waves only: the incoming wave from the hammer and its first reflection at the front end. For the higher notes, four- or eight-wave schemes must be considered. The theory is validated on simulated string velocities by comparing imposed and reconstructed forces. The simulations are based on a nonlinear damped stiff string model previously developed by Chabassier, Chaigne, and Joly [J. Acoust. Soc. Am. 134(1), 648-665 (2013)]. The influence of absorption, dispersion, and amplitude of the string waves on the quality of the reconstruction is discussed. Finally, the method is applied to real piano strings. The measured string velocity is compared to the simulated velocity excited by the reconstructed force, showing a high degree of accuracy. A number of simulations are compared to simulated strings excited by a force derived from measurements of mass and acceleration of the hammer head. One application to an historic piano is also presented.

  19. Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone.

    PubMed

    Gui, Meng; Song, Juyi; Zhang, Lu; Wang, Shun; Wu, Ruiyun; Ma, Changwei; Li, Pinglan

    2015-06-05

    Chondroitin sulfates (CSs) were extracted from sturgeon skull and backbone, and their chemical composition, anticoagulant, anti-platelet and thrombolysis activities were evaluated. The average molecular weights of CS from sturgeon skull and backbone were 38.5kDa and 49.2kDa, respectively. Disaccharide analysis indicated that the sturgeon backbone CS was primarily composed of disaccharide monosulfated in position four of the GalNAc (37.8%) and disaccharide monosulfated in position six of the GalNAc (59.6%) while sturgeon skull CS was primarily composed of nonsulfated disaccharide (74.2%). Sturgeon backbone CS showed stronger antithrombotic effect than sturgeon skull CS. Sturgeon backbone CS could significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT), inhibited ADP-induced platelet aggregation and dissolved platelet plasma clots in vitro. The results suggested that sturgeon backbone CS can be explored as a functional food with antithrombotic function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Hydraulic drill string breakdown and bleed off unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeringue, F.J. Jr.

    1987-02-17

    An apparatus is described for use within an oil well rig for decoupling a tubing string into pipe segments comprising, in combination: rotary tong means for applying an unthreading torque to a first, upper pipe segment within the tubing string; torque resisting means for securing a second, lower pipe segment within the tubing string against the unthreading torque; containing means, intermediate the rotary tong means and the torque resisting means, enclosing a threaded joint of the tubing string, adapted for containing pressurized gases, liquids, and particulates, released from the threaded joint upon the decoupling; fluid communicating means for allowing fluidmore » communication between the containing means and a receiving point adapted for receiving the pressurized gases, liquids, and particulates; means for moving the rotary tong means, the torque resisting means and the containing means between a closed, engaging position with the tubing string and an open position; and means for horizontally moving the rotary tong means, the torque resisting means and the containing means between a position adjacent the tubing string and a position away from the tubing string.« less

  1. Pinching parameters for open (super) strings

    NASA Astrophysics Data System (ADS)

    Playle, Sam; Sciuto, Stefano

    2018-02-01

    We present an approach to the parametrization of (super) Schottky space obtained by sewing together three-punctured discs with strips. Different cubic ribbon graphs classify distinct sets of pinching parameters; we show how they are mapped onto each other. The parametrization is particularly well-suited to describing the region within (super) moduli space where open bosonic or Neveu-Schwarz string propagators become very long and thin, which dominates the IR behaviour of string theories. We show how worldsheet objects such as the Green's function converge to graph theoretic objects such as the Symanzik polynomials in the α ' → 0 limit, allowing us to see how string theory reproduces the sum over Feynman graphs. The (super) string measure takes on a simple and elegant form when expressed in terms of these parameters.

  2. Informing New String Programmes: Lessons Learned from an Australian Experience

    ERIC Educational Resources Information Center

    Murphy, Fintan; Rickard, Nikki; Gill, Anneliese; Grimmett, Helen

    2011-01-01

    Although there are many examples of notable string programmes there has been relatively little comparative analysis of these programmes. This paper examines three benchmark string programmes (The University of Illinois String Project, The Tower Hamlets String Teaching Project and Colourstrings) alongside Music4All, an innovative string programme…

  3. K-theoretic aspects of string theory dualities

    NASA Astrophysics Data System (ADS)

    Mendez-Diez, Stefan Milo

    String theory is a a physical field theory in which point particles are replaced by 1-manifolds propagating in time, called strings. The 2-manifold representing the time evolution of a string is called the string worldsheet. Strings can be either closed (meaning their worldsheets are closed surfaces) or open (meaning their worldsheets have boundary). A D-brane is a submanifold of the spacetime manifold on which string endpoints are constrained to lie. There are five different string theories that have supersymmetry, and they are all related by various dualities. This dissertation will review how D-branes are classified by K-theory. We will then explore the K-theoretic aspects of a hypothesized duality between the type I theory compactified on a 4-torus and the type IIA theory compactified on a K3 surface, by looking at a certain blow down of the singular limit of K3. This dissertation concludes by classifying D-branes on the type II orientifold Tn/Z2 when the Z2 action is multiplication by -1 and the H-flux is trivial. We find that classifying D-branes on the singular limit of K3, T4/Z2 by equivariant K-theory agrees with the classification of D-branes on a smooth K3 surface by ordinary K-theory.

  4. Modeling 15N NMR chemical shift changes in protein backbone with pressure

    NASA Astrophysics Data System (ADS)

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-01

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.

  5. The Physics of "String Passing through Ice"

    ERIC Educational Resources Information Center

    Mohazzabi, Pirooz

    2011-01-01

    One of the oldest yet interesting experiments related to heat and thermodynamics is placing a string on a block of ice and hanging two masses from the ends of the string. Sometime later, it is discovered that the string has passed through the ice without cutting it in half. A simple explanation of this effect is that the pressure caused by the…

  6. Analytical Solutions to Backreaction on Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Wachter, Jeremy M.

    2017-08-01

    We present analytical studies of gravitational and electromagnetic backreaction on cosmic strings. For oscillating loops of cosmic string, we present a general argument for how kinks must change; additionally, we apply this general argument to the geometrically simple case of the Garfinkle-Vachaspati loop. Our results suggest that the formation of cusps on loops is delayed, and so we should expect fewer cuspy signatures to be seen in gravitational wave observations. Electromagnetic backreaction we show to reduce currents on a string at least as rapidly as necessary to avoid a paradox, and currents induced on a superconducting straight string will be asymptotically reduced to zero.

  7. Self-Gravitating Fundamental Strings and Black Holes

    NASA Technical Reports Server (NTRS)

    Damour, T.; Veneziano, G.

    1999-01-01

    The configuration of typically highly excited M much greater than M(sub s) which is approximately equal to alpha(prime) to the 1/2 power string states is considered as the string coupling g is adiabatically increased. The size distribution of very massive single string states is studied and the mass shift, due to a long-range gravitational, dilatonic, and axionic attraction, is estimated.

  8. PhD Thesis: String theory in the early universe

    NASA Astrophysics Data System (ADS)

    Gwyn, Rhiannon

    2009-11-01

    The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.

  9. Thermodynamical string fragmentation

    NASA Astrophysics Data System (ADS)

    Fischer, Nadine; Sjöstrand, Torbjörn

    2017-01-01

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  10. Self-similar motion of a Nambu-Goto string

    NASA Astrophysics Data System (ADS)

    Igata, Takahisa; Houri, Tsuyoshi; Harada, Tomohiro

    2016-09-01

    We study the self-similar motion of a string in a self-similar spacetime by introducing the concept of a self-similar string, which is defined as the world sheet to which a homothetic vector field is tangent. It is shown that in Nambu-Goto theory, the equations of motion for a self-similar string reduce to those for a particle. Moreover, under certain conditions such as the hypersurface orthogonality of the homothetic vector field, the equations of motion for a self-similar string simplify to the geodesic equations on a (pseudo)Riemannian space. As a concrete example, we investigate a self-similar Nambu-Goto string in a spatially flat Friedmann-Lemaître-Robertson-Walker expanding universe with self-similarity and obtain solutions of open and closed strings, which have various nontrivial configurations depending on the rate of the cosmic expansion. For instance, we obtain a circular solution that evolves linearly in the cosmic time while keeping its configuration by the balance between the effects of the cosmic expansion and string tension. We also show the instability for linear radial perturbation of the circular solutions.

  11. Model of directed lines for square ice with second-neighbor and third-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Kirov, Mikhail V.

    2018-02-01

    The investigation of the properties of nanoconfined systems is one of the most rapidly developing scientific fields. Recently it has been established that water monolayer between two graphene sheets forms square ice. Because of the energetic disadvantage, in the structure of the square ice there are no longitudinally arranged molecules. The result is that the structure is formed by unidirectional straight-lines of hydrogen bonds only. A simple but accurate discrete model of square ice with second-neighbor and third-neighbor interactions is proposed. According to this model, the ground state includes all configurations which do not contain three neighboring unidirectional chains of hydrogen bonds. Each triplet increases the energy by the same value. This new model differs from an analogous model with long-range interactions where in the ground state all neighboring chains are antiparallel. The new model is suitable for the corresponding system of point electric (and magnetic) dipoles on the square lattice. It allows separately estimating the different contributions to the total binding energy and helps to understand the properties of infinite monolayers and finite nanostructures. Calculations of the binding energy for square ice and for point dipole system are performed using the packages TINKER and LAMMPS.

  12. Note on tachyon actions in string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Headrick, Matthew

    2009-02-15

    A number of spacetime fields in string theory (notably the metric, dilaton, bosonic and type 0 bulk closed-string tachyon, and bosonic open-string tachyon) have the following property: whenever the spacetime field configuration factorizes in an appropriate sense, the matter sector of the world-sheet theory factorizes into a tensor product of two decoupled theories. Since the beta functions for such a product theory necessarily also factorize, this property strongly constrains the form of the spacetime action encoding those beta functions. We show that this constraint alone--without needing actually to compute any of the beta functions--is sufficient to fix the form ofmore » the two-derivative action for the metric-dilaton system, as well as the potential for the bosonic open-string tachyon. We also show that no action consistent with this constraint exists for the closed-string tachyon coupled to the metric and dilaton.« less

  13. Pitch glide effect induced by a nonlinear string-barrier interaction

    NASA Astrophysics Data System (ADS)

    Kartofelev, Dmitri; Stulov, Anatoli; Välimäki, Vesa

    2015-10-01

    Interactions of a vibrating string with its supports and other spatially distributed barriers play a significant role in the physics of many stringed musical instruments. It is well known that the tone of the string vibrations is determined by the string supports, and that the boundary conditions of the string termination may cause a short-lasting initial fundamental frequency shifting. Generally, this phenomenon is associated with the nonlinear modulation of the stiff string tension. The aim of this paper is to study the initial frequency glide phenomenon that is induced only by the string-barrier interaction, apart from other possible physical causes, and without the interfering effects of dissipation and dispersion. From a numerical simulation perspective, this highly nonlinear problem may present various difficulties, not the least of which is the risk of numerical instability. We propose a numerically stable and a purely kinematic model of the string-barrier interaction, which is based on the travelling wave solution of the ideal string vibration. The model is capable of reproducing the motion of the vibrating string exhibiting the initial fundamental frequency glide, which is caused solely by the complex nonlinear interaction of the string with its termination. The results presented in this paper can expand our knowledge and understanding of the timbre evolution and the physical principles of sound generation of numerous stringed instruments, such as lutes called the tambura, sitar and biwa.

  14. Energy in a String Wave

    ERIC Educational Resources Information Center

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed…

  15. Quantum vacuum interaction between two cosmic strings revisited

    NASA Astrophysics Data System (ADS)

    Muñoz-Castañeda, J. M.; Bordag, M.

    2014-03-01

    We reconsider the quantum vacuum interaction energy between two straight parallel cosmic strings. This problem was discussed several times in an approach treating both strings perturbatively and treating only one perturbatively. Here we point out that a simplifying assumption made by Bordag [Ann. Phys. (Berlin) 47, 93 (1990).] can be justified and show that, despite the global character of the background, the perturbative approach delivers a correct result. We consider the applicability of the scattering methods, developed in the past decade for the Casimir effect, for the cosmic string and find it not applicable. We calculate the scattering T-operator on one string. Finally, we consider the vacuum interaction of two strings when each carries a two-dimensional delta function potential.

  16. Two Studies of Pitch in String Instrument Vibrato: Perception and Pitch Matching Responses of University and High School String Players

    ERIC Educational Resources Information Center

    Geringer, John M.; MacLeod, Rebecca B.; Ellis, Julia C.

    2014-01-01

    We investigated pitch perception of string vibrato tones among string players in two separate studies. In both studies we used tones of acoustic instruments (violin and cello) as stimuli. In the first, we asked 192 high school and university string players to listen to a series of tonal pairs: one tone of each pair was performed with vibrato and…

  17. String tightening as a self-organizing phenomenon.

    PubMed

    Banerjee, Bonny

    2007-09-01

    The phenomenon of self-organization has been of special interest to the neural network community throughout the last couple of decades. In this paper, we study a variant of the self-organizing map (SOM) that models the phenomenon of self-organization of the particles forming a string when the string is tightened from one or both of its ends. The proposed variant, called the string tightening self-organizing neural network (STON), can be used to solve certain practical problems, such as computation of shortest homotopic paths, smoothing paths to avoid sharp turns, computation of convex hull, etc. These problems are of considerable interest in computational geometry, robotics path-planning, artificial intelligence (AI) (diagrammatic reasoning), very large scale integration (VLSI) routing, and geographical information systems. Given a set of obstacles and a string with two fixed terminal points in a 2-D space, the STON model continuously tightens the given string until the unique shortest configuration in terms of the Euclidean metric is reached. The STON minimizes the total length of a string on convergence by dynamically creating and selecting feature vectors in a competitive manner. Proof of correctness of this anytime algorithm and experimental results obtained by its deployment have been presented in the paper.

  18. On Atwood's Machine with a Nonzero Mass String

    NASA Astrophysics Data System (ADS)

    Tarnopolski, Mariusz

    2015-11-01

    Let us consider a classical high school exercise concerning two weights on a pulley and a string, illustrated in Fig. 1(a). A system like this is called an Atwood's machine and was invented by George Atwood in 1784 as a laboratory experiment to verify the mechanical laws of motion with constant acceleration. Nowadays, Atwood's machine is used for didactic purposes to demonstrate uniformly accelerated motion with acceleration arbitrarily smaller than the gravitational acceleration g. The simplest case is with a massless and frictionless pulley and a massless string. With little effort one can include the mass of the pulley in calculations. The mass of a string has been incorporated previously in some considerations and experiments. These include treatments focusing on friction, justifying the assumption of a massless string, incorporating variations in Earth's gravitational field, comparing the calculated value of g based on a simple experiment, taking the mass of the string into account in such a way that the resulting acceleration is constant, or in one exception solely focusing on a heavy string, but with a slightly different approach. Here we wish to provide i) a derivation of the acceleration and position dependence on the weights' masses based purely on basic dynamical reasoning similar to the conventional version of the exercise, and ii) focus on the influence of the string's linear density, or equivalently its mass, on the outcome compared to a massless string case.

  19. Free field theory as a string theory?

    NASA Astrophysics Data System (ADS)

    Gopakumar, Rajesh

    2004-11-01

    An approach to systematically implement open-closed string duality for free large N gauge theories is summarised. We show how the relevant closed string moduli space emerges from a reorganisation of the Feynman diagrams contributing to free field correlators. We also indicate why the resulting integrand on moduli space has the right features to be that of a string theory on AdS. To cite this article: R. Gopakumar, C. R. Physique 5 (2004).

  20. CMB temperature bispectrum induced by cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-01

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay ℓ-6 for large multipole ℓ. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaître-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At ℓ˜500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |fNLloc|≃103, if the strings contribute about 10% of the temperature power spectrum at ℓ=10. Current bounds on fNL are not derived using cosmic string bispectrum templates, and so our fNL estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.

  1. Twistor-strings and gravity tree amplitudes

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Mason, Lionel

    2013-04-01

    Recently we discussed how Einstein supergravity tree amplitudes might be obtained from the original Witten and Berkovits twistor-string theory when external conformal gravitons are restricted to be Einstein gravitons. Here we obtain a more systematic understanding of the relationship between conformal and Einstein gravity amplitudes in that twistor-string theory. We show that although it does not in general yield Einstein amplitudes, we can nevertheless obtain some partial twistor-string interpretation of the remarkable formulae recently been found by Hodges and generalized to all tree amplitudes by Cachazo and Skinner. The Hodges matrix and its higher degree generalizations encode the world sheet correlators of the twistor string. These matrices control both Einstein amplitudes and those of the conformal gravity arising from the Witten and Berkovits twistor-string. Amplitudes in the latter case arise from products of the diagonal elements of the generalized Hodges matrices and reduced determinants give the former. The reduced determinants arise if the contractions in the worldsheet correlator are restricted to form connected trees at MHV. The (generalized) Hodges matrices arise as weighted Laplacian matrices for the graph of possible contractions in the correlators and the reduced determinants of these weighted Laplacian matrices give the sum of the connected tree contributions by an extension of the matrix-tree theorem.

  2. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    NASA Astrophysics Data System (ADS)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  3. Hidden Symmetries in String Theory

    NASA Astrophysics Data System (ADS)

    Chervonyi, Iurii

    In this thesis we study hidden symmetries within the framework of string theory. Symmetries play a very important role in physics: they lead to drastic simplifications, which allow one to compute various physical quantities without relying on perturbative techniques. There are two kinds of hidden symmetries investigated in this work: the first type is associated with dynamics of quantum fields and the second type is related to integrability of strings on various backgrounds. Integrability is a remarkable property of some theories that allows one to determine all dynamical properties of the system using purely analytical methods. The goals of this thesis are twofold: extension of hidden symmetries known in General Relativity to stringy backgrounds in higher dimensions and construction of new integrable string theories. In the context of the first goal we study hidden symmetries of stringy backgrounds, with and without supersymmetry. For supersymmetric geometries produced by D-branes we identify the backgrounds with solvable equations for geodesics, which can potentially give rise to integrable string theories. Relaxing the requirement of supersymmetry, we also study charged black holes in higher dimensions and identify their hidden symmetries encoded in so-called Killing(-Yano) tensors. We construct the explicit form of the Killing(-Yano) tensors for the charged rotating black hole in arbitrary number of dimensions, study behavior of such tensors under string dualities, and use the analysis of hidden symmetries to explain why exact solutions for black rings (black holes with non-spherical event horizons) in more than five dimensions remain elusive. As a byproduct we identify the standard parameterization of AdSp x Sq backgrounds with elliptic coordinates on a flat base. The second goal of this work is construction of new integrable string theories by applying continuous deformations of known examples. We use the recent developments called (generalized) lambda

  4. Exact sum rules for inhomogeneous strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amore, Paolo, E-mail: paolo.amore@gmail.com

    2013-11-15

    We derive explicit expressions for the sum rules of the eigenvalues of inhomogeneous strings with arbitrary density and with different boundary conditions. We show that the sum rule of order N may be obtained in terms of a diagrammatic expansion, with (N−1)!/2 independent diagrams. These sum rules are used to derive upper and lower bounds to the energy of the fundamental mode of an inhomogeneous string; we also show that it is possible to improve these approximations taking into account the asymptotic behavior of the spectrum and applying the Shanks transformation to the sequence of approximations obtained to the differentmore » orders. We discuss three applications of these results. -- Highlights: •We derive an explicit expression for the sum rules of an inhomogeneous string. •We obtain a diagrammatic representation for the sum rules of a given order. •We obtain precise bounds on the lowest eigenvalue of the string.« less

  5. Adventures in heterotic string phenomenology

    NASA Astrophysics Data System (ADS)

    Dundee, George Benjamin

    In this Dissertation, we consider three topics in the study of effective field theories derived from orbifold compactifications of the heterotic string. In Chapter 2 we provide a primer for those interested in building models based on orbifold compactifications of the heterotic string. In Chapter 3, we analyze gauge coupling unification in the context of heterotic strings on anisotropic orbifolds. This construction is very much analogous to effective five dimensional orbifold GUT field theories. Our analysis assumes three fundamental scales, the string scale, M S, a compactification scale, MC, and a mass scale for some of the vector-like exotics, MEX; the other exotics are assumed to get mass at MS. In the particular models analyzed, we show that gauge coupling unification is not possible with MEX = M C and in fact we require MEX << MC ˜ 3 x 1016 GeV. We find that about 10% of the parameter space has a proton lifetime (from dimension six gauge exchange) 1033 yr ≲ tau(p → pi0e+) ≲ 1036 yr, which is potentially observable by the next generation of proton decay experiments. 80% of the parameter space gives proton lifetimes below Super-K bounds. In Chapter 4, we examine the relationship between the string coupling constant, gSTRING, and the grand unified gauge coupling constant, alphaGUT, in the models of Chapter 3. We find that the requirement that the theory be perturbative provides a non-trivial constraint on these models. Interestingly, there is a correlation between the proton decay rate (due to dimension six operators) and the string coupling constant in this class of models. Finally, we make some comments concerning the extension of these models to the six (and higher) dimensional case. In Chapter 5, we discuss the issues of supersymmetry breaking and moduli stabilization within the context of E8 ⊗ E8 heterotic orbifold constructions and, in particular, we focus on the class of "mini-landscape" models. These theories contain a non-Abelian hidden gauge

  6. String Fragmentation Model in Space Radiation Problems

    NASA Technical Reports Server (NTRS)

    Tang, Alfred; Johnson, Eloise (Editor); Norbury, John W.; Tripathi, R. K.

    2002-01-01

    String fragmentation models such as the Lund Model fit experimental particle production cross sections very well in the high-energy limit. This paper gives an introduction of the massless relativistic string in the Lund Model and shows how it can be modified with a simple assumption to produce formulas for meson production cross sections for space radiation research. The results of the string model are compared with inclusive pion production data from proton-proton collision experiments.

  7. Modeling {sup 15}N NMR chemical shift changes in protein backbone with pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Penna, Giovanni, E-mail: glapenna@iccom.cnr.it; Mori, Yoshiharu, E-mail: ymori@ims.ac.jp; Kitahara, Ryo, E-mail: ryo@ph.ritsumei.ac.jp

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change inmore » the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.« less

  8. Intrinsic non-commutativity of closed string theory

    DOE PAGES

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2017-09-14

    We show that the proper interpretation of the cocycle operators appearing in the physical vertex operators of compactified strings is that the closed string target is noncommutative. We track down the appearance of this non-commutativity to the Polyakov action of the at closed string in the presence of translational monodromies (i.e., windings). Here, in view of the unexpected nature of this result, we present detailed calculations from a variety of points of view, including a careful understanding of the consequences of mutual locality in the vertex operator algebra, as well as a detailed analysis of the symplectic structure of themore » Polyakov string. Finally, we also underscore why this non-commutativity was not emphasized previously in the existing literature. This non-commutativity can be thought of as a central extension of the zero-mode operator algebra, an effect set by the string length scale $-$ it is present even in trivial backgrounds. Clearly, this result indicates that the α'→0 limit is more subtle than usually assumed.« less

  9. Cosmological density fluctuations produced by vacuum strings

    NASA Astrophysics Data System (ADS)

    Vilenkin, A.

    1981-04-01

    Consideration is given to the possible role of vacuum domain strings produced in the grand unification phase transition in the early universe in the generation of the density fluctuations giving rise to galaxies. The cosmological evolution of the strings formed in the grand unification phase transition is analyzed, with attention given to possible mechanisms for the damping out of oscillations produced by tension in convoluted strings and closed loops. The cosmological density fluctuations introduced by infinite strings and closed loops smaller than the horizon are then shown to be capable of giving rise to mass condensations on a scale of approximately 10 to the 9th solar masses at the time of the decoupling of radiation from matter, around which the galaxies condense. Differences between the present theory and that suggested by Zel'dovich (1980) are pointed out, and it is noted that string formation at the grand unification phase transition is possible only if the manifold of the degenerate vacua of the gauge theory is not simply connected.

  10. Intrinsic non-commutativity of closed string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    We show that the proper interpretation of the cocycle operators appearing in the physical vertex operators of compactified strings is that the closed string target is noncommutative. We track down the appearance of this non-commutativity to the Polyakov action of the at closed string in the presence of translational monodromies (i.e., windings). Here, in view of the unexpected nature of this result, we present detailed calculations from a variety of points of view, including a careful understanding of the consequences of mutual locality in the vertex operator algebra, as well as a detailed analysis of the symplectic structure of themore » Polyakov string. Finally, we also underscore why this non-commutativity was not emphasized previously in the existing literature. This non-commutativity can be thought of as a central extension of the zero-mode operator algebra, an effect set by the string length scale $-$ it is present even in trivial backgrounds. Clearly, this result indicates that the α'→0 limit is more subtle than usually assumed.« less

  11. Ising lattices with +/-J second-nearest-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Ramírez-Pastor, A. J.; Nieto, F.; Vogel, E. E.

    1997-06-01

    Second-nearest-neighbor interactions are added to the usual nearest-neighbor Ising Hamiltonian for square lattices in different ways. The starting point is a square lattice where half the nearest-neighbor interactions are ferromagnetic and the other half of the bonds are antiferromagnetic. Then, second-nearest-neighbor interactions can also be assigned randomly or in a variety of causal manners determined by the nearest-neighbor interactions. In the present paper we consider three causal and three random ways of assigning second-nearest-neighbor exchange interactions. Several ground-state properties are then calculated for each of these lattices:energy per bond ɛg, site correlation parameter pg, maximal magnetization μg, and fraction of unfrustrated bonds hg. A set of 500 samples is considered for each size N (number of spins) and array (way of distributing the N spins). The properties of the original lattices with only nearest-neighbor interactions are already known, which allows realizing the effect of the additional interactions. We also include cubic lattices to discuss the distinction between coordination number and dimensionality. Comparison with results for triangular and honeycomb lattices is done at specific points.

  12. Energy and Momentum Transport in String Waves

    ERIC Educational Resources Information Center

    Juenker, D. W.

    1976-01-01

    Formulas are derived for the energy, momentum, and angular momentum transmitted by waves of arbitrary shape in an inextensible string by pure transverse waves in a string using Tait's procedure. (Author/CP)

  13. Scattering of Cosmic Strings by Black Holes:. Loop Formation

    NASA Astrophysics Data System (ADS)

    Dubath, Florian; Sakellariadou, Mairi; Viallet, Claude Michel

    We study the deformation of a long cosmic string by a nearby rotating black hole. We examine whether the deformation of a cosmic string, induced by the gravitational field of a Kerr black hole, may lead to the formation of a string loop. The segment of the string which enters the ergo-sphere of a rotating black hole gets deformed and, if it is sufficiently twisted, it can self-intersect, chopping off a loop. We find that the formation of a loop, via such a mechanism, is a rare event. It will only arise in a small region of the collision phase space, which depends on the string velocity, the impact parameter and the black hole angular momentum. We conclude that, generically, a long cosmic string is simply scattered, or captured, by a nearby rotating black hole.

  14. Charged string loops in Reissner-Nordström black hole background

    NASA Astrophysics Data System (ADS)

    Oteev, Tursinbay; Kološ, Martin; Stuchlík, Zdeněk

    2018-03-01

    We study the motion of current carrying charged string loops in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.

  15. Exploring the spectrum of regularized bosonic string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambjørn, J., E-mail: ambjorn@nbi.dk; Makeenko, Y., E-mail: makeenko@nbi.dk

    2015-03-15

    We implement a UV regularization of the bosonic string by truncating its mode expansion and keeping the regularized theory “as diffeomorphism invariant as possible.” We compute the regularized determinant of the 2d Laplacian for the closed string winding around a compact dimension, obtaining the effective action in this way. The minimization of the effective action reliably determines the energy of the string ground state for a long string and/or for a large number of space-time dimensions. We discuss the possibility of a scaling limit when the cutoff is taken to infinity.

  16. A note on closed-string interactions a la witten

    NASA Astrophysics Data System (ADS)

    Romans, L. J.

    1987-08-01

    We consider the problem of formulating a field theory of interacting closed strings analogous to Witten's open-string field theory. Two natural candidates have been suggested for an off-shell three-string interaction vertex: one scheme involves a cyclic geometric overlap in spacetime, while the other is obtained by ``stuttering'' the Fock-space realization of the open-string vertex. We demonstrate that these two approaches are in fact equivalent, utilizing the operator formalism as developed to describe Witten's theory. Implications of this result for the construction of closed-string theories are briefly discussed. Address after August 1, 1987: Department of Physics, University of Southern California, Los Angeles, CA 90089, USA.

  17. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness (h)

    PubMed Central

    2017-01-01

    The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom—the backbone dihedral angles φ and ψ (Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function of φ and ψ has not been completely described for both cis and trans backbones. Additionally, little intuitive understanding is available about a peptide’s conformation simply from knowing the φ and ψ values of a peptide (e.g., is the regular peptide defined by φ = ψ =  − 100°  left-handed or right-handed?). This report provides a new metric for backbone handedness (h) based on interpreting a peptide backbone as a helix with axial displacement d and angular displacement θ, both of which are derived from a peptide backbone’s internal coordinates, especially dihedral angles φ, ψ and ω. In particular, h equals sin(θ)d∕|d|, with range [−1, 1] and negative (or positive) values indicating left(or right)-handedness. The metric h is used to characterize the handedness of every region of the Ramachandran plot for both cis (ω = 0°) and trans (ω = 180°) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ, ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013), this report presents a new plot based on d and θ that serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone including cis

  18. Acoustic data transmission through a drill string

    DOEpatents

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  19. The confining baryonic Y-strings on the lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakry, Ahmed S.; Chen, Xurong; Zhang, Peng-Ming

    2016-01-22

    In a string picture, the nucleon is conjectured as consisting of a Y-shaped gluonic string ended by constituent quarks. In this proceeding, we summarize our results on revealing the signature of the confining Y-bosonic string in the gluonic profile due to a system of three static quarks on the lattice at finite temperature. The analysis of the action density unveils a background of a filled-Δ distribution. However, we found that these Δ-shaped profiles are comprised of three Y-shaped Gaussian-like flux tubes. The length of the revealed Y-string-like distribution is maximum near the deconfinement point and approaches the geometrical minimal nearmore » the end of the QCD plateau. The action density width profile returns good fits to a baryonic string model for the junction fluctuations at large quark source separation.« less

  20. CMB temperature bispectrum induced by cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-15

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay l{sup -6} for large multipole l. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezedmore » triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaitre-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At l{approx}500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |f{sub NL}{sup loc}|{approx_equal}10{sup 3}, if the strings contribute about 10% of the temperature power spectrum at l=10. Current bounds on f{sub NL} are not derived using cosmic string bispectrum templates, and so our f{sub NL} estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.« less

  1. Improved Tennis Racquets Have Tapered Strings

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    Design concept for better performing tennis racquet. Essence of concept to taper strings in such way as to shift center of percussion (also called "sweet spot") toward the toe (outer end of racquet, farthest from player's hand). In addition to increasing power on serves, also improves player's control and feel of racquet in player's hand. Racquet less likely to twist in player's hand on off-center shots. Important element of better feel is better absorption of vibrations; especially for players having chronic arm problems. String material nylon, animal gut, or other naturally or artifically spun threads. String can be attached to conventional racquet frame.

