Science.gov

Sample records for backbone structure variations

  1. External Tank - The Structure Backbone

    NASA Technical Reports Server (NTRS)

    Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle

    2011-01-01

    The External Tank forms the structural backbone of the Space Shuttle in the launch configuration. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. Choice of lightweight materials both for structure and thermal conditioning was necessary. The tank is large, and unique manufacturing facilities, tooling, handling, and transportation operations were required. Weld processes and tooling evolved with the design as it matured through several block changes, to reduce weight. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the 40 year program. The final configuration and tank weight enabled international space station assembly in a high inclination orbit allowing international cooperation with the Russian Federal Space Agency. Numerous process controls were implemented to assure product quality, and innovative proof testing was accomplished prior to delivery. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to

  2. Proteins of well-defined structures can be designed without backbone readjustment by a statistical model.

    PubMed

    Zhou, Xiaoqun; Xiong, Peng; Wang, Meng; Ma, Rongsheng; Zhang, Jiahai; Chen, Quan; Liu, Haiyan

    2016-12-01

    We report that using mainly a statistical energy model, protein sequence design for designable backbones can be carried out with high confidence without considering backbone relaxation. A recently-developed statistical energy function for backbone-based protein sequence design has been rationally revised to improve its accuracy. As a demonstrative example, this revised model is applied to design a de novo protein for a target backbone for which the previous model had relied on after-design directed evolution to produce a well-folded protein. The actual backbone structure of the newly designed protein agrees excellently with the corresponding target. Besides presenting a new protein design protocol with experimentally verifications on different backbone types, our study implies that with an energy model of an appropriate resolution, proteins of well-defined structures instead of molten globules can be designed without the explicit consideration of backbone variations due to side chain changes, even if the side chain changes correspond to complete sequence redesigns.

  3. Structural dependencies of protein backbone 2JNC' couplings.

    PubMed

    Juranić, Nenad; Dannenberg, J J; Cornilescu, Gabriel; Salvador, Pedro; Atanasova, Elena; Ahn, Hee-Chul; Macura, Slobodan; Markley, John L; Prendergast, Franklyn G

    2008-04-01

    Protein folding can introduce strain in peptide covalent geometry, including deviations from planarity that are difficult to detect, especially for a protein in solution. We have found dependencies in protein backbone (2)J(NC') couplings on the planarity and the relative orientation of the sequential peptide planes. These dependences were observed in experimental (2)J(NC') couplings from seven proteins, and also were supported by DFT calculations for a model tripeptide. Findings indicate that elevated (2)J(NC') couplings may serve as reporters of structural strain in the protein backbone imposed by protein folds. Such information, supplemented with the H-bond strengths derived from (h3)J(NC') couplings, provides useful insight into the overall energy profile of the protein backbone in solution.

  4. Structural dependencies of protein backbone 2JNC′ couplings

    PubMed Central

    Juranić, Nenad; Dannenberg, J.J.; Cornilescu, Gabriel; Salvador, Pedro; Atanasova, Elena; Ahn, Hee-Chul; Macura, Slobodan; Markley, John L.; Prendergast, Franklyn G.

    2008-01-01

    Protein folding can introduce strain in peptide covalent geometry, including deviations from planarity that are difficult to detect, especially for a protein in solution. We have found dependencies in protein backbone 2JNC′ couplings on the planarity and the relative orientation of the sequential peptide planes. These dependences were observed in experimental 2JNC′ couplings from seven proteins, and also were supported by DFT calculations for a model tripeptide. Findings indicate that elevated 2JNC′ couplings may serve as reporters of structural strain in the protein backbone imposed by protein folds. Such information, supplemented with the H-bond strengths derived from h3JNC′ couplings, provides useful insight into the overall energy profile of the protein backbone in solution. PMID:18305196

  5. Geometry motivated alternative view on local protein backbone structures.

    PubMed

    Zacharias, Jan; Knapp, Ernst Walter

    2013-11-01

    We present an alternative to the classical Ramachandran plot (R-plot) to display local protein backbone structure. Instead of the (φ, ψ)-backbone angles relating to the chemical architecture of polypeptides generic helical parameters are used. These are the rotation or twist angle ϑ and the helical rise parameter d. Plots with these parameters provide a different view on the nature of local protein backbone structures. It allows to display the local structures in polar (d, ϑ)-coordinates, which is not possible for an R-plot, where structural regimes connected by periodicity appear disconnected. But there are other advantages, like a clear discrimination of the handedness of a local structure, a larger spread of the different local structure domains--the latter can yield a better separation of different local secondary structure motives--and many more. Compared to the R-plot we are not aware of any major disadvantage to classify local polypeptide structures with the (d, ϑ)-plot, except that it requires some elementary computations. To facilitate usage of the new (d, ϑ)-plot for protein structures we provide a web application (http://agknapp.chemie.fu-berlin.de/secsass), which shows the (d, ϑ)-plot side-by-side with the R-plot.

  6. Backbone fractal dimension and fractal hybrid orbital of protein structure

    NASA Astrophysics Data System (ADS)

    Peng, Xin; Qi, Wei; Wang, Mengfan; Su, Rongxin; He, Zhimin

    2013-12-01

    Fractal geometry analysis provides a useful and desirable tool to characterize the configuration and structure of proteins. In this paper we examined the fractal properties of 750 folded proteins from four different structural classes, namely (1) the α-class (dominated by α-helices), (2) the β-class (dominated by β-pleated sheets), (3) the (α/β)-class (α-helices and β-sheets alternately mixed) and (4) the (α + β)-class (α-helices and β-sheets largely segregated) by using two fractal dimension methods, i.e. "the local fractal dimension" and "the backbone fractal dimension" (a new and useful quantitative parameter). The results showed that the protein molecules exhibit a fractal behavior in the range of 1 ⩽ N ⩽ 15 (N is the number of the interval between two adjacent amino acid residues), and the value of backbone fractal dimension is distinctly greater than that of local fractal dimension for the same protein. The average value of two fractal dimensions decreased in order of α > α/β > α + β > β. Moreover, the mathematical formula for the hybrid orbital model of protein based on the concept of backbone fractal dimension is in good coincidence with that of the similarity dimension. So it is a very accurate and simple method to analyze the hybrid orbital model of protein by using the backbone fractal dimension.

  7. Retrieving Backbone String Neighbors Provides Insights Into Structural Modeling of Membrane Proteins*

    PubMed Central

    Sun, Jiang-Ming; Li, Tong-Hua; Cong, Pei-Sheng; Tang, Sheng-Nan; Xiong, Wen-Wei

    2012-01-01

    Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold. PMID:22415040

  8. Limits on variations in protein backbone dynamics from precise measurements of scalar couplings.

    PubMed

    Vögeli, Beat; Ying, Jinfa; Grishaev, Alexander; Bax, Ad

    2007-08-01

    3JHN,Halpha, 3JHN,Cbeta, and 3JHN,C' couplings, all related to the backbone torsion angle phi, were measured for the third immunoglobulin binding domain of protein G, or GB3. Measurements were carried out using both previously published methods and novel sequences based on the multiple-quantum principle, which limit attenuation of experimental couplings caused by finite lifetimes of the spin states of passive spins. High reproducibility between the multiple-quantum and conventional approaches confirms the accuracy of the measurements. With few exceptions, close agreement between 3JHN,Halpha, 3JHN,Cbeta, and 3JHN,C' and values predicted by their respective Karplus equations is observed. For the three types of couplings, up to 20% better agreement is obtained when fitting the experimental couplings to a dynamic ensemble NMR structure, which has a phi angle root-mean-square spread of 9 +/- 4 degrees and was previously calculated on the basis of a very extensive set of residual dipolar couplings, than for any single static NMR structure. Fits of 3J couplings to a 1.1-A X-ray structure, with hydrogens added in idealized positions, are 40-90% worse. Approximately half of the improvement when fitting to the NMR structures relates to the amide proton deviating from its idealized, in-peptide-plane position, indicating that the positioning of hydrogens relative to the backbone atoms is one of the factors limiting the accuracy at which the backbone torsion angle phi can be extracted from 3J couplings. Introducing an additional, residue-specific variable for the amplitude of phi angle fluctuations does not yield a statistically significant improvement when fitting to a set of dynamic Karplus curves, pointing to a homogeneous behavior of these amplitudes.

  9. East vergent structure of Backbone Range: Insights from A-Lan-Yi area and sandbox modeling

    NASA Astrophysics Data System (ADS)

    Lee, C. A.; Lu, C. Y.

    2015-12-01

    Southern Taiwan, including Pingtung peninsula and Taitung, is the incipient oblique collision zone of Eurasian plate and Philippine Sea plate. The Luzon volcanic arc converged toward Taiwan Island and formed Hengchun Ridge south offshore Taiwan. Thus, Taiwan mountain belt developed from north to south as the Backbone Range, so that we can infer the incipient feature structure from the topography and outcrop study of southern Taiwan. Our field survey of this study concentrated at the southeast coastline of Taiwan, also known as A-Lan-Yi Trail. According to previous study, the deformational structures such as faults and folds are consistent with regional kinematic processes, and the preserved transpression structure is the most important evidence of incipient collision. In this study, we use the sedimentary sequences of study area to trace the regional tectonics from north to south. Discovered structures in this area show the similar kinematic history as the eastern flank of Backbone Range, so that we suggest they are at the same series of a tectonic event. To complete the regional structure mapping in this accessible area, besides the field geological data, we also applied the LiDAR-derived DTM which is a 3D visualization technology to improve our topography information. In addition, we use the sandbox modeling to demonstrate the development of structures in the eastern flank of Backbone Range. After combining the results of field observation and regional structure mapping, this study provides a strong evidence of backthrusting and backfolding deformation during the incipient oblique collision stage.