  2. Quantum fluctuations of the superconducting cosmic string

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng

    1987-01-01

    Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.

  3. A Computer String-Grammar of English.

    ERIC Educational Resources Information Center

    Sager, Naomi

    This volume is the fourth in a series of detailed reports on a working computer program for the syntactic analysis of English sentences into their component strings. The report (1) records the considerations involved in various decisions among alternative grammatical formulations and presents the word-subclasses, the linguistic strings, etc., for…

  4. Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azoitei, Mihai L.; Correia, Bruno E.; Ban, Yih-En Andrew

    2012-02-07

    The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.

  5. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajari, Timir; Vegt, Nico F. A. van der, E-mail: vandervegt@csi.tu-darmstadt.de

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvationmore » free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar

  6. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    NASA Astrophysics Data System (ADS)

    Hajari, Timir; van der Vegt, Nico F. A.

    2015-04-01

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side

  7. Fitting cosmic microwave background data with cosmic strings and inflation.

    PubMed

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2008-01-18

    We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).

  8. A group theoretic method for string loop diagram

    NASA Astrophysics Data System (ADS)

    Neveu, A.; West, P.

    1987-08-01

    The new approach to arbitrary string scattering proposed by the authors is used to compute the planar tadpole operator, including its measure, for the open bosonic string. The Virasoro gauge identities play a crucial role and are found to contain in general anomalous terms for open strings. Permanent address: Mathematics Department, King's College, London WC2R 2LS, UK.

  9. Probing the string winding sector

    NASA Astrophysics Data System (ADS)

    Aldazabal, Gerardo; Mayo, Martín; Nuñez, Carmen

    2017-03-01

    We probe a slice of the massive winding sector of bosonic string theory from toroidal compactifications of Double Field Theory (DFT). This string subsector corresponds to states containing one left and one right moving oscillators. We perform a generalized Kaluza Klein compactification of DFT on generic 2 n-dimensional toroidal constant backgrounds and show that, up to third order in fluctuations, the theory coincides with the corresponding effective theory of the bosonic string compactified on n-dimensional toroidal constant backgrounds, obtained from three-point amplitudes. The comparison between both theories is facilitated by noticing that generalized diffeomorphisms in DFT allow to fix generalized harmonic gauge conditions that help in identifying the physical degrees of freedom. These conditions manifest as conformal anomaly cancellation requirements on the string theory side. The explicit expression for the gauge invariant effective action containing the physical massless sector (gravity+antisymmetric+gauge+ scalar fields) coupled to towers of generalized Kaluza Klein massive states (corresponding to compact momentum and winding modes) is found. The action acquires a very compact form when written in terms of fields carrying O( n, n) indices, and is explicitly T-duality invariant. The global algebra associated to the generalized Kaluza Klein compactification is discussed.

  10. Characterization of binary string statistics for syntactic landmine detection

    NASA Astrophysics Data System (ADS)

    Nasif, Ahmed O.; Mark, Brian L.; Hintz, Kenneth J.

    2011-06-01

    Syntactic landmine detection has been proposed to detect and classify non-metallic landmines using ground penetrating radar (GPR). In this approach, the GPR return is processed to extract characteristic binary strings for landmine and clutter discrimination. In our previous work, we discussed the preprocessing methodology by which the amplitude information of the GPR A-scan signal can be effectively converted into binary strings, which identify the impedance discontinuities in the signal. In this work, we study the statistical properties of the binary string space. In particular, we develop a Markov chain model to characterize the observed bit sequence of the binary strings. The state is defined as the number of consecutive zeros between two ones in the binarized A-scans. Since the strings are highly sparse (the number of zeros is much greater than the number of ones), defining the state this way leads to fewer number of states compared to the case where each bit is defined as a state. The number of total states is further reduced by quantizing the number of consecutive zeros. In order to identify the correct order of the Markov model, the mean square difference (MSD) between the transition matrices of mine strings and non-mine strings is calculated up to order four using training data. The results show that order one or two maximizes this MSD. The specification of the transition probabilities of the chain can be used to compute the likelihood of any given string. Such a model can be used to identify characteristic landmine strings during the training phase. These developments on modeling and characterizing the string statistics can potentially be part of a real-time landmine detection algorithm that identifies landmine and clutter in an adaptive fashion.

  11. Symbol-String Sensitivity and Children's Reading

    ERIC Educational Resources Information Center

    Pammer, Kristen; Lavis, Ruth; Hansen, Peter; Cornelissen, Piers L.

    2004-01-01

    In this study of primary school children, a novel "symbol-string" task is used to assess sensitivity to the position of briefly presented non-alphabetic but letter-like symbols. The results demonstrate that sensitivity in the symbol-string task explains a unique proportion of the variability in children's contextual reading accuracy. Moreover,…

  12. No-Enclave Percolation Corresponds to Holes in the Cluster Backbone.

    PubMed

    Hu, Hao; Ziff, Robert M; Deng, Youjin

    2016-10-28

    The no-enclave percolation (NEP) model introduced recently by Sheinman et al. can be mapped to a problem of holes within a standard percolation backbone, and numerical measurements of such holes give the same size-distribution exponent τ=1.82(1) as found for the NEP model. An argument is given that τ=1+d_{B}/2≈1.822 for backbone holes, where d_{B} is the backbone dimension. On the other hand, a model of simple holes within a percolation cluster yields τ=1+d_{f}/2=187/96≈1.948, where d_{f} is the fractal dimension of the cluster, and this value is consistent with the experimental results of gel collapse of Sheinman et al., which give τ=1.91(6). This suggests that the gel clusters are of the universality class of percolation cluster holes. Both models give a discontinuous maximum hole size at p_{c}, signifying explosive percolation behavior.

  13. Got 'Em on a String: The Skills, Knowledge and Attributes of Group String Teachers in Queensland

    ERIC Educational Resources Information Center

    Ashton, Graham R.; Klopper, Christopher J.

    2018-01-01

    There appear to be considerable differences in the outcomes of group string teaching programs in Queensland. Some teachers appear to be able to generate, manage, and administrate highly efficacious programs; others seem to experience difficulty transferring the knowledge and skills required for students to become successful string players. As a…

  14. Singing Strings.

    ERIC Educational Resources Information Center

    Riveire, Janine

    1996-01-01

    Recommends singing as an instructional strategy for string and other instrument classes. Maintains that singing familiarizes the student with the music and can serve as an illustrative example of musical techniques. Includes a list of tonal objectives found in repertory songs. Briefly reviews several instructional texts. (MJP)

  15. Inhomogeneous Einstein-Rosen string cosmology

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-08-01

    Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VIh cosmology. The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.

  16. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    PubMed

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  17. Perturbations from cosmic strings in cold dark matter

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1992-01-01

    A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.

  18. Perturbations from cosmic strings in cold dark matter

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1991-01-01

    A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.

  19. Simulation of swimming strings immersed in a viscous fluid flow

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Xi; Sung, Hyung Jin

    2006-11-01

    In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.

  20. String Stability of a Linear Formation Flight Control System

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Ryan, Jack; Hanson, Curtis E.; Parle, James F.

    2002-01-01

    String stability analysis of an autonomous formation flight system was performed using linear and nonlinear simulations. String stability is a measure of how position errors propagate from one vehicle to another in a cascaded system. In the formation flight system considered here, each i(sup th) aircraft uses information from itself and the preceding ((i-1)(sup th)) aircraft to track a commanded relative position. A possible solution for meeting performance requirements with such a system is to allow string instability. This paper explores two results of string instability and outlines analysis techniques for string unstable systems. The three analysis techniques presented here are: linear, nonlinear formation performance, and ride quality. The linear technique was developed from a worst-case scenario and could be applied to the design of a string unstable controller. The nonlinear formation performance and ride quality analysis techniques both use nonlinear formation simulation. Three of the four formation-controller gain-sets analyzed in this paper were limited more by ride quality than by performance. Formations of up to seven aircraft in a cascaded formation could be used in the presence of light gusts with this string unstable system.

  1. Short superstrings and the structure of overlapping strings.

    PubMed

    Armen, C; Stein, C

    1995-01-01

    Given a collection of strings S = [s1,...,sn] over an alphabet sigma, a superstring alpha of S is a string containing each si as a substring, that is, for each i, 1 < or = i < or = n, alpha contains a block of magnitude of si consecutive characters that match si exactly. The shortest superstring problem is the problem of finding a superstring alpha of minimum length. The shortest superstring problem has applications in both computational biology and data compression. The shortest superstring problem is NP-hard (Gallant et al., 1980); in fact, it was recently shown to be MAX SNP-hard (Blum et al., 1994). Given the importance of the applications, several heuristics and approximation algorithms have been proposed. Constant factor approximation algorithms have been given in Blum et al. (1994) (factor of 3), Teng and Yao (1993) (factor of 2 8/9), Czumaj et al. (1994) (factor of 2 5/6), and Kosaraju et al. (1994) (factor of 2 50/63). Informally, the key to any algorithm for the shortest superstring problem is to identify sets of strings with large amounts of similarity, or overlap. Although the previous algorithms and their analyses have grown increasingly sophisticated, they reveal remarkably little about the structure of strings with large amounts of overlap. In this sense, they are solving a more general problem than the one at hand. In this paper, we study the structure of strings with large amounts of overlap and use our understanding to give an algorithm that finds a superstring whose length is no more than 2 3/4 times that of the optimal superstring. Our algorithm runs in O(magnitude of S + n3) time, which matches that of previous algorithms. We prove several interesting properties about short periodic strings, allowing us to answer questions of the following form: Given a string with some periodic structure, characterize all the possible periodic strings that can have a large amount of overlap with the first string.

  2. Merging of multi-string BWTs with applications

    PubMed Central

    Holt, James; McMillan, Leonard

    2014-01-01

    Motivation: The throughput of genomic sequencing has increased to the point that is overrunning the rate of downstream analysis. This, along with the desire to revisit old data, has led to a situation where large quantities of raw, and nearly impenetrable, sequence data are rapidly filling the hard drives of modern biology labs. These datasets can be compressed via a multi-string variant of the Burrows–Wheeler Transform (BWT), which provides the side benefit of searches for arbitrary k-mers within the raw data as well as the ability to reconstitute arbitrary reads as needed. We propose a method for merging such datasets for both increased compression and downstream analysis. Results: We present a novel algorithm that merges multi-string BWTs in O(LCS×N) time where LCS is the length of their longest common substring between any of the inputs, and N is the total length of all inputs combined (number of symbols) using O(N×log2(F)) bits where F is the number of multi-string BWTs merged. This merged multi-string BWT is also shown to have a higher compressibility compared with the input multi-string BWTs separately. Additionally, we explore some uses of a merged multi-string BWT for bioinformatics applications. Availability and implementation: The MSBWT package is available through PyPI with source code located at https://code.google.com/p/msbwt/. Contact: holtjma@cs.unc.edu PMID:25172922

  3. Notes on strings and higher spins

    NASA Astrophysics Data System (ADS)

    Sagnotti, A.

    2013-05-01

    This review is devoted to the intriguing and still largely unexplored links between string theory and higher spins, the types of excitations that lie behind their most cherished properties. A closer look at higher spin fields provides some further clues that string theory describes a broken phase of a higher spin gauge theory. Conversely, string amplitudes contain a wealth of information on higher spin interactions that can clarify long-standing issues related to their infrared behavior. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’. Based on the lectures presented at the International School for Subnuclear Physics Searching for the Unexpected at LHC and Status of Our Knowledge (Erice, June 24-July 3 2011) and on the talks presented at Strings, Branes and Supergravity (Istanbul, 31 July -5 Aug 2011), at QTS’07: Quantum Theory and Symmetries (Prague, 7-13 Aug. 2011) and at FFP’12: Fundamental Fields and Particles (Udine, 21-23 Nov. 2011).

  4. Probing the String Landscape

    ScienceCinema

    Dienes, Keith

    2018-01-10

    We are currently in the throes of a potentially huge paradigm shift in physics. Motivated by recent developments in string theory and the discovery of the so-called "string landscape", physicists are beginning to question the uniqueness of fundamental theories of physics and the methods by which such theories might be understood and investigated. In this colloquium, I will give a non-technical introduction to the nature of this paradigm shift and how it developed. I will also discuss some of the questions to which it has led, and the nature of the controversies it has spawned.

  5. Haptic Distal Spatial Perception Mediated by Strings: Haptic "Looming"

    ERIC Educational Resources Information Center

    Cabe, Patrick A.

    2011-01-01

    Five experiments tested a haptic analog of optical looming, demonstrating string-mediated haptic distal spatial perception. Horizontally collinear hooks supported a weighted string held taut by a blindfolded participant's finger midway between the hooks. At the finger, the angle between string segments increased as the finger approached…

  6. Self-organization in a system of binary strings with spatial interactions

    NASA Astrophysics Data System (ADS)

    Banzhaf, W.; Dittrich, P.; Eller, B.

    1999-01-01

    We consider an artificial reaction system whose components are binary strings. Upon encounter, two binary strings produce a third string which competes for storage space with the originators. String types or species can only survive when produced in sufficient numbers. Spatial interactions through introduction of a topology and rules for distance-dependent reactions are discussed. We observe various kinds of survival strategies of binary strings.

  7. The Development of a String Sight-Reading Pitch Skill Hierarchy

    ERIC Educational Resources Information Center

    Alexander, Michael L.; Henry, Michele L.

    2012-01-01

    This study was designed to determine a pitch skill hierarchy for string sight-reading, to determine the effects of key on string sight-reading achievement, and to determine the validity of a tonal pattern system as a measurement of melodic sight-reading skill for string players. High school string students (n = 94) obtained a mean score of 27.28…

  8. Systems and methods for photovoltaic string protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krein, Philip T.; Kim, Katherine A.; Pilawa-Podgurski, Robert C. N.

    A system and method includes a circuit for protecting a photovoltaic string. A bypass switch connects in parallel to the photovoltaic string and a hot spot protection switch connects in series with the photovoltaic string. A first control signal controls opening and closing of the bypass switch and a second control signal controls opening and closing of the hot spot protection switch. Upon detection of a hot spot condition the first control signal closes the bypass switch and after the bypass switch is closed the second control signal opens the hot spot protection switch.

  9. Plucked String on a Shoestring Budget

    ERIC Educational Resources Information Center

    Gluck, Paul

    2009-01-01

    The physics of the plucked string has been treated in many articles and books. For our 12th-grade high school physics laboratory, we have built a cheap, simple sonometer apparatus for each pair of students on which they may investigate some interesting phenomena that arise when a string is plucked. Among these are the generation of harmonics…

  10. Quantum space foam and string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekrasov, Nikita

    2006-11-03

    String theory is originally defined as a modification of the Feynman rules in perturbation theory. It contains gravity in its perturbative spectrum. We review some recent developments which demonstrate that nonperturbative effects of quantum gravity, such as spacetime foam, arise in string theory as well.Prepared for the proceedings of 'Albert Einstein Century Conference' , Paris July 2005.

  11. Galileon string measure and other modified measure extended objects

    NASA Astrophysics Data System (ADS)

    Vulfs, T. O.; Guendelman, E. I.

    2017-12-01

    We show that it is possible to formulate string theory as a “Galileon string theory”. The Galileon field χ enters in the definition of the integration measure in the action. Following the methods of the modified measure string theory, we find that the final equations are again those of the sigma-model. Moreover, the string tension appears again as an additional dynamical degree of freedom. At the same time, the theory satisfies all requirements of the Galileon higher derivative theory at the action level while the equations of motion are still of the second-order. A Galileon symmetry is displayed explicitly in the conformal string worldsheet frame. Also, we define the Galileon gauge transformations. Generalizations to branes with other modified measures are discussed.

  12. Stiff self-interacting strings at high temperature QCD

    NASA Astrophysics Data System (ADS)

    S Bakry, A.; Chen, X.; Deliyergiyev, M.; Galal, A.; Khalaf, A.; M Pengming, P.

    2018-03-01

    We investigate the implications of Nambu-Goto (NG), Lüscher Weisz (LW) and Polyakov-Kleinert (PK) effective string actions for the Casimir energy and the width of the quantum delocalization of the string in 4-dim pure SU(3) Yang-Mills lattice gauge theory. At a temperature closer to the critical point T/Tc=0.9, we found that the next to leading-order (NLO) contributions from the expansion of the NG string in addition to the boundary terms in LW action to decrease the deviations from the lattice data in the intermediate distance scales for both the quark-antiquark QQ̅ potential and broadening of the color tube compared to the free string approximation. We conjecture possible stiffness of the QCD string through studying the effects of extrinsic curvature term in PK action and find a good fitting behavior for the lattice Monte-Carlo data at both long and intermediate quark separations regions.

  13. Cold, warm, and composite (cool) cosmic string models

    NASA Astrophysics Data System (ADS)

    Carter, B.

    1994-01-01

    The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension T below the constant value, T = m2 say, that typifies a simple, longitudinally Lorentz invariant Goto-Nambu type string model, where m is a fixed mass scale determined by the internal structure of an underlying Nielsen-Olesen type vacuum vortex. Such a reduction of tension occurs in the standard ``warm'' cosmic string model in which the effect of thermal perturbations of a simple Goto-Nambu model is represented by an effective tension T given in terms of the corresponding effective temperature, Θ say, by T2 = m2(m2 - 1/3πΘ2). A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in ``cold'' conducting cosmic string models of the kind whose existence was first proposed by Witten, where the role of the temperature is played by an effective mass or chemical potential μ that is constructed as the scalar magnitude of the energy momentum covector obtained as the gradient of the phase ϕ of a bosonic condensate in the core of the vacuum vortex. The present article describes the construction and essential mechanical properties of a new category of composite ``cool'' cosmic string models that are intermediate between these ``warm'' and ``cold'' limit cases. These composite models are the string analogues of the standard Landau model for a two-constituent finite temperature superfluid, and as such involve two independent currents interpretable as that of the entropy on the one hand and that of the bosonic condensate on the other. It is surmised that the stationary (in particular ring) equilibrium states of such ``cool'' cosmic strings may be of cosmologicl significance.

  14. Cooperative strings and glassy interfaces

    PubMed Central

    Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A.

    2015-01-01

    We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam–Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel–Fulcher–Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer. PMID:26100908

  15. Connecting the ambitwistor and the sectorized heterotic strings

    NASA Astrophysics Data System (ADS)

    Azevedo, Thales; Jusinskas, Renann Lipinski

    2017-10-01

    The sectorized description of the (chiral) heterotic string using pure spinors has been misleadingly viewed as an infinite tension string. One evidence for this fact comes from the tree level 3-point graviton amplitude, which we show to contain the usual Einstein term plus a higher curvature contribution. After reintroducing a dimensionful parameter ℓ in the theory, we demonstrate that the heterotic model is in fact two-fold, depending on the choice of the supersymmetric sector, and that the spectrum also contains one massive (open string like) multiplet. By taking the limit ℓ → ∞, we finally show that the ambitwistor string is recovered, reproducing the unexpected heterotic state in Mason and Skinner's RNS description.

  16. Abelian Higgs cosmic strings: Small-scale structure and loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Stuckey, Stephanie; Bevis, Neil

    2009-06-15

    Classical lattice simulations of the Abelian Higgs model are used to investigate small-scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski and Rocha 29 for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loopmore » distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. 30. Better agreement to our data is found with a model based on loop fragmentation 32, coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy-loss mechanism, which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small-scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution, which reconciles the apparent differences between Nambu-Goto and field theory simulations.« less

  17. Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2018-01-01

    We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.

  18. Has Plan Colombia Ignored Neighboring Countries

    DTIC Science & Technology

    2008-06-01

    IGNORED NEIGHBORING COUNTRIES? Celso Andrade-Garzon Colonel, Ecuadorian Army, 1981 B.S., University of Loja , Ecuador , 1993 M.S., Institute of...neighboring countries of Ecuador and Venezuela, increasing border violence, population displacement and the creation of refugees, environmental damage...black market weapons trading and drug trafficking. This thesis uses trust and influence theory to analyze how Plan Colombia affects Ecuador and

  19. Landau quantization in the spinning cosmic string spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muniz, C.R., E-mail: celiomuniz@yahoo.com; Bezerra, V.B.; Cunha, M.S.

    2014-11-15

    We analyze the quantum phenomenon arising from the interaction of a spinless charged particle with a rotating cosmic string, under the action of a static and uniform magnetic field parallel to the string. We calculate the energy levels of the particle in the non-relativistic approach, showing how these energies depend on the parameters involved in the problem. In order to do this, we solve the time independent Schrödinger equation in the geometry of the spinning cosmic string, taking into account that the coupling between the rotation of the spacetime and the angular momentum of the particle is very weak, suchmore » that makes sense to apply the Schrödinger equation in a curved background whose metric has an off diagonal term which involves time and space. It is also assumed that the particle orbits sufficiently far from the boundary of the region of closed timelike curves which exist around this topological defect. Finally, we find the Landau levels of the particle in the presence of a spinning cosmic string endowed with internal structure, i.e., having a finite width and uniformly filled with both material and vacuum energies. - Highlights: • Solution of the wave equation characterizing the problem. • Energy levels of the particle in spacetime of the structureless string. • Expression for an analogous of the quadratic Zeeman effect. • Energy levels of the particle in spacetime of the string with internal structure. • Evidence of the string structure by the internal existence of the vacuum energy.« less

  20. Black String and Velocity Frame Dragging

    NASA Astrophysics Data System (ADS)

    Lee, Jungjai; Kim, Hyeong-Chan

    We investigate velocity frame dragging with the boosted Schwarzschild black string solution and the boosted Kaluza-Klein bubble solution, in which a translational symmetry along the boosted z-coordinate is implemented. The velocity frame dragging effect can be nullified by the motion of an observer using the boost symmetry along the z-coordinate if it is not compact. However, in spacetime with the compact z-coordinate, we show that the effect cannot be removed since the compactification breaks the global Lorentz boost symmetry. As a result, the comoving velocity depends on r and the momentum parameter along the z-coordinate becomes an observer independent characteristic quantity of the black string and bubble solutions. The dragging induces a spherical ergo-region around the black string.

  1. Cosmic string lensing and closed timelike curves

    NASA Astrophysics Data System (ADS)

    Shlaer, Benjamin; Tye, S.-H. Henry

    2005-08-01

    In an analysis of the gravitational lensing by two relativistic cosmic strings, we argue that the formation of closed timelike curves proposed by Gott is unstable in the presence of particles (e.g. the cosmic microwave background radiation). Because of the attractorlike behavior of the closed timelike curve, we argue that this instability is very generic. A single graviton or photon in the vicinity, no matter how soft, is sufficient to bend the strings and prevent the formation of closed timelike curves. We also show that the gravitational lensing due to a moving cosmic string is enhanced by its motion, not suppressed.

  2. A hybrid metaheuristic for closest string problem.

    PubMed

    Mousavi, Sayyed Rasoul

    2011-01-01

    The Closest String Problem (CSP) is an optimisation problem, which is to obtain a string with the minimum distance from a number of given strings. In this paper, a new metaheuristic algorithm is investigated for the problem, whose main feature is relatively high speed in obtaining good solutions, which is essential when the input size is large. The proposed algorithm is compared with four recent algorithms suggested for the problem, outperforming them in more than 98% of the cases. It is also remarkably faster than all of them, running within 1 s in most of the experimental cases.

  3. Note on tachyon moduli and closed strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carneiro da Cunha, Bruno

    2008-07-15

    The collective behavior of the SL(2,R) covariant brane states of noncritical c=1 string theory, found in a previous work, is studied in the Fermi liquid approximation. It is found that such states mimic the coset WZW model, whereas only by further restrictions one recovers the double-scaling limit which was purported to be equivalent to closed string models. Another limit is proposed, inspired by the tachyon condensation ideas, where the spectrum is the same of two-dimensional string theory. We close by noting some strange connections between vacuum states of the theory in their different interpretations.

  4. Don't Panic! Closed String Tachyons in ALE Spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverstein, Eva M

    2001-08-20

    We consider closed string tachyons localized at the fixed points of noncompact nonsupersymmetric orbifolds. We argue that tachyon condensation drives these orbifolds to flat space or supersymmetric ALE spaces. The decay proceeds via an expanding shell of dilaton gradients and curvature which interpolates between two regions of distinct angular geometry. The string coupling remains weak throughout. For small tachyon VEVs, evidence comes from quiver theories on D-branes probes, in which deformations by twisted couplings smoothly connect non-supersymmetric orbifolds to supersymmetric orbifolds of reduced order. For large tachyon VEVs, evidence comes from worldsheet RG flow and spacetime gravity. For C{sup 2}/Z{submore » n}, we exhibit infinite sequences of transitions producing SUSY ALE spaces via twisted closed string condensation from non-supersymmetric ALE spaces. In a T-dual description this provides a mechanism for creating NS5-branes via closed string tachyon condensation similar to the creation of D-branes via open string tachyon condensation. We also apply our results to recent duality conjectures involving fluxbranes and the type 0 string.« less

  5. Open/closed string duality and relativistic fluids

    NASA Astrophysics Data System (ADS)

    Niarchos, Vasilis

    2016-07-01

    We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N , large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full Abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2 +1 )-dimensional open string theory this reformulation involves an Abelian Hodge duality. We also point out how different deformations of the DBI action, related to higher-derivative corrections and non-Abelian effects, can arise in this context as deformations in corresponding relativistic hydrodynamics.

  6. BOOK REVIEW: String Theory in a Nutshell

    NASA Astrophysics Data System (ADS)

    Skenderis, Kostas

    2007-11-01

    The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to

  7. Axions, Inflation and String Theory

    NASA Astrophysics Data System (ADS)

    Mack, Katherine J.; Steinhardt, P. J.

    2009-01-01

    The QCD axion is the leading contender to rid the standard model of the strong-CP problem. If the Peccei-Quinn symmetry breaking occurs before inflation, which is likely in string theory models, axions manifest themselves cosmologically as a form of cold dark matter with a density determined by the axion's initial conditions and by the energy scale of inflation. Constraints on the dark matter density and on the amplitude of CMB isocurvature perturbations currently demand an exponential degree of fine-tuning of both axion and inflationary parameters beyond what is required for particle physics. String theory models generally produce large numbers of axion-like fields; the prospect that any of these fields exist at scales close to that of the QCD axion makes the problem drastically worse. I will discuss the challenge of accommodating string-theoretic axions in standard inflationary cosmology and show that the fine-tuning problems cannot be fully addressed by anthropic principle arguments.

  8. Ambitwistor Strings in Four Dimensions

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Lipstein, Arthur E.; Mason, Lionel

    2014-08-01

    We develop ambitwistor string theories for four dimensions to obtain new formulas for tree-level gauge and gravity amplitudes with arbitrary amounts of supersymmetry. Ambitwistor space is the space of complex null geodesics in complexified Minkowski space, and in contrast to earlier ambitwistor strings, we use twistors rather than vectors to represent this space. Although superficially similar to the original twistor string theories of Witten, Berkovits, and Skinner, these theories differ in the assignment of world sheet spins of the fields, rely on both twistor and dual twistor representatives for the vertex operators, and use the ambitwistor procedure for calculating correlation functions. Our models are much more flexible, no longer requiring maximal supersymmetry, and the resulting formulas for amplitudes are simpler, having substantially reduced moduli. These are supported on the solutions to the scattering equations refined according to helicity and can be checked by comparison with corresponding formulas of Witten and of Cachazo and Skinner.

  9. Cosmology of the closed string tachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Ian

    2008-09-15

    The spacetime physics of bulk closed string tachyon condensation is studied at the level of a two-derivative effective action. We derive the unique perturbative tachyon potential consistent with a full class of linearized tachyonic deformations of supercritical string theory. The solutions of interest deform a general linear dilaton background by the insertion of purely exponential tachyon vertex operators. In spacetime, the evolution of the tachyon drives an accelerated contraction of the universe and, absent higher-order corrections, the theory collapses to a cosmological singularity in finite time, at arbitrarily weak string coupling. When the tachyon exhibits a null symmetry, the worldsheetmore » dynamics is known to be exact and well defined at tree level. We prove that if the two-derivative effective action is free of nongravitational singularities, higher-order corrections always resolve the spacetime curvature singularity of the null tachyon. The resulting theory provides an explicit mechanism by which tachyon condensation can generate or terminate the flow of cosmological time in string theory. Additional particular solutions can resolve an initial singularity with a tachyonic phase at weak coupling, or yield solitonic configurations that localize the universe along spatial directions.« less

  10. Negative Differential Conductance in Polyporphyrin Oligomers with Nonlinear Backbones.

    PubMed

    Kuang, Guowen; Chen, Shi Zhang; Yan, Linghao; Chen, Ke Qiu; Shang, Xuesong; Liu, Pei Nian; Lin, Nian

    2018-01-17

    We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink. Aided by density functional theory with nonequilibrium Green's functions simulations, we attributed this backbone-dependent NDC to bias-modulated hybridization of the electrode states with the resonant transport molecular orbital. We argue this mechanism is generic in molecular systems, which opens a new route of designing molecular NDC devices.