  10. SABBAC: online Structural Alphabet-based protein BackBone reconstruction from Alpha-Carbon trace

    PubMed Central

    Maupetit, Julien; Gautier, R.; Tufféry, Pierre

    2006-01-01

    SABBAC is an on-line service devoted to protein backbone reconstruction from alpha-carbon trace. It is based on the assembly of fragments taken from a library of reduced size, selected from the encoding of the protein trace in a hidden Markov model-derived structural alphabet. The assembly of the fragments is achieved by a greedy algorithm, using an energy-based scoring. Alpha-carbon coordinates remain unaffected. SABBAC simply positions the missing backbone atoms, no further refinement is performed. From our tests, SABBAC performs equal or better than other similar on-line approach and is robust to deviations on the alpha-carbon coordinates. It can be accessed at . PMID:16844979

  11. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions†

    PubMed Central

    2015-01-01

    Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C–H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P–N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files (https

  12. Improved variation calling via an iterative backbone remapping and local assembly method for bacterial genomes

    PubMed Central

    Tae, Hongseok; Settlage, Robert E.; Shallom, Shamira; Bavarva, Jasmin H.; Preston, Dale; Hawkins, Gregory N.; Adams, L. Garry; Garner, Harold R.

    2012-01-01

    Sequencing data analysis remains limiting and problematic, especially for low complexity repeat sequences and transposon elements due to inherent sequencing errors and short sequence read lengths. We have developed a program, ReviSeq, which uses a hybrid method comprised of iterative remapping and local assembly upon a bacterial sequence backbone. Application of this method to six Brucella suis field isolates compared to the newly revised Brucella suis 1330 reference genome identified on average 13, 15, 19 and 9 more variants per sample than STAMPY/SAMtools, BWA/SAMtools, iCORN and BWA/PINDEL pipelines, and excluded on average 4, 2, 3 and 19 variants per sample, respectively. In total, using this iterative approach, we identified on average 87 variants including SNVs, short INDELs and long INDELs per strain when compared to the reference. Our program outperforms other methods especially for long INDEL calling. The program is available at http://reviseq.sourceforge.net. PMID:22967795

  13. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2017-01-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature ( T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature ( T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  14. The structure of the carbohydrate backbone of the lipopolysaccharide of Pectinatus frisingensis strain VTT E-79104.

    PubMed

    Vinogradov, Evgeny; Li, Jianjun; Sadovskaya, Irina; Jabbouri, Said; Helander, Ilkka M

    2004-06-22

    The structure of the carbohydrate backbone of the lipopolysaccharide from Pectinatus frisingensis strain VTT E-79104 was analyzed using chemical degradations, NMR spectroscopy, mass spectrometry, and chemical methods. The LPS contains two major structural variants, differing in the presence or absence of an octasaccharide fragment. The largest structure of the carbohydrate backbone of the LPS, that could be deduced from experimental results, consists of 20 monosaccharides arranged in a nonrepetitive sequence: [carbohydrate structure: see text] where R is H or 4-O-Me-alpha-L-Fuc-(1-2)-4-O-Me-beta-Hep-(1-3)-alpha-GlcNAc-(1-2)-beta-Man-(1-3)-beta-ManNAc-(1-4)-alpha-Gal-(1-4)-beta-Hep-(1-3)-beta-GalNAc-(1- where Hep is a residue of D-glycero-D-galacto-heptose; all monosaccharides have the D-configuration except for 4-O-Me-L-Fuc and L-Ara4N. This structure is architecturally similar to the oligosaccharide system reported previously in P. frisingensis VTT E-82164 LPS, but differs from the latter in composition and also in the size of the outer region.

  15. APSY-NMR for protein backbone assignment in high-throughput structural biology

    PubMed Central

    Dutta, Samit Kumar; Serrano, Pedro; Proudfoot, Andrew; Geralt, Michael; Pedrini, Bill; Herrmann, Torsten; Wüthrich, Kurt

    2014-01-01

    A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90% of the residues. For most proteins the APSY data acquisition was completed in less than 30 hours. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [1H,1H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination. PMID:25428764

  16. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR

    PubMed Central

    Knight, Michael J.; Pell, Andrew J.; Bertini, Ivano; Felli, Isabella C.; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido

    2012-01-01

    We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with 1H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of 15N and 13C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu+ (diamagnetic) or Cu2+ (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to 1H-1H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a Gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable. PMID:22723345

  17. Solution structure and backbone dynamics of human epidermal-type fatty acid-binding protein (E-FABP).

    PubMed Central

    Gutiérrez-González, Luis H; Ludwig, Christian; Hohoff, Carsten; Rademacher, Martin; Hanhoff, Thorsten; Rüterjans, Heinz; Spener, Friedrich; Lücke, Christian

    2002-01-01

    Human epidermal-type fatty acid-binding protein (E-FABP) belongs to a family of intracellular 14-15 kDa lipid-binding proteins, whose functions have been associated with fatty acid signalling, cell growth, regulation and differentiation. As a contribution to understanding the structure-function relationship, we report in the present study features of its solution structure and backbone dynamics determined by NMR spectroscopy. Applying multi-dimensional high-resolution NMR techniques on unlabelled and 15N-enriched recombinant human E-FABP, the 1H and 15N resonance assignments were completed. On the basis of 2008 distance restraints, the three-dimensional solution structure of human E-FABP was subsequently obtained (backbone atom root-mean-square deviation of 0.92+/-0.11 A; where 1 A=0.1 nm), consisting mainly of 10 anti-parallel beta-strands that form a beta-barrel structure. 15N relaxation experiments (T1, T2 and heteronuclear nuclear Overhauser effects) at 500, 600 and 800 MHz provided information on the internal dynamics of the protein backbone. Nearly all non-terminal backbone amide groups showed order parameters S(2)>0.8, with an average value of 0.88+/-0.04, suggesting a uniformly low backbone mobility in the nanosecond-to-picosecond time range. Moreover, hydrogen/deuterium exchange experiments indicated a direct correlation between the stability of the hydrogen-bonding network in the beta-sheet structure and the conformational exchange in the millisecond-to-microsecond time range. The features of E-FABP backbone dynamics elaborated in the present study differ markedly from those of the phylogenetically closely related heart-type FABP and the more distantly related ileal lipid-binding protein, implying a strong interdependence with the overall protein stability and possibly also with the ligand-binding affinity for members of the lipid-binding protein family. PMID:12049637

  18. Dual-functional ROMP-based betaines: effect of hydrophilicity and backbone structure on nonfouling properties.

    PubMed

    Colak, Semra; Tew, Gregory N

    2012-01-10

    Foundational materials for nonfouling coatings were designed and synthesized from a series of novel dual-functional zwitterionic polymers, Poly[NRZI], which were easily obtained via ring-opening metathesis polymerization (ROMP) followed by a single step transformation of the cationic precursor, Poly[NR(+)], to the zwitterion, Poly[NRZI]. The resulting unique dual-functional structure contained the anion and the cation within the same repeat unit but on separate side chains, enabling the hydrophilicity of the system to be tuned at the repeat unit level. These dual-functional zwitterionic polymers were specifically designed to investigate the impact of structural changes, including the backbone, hydrophilicity, and charge, on the overall nonfouling properties. To evaluate the importance of backbone structure, and as a direct comparison to previously studied methacrylate-based betaines, norbornene-based carbo- and sulfobetaines (Poly[NCarboZI] and Poly[NSulfoZI]) as well as a methacrylate-based sulfobetaine (Poly[MASulfoZI]) were synthesized. These structures contain the anion-cation pairs on the same side chain. Nonfouling coatings were prepared from copolymers, composed of the zwitterionic/cationic precursor monomer and an ethoxysilane-containing monomer. The coatings were evaluated by using protein adsorption studies, which clearly indicated that the overall hydrophilicity has a major influence on the nonfouling character of the materials. The most hydrophilic coating, from the oligoethylene glycol (OEG)-containing dual-functional betaine, Poly[NOEGZI-co-NSi], showed the best resistance to nonspecific protein adsorption (Γ(FIB) = 0.039 ng/mm(2)). Both norbornene-based polymers systems, Poly[NSulfoZI] and Poly[NCarboZI], were more hydrophilic and thus more resistant to protein adsorption than the methacrylate-based Poly[MASulfoZI]. Comparing the protein resistance of the dual-functional zwitterionic coatings, Poly[NRZI-co-NSi], to that of their cationic

  19. Polarity engineering of conjugated polymers by variation of chemical linkages connecting conjugated backbones.

    PubMed

    Yun, Hui-Jun; Choi, Hyun Ho; Kwon, Soon-Ki; Kim, Yun-Hi; Cho, Kilwon

    2015-03-18

    The fine tuning of the dominant polarity in polymer semiconductors is a key issue for high-performance organic complementary circuits. In this paper, we demonstrate a new methodology for addressing this issue in terms of molecular design. In an alternating conjugated donor-acceptor copolymer system, we systematically engineered the chemical linkages that connect the aromatic units in donor moieties. Three donor moieties, thiophene-vinylene-thiophene (TVT), thiophene-acetylene-thiophene (TAT), and thiophene-cyanovinylene-thiophene (TCNT), were combined with an acceptor moiety, thienoisoindigo (TIID), and finally, three novel TIID-based copolymers were synthesized: PTIID-TVT, PTIID-TAT, and PTIID-TCNT. We found that the vinylene, acetylene, and cyanovinylene linkages decisively affect the energy structure, molecular orbital delocalization, microstructure, and, most importantly, the dominant polarity of the polymers. The vinylene-linked PTIID-TVT field-effect transistors (FETs) exhibited intrinsic hole and electron mobilities of 0.12 and 1.5 × 10(-3) cm(2) V(-1 )s(-1), respectively. By contrast, the acetylene-linked PTIID-TAT FETs exhibited significantly improved intrinsic hole and electron mobilities of 0.38 and 0.03 cm(2) V(-1) s(-1), respectively. Interestingly, cyanovinylene-linked PTIID-TCNT FETs exhibited reverse polarity, with hole and electron mobilities of 0.07 and 0.19 cm(2) V(-1) s(-1). As a result, the polarity balance, which is quantified as the electron/hole mobility ratio, was dramatically tuned from 0.01 to 2.7. Our finding demonstrates a new methodology for the molecular design of high-performance organic complementary circuits.