  11. Reflecting on the Rationales for String Study in Schools

    ERIC Educational Resources Information Center

    Brenner, Brenda

    2010-01-01

    This essay will address the question of the value of string education by first examining arguments offered on behalf of string education in schools, and noting their somewhat mixed value. Then a set of arguments will be presented that may have greater promise. The focal point will be the establishment of excellence in string teaching and playing.…

  12. Propagating stress-pulses and wiggling transition revealed in string dynamics

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei

    2018-02-01

    Understanding string dynamics yields insights into the intricate dynamic behaviors of various filamentary thin structures in nature and industry covering multiple length scales. In this work, we investigate the planar dynamics of a flexible string where one end is free and the other end is subject to transverse and longitudinal motions. Under transverse harmonic motion, we reveal the propagating pulse structure in the stress profile over the string, and analyze its role in bringing the system into a chaotic state. For a string where one end is under longitudinal uniform acceleration, we identify the wiggling transition, derive the analytical wiggling solution from the string equations, and present the phase diagram.

  13. Density fluctuations from strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Vilenkin, A.; Shafi, Q.

    1983-01-01

    The spectra of density fluctuations caused by strings in a universe dominated either by baryons, neutrinos, or axions are presented. Realistic scenarios for galaxy formation seem possible in all three cases. Examples of grand unified theories which lead to strings with the desired mass scales are given.

  14. Black holes as beads on cosmic strings

    NASA Astrophysics Data System (ADS)

    Ashoorioon, Amjad; Mann, Robert B.

    2014-11-01

    We consider the possibility of the formation of cosmic strings with black holes as beads. We focus on the simplest setup where two black holes are formed on a long cosmic string. It turns out that in the absence of a background magnetic field and for observationally viable values for cosmic string tensions, μ \\lt 2× {{10}-7}, the tension of the strut in between the black holes has to be less than the ones that run into infinity. This result does not change if a cosmological constant is present. However, if a background magnetic field is turned on, we can have stable setups where the tensions of all cosmic strings are equal. We derive the equilibrium conditions in each of these setups depending on whether the black holes are extremal or non-extremal. We obtain cosmologically acceptable solutions with solar mass black holes and an intragalactic-strength cosmic magnetic field.

  15. Frog sound identification using extended k-nearest neighbor classifier

    NASA Astrophysics Data System (ADS)

    Mukahar, Nordiana; Affendi Rosdi, Bakhtiar; Athiar Ramli, Dzati; Jaafar, Haryati

    2017-09-01

    Frog sound identification based on the vocalization becomes important for biological research and environmental monitoring. As a result, different types of feature extractions and classifiers have been employed to evaluate the accuracy of frog sound identification. This paper presents a frog sound identification with Extended k-Nearest Neighbor (EKNN) classifier. The EKNN classifier integrates the nearest neighbors and mutual sharing of neighborhood concepts, with the aims of improving the classification performance. It makes a prediction based on who are the nearest neighbors of the testing sample and who consider the testing sample as their nearest neighbors. In order to evaluate the classification performance in frog sound identification, the EKNN classifier is compared with competing classifier, k -Nearest Neighbor (KNN), Fuzzy k -Nearest Neighbor (FKNN) k - General Nearest Neighbor (KGNN)and Mutual k -Nearest Neighbor (MKNN) on the recorded sounds of 15 frog species obtained in Malaysia forest. The recorded sounds have been segmented using Short Time Energy and Short Time Average Zero Crossing Rate (STE+STAZCR), sinusoidal modeling (SM), manual and the combination of Energy (E) and Zero Crossing Rate (ZCR) (E+ZCR) while the features are extracted by Mel Frequency Cepstrum Coefficient (MFCC). The experimental results have shown that the EKNCN classifier exhibits the best performance in terms of accuracy compared to the competing classifiers, KNN, FKNN, GKNN and MKNN for all cases.

  16. Domain Walls and Strings in Dense Quark Matter

    NASA Astrophysics Data System (ADS)

    Zhitnitsky, Ariel R.

    2002-12-01

    I discuss several types of domain walls and global strings which occur in colour superconducting quark matter due to the spontaneous violation of relevant U(1) and discrete symmetries. These include the baryon U(1)B, approximate axial U(1)A symmetries as well as an approximate U(1)Y symmetry arising from kaon condensation in colour-flavour locking phase. In this talk I concentrate on discussions of K strings due to their interesting internal structures. Specifically, I demonstrate that under some conditions the global U(1)Y symmetry may not be restored inside the string, in contrast with the standard expectations. Instead, K+ condensation occurs inside the core of the string if a relevant parameter \\cos θ K0 ≡ mK0^2 /μ eff2 is larger than some critical value θK0 ≥ θcrit. If this phenomenon happens, the U(1)Y strings become superconducting and may considerably influence the magnetic properties of dense quark matter, in particular in neutron stars.

  17. Geometry motivated alternative view on local protein backbone structures.

    PubMed

    Zacharias, Jan; Knapp, Ernst Walter

    2013-11-01

    We present an alternative to the classical Ramachandran plot (R-plot) to display local protein backbone structure. Instead of the (φ, ψ)-backbone angles relating to the chemical architecture of polypeptides generic helical parameters are used. These are the rotation or twist angle ϑ and the helical rise parameter d. Plots with these parameters provide a different view on the nature of local protein backbone structures. It allows to display the local structures in polar (d, ϑ)-coordinates, which is not possible for an R-plot, where structural regimes connected by periodicity appear disconnected. But there are other advantages, like a clear discrimination of the handedness of a local structure, a larger spread of the different local structure domains--the latter can yield a better separation of different local secondary structure motives--and many more. Compared to the R-plot we are not aware of any major disadvantage to classify local polypeptide structures with the (d, ϑ)-plot, except that it requires some elementary computations. To facilitate usage of the new (d, ϑ)-plot for protein structures we provide a web application (http://agknapp.chemie.fu-berlin.de/secsass), which shows the (d, ϑ)-plot side-by-side with the R-plot. © 2013 The Protein Society.

  18. Linear modal stability analysis of bowed-strings.

    PubMed

    Debut, V; Antunes, J; Inácio, O

    2017-03-01

    Linearised models are often invoked as a starting point to study complex dynamical systems. Besides their attractive mathematical simplicity, they have a central role for determining the stability properties of static or dynamical states, and can often shed light on the influence of the control parameters on the system dynamical behaviour. While the bowed string dynamics has been thoroughly studied from a number of points of view, mainly by time-domain computer simulations, this paper proposes to explore its dynamical behaviour adopting a linear framework, linearising the friction force near an equilibrium state in steady sliding conditions, and using a modal representation of the string dynamics. Starting from the simplest idealisation of the friction force given by Coulomb's law with a velocity-dependent friction coefficient, the linearised modal equations of the bowed string are presented, and the dynamical changes of the system as a function of the bowing parameters are studied using linear stability analysis. From the computed complex eigenvalues and eigenvectors, several plots of the evolution of the modal frequencies, damping values, and modeshapes with the bowing parameters are produced, as well as stability charts for each system mode. By systematically exploring the influence of the parameters, this approach appears as a preliminary numerical characterisation of the bifurcations of the bowed string dynamics, with the advantage of being very simple compared to sophisticated numerical approaches which demand the regularisation of the nonlinear interaction force. To fix the idea about the potential of the proposed approach, the classic one-degree-of-freedom friction-excited oscillator is first considered, and then the case of the bowed string. Even if the actual stick-slip behaviour is rather far from the linear description adopted here, the results show that essential musical features of bowed string vibrations can be interpreted from this simple approach

  19. Coupling of transverse and longitudinal waves in piano strings.

    PubMed

    Etchenique, Nikki; Collin, Samantha R; Moore, Thomas R

    2015-04-01

    The existence of longitudinal waves in vibrating piano strings has been previously established, as has their importance in producing the characteristic sound of the piano. Modeling of the coupling between the transverse and longitudinal motion of strings indicates that the amplitude of the longitudinal waves are quadratically related to the transverse displacement of the string, however, experimental verification of this relationship is lacking. In the work reported here this relationship is tested by driving the transverse motion of a piano string at only two frequencies, which simplifies the task of unambiguously identifying the constituent signals. The results indicate that the generally accepted relationship between the transverse motion and the longitudinal motion is valid. It is further shown that this dependence on transverse displacement is a good approximation when a string is excited by the impact of the hammer during normal play.

  20. String stabilized ribbon growth a method for seeding same

    DOEpatents

    Sachs, Emanuel M.

    1987-08-25

    This invention is a method of initiating or seeding the growth of a crystalline or polycrystalline ribbon by the String Stabilized Ribbon Growth Method. The method for seeding the crystal growth comprises contacting a melt surface with a seed and two strings used in edge stabilization. The wetted strings attach to the wetted seed as a result of the freezing of the liquid melt. Upon drawing the seed, which is attached to the strings, away from the melt surface a melt liquid meniscus, a seed junction, and a growth interface forms. Further pulling of the attached seed causes a crystal ribbon to grow at the growth interface. The boundaries of the growing ribbon are: at the top the seed junction, at the bottom the freezing boundary of the melt liquid meniscus, and at the edges frozen-in strings.

  1. Ecohydraulics of Strings and Beads in Bedrock Rivers

    NASA Astrophysics Data System (ADS)

    Wohl, E.

    2016-12-01

    Twenty years ago, Jack Stanford and others described rivers in bedrock canyons as resembling beads on a string when viewed in planform. The beads are relatively wide, low gradient river segments with floodplains, whereas the strings are the intervening steep, narrow river segments with minimal floodplain development. This pattern of longitudinal variations in channel and valley morphology along bedrock canyon rivers is very common, from small channels to major rivers such as the Colorado. Basic understanding of river ecosystems, as well as limited studies, indicates that the beads are more retentive and biologically productive. Although both strings and beads can provide habitat for diverse organisms, strings are more likely to serve as migration corridors, whereas beads provide spawning and nursery habitat, facilitate lateral (channel-floodplain) and vertical (channel-hyporheic) exchanges and associated habitat diversity, and retain dissolved and particulate organic matter. Recognition of the different characteristics and functions of strings and beads can be used to identify their spatial distribution along a river or within a river network and the hydraulically driven processes that sustain channel form, water quality, and biota within strings and beads. Diverse modeling approaches can then be used to quantify the fluxes of water and sediment needed to maintain these hydraulically driven processes. This conceptual framework is illustrated using examples from mountain streams in the Southern Rockies and canyon rivers in the southwestern United States.

  2. Fractional bosonic strings

    NASA Astrophysics Data System (ADS)

    Diaz, Victor Alfonzo; Giusti, Andrea

    2018-03-01

    The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.

  3. Privacy Preserving Nearest Neighbor Search

    NASA Astrophysics Data System (ADS)

    Shaneck, Mark; Kim, Yongdae; Kumar, Vipin

    Data mining is frequently obstructed by privacy concerns. In many cases data is distributed, and bringing the data together in one place for analysis is not possible due to privacy laws (e.g. HIPAA) or policies. Privacy preserving data mining techniques have been developed to address this issue by providing mechanisms to mine the data while giving certain privacy guarantees. In this chapter we address the issue of privacy preserving nearest neighbor search, which forms the kernel of many data mining applications. To this end, we present a novel algorithm based on secure multiparty computation primitives to compute the nearest neighbors of records in horizontally distributed data. We show how this algorithm can be used in three important data mining algorithms, namely LOF outlier detection, SNN clustering, and kNN classification. We prove the security of these algorithms under the semi-honest adversarial model, and describe methods that can be used to optimize their performance. Keywords: Privacy Preserving Data Mining, Nearest Neighbor Search, Outlier Detection, Clustering, Classification, Secure Multiparty Computation

  4. Large margin nearest neighbor classifiers.

    PubMed

    Domeniconi, Carlotta; Gunopulos, Dimitrios; Peng, Jing

    2005-07-01

    The nearest neighbor technique is a simple and appealing approach to addressing classification problems. It relies on the assumption of locally constant class conditional probabilities. This assumption becomes invalid in high dimensions with a finite number of examples due to the curse of dimensionality. Severe bias can be introduced under these conditions when using the nearest neighbor rule. The employment of a locally adaptive metric becomes crucial in order to keep class conditional probabilities close to uniform, thereby minimizing the bias of estimates. We propose a technique that computes a locally flexible metric by means of support vector machines (SVMs). The decision function constructed by SVMs is used to determine the most discriminant direction in a neighborhood around the query. Such a direction provides a local feature weighting scheme. We formally show that our method increases the margin in the weighted space where classification takes place. Moreover, our method has the important advantage of online computational efficiency over competing locally adaptive techniques for nearest neighbor classification. We demonstrate the efficacy of our method using both real and simulated data.

  5. Small scale structure on cosmic strings

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1989-01-01

    The current understanding of cosmic string evolution is discussed, and the focus placed on the question of small scale structure on strings, where most of the disagreements lie. A physical picture designed to put the role of the small scale structure into more intuitive terms is presented. In this picture it can be seen how the small scale structure can feed back in a major way on the overall scaling solution. It is also argued that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small scale structure, which argued in any case would be extremely valuable in filling the gaps in the present understanding of cosmic string evolution.

  6. Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient

    PubMed Central

    Rodriguez-Diaz, Alice; Toyama, Yusuke; Abravanel, Daniel L.; Wiemann, John M.; Wells, Adrienne R.; Tulu, U. Serdar; Edwards, Glenn S.; Kiehart, Daniel P.

    2008-01-01

    Dorsal closure in Drosophila is a model system for cell sheet morphogenesis and wound healing. During closure two sheets of lateral epidermis move dorsally to close over the amnioserosa and form a continuous epidermis. Forces from the amnioserosa and actomyosin-rich, supracellular purse strings at the leading edges of these lateral epidermal sheets drive closure. Purse strings generate the largest force for closure and occur during development and wound healing throughout phylogeny. We use laser microsurgery to remove some or all of the purse strings from developing embryos. Free edges produced by surgery undergo characteristic responses as follows. Intact cells in the free edges, which previously had no purse string, recoil away from the incision and rapidly assemble new, secondary purse strings. Next, recoil slows, then pauses at a turning point. Following a brief delay, closure resumes and is powered to completion by the secondary purse strings. We confirm that the assembly of the secondary purse strings requires RhoA. We show that α-actinin alternates with nonmuscle myosin II along purse strings and requires nonmuscle myosin II for its localization. Together our data demonstrate that purse strings are renewable resources that contribute to the robust and resilient nature of closure. PMID:19404432

  7. Energy in a String Wave

    NASA Astrophysics Data System (ADS)

    Ng, Chiu-king

    2010-01-01

    When one end of a taut horizontal elastic string is shaken repeatedly up and down, a transverse wave (assume sine waveform) will be produced and travel along it. College students know this type of wave motion well. They know when the wave passes by, each element of the string will perform an oscillating up-down motion, which in mechanics is termed simple harmonic2. They also know elements of the string at the highest and the lowest positions—the crests and the troughs—are momentarily at rest, while those at the centerline (zero displacement) have the greatest speed, as shown in Fig. 1. Irrespective of this, they are less familiar with the energy associated with the wave. They may fail to answer a question such as, "In a traveling string wave, which elements have respectively the greatest kinetic energy (KE) and the greatest potential energy (PE)?" The answer to the former is not difficult; elements at zero position have the fastest speed and hence their KE, being proportional to the square of speed, is the greatest. To the PE, what immediately comes to their mind may be the simple harmonic motion (SHM), in which the PE is the greatest and the KE is zero at the two turning points. It may thus lead them to think elements at crests or troughs have the greatest PE. Unfortunately, this association is wrong. Thinking that the crests or troughs have the greatest PE is a misconception.3

  8. Entanglement Entropy in Two-Dimensional String Theory.

    PubMed

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  9. Global structure of Gott's two-string spacetime

    NASA Astrophysics Data System (ADS)

    Cutler, Curt

    1992-01-01

    Gott has recently obtained exact solutions to Einstein's equation representing two infinitely long, straight cosmic strings that gravitationally scatter off each other. A remarkable feature of these solutions is that they contain closed timelike curves when the relative velocity of the strings is sufficiently high. In this paper we elucidate the global structure of Gott's two-string spacetime. In particular, we prove that the closed timelike curves are confined to a certain region of the spacetime, and that the spacetime contains complete spacelike, edgeless, achronal hypersurfaces, from which the causality-violating regions may be said to evolve. We then explicitly determine the boundary of the region containing closed timelike curves.

  10. Good-Neighbor Policy

    ERIC Educational Resources Information Center

    Drozdowski, Mark J.

    2007-01-01

    In this article, the author draws on his experience as the director of the Fitchburg State College Foundation in Fitchburg, Massachusetts, to make a distinction between being a good neighbor to local non-profit organizations by sharing strategies and information, and creating conflicts of interest when both the college and its neighbor…

  11. Chern-Simons improved Hamiltonians for strings in three space dimensions

    NASA Astrophysics Data System (ADS)

    Gordeli, Ivan; Melnikov, Dmitry; Niemi, Antti J.; Sedrakyan, Ara

    2016-07-01

    In the case of a structureless string the extrinsic curvature and torsion determine uniquely its shape in three-dimensional ambient space, by way of solution of the Frenet equation. In many physical scenarios there are in addition symmetries that constrain the functional form of the ensuing energy function. For example, the energy of a structureless string should be independent of the way the string is framed in the Frenet equation. Thus the energy should only involve the curvature and torsion as dynamical variables, in a manner that resembles the Hamiltonian of the Abelian Higgs model. Here we investigate the effect of symmetry principles in the construction of Hamiltonians for structureless strings. We deduce from the concept of frame independence that in addition to extrinsic curvature and torsion, the string can also engage a three-dimensional Abelian bulk gauge field as a dynamical variable. We find that the presence of a bulk gauge field gives rise to a long-range interaction between different strings. Moreover, when this gauge field is subject to Chern-Simons self-interaction, it becomes plausible that interacting strings are subject to fractional statistics in three space dimensions.

  12. Microscopic approach to string gas cosmology

    NASA Astrophysics Data System (ADS)

    Evnin, Oleg

    2014-03-01

    In this contribution to the proceedings of the Conference on Modern Physics of Compact Stars and Relativistic Gravity in Yerevan, Armenia (September 18-21, 2013), I review recent work attempting to give a fundamental definition to string evolution in a dynamical, fully compact universe, and present a sketch of how the resulting formalism can be used for addressing questions of phenomenological significance in the field of string gas cosmology.

  13. String model for the dynamics of glass-forming liquids

    PubMed Central

    Pazmiño Betancourt, Beatriz A.; Douglas, Jack F.; Starr, Francis W.

    2014-01-01

    We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann “entropy crisis.” PMID:24880303

  14. String model for the dynamics of glass-forming liquids.

    PubMed

    Pazmiño Betancourt, Beatriz A; Douglas, Jack F; Starr, Francis W

    2014-05-28

    We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann "entropy crisis."

  15. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness ( h )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannige, Ranjan V.

    The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom—the backbone dihedral anglesφandψ(Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function ofφandψhas not been completely described for bothcisandtransbackbones. Additionally, little intuitive understanding is available about a peptide’s conformation simply from knowing theφandψvalues of a peptide (e.g., is the regular peptide defined byφ = ψ =  - 100°  left-handed or right-handed?). This report provides a new metric for backbone handednessmore » (h) based on interpreting a peptide backbone as a helix with axial displacementdand angular displacementθ, both of which are derived from a peptide backbone’s internal coordinates, especially dihedral anglesφ,ψandω. In particular,hequals sin(θ)d/d|, with range [-1, 1] and negative (or positive) values indicating left(or right)-handedness. The metrichis used to characterize the handedness of every region of the Ramachandran plot for bothcis(ω = 0°) and trans (ω = 180°) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ,ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013), this report presents a new plot based ondandθthat serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone includingcisandtransbackbones. The intuitiveness

  16. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness ( h )

    DOE PAGES

    Mannige, Ranjan V.

    2017-05-16

    The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom—the backbone dihedral anglesφandψ(Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function ofφandψhas not been completely described for bothcisandtransbackbones. Additionally, little intuitive understanding is available about a peptide’s conformation simply from knowing theφandψvalues of a peptide (e.g., is the regular peptide defined byφ = ψ =  - 100°  left-handed or right-handed?). This report provides a new metric for backbone handednessmore » (h) based on interpreting a peptide backbone as a helix with axial displacementdand angular displacementθ, both of which are derived from a peptide backbone’s internal coordinates, especially dihedral anglesφ,ψandω. In particular,hequals sin(θ)d/d|, with range [-1, 1] and negative (or positive) values indicating left(or right)-handedness. The metrichis used to characterize the handedness of every region of the Ramachandran plot for bothcis(ω = 0°) and trans (ω = 180°) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ,ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013), this report presents a new plot based ondandθthat serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone includingcisandtransbackbones. The intuitiveness

  17. K-Nearest Neighbor Algorithm Optimization in Text Categorization

    NASA Astrophysics Data System (ADS)

    Chen, Shufeng

    2018-01-01

    K-Nearest Neighbor (KNN) classification algorithm is one of the simplest methods of data mining. It has been widely used in classification, regression and pattern recognition. The traditional KNN method has some shortcomings such as large amount of sample computation and strong dependence on the sample library capacity. In this paper, a method of representative sample optimization based on CURE algorithm is proposed. On the basis of this, presenting a quick algorithm QKNN (Quick k-nearest neighbor) to find the nearest k neighbor samples, which greatly reduces the similarity calculation. The experimental results show that this algorithm can effectively reduce the number of samples and speed up the search for the k nearest neighbor samples to improve the performance of the algorithm.

  18. When orthographic neighbors fail to facilitate.

    PubMed

    Janack, Tracy; Pastizzo, Matthew J; Beth Feldman, Laurie

    2004-01-01

    Forward masked word primes that differed from the target in the initial, the final or both the initial and final positions tended to slow target decision latencies and there were no significant differences among prime types. After forward masked nonword primes we observed non significant facilitation when primes differed from the target by one letter in either the initial or final position and significant inhibition when primes differed in both initial and final positions. The patterns did not differ significantly for targets with large and with small neighborhoods. Only in post hoc analyses was there any indication of facilitation after nonword neighbor primes and it appeared only when body neighborhood was small. For slower participants, neighbors tended to facilitate target decision latencies while for relatively fast readers showed neighbors made inhibition that tended to vary with amount of mismatch.

  19. Causal Structure around Spinning 5-DIMENSIONAL Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Slagter, Reinoud Jan

    2008-09-01

    We present a numerical solution of a stationary 5-dimensional spinning cosmic string in the Einstein-Yang-Mills (EYM) model, where the extra bulk coordinate ψ is periodic. It turns out that when gψψ approaches zero, i.e., a closed time-like curve (CTC) would appear, the solution becomes singular. We also investigated the geometrical structure of the static 5D cosmic string. Two opposite moving 5D strings could, in contrast with the 4D case, fulfil the Gott condition for CTC formation.

  20. D1 string dynamics in curved backgrounds with fluxes

    NASA Astrophysics Data System (ADS)

    Banerjee, Aritra; Biswas, Sagar; Nayak, Rashmi R.

    2016-04-01

    We study various rotating and oscillating D-string configurations in some general backgrounds with fluxes. In particular, we look for solutions to the equations of motion of various rigidly rotating D-strings in AdS3 background with mixed flux, and in the intersecting D-brane geometries. We find out relations among various conserved charges corresponding to the breathing and rotating D-string configurations.

  1. Identification of market trends with string and D2-brane maps

    NASA Astrophysics Data System (ADS)

    Bartoš, Erik; Pinčák, Richard

    2017-08-01

    The multidimensional string objects are introduced as a new alternative for an application of string models for time series forecasting in trading on financial markets. The objects are represented by open string with 2-endpoints and D2-brane, which are continuous enhancement of 1-endpoint open string model. We show how new object properties can change the statistics of the predictors, which makes them the candidates for modeling a wide range of time series systems. String angular momentum is proposed as another tool to analyze the stability of currency rates except the historical volatility. To show the reliability of our approach with application of string models for time series forecasting we present the results of real demo simulations for four currency exchange pairs.

  2. String Theory Methods for Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Nastase, Horatiu

    2017-09-01

    Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger

  3. SAGE: String-overlap Assembly of GEnomes.

    PubMed

    Ilie, Lucian; Haider, Bahlul; Molnar, Michael; Solis-Oba, Roberto

    2014-09-15

    De novo genome assembly of next-generation sequencing data is one of the most important current problems in bioinformatics, essential in many biological applications. In spite of significant amount of work in this area, better solutions are still very much needed. We present a new program, SAGE, for de novo genome assembly. As opposed to most assemblers, which are de Bruijn graph based, SAGE uses the string-overlap graph. SAGE builds upon great existing work on string-overlap graph and maximum likelihood assembly, bringing an important number of new ideas, such as the efficient computation of the transitive reduction of the string overlap graph, the use of (generalized) edge multiplicity statistics for more accurate estimation of read copy counts, and the improved use of mate pairs and min-cost flow for supporting edge merging. The assemblies produced by SAGE for several short and medium-size genomes compared favourably with those of existing leading assemblers. SAGE benefits from innovations in almost every aspect of the assembly process: error correction of input reads, string-overlap graph construction, read copy counts estimation, overlap graph analysis and reduction, contig extraction, and scaffolding. We hope that these new ideas will help advance the current state-of-the-art in an essential area of research in genomics.

  4. Dynamics of cosmic strings with higher-dimensional windings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Daisuke; Lake, Matthew J.; Thailand Center of Excellence in Physics, Ministry of Education,Bangkok 10400

    2015-06-11

    We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string lengthmore » lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.« less

  5. Dynamics of cosmic strings with higher-dimensional windings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamauchi, Daisuke; Lake, Matthew J., E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: matthewj@nu.ac.th

    2015-06-01

    We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string lengthmore » lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.« less

  6. Power suppression at large scales in string inflation

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele; Downes, Sean; Dutta, Bhaskar

    2013-12-01

    We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.

  7. Geodesics In A Spinning String Spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culetu, Hristu

    2006-11-28

    The geodesics equations for a rotating observer in a spinning string geometry are investigated using the Euler - Lagrange equations. For test particles with vanishing angular momentum, the radial equation of motion does not depend on the angular velocity {omega} but on the angular momentum of the string. A massless particle moves tachyonic but iteed tends asymptotically to unit velocity after a time of the order of few Planck time b. The spacetime has a horizon at r = 0, irrespective of the value of {omega} but its angular velocity is given by {omega} - 1/b. The Sagnac time delaymore » is computed proving to depend both on {omega} and the radius of the circular orbit. The velocity of an ingoing massive test particle approaches zero very close to the spinning string, as if it were rejected by it.« less

  8. Little string origin of surface defects

    NASA Astrophysics Data System (ADS)

    Haouzi, Nathan; Schmid, Christian

    2017-05-01

    We derive a large class of codimension-two defects of 4d \\mathcal{N}=4 Super Yang-Mills (SYM) theory from the (2, 0) little string. The origin of the little string is type IIB theory compactified on an ADE singularity. The defects are D-branes wrapping the 2-cycles of the singularity. We use this construction to make contact with the description of SYM defects due to Gukov and Witten [1]. Furthermore, we provide a geometric perspective on the nilpotent orbit classification of codimension-two defects, and the connection to ADE-type Toda CFT. The only data needed to specify the defects is a set of weights of the algebra obeying certain constraints, which we give explicitly. We highlight the differences between the defect classification in the little string theory and its (2 , 0) CFT limit.

  9. Cosmic strings and the large-scale structure

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert

    1988-01-01

    A possible problem for cosmic string models of galaxy formation is presented. If very large voids are common and if loop fragmentation is not much more efficient than presently believed, then it may be impossible for string scenarios to produce the observed large-scale structure with Omega sub 0 = 1 and without strong environmental biasing.

  10. Structural test of the parameterized-backbone method for protein design.

    PubMed

    Plecs, Joseph J; Harbury, Pehr B; Kim, Peter S; Alber, Tom

    2004-09-03

    Designing new protein folds requires a method for simultaneously optimizing the conformation of the backbone and the side-chains. One approach to this problem is the use of a parameterized backbone, which allows the systematic exploration of families of structures. We report the crystal structure of RH3, a right-handed, three-helix coiled coil that was designed using a parameterized backbone and detailed modeling of core packing. This crystal structure was determined using another rationally designed feature, a metal-binding site that permitted experimental phasing of the X-ray data. RH3 adopted the intended fold, which has not been observed previously in biological proteins. Unanticipated structural asymmetry in the trimer was a principal source of variation within the RH3 structure. The sequence of RH3 differs from that of a previously characterized right-handed tetramer, RH4, at only one position in each 11 amino acid sequence repeat. This close similarity indicates that the design method is sensitive to the core packing interactions that specify the protein structure. Comparison of the structures of RH3 and RH4 indicates that both steric overlap and cavity formation provide strong driving forces for oligomer specificity.

  11. Impact of aggregation on scaling behavior of Internet backbone traffic

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Li; Ribeiro, Vinay J.; Moon, Sue B.; Diot, Christophe

    2002-07-01

    We study the impact of aggregation on the scaling behavior of Internet backbone tra ffic, based on traces collected from OC3 and OC12 links in a tier-1 ISP. We make two striking observations regarding the sub-second small time scaling behaviors of Internet backbone traffic: 1) for a majority of these traces, the Hurst parameters at small time scales (1ms - 100ms) are fairly close to 0.5. Hence the traffic at these time scales are nearly uncorrelated; 2) the scaling behaviors at small time scales are link-dependent, and stay fairly invariant over changing utilization and time. To understand the scaling behavior of network traffic, we develop analytical models and employ them to demonstrate how traffic composition -- aggregation of traffic with different characteristics -- affects the small-time scalings of network traffic. The degree of aggregation and burst correlation structure are two major factors in traffic composition. Our trace-based data analysis confirms this. Furthermore, we discover that traffic composition on a backbone link stays fairly consistent over time and changing utilization, which we believe is the cause for the invariant small-time scalings we observe in the traces.

  12. A new characterization of three-dimensional conductivity backbone above and below the percolation threshold

    NASA Astrophysics Data System (ADS)

    Skal, Asya S.

    1996-08-01

    A new definition of three-dimensional conductivity backbone, obtained from a distribution function of Joule heat and the Hall coefficient is introduced. The fractal dimension d fB = d - ( {g}/{v}) = 2.25 of conductivity backbone for both sides of the threshold is obtained from a critical exponent of the Hall coefficient g = 0.6. This allows one to construct, below the threshold, a new order parameter of metal-conductor transition—the two-component infinite conductivity back-bone and tested scaling relation, proposed by Alexander and Orbach [ J. Phys. Rev. Lett.43, 1982, L625] for both sides of a threshold.