  20. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    PubMed

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins.

  1. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    NASA Astrophysics Data System (ADS)

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre

    2016-06-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.

  2. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    PubMed Central

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-01-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6. PMID:27340016

  3. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning

    PubMed Central

    Heffernan, Rhys; Paliwal, Kuldip; Lyons, James; Dehzangi, Abdollah; Sharma, Alok; Wang, Jihua; Sattar, Abdul; Yang, Yuedong; Zhou, Yaoqi

    2015-01-01

    Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking. PMID:26098304

  4. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    SciTech Connect

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-07

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of C{sub α} atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  5. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-01

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of Cα atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  6. Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases.

    PubMed

    Nyffenegger, Christian; Nordvang, Rune Thorbjørn; Zeuner, Birgitte; Łężyk, Mateusz; Difilippo, Elisabetta; Logtenberg, Madelon J; Schols, Henk A; Meyer, Anne S; Mikkelsen, Jørn Dalgaard

    2015-10-01

    This paper describes the discovery and characterization of two novel β-N-acetylhexosaminidases HEX1 and HEX2, capable of catalyzing the synthesis of human milk oligosaccharides (HMO) backbone structures with fair yields using chitin oligomers as β-N-acetylglucosamine (GlcNAc) donor. The enzyme-encoding genes were identified by functional screening of a soil-derived metagenomic library. The β-N-acetylhexosaminidases were expressed in Escherichia coli with an N-terminal His6-tag and were purified by nickel affinity chromatography. The sequence similarities of the enzymes with their respective closest homologues are 59 % for HEX1 and 51 % for HEX2 on the protein level. Both β-N-acetylhexosaminidases are classified into glycosyl hydrolase family 20 (GH 20) are able to hydrolyze para-nitrophenyl-β-N-acetylglucosamine (pNP-GlcNAc) as well as para-nitrophenyl-β-N-acetylgalactosamine (pNP-GalNAc) and exhibit pH optima of 8 and 6 for HEX1 and HEX2, respectively. The enzymes are able to hydrolyze N-acetylchitooligosaccharides with a degree of polymerization of two, three, and four. The major findings were, that HEX1 and HEX2 catalyze trans-glycosylation reactions with lactose as acceptor, giving rise to the human milk oligosaccharide precursor lacto-N-triose II (LNT2) with yields of 2 and 8 % based on the donor substrate. In total, trans-glycosylation reactions were tested with the disaccharide acceptors β-lactose, sucrose, and maltose, as well as with the monosaccharides galactose and glucose resulting in the successful attachment of GlcNAc to the acceptor in all cases.

  7. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  8. Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation

    PubMed Central

    Marassi, Francesca M.; Ding, Yi; Schwieters, Charles D.; Tian, Ye; Yao, Yong

    2015-01-01

    SUMMARY The outer membrane protein Ail (attachment invasion locus) is a virulence factor of Yersinia pestis that mediates cell invasion, cell attachment and complement resistance. Here we describe its three-dimensional backbone structure determined in decyl-phosphocholine (DePC) micelles by NMR spectroscopy. The NMR structure was calculated using the membrane function of the implicit solvation potential, eefxPot, which we have developed to facilitate NMR structure calculations in a physically realistic environment. We show that the eefxPot force field guides the protein towards its native fold. The resulting structures provide information about the membrane-embedded global position of Ail, and have higher accuracy, higher precision and improved conformational properties, compared to the structures calculated with the standard repulsive potential. PMID:26143069

  9. Mechanics and chemistry: single molecule bond rupture forces correlate with molecular backbone structure.

    PubMed

    Frei, Michael; Aradhya, Sriharsha V; Koentopp, Max; Hybertsen, Mark S; Venkataraman, L

    2011-04-13

    We simultaneously measure conductance and force across nanoscale junctions. A new, two-dimensional histogram technique is introduced to statistically extract bond rupture forces from a large data set of individual junction elongation traces. For the case of Au point contacts, we find a rupture force of 1.4 ± 0.2 nN, which is in good agreement with previous measurements. We then study systematic trends for single gold metal-molecule-metal junctions for a series of molecules terminated with amine and pyridine linkers. For all molecules studied, single molecule junctions rupture at the Au-N bond. Selective binding of the linker group allows us to correlate the N-Au bond-rupture force to the molecular backbone. We find that the rupture force ranges from 0.8 nN for 4,4' bipyridine to 0.5 nN in 1,4 diaminobenzene. These experimental results are in excellent quantitative agreement with density functional theory based adiabatic molecular junction elongation and rupture calculations.

  10. Bilayer surface association of the pHLIP peptide promotes extensive backbone desolvation and helically-constrained structures.

    PubMed

    Brown, Mia C; Yakubu, Rauta A; Taylor, Jay; Halsey, Christopher M; Xiong, Jian; Jiji, Renee D; Cooley, Jason W

    2014-01-01

    Despite their presence in many aspects of biology, the study of membrane proteins lags behind that of their soluble counterparts. Improving structural analysis of membrane proteins is essential. Deep-UV resonance Raman (DUVRR) spectroscopy is an emerging technique in this area and has demonstrated sensitivity to subtle structural transitions and changes in protein environment. The pH low insertion peptide (pHLIP) has three distinct structural states: disordered in an aqueous environment, partially folded and associated with a lipid membrane, and inserted into a lipid bilayer as a transmembrane helix. While the soluble and membrane-inserted forms are well characterized, the partially folded membrane-associated state has not yet been clearly described. The amide I mode, known to be sensitive to protein environment, is the same in spectra of membrane-associated and membrane-inserted pHLIP, indicating comparable levels of backbone dehydration. The amide S mode, sensitive to helical structure, indicates less helical character in the membrane-associated form compared to the membrane-inserted state, consistent with previous findings. However, the structurally sensitive amide III region is very similar in both membrane-associated and membrane-inserted pHLIP, suggesting that the membrane-associated form has a large amount of ordered structure. Where before the membrane-associated state was thought to contain mostly unordered structure and reside in a predominantly aqueous environment, we have shown that it contains a significant amount of ordered structure and rests deeper within the lipid membrane.

  11. Complete backbone and DENQ side chain NMR assignments in proteins from a single experiment: implications to structure-function studies.

    PubMed

    Reddy, Jithender G; Hosur, Ramakrishna V

    2014-03-01

    Resonance assignment is the first and the most crucial step in all nuclear magnetic resonance (NMR) investigations on structure-function relationships in biological macromolecules. Often, the assignment exercise has to be repeated several times when specific interactions with ligands, substrates etc., have to be elucidated for understanding the functional mechanisms. While the protein backbone serves to provide a scaffold, the side chains interact directly with the ligands. Such investigations will be greatly facilitated, if there are rapid methods for obtaining exhaustive information with minimum of NMR experimentation. In this context, we present here a pulse sequence which exploits the recently introduced technique of parallel detection of multiple nuclei, e.g. (1)H and (13)C, and results in two 3D-data sets simultaneously. These yield complete backbone resonance assignment ((1)H(N), (15)N, (13)CO, (1)Hα/(13)Cα, and (1)Hβ/(13)Cβ chemical shifts) and side chain assignment of D, E, N and Q residues. Such an exhaustive assignment has the potential of yielding accurate 3D structures using one or more of several algorithms which calculate structures of the molecules very reliably on the basis of NMR chemical shifts alone. The side chain assignments of D, E, N, and Q will be extremely valuable for interaction studies with different ligands; D and E side chains are known to be involved in majority of catalytic activities. Utility of this experiment has been demonstrated with Ca(2+) bound M-crystallin, which contains largely D, E, N and Q residues at the metal binding sites.

  12. Backbone chemical shifts assignments, secondary structure, and ligand binding of a family GH-19 chitinase from moss, Bryum coronatum.

    PubMed

    Shinya, Shoko; Nagata, Takuya; Ohnuma, Takayuki; Taira, Toki; Nishimura, Shigenori; Fukamizo, Tamo

    2012-10-01

    Family GH19 chitinases have been recognized as important in the plant defense against fungal pathogens. However, their substrate-recognition mechanism is still unknown. We report here the first resonance assignment of NMR spectrum of a GH19 chitinase from moss, Bryum coronatum (BcChi-A). The backbone signals were nearly completely assigned, and the secondary structure was estimated based on the chemical shift values. The addition of the chitin dimer to the enzyme solution perturbed the chemical shifts of HSQC resonances of the amino acid residues forming the putative substrate-binding cleft. Further NMR analysis of the ligand binding to BcChi-A will improve understanding of the substrate-recognition mechanism of GH-19 enzymes.

  13. Structure of the exceptionally large nonrepetitive carbohydrate backbone of the lipopolysaccharide of Pectinatus frisingensis strain VTT E-82164.

    PubMed

    Vinogradov, Evgeny; Petersen, Bent O; Sadovskaya, Irina; Jabbouri, Said; Duus, Jens Ø; Helander, Ilkka M

    2003-07-01

    The structures of the oligosaccharides obtained after acetic acid hydrolysis and alkaline deacylation of the rough-type lipopolysaccharide (LPS) from Pectinatus frisingensis strain VTT E-82164 were analysed using NMR spectroscopy, MS and chemical methods. The LPS contains two major structural variants, differing by a decasaccharide fragment, and some minor variants lacking the terminal glucose residue. The largest structure of the carbohydrate backbone of the LPS that could be deduced from experimental results consists of 25 monosaccharides (including the previously found Ara4NP residue in lipid A) arranged in a well-defined nonrepetitive structure: We presume that the shorter variant with R1 = H represents the core-lipid A part of the LPS, and the additional fragment is present instead of the O-specific polysaccharide. Structures of this type have not been previously described. Analysis of the deacylation products obtained from the LPS of the smooth strain, VTT E-79100T, showed that it contains a very similar core but with one different glycosidic linkage.

  14. Protein structure quality assessment based on the distance profiles of consecutive backbone Cα atoms

    PubMed Central

    Chakraborty, Sandeep; Venkatramani, Ravindra; Rao, Basuthkar J.; Asgeirsson, Bjarni; Dandekar, Abhaya M.

    2013-01-01

    Predicting the three dimensional native state structure of a protein from its primary sequence is an unsolved grand challenge in molecular biology. Two main computational approaches have evolved to obtain the structure from the protein sequence - ab initio/de novo methods and template-based modeling - both of which typically generate multiple possible native state structures. Model quality assessment programs (MQAP) validate these predicted structures in order to identify the correct native state structure. Here, we propose a MQAP for assessing the quality of protein structures based on the distances of consecutive Cα atoms. We hypothesize that the root-mean-square deviation of the distance of consecutive Cα (RDCC) atoms from the ideal value of 3.8 Å, derived from a statistical analysis of high quality protein structures (top100H database), is minimized in native structures. Based on tests with the top100H set, we propose a RDCC cutoff value of 0.012 Å, above which a structure can be filtered out as a non-native structure. We applied the RDCC discriminator on decoy sets from the Decoys 'R' Us database to show that the native structures in all decoy sets tested have RDCC below the 0.012 Å cutoff. While most decoy sets were either indistinguishable using this discriminator or had very few violations, all the decoy structures in the fisa decoy set were discriminated by applying the RDCC criterion. This highlights the physical non-viability of the fisa decoy set, and possible issues in benchmarking other methods using this set. The source code and manual is made available at https://github.com/sanchak/mqap and permanently available on 10.5281/zenodo.7134. PMID:24555103

  15. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry.

    PubMed

    Karchin, Rachel; Cline, Melissa; Mandel-Gutfreund, Yael; Karplus, Kevin

    2003-06-01

    An important problem in computational biology is predicting the structure of the large number of putative proteins discovered by genome sequencing projects. Fold-recognition methods attempt to solve the problem by relating the target proteins to known structures, searching for template proteins homologous to the target. Remote homologs that may have significant structural similarity are often not detectable by sequence similarities alone. To address this, we incorporated predicted local structure, a generalization of secondary structure, into two-track profile hidden Markov models (HMMs). We did not rely on a simple helix-strand-coil definition of secondary structure, but experimented with a variety of local structure descriptions, following a principled protocol to establish which descriptions are most useful for improving fold recognition and alignment quality. On a test set of 1298 nonhomologous proteins, HMMs incorporating a 3-letter STRIDE alphabet improved fold recognition accuracy by 15% over amino-acid-only HMMs and 23% over PSI-BLAST, measured by ROC-65 numbers. We compared two-track HMMs to amino-acid-only HMMs on a difficult alignment test set of 200 protein pairs (structurally similar with 3-24% sequence identity). HMMs with a 6-letter STRIDE secondary track improved alignment quality by 62%, relative to DALI structural alignments, while HMMs with an STR track (an expanded DSSP alphabet that subdivides strands into six states) improved by 40% relative to CE.

  16. Enzyme IIBcellobiose of the phosphoenol-pyruvate-dependent phosphotransferase system of Escherichia coli: backbone assignment and secondary structure determined by three-dimensional NMR spectroscopy.

    PubMed Central

    Ab, E.; Schuurman-Wolters, G. K.; Saier, M. H.; Reizer, J.; Jacuinod, M.; Roepstorff, P.; Dijkstra, K.; Scheek, R. M.; Robillard, G. T.

    1994-01-01

    The assignment of backbone resonances and the secondary structure determination of the Cys 10 Ser mutant of enzyme IIBcellobiose of the Escherichia coli cellobiose-specific phosphoenol-pyruvate-dependent phosphotransferase system are presented. The backbone resonances were assigned using 4 triple resonance experiments, the HNCA and HN(CO)CA experiments, correlating backbone 1H, 15N, and 13C alpha resonances, and the HN(CA)CO and HNCO experiments, correlating backbone 1H,15N and 13CO resonances. Heteronuclear 1H-NOE 1H-15N single quantum coherence (15N-NOESY-HSQC) spectroscopy and heteronuclear 1H total correlation 1H-15N single quantum coherence (15N-TOCSY-HSQC) spectroscopy were used to resolve ambiguities arising from overlapping 13C alpha and 13CO frequencies and to check the assignments from the triple resonance experiments. This procedure, together with a 3-dimensional 1H alpha-13C alpha-13CO experiment (COCAH), yielded the assignment for all observed backbone resonances. The secondary structure was determined using information both from the deviation of observed 1H alpha and 13C alpha chemical shifts from their random coil values and 1H-NOE information from the 15N-NOESY-HSQC. These data show that enzyme IIBcellobiose consists of a 4-stranded parallel beta-sheet and 5 alpha-helices. In the wild-type enzyme IIBcellobiose, the catalytic residue appears to be located at the end of a beta-strand. PMID:8003964

  17. Folding of RNA tertiary structure: Linkages between backbone phosphates, ions, and water.

    PubMed

    Draper, David E

    2013-12-01

    The functional forms of many RNAs have compact architectures. The placement of phosphates within such structures must be influenced not only by the strong electrostatic repulsion between phosphates, but also by networks of interactions between phosphates, water, and mobile ions. This review first explores what has been learned of the basic thermodynamic constraints on these arrangements from studies of hydration and ions in simple DNA molecules, and then gives an overview of what is known about ion and water interactions with RNA structures. A brief survey of RNA crystal structures identifies several interesting architectures in which closely spaced phosphates share hydration shells or phosphates are buried in environments that provide intramolecular hydrogen bonds or site-bound cations. Formation of these structures must require strong coupling between the uptake of ions and release of water.

  18. The role of molecular structure of sugar-phosphate backbone and nucleic acid bases in the formation of single-stranded and double-stranded DNA structures.

    PubMed

    Poltev, Valeri; Anisimov, Victor M; Danilov, Victor I; Garcia, Dolores; Sanchez, Carolina; Deriabina, Alexandra; Gonzalez, Eduardo; Rivas, Francisco; Polteva, Nina

    2014-06-01

    Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na(+)-ions (dDMPs) have demonstrated that the main characteristics of Watson-Crick (WC) right-handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar-phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar-phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr-Pur from Pur-Pyr, and Pur-Pyr from Pyr-Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar-phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z-family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex.

  19. Synthesis and structural characterization of one- and two-dimensional coordination polymers based on platinum-silver metallic backbones.

    PubMed

    Liu, Fenghui; Chen, Wanzhi; Wang, Daqi

    2006-06-28

    Seven Pt-Ag coordination polymers [Pt(NH3)2(NHCO(t)Bu)2Ag(H2O)](ClO4) (1), [Pt2(dap)2(NHCO(t)Bu)4Ag2(NO3)(ClO4)] (dap = 1,2-diaminopropane, 2), [Pt2(en)2(NHCO(t)Bu)4Ag2(m-C6H4(CO2)2)].3H2O (en = ethylenediamine, 3), [Pt2(NH3)2(NHCO(t)Bu)2Ag2(p-C6H4(CO2)2)].2H2O (4), [Pt3(en)3(NHCO(t)Bu)6Ag2(p-C6H4(CO2)2)(1.5)].6H2O (5), [Pt(NH3)2(NHCO(t)Bu)4Ag(4-C5H4NCO2)2].10H2O (6), and [Pt2(en)2(NHCO(t)Bu)4Ag2(4-C5H4NCO2)](ClO4) (7) were synthesized from the corresponding [Pt(RNH2)2(NHCO(t)Bu)2] and Ag salts, respectively, and their structures were determined by X-ray crystallography. The Pt and Ag units aggregate into one-dimensional chains based on Pt-Ag backbones. Compounds 1, 2, and 6 possess an extended zigzag Pt-Ag chain motif, and the metallic chains arrange in a parallel fashion into layered structures. Compounds 3-5, and 7 form 2-D brick wall sheets due to the coordination of the bifunctional anions to the Ag+ ions of the neighboring chains. These polymers are constructed based on the Pt-Ag interactions and the coordination of amidate oxygen atoms to Ag ions. There are three kinds of short Pt-Ag bonds observed in the structures of these compounds. The Pt-Ag metallic backbone is formed by the stacking unsupported Pt-Ag bonds, the amidate doubly bridged Pt-Ag bonds, and the amidate singly bridged Pt-Ag bonds. In the chains, the Pt-Ag bond distances are quite short, and appear in the range of 2.78-2.97 A, which are comparable to known Pt-Ag dative bonds.

  20. Backbone assignments and secondary structure of the Escherichia coli enzyme-II mannitol A domain determined by heteronuclear three-dimensional NMR spectroscopy.

    PubMed Central

    Kroon, G. J.; Grötzinger, J.; Dijkstra, K.; Scheek, R. M.; Robillard, G. T.