  13. THE FLOW AROUND A COSMIC STRING. I. HYDRODYNAMIC SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beresnyak, Andrey; Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691

    2015-05-10

    Cosmic strings are linear topological defects which are hypothesized to be produced during inflation. Most searches for strings have relied on the string’s lensing of background galaxies or the cosmic microwave background. In this paper, I obtained a solution for the supersonic flow of collisional gas past the cosmic string which has two planar shocks with a shock compression ratio that depends on the angle defect of the string and its speed. The shocks result in the compression and heating of the gas and, given favorable conditions, particle acceleration. Gas heating and over-density in an unusual wedge shape can bemore » detected by observing the Hi line at high redshifts. Particle acceleration can occur in the present-day universe when the string crosses the hot gas contained in galaxy clusters and, since the consequences of such a collision persist for cosmological timescales, could be located by looking at unusual large-scale radio sources situated on a single spatial plane.« less

  14. The structural dynamics of the American five-string banjo

    NASA Astrophysics Data System (ADS)

    Dickey, Joe

    2003-11-01

    The American five-string banjo is unique among musical instruments in that many significant parameters that effect tone are easily adjusted. This is probably why so many banjo players fiddle with their banjo. The instrument is a combination of canonical vibrating systems (strings, and a circular membrane) and therefore more amenable to analysis and modeling than most other musical instruments (e.g., the violin). Such an analysis is presented here. The model is a harmonically driven string which excites the other strings and a membrane under tension, causing the membrane to radiate sound. Three figures-of-merit, FOMs, are assumed. They are loudness, brightness, and decay of the sound. The effects of a number of parameters on the proposed FOMs are investigated. Among these are the loss factor and tension of the membrane, the mass of the bridge, and the location on the string of the excitation. It is noted that the calculated effects of the changes agree with generally accepted setup practices.

  15. Match-bounded String Rewriting Systems

    NASA Technical Reports Server (NTRS)

    Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2003-01-01

    We introduce a new class of automated proof methods for the termination of rewriting systems on strings. The basis of all these methods is to show that rewriting preserves regular languages. To this end, letters are annotated with natural numbers, called match heights. If the minimal height of all positions in a redex is h+1 then every position in the reduct will get height h+1. In a match-bounded system, match heights are globally bounded. Using recent results on deleting systems, we prove that rewriting by a match-bounded system preserves regular languages. Hence it is decidable whether a given rewriting system has a given match bound. We also provide a sufficient criterion for the abence of a match-bound. The problem of existence of a match-bound is still open. Match-boundedness for all strings can be used as an automated criterion for termination, for match-bounded systems are terminating. This criterion can be strengthened by requiring match-boundedness only for a restricted set of strings, for instance the set of right hand sides of forward closures.

  16. LETTER TO THE EDITOR: A disintegrating cosmic string

    NASA Astrophysics Data System (ADS)

    Griffiths, J. B.; Docherty, P.

    2002-06-01

    We present a simple sandwich gravitational wave of the Robinson-Trautman family. This is interpreted as representing a shock wave with a spherical wavefront which propagates into a Minkowski background minus a wedge (i.e. the background contains a cosmic string). The deficit angle (the tension) of the string decreases through the gravitational wave, which then ceases. This leaves an expanding spherical region of Minkowski space behind it. The decay of the cosmic string over a finite interval of retarded time may be considered to generate the gravitational wave.

  17. Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.

    PubMed

    Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong

    2018-01-01

    Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.

  18. Tensor modes on the string theory landscape

    NASA Astrophysics Data System (ADS)

    Westphal, Alexander

    2013-04-01

    We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  19. String-fluid transition in systems with aligned anisotropic interactions.

    PubMed

    Brandt, P C; Ivlev, A V; Morfill, G E

    2010-06-21

    Systems with aligned anisotropic interactions between particles exhibit numerous phase transitions. A remarkable example of the fluid phase transition occurring in such systems is the formation of particle strings--the so-called "string" or "chain" fluids. We employ an approach based on the Ornstein-Zernike (OZ) equation, which allows us to calculate structural properties of fluids with aligned anisotropic interactions. We show that the string-fluid transition can be associated with the bifurcation of the "isotropic" correlation length into two distinct scales which characterize the longitudinal and transverse order in string fluids and, hence, may be used as a fingerprint of this transition. The comparison of the proposed OZ theory with the Monte Carlo simulations reveals fairly good agreement.

  20. The Hubble Web: The Dark Matter Problem and Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon

    2009-07-01

    I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.

  1. String Theory: Big Problem for Small Size

    ERIC Educational Resources Information Center

    Sahoo, S.

    2009-01-01

    String theory is the most promising candidate theory for a unified description of all the fundamental forces that exist in nature. It provides a mathematical framework that combines quantum theory with Einstein's general theory of relativity. The typical size of a string is of the order of 10[superscript -33] cm, called the Planck length. But due…

  2. String tensions in deformed Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Poppitz, Erich; Shalchian T., M. Erfan

    2018-01-01

    We study k-strings in deformed Yang-Mills (dYM) with SU(N) gauge group in the semiclassically calculable regime on R^3× S^1 . Their tensions Tk are computed in two ways: numerically, for 2 ≤ N ≤ 10, and via an analytic approach using a re-summed perturbative expansion. The latter serves both as a consistency check on the numerical results and as a tool to analytically study the large-N limit. We find that dYM k-string ratios Tk/T1 do not obey the well-known sine- or Casimir-scaling laws. Instead, we show that the ratios Tk/T1 are bound above by a square root of Casimir scaling, previously found to hold for stringlike solutions of the MIT Bag Model. The reason behind this similarity is that dYM dynamically realizes, in a theoretically controlled setting, the main model assumptions of the Bag Model. We also compare confining strings in dYM and in other four-dimensional theories with abelian confinement, notably Seiberg-Witten theory, and show that the unbroken Z_N center symmetry in dYM leads to different properties of k-strings in the two theories; for example, a "baryon vertex" exists in dYM but not in softly-broken Seiberg-Witten theory. Our results also indicate that, at large values of N, k-strings in dYM do not become free.

  3. Pauses enhance chunk recognition in song element strings by zebra finches.

    PubMed

    Spierings, Michelle; de Weger, Anouk; Ten Cate, Carel

    2015-07-01

    When learning a language, it is crucial to know which syllables of a continuous sound string belong together as words. Human infants achieve this by attending to pauses between words or to the co-occurrence of syllables. It is not only humans that can segment a continuous string. Songbirds learning their song tend to copy 'chunks' from one or more tutors' songs and combine these into their own song. In the tutor songs, these chunks are often separated by pauses and a high co-occurrence of elements, suggesting that these features affect chunking and song learning. We examined experimentally whether the presence of pauses and element co-occurrence affect the ability of adult zebra finches to discriminate strings of song elements. Using a go/no-go design, two groups of birds were trained to discriminate between two strings. In one group (Pause-group), pauses were inserted between co-occurring element triplets in the strings, and in the other group (No-pause group), both strings were continuous. After making a correct discrimination, an individual proceeded to a reversal training using string segments. Segments were element triplets consistent in co-occurrence, triplets that were partly consistent in composition and triplets consisting of elements that did not co-occur in the strings. The Pause-group was faster in discriminating between the two strings. This group also responded differently to consistent triplets in the reversal training, compared to inconsistent triplets. The No-pause group did not differentiate among the triplet types. These results indicate that pauses in strings of song elements aid song discrimination and memorization of co-occurring element groups.

  4. From the currency rate quotations onto strings and brane world scenarios

    NASA Astrophysics Data System (ADS)

    Horváth, D.; Pincak, R.

    2012-11-01

    In the paper, we study the projections of the real exchange rate dynamics onto the string-like topology. Our approach is inspired by the contemporary movements in the string theory. The string map of data is defined here by the boundary conditions, characteristic length, real valued and the method of redistribution of information. As a practical matter, this map represents the detrending and data standardization procedure. We introduced maps onto 1-end-point and 2-end-point open strings that satisfy the Dirichlet and Neumann boundary conditions. The questions of the choice of extra-dimensions, symmetries, duality and ways to the partial compactification are discussed. Subsequently, we pass to higher dimensional and more complex objects. The 2D-Brane was suggested which incorporated bid-ask spreads. Polarization by the spread was considered which admitted analyzing arbitrage opportunities on the market where transaction costs are taken into account. The model of the rotating string which naturally yields calculation of angular momentum is suitable for tracking of several currency pairs. The systematic way which allows one suggest more structured maps suitable for a simultaneous study of several currency pairs was analyzed by means of the Gâteaux generalized differential calculus. The effect of the string and brane maps on test data was studied by comparing their mean statistical characteristics. The study revealed notable differences between topologies. We review the dependence on the characteristic string length, mean fluctuations and properties of the intra-string statistics. The study explores the coupling of the string amplitude and volatility. The possible utilizations of the string theory approach in financial markets are slight.

  5. Critical non-Abelian vortex in four dimensions and little string theory

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Yung, A.

    2017-08-01

    As was shown recently, non-Abelian vortex strings supported in four-dimensional N =2 supersymmetric QCD with the U(2) gauge group and Nf=4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify them with hadrons of four-dimensional N =2 QCD. One massless state was found previously; it emerges as a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper, we find a number of massive states. To this end, we exploit the approach used in LST little string theory, namely, the equivalence between the critical string on the conifold and noncritical c =1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry "baryonic" charge (its definition differs from standard). We interpret them as "monopole necklaces" formed (at strong coupling) by the closed string with confined monopoles attached.

  6. Knowledge-based prediction of protein backbone conformation using a structural alphabet.

    PubMed

    Vetrivel, Iyanar; Mahajan, Swapnil; Tyagi, Manoj; Hoffmann, Lionel; Sanejouand, Yves-Henri; Srinivasan, Narayanaswamy; de Brevern, Alexandre G; Cadet, Frédéric; Offmann, Bernard

    2017-01-01

    Libraries of structural prototypes that abstract protein local structures are known as structural alphabets and have proven to be very useful in various aspects of protein structure analyses and predictions. One such library, Protein Blocks, is composed of 16 standard 5-residues long structural prototypes. This form of analyzing proteins involves drafting its structure as a string of Protein Blocks. Predicting the local structure of a protein in terms of protein blocks is the general objective of this work. A new approach, PB-kPRED is proposed towards this aim. It involves (i) organizing the structural knowledge in the form of a database of pentapeptide fragments extracted from all protein structures in the PDB and (ii) applying a knowledge-based algorithm that does not rely on any secondary structure predictions and/or sequence alignment profiles, to scan this database and predict most probable backbone conformations for the protein local structures. Though PB-kPRED uses the structural information from homologues in preference, if available. The predictions were evaluated rigorously on 15,544 query proteins representing a non-redundant subset of the PDB filtered at 30% sequence identity cut-off. We have shown that the kPRED method was able to achieve mean accuracies ranging from 40.8% to 66.3% depending on the availability of homologues. The impact of the different strategies for scanning the database on the prediction was evaluated and is discussed. Our results highlight the usefulness of the method in the context of proteins without any known structural homologues. A scoring function that gives a good estimate of the accuracy of prediction was further developed. This score estimates very well the accuracy of the algorithm (R2 of 0.82). An online version of the tool is provided freely for non-commercial usage at http://www.bo-protscience.fr/kpred/.

  7. Induced helical backbone conformations of self-organizable dendronized polymers.

    PubMed

    Rudick, Jonathan G; Percec, Virgil

    2008-12-01

    Control of function through the primary structure of a molecule presents a significant challenge with valuable rewards for nanoscience. Dendritic building blocks encoded with information that defines their three-dimensional shape (e.g., flat-tapered or conical) and how they associate with each other are referred to as self-assembling dendrons. Self-organizable dendronized polymers possess a flat-tapered or conical self-assembling dendritic side chain on each repeat unit of a linear polymer backbone. When appended to a covalent polymer, the self-assembling dendrons direct a folding process (i.e., intramolecular self-assembly). Alternatively, intermolecular self-assembly of dendrons mediated by noncovalent interactions between apex groups can generate a supramolecular polymer backbone. Self-organization, as we refer to it, is the spontaneous formation of periodic and quasiperiodic arrays from supramolecular elements. Covalent and supramolecular polymers jacketed with self-assembling dendrons self-organize. The arrays are most often comprised of cylindrical or spherical objects. The shape of the object is determined by the primary structure of the dendronized polymer: the structure of the self-assembling dendron and the length of the polymer backbone. It is therefore possible to predictably generate building blocks for single-molecule nanotechnologies or arrays of supramolecules for bottom-up self-assembly. We exploit the self-organization of polymers jacketed with self-assembling dendrons to elucidate how primary structure determines the adopted conformation and fold (i.e., secondary and tertiary structure), how the supramolecules associate (i.e., quaternary structure), and their resulting functions. A combination of experimental techniques is employed to interrogate the primary, secondary, tertiary, and quaternary structure of the self-organizable dendronized polymers. We refer to the process by which we interpolate between the various levels of structural

  8. The three-dimensional simulation analysis of dynamic response on perforated strings

    NASA Astrophysics Data System (ADS)

    Li, M. F.; Liu, H. F.; Dou, Y. H.; Cao, L. H.; Liu, Y. X.

    2018-06-01

    It analyzes the dynamic response and stresses of perforating tubular string to detonating impact load in oil-gas well in ANSYS, obtains the response of vibration displacement, velocity and acceleration of perforating tubularstring caused by detonating impact load, finds the influence of the length and wall thickness of perforating tubular string to working stresses. The result shows that:when the detonating impact load exerts the perforating tubular string with compressive and tensile axial force alternatively;the vibration displacement, velocity and acceleration of perfora-ting tubular string change periodically at same cycle;the closer to the perforating gun, the larger the amplitude of vi-bration velocity and acceleration;the closer to the packer the smaller the vibration displacement, the larger the work-ing equivalent stress of perforating tubular string;the longer or the thicker the perforating tubular string, the smaller the working equivalent stress and the higher the strength safety. Therefore, it uses the damping tube between packer and perforating gun as well as thick walled tubing to increase the strength safety of perforating tubular string.

  9. Cosmic string detection with tree-based machine learning

    NASA Astrophysics Data System (ADS)

    Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.

    2018-07-01

    We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9'-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.

  10. Cosmic String Detection with Tree-Based Machine Learning

    NASA Astrophysics Data System (ADS)

    Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.

    2018-05-01

    We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9΄-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.

  11. String-theoretic deformation of the Parke-Taylor factor

    NASA Astrophysics Data System (ADS)

    Mizera, Sebastian; Zhang, Guojun

    2017-09-01

    Scattering amplitudes in a range of quantum field theories can be computed using the Cachazo-He-Yuan (CHY) formalism. In theories with color ordering, the key ingredient is the so-called Parke-Taylor factor. In this paper we give a fully SL (2 ,C )-covariant definition and study the properties of a new integrand called the "string Parke-Taylor" factor. It has an α' expansion whose leading coefficient is the field-theoretic Parke-Taylor factor. Its main application is that it leads to a CHY formulation of open string tree-level amplitudes. In fact, the definition of the string Parke-Taylor factor was motivated by trying to extend the compact formula for the first α' correction found by He and Zhang, while the main ingredient in its definition is a determinant of a matrix introduced in the context of string theory by Stieberger and Taylor.

  12. From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.

    PubMed

    Pepe, M; Wiese, U-J

    2009-05-15

    We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  13. Scalable Nearest Neighbor Algorithms for High Dimensional Data.

    PubMed

    Muja, Marius; Lowe, David G

    2014-11-01

    For many computer vision and machine learning problems, large training sets are key for good performance. However, the most computationally expensive part of many computer vision and machine learning algorithms consists of finding nearest neighbor matches to high dimensional vectors that represent the training data. We propose new algorithms for approximate nearest neighbor matching and evaluate and compare them with previous algorithms. For matching high dimensional features, we find two algorithms to be the most efficient: the randomized k-d forest and a new algorithm proposed in this paper, the priority search k-means tree. We also propose a new algorithm for matching binary features by searching multiple hierarchical clustering trees and show it outperforms methods typically used in the literature. We show that the optimal nearest neighbor algorithm and its parameters depend on the data set characteristics and describe an automated configuration procedure for finding the best algorithm to search a particular data set. In order to scale to very large data sets that would otherwise not fit in the memory of a single machine, we propose a distributed nearest neighbor matching framework that can be used with any of the algorithms described in the paper. All this research has been released as an open source library called fast library for approximate nearest neighbors (FLANN), which has been incorporated into OpenCV and is now one of the most popular libraries for nearest neighbor matching.

  14. Power suppression at large scales in string inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cicoli, Michele; Downes, Sean; Dutta, Bhaskar, E-mail: mcicoli@ictp.it, E-mail: sddownes@physics.tamu.edu, E-mail: dutta@physics.tamu.edu

    2013-12-01

    We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflationmore » is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.« less

  15. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.

    PubMed

    Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A

    2018-06-06

    Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.

  16. Cosmic string wakes

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Veeraraghavan, Shoba; Silk, Joseph; Brandenberger, Robert; Turok, Neil

    1987-01-01

    Accretion of matter onto wakes left behind by horizon-sized pieces of cosmic string is investigated, and the effects of wakes on the large-scale structure of the universe are determined. Accretion of cold matter onto wakes, the effects of a long string on fluids with finite velocity dispersion or sound speeds, the interactions between loops and wakes, and the conditions for wakes to survive disruption by loops are discussed. It is concluded that the most important wakes are those which were formed at the time of equal matter and radiation density. This leads to sheetlike overdense regions of galaxies with a mean separation in agreement with the scale of the bubbles of de Lapparent, Geller, and Huchra (1986). However, for the value of G(mu) favored from galaxy formation considerations in a universe with cold dark matter, a wake accretes matter from a distance of only about 1.5 Mpc, which is much less than the distance between the wakes.

  17. The control of invasive species on private property with neighbor-to-neighbor spillovers.

    PubMed

    Fenichel, Eli P; Richards, Timothy J; Shanafelt, David W

    2014-10-01

    Invasive pests cross property boundaries. Property managers may have private incentives to control invasive species despite not having sufficient incentive to fully internalize the external costs of their role in spreading the invasion. Each property manager has a right to future use of his own property, but his property may abut others' properties enabling spread of an invasive species. The incentives for a foresighted property manager to control invasive species have received little attention. We consider the efforts of a foresighted property manager who has rights to future use of a property and has the ability to engage in repeated, discrete control activities. We find that higher rates of dispersal, associated with proximity to neighboring properties, reduce the private incentives for control. Controlling species at one location provides incentives to control at a neighboring location. Control at neighboring locations are strategic complements and coupled with spatial heterogeneity lead to a weaker-link public good problem, in which each property owner is unable to fully appropriate the benefits of his own control activity. Future-use rights and private costs suggest that there is scope for a series of Coase-like exchanges to internalize much of the costs associated with species invasion. Pigouvian taxes on invasive species potentially have qualitatively perverse behavioral effects. A tax with a strong income effect (e.g, failure of effective revenue recycling) can reduce the value of property assets and diminish the incentive to manage insects on one's own property.

  18. The control of invasive species on private property with neighbor-to-neighbor spillovers

    PubMed Central

    Fenichel, Eli P.; Richards, Timothy J.; Shanafelt, David W.

    2013-01-01

    Invasive pests cross property boundaries. Property managers may have private incentives to control invasive species despite not having sufficient incentive to fully internalize the external costs of their role in spreading the invasion. Each property manager has a right to future use of his own property, but his property may abut others’ properties enabling spread of an invasive species. The incentives for a foresighted property manager to control invasive species have received little attention. We consider the efforts of a foresighted property manager who has rights to future use of a property and has the ability to engage in repeated, discrete control activities. We find that higher rates of dispersal, associated with proximity to neighboring properties, reduce the private incentives for control. Controlling species at one location provides incentives to control at a neighboring location. Control at neighboring locations are strategic complements and coupled with spatial heterogeneity lead to a weaker-link public good problem, in which each property owner is unable to fully appropriate the benefits of his own control activity. Future-use rights and private costs suggest that there is scope for a series of Coase-like exchanges to internalize much of the costs associated with species invasion. Pigouvian taxes on invasive species potentially have qualitatively perverse behavioral effects. A tax with a strong income effect (e.g, failure of effective revenue recycling) can reduce the value of property assets and diminish the incentive to manage insects on one’s own property. PMID:25346573

  19. Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2017-12-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

  20. Hydromonochord: Visualizing String Vibration by Water Swirls

    ERIC Educational Resources Information Center

    Sommer, Wilfried; Meier-Boke, Ralf; Meinzer, Nicholas

    2010-01-01

    The hydromonochord is a horizontal vibrating string that just makes contact with the surface of a water bath. The motion of the string sets up a pattern of swirls on the surface of the water, thus complementing the usual pattern of nodes and antinodes. The device is based on the traditional monochord. A water basin (Fig. 1) has two slits in the…

  1. Dual little strings and their partition functions

    NASA Astrophysics Data System (ADS)

    Bastian, Brice; Hohenegger, Stefan; Iqbal, Amer; Rey, Soo-Jong

    2018-05-01

    We study the topological string partition function of a class of toric, double elliptically fibered Calabi-Yau threefolds XN ,M at a generic point in the Kähler moduli space. These manifolds engineer little string theories in five dimensions or lower and are dual to stacks of M5-branes probing a transverse orbifold singularity. Using the refined topological vertex formalism, we explicitly calculate a generic building block which allows us to compute the topological string partition function of XN ,M as a series expansion in different Kähler parameters. Using this result, we give further explicit proof for a duality found previously in the literature, which relates XN ,M˜XN',M' for N M =N'M' and gcd (N ,M )=gcd (N',M') .

  2. The effective supergravity of little string theory

    NASA Astrophysics Data System (ADS)

    Antoniadis, Ignatios; Delgado, Antonio; Markou, Chrysoula; Pokorski, Stefan

    2018-02-01

    In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N=2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N=1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory.

  3. Amplitudes on plane waves from ambitwistor strings

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2017-11-01

    In marked contrast to conventional string theory, ambitwistor strings remain solvable worldsheet theories when coupled to curved background fields. We use this fact to consider the quantization of ambitwistor strings on plane wave metric and plane wave gauge field backgrounds. In each case, the worldsheet model is anomaly free as a consequence of the background satisfying the field equations. We derive vertex operators (in both fixed and descended picture numbers) for gravitons and gluons on these backgrounds from the worldsheet CFT, and study the 3-point functions of these vertex operators on the Riemann sphere. These worldsheet correlation functions reproduce the known results for 3-point scattering amplitudes of gravitons and gluons in gravitational and gauge theoretic plane wave backgrounds, respectively.

  4. Computer Center: BASIC String Models of Genetic Information Transfer.

    ERIC Educational Resources Information Center

    Spain, James D., Ed.

    1984-01-01

    Discusses some of the major genetic information processes which may be modeled by computer program string manipulation, focusing on replication and transcription. Also discusses instructional applications of using string models. (JN)

  5. Closed timelike curves produced by pairs of moving cosmic strings - Exact solutions

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1991-01-01

    Exact solutions of Einstein's field equations are presented for the general case of two moving straight cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite directions show closed timelike curves (CTCs) that circle the two strings as they pass, allowing observers to visit their own past. Similar results occur for nonparallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility that black-hole formation may prevent the formation of CTCs is discussed.

  6. Effects of ordinary and superconducting cosmic strings on primordial nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Hodges, Hardy M.; Turner, Michael S.

    1988-01-01

    A precise calculation is done of the primordial nucleosynthesis constraint on the energy per length of ordinary and superconducting cosmic strings. A general formula is provided for the constraint on the string tension for ordinary strings. Using the current values for the various parameters that describe the evolution of loops, the constraint for ordinary strings is G mu less than 2.2 x 10 to the minus 5 power. Our constraint is weaker than previously quoted limits by a factor of approximately 5. For superconducting loops, with currents generated by primordial magnetic fields, the constraint can be less or more stringent than this limit, depending on the strength of the magnetic field. It is also found in this case that there is a negligible amount of entropy production if the electromagnetic radiation from strings thermalizes with the radiation background.

  7. Vibration of a string against multiple spring-mass-damper stoppers

    NASA Astrophysics Data System (ADS)

    Shin, Ji-Hwan; Talib, Ezdiani; Kwak, Moon K.

    2018-02-01

    When a building sways due to strong wind or an earthquake, the elevator rope can undergo resonance, resulting in collision with the hoist-way wall. In this study, a hard stopper and a soft stopper comprised of a spring-mass-damper system installed along the hoist-way wall were considered to prevent the string from undergoing excessive vibrations. The collision of the string with multiple hard stoppers and multiple spring-mass-damper stoppers was investigated using an analytical method. The result revealed new formulas and computational algorithms that are suitable for simulating the vibration of the string against multiple stoppers. The numerical results show that the spring-mass-damper stopper is more effective in suppressing the vibrations of the string and reducing structural failure. The proposed algorithms were shown to be efficient to simulate the motion of the string against a vibration stopper.

  8. Black strings, low viscosity fluids, and violation of cosmic censorship.

    PubMed

    Lehner, Luis; Pretorius, Frans

    2010-09-03

    We describe the behavior of 5-dimensional black strings, subject to the Gregory-Laflamme instability. Beyond the linear level, the evolving strings exhibit a rich dynamics, where at intermediate stages the horizon can be described as a sequence of 3-dimensional spherical black holes joined by black string segments. These segments are themselves subject to a Gregory-Laflamme instability, resulting in a self-similar cascade, where ever-smaller satellite black holes form connected by ever-thinner string segments. This behavior is akin to satellite formation in low-viscosity fluid streams subject to the Rayleigh-Plateau instability. The simulation results imply that the string segments will reach zero radius in finite asymptotic time, whence the classical space-time terminates in a naked singularity. Since no fine-tuning is required to excite the instability, this constitutes a generic violation of cosmic censorship.

  9. On the gauge chosen by the bosonic open string

    NASA Astrophysics Data System (ADS)

    Pesando, Igor

    2017-05-01

    String theory gives S matrix elements from which is not possible to read any gauge information. Using factorization we go off shell in the simplest and most naive way and we read which are the vertices suggested by string. To compare with the associated Effective Field Theory it is natural to use color ordered vertices. The α‧ = 0 color ordered vertices suggested by string theory are more efficient than the usual ones since the three gluon color ordered vertex has three terms instead of six and the four gluon one has one term instead of three. They are written in the so called Gervais-Neveu gauge. The full Effective Field Theory is in a generalization of the Gervais-Neveu gauge with α‧ corrections. Moreover a field redefinition is required to be mapped to the field used by string theory. We also give an intuitive way of understanding why string choose this gauge in terms of the minimal number of couplings necessary to reproduce the non-abelian amplitudes starting from color ordered ones.

  10. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-04-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10-8 in some regions of the cosmic string parameter space.

  11. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R.X.; hide

    2014-01-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension (Newton's Constant x mass per unit length) below 10(exp -8) in some regions of the cosmic string parameter space.

  12. Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors.

    PubMed

    Aasi, J; Abadie, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Adams, C; Adams, T; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Allen, B; Allocca, A; Amador Ceron, E; Amariutei, D; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barker, D; Barnum, S H; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Bergmann, G; Berliner, J M; Bersanetti, D; Bertolini, A; Bessis, D; Betzwieser, J; Beyersdorf, P T; Bhadbhade, T; Bilenko, I A; Billingsley, G; Birch, J; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bowers, J; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brannen, C A; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Colombini, M; Constancio, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; De Rosa, R; Debreczeni, G; Degallaix, J; Del Pozzo, W; Deleeuw, E; Deléglise, S; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Díaz, M; Dietz, A; Dmitry, K; Donovan, F; Dooley, K L; Doravari, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J-C; Dwyer, S; Eberle, T; Edwards, M; Effler, A; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R; Flaminio, R; Foley, E; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fujimoto, M-K; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Garcia, J; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Gergely, L; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B; Hall, E; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Heefner, J; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Horrom, T; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hua, Z; Huang, V; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Iafrate, J; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jang, Y J; Jaranowski, P; Jiménez-Forteza, F; Johnson, W W; Jones, D; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Kéfélian, F; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, K; Kim, N; Kim, W; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kremin, A; Kringel, V; Królak, A; Kucharczyk, C; Kudla, S; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Le Roux, A; Leaci, P; Lebigot, E O; Lee, C-H; Lee, H K; Lee, H M; Lee, J; Lee, J; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levine, B; Lewis, J B; Lhuillier, V; Li, T G F; Lin, A C; Littenberg, T B; Litvine, V; Liu, F; Liu, H; Liu, Y; Liu, Z; Lloyd, D; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M J; Lück, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meier, T; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Mokler, F; Moraru, D; Moreno, G; Morgado, N; Mori, T; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nanda Kumar, D; Nardecchia, I; Nash, T; Naticchioni, L; Nayak, R; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nishida, E; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; Ortega Larcher, W; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Ou, J; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Peiris, P; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pindor, B; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poole, V; Poux, C; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Roever, C; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Soden, K; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stevens, D; Stochino, A; Stone, R; Strain, K A; Straniero, N; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Vahlbruch, H; Vajente, G; Vallisneri, M; van den Brand, J F J; Van Den Broeck, C; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vlcek, B; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vrinceanu, D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Walker, M; Wallace, L; Wan, Y; Wang, J; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wibowo, S; Wiesner, K; Wilkinson, C; Williams, L; Williams, R; Williams, T; Willis, J L; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yum, H; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, F; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zotov, N; Zucker, M E; Zweizig, J

    2014-04-04

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10(-8) in some regions of the cosmic string parameter space.

  13. Relativistic strings - From soap films to a grand unified theory

    NASA Astrophysics Data System (ADS)

    Nesterenko, V. V.

    1986-11-01

    The concept of relativistic strings is considered in connection with the theory of minimal surfaces (e.g., soap films stretched onto closed wire contours). The role of relativistic strings in hadron physics is discussed. Attention is then given to the creation of a grand unified theory on the basis of the superstring concept. Finally, the role of relativistic strings in cosmology is examined.