    1993-01-01

    This report presents the backbone assignments and the secondary structure determination of the A domain of the Escherichia coli mannitol transport protein, enzyme-IImtl. The backbone resonances were partially assigned using three-dimensional heteronuclear 1H NOE 1H-15N single-quantum coherence (15N NOESY-HSQC) spectroscopy and three-dimensional heteronuclear 1H total correlation 1H-15N single-quantum coherence (15N TOCSY-HSQC) spectroscopy on uniformly 15N enriched protein. Triple-resonance experiments on uniformly 15N/13C enriched protein were necessary to complete the backbone assignments, due to overlapping 1H and 15N frequencies. Data obtained from three-dimensional 1H-15N-13C alpha correlation experiments (HNCA and HN(CO)CA), a three-dimensional 1H-15N-13CO correlation experiment (HNCO), and a three-dimensional 1H alpha-13C alpha-13CO correlation experiment (COCAH) were combined using SNARF software, and yielded the assignments of virtually all observed backbone resonances. Determination of the secondary structure of IIAmtl is based upon NOE information from the 15N NOESY-HSQC and the 1H alpha and 13C alpha secondary chemical shifts. The resulting secondary structure is considerably different from that reported for IIAglc of E. coli and Bacillus subtilis determined by NMR and X-ray. PMID:8401218

  1. Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids.

    PubMed

    Vasantha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama

    2012-10-04

    Protein folding/unfolding is a fascinating study in the presence of cosolvents, which protect/disrupt the native structure of protein, respectively. The structure and stability of proteins and their functional groups may be modulated by the addition of cosolvents. Ionic liquids (ILs) are finding a vast array of applications as novel cosolvents for a wide variety of biochemical processes that include protein folding. Here, the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of protein model compounds from water to ILs through solubility measurements as a function of IL concentration at 25 °C have been exploited to quantify and interpret biomolecular interactions between model compounds of glycine peptides (GPs) with ammonium based ILs. The investigated aqueous systems consist of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), tetraglycine (Gly(4)), and cyclic glycylglycine (c(GG)) in the presence of six ILs such as diethylammonium acetate (DEAA), diethylammonium hydrogen sulfate (DEAS), triethylammonium acetate (TEAA), triethylammonium hydrogen sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), and trimethylammonium acetate (TMAA). We have observed positive values of ΔG'(tr) for GPs from water to ILs, indicating that interactions between ILs and GPs are unfavorable, which leads to stabilization of the structure of model protein compounds. Moreover, our experimental data ΔG'(tr) is used to obtain transfer free energies (Δg'(tr)) of the peptide backbone unit (or glycyl unit) (-CH(2)C═ONH-), which is the most numerous group in globular proteins, from water to IL solutions. To obtain the mechanism events of the ILs' role in enhancing the stability of the model compounds, we have further obtained m-values for GPs from solubility limits. These results explicitly elucidate that all alkyl ammonium ILs act as stabilizers for model compounds through the exclusion of ILs from model compounds of

  2. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    PubMed Central

    2012-01-01

    Background Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule's introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening. Results We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better. Conclusions Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. PMID:22536902

  3. Identification of structural variation in mouse genomes

    PubMed Central

    Keane, Thomas M.; Wong, Kim; Adams, David J.; Flint, Jonathan; Reymond, Alexandre; Yalcin, Binnaz

    2014-01-01

    Structural variation is variation in structure of DNA regions affecting DNA sequence length and/or orientation. It generally includes deletions, insertions, copy-number gains, inversions, and transposable elements. Traditionally, the identification of structural variation in genomes has been challenging. However, with the recent advances in high-throughput DNA sequencing and paired-end mapping (PEM) methods, the ability to identify structural variation and their respective association to human diseases has improved considerably. In this review, we describe our current knowledge of structural variation in the mouse, one of the prime model systems for studying human diseases and mammalian biology. We further present the evolutionary implications of structural variation on transposable elements. We conclude with future directions on the study of structural variation in mouse genomes that will increase our understanding of molecular architecture and functional consequences of structural variation. PMID:25071822

  4. Role of monomer sequence and backbone structure in polypeptoid and polypeptide polymers for anti-fouling applications

    NASA Astrophysics Data System (ADS)

    Patterson, Anastasia; Rizis, Georgios; Wenning, Brandon; Finlay, John; Ober, Christopher; Segalman, Rachel

    Polymeric coatings rely on a fine balance of surface properties to achieve biofouling resistance. Bioinsipired polymers and oligomers provide a modular strategy for the inclusion of multiple functionalities with controlled architecture, sequence and surface properties. In this work, polypeptoid and polypeptide functionalized coatings based on PEO and PDMS block copolymers were compared with respect to surface presentation and fouling by Ulva linza. While polypeptoids and polypeptides are simple isomers of each other, the lack of backbone chirality and hydrogen bonding in polypeptoids leads to surprisingly different surface behavior. Specifically, the polypeptoids surface segregate much more strongly than analogous polypeptide functionalized polymers, which in turn affects the performance of the coating. Indeed, polypeptoid functionalized surfaces were significantly better both in terms of anti-fouling and fouling release than the corresponding polypeptide-bearing polymers. The role of specific monomer sequence and backbone chemistry will be further discussed in this poster.

  5. Contribution of a putative salt bridge and backbone dynamics in the structural instability of human prion protein upon R208H mutation.

    PubMed

    Bamdad, Kourosh; Naderi-Manesh, Hossein

    2007-12-28

    Molecular dynamics simulation method is used to assess the contribution of a disease-associated salt bridge in the early stages of the conformational rearrangement of human prion protein upon Arg208-->His mutation, which causes Creutzfeldt-Jakob disease. Previous investigations have suggested that the breakage of this putative salt bridge (D144/E146<-->Arg208) between helix 1 and helix 3 is responsible for such a mutation-driven process. So far, no experimental data has been reported in order to distinguish the contribution of this single salt bridge in the initial steps of amyloid formation. Consequently, we decided to investigate the role of this salt bridge in early conformational rearrangements. To remove the salt bridge without perturbations in the backbone structure, the neutralized states of the involved residues were used. Three 10-ns molecular dynamics simulations on three initial structures have been performed. The results revealed that the early stages of the conformational rearrangements, against common belief, are mainly associated with the mutation-induced global changes in the backbone dynamics but not with the breaking of the salt bridge.

  6. Solution NMR structure, backbone dynamics, and heme-binding properties of a novel cytochrome c maturation protein CcmE from Desulfovibrio vulgaris.

    PubMed

    Aramini, James M; Hamilton, Keith; Rossi, Paolo; Ertekin, Asli; Lee, Hsiau-Wei; Lemak, Alexander; Wang, Huang; Xiao, Rong; Acton, Thomas B; Everett, John K; Montelione, Gaetano T

    2012-05-08

    Cytochrome c maturation protein E, CcmE, plays an integral role in the transfer of heme to apocytochrome c in many prokaryotes and some mitochondria. A novel subclass featuring a heme-binding cysteine has been identified in archaea and some bacteria. Here we describe the solution NMR structure, backbone dynamics, and heme binding properties of the soluble C-terminal domain of Desulfovibrio vulgaris CcmE, dvCcmE'. The structure adopts a conserved β-barrel OB fold followed by an unstructured C-terminal tail encompassing the CxxxY heme-binding motif. Heme binding analyses of wild-type and mutant dvCcmE' demonstrate the absolute requirement of residue C127 for noncovalent heme binding in vitro.

  7. Improvement of the treatment of loop structures in the UNRES force field by inclusion of coupling between backbone- and side-chain-local conformational states

    PubMed Central

    Baranowski, Maciej; Ołldziej, Stanisław; Scheraga, Harold A.; Liwo, Adam; Czaplewski, Cezary

    2013-01-01

    The UNited RESidue (UNRES) coarse-grained model of polypeptide chains, developed in our laboratory, enables us to carry out millisecond-scale molecular-dynamics simulations of large proteins effectively. It performs well in ab initio predictions of protein structure, as demonstrated in the last Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP10). However, the resolution of the simulated structure is too coarse, especially in loop regions, which results from insufficient specificity of the model of local interactions. To improve the representation of local interactions, in this work we introduced new side-chain-backbone correlation potentials, derived from a statistical analysis of loop regions of 4585 proteins. To obtain sufficient statistics, we reduced the set of amino-acid-residue types to five groups, derived in our earlier work on structurally optimized reduced alphabets, based on a statistical analysis of the properties of amino-acid structures. The new correlation potentials are expressed as one-dimensional Fourier series in the virtual-bond-dihedral angles involving side-chain centroids. The weight of these new terms was determined by a trial-and-error method, in which Multiplexed Replica Exchange Molecular Dynamics (MREMD) simulations were run on selected test proteins. The best average root-mean-square deviations (RMSDs) of the calculated structures from the experimental structures below the folding-transition temperatures were obtained with the weight of the new side-chain-backbone correlation potentials equal to 0.57. The resulting conformational ensembles were analyzed in detail by using the Weighted Histogram Analysis Method (WHAM) and Ward's minimum-variance clustering. This analysis showed that the RMSDs from the experimental structures dropped by 0.5 Å on average, compared to simulations without the new terms, and the deviation of individual residues in the loop region of the computed

  8. Structure variations of pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  9. Structure variations of pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Yajima, N.; Izutsu, N.; Honda, H.

    A robed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super -pressure balloon. This paper deals with an extension of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes or poles. When the original pumpkin shape is modified for those systems, superior characteristics of 3-D gore design, those are large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail.

  10. Structural Insights into the Evolution of a Sexy Protein: Novel Topology and Restricted Backbone Flexibility in a Hypervariable Pheromone from the Red-Legged Salamander, Plethodon shermani

    PubMed Central

    Wilburn, Damien B.; Bowen, Kathleen E.; Doty, Kari A.; Arumugam, Sengodagounder; Lane, Andrew N.; Feldhoff, Pamela W.; Feldhoff, Richard C.

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions – such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake “three-finger” topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this

  11. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    PubMed

    Wilburn, Damien B; Bowen, Kathleen E; Doty, Kari A; Arumugam, Sengodagounder; Lane, Andrew N; Feldhoff, Pamela W; Feldhoff, Richard C

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique

  12. Structural and dynamic implications of an effector-induced backbone amide cis-trans isomerization in cytochrome P450cam

    PubMed Central

    Asciutto, Eliana K.; Madura, Jeffry D.; Pochapsky, Susan Sondej; OuYang, Bo; Pochapsky, Thomas C.