  14. Geometric phase for a static two-level atom in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Cai, Huabing; Ren, Zhongzhou

    2018-05-01

    We investigate the geometric phase of a static two-level atom immersed in a bath of fluctuating vacuum electromagnetic field in the background of a cosmic string. Our results indicate that due to the existence of the string, the geometric phase depends crucially on the position and the polarizability of the atom relative to the string. This can be ascribed to the fact that the presence of the string profoundly modify the distribution of electric field in Minkowski spacetime. So in principle, we can detect the cosmic string by experiments involving geometric phase.

  15. FragBag, an accurate representation of protein structure, retrieves structural neighbors from the entire PDB quickly and accurately.

    PubMed

    Budowski-Tal, Inbal; Nov, Yuval; Kolodny, Rachel

    2010-02-23

    Fast identification of protein structures that are similar to a specified query structure in the entire Protein Data Bank (PDB) is fundamental in structure and function prediction. We present FragBag: An ultrafast and accurate method for comparing protein structures. We describe a protein structure by the collection of its overlapping short contiguous backbone segments, and discretize this set using a library of fragments. Then, we succinctly represent the protein as a "bags-of-fragments"-a vector that counts the number of occurrences of each fragment-and measure the similarity between two structures by the similarity between their vectors. Our representation has two additional benefits: (i) it can be used to construct an inverted index, for implementing a fast structural search engine of the entire PDB, and (ii) one can specify a structure as a collection of substructures, without combining them into a single structure; this is valuable for structure prediction, when there are reliable predictions only of parts of the protein. We use receiver operating characteristic curve analysis to quantify the success of FragBag in identifying neighbor candidate sets in a dataset of over 2,900 structures. The gold standard is the set of neighbors found by six state of the art structural aligners. Our best FragBag library finds more accurate candidate sets than the three other filter methods: The SGM, PRIDE, and a method by Zotenko et al. More interestingly, FragBag performs on a par with the computationally expensive, yet highly trusted structural aligners STRUCTAL and CE.

  16. Violin Pedagogy and the Physics of the Bowed String

    NASA Astrophysics Data System (ADS)

    McLeod, Alexander Rhodes

    The paper describes the mechanics of violin tone production using non-specialist language, in order to present a scientific understanding of tone production accessible to a broad readership. As well as offering an objective understanding of tone production, this model provides a powerful tool for analyzing the technique of string playing. The interaction between the bow and the string is quite complex. Literature reviewed for this study reveals that scientific investigations have provided important insights into the mechanics of string playing, offering explanations for factors which both contribute to and limit the range of tone colours and dynamics that stringed instruments can produce. Also examined in the literature review are significant works of twentieth century violin pedagogy exploring tone production on the violin, based on the practical experience of generations of teachers and performers. Hermann von Helmholtz described the stick-slip cycle which drives the string in 1863, which replaced earlier ideas about the vibration of violin strings. Later, scientists such as John Schelleng and Lothar Cremer were able to demonstrate how the mechanics of the bow-string interaction can create different tone colours. Recent research by Anders Askenfelt, Knut Guettler, and Erwin Schoonderwaldt have continued to refine earlier research in this area. The writings of Lucien Capet, Leopold Auer, Carl Flesch, Paul Rolland, Kato Havas, Ivan Galamian, and Simon Fischer are examined and analyzed. Each author describes a different approach to tone production on the violin, representing a different understanding of the underlying mechanism. Analyzing these writings within the context of a scientific understanding of tone production makes it possible to compare these approaches more consistently, and to synthesize different concepts drawn from the diverse sources evaluated.

  17. New symmetries and ghost structure of covariant string theories

    NASA Astrophysics Data System (ADS)

    Neveu, A.; Nicolai, H.; West, P.

    1986-02-01

    It is shown that there exists an infinite set of new symmetries of the previously given covariant string formulations. These symmetries have themselves an infinite set of hidden local symmetries and so on. A new physically equivalent further extended string action is given in which the infinite set of symmetries is most easily displayed. A quantization involving gauge fixing and ghosts of the various covariant string actions is given. permanent address: Kings College, Mathematics Department, London WC2R 2LS, UK.

  18. Width of the confining string in Yang-Mills theory.

    PubMed

    Gliozzi, F; Pepe, M; Wiese, U-J

    2010-06-11

    We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.

  19. Modal analysis of a nonuniform string with end mass and variable tension

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Galaboff, Z. J.

    1983-01-01

    Modal synthesis techniques for dynamic systems containing strings describe the lateral displacements of these strings by properly chosen shape functions. An iterative algorithm is provided to calculate the natural modes of a nonuniform string and variable tension for some typical boundary conditions including one end mass. Numerical examples are given for a string in a constant and a gravity gradient force field.

  20. The implications of the COBE diffuse microwave radiation results for cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Stebbins, Albert; Bouchet, Francois R.

    1992-01-01

    We compare the anisotropies in the cosmic microwave background radiation measured by the COBE experiment to those predicted by cosmic string theories. We use an analytic model for the Delta T/T power spectrum that is based on our previous numerical simulations of strings, under the assumption that cosmic strings are the sole source of the measured anisotropy. This implies a value for the string mass per unit length of 1.5 +/- 0.5 x 10 exp -6 C-squared/G. This is within the range of values required for cosmic strings to successfully seed the formation of large-scale structures in the universe. These results clearly encourage further studies of Delta T/T and large-scale structure in the cosmic string model.

  1. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  2. Melt dumping in string stabilized ribbon growth

    DOEpatents

    Sachs, Emanuel M.

    1986-12-09

    A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.

  3. Bound states in string nets

    NASA Astrophysics Data System (ADS)

    Schulz, Marc Daniel; Dusuel, Sébastien; Vidal, Julien

    2016-11-01

    We discuss the emergence of bound states in the low-energy spectrum of the string-net Hamiltonian in the presence of a string tension. In the ladder geometry, we show that a single bound state arises either for a finite tension or in the zero-tension limit depending on the theory considered. In the latter case, we perturbatively compute the binding energy as a function of the total quantum dimension. We also address this issue in the honeycomb lattice where the number of bound states in the topological phase depends on the total quantum dimension. Finally, the internal structure of these bound states is analyzed in the zero-tension limit.

  4. Analysis of stationary availability factor of two-level backbone computer networks with arbitrary topology

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.

    2018-05-01

    This scientific paper deals with the two-level backbone computer networks with arbitrary topology. A specialized method, offered by the author for calculation of the stationary availability factor of the two-level backbone computer networks, based on the Markov reliability models for the set of the independent repairable elements with the given failure and repair rates and the methods of the discrete mathematics, is also discussed. A specialized algorithm, offered by the author for analysis of the network connectivity, taking into account different kinds of the network equipment failures, is also observed. Finally, this paper presents an example of calculation of the stationary availability factor for the backbone computer network with the given topology.

  5. Chiral phase transition from string theory.

    PubMed

    Parnachev, Andrei; Sahakyan, David A

    2006-09-15

    The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.

  6. Symbol-string sensitivity and children's reading.

    PubMed

    Pammer, Kristen; Lavis, Ruth; Hansen, Peter; Cornelissen, Piers L

    2004-06-01

    In this study of primary school children, a novel 'symbol-string' task is used to assess sensitivity to the position of briefly presented non-alphabetic but letter-like symbols. The results demonstrate that sensitivity in the symbol-string task explains a unique proportion of the variability in children's contextual reading accuracy. Moreover, developmental dyslexic readers show reduced sensitivity in this task, compared to chronological age controls. The results suggest that limitations set by visuo-spatial processes and/or attentional iconic memory resources may constrain children's reading accuracy.

  7. Protein sequence comparison based on K-string dictionary.

    PubMed

    Yu, Chenglong; He, Rong L; Yau, Stephen S-T

    2013-10-25

    The current K-string-based protein sequence comparisons require large amounts of computer memory because the dimension of the protein vector representation grows exponentially with K. In this paper, we propose a novel concept, the "K-string dictionary", to solve this high-dimensional problem. It allows us to use a much lower dimensional K-string-based frequency or probability vector to represent a protein, and thus significantly reduce the computer memory requirements for their implementation. Furthermore, based on this new concept, we use Singular Value Decomposition to analyze real protein datasets, and the improved protein vector representation allows us to obtain accurate gene trees. © 2013.

  8. Evidence for a scaling solution in cosmic-string evolution

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Bouchet, Francois R.

    1988-01-01

    Numerical simulations are used to study the most fundamental issue of cosmic-string evolution: the existence of a scaling solution. Strong evidence is found that a scaling solution does indeed exist. This justifies the main assumption on which the cosmic-string theories of galaxy formation is based. The main conclusion coincides with that of Albrecht and Turok (1985) but the results are not consistent with theirs. In fact, the results indicate that the details of string evolution are very different from the standard dogma.

  9. Cosmic String Searches

    NASA Astrophysics Data System (ADS)

    Hoffman, Y.; Hogan, C.

    The author discusses observational strategies for finding effects associated with the gravitational lensing of distant objects by strings. In particular, the requirements of a survey to find chains of galaxy image pairs or single galaxies with sharp edges are studied in some detail, and a proposed search program at Steward Observatory is described.

  10. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters

    PubMed Central

    Zgarbová, Marie; Luque, F. Javier; Šponer, Jiří; Cheatham, Thomas E.; Otyepka, Michal; Jurečka, Petr

    2013-01-01

    We present a refinement of the backbone torsion parameters ε and ζ of the Cornell et al. AMBER force field for DNA simulations. The new parameters, denoted as εζOL1, were derived from quantum-mechanical calculations with inclusion of conformation-dependent solvation effects according to the recently reported methodology (J. Chem. Theory Comput. 2012, 7(9), 2886-2902). The performance of the refined parameters was analyzed by means of extended molecular dynamics (MD) simulations for several representative systems. The results showed that the εζOL1 refinement improves the backbone description of B-DNA double helices and G-DNA stem. In B-DNA simulations, we observed an average increase of the helical twist and narrowing of the major groove, thus achieving better agreement with X-ray and solution NMR data. The balance between populations of BI and BII backbone substates was shifted towards the BII state, in better agreement with ensemble-refined solution experimental results. Furthermore, the refined parameters decreased the backbone RMS deviations in B-DNA MD simulations. In the antiparallel guanine quadruplex (G-DNA) the εζOL1 modification improved the description of non-canonical α/γ backbone substates, which were shown to be coupled to the ε/ζ torsion potential. Thus, the refinement is suggested as a possible alternative to the current ε/ζ torsion potential, which may enable more accurate modeling of nucleic acids. However, long-term testing is recommended before its routine application in DNA simulations. PMID:24058302

  11. The bispectrum of cosmic string temperature fluctuations including recombination effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, Donough; Hindmarsh, Mark, E-mail: d.regan@sussex.ac.uk, E-mail: m.b.hindmarsh@sussex.ac.uk

    2015-10-01

    We calculate the cosmic microwave background temperature bispectrum from cosmic strings, including the contributions from the last scattering surface, using a well-established Gaussian model for the string energy-momentum correlation functions, and a simplified model for the cosmic fluid. We check our approximation for the integrated Sachs-Wolfe (ISW) contribution against the bispectrum obtained from the full sky map of the cosmic string ISW signal used by the Planck team, obtaining good agreement. We validate our model for the last scattering surface contribution by comparing the predicted temperature power spectrum with that obtained from a full Boltzmann code treatment applied to themore » Unconnected Segment Model of a string network. We find that including the last scattering contribution has only a small impact on the upper limit on the string tension resulting from the bispectrum at Planck resolutions, and argue that the bispectrum is unlikely to be competitive with the power spectrum at any resolution.« less

  12. Termination Proofs for String Rewriting Systems via Inverse Match-Bounds

    NASA Technical Reports Server (NTRS)

    Butler, Ricky (Technical Monitor); Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes

    2004-01-01

    Annotating a letter by a number, one can record information about its history during a reduction. A string rewriting system is called match-bounded if there is a global upper bound to these numbers. In earlier papers we established match-boundedness as a strong sufficient criterion for both termination and preservation of regular languages. We show now that the string rewriting system whose inverse (left and right hand sides exchanged) is match-bounded, also have exceptional properties, but slightly different ones. Inverse match-bounded systems effectively preserve context-free languages; their sets of normalized strings and their sets of immortal strings are effectively regular. These sets of strings can be used to decide the normalization, the termination and the uniform termination problems of inverse match-bounded systems. We also show that the termination problem is decidable in linear time, and that a certain strong reachability problem is deciable, thus solving two open problems of McNaughton's.

  13. Force and torque of a string on a pulley

    NASA Astrophysics Data System (ADS)

    de Oliveira, Thiago R.; Lemos, Nivaldo A.

    2018-04-01

    Every university introductory physics course considers the problem of Atwood's machine taking into account the mass of the pulley. In the usual treatment, the tensions at the two ends of the string are offhandedly taken to act on the pulley and be responsible for its rotation. However, such a free-body diagram of the forces on the pulley is not a priori justified, inducing students to construct wrong hypotheses such as that the string transfers its tension to the pulley or that some symmetry is in operation. We reexamine this problem by integrating the contact forces between each element of the string and the pulley and show that although the pulley does behave as if the tensions were acting on its ends, this comes only as the final result of a detailed analysis. We also address the question of how much friction is needed to prevent the string from slipping over the pulley. Finally, we deal with the case in which the string is on the verge of sliding and show that this cannot happen unless certain conditions are met by the coefficient of static friction and the masses involved.

  14. Second order perturbations of a macroscopic string: Covariant approach

    NASA Astrophysics Data System (ADS)

    Larsen, A. L.; Nicolaidis, A.

    2001-06-01

    Using a world-sheet covariant formalism, we derive the equations of motion for second order perturbations of a generic macroscopic string, thus generalizing previous results for first order perturbations. We give the explicit results for the first and second order perturbations of a contracting near-circular string; these results are relevant for the understanding of the possible outcome when a cosmic string contracts under its own tension, as discussed in a series of papers by Vilenkin and Garriga. In particular, second order perturbations are necessary for a consistent computation of the energy. We also quantize the perturbations and derive the mass formula up to second order in perturbations for an observer using world-sheet time τ. The high frequency modes give the standard Minkowski result while, interestingly enough, the Hamiltonian turns out to be nondiagonal in oscillators for low-frequency modes. Using an alternative definition of the vacuum, it is possible to diagonalize the Hamiltonian, and the standard string mass spectrum appears for all frequencies. We finally discuss how our results are also relevant for the problems concerning string-spreading near a black hole horizon, as originally discussed by Susskind.

  15. Patterns of the cosmic microwave background from evolving string networks

    NASA Technical Reports Server (NTRS)

    Bouchet, Francois R.; Bennett, David P.; Stebbins, Albert

    1988-01-01

    A network of cosmic strings generated in the early universe may still exist today. As the strings move across the sky, they produce, by gravitational lensing, a characteristic pattern of anisotropies in the temperature of the cosmic microwave background. The observed absence of such anisotropies places constraints on theories in which galaxy formation is seeded by strings, but it is anticipated that the next generation of experiments will detect them.

  16. Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes

    PubMed Central

    Arges, Christopher G.; Ramani, Vijay

    2013-01-01

    Anion exchange membranes (AEMs) find widespread applications as an electrolyte and/or electrode binder in fuel cells, electrodialysis stacks, flow and metal-air batteries, and electrolyzers. AEMs exhibit poor stability in alkaline media; their degradation is induced by the hydroxide ion, a potent nucleophile. We have used 2D NMR techniques to investigate polymer backbone stability (as opposed to cation stability) of the AEM in alkaline media. We report the mechanism behind a peculiar, often-observed phenomenon, wherein a demonstrably stable polysulfone backbone degrades rapidly in alkaline solutions upon derivatization with alkaline stable fixed cation groups. Using COSY and heteronuclear multiple quantum correlation spectroscopy (2D NMR), we unequivocally demonstrate that the added cation group triggers degradation of the polymer backbone in alkaline via quaternary carbon hydrolysis and ether hydrolysis, leading to rapid failure. This finding challenges the existing perception that having a stable cation moiety is sufficient to yield a stable AEM and emphasizes the importance of the often ignored issue of backbone stability. PMID:23335629

  17. On coherent oscillations of a string.

    NASA Technical Reports Server (NTRS)

    Liu, C. H.

    1972-01-01

    Vibrations of an elastic string when the separation between the ends varies randomly are studied. The emphasis is on the evolution of the coherent, or ordered, oscillations of the string. Using a perturbation technique borrowed from quantum field theory and the modified Kryloff-Bogoliuboff method, the 'multiple scattering' effect of the random separation between the ends on the linear and nonlinear coherent oscillations are investigated. It is found that due to the random interactions the coherent fundamental oscillation as well as the harmonies are damped. Their frequencies are also modified.

  18. libFLASM: a software library for fixed-length approximate string matching.

    PubMed

    Ayad, Lorraine A K; Pissis, Solon P P; Retha, Ahmad

    2016-11-10

    Approximate string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length approximate string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size. Fixed-length approximate string matching is a generalisation of approximate string matching and, hence, has numerous direct applications in computational molecular biology and elsewhere. We present and make available libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching under both the edit and the Hamming distance models. Moreover we describe how fixed-length approximate string matching is applied to solve real problems by incorporating libFLASM into established applications for multiple circular sequence alignment as well as single and structured motif extraction. Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular sequences representing regulatory or functional regions. The comparison of the performance of the library to other algorithms show how it is competitive, especially with increasing distance thresholds. Fixed-length approximate string matching is a generalisation of the classic approximate string matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching. The extensive experimental results presented here

  19. Higher order string effects and the properties of the Pomeron

    DOE PAGES

    Kharzeev, Dmitri; Shuryak, Edward; Zahed, Ismail

    2018-01-18

    In this paper, we revisit the description of the Pomeron within the effective string theory of QCD. Using a string duality relation, we show how the static potential maps onto the high-energy scattering amplitude that exhibits the Pomeron behavior. Besides the Pomeron intercept and slope, new additional terms stemming from the higher order string corrections are shown to affect both the growth of the nucleon’s size at high energies and its profile in impact parameter space. The stringy description also allows for an odderon that only disappears in critical dimension. Lastlyl, some of the Pomeron’s features that emerge within themore » effective string description can be studied at the future EIC collider.« less

  20. Integrating quantum key distribution with classical communications in backbone fiber network.

    PubMed

    Mao, Yingqiu; Wang, Bi-Xiao; Zhao, Chunxu; Wang, Guangquan; Wang, Ruichun; Wang, Honghai; Zhou, Fei; Nie, Jimin; Chen, Qing; Zhao, Yong; Zhang, Qiang; Zhang, Jun; Chen, Teng-Yun; Pan, Jian-Wei

    2018-03-05

    Quantum key distribution (QKD) provides information-theoretic security based on the laws of quantum mechanics. The desire to reduce costs and increase robustness in real-world applications has motivated the study of coexistence between QKD and intense classical data traffic in a single fiber. Previous works on coexistence in metropolitan areas have used wavelength-division multiplexing, however, coexistence in backbone fiber networks remains a great experimental challenge, as Tbps data of up to 20 dBm optical power is transferred, and much more noise is generated for QKD. Here we present for the first time, to the best of our knowledge, the integration of QKD with a commercial backbone network of 3.6 Tbps classical data at 21 dBm launch power over 66 km fiber. With 20 GHz pass-band filtering and large effective core area fibers, real-time secure key rates can reach 4.5 kbps and 5.1 kbps for co-propagation and counter-propagation at the maximum launch power, respectively. This demonstrates feasibility and represents an important step towards building a quantum network that coexists with the current backbone fiber infrastructure of classical communications.

  1. Process-based network decomposition reveals backbone motif structure

    PubMed Central

    Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen

    2010-01-01

    A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated). PMID:20498084

  2. At the end of a moving string

    NASA Astrophysics Data System (ADS)

    Hanna, James; Santangelo, Christian

    2012-11-01

    We address a basic problem in the dynamics of flexible bodies: the propagation of a shape along a string and its reflection at a free boundary. Although the string equations - inertia balancing stress in an inextensible curve - are quite old, the only exact solutions known for non-trivial geometries are traveling waves with spatially uniform stress. Suitable for closed ``lariats,'' these solutions are incompatible with a free end, where the stress must vanish. It is impossible to drag an open, flexible, curved string along its tangents. This is reflected in the unwrapping motion of a string or chain as it is pulled around an object, and has strong implications for slender structures in passive locomotion, whether industrial cables or the ribbons of rhythmic gymnastics. We consider planar dynamics restricted to time-independent, but spatially varying, stress. We find a new exact solution at a distance ~t4/3 from the free end; continuation to the end requires introduction of a secular error into the positions and velocities and a singularity in acceleration ~t-2/3 at the end, which appears to have a physical basis. This work is an early step towards understanding the dynamics of a wide class of industrial and natural thin-object systems.

  3. Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.

    2017-12-01

    Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.

  4. Network geometry inference using common neighbors

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Fragkiskos; Aldecoa, Rodrigo; Krioukov, Dmitri

    2015-08-01

    We introduce and explore a method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that the nodes have (or do not have). We find that for high degree nodes, the common-neighbors approach yields a more accurate inference than the link-based method, unless heuristic periodic adjustments (or "correction steps") are used in the latter. The common-neighbors approach is computationally intensive, requiring O (t4) running time to map a network of t nodes, versus O (t3) in the link-based method. But we also develop a hybrid method with O (t3) running time, which combines the common-neighbors and link-based approaches, and we explore a heuristic that reduces its running time further to O (t2) , without significant reduction in the mapping accuracy. We apply this method to the autonomous systems (ASs) Internet, and we reveal how soft communities of ASs evolve over time in the similarity space. We further demonstrate the method's predictive power by forecasting future links between ASs. Taken altogether, our results advance our understanding of how to efficiently and accurately map real networks to their latent geometric spaces, which is an important necessary step toward understanding the laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections.

  5. Wrapping rules (in) string theory

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric A.; Riccioni, Fabio

    2018-01-01

    In this paper we show that the number of all 1/2-BPS branes in string theory compactified on a torus can be derived by universal wrapping rules whose formulation we present. These rules even apply to branes in less than ten dimensions whose ten-dimensional origin is an exotic brane. In that case the wrapping rules contain an additional combinatorial factor that is related to the highest dimension in which the ten-dimensional exotic brane, after compactification, can be realized as a standard brane. We show that the wrapping rules also apply to cases with less supersymmetry. As a specific example, we discuss the compactification of IIA/IIB string theory on ( T 4/ ℤ 2) × T n .

  6. Cosmic string with a light massive neutrino

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Stebbins, Albert

    1992-01-01

    We have estimated the power spectra of density fluctuations produced by cosmic strings with neutrino hot dark matter (HDM). Normalizing at 8/h Mpc, we find that the spectrum has more power on small scales than HDM + inflation, less than cold dark matter (CDM) + inflation, and significantly less the CDM + strings. With HDM, large wakes give significant contribution to the power on the galaxy scale and may give rise to large sheets of galaxies.

  7. Rapidly moving cosmic strings and chronology protection

    NASA Astrophysics Data System (ADS)

    Ori, Amos

    1991-10-01

    Recently, Gott has provided a family of solutions of the Einstein equations describing pairs of parallel cosmic strings in motion. He has shown that if the strings' relative velocity is sufficiently high, there exist closed timelike curves (CTC's) in the spacetime. Here we show that if there are CTC's in such a solution, then every t=const hypersurface in the spacetime intersects CTC's. Therefore, these solutions do not contradict the chronology protection conjecture of Hawking.

  8. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes

    PubMed Central

    Sharp, Kim A.; O’Brien, Evan; Kasinath, Vignesh; Wand, A. Joshua

    2015-01-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O2NH) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O2NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O2axis. A calibration curve for backbone entropy vs. O2NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O2NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O2axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. PMID:25739366

  9. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    PubMed

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  10. Wilsonian dark matter in string derived Z' model

    NASA Astrophysics Data System (ADS)

    Delle Rose, L.; Faraggi, A. E.; Marzo, C.; Rizos, J.

    2017-09-01

    The dark matter issue is among the most perplexing in contemporary physics. The problem is more enigmatic due to the wide range of possible solutions, ranging from the ultralight to the supermassive. String theory gives rise to plausible dark matter candidates due to the breaking of the non-Abelian grand unified theory (GUT) symmetries by Wilson lines. The physical spectrum then contains states that do not satisfy the quantization conditions of the unbroken GUT symmetry. Given that the Standard Model states are identified with broken GUT representations, and provided that any ensuing symmetry breakings are induced by components of GUT states, a remnant discrete symmetry remains that forbids the decay of the Wilsonian states. A class of such states are obtained in a heterotic-string-derived Z' model. The model exploits the spinor-vector duality symmetry, observed in the fermionic Z2×Z2 heterotic-string orbifolds, to generate a Z'∈E6 symmetry that may remain unbroken down to low energies. The E6 symmetry is broken at the string level with discrete Wilson lines. The Wilsonian dark matter candidates in the string-derived model are S O (10 ), and hence Standard Model, singlets and possess non-E6 U(1)Z' charges. Depending on the U(1)Z' breaking scale and the reheating temperature they give rise to different scenarios for the relic abundance, and are in accordance with the cosmological constraints.

  11. Backbone assignment of the little finger domain of a Y-family DNA polymerase.

    PubMed

    Ma, Dejian; Fowler, Jason D; Suo, Zucai

    2011-10-01

    Sulfolobus solfataricus DNA polymerase IV (Dpo4), a prototype Y-family DNA polymerase, contains a unique little finger domain besides a catalytic core. Here, we report the chemical shift assignments for the backbone nitrogens, α and β carbons, and amide protons of the little finger domain of Dpo4. This work and our published backbone assignment for the catalytic core provide the basis for investigating the conformational dynamics of Dpo4 during catalysis using solution NMR spectroscopy.

  12. Impaired letter-string processing in developmental dyslexia: what visual-to-phonology code mapping disorder?

    PubMed

    Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel

    2012-05-01

    Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In particular, report of poor letter/digit-string processing but preserved symbol-string processing was viewed as evidence of poor visual-to-phonology code mapping, in line with the phonological theory of developmental dyslexia. We assessed here the visual-to-phonological-code mapping disorder hypothesis. In Experiment 1, letter-string, digit-string and colour-string processing was assessed to disentangle a phonological versus visual familiarity account of the letter/digit versus symbol dissociation. Against a visual-to-phonological-code mapping disorder but in support of a familiarity account, results showed poor letter/digit-string processing but preserved colour-string processing in dyslexic children. In Experiment 2, two tasks of letter-string report were used, one of which was performed simultaneously to a high-taxing phonological task. Results show that dyslexic children are similarly impaired in letter-string report whether a concurrent phonological task is simultaneously performed or not. Taken together, these results provide strong evidence against a phonological account of poor letter-string processing in developmental dyslexia. Copyright © 2012 John Wiley & Sons, Ltd.

  13. The Minnesota Family, Friend and Neighbor Grant Program

    ERIC Educational Resources Information Center

    Susman-Stillman, Amy; Stout, Karen; Cleveland, Jennifer; Hawley, Vicki

    2011-01-01

    In 1997, Minnesota became the first state in the nation to pass legislation establishing an education and support program for family, friend, and neighbor (FFN) care providers. This article describes the Minnesota Family, Friend and Neighbor Grant Program and findings from an evaluation of the programs and a curriculum scan of materials used in…

  14. Pinning Stabilizes Neighboring Surface Nanobubbles against Ostwald Ripening.

    PubMed

    Dollet, Benjamin; Lohse, Detlef

    2016-11-01

    Pinning of the contact line and gas oversaturation explain the stability of single surface nanobubbles. In this article, we theoretically show that the pinning also suppresses the Ostwald ripening process between neighboring surface nanobubbles, thus explaining why in a population of neighboring surface nanobubbles different radii of curvature of the nanobubbles can be observed.

  15. Effects of cosmic string velocities and the origin of globular clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ling; Yamanouchi, Shoma; Brandenberger, Robert, E-mail: ling.lin2@mail.mcgill.ca, E-mail: shoma.yamanouchi@mail.mcgill.ca, E-mail: rhb@physics.mcgill.ca

    2015-12-01

    With the hypothesis that cosmic string loops act as seeds for globular clusters in mind, we study the role that velocities of these strings will play in determining the mass distribution of globular clusters. Loops with high enough velocities will not form compact and roughly spherical objects and can hence not be the seeds for globular clusters. We compute the expected number density and mass function of globular clusters as a function of both the string tension and the peak loop velocity, and compare the results with the observational data on the mass distribution of globular clusters in our Milkymore » Way. We determine the critical peak string loop velocity above which the agreement between the string loop model for the origin of globular clusters (neglecting loop velocities) and observational data is lost.« less

  16. Neighbors United for Health

    ERIC Educational Resources Information Center

    Westhoff, Wayne W.; Corvin, Jaime; Virella, Irmarie

    2009-01-01

    Modeled upon the ecclesiastic community group concept of Latin America to unite and strengthen the bond between the Church and neighborhoods, a community-based organization created Vecinos Unidos por la Salud (Neighbors United for Health) to bring health messages into urban Latino neighborhoods. The model is based on five tenants, and incorporates…

  17. Elastic Backbone Defines a New Transition in the Percolation Model

    NASA Astrophysics Data System (ADS)

    Sampaio Filho, Cesar I. N.; Andrade, José S.; Herrmann, Hans J.; Moreira, André A.

    2018-04-01

    The elastic backbone is the set of all shortest paths. We found a new phase transition at peb above the classical percolation threshold at which the elastic backbone becomes dense. At this transition in 2D, its fractal dimension is 1.750 ±0.003 , and one obtains a novel set of critical exponents βeb=0.50 ±0.02 , γeb=1.97 ±0.05 , and νeb=2.00 ±0.02 , fulfilling consistent critical scaling laws. Interestingly, however, the hyperscaling relation is violated. Using Binder's cumulant, we determine, with high precision, the critical probabilities peb for the triangular and tilted square lattice for site and bond percolation. This transition describes a sudden rigidification as a function of density when stretching a damaged tissue.