    2009-01-01

    Experimental evidence has been provided for a functionally relevant cis-trans isomerization of the Ile 88-Pro 89 peptide bond in cytochrome P450cam (CYP101). The isomerization is proposed to be a key element of the structural reorganization leading to the catalytically competent form of CYP101 upon binding of the effector protein putidaredoxin (Pdx). A detailed comparison of the results of molecular dynamics simulations on the cis and trans conformations of substrate- and carbonmonoxy-bound ferrous CYP101 with sequence-specific Pdx-induced structural perturbations identified by nuclear magnetic resonance is presented, providing insight into the structural and dynamic consequences of the isomerization. The mechanical coupling between the Pdx binding site on the proximal face of CYP101 and the site of isomerization is described. PMID:19327368

  13. Extended weak bonding interactions in DNA: pi-stacking (base-base), base-backbone, and backbone-backbone interactions.

    PubMed

    Matta, Chérif F; Castillo, Norberto; Boyd, Russell J

    2006-01-12

    We report on several weak interactions in nucleic acids, which, collectively, can make a nonnegligible contribution to the structure and stability of these molecules. Fragments of DNA were obtained from previously determined accurate experimental geometries and their electron density distributions calculated using density functional theory (DFT). The electron densities were analyzed topologically according to the quantum theory of atoms in molecules (AIM). A web of closed-shell bonding interactions is shown to connect neighboring base pairs in base-pair duplexes and in dinuleotide steps. This bonding underlies the well-known pi-stacking interaction between adjacent nucleic acid bases and is characterized topologically for the first time. Two less widely appreciated modes of weak closed-shell interactions in nucleic acids are also described: (i) interactions between atoms in the bases and atoms belonging to the backbone (base-backbone) and (ii) interactions among atoms within the backbone itself (backbone-backbone). These interactions include hydrogen bonding, dihydrogen bonding, hydrogen-hydrogen bonding, and several other weak closed-shell X-Y interactions (X, Y = O, N, C). While each individual interaction is very weak and typically accompanied by perhaps 0.5-3 kcal/mol, the sum total of these interactions is postulated to play a role in stabilizing the structure of nucleic acids. The Watson-and-Crick hydrogen bonding is also characterized in detail at the experimental geometries as a prelude to the discussion of the modes of interactions listed in the title.

  14. Solution Structure, Copper Binding and Backbone Dynamics of Recombinant Ber e 1–The Major Allergen from Brazil Nut

    PubMed Central

    Rundqvist, Louise; Tengel, Tobias; Zdunek, Janusz; Björn, Erik; Schleucher, Jürgen; Alcocer, Marcos J. C.; Larsson, Göran

    2012-01-01

    Background The 2S albumin Ber e 1 is the major allergen in Brazil nuts. Previous findings indicated that the protein alone does not cause an allergenic response in mice, but the addition of components from a Brazil nut lipid fraction were required. Structural details of Ber e 1 may contribute to the understanding of the allergenic properties of the protein and its potential interaction partners. Methodology/Principal Findings The solution structure of recombinant Ber e 1 was solved using NMR spectroscopy and measurements of the protein back bone dynamics at a residue-specific level were extracted using 15N-spin relaxation. A hydrophobic cavity was identified in the structure of Ber e 1. Using the paramagnetic relaxation enhancement property of Cu2+ in conjunction with NMR, it was shown that Ber e 1 is able to specifically interact with the divalent copper ion and the binding site was modeled into the structure. The IgE binding region as well as the copper binding site show increased dynamics on both fast ps-ns timescale as well as slower µs-ms timescale. Conclusions/Significance The overall fold of Ber e 1 is similar to other 2S albumins, but the hydrophobic cavity resembles that of a homologous non-specific lipid transfer protein. Ber e 1 is the first 2S albumin shown to interact with Cu2+ ions. This Cu2+ binding has minimal effect on the electrostatic potential on the surface of the protein, but the charge distribution within the hydrophobic cavity is significantly altered. As the hydrophobic cavity is likely to be involved in a putative lipid interaction the Cu2+ can in turn affect the interaction that is essential to provoke an allergenic response. PMID:23056307

  15. 2D IR spectroscopy of histidine: probing side-chain structure and dynamics via backbone amide vibrations.

    PubMed

    Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng

    2014-07-17

    It is well known that histidine is involved in many biological functions due to the structural versatility of its side chain. However, probing the conformational transitions of histidine in proteins, especially those occurring on an ultrafast time scale, is difficult. Herein we show, using a histidine dipeptide as a model, that it is possible to probe the tautomer and protonation status of a histidine residue by measuring the two-dimensional infrared (2D IR) spectrum of its amide I vibrational transition. Specifically, for the histidine dipeptide studied, the amide unit of the histidine gives rise to three spectrally resolvable amide I features at approximately 1630, 1644, and 1656 cm(-1), respectively, which, based on measurements at different pH values and frequency calculations, are assigned to a τ tautomer (1630 cm(-1) component) and a π tautomer with a hydrated (1644 cm(-1) component) or dehydrated (1656 cm(-1) component) amide. Because of the intrinsic ultrafast time resolution of 2D IR spectroscopy, we believe that the current approach, when combined with the isotope editing techniques, will be useful in revealing the structural dynamics of key histidine residues in proteins that are important for function.

  16. Computational protein design with backbone plasticity

    PubMed Central

    MacDonald, James T.; Freemont, Paul S.

    2016-01-01

    The computational algorithms used in the design of artificial proteins have become increasingly sophisticated in recent years, producing a series of remarkable successes. The most dramatic of these is the de novo design of artificial enzymes. The majority of these designs have reused naturally occurring protein structures as ‘scaffolds’ onto which novel functionality can be grafted without having to redesign the backbone structure. The incorporation of backbone flexibility into protein design is a much more computationally challenging problem due to the greatly increased search space, but promises to remove the limitations of reusing natural protein scaffolds. In this review, we outline the principles of computational protein design methods and discuss recent efforts to consider backbone plasticity in the design process. PMID:27911735

  17. Identical repeated backbone of the human genome

    PubMed Central

    2010-01-01

    Background Identical sequences with a minimal length of about 300 base pairs (bp) have been involved in the generation of various meiotic/mitotic genomic rearrangements through non-allelic homologous recombination (NAHR) events. Genomic disorders and structural variation, together with gene remodelling processes have been associated with many of these rearrangements. Based on these observations, we identified and integrated all the 100% identical repeats of at least 300 bp in the NCBI version 36.2 human genome reference assembly into non-overlapping regions, thus defining the Identical Repeated Backbone (IRB) of the reference human genome. Results The IRB sequences are distributed all over the genome in 66,600 regions, which correspond to ~2% of the total NCBI human genome reference assembly. Important structural and functional elements such as common repeats, segmental duplications, and genes are contained in the IRB. About 80% of the IRB bp overlap with known copy-number variants (CNVs). By analyzing the genes embedded in the IRB, we were able to detect some identical genes not previously included in the Ensembl release 50 annotation of human genes. In addition, we found evidence of IRB gene copy-number polymorphisms in raw sequence reads of two diploid sequenced genomes. Conclusions In general, the IRB offers new insight into the complex organization of the identical repeated sequences of the human genome. It provides an accurate map of potential NAHR sites which could be used in targeting the study of novel CNVs, predicting DNA copy-number variation in newly sequenced genomes, and improve genome annotation. PMID:20096123

  18. Allosteric Transmission along a Loosely Structured Backbone Allows a Cardiac Troponin C Mutant to Function with Only One Ca(2+) Ion.

    PubMed

    Marques, Mayra de A; Pinto, Jose Renato; Moraes, Adolfo H; Iqbal, Anwar; de Magalhães, Mariana T Q; Monteiro, Jamila; Pedrote, Murilo M; Sorenson, Martha M; Silva, Jerson L; de Oliveira, Guilherme A P

    2017-02-10

    Hypertrophic cardiomyopathy (HCM) is one of the most common cardiomyopathies and a major cause of sudden death in young athletes. The Ca(2+) sensor of the sarcomere, cardiac troponin C (cTnC), plays an important role in regulating muscle contraction. Although several cardiomyopathy-causing mutations have been identified in cTnC, the limited information about their structural defects has been mapped to the HCM phenotype. Here, we used high-resolution electron-spray ionization mass spectrometry (ESI-MS), Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG-RD), and affinity measurements of cTnC for the thin filament in reconstituted papillary muscles to provide evidence of an allosteric mechanism in mutant cTnC that may play a role to the HCM phenotype. We showed that the D145E mutation leads to altered dynamics on a μs-ms time scale and deactivates both of the divalent cation-binding sites of the cTnC C-domain. CPMG-RD captured a low populated protein-folding conformation triggered by the Glu-145 replacement of Asp. Paradoxically, although D145E C-domain was unable to bind Ca(2+), these changes along its backbone allowed it to attach more firmly to thin filaments than the wild-type isoform, providing evidence for an allosteric response of the Ca(2+)-binding site II in the N-domain. Our findings explain how the effects of an HCM mutation in the C-domain reflect up into the N-domain to cause an increase of Ca(2+) affinity in site II, thus opening up new insights into the HCM phenotype.

  19. Diurnal variations of vegetation canopy structure

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Kirchner, J. A.

    1983-01-01

    The significance and magnitude of diurnal variations of vegetation canopy structure are reviewed. Diurnal leaf inclination-azimuth angle distributions of a soybean and cotton canopy were documented using a simple measurement technique. The precision of the measurements was on the order of + or -5 deg for the inclination and + or -14 deg for the azimuth. The experimental results and a review of the literature showed that this distribution can vary significantly on a diurnal basis due to vegetation type, heliotropic leaf movement, environmental conditions, and vegetation stress. The study also showed that it is erroneous to treat two separate distributions of azimuth and inclination angles rather than one three-dimensional distribution of leaf orientation. The latter distribution needs to be routinely collected in studies which document variations of diurnal spectral reflectance with changes in solar zenith angle.