  18. Pollinator-mediated interactions in experimental arrays vary with neighbor identity.

    PubMed

    Ha, Melissa K; Ivey, Christopher T

    2017-02-01

    Local ecological conditions influence the impact of species interactions on evolution and community structure. We investigated whether pollinator-mediated interactions between coflowering plants vary with plant density, coflowering neighbor identity, and flowering season. We conducted a field experiment in which flowering time and floral neighborhood were manipulated in a factorial design. Early- and late-flowering Clarkia unguiculata plants were placed into arrays with C. biloba neighbors, noncongeneric neighbors, additional conspecific plants, or no additional plants as a density control. We compared whole-plant pollen limitation of seed set, pollinator behavior, and pollen deposition among treatments. Interactions mediated by shared pollinators depended on the identity of the neighbor and possibly changed through time, although flowering-season comparisons were compromised by low early-season plant survival. Interactions with conspecific neighbors were likely competitive late in the season. Interactions with C. biloba appeared to involve facilitation or neutral interactions. Interactions with noncongeners were more consistently competitive. The community composition of pollinators varied among treatment combinations. Pollinator-mediated interactions involved competition and likely facilitation, depending on coflowering neighbor. Experimental manipulation helped to reveal context-dependent variation in indirect biotic interactions. © 2017 Botanical Society of America.

  19. The clinic as a good corporate neighbor

    PubMed Central

    Sass, Hans-Martin

    2013-01-01

    Clinics today specialize in health repair services similar to car repair shops; procedures and prices are standardized, regulated, and inflexibly uniform. Clinics of the future have to become Health Care Centers in order to be more respected and more effective corporate neighbors in offering outreach services in health education and preventive health care. The traditional concept of care for health is much broader than repair management and includes the promotion of lay health competence and responsibility in healthy social and natural environments. The corporate profile and ethics of the clinic as a good and competitive local neighbor will have to focus on [a] better personalized care, [b] education and services in preventive care, [c] direct or web-based information and advice for general, seasonal, or age related health risks, and on developing and improving trustworthy character traits of the clinic as a corporate person and a good neighbor. PMID:23444251

  20. The clinic as a good corporate neighbor.

    PubMed

    Sass, Hans-Martin

    2013-02-01

    Clinics today specialize in health repair services similar to car repair shops; procedures and prices are standardized, regulated, and inflexibly uniform. Clinics of the future have to become Health Care Centers in order to be more respected and more effective corporate neighbors in offering outreach services in health education and preventive health care. The traditional concept of care for health is much broader than repair management and includes the promotion of lay health competence and responsibility in healthy social and natural environments. The corporate profile and ethics of the clinic as a good and competitive local neighbor will have to focus on [a] better personalized care, [b] education and services in preventive care, [c] direct or web-based information and advice for general, seasonal, or age related health risks, and on developing and improving trustworthy character traits of the clinic as a corporate person and a good neighbor.

  1. Wormhole at the core of an infinite cosmic string

    NASA Astrophysics Data System (ADS)

    Aros, Rodrigo O.; Zamorano, Nelson

    1997-11-01

    We study a solution of Einstein's equations that describes a straight cosmic string with a variable angular deficit, starting with a 2π deficit at the core. We show that the coordinate singularity associated with this defect can be interpreted as a traversable wormhole lodging at the core of the string. A negative energy density gradually decreases the angular deficit as the distance from the core increases, ending, at radial infinity, in a Minkowski spacetime. The negative energy density can be confined to a small transversal section of the string by gluing to it an exterior Gott-like solution that freezes the angular deficit existing at the matching border. The equation of state of the string is such that any massive particle may stay at rest anywhere in this spacetime. In this sense this is a 2+1 spacetime solution. A generalization that includes the existence of two interacting parallel wormholes is displayed. These wormholes are not traversable. Finally, we point out that a similar result, flat at infinity and with a 2π defect (or excess) at the core, has been recently published by Dyer and Marleau. Even though theirs is a local string fully coupled to gravity, our toy model captures important aspects of this solution.

  2. Topological defects in open string field theory

    NASA Astrophysics Data System (ADS)

    Kojita, Toshiko; Maccaferri, Carlo; Masuda, Toru; Schnabl, Martin

    2018-04-01

    We show how conformal field theory topological defects can relate solutions of open string field theory for different boundary conditions. To this end we generalize the results of Graham and Watts to include the action of defects on boundary condition changing fields. Special care is devoted to the general case when nontrivial multiplicities arise upon defect action. Surprisingly the fusion algebra of defects is realized on open string fields only up to a (star algebra) isomorphism.

  3. Purely cubic action for string field theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.

    1986-01-01

    It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.

  4. Segmented strings and the McMillan map

    DOE PAGES

    Gubser, Steven S.; Parikh, Sarthak; Witaszczyk, Przemek

    2016-07-25

    We present new exact solutions describing motions of closed segmented strings in AdS 3 in terms of elliptic functions. The existence of analytic expressions is due to the integrability of the classical equations of motion, which in our examples reduce to instances of the McMillan map. Here, we also obtain a discrete evolution rule for the motion in AdS 3 of arbitrary bound states of fundamental strings and D1-branes in the test approximation.

  5. Hadronic density of states from string theory.

    PubMed

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.

  6. Cosmic-string-induced hot dark matter perturbations

    NASA Technical Reports Server (NTRS)

    Van Dalen, Anthony

    1990-01-01

    This paper investigates the evolution of initially relativistic matter, radiation, and baryons around cosmic string seed perturbations. A detailed analysis of the linear evolution of spherical perturbations in a universe is carried out, and this formalism is used to study the evolution of perturbations around a sphere of uniform density and fixed radius, approximating a loop of cosmic string. It was found that, on scales less than a few megaparsec, the results agree with the nonrelativistic calculation of previous authors. On greater scales, there is a deviation approaching a factor of 2-3 in the perturbation mass. It is shown that a scenario with cosmic strings, hot dark matter, and a Hubble constant greater than 75 km/sec per Mpc can generally produce structure on the observed mass scales and at the appropriate time: 1 + z = about 4 for galaxies and 1 + z = about 1.5 for Abell clusters.

  7. Discrete symmetries in the heterotic-string landscape

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, P.

    2015-07-01

    We describe a new type of discrete symmetry that relates heterotic-string models. It is based on the spectral flow operator which normally acts within a general N = (2, 2) model and we use this operator to construct a map between N = (2, 0) models. The landscape of N = (2, 0) models is of particular interest among all heterotic-string models for two important reasons: Firstly, N =1 spacetime SUSY requires (2, 0) superconformal invariance and secondly, models with the well motivated by the Standard Model SO(10) unification structure are of this type. This idea was inspired by a new discrete symmetry in the space of fermionic ℤ2 × ℤ2 heterotic-string models that exchanges the spinors and vectors of the SO(10) GUT group, dubbed spinor-vector duality. We will describe how to generalize this to arbitrary internal rational Conformal Field Theories.

  8. Searching for cosmic strings in CMB anisotropy maps using wavelets and curvelets

    NASA Astrophysics Data System (ADS)

    Hergt, Lukas; Amara, Adam; Brandenberger, Robert; Kacprzak, Tomasz; Réfrégier, Alexandre

    2017-06-01

    We use wavelet and curvelet transforms to extract signals of cosmic strings from simulated cosmic microwave background (CMB) temperature anisotropy maps, and to study the limits on the cosmic string tension which various ongoing CMB temperature anisotropy experiments will be able to achieve. We construct sky maps with size and angular resolution corresponding to various experiments. These maps contain the signals of a scaling solution of long string segments with a given string tension G μ, the contribution of the dominant Gaussian primordial cosmological fluctuations, and pixel by pixel white noise with an amplitude corresponding to the instrumental noise of the various experiments. In the case that we include white noise, we find that using curvelets we obtain lower bounds on the string tension than with wavelets. For maps with Planck specification, we obtain bounds comparable to what was obtained by the Planck collaboration [1]. Experiments with better angular resolution such as the South Pole Telescope third generation (SPT-3G) survey will be able to yield stronger limits. For maps with a specification of SPT-3G we find that string signals will be visible down to a string tension of G μ = 1.4 × 10-7.

  9. Diffractive Scattering and Gauge/String Duality

    ScienceCinema

    Tan, Chung-I

    2018-05-11

    High-energy diffractive scattering will be discussed based on Gauge/String duality. As shown by Brower, Polchinski, Strassler and Tan, the ubiquitous Pomeron emerges naturally in gauge theories with string-theoretical descriptions. Its existence is intimately tied to gluons, and also to the energy-momentum tensor. With a confining dual background metric, the Pomeron can be interpreted as a 'massive graviton'. In a single unified step, both its infrared and ultraviolet properties are dealt with, reflecting confinement and conformal symmetry respectively. An effective field theory for high-energy scattering can be constructed. Applications based on this approach will also be described.

  10. Cosmic strings: Gravitation without local curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helliwell, T.M.; Konkowski, D.A.

    1987-05-01

    Cosmic strings are very long, thin structures which might stretch over vast reaches of the universe. If they exist, they would have been formed during phase transitions in the very early universe. The space-time surrounding a straight cosmic string is flat but nontrivial: A two-dimensional spatial section is a cone rather than a plane. This feature leads to unique gravitational effects. The flatness of the cone means that many of the gravitational effects can be understood with no mathematics beyond trigonometry. This includes the observational predictions of the double imaging of quasars and the truncation of the images of galaxies.

  11. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    PubMed

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation. © 2015 Wiley Periodicals, Inc.

  12. Structural insights into the backbone-circularized granulocyte colony-stimulating factor containing a short connector.

    PubMed

    Miyafusa, Takamitsu; Shibuya, Risa; Honda, Shinya

    2018-06-02

    Backbone circularization is a powerful approach for enhancing the structural stability of polypeptides. Herein, we present the crystal structure of the circularized variant of the granulocyte colony-stimulating factor (G-CSF) in which the terminal helical region was circularized using a short, two-amino acid connector. The structure revealed that the N- and C-termini were indeed connected by a peptide bond. The local structure of the C-terminal region transited from an α helix to 3 10 helix with a bend close to the N-terminal region, indicating that the structural change offset the insufficient length of the connector. This is the first-ever report of a crystal structure of the backbone of a circularized protein. It will facilitate the development of backbone circularization methodology. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Deconfinement and the Hagedorn transition in string theory.

    PubMed

    Chaudhuri, S

    2001-03-05

    We introduce a new definition of the thermal partition function in string theory. With this new definition, the thermal partition functions of all of the string theories obey thermal duality relations with self-dual Hagedorn temperature beta(2)(H) = 4pi(2)alpha('). A beta-->beta(2)(H)/beta transformation maps the type I theory into a new string theory (type I) with thermal D p-branes, spatial hypersurfaces supporting a p-dimensional finite temperature non-Abelian Higgs-gauge theory for p< or =9. We demonstrate a continuous phase transition in the behavior of the static heavy quark-antiquark potential for small separations r(2)(*)

  14. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus sidechain groups to chain expansion via chemical denaturation

    PubMed Central

    Holehouse, Alex S.; Garai, Kanchan; Lyle, Nicholas; Vitalis, Andreas; Pappu, Rohit V.

    2015-01-01

    In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones and therefore backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of sidechains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that sidechains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of sidechain-mediated interactions as determinants of the

  15. GPU Based N-Gram String Matching Algorithm with Score Table Approach for String Searching in Many Documents

    NASA Astrophysics Data System (ADS)

    Srinivasa, K. G.; Shree Devi, B. N.

    2017-10-01

    String searching in documents has become a tedious task with the evolution of Big Data. Generation of large data sets demand for a high performance search algorithm in areas such as text mining, information retrieval and many others. The popularity of GPU's for general purpose computing has been increasing for various applications. Therefore it is of great interest to exploit the thread feature of a GPU to provide a high performance search algorithm. This paper proposes an optimized new approach to N-gram model for string search in a number of lengthy documents and its GPU implementation. The algorithm exploits GPGPUs for searching strings in many documents employing character level N-gram matching with parallel Score Table approach and search using CUDA API. The new approach of Score table used for frequency storage of N-grams in a document, makes the search independent of the document's length and allows faster access to the frequency values, thus decreasing the search complexity. The extensive thread feature in a GPU has been exploited to enable parallel pre-processing of trigrams in a document for Score Table creation and parallel search in huge number of documents, thus speeding up the whole search process even for a large pattern size. Experiments were carried out for many documents of varied length and search strings from the standard Lorem Ipsum text on NVIDIA's GeForce GT 540M GPU with 96 cores. Results prove that the parallel approach for Score Table creation and searching gives a good speed up than the same approach executed serially.

  16. Walking tree heuristics for biological string alignment, gene location, and phylogenies

    NASA Astrophysics Data System (ADS)

    Cull, P.; Holloway, J. L.; Cavener, J. D.

    1999-03-01

    Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.

  17. Loop Variables in String Theory

    NASA Astrophysics Data System (ADS)

    Sathiapalan, B.

    The loop variable approach is a proposal for a gauge-invariant generalization of the sigma-model renormalization group method of obtaining equations of motion in string theory. The basic guiding principle is space-time gauge invariance rather than world sheet properties. In essence it is a version of Wilson's exact renormalization group equation for the world sheet theory. It involves all the massive modes and is defined with a finite world sheet cutoff, which allows one to go off the mass-shell. On shell the tree amplitudes of string theory are reproduced. The equations are gauge-invariant off shell also. This paper is a self-contained discussion of the loop variable approach as well as its connection with the Wilsonian RG.

  18. Wave propagation in axially moving periodic strings

    NASA Astrophysics Data System (ADS)

    Sorokin, Vladislav S.; Thomsen, Jon Juel

    2017-04-01

    The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drives for diesel engines by capturing both their spatial periodicity and axial motion. The Method of Varying Amplitudes is employed in the analysis. It is shown that the compound wave traveling in the axially moving periodic string comprises many components with different frequencies and wavenumbers. This is in contrast to non-moving periodic structures, for which all components of the corresponding compound wave feature the same frequency. Due to this "multi-frequency" character of the wave motion, the conventional notion of frequency band-gaps appears to be not applicable for the moving periodic strings. Thus, for such structures, by frequency band-gaps it is proposed to understand frequency ranges in which the primary component of the compound wave attenuates. Such frequency band-gaps can be present for a moving periodic string, but only if its axial velocity is lower than the transverse wave speed, and, the higher the axial velocity, the narrower the frequency band-gaps. The revealed effects could be of potential importance for applications, e.g. they indicate that due to spatial inhomogeneity, oscillations of axially moving periodic chains always involve a multitude of frequencies.

  19. Adult and Child Semantic Neighbors of the Kroll and Potter (1984) Nonobjects

    PubMed Central

    Storkel, Holly L.; Adlof, Suzanne M.

    2008-01-01

    Purpose The purpose was to determine the number of semantic neighbors, namely semantic set size, for 88 nonobjects (Kroll & Potter, 1984) and determine how semantic set size related to other measures and age. Method Data were collected from 82 adults and 92 preschool children in a discrete association task. The nonobjects were presented via computer, and participants reported the first word that came to mind that was meaningfully related to the nonobject. Words reported by two or more participants were considered semantic neighbors. The strength of each neighbor was computed as the proportion of participants who reported the neighbor. Results Results showed that semantic set size was not significantly correlated with objectlikeness ratings or object decision reaction times from Kroll and Potter (1984). However, semantic set size was significantly negatively correlated with the strength of the strongest neighbor(s). In terms of age effects, adult and child semantic set sizes were significantly positively correlated and the majority of numeric differences were on the order of 0–3 neighbors. Comparison of actual neighbors showed greater discrepancies; however, this varied by neighbor strength. Conclusions Semantic set size can be determined for nonobjects. Specific guidelines are suggested for using these nonobjects in future research. PMID:19252127

  20. Diagnostic tools for nearest neighbors techniques when used with satellite imagery

    Treesearch

    Ronald E. McRoberts

    2009-01-01

    Nearest neighbors techniques are non-parametric approaches to multivariate prediction that are useful for predicting both continuous and categorical forest attribute variables. Although some assumptions underlying nearest neighbor techniques are common to other prediction techniques such as regression, other assumptions are unique to nearest neighbor techniques....

  1. Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks.

    PubMed

    Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit

    2014-02-27

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  2. Semiclassical (qft) and Quantum (string) Rotating Black Holes and Their Evaporation:. New Results

    NASA Astrophysics Data System (ADS)

    Bouchareb, A.; Ramón Medrano, M.; Sánchez, N. G.

    Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross-section of strings by a Kerr-Newman black hole (KNbh). It shows the black hole emission at the Hawking temperature Tsem in the early stage of evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature Ts at the last stages. New bounds on J and Q emerge in the quantum string regime (besides the known ones of the classical/semiclassical QFT regime). The last state of evaporation of a semiclassical Kerr-Newman black hole with mass M > mPl, angular momentum J and charge Q is a string state of temperature Ts, string mass Ms, J = 0 and Q = 0, decaying as usual quantum strings do into all kinds of particles. (Naturally, in this framework, there is no loss of information, (there is no paradox at all).) We compute the string entropy Ss(m, j) from the microscopic string density of states of mass m and spin mode j, ρ(m, j). (Besides the Hagedorn transition at Ts) we find for high j (extremal string states j → m2α‧c), a new phase transition at a temperature Tsj = √ {j/hbar }Ts, higher than Ts. By precisely identifying the semiclassical and quantum (string) gravity regimes, we find a new formula for the Kerr black hole entropy Ssem(M, J), as a function of the usual Bekenstein-Hawking entropy S sem(0). For M ≫ mPl and J < GM2/c, S sem(0) is the leading term, but for high angular momentum, (nearly extremal case J = GM2/c), a gravitational phase transition operates and the whole entropy Ssem is drastically different from the Bekenstein-Hawking entropy S sem(0). This new extremal black hole transition occurs at a temperature Tsem J = (J/ℏ)Tsem, higher than the Hawking temperature Tsem.

  3. Bounce universe from string-inspired Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Kazuharu; Makarenko, Andrey N.; Myagky, Alexandr N.

    2015-04-01

    We explore cosmology with a bounce in Gauss-Bonnet gravity where the Gauss-Bonnet invariant couples to a dynamical scalar field. In particular, the potential and and Gauss-Bonnet coupling function of the scalar field are reconstructed so that the cosmological bounce can be realized in the case that the scale factor has hyperbolic and exponential forms. Furthermore, we examine the relation between the bounce in the string (Jordan) and Einstein frames by using the conformal transformation between these conformal frames. It is shown that in general, the property of the bounce point in the string frame changes after the frame is movedmore » to the Einstein frame. Moreover, it is found that at the point in the Einstein frame corresponding to the point of the cosmological bounce in the string frame, the second derivative of the scale factor has an extreme value. In addition, it is demonstrated that at the time of the cosmological bounce in the Einstein frame, there is the Gauss-Bonnet coupling function of the scalar field, although it does not exist in the string frame.« less

  4. A numerical study of the string function using a primitive equation ocean model

    NASA Astrophysics Data System (ADS)

    Tyler, R. H.; Käse, R.

    We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.

  5. Cosmic strings - A problem or a solution?

    NASA Technical Reports Server (NTRS)

    Bennett, David P.; Bouchet, Francois R.

    1988-01-01

    The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis.

  6. Origin of gauge invariance in string theory

    NASA Technical Reports Server (NTRS)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  7. Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory.

    PubMed

    El Mehdawi, Ali F; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-09-13

    Soil surrounding selenium (Se) hyperaccumulator plants was shown earlier to be enriched in Se, impairing the growth of Se-sensitive plant species. Because Se levels in neighbors of hyperaccumulators were higher and Se has been shown to protect plants from herbivory, we investigate here the potential facilitating effect of Se hyperaccumulators on Se-tolerant neighboring species in the field. We measured growth and herbivory of Artemisia ludoviciana and Symphyotrichum ericoides as a function of their Se concentration and proximity to hyperaccumulators Astragalus bisulcatus and Stanleya pinnata. When growing next to hyperaccumulators, A. ludoviciana and S. ericoides contained 10- to 20-fold higher Se levels (800-2,000 mg kg(-1) DW) than when growing next to nonaccumulators. The roots of both species were predominantly (70%-90%) directed toward hyperaccumulator neighbors, not toward other neighbors. Moreover, neighbors of hyperaccumulators were 2-fold bigger, showed 2-fold less herbivory damage, and harbored 3- to 4-fold fewer arthropods. When used in laboratory choice and nonchoice grasshopper herbivory experiments, Se-rich neighbors of hyperaccumulators experienced less herbivory and caused higher grasshopper Se accumulation (10-fold) and mortality (4-fold). Enhanced soil Se levels around hyperaccumulators can facilitate growth of Se-tolerant plant species through reduced herbivory and enhanced growth. This study is the first to show facilitation via enrichment with a nonessential element. It is interesting that Se enrichment of hyperaccumulator neighbors may affect competition in two ways, by reducing growth of Se-sensitive neighbors while facilitating Se-tolerant neighbors. Via these competitive and facilitating effects, Se hyperaccumulators may affect plant community composition and, consequently, higher trophic levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. New 5-adic Cantor sets and fractal string.

    PubMed

    Kumar, Ashish; Rani, Mamta; Chugh, Renu

    2013-01-01

    In the year (1879-1884), George Cantor coined few problems and consequences in the field of set theory. One of them was the Cantor ternary set as a classical example of fractals. In this paper, 5-adic Cantor one-fifth set as an example of fractal string have been introduced. Moreover, the applications of 5-adic Cantor one-fifth set in string theory have also been studied.

  9. Thermal breakage of a discrete one-dimensional string.

    PubMed

    Lee, Chiu Fan

    2009-09-01

    We study the thermal breakage of a discrete one-dimensional string, with open and fixed ends, in the heavily damped regime. Basing our analysis on the multidimensional Kramers escape theory, we are able to make analytical predictions on the mean breakage rate and on the breakage propensity with respect to the breakage location on the string. We then support our predictions with numerical simulations.

  10. Modeling Harpsichord Plucking: The Plectrum and the String

    NASA Astrophysics Data System (ADS)

    Perng, Jack; Rossing, Thomas; Smith, Julius

    2011-11-01

    The harpsichord is a plucked string keyboard instrument that was popular during the Renaissance and Baroque music eras. Although it was later replaced by the more expressive piano, it has mounted a comeback due to the early music movement today. A physical model of the harpsichord's plucking mechanism is presented, detailing the plectrum-string interaction which illustrates many aspects of the harpsichord's characteristic sound.

  11. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helixmore » bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).« less

  12. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  13. Brane inflation and cosmic string tension in superstring theory

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Tye, S.-H. Henry

    2005-03-01

    In a simple reanalysis of the KKLMMT scenario, we argue that the slow roll condition in the D3-overline {D}3 -brane inflationary scenario in superstring theory requires no more than a moderate tuning. The cosmic string tension is very sensitive to the conformal coupling: with less fine-tuning, the cosmic string tension (as well as the ratio of tensor to scalar perturbation mode) increases rapidly and can easily saturate the present observational bound. In a multi-throat brane inflationary scenario, this feature substantially improves the chance of detecting and measuring the properties of the cosmic strings as a window to the superstring theory and our pre-inflationary universe.

  14. Strings on plane-waves and spin chains on orbifolds

    NASA Astrophysics Data System (ADS)

    Sadri, Darius

    This thesis covers a number of topics in string theory focusing on various aspects of the AdS/CFT duality in various guises and regimes. In the first chapter we present a self-contained review of the Plane-wave/super-Yang-Mills duality. This duality is a specification of the usual AdS/CFT correspondence in the "Penrose limit". In chapter two we study the most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Quantization of string modes, their compactification and behaviour under T-duality are also studied, as are BPS Dp-branes on such backgrounds. In chapter three we consider giant gravitons on the maximally supersymmetric plane-wave background. We deduce the low energy effective light-cone Hamiltonian of the three-sphere giant graviton, and place sources in this effective gauge theory. Although non-vanishing net electric charge configurations are disallowed by Gauss' law, electric dipoles can be formed. From the string theory point of view these dipoles can be understood as open strings piercing the three-sphere, giving a two dimensional (worldsheet) description of giant gravitons. Chapter four presents some new ideas regarding the relation between super-conformal gauge theories and string theories with three-dimensional target spaces, possible relations of these systems to Hamiltonian lattice gauge theories, and integrable spin chains. We consider N = 1, D = 4 superconformal SU( N)px q Yang-Mills theories dual to AdS5 x S5/Zp x Zq orbifolds. We show that a specific sector of this dilatation operator can be thought of as the transfer matrix for a three-dimensional statistical mechanical system, which in turn is equivalent to a 2 + 1-dimensional string theory where the spatial slices

  15. The string soundscape at gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Garcia Garcia, Isabel; Krippendorf, Sven; March-Russell, John

    2018-04-01

    We argue that gravitational wave signals due to collisions of ultra-relativistic bubble walls may be common in string theory. This occurs due to a process of post-inflationary vacuum decay via quantum tunnelling. Though we study a specific string construction involving warped throats, we argue that our conclusions are more general. Many such transitions could have occurred in the post-inflationary Universe, as a large number of throats with exponentially different mass scales can be present in the string landscape, leading to several signals of widely different frequencies - a soundscape connected to the landscape of vacua. Detectors such as aLIGO/VIRGO, LISA, and pulsar timing observations with SKA and EPTA have the sensitivity to detect such signals. A distribution of primordial black holes is also a likely consequence, though reliable estimates of masses and their abundance require dedicated numerical simulations, as do the fine details of the gravitational wave spectrum due to the unusual nature of the transition.

  16. Strings, boundary fermions and coincident D-branes

    NASA Astrophysics Data System (ADS)

    Wulff, Linus

    2007-01-01

    This thesis describes an attempt to write down covariant actions for coincident D-branes using so-called boundary fermions instead of matrices to describe the non-abelian fields. These fermions can be thought of as Chan-Paton degrees of freedom for the open string. It is shown that by gauge-fixing and by suitably quantizing these boundary fermions the non-abelian action that is known, the Myers action, can be reproduced. Furthermore it is shown that under natural assumptions, unlike the Myers action, the action formulated using boundary fermions also posseses kappa-symmetry when formulated on superspace. Another aspect of string theory discussed in this thesis is that of tensionless strings. These are of great interest for example because of their possible relation to higher spin gauge theories via the AdS/CFT-correspondence. The tensionless superstring in a plane wave background, a Penrose limit of the near-horizon geometry of a stack of D3-branes, is considered and compared to the tensile case.

  17. Closed string tachyon driving f(R) cosmology

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Wu, Houwen; Yang, Haitang

    2018-05-01

    To study quantum effects on the bulk tachyon dynamics, we replace R with f(R) in the low-energy effective action that couples gravity, the dilaton, and the bulk closed string tachyon of bosonic closed string theory and study properties of their classical solutions. The α' corrections of the graviton-dilaton-tachyon system are implemented in the f(R). We obtain the tachyon-induced rolling solutions and show that the string metric does not need to remain fixed in some cases. In the case with H( t=‑∞ ) = , only the R and R2 terms in f(R) play a role in obtaining the rolling solutions with nontrivial metric. The singular behavior of more classical solutions are investigated and found to be modified by quantum effects. In particular, there could exist some classical solutions, in which the tachyon field rolls down from a maximum of the tachyon potential while the dilaton expectation value is always bounded from above during the rolling process.

  18. Experimenting with Guitar Strings

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2006-11-01

    What follows is a description of a simple experiment developed in a nonmathematical general education science course on sound and light for fine arts students in which a guitar is used with data collection hardware and software to verify the properties of standing waves on a string.

  19. Secure Nearest Neighbor Query on Crowd-Sensing Data

    PubMed Central

    Cheng, Ke; Wang, Liangmin; Zhong, Hong

    2016-01-01

    Nearest neighbor queries are fundamental in location-based services, and secure nearest neighbor queries mainly focus on how to securely and quickly retrieve the nearest neighbor in the outsourced cloud server. However, the previous big data system structure has changed because of the crowd-sensing data. On the one hand, sensing data terminals as the data owner are numerous and mistrustful, while, on the other hand, in most cases, the terminals find it difficult to finish many safety operation due to computation and storage capability constraints. In light of they Multi Owners and Multi Users (MOMU) situation in the crowd-sensing data cloud environment, this paper presents a secure nearest neighbor query scheme based on the proxy server architecture, which is constructed by protocols of secure two-party computation and secure Voronoi diagram algorithm. It not only preserves the data confidentiality and query privacy but also effectively resists the collusion between the cloud server and the data owners or users. Finally, extensive theoretical and experimental evaluations are presented to show that our proposed scheme achieves a superior balance between the security and query performance compared to other schemes. PMID:27669253

  20. Secure Nearest Neighbor Query on Crowd-Sensing Data.

    PubMed

    Cheng, Ke; Wang, Liangmin; Zhong, Hong

    2016-09-22

    Nearest neighbor queries are fundamental in location-based services, and secure nearest neighbor queries mainly focus on how to securely and quickly retrieve the nearest neighbor in the outsourced cloud server. However, the previous big data system structure has changed because of the crowd-sensing data. On the one hand, sensing data terminals as the data owner are numerous and mistrustful, while, on the other hand, in most cases, the terminals find it difficult to finish many safety operation due to computation and storage capability constraints. In light of they Multi Owners and Multi Users (MOMU) situation in the crowd-sensing data cloud environment, this paper presents a secure nearest neighbor query scheme based on the proxy server architecture, which is constructed by protocols of secure two-party computation and secure Voronoi diagram algorithm. It not only preserves the data confidentiality and query privacy but also effectively resists the collusion between the cloud server and the data owners or users. Finally, extensive theoretical and experimental evaluations are presented to show that our proposed scheme achieves a superior balance between the security and query performance compared to other schemes.

  1. Robust Neighboring Optimal Guidance for the Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Hull, David G.

    1993-01-01

    In recent years, optimization has become an engineering tool through the availability of numerous successful nonlinear programming codes. Optimal control problems are converted into parameter optimization (nonlinear programming) problems by assuming the control to be piecewise linear, making the unknowns the nodes or junction points of the linear control segments. Once the optimal piecewise linear control (suboptimal) control is known, a guidance law for operating near the suboptimal path is the neighboring optimal piecewise linear control (neighboring suboptimal control). Research conducted under this grant has been directed toward the investigation of neighboring suboptimal control as a guidance scheme for an advanced launch system.

  2. Novel string field theory with also negative energy constituents/objects gives Veneziano amplitude

    NASA Astrophysics Data System (ADS)

    Nielsen, H. B.; Ninomiya, M.

    2018-02-01

    We have proposed a new type of string field theory. The main point of the present article is to cure some technical troubles: missing two out three terms in Veneziano amplitude. Our novel string field theory, describes a theory with many strings in terms of "objects", which are not exactly, but close to Charles Thorn's string bits. The new point is that the objects in terms of which the universe states are constructed, and which have an essentially 26-momentum variable called J μ , can have the energy J 0 be also negative as well as positive. We get a long way in deriving in this model the Veneziano model and obtain all the three terms needed for a four point amplitude. This result strongly indicates that our novel string field theory is indeed string theory.

  3. Minimum Expected Risk Estimation for Near-neighbor Classification

    DTIC Science & Technology

    2006-04-01

    We consider the problems of class probability estimation and classification when using near-neighbor classifiers, such as k-nearest neighbors ( kNN ...estimate for weighted kNN classifiers with different prior information, for a broad class of risk functions. Theory and simulations show how significant...the difference is compared to the standard maximum likelihood weighted kNN estimates. Comparisons are made with uniform weights, symmetric weights

  4. Constraining de Sitter Space in String Theory.

    PubMed

    Kutasov, David; Maxfield, Travis; Melnikov, Ilarion; Sethi, Savdeep

    2015-08-14

    We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result suggests that the genericity arguments used in string landscape discussions should be viewed with caution.

  5. String splitting and strong coupling meson decay.

    PubMed

    Cotrone, A L; Martucci, L; Troost, W

    2006-04-14

    We study the decay of high spin mesons using the gauge-string theory correspondence. The rate of the process is calculated by studying the splitting of a macroscopic string intersecting a D-brane. The result is applied to the decay of mesons in N=4 super Yang-Mills theory with a small number of flavors and in a gravity dual of large N QCD. In QCD the decay of high spin mesons is found to be heavily suppressed in the regime of validity of the supergravity description.

  6. Self-energy and self-force in the space-time of a thick cosmic string

    NASA Astrophysics Data System (ADS)

    Khusnutdinov, N. R.; Bezerra, V. B.

    2001-10-01

    We calculate the self-energy and self-force for an electrically charged particle at rest in the background of Gott-Hiscock cosmic string space-time. We find the general expression for the self-energy which is expressed in terms of the S matrix of the scattering problem. The self-energy continuously falls down outward from the string's center with the maximum at the origin of the string. The self-force is repulsive for an arbitrary position of the particle. It tends to zero in the string's center and also far from the string and it has a maximum value at the string's surface. The plots of the numerical calculations of the self-energy and self-force are shown.

  7. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  8. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  9. Collaborative Composing in High School String Chamber Music Ensembles

    ERIC Educational Resources Information Center

    Hopkins, Michael T.

    2015-01-01

    The purpose of this study was to examine collaborative composing in high school string chamber music ensembles. Research questions included the following: (a) How do high school string instrumentalists in chamber music ensembles use verbal and musical forms of communication to collaboratively compose a piece of music? (b) How do selected variables…

  10. The Careers of Three Experienced String Teachers: Some Observations

    ERIC Educational Resources Information Center

    Ha, Joy

    2017-01-01

    The purpose of this study was to explore the career development process of three experienced string instrument teachers and how they understood their career development. The following questions guided this interpretative phenomenological case study: (a) How do the string teachers in this study learn to teach? (b) What sort of phases are involved…

  11. What Do Foreign Neighbors Say about the Mental Lexicon?

    ERIC Educational Resources Information Center

    Vitevitch, Michael S.

    2012-01-01

    A corpus analysis of phonological word-forms shows that English words have few phonological neighbors that are Spanish words. Concomitantly, Spanish words have few phonological neighbors that are English words. These observations appear to undermine certain accounts of bilingual language processing, and have significant implications for the…

  12. Matrix theory interpretation of discrete light cone quantization string worldsheets

    PubMed

    Grignani; Orland; Paniak; Semenoff

    2000-10-16

    We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion.

  13. Hawking Radiation of Massive Bosons via Tunneling from Black Strings

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Wen

    2017-12-01

    In the present paper, the Hawking radiation of massive bosons from 4-dimensional and 5-dimensional black strings are studied in quantum tunneling formalism. First, we derive the Hamilton-Jacobi equation set via the Proca equation and WKB approximation. Then, the tunneling rates and Hawking temperatures of the black strings are obtained. Our calculations show that the tunneling rates and Hawking temperatures are related to the properties of black strings' spacetime. When compare our results with those of scalars and fermions cases, it finds that they are the same.

  14. Hawking Radiation of Massive Bosons via Tunneling from Black Strings

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Wen

    2018-03-01

    In the present paper, the Hawking radiation of massive bosons from 4-dimensional and 5-dimensional black strings are studied in quantum tunneling formalism. First, we derive the Hamilton-Jacobi equation set via the Proca equation and WKB approximation. Then, the tunneling rates and Hawking temperatures of the black strings are obtained. Our calculations show that the tunneling rates and Hawking temperatures are related to the properties of black strings' spacetime. When compare our results with those of scalars and fermions cases, it finds that they are the same.

  15. Experimenting with Guitar Strings

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2006-01-01

    What follows is a description of a simple experiment developed in a non-mathematical general education science course on sound and light for fine arts students in which a guitar is used with data collection hardware and software to verify the properties of standing waves on a string.

  16. Filter for a drill string

    DOEpatents

    Hall, David R.; Pixton, David S.; Briscoe, Michael; McPherson, James

    2007-12-04

    A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

  17. Evolution equation in the field theory of strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marui, M.; Sugamoto, A.; Oda, I.

    This paper reports on a stringy version of the Altarelli-Parisi equation given within the field theory of bosonic strings formulated in the light-cone gauge. Using this equation, the authors study the behavior of the decay function of strings under the change of reference scale, especially imposing an assumption of large transverse momentum. In some cases the n-th moment of the decay function behaves very differently from QCD.

  18. Topics in string theory

    NASA Astrophysics Data System (ADS)

    Gorbatov, Elie

    In the first part of the dissertation we study noncommutative field theories at finite temperature. We find evidence for winding states and observe the existence of a transition to a new phase where there is a reduction of the degrees of freedom in the non-planar sector of the theory. We emphasize that such a transition is generic and insensitive to the particulars of the UV definition of the theory. In the second part we investigate some aspects of M-theory compactifications on orbifolds. The heterotic E8 x E 8 string compactified on T4/ ZN has gauge group G x G˜ with massless states in the twisted sector charged under both factors. In the dual M-theory description on T4/ ZN x S1/Z 2 the two groups do not communicate with each other since they reside on the boundary of the eleven dimensional spacetime. This leads to a conundrum for the twisted states of the perturbative heterotic string for there does not seem to be local degrees of freedom which carry charges under both G and G˜. We propose a resolution of this apparent paradox by nonperturbative states in M-theory. In support of our argument we review the consideration of six-dimensional gauge couplings and verify the local anomaly cancellation. In order to understand the dynamical properties of these states we deform the orbifold geometry, find an equivalent string theory background, and brane engineer the low energy six-dimensional field theories. In the process we encounter many exotic and surprising phenomena which are intrinsically M-theoretic and completely invisible to the perturbative observer.

  19. String and Sticky Tape Experiments.

    ERIC Educational Resources Information Center

    Edge, R. D., Ed.

    1979-01-01

    Explains how to demonstrate the fundamentals of one dimensional kinematics such as Newton's third law of motion, and collision between bodies, using simple materials of marbles, strings, sticky tape, drinking straws, and rubber bands. (GA)

  20. Mexico, A Neighbor not to be Ignored.

    DTIC Science & Technology

    1988-04-01

    MEXICO A NEIGHBOR NOT TO BE IGNORED(J) AIR COMMAND AND - 1/1STAFF COLL MAXWdELL AFB AL M J MCNAMARA APR 88 1 ACSC-88-1775...g ~ ~ P~pa~’~ (FIL Tm AIR COMMAND AND STAFF COLLEGE STUDENT REPORT MEXICO , A NEIGHBOR NOT TO BE IGNORED MAJOR MARTIN J. MCNAMARA, USAFR 88-1775...8217--:,. ,-,.-.-- ,-,-.-,-,’, ..,,_, ’’,, , -. ,._".. . " , - -. ,"-’. J -, -" "", ""’"’, . , . . " ’ ’ %.’.,.’’ PREFACE If you were a public school student in Mexico in

  1. 3D string theory and Umbral moonshine

    DOE PAGES

    Kachru, Shamit; Paquette, Natalie M.; Volpato, Roberto

    2017-09-05

    Here, the simplest string theory compactifications to 3D with 16 supercharges—the heterotic string on T 7, and type II strings onmore » $$K3 \\times T^3$$ —are related by U-duality, and share a moduli space of vacua parametrized by $$O(8, 24;{{\\mathbb Z}}) ~\\backslash ~O(8, 24)~ /~ (O(8) \\times O(24))$$ . One can think of this as the moduli space of even, self-dual 32-dimensional lattices with signature (8,24). At 24 special points in moduli space, the lattice splits as $$\\Gamma^{8, 0} \\oplus \\Gamma^{0, 24}$$ . $$\\Gamma^{0, 24}$$ can be the Leech lattice or any of 23 Niemeier lattices, while $$\\Gamma^{8, 0}$$ is the E 8 root lattice. We show that starting from this observation, one can find a precise connection between the Umbral groups and type IIA string theory on K3. This may provide a natural physical starting point for understanding Mathieu and Umbral moonshine. The maximal unbroken subgroups of Umbral groups in 6D (or any other limit) are those obtained by starting at the associated Niemeier point and moving in moduli space while preserving the largest possible subgroup of the Umbral group. To illustrate the action of these symmetries on BPS states, we discuss the computation of certain protected four-derivative terms in the effective field theory, and recover facts about the spectrum and symmetry representations of 1/2-BPS states.« less

  2. Non-Abelian semilocal strings in N=2 supersymmetric QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300

    2006-06-15

    We consider a benchmark bulk theory in four dimensions: N=2 supersymmetric QCD with the gauge group U(N) and N{sub f} flavors of fundamental matter hypermultiplets (quarks). The nature of the Bogomol'nyi-Prasad-Sommerfield (BPS) strings in this benchmark theory crucially depends on N{sub f}. If N{sub f}{>=}N and all quark masses are equal, it supports non-Abelian BPS strings which have internal (orientational) moduli. If N{sub f}>N these strings become semilocal, developing additional moduli {rho} related to (unlimited) variations of their transverse size. Using the U(2) gauge group with N{sub f}=3, 4 as an example, we derive an effective low-energy theory on themore » (two-dimensional) string world sheet. Our derivation is field theoretic, direct and explicit: we first analyze the Bogomol'nyi equations for string-geometry solitons, suggest an ansatz, and solve it at large {rho}. Then we use this solution to obtain the world-sheet theory. In the semiclassical limit our result confirms the Hanany-Tong conjecture, which rests on brane-based arguments, that the world-sheet theory is an N=2 supersymmetric U(1) gauge theory with N positively and N{sub e}=N{sub f}-N negatively charged matter multiplets and the Fayet-Iliopoulos term determined by the four-dimensional coupling constant. We conclude that the Higgs branch of this model is not lifted by quantum effects. As a result, such strings cannot confine. Our analysis of infrared effects, not seen in the Hanany-Tong consideration, shows that, in fact, the derivative expansion can make sense only provided that the theory under consideration is regularized in the infrared, e.g. by the quark mass differences. The world-sheet action discussed in this paper becomes a bona fide low-energy effective action only if {delta}m{sub AB}{ne}0.« less

  3. Evolution and End Point of the Black String Instability: Large D Solution.

    PubMed

    Emparan, Roberto; Suzuki, Ryotaku; Tanabe, Kentaro

    2015-08-28

    We derive a simple set of nonlinear, (1+1)-dimensional partial differential equations that describe the dynamical evolution of black strings and branes to leading order in the expansion in the inverse of the number of dimensions D. These equations are easily solved numerically. Their solution shows that thin enough black strings are unstable to developing inhomogeneities along their length, and at late times they asymptote to stable nonuniform black strings. This proves an earlier conjecture about the end point of the instability of black strings in a large enough number of dimensions. If the initial black string is very thin, the final configuration is highly nonuniform and resembles a periodic array of localized black holes joined by short necks. We also present the equations that describe the nonlinear dynamics of anti-de Sitter black branes at large D.

  4. Black string corrections in variable tension braneworld scenarios

    NASA Astrophysics Data System (ADS)

    Da Rocha, Roldão; Hoff da Silva, J. M.

    2012-02-01

    Braneworld models with variable tension are investigated, and the corrections on the black string horizon along the extra dimension are provided. Such corrections are encrypted in additional terms involving the covariant derivatives of the variable tension on the brane, providing profound consequences concerning the black string horizon variation along the extra dimension, near the brane. The black string horizon behavior is shown to be drastically modified by the terms corrected by the brane variable tension. In particular, a model motivated by the phenomenological interesting case regarding Eötvös branes is investigated. It forthwith provides further physical features regarding variable tension braneworld scenarios, heretofore concealed in all previous analysis in the literature. All precedent analysis considered uniquely the expansion of the metric up to the second order along the extra dimension, which is able to evince solely the brane variable tension absolute value. Notwithstanding, the expansion terms aftermath, further accomplished in this paper from the third order on, elicits the successive covariant derivatives of the brane variable tension, and their respective coupling with the extrinsic curvature, the Weyl tensor, and the Riemann and Ricci tensors, as well as the scalar curvature. Such additional terms are shown to provide sudden modifications in the black string horizon in a variable tension braneworld scenario.

  5. Segmented strings coupled to a B-field

    NASA Astrophysics Data System (ADS)

    Vegh, David

    2018-04-01

    In this paper we study segmented strings in AdS3 coupled to a background two-form whose field strength is proportional to the volume form. By changing the coupling, the theory interpolates between the Nambu-Goto string and the SL(2, ℝ) Wess-Zumino-Witten model. In terms of the kink momentum vectors, the action is independent of the coupling and the classical theory reduces to a single discrete-time Toda-type theory. The WZW model is a singular point in coupling space where the map into Toda variables degenerates.

  6. Constraints on cosmic strings using data from the first Advanced LIGO observing run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steer, D. A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-05-01

    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension G μ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider.

  7. Cosmic R-string, R-tube and vacuum instability

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Hamada, Yuta; Kamada, Kohei; Kobayashi, Tatsuo; Ohashi, Keisuke; Ookouchi, Yutaka

    2013-03-01

    We show that a cosmic string associated with spontaneous U(1) R symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a "bamboo"-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.

  8. Tensionless Strings and Supersymmetric Sigma Models: Aspects of the Target Space Geometry

    NASA Astrophysics Data System (ADS)

    Bredthauer, Andreas

    2007-01-01

    In this thesis, two aspects of string theory are discussed, tensionless strings and supersymmetric sigma models. The equivalent to a massless particle in string theory is a tensionless string. Even almost 30 years after it was first mentioned, it is still quite poorly understood. We discuss how tensionless strings give rise to exact solutions to supergravity and solve closed tensionless string theory in the ten dimensional maximally supersymmetric plane wave background, a contraction of AdS(5)xS(5) where tensionless strings are of great interest due to their proposed relation to higher spin gauge theory via the AdS/CFT correspondence. For a sigma model, the amount of supersymmetry on its worldsheet restricts the geometry of the target space. For N=(2,2) supersymmetry, for example, the target space has to be bi-hermitian. Recently, with generalized complex geometry, a new mathematical framework was developed that is especially suited to discuss the target space geometry of sigma models in a Hamiltonian formulation. Bi-hermitian geometry is so-called generalized Kaehler geometry but the relation is involved. We discuss various amounts of supersymmetry in phase space and show that this relation can be established by considering the equivalence between the Hamilton and Lagrange formulation of the sigma model. In the study of generalized supersymmetric sigma models, we find objects that favor a geometrical interpretation beyond generalized complex geometry.

  9. High-energy zero-norm states and symmetries of string theory.

    PubMed

    Chan, Chuan-Tsung; Ho, Pei-Ming; Lee, Jen-Chi; Teraguchi, Shunsuke; Yang, Yi

    2006-05-05

    High-energy limit of zero-norm states in the old covariant first quantized spectrum of the 26D open bosonic string, together with the assumption of a smooth behavior of string theory in this limit, are used to derive infinitely many linear relations among the leading high-energy, fixed-angle behavior of four-point functions of different string states. As a result, ratios among all high-energy scattering amplitudes of four arbitrary string states can be calculated algebraically and the leading order amplitudes can be expressed in terms of that of four tachyons as conjectured by Gross in 1988. A dual calculation can also be performed and equivalent results are obtained by taking the high-energy limit of Virasoro constraints. Finally, we compute all high-energy scattering amplitudes of three tachyons and one massive state at the leading order by saddle-point approximation to verify our results.

  10. Higher-Loop Amplitude Monodromy Relations in String and Gauge Theory.

    PubMed

    Tourkine, Piotr; Vanhove, Pierre

    2016-11-18

    The monodromy relations in string theory provide a powerful and elegant formalism to understand some of the deepest properties of tree-level field theory amplitudes, like the color-kinematics duality. This duality has been instrumental in tremendous progress on the computations of loop amplitudes in quantum field theory, but a higher-loop generalization of the monodromy construction was lacking. In this Letter, we extend the monodromy relations to higher loops in open string theory. Our construction, based on a contour deformation argument of the open string diagram integrands, leads to new identities that relate planar and nonplanar topologies in string theory. We write one and two-loop monodromy formulas explicitly at any multiplicity. In the field theory limit, at one-loop we obtain identities that reproduce known results. At two loops, we check our formulas by unitarity in the case of the four-point N=4 super-Yang-Mills amplitude.

  11. String duality transformations in f(R) gravity from Noether symmetry approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians aremore » shown in cases where the duality transformation becomes a parity inversion.« less

  12. Self-force on an electric dipole in the spacetime of a cosmic string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muniz, C.R., E-mail: celiomuniz@yahoo.com; Bezerra, V.B., E-mail: valdir@ufpb.br

    2014-01-15

    We calculate the electrostatic self-force on an electric dipole in the spacetime generated by a static, thin, infinite and straight cosmic string. The electric dipole is held fixed in different configurations, namely, parallel, perpendicular to the cosmic string and oriented along the azimuthal direction around this topological defect, which is stretched along the z axis. We show that the self-force is equivalent to an interaction of the electric dipole with an effective dipole moment which depends on the linear mass density of the cosmic string and on the configuration. The plots of the self-forces as functions of the parameter whichmore » determines the angular deficit of the cosmic string are shown for those different configurations. -- Highlights: •Review of regularized Green’s function applied to the problem. •Self-force on an electric dipole in the string spacetime for some orientations. •Representation via graphs of the self-forces versus angular parameter of the cosmic string. •Self-force induced by the string seen as an interaction between two dipoles. •Discussion about the superposition principle in this non-trivial background.« less

  13. Power Converters Maximize Outputs Of Solar Cell Strings

    NASA Technical Reports Server (NTRS)

    Frederick, Martin E.; Jermakian, Joel B.

    1993-01-01

    Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.

  14. The probability of misassociation between neighboring targets

    NASA Astrophysics Data System (ADS)

    Areta, Javier A.; Bar-Shalom, Yaakov; Rothrock, Ronald

    2008-04-01

    This paper presents procedures to calculate the probability that the measurement originating from an extraneous target will be (mis)associated with a target of interest for the cases of Nearest Neighbor and Global association. It is shown that these misassociation probabilities depend, under certain assumptions, on a particular - covariance weighted - norm of the difference between the targets' predicted measurements. For the Nearest Neighbor association, the exact solution, obtained for the case of equal innovation covariances, is based on a noncentral chi-square distribution. An approximate solution is also presented for the case of unequal innovation covariances. For the Global case an approximation is presented for the case of "similar" innovation covariances. In the general case of unequal innovation covariances where this approximation fails, an exact method based on the inversion of the characteristic function is presented. The theoretical results, confirmed by Monte Carlo simulations, quantify the benefit of Global vs. Nearest Neighbor association. These results are applied to problems of single sensor as well as centralized fusion architecture multiple sensor tracking.

  15. Interaction of solitons with a string of coupled quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vijendra, E-mail: vsmedphysics@gmail.com; Swami, O. P., E-mail: omg1789@gmail.com; Nagar, A. K., E-mail: ajaya.nagar@gmail.com

    2016-05-06

    In this paper, we develop a theory for discrete solitons interaction with a string of coupled quantum dots in view of the local field effects. Discrete nonlinear Schrodinger (DNLS) equations are used to describe the dynamics of the string. Numerical calculations are carried out and results are analyzed with the help of matlab software. With the help of numerical solutions we demonstrate that in the quantum dots string, Rabi oscillations (RO) are self trapped into stable bright Rabi solitons. The Rabi oscillations in different types of nanostructures have potential applications to the elements of quantum logic and quantum memory.

  16. Predicting missing links in complex networks based on common neighbors and distance

    PubMed Central

    Yang, Jinxuan; Zhang, Xiao-Dong

    2016-01-01

    The algorithms based on common neighbors metric to predict missing links in complex networks are very popular, but most of these algorithms do not account for missing links between nodes with no common neighbors. It is not accurate enough to reconstruct networks by using these methods in some cases especially when between nodes have less common neighbors. We proposed in this paper a new algorithm based on common neighbors and distance to improve accuracy of link prediction. Our proposed algorithm makes remarkable effect in predicting the missing links between nodes with no common neighbors and performs better than most existing currently used methods for a variety of real-world networks without increasing complexity. PMID:27905526

  17. Intonation and compensation of fretted string instruments

    NASA Astrophysics Data System (ADS)

    Varieschi, Gabriele; Gower, Christina

    2011-04-01

    We discuss theoretical and physical models that are useful for analyzing the intonation of musical instruments such as guitars and mandolins and can be used to improve the tuning on these instruments. The placement of frets on the fingerboard is designed according to mathematical rules and the assumption of an ideal string. The analysis becomes more complicated when we include the effects of deformation of the string and inharmonicity due to other string characteristics. As a consequence, perfect intonation of all the notes on the instrument cannot be achieved, but complex compensation procedures can be introduced to minimize the problem. To test the validity of these procedures, we performed extensive measurements using standard monochord sonometers and other acoustical devices, confirming the correctness of our theoretical models. These experimental activities can be integrated into acoustics courses and laboratories and can become a more advanced version of basic experiments with monochords and sonometers. This work was supported by a grant from the Frank R. Seaver College of Science and Engineering, Loyola Marymount University.

  18. A Search for Cosmic String Loops Using GADGET-2 Cosmological N-Body Simulator

    NASA Astrophysics Data System (ADS)

    Braverman, William; Cousins, Bryce; Jia, Hewei

    2018-01-01

    Cosmic string loops are an extremely elusive hypothetical entity that have eluded the grasp of physicists and astronomers since their existence was postulated in the 1970’s. Finding evidence of their existence could be the first empirical evidence of string theory.Simulating their basic motion in a cold dark matter background using GADGET-2 allows us to predict where they may cluster during large scale structure formation (if they cluster at all). Here, we present our progress in placing cosmic strings into GADGET-2 with their basic equations of motion to lay a ground work for more complex simulations to find where these strings cluster. Ultimately, these simulations could lay a groundwork as to where future microlensing and gravitational wave observatories should look for cosmic strings.

  19. ``SO what Will you do if String Theory is WRONG?''

    NASA Astrophysics Data System (ADS)

    Emam, Moataz H.

    2008-07-01

    I briefly discuss the accomplishments of string theory that would survive a complete falsification of the theory as a model of nature and argue the possibility that such a survival may necessarily mean that string theory would become its own discipline, independently of both physics and mathematics.

  20. PREFACE: Gauge-string duality and integrability: progress and outlook Gauge-string duality and integrability: progress and outlook

    NASA Astrophysics Data System (ADS)

    Kristjansen, C.; Staudacher, M.; Tseytlin, A.

    2009-06-01

    The AdS/CFT correspondence, proposed a little more than a decade ago, has become a major subject of contemporary theoretical physics. One reason is that it suggests the exact identity of a certain ten-dimensional superstring theory, and a specific supersymmetric four-dimensional gauge field theory. This indicates that string theory, often thought of as a generalization of quantum field theory, can also lead to an alternative and computationally advantageous reformulation of gauge theory. This establishes the direct, down-to-earth relevance of string theory beyond loftier ideas of finding a theory of everything. Put differently, strings definitely lead to a theory of something highly relevant: a non-abelian gauge theory in a physical number of dimensions! A second reason for recent excitement around AdS/CFT is that it uncovers surprising novel connections between otherwise increasingly separate subdisciplines of theoretical physics, such as high energy physics and condensed matter theory. This collection of review articles concerns precisely such a link. About six years ago evidence was discovered showing that the AdS/CFT string/gauge system might actually be an exactly integrable model, at least in the so-called planar limit. Its spectrum appears to be described by (a generalization of) a Bethe ansatz, first proposed as an exact solution for certain one-dimensional magnetic spin chains in the early days of quantum mechanics. The field has been developing very rapidly, and a collection of fine review articles is needed. This special issue is striving to provide precisely that. The first article of the present collection, by Nick Dorey, is a pedagogical introduction to the subject. The second article, by Adam Rej, based on the translation of the author's PhD thesis, describes important techniques for analysing and interpreting the integrable structure of AdS/CFT, mostly from the point of view of the gauge theory. The third contribution, by Gleb Arutyunov and Sergey

  1. Aspects of string phenomenology in particle physics and cosmology

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.

    2017-12-01

    I discuss possible connections between several scales in particle physics and cosmology, such the the electroweak, inflation, dark energy and Planck scales. In particular, I discuss the physics of extra dimensions and low scale gravity that are motivated from the problem of mass hierarchy, providing an alternative to low energy supersymmetry. I describe their realization in type I string theory with D-branes and I present the main experimental predictions in particle accelerators and their implications in cosmology. I also show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the Standard Model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations.

  2. Long-term forecasting of internet backbone traffic.

    PubMed

    Papagiannaki, Konstantina; Taft, Nina; Zhang, Zhi-Li; Diot, Christophe

    2005-09-01

    We introduce a methodology to predict when and where link additions/upgrades have to take place in an Internet protocol (IP) backbone network. Using simple network management protocol (SNMP) statistics, collected continuously since 1999, we compute aggregate demand between any two adjacent points of presence (PoPs) and look at its evolution at time scales larger than 1 h. We show that IP backbone traffic exhibits visible long term trends, strong periodicities, and variability at multiple time scales. Our methodology relies on the wavelet multiresolution analysis (MRA) and linear time series models. Using wavelet MRA, we smooth the collected measurements until we identify the overall long-term trend. The fluctuations around the obtained trend are further analyzed at multiple time scales. We show that the largest amount of variability in the original signal is due to its fluctuations at the 12-h time scale. We model inter-PoP aggregate demand as a multiple linear regression model, consisting of the two identified components. We show that this model accounts for 98% of the total energy in the original signal, while explaining 90% of its variance. Weekly approximations of those components can be accurately modeled with low-order autoregressive integrated moving average (ARIMA) models. We show that forecasting the long term trend and the fluctuations of the traffic at the 12-h time scale yields accurate estimates for at least 6 months in the future.

  3. Eventful horizons: String theory in de Sitter and anti-de Sitter

    NASA Astrophysics Data System (ADS)

    Kleban, Matthew Benjamin

    String theory purports to be a theory of quantum gravity. As such, it should have much to say about the deep mysteries surrounding the very early stages of our universe. For this reason, although the theory is notoriously difficult to directly test, data from experimental cosmology may provide a way to probe the high energy physics of string theory. In the first part of this thesis, I will address the important issue of the testability of string theory using observations of the cosmic microwave background radiation. In the second part, I will study some formal difficulties that arise in attempting to understand string theory in de Sitter spacetime. In the third part, I will study the singularity of an eternal anti de Sitter Schwarzschild black hole, using the AdS/CFT correspondence.

  4. First LIGO search for gravitational wave bursts from cosmic (super)strings

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Bridges, D. O.; Brinkmann, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Cardenas, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cokelaer, T.; Colacino, C. N.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies, G.; Daw, E. J.; Debra, D.; Degallaix, J.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Dueck, J.; Duke, I.; Dumas, J.-C.; Dwyer, J. G.; Echols, C.; Edgar, M.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Franzen, A.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J. A.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Hoyland, D.; Hughey, B.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Krishnan, B.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lei, H.; Lei, M.; Leindecker, N.; Leonor, I.; Li, C.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Longo, M.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McKechan, D. J. A.; McKenzie, K.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Menéndez, D. F.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miller, J.; Minelli, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno, G.; Morioka, T.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Müller-Ebhardt, H.; Muhammad, D.; Mukherjee, S.; Mukhopadhyay, H.; Mullavey, A.; Munch, J.; Murray, P. G.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.; Punken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rainer, N.; Rakhmanov, M.; Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Russell, P.; Ryan, K.; Sakata, S.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Savov, P.; Scanlan, M.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Stein, A.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Ugolini, D.; Ulmen, J.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P.; Veltkamp, C.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, R. L.; Weidner, A.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zur Mühlen, H.; Zweizig, J.; Robinet, F.

    2009-09-01

    We report on a matched-filter search for gravitational wave bursts from cosmic string cusps using LIGO data from the fourth science run (S4) which took place in February and March 2005. No gravitational waves were detected in 14.9 days of data from times when all three LIGO detectors were operating. We interpret the result in terms of a frequentist upper limit on the rate of gravitational wave bursts and use the limits on the rate to constrain the parameter space (string tension, reconnection probability, and loop sizes) of cosmic string models. Many grand unified theory-scale models (with string tension Gμ/c2≈10-6) can be ruled out at 90% confidence for reconnection probabilities p≤10-3 if loop sizes are set by gravitational back reaction.