  20. Invariant variational structures on fibered manifolds

    NASA Astrophysics Data System (ADS)

    Krupka, Demeter

    2015-12-01

    The aim of this paper is to present a relatively complete theory of invariance of global, higher-order integral variational functionals in fibered spaces, as developed during a few past decades. We unify and extend recent results of the geometric invariance theory; new results on deformations of extremals are also included. We show that the theory can be developed by means of the general concept of invariance of a differential form in geometry, which does not require different ad hoc modifications. The concept applies to invariance of Lagrangians, source forms and Euler-Lagrange forms, as well as to extremals of the given variational functional. Equations for generators of invariance transformations of the Lagrangians and the Euler-Lagrange forms are characterized in terms of Lie derivatives. As a consequence of invariance, we derive the global Noether's theorem on existence of conserved currents along extremals, and discuss the meaning of conservation equations. We prove a theorem describing extremals, whose deformations by a vector field are again extremals. The general settings and structures we use admit extension of the global invariance theory to variational principles in physics, especially in field theory.

  1. Variational approach for static mirror structures

    SciTech Connect

    Kuznetsov, E. A.; Passot, T.; Sulem, P. L.; Ruban, V. P.

    2015-04-15

    Anisotropic static plasma equilibria where the parallel and perpendicular pressures are only functions of the amplitude of the local magnetic field are shown to be amenable to a variational principle with a free energy density given by the parallel tension. This approach is used to demonstrate that two-dimensional small-amplitude static magnetic holes constructed from a Grad-Shafranov type equation slightly below the (subcritical) mirror instability threshold identify with lump solitons of KPII equation, but turn out to be unstable. Differently, large-amplitude magnetic structures, which are stable as they realize a minimum of the free energy, are computed using a gradient method within two-dimensional numerical simulations where the regularizing effect of finite Larmor radius corrections is retained. Interestingly, these structures transform from stripes to bubbles when the angle of the magnetic field with the coordinate plane is increased.

  2. Human structural variation: mechanisms of chromosome rearrangements

    PubMed Central

    Weckselblatt, Brooke; Rudd, M. Katharine

    2015-01-01

    Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074

  3. Mechanical reliability of porous low-k dielectrics for advanced interconnect: Study of the instability mechanisms in porous low-k dielectrics and their mediation through inert plasma induced re-polymerization of the backbone structure

    NASA Astrophysics Data System (ADS)

    Sa, Yoonki

    Continuous scaling down of critical dimensions in interconnect structures requires the use of ultralow dielectric constant (k) films as interlayer dielectrics to reduce resistance-capacitance delays. Porous carbon-doped silicon oxide (p-SiCOH) dielectrics have been the leading approach to produce these ultralow-k materials. However, embedding of porosity into dielectric layer necessarily decreases the mechanical reliability and increases its susceptibility to adsorption of potentially deleterious chemical species during device fabrication process. Among those, exposure of porous-SiCOH low-k (PLK) dielectrics to oxidizing plasma environment causes the increase in dielectric constant and their vulnerability to mechanical instability of PLKs due to the loss of methyl species and increase in moisture uptake. These changes in PLK properties and physical stability have been persisting challenges for next-generation interconnects because they are the sources of failure in interconnect integration as well as functional and physical failures appearing later in IC device manufacturing. It is therefore essential to study the fundamentals of the interactions on p-SiCOH matrix induced by plasma exposure and find an effective and easy-to-implement way to reverse such changes by repairing damage in PLK structure. From these perspectives, the present dissertation proposes 1) a fundamental understanding of structural transformation occurring during oxidative plasma exposure in PLK matrix structure and 2) its restoration by using silylating treatment, soft x-ray and inert Ar-plasma radiation, respectively. Equally important, 3) as an alternative way of increasing the thermo-mechanical reliability, PLK dielectric film with an intrinsically robust structure by controlling pore morphology is fabricated and investigated. Based on the investigations, stability of PLK films studied by time-dependent ball indentation tester under the elevated temperature, variation in film thickness and

  4. Constructing backbone network by using tinker algorithm

    NASA Astrophysics Data System (ADS)

    He, Zhiwei; Zhan, Meng; Wang, Jianxiong; Yao, Chenggui

    2017-01-01

    Revealing how a biological network is organized to realize its function is one of the main topics in systems biology. The functional backbone network, defined as the primary structure of the biological network, is of great importance in maintaining the main function of the biological network. We propose a new algorithm, the tinker algorithm, to determine this core structure and apply it in the cell-cycle system. With this algorithm, the backbone network of the cell-cycle network can be determined accurately and efficiently in various models such as the Boolean model, stochastic model, and ordinary differential equation model. Results show that our algorithm is more efficient than that used in the previous research. We hope this method can be put into practical use in relevant future studies.

  5. Chapter 6: Structural variation and medical genomics.

    PubMed

    Raphael, Benjamin J

    2012-01-01

    Differences between individual human genomes, or between human and cancer genomes, range in scale from single nucleotide variants (SNVs) through intermediate and large-scale duplications, deletions, and rearrangements of genomic segments. The latter class, called structural variants (SVs), have received considerable attention in the past several years as they are a previously under appreciated source of variation in human genomes. Much of this recent attention is the result of the availability of higher-resolution technologies for measuring these variants, including both microarray-based techniques, and more recently, high-throughput DNA sequencing. We describe the genomic technologies and computational techniques currently used to measure SVs, focusing on applications in human and cancer genomics.

  6. Analysis of the Rotational Structure in the High-Resolution Infrared Spectrum of trans-Hexatriene-1-13C1; a Semiexperimental Equilibrium Structure for the C6 Backbone for trans-Hexatriene

    SciTech Connect

    Craig, Norman C.; Tian, Hengfeng; Blake, Thomas A.

    2012-03-29

    trans-Hexatriene-1-13C1 (tHTE-1-13C1) has been synthesized, and its high-resolution (0.0015 cm-1) infrared spectrum has been recorded. The rotational structure in the C-type bands for v26 at 1011 cm-1 and v30 at 894 cm-1 has been analyzed. To the 1458 ground state combination differences from these bands, ground state rotational constants were fitted to a Watson-type Hamiltonian to give A0 = 0.8728202(9), B0 = 0.0435868(4), and C0 = 0.0415314(2) cm-1. Upper state rotational constants for the v30 band were also fitted. Predictions of the ground state rotational constants for t-HTE-1-13C1 from a B3LYP/cc-pVTZ model with scale factors based on the normal species were in excellent agreement with observations. Similar good agreement was found between predicted and observed ground state rotational constants for the three 13C1 isotopologues of cis-hexatriene (cHTE), as determined from microwave spectroscopy. Equilibrium rotational constants for tHTE and its three 13C1 isotopologues, of which two were predicted, were used to find a semiexperimental equilibrium structure for the C6 backbone of tHTE. This structure shows increased structural effects of pi-electron delocalization in comparison with butadiene.

  7. ANSS Backbone Station Installation and Site Characterization

    NASA Astrophysics Data System (ADS)

    Meremonte, M.; Leeds, A.; Overturf, D.; McMillian, J.; Allen, J.; McNamara, D.

    2004-12-01

    During 2004 several new broadband seismic stations have been deployed as a part of the USGS's Advanced National Seismic System (ANSS) backbone and regional networks. New stations include: ERPA, MNTX, OGLA, AMTX, NATX, KCCO, BMO, MARC, TZTN, LAO, DGMT, REDW, KSU1, MOOW, TPAW, LOHW, RAMW. Permanent station locations were chosen to minimize the local noise conditions by recording continuous data and using a quantitative analysis of the statistical distribution of noise power estimates. For each one-hour segment of continuous data, a power spectral density (PSD) is estimated and smoothed in full octave averages at 1/8 octave intervals. Powers for each 1/8 period interval were then accumulated in one dB power bins. A statistical analysis of power bins yields probability density functions (PDFs) as a function of noise power for each of the octave bands at each station and component. Examination of earthquake signal, artifacts related to station operation and episodic cultural noise in the PDFs allow us to estimate both the overall station quality and the level of earth noise at each potential backbone site. The main function of a seismic network, such as the ANSS, is to provide high quality data for earthquake monitoring, source studies, and Earth structure research. The utility of seismic data is greatly increased when noise levels are reduced. A good quantification and understanding of seismic noise is a first step at reducing noise levels in seismic data and improving overall data quality from the ANSS backbone network.

  8. Semiexperimental equilibrium structure for the C6 backbone of cis-1,3,5-hexatriene; structural evidence for greater pi-electron delocalization with increasing chain length in polyenes.

    PubMed

    Suenram, Richard D; Pate, Brooks H; Lesarri, Alberto; Neill, Justin L; Shipman, Steven; Holmes, Robin A; Leyden, Matthew C; Craig, Norman C

    2009-03-05

    Twenty-five microwave lines were observed for cis-1,3,5-hexatriene (0.05 D dipole moment) and a smaller number for its three (13)C isotopomers in natural abundance. Ground-state rotational constants were fitted for all four species to a Watson-type rotational Hamiltonian for an asymmetric top (kappa = -0.9768). Vibration-rotation (alpha) constants were predicted with a B3LYP/cc-pVTZ model and used to adjust the ground-state rotational constants to equilibrium rotational constants. The small inertial defect for cis-hexatriene shows that the molecule is planar, despite significant H-H repulsion. The substitution method was applied to the equilibrium rotational constants to give a semiexperimental equilibrium structure for the C(6) backbone. This structure and one predicted with the B3LYP/cc-pVTZ model show structural evidence for increased pi-electron delocalization in comparison with butadiene, the first member of the polyene series.

  9. Large-scale measurement and modeling of backbone Internet traffic

    NASA Astrophysics Data System (ADS)

    Roughan, Matthew; Gottlieb, Joel

    2002-07-01

    There is a brewing controversy in the traffic modeling community concerning how to model backbone traffic. The fundamental work on self-similarity in data traffic appears to be contradicted by recent findings that suggest that backbone traffic is smooth. The traffic analysis work to date has focused on high-quality but limited-scope packet trace measurements; this limits its applicability to high-speed backbone traffic. This paper uses more than one year's worth of SNMP traffic data covering an entire Tier 1 ISP backbone to address the question of how backbone network traffic should be modeled. Although the limitations of SNMP measurements do not permit us to comment on the fine timescale behavior of the traffic, careful analysis of the data suggests that irrespective of the variation at fine timescales, we can construct a simple traffic model that captures key features of the observed traffic. Furthermore, the model's parameters are measurable using existing network infrastructure, making this model practical in a present-day operational network. In addition to its practicality, the model verifies basic statistical multiplexing results, and thus sheds deep insight into how smooth backbone traffic really is.

  10. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    PubMed

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions.

  11. Child Development and Structural Variation in the Human Genome

    ERIC Educational Resources Information Center

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  12. ANSS Backbone Station Quality Assessment

    NASA Astrophysics Data System (ADS)

    Leeds, A.; McNamara, D.; Benz, H.; Gee, L.

    2006-12-01

    In this study we assess the ambient noise levels of the broadband seismic stations within the United States Geological Survey's (USGS) Advanced National Seismic System (ANSS) backbone network. The backbone consists of stations operated by the USGS as well as several regional network stations operated by universities. We also assess the improved detection capability of the network due to the installation of 13 additional backbone stations and the upgrade of 26 existing stations funded by the Earthscope initiative. This assessment makes use of probability density functions (PDF) of power spectral densities (PSD) (after McNamara and Buland, 2004) computed by a continuous noise monitoring system developed by the USGS- ANSS and the Incorporated Research Institutions in Seismology (IRIS) Data Management Center (DMC). We compute the median and mode of the PDF distribution and rank the stations relative to the Peterson Low noise model (LNM) (Peterson, 1993) for 11 different period bands. The power of the method lies in the fact that there is no need to screen the data for system transients, earthquakes or general data artifacts since they map into a background probability level. Previous studies have shown that most regional stations, instrumented with short period or extended short period instruments, have a higher noise level in all period bands while stations in the US network have lower noise levels at short periods (0.0625-8.0 seconds), high frequencies (8.0- 0.125Hz). The overall network is evaluated with respect to accomplishing the design goals set for the USArray/ANSS backbone project which were intended to increase broadband performance for the national monitoring network.

  13. Variational Analysis of Helical Slow Wave Structures.

    DTIC Science & Technology

    1980-05-01

    fields is shown in detail. Bevensee avoided using these partly because they did not satisfy Maxwell’s equation and thereby introduced volume integrals...both Ez and Hz satisfy Maxwell’s equation . This is the subset Bevensee used because only surface integrals remain in the variational formula for simple

  14. Constructing optimal backbone segments for joining fixed DNA base pairs.

    PubMed Central

    Mazur, J; Jernigan, R L; Sarai, A

    1996-01-01

    A method is presented to link a sequence of space-fixed base pairs by the sugar-phosphate segments of single nucleotides and to evaluate the effects in the backbone caused by this positioning of the bases. The entire computational unit comprises several nucleotides that are energy-minimized, subject to constraints imposed by the sugar-phosphate backbone segments being anchored to space-fixed base pairs. The minimization schemes are based on two stages, a conjugate gradient method followed by a Newton-Raphson algorithm. Because our purpose is to examine the response, or relaxation, of an artificially stressed backbone, it is essential to be able to obtain, as closely as possible, a lowest minimum energy conformation of the backbone segment in conformational space. For this purpose, an algorithm is developed that leads to the generation of an assembly of many local energy minima. From these sets of local minima, one conformation corresponding to the one with the lowest minimum is then selected and designated to represent the backbone segment at its minimum. The effective electrostatic potential of mean force is expressed in terms of adjustable parameters that incorporate solvent screening action in the Coulombic interactions between charged backbone atoms; these parameters are adjusted to obtain the best fit of the nearest-neighbor phosphorous atoms in an x-ray structure. PMID:8874023

  15. Variation in the Helical Structure of Native Collagen

    DTIC Science & Technology

    2014-02-24

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU Approved for public release; distribution is unlimited. Variation in the Helical Structure of...2211 collagen, molecular structure, variability , xray diffraction REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...Chicago, IL 60616 -3793 ABSTRACT Variation in the Helical Structure of Native Collagen Report Title Article About the Authors Metrics Comments

  16. Structure-activity study for (bis)ureidopropyl- and (bis)thioureidopropyldiamine LSD1 inhibitors with 3-5-3 and 3-6-3 carbon backbone architectures.

    PubMed

    Nowotarski, Shannon L; Pachaiyappan, Boobalan; Holshouser, Steven L; Kutz, Craig J; Li, Youxuan; Huang, Yi; Sharma, Shiv K; Casero, Robert A; Woster, Patrick M

    2015-04-01

    Methylation at specific histone lysine residues is a critical post-translational modification that alters chromatin architecture, and dysregulated lysine methylation/demethylation is associated with the silencing of tumor suppressor genes. The enzyme lysine-specific demethylase 1 (LSD1) complexed to specific transcription factors catalyzes the oxidative demethylation of mono- and dimethyllysine 4 of histone H3 (H3K4me and H3K4me2, respectively). We have previously reported potent (bis)urea and (bis)thiourea LSD1 inhibitors that increase cellular levels of H3K4me and H3K4me2, promote the re-expression of silenced tumor suppressor genes and suppress tumor growth in vitro. Here we report the design additional (bis)urea and (bis)thiourea LSD1 inhibitors that feature 3-5-3 or 3-6-3 carbon backbone architectures. Three of these compounds displayed single-digit IC50 values in a recombinant LSD1 assay. In addition, compound 6d exhibited an IC50 of 4.2μM against the Calu-6 human lung adenocarcinoma line, and 4.8μM against the MCF7 breast tumor cell line, in an MTS cell viability assay. Following treatment with 6b-6d, Calu-6 cells exhibited a significant increase in the mRNA expression for the silenced tumor suppressor genes SFRP2, HCAD and p16, and modest increases in GATA4 message. The compounds described in this paper represent the most potent epigenetic modulators in this series, and have potential for use as antitumor agents.

  17. Structure-activity study for (bis)ureidopropyl- and (bis)thioureidopropyldiamine LSD1 inhibitors with 3-5-3 and 3-6-3 carbon backbone architectures

    PubMed Central

    Nowotarski, Shannon L.; Pachaiyappan, Boobalan; Holshouser, Steven L.; Kutz, Craig J.; Li, Youxuan; Huang, Yi; Sharma, Shiv K.; Casero, Robert A.; Woster, Patrick M.

    2015-01-01

    Methylation at specific histone lysine residues is a critical post-translational modification that alters chromatin architecture, and dysregulated lysine methylation/demethylation is associated with the silencing of tumor suppressor genes. The enzyme lysine-specific demethylase 1 (LSD1) complexed to specific transcription factors catalyzes the oxidative demethylation of mono- and dimethyllysine 4 of histone H3 (H3K4me and H3K4me2 respectively). We have previously reported potent (bis)urea and (bis)thiourea LSD1 inhibitors that increase cellular levels of H3K4me and H3K4me2, promote the re-expression of silenced tumor suppressor genes and suppress tumor growth in vitro. Here we report the design additional (bis)urea and (bis)thiourea LSD1 inhibitors that feature 3-5-3 or 3-6-3 carbon backbone architectures. Three of these compounds displayed single-digit IC50 values in a recombinant LSD1 assay. In addition, compound 6d exhibited an IC50 of 4.2 μM against the Calu-6 human lung adenocarcinoma line, and 4.8 μM against the MCF7 breast tumor cell line, in an MTS cell viability assay. Following treatment with 6b–6d, Calu-6 cells exhibited a significant increase in the mRNA expression for the silenced tumor suppressor genes SFRP2, HCAD and p16, and modest increases in GATA4 message. The compounds described in this paper represent the most potent epigenetic modulators in this series, and have potential for use as antitumor agents. PMID:25725609

  18. A Readily Accessible Chiral NNN Pincer Ligand with a Pyrrole Backbone and Its Ni(II) Chemistry: Syntheses, Structural Chemistry, and Bond Activations.

    PubMed

    Wenz, Jan; Kochan, Alexander; Wadepohl, Hubert; Gade, Lutz H

    2017-03-20

    A new class of chiral C2-symmetric N-donor pincer ligands, 2,5-bis(2-oxazolinyldimethylmethyl)pyrroles (PdmBox)H, was synthesized starting from the readily available ethyl 2,2-dimethyl-3-oxobutanoate (1). The synthesis of the ligand backbone was achieved by oxidative enole coupling with CuC12 followed by Paal-Knorr-type pyrrole synthesis. The corresponding protioligands ((R)PdmBox)H (R = iPr: 5a; Ph: 5b) were obtained by condensation with amino alcohols and subsequent zinc-catalyzed cyclization. Reaction of the lithiated ligands with [NiCl2(dme)] yielded the corresponding square-planar nickel(II) complexes [((R)PdmBox)NiCl] (6a/b). Salt metathesis of 6a with the corresponding alkali or cesium salts in acetone led to the formation of air- and moisture-stable [((iPr)PdmBox)NiX] (X = F (7), X = Br (8), X = I (9), X = N3 (10), X = OAc (11). Furthermore, the conversion of [((iPr)PdmBox)NiF] (7) with hydride transfer reagents such as PhSiH3 led to the stable hydrido species [((iPr)PdmBox)NiH] (27), the stoichiometric transformations of which were studied. Treatment of 6a with organometallic