  5. Vacuum structure and string tension in Yang-Mills dimeron ensembles

    NASA Astrophysics Data System (ADS)

    Zimmermann, Falk; Forkel, Hilmar; Müller-Preußker, Michael

    2012-11-01

    We numerically simulate ensembles of SU(2) Yang-Mills dimeron solutions with a statistical weight determined by the classical action and perform a comprehensive analysis of their properties as a function of the bare coupling. In particular, we examine the extent to which these ensembles and their classical gauge interactions capture topological and confinement properties of the Yang-Mills vacuum. This also allows us to put the classic picture of meron-induced quark confinement, with the confinement-deconfinement transition triggered by dimeron dissociation, to stringent tests. In the first part of our analysis we study spacial, topological-charge and color correlations at the level of both the dimerons and their meron constituents. At small to moderate couplings, the dependence of the interactions between the dimerons on their relative color orientations is found to generate a strong attraction (repulsion) between nearest neighbors of opposite (equal) topological charge. Hence, the emerging short- to mid-range order in the gauge-field configurations screens topological charges. With increasing coupling this order weakens rapidly, however, in part because the dimerons gradually dissociate into their less localized meron constituents. Monitoring confinement properties by evaluating Wilson-loop expectation values, we find the growing disorder due to the long-range tails of these progressively liberated merons to generate a finite and (with the coupling) increasing string tension. The short-distance behavior of the static quark-antiquark potential, on the other hand, is dominated by small, “instantonlike” dimerons. String tension, action density and topological susceptibility of the dimeron ensembles in the physical coupling region turn out to be of the order of standard values. Hence, the above results demonstrate without reliance on weak-coupling or low-density approximations that the dissociating dimeron component in the Yang-Mills vacuum can indeed produce a

  6. Interaction Enthalpy of Side Chain and Backbone Amides in Polyglutamine Solution Monomers and Fibrils.

    PubMed

    Punihaole, David; Jakubek, Ryan S; Workman, Riley J; Asher, Sanford A

    2018-04-19

    We determined an empirical correlation that relates the amide I vibrational band frequencies of the glutamine (Q) side chain to the strength of hydrogen bonding, van der Waals, and Lewis acid-base interactions of its primary amide carbonyl. We used this correlation to determine the Q side chain carbonyl interaction enthalpy (Δ H int ) in monomeric and amyloid-like fibril conformations of D 2 Q 10 K 2 (Q10). We independently verified these Δ H int values through molecular dynamics simulations that showed excellent agreement with experiments. We found that side chain-side chain and side chain-peptide backbone interactions in fibrils and monomers are more enthalpically favorable than are Q side chain-water interactions. Q10 fibrils also showed a more favorable Δ H int for side chain-side chain interactions compared to backbone-backbone interactions. This work experimentally demonstrates that interamide side chain interactions are important in the formation and stabilization of polyQ fibrils.

  7. Music: Instrumental Techniques, Strings.

    ERIC Educational Resources Information Center

    Ryan, Philip

    A course in music which emphasizes harmony is presented. The approach used is a laboratory one in which pupils will develop skill in playing orchestral string instruments, sing, listen to, read and compose music with emphasis on elementary concepts of harmony. Course objectives include: (1) The student will select the title of a familiar melody…

  8. A Vibrating String Experiment

    ERIC Educational Resources Information Center

    Tsutsumanova, Gichka; Russev, Stoyan

    2013-01-01

    A simple experiment demonstrating the excitation of a standing wave in a metal string is presented here. Several tasks using the set-up are considered, which help the students to better understand the standing waves, the interaction between electric current and magnetic field and the resonance phenomena. This can serve also as a good lecture…

  9. What do foreign neighbors say about the mental lexicon?*

    PubMed Central

    VITEVITCH, MICHAEL S.

    2012-01-01

    A corpus analysis of phonological word-forms shows that English words have few phonological neighbors that are Spanish words. Concomitantly, Spanish words have few phonological neighbors that are English words. These observations appear to undermine certain accounts of bilingual language processing, and have significant implications for the processing and representation of word-forms in bilinguals. PMID:23930081

  10. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    PubMed

    Krasheninnikova, Anastasia

    2013-01-01

    String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  11. Nearest neighbors by neighborhood counting.

    PubMed

    Wang, Hui

    2006-06-01

    Finding nearest neighbors is a general idea that underlies many artificial intelligence tasks, including machine learning, data mining, natural language understanding, and information retrieval. This idea is explicitly used in the k-nearest neighbors algorithm (kNN), a popular classification method. In this paper, this idea is adopted in the development of a general methodology, neighborhood counting, for devising similarity functions. We turn our focus from neighbors to neighborhoods, a region in the data space covering the data point in question. To measure the similarity between two data points, we consider all neighborhoods that cover both data points. We propose to use the number of such neighborhoods as a measure of similarity. Neighborhood can be defined for different types of data in different ways. Here, we consider one definition of neighborhood for multivariate data and derive a formula for such similarity, called neighborhood counting measure or NCM. NCM was tested experimentally in the framework of kNN. Experiments show that NCM is generally comparable to VDM and its variants, the state-of-the-art distance functions for multivariate data, and, at the same time, is consistently better for relatively large k values. Additionally, NCM consistently outperforms HEOM (a mixture of Euclidean and Hamming distances), the "standard" and most widely used distance function for multivariate data. NCM has a computational complexity in the same order as the standard Euclidean distance function and NCM is task independent and works for numerical and categorical data in a conceptually uniform way. The neighborhood counting methodology is proven sound for multivariate data experimentally. We hope it will work for other types of data.

  12. Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition

    DOE PAGES

    Bergsman, David S.; Closser, Richard G.; Tassone, Christopher J.; ...

    2017-01-01

    An experimental investigation into the growth of polyurea films by molecular layer deposition was performed by examining trends in the growth rate, crystallinity, and orientation of chains as a function of backbone flexibility. Growth curves obtained for films containing backbones of aliphatic and phenyl groups indicate that an increase in backbone flexibility leads to a reduction in growth rate from 4 to 1 Å/cycle. Crystallinity measurements collected using grazing incidence X-ray diffraction and Fourier transform infrared spectroscopy suggest that some chains form paracrystalline, out-of-plane stacks of polymer segments with packing distances ranging from 4.4 to 3.7 Å depending on themore » monomer size. Diffraction intensity is largely a function of the homogeneity of the backbone. Near-edge X-ray absorption fine structure measurements for thin and thick samples show an average chain orientation of ~25° relative to the substrate across all samples, suggesting that changes in growth rate are not caused by differences in chain angle but instead may be caused by differences in the frequency of chain terminations. In conclusion, these results suggest a model of molecular layer deposition-based chain growth in which films consist of a mixture of upward growing chains and horizontally aligned layers of paracrystalline polymer segments.« less

  13. Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kwang Ho; Dutta, Tanmoy; Ralph, John

    Biomass pretreatment remains an essential step in lignocellulosic biofuel production, largely to facilitate the efficient removal of lignin and increase enzyme accessibility to the polysaccharides. In recent years, there have been significant efforts in planta to reduce lignin content or modify its composition to overcome the inherent recalcitrance that it imposes on lignocellulosic biomass during processing. Here, transgenic poplar lines in which monolignol ferulate conjugates were synthesized during cell wall development to introduce, during lignification, readily cleavable ester linkages into the lignin polymer backbone (i.e., "zip lignin"), along with wild-type (WT) controls, were pretreated with different ionic liquids (ILs). Themore » strategic introduction of ester bonds into the lignin backbone resulted in increased pretreatment efficiency and released more carbohydrates with lower energy input. After pretreatment with any of three different ILs, and after limited saccharification, the transgenic poplars, especially those with relatively higher amounts of incorporated monolignol ferulate conjugates, yielded up to 23% higher sugar levels compared to WT plants. Our findings clearly demonstrate that the introduction of ester linkages into the lignin polymer backbone decreases biomass recalcitrance in poplar has the potential to reduce the energy and/or amount of IL required for effective pretreatment, and could enable the development of an economically viable and sustainable biorefinery process.« less

  14. Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar

    DOE PAGES

    Kim, Kwang Ho; Dutta, Tanmoy; Ralph, John; ...

    2017-04-20

    Biomass pretreatment remains an essential step in lignocellulosic biofuel production, largely to facilitate the efficient removal of lignin and increase enzyme accessibility to the polysaccharides. In recent years, there have been significant efforts in planta to reduce lignin content or modify its composition to overcome the inherent recalcitrance that it imposes on lignocellulosic biomass during processing. Here, transgenic poplar lines in which monolignol ferulate conjugates were synthesized during cell wall development to introduce, during lignification, readily cleavable ester linkages into the lignin polymer backbone (i.e., "zip lignin"), along with wild-type (WT) controls, were pretreated with different ionic liquids (ILs). Themore » strategic introduction of ester bonds into the lignin backbone resulted in increased pretreatment efficiency and released more carbohydrates with lower energy input. After pretreatment with any of three different ILs, and after limited saccharification, the transgenic poplars, especially those with relatively higher amounts of incorporated monolignol ferulate conjugates, yielded up to 23% higher sugar levels compared to WT plants. Our findings clearly demonstrate that the introduction of ester linkages into the lignin polymer backbone decreases biomass recalcitrance in poplar has the potential to reduce the energy and/or amount of IL required for effective pretreatment, and could enable the development of an economically viable and sustainable biorefinery process.« less

  15. Twistor approach to string compactifications: A review

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei

    2013-01-01

    We review a progress in obtaining the complete non-perturbative effective action of type II string theory compactified on a Calabi-Yau manifold. This problem is equivalent to understanding quantum corrections to the metric on the hypermultiplet moduli space. We show how all these corrections, which include D-brane and NS5-brane instantons, are incorporated in the framework of the twistor approach, which provides a powerful mathematical description of hyperkähler and quaternion-Kähler manifolds. We also present new insights on S-duality, quantum mirror symmetry, connections to integrable models and topological strings.

  16. Black holes, anti de Sitter space, and topological strings

    NASA Astrophysics Data System (ADS)

    Yin, Xi

    This thesis is devoted to the study of black holes in string theory, their connection to two and three dimensional anti de-Sitter space, and topological strings. We start by proposing a relation between supersymmetric black holes in four and five dimensions, as well as connections between multi-centered black holes in four dimensions and black rings in five dimensions. This connection is then applied to counting supersymmetric dyonic black holes in four dimensional string compactifications with 16 and 32 supersymmetries, respectively. We then turn to the near horizon attractor geometry AdS 2 x S2 x CY 3, and study the classical supersymmetric D-branes in this background. We also find supersymmetric black hole solutions in supergravity in AdS2 x S2, although the solutions have regions of closed timelike curves. Finally we consider the M-theory attractor geometry AdS3 x S2 x CY3, and compute the elliptic genus of the dual (0, 4) CFT by counting wrapped M2-brane states in the bulk in a dilute gas approximation. This leads to a derivation of the conjectured relation between black hole partition function and topological string amplitudes.

  17. Non-perturbative effects and wall-crossing from topological strings

    NASA Astrophysics Data System (ADS)

    Collinucci, Andrés; Soler, Pablo; Uranga, Angel M.

    2009-11-01

    We argue that the Gopakumar-Vafa interpretation of the topological string partition function can be used to compute and resum certain non-perturbative brane instanton effects of type II CY compactifications. In particular the topological string A-model encodes the non-perturbative corrections to the hypermultiplet moduli space metric from general D1/D(-1)-brane instantons in 4d Script N = 2 IIB models. We also discuss the reduction to 4d Script N = 1 by fluxes and/or orientifolds and/or D-branes, and the prospects to resum brane instanton contributions to non-perturbative superpotentials. We argue that the connection between non-perturbative effects and the topological string underlies the continuity of non-perturbative effects across lines of BPS stability. We also confirm this statement in mirror B-model matrix model examples, relating matrix model instantons to non-perturbative D-brane instantons. The computation of non-perturbative effects from the topological string requires a 3d circle compactification and T-duality, relating effects from particles and instantons, reminiscent of that involved in the physical derivation of the Kontsevich-Soibelmann wall-crossing formula.

  18. Semianalytic calculation of cosmic microwave background anisotropies from wiggly and superconducting cosmic strings

    NASA Astrophysics Data System (ADS)

    Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-11-01

    We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.

  19. Comparison between Mean Forces and Swarms-of-Trajectories String Methods.

    PubMed

    Maragliano, Luca; Roux, Benoît; Vanden-Eijnden, Eric

    2014-02-11

    The original formulation of the string method in collective variable space is compared with a recent variant called string method with swarms-of-trajectories. The assumptions made in the original method are revisited and the significance of the minimum free energy path (MFEP) is discussed in the context of reactive events. These assumptions are compared to those made in the string method with swarms-of-trajectories, and shown to be equivalent in a certain regime: in particular an expression for the path identified by the swarms-of-trajectories method is given and shown to be closely related to the MFEP. Finally, the algorithmic aspects of both methods are compared.

  20. Smectic order and backbone anisotropy of a side-chain liquid crystalline polymer by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Pépy, G.; Keller, P.; Benguigui, L.

    1991-07-01

    We have simultaneously measured, for the first time, the extension of the polymer backbone of a side-chain liquid crystalline polymer and the intensity of the 001 Bragg reflection, which gives the smectic order parameter Psi as a function of temperature in the smectic phase. We have qualitatively demonstrated that the more the smectic phase is ordered, the more the polymer backbone is localized between the mesogenic layers. It is shown that the Landau theory allows us to relate the radius of gyration parallel to the magnetic field of the polymer backbone to the smectic order parameter. We also show that the Renz-Warner theory is suitable at low temperatures.

  1. Development and Trial of a Two Year Program of String Instruction. Final Report.

    ERIC Educational Resources Information Center

    Rolland, Paul; And Others

    A series of films focused on movement education and rhythm training in string playing with emphasis on the violin were developed. An introductory film deals with principles of movement in string playing. Fifteen additional titles offer guidance to the student and teacher in the various details of basic string instruction. A summary film presents a…

  2. Stochastic gravitational waves from cosmic string loops in scaling

    NASA Astrophysics Data System (ADS)

    Ringeval, Christophe; Suyama, Teruaki

    2017-12-01

    If cosmic strings are formed in the early universe, their associated loops emit gravitational waves during the whole cosmic history and contribute to the stochastic gravitational wave background at all frequencies. We provide a new estimate of the stochastic gravitational wave spectrum by considering a realistic cosmological loop distribution, in scaling, as it can be inferred from Nambu-Goto numerical simulations. Our result takes into account various effects neglected so far. We include both gravitational wave emission and backreaction effects on the loop distribution and show that they produce two distinct features in the spectrum. Concerning the string microstructure, in addition to the presence of cusps and kinks, we show that gravitational wave bursts created by the collision of kinks could dominate the signal for wiggly strings, a situation which may be favoured in the light of recent numerical simulations. In view of these new results, we propose four prototypical scenarios, within the margin of the remaining theoretical uncertainties, for which we derive the corresponding signal and estimate the constraints on the string tension put by both the LIGO and European Pulsar Timing Array (EPTA) observations. The less constrained of these scenarios is shown to have a string tension GU <= 7.2 × 10‑11, at 95% of confidence. Smooth loops carrying two cusps per oscillation verify the two-sigma bound GU <= 1.0 × 10‑11 while the most constrained of all scenarios describes very kinky loops and satisfies GU <= 6.7× 10‑14 at 95% of confidence.

  3. Principal Killing strings in higher-dimensional Kerr-NUT-(A)dS spacetimes

    NASA Astrophysics Data System (ADS)

    Boos, Jens; Frolov, Valeri P.

    2018-04-01

    We construct special solutions of the Nambu-Goto equations for stationary strings in a general Kerr-NUT-(A)dS spacetime in any number of dimensions. This construction is based on the existence of explicit and hidden symmetries generated by the principal tensor which exists for these metrics. The characteristic property of these string configurations, which we call "principal Killing strings," is that they are stretched out from "infinity" to the horizon of the Kerr-NUT-(A)dS black hole and remain regular at the latter. We also demonstrate that principal Killing strings extract angular momentum from higher-dimensional rotating black holes and interpret this as the action of an asymptotic torque.

  4. The natural neighbor series manuals and source codes

    NASA Astrophysics Data System (ADS)

    Watson, Dave

    1999-05-01

    This software series is concerned with reconstruction of spatial functions by interpolating a set of discrete observations having two or three independent variables. There are three components in this series: (1) nngridr: an implementation of natural neighbor interpolation, 1994, (2) modemap: an implementation of natural neighbor interpolation on the sphere, 1998 and (3) orebody: an implementation of natural neighbor isosurface generation (publication incomplete). Interpolation is important to geologists because it can offer graphical insights into significant geological structure and behavior, which, although inherent in the data, may not be otherwise apparent. It also is the first step in numerical integration, which provides a primary avenue to detailed quantification of the observed spatial function. Interpolation is implemented by selecting a surface-generating rule that controls the form of a `bridge' built across the interstices between adjacent observations. The cataloging and classification of the many such rules that have been reported is a subject in itself ( Watson, 1992), and the merits of various approaches have been debated at length. However, for practical purposes, interpolation methods are usually judged on how satisfactorily they handle problematic data sets. Sparse scattered data or traverse data, especially if the functional values are highly variable, generally tests interpolation methods most severely; but one method, natural neighbor interpolation, usually does produce preferable results for such data.

  5. Breakdown of String Perturbation Theory for Many External Particles.

    PubMed

    Ghosh, Sudip; Raju, Suvrat

    2017-03-31

    We consider massless string scattering amplitudes in a limit where the number of external particles becomes very large, while the energy of each particle remains small. Using the growth of the volume of the relevant moduli space, and by means of independent numerical evidence, we argue that string perturbation theory breaks down in this limit. We discuss some remarkable implications for the information paradox.

  6. Creative Activities for String Students.

    ERIC Educational Resources Information Center

    Stabley, Nola Campbell

    2001-01-01

    Discusses how to teach improvisation, creativity, and movement to beginning music classroom students. Includes background information on teaching each concept and lesson plans to be used with beginning string students. Provides rhythm patterns, exercises, and an assignment used in the lessons. (CMK)

  7. The effect of neighboring districts on body height of Polish conscripts.

    PubMed

    Gomula, Aleksandra; Koziel, Slawomir; Groth, Detlef; Bielicki, Tadeusz

    2017-04-01

    The aim of the study was to investigate the correlation of heights of conscripts living in neighboring districts in Poland. The study used 10% of a nationally representative sample of 26,178 males 18.5-19.5 years old examined during the National survey of Polish conscripts conducted in 2001. The sample represented all regions and social strata of the country and included 354 different districts within 16 voivodships (provinces). Analyses were performed with the R statistical software. A small but significant correlation (0.24, p < 0.0001) was observed for height between 1 st order neighboring districts. Correlations decreased with increased distances between neighboring districts, but remained significant for 7 th node neighbors (0.18, p < 0.0001). Regarding voivodships (provinces), average height showed a geographical trend from the northwest (relatively tall) to the southeast (relatively short), and the correlation was stronger for first order neighboring provinces (0.796, p < 0.001). This study revealed clusters of tall people and short people, providing a support for hypothesis of the community effect in height. Small correlations between 1 st order neighbors than in another country (Switzerland) may be associated with differences in geography, since in Poland there are no natural barriers (e.g., mountains) and road infrastructure is well-developed.

  8. The role of heuristic appraisal in conflicting assessments of string theory

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian; Ritson, Sophie

    2015-08-01

    Over the last three decades, string theory has emerged as one of the leading hopes for a consistent theory of quantum gravity that unifies particle physics with general relativity. Despite the fact that string theory has been a thriving research program for the better part of three decades, it has been subjected to extensive criticism from a number of prominent physicists. The aim of this paper is to obtain a clearer picture of where the conflict lies in competing assessments of string theory, through a close reading of the argumentative strategies employed by protagonists on both sides. Although it has become commonplace to construe this debate as stemming from different attitudes to the absence of testable predictions, we argue that this presents an overly simplified view of the controversy, which ignores the critical role of heuristic appraisal. While string theorists and their defenders see the theoretical achievements of the string theory program as providing strong indication that it is 'on the right track', critics have challenged such claims, by calling into question the status of certain 'solved problems' and its purported 'explanatory coherence'. The debates over string theory are therefore particularly instructive from a philosophical point of view, not only because they offer important insights into the nature of heuristic appraisal and theoretical progress, but also because they raise deep questions about what constitutes a solved problem and an explanation in fundamental physics.

  9. Higher winding strings and confined monopoles in N=2 supersymmetric QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auzzi, R.; Bolognesi, S.; Shifman, M.

    2010-04-15

    We consider composite string solutions in N=2 SQCD with the gauge group U(N), the Fayet-Iliopoulos term {xi}{ne}0 and N (s)quark flavors. These bulk theories support non-Abelian strings and confined monopoles identified with kinks in the two-dimensional world-sheet theory. Similar and more complicated kinks (corresponding to composite confined monopoles) must exist in the world-sheet theories on composite strings. In a bid to detect them we analyze the Hanany-Tong (HT) model, focusing on a particular example of N=2. Unequal quark mass terms in the bulk theory result in the twisted masses in the N=(2,2) HT model. For spatially coinciding 2-strings, we findmore » three distinct minima of potential energy, corresponding to three different 2-strings. Then we find BPS-saturated kinks interpolating between each pair of vacua. Two kinks can be called elementary. They emanate one unit of the magnetic flux and have the same mass as the conventional 't Hooft-Polyakov monopole on the Coulomb branch of the bulk theory ({xi}=0). The third kink represents a composite bimonopole, with twice the minimal magnetic flux. Its mass is twice the mass of the elementary confined monopole. We find instantons in the HT model, and discuss quantum effects in composite strings at strong coupling. In addition, we study the renormalization group flow in this model.« less

  10. Animals without Backbones: The Invertebrate Story. Grade Level 5-9.

    ERIC Educational Resources Information Center

    Jerome, Brian; Fuqua, Paul

    This guide, when used in tandem with the videotape "Animals Without Backbones," helps students learn about invertebrates. These materials promote hands-on discovery and learning. The guide is composed of six curriculum-based teaching units: (1) "Getting Started"; (2) "Porifera"; (3) "Cnidarians"; (4) "Worms"; (5) "Mollusks"; (6) "Arthropods"; and…

  11. String-theoretic breakdown of effective field theory near black hole horizons

    NASA Astrophysics Data System (ADS)

    Dodelson, Matthew; Silverstein, Eva

    2017-09-01

    We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near-horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albeit not in a direct analog of the black hole process. We discuss applications of this effect to the firewall paradox, and estimate the time and distance scales it predicts for new physics near black hole and cosmological horizons.

  12. Tale of the Tails, the Missing Postpartum IUCD Strings.

    PubMed

    Mishra, Sujnanendra

    2017-06-01

    Using an intrauterine device (IUD) is many times safer than pregnancy and more effective in preventing pregnancy than oral contraceptives, condoms, spermicidal, any barrier method, or natural family planning. Benefits of healthy timing and spacing of pregnancy are many. Postpartum contraception is becoming popular after introduction of PPIUCD services. To study the incidence, management, clinical outcome of missing strings cases in post-placental and intra-cesarean IUCD. This study was a retrospective observational study, carried out in the district of Balangir, Odisha, India. Status of women who had post-placental and intra-cesarean IUCD insertion in various institutions between January 2010 and December 2012 having follow-up as per the protocol was taken for the study. All the complications were recorded and studied. Incidence, clinical outcome, and management of missing strings were analyzed. Records of 1343 clients were studied. Six hundred and seventeen cases had failed to report for follow-up as per the study design. Seven hundred and twenty-six cases had follow-up as per the protocol. Of them, 36 had expulsion, and rest 690 cases were taken for the study. There were 209 missing strings at 3 months. At the end of the study, there was spontaneous descend in 138 cases. More than 50 % cases were asymptomatic. Ultrasonography was the method of diagnosis, and simple sounding of the uterus alone could also establish IUD in uterine cavity. Removal rate was higher in missing strings group, Continuation rate is higher in String visible group. Post-placental intra-cesarean Copper T 380A insertion is a safe and effective method of reversible contraception; missing string is emerging as a potential distracter of its use. It is important that every user must be followed up and the providers must be competent in managing complication. Better after care in form of effective follow-up and complication management is needed to maintain popularity. Introduction of

  13. Quantum phases of a vortex string.

    PubMed

    Auzzi, Roberto; Prem Kumar, S

    2009-12-04

    We argue that the world sheet dynamics of magnetic k strings in the Higgs phase of the mass-deformed N = 4 theory is controlled by a bosonic O(3) sigma model with anisotropy and a topological theta term. The theory interpolates between a massless O(2) symmetric regime, a massive O(3) symmetric phase, and another massive phase with a spontaneously broken Z(2) symmetry. The first two phases are separated by a Kosterlitz-Thouless transition. When theta = pi, the O(3) symmetric phase flows to an interacting fixed point; sigma model kinks and their dyonic partners become degenerate, mirroring the behavior of monopoles in the parent gauge theory. This leads to the identification of the kinks with monopoles confined on the string.

  14. Critical string from non-Abelian vortex in four dimensions

    DOE PAGES

    Shifman, M.; Yung, A.

    2015-09-25

    In a class of non-Abelian solitonic vortex strings supported in certain N = 2 super-Yang–Mills theories we search for the vortex which can behave as a critical fundamental string. We use the Polchinski–Strominger criterion of the ultraviolet completeness. We identify an appropriate four-dimensional bulk theory: it has the U(2) gauge group, the Fayet–Iliopoulos term and four flavor hypermultiplets. It supports semilocal vortices with the world-sheet theory for orientational (size) moduli described by the weighted CP(2,2) model. The latter is superconformal. Its target space is six-dimensional. The overall Virasoro central charge is critical. Lastly, we show that the world-sheet theory onmore » the vortex supported in this bulk model is the bona fide critical string.« less

  15. EEG based topography analysis in string recognition task

    NASA Astrophysics Data System (ADS)

    Ma, Xiaofei; Huang, Xiaolin; Shen, Yuxiaotong; Qin, Zike; Ge, Yun; Chen, Ying; Ning, Xinbao

    2017-03-01

    Vision perception and recognition is a complex process, during which different parts of brain are involved depending on the specific modality of the vision target, e.g. face, character, or word. In this study, brain activities in string recognition task compared with idle control state are analyzed through topographies based on multiple measurements, i.e. sample entropy, symbolic sample entropy and normalized rhythm power, extracted from simultaneously collected scalp EEG. Our analyses show that, for most subjects, both symbolic sample entropy and normalized gamma power in string recognition task are significantly higher than those in idle state, especially at locations of P4, O2, T6 and C4. It implies that these regions are highly involved in string recognition task. Since symbolic sample entropy measures complexity, from the perspective of new information generation, and normalized rhythm power reveals the power distributions in frequency domain, complementary information about the underlying dynamics can be provided through the two types of indices.

  16. A method for the automated processing and analysis of images of ULVWF-platelet strings.

    PubMed

    Reeve, Scott R; Abbitt, Katherine B; Cruise, Thomas D; Hose, D Rodney; Lawford, Patricia V

    2013-01-01

    We present a method for identifying and analysing unusually large von Willebrand factor (ULVWF)-platelet strings in noisy low-quality images. The method requires relatively inexpensive, non-specialist equipment and allows multiple users to be employed in the capture of images. Images are subsequently enhanced and analysed, using custom-written software to perform the processing tasks. The formation and properties of ULVWF-platelet strings released in in vitro flow-based assays have recently become a popular research area. Endothelial cells are incorporated into a flow chamber, chemically stimulated to induce ULVWF release and perfused with isolated platelets which are able to bind to the ULVWF to form strings. The numbers and lengths of the strings released are related to characteristics of the flow. ULVWF-platelet strings are routinely identified by eye from video recordings captured during experiments and analysed manually using basic NIH image software to determine the number of strings and their lengths. This is a laborious, time-consuming task and a single experiment, often consisting of data from four to six dishes of endothelial cells, can take 2 or more days to analyse. The method described here allows analysis of the strings to provide data such as the number and length of strings, number of platelets per string and the distance between each platelet to be found. The software reduces analysis time, and more importantly removes user subjectivity, producing highly reproducible results with an error of less than 2% when compared with detailed manual analysis.

  17. String limit of the isotropic Heisenberg chain in the four-particle sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, A. G., E-mail: aga2@csa.ru; Komarov, I. V., E-mail: ivkoma@rambler.r

    2008-05-15

    The quantum method of variable separation is applied to the spectral problem of the isotropic Heisenberg model. The Baxter difference equation is resolved by means of a special quasiclassical asymptotic expansion. States are identified by multiplicities of limiting values of the Bethe parameters. The string limit of the four-particle sector is investigated. String solutions are singled out and classified. It is shown that only a minor fraction of solutions demonstrate string behavior.

  18. Preserved hyperaemic response in (distal) string sign left internal mammary artery grafts.

    PubMed

    Hartman, Joost; Kelder, Hans; Ackerstaff, Rob; van Swieten, Henry; Vermeulen, Freddy; Bogers, Ad

    2007-02-01

    To correlate supraclavicular ultrasonography at rest and in hyperaemic response with angiographically patent and (distal) 'string sign' left internal mammary artery (LIMA) to left anterior descending (LAD) area grafts. Fifty-three patients with LIMA to LAD area grafting were prospectively entered in a follow-up study. Arteriography (native and LIMA) was performed at 1.4+/-0.8 years postoperatively and ultrasonography was performed at rest, in hyperaemic response and 2min after hyperaemic response at 1.8+/-0.8 years postoperatively and was compared to arteriography. Ultrasonographic parameters analysed were systolic and diastolic peak velocity, systolic and diastolic velocity integral, diastolic/systolic peak velocity ratio and diastolic/total velocity integral ratio. One patient was excluded because obesity hampered ultrasonography. Arteriography demonstrated functional grafts in 43 patients (group I), sequential distal 'string sign grafts' in 4 patients (group II) and total 'string sign grafts' in 5 patients (group III). Between the groups all ultrasonographic velocities showed a significant linear relation (pString sign LIMA grafts' were found in 9/52 (17.3%) patients. All patent and all 'string sign grafts' showed a shift towards a coronary flow profile in the proximal segment postoperatively. The study revealed the 'functionality' of the patent and the (distal) 'string sign LIMA graft' in regard to myocardial oxygen demand. 'String sign grafts' are 'recruitable' on demand.

  19. Localized gravity in string theory.

    PubMed

    Karch, A; Randall, L

    2001-08-06

    We propose a string realization of the AdS4 brane in AdS5 that is known to localize gravity. Our theory is M D5 branes in the near horizon geometry of N D3 branes, where M and N are appropriately tuned.

  20. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    PubMed

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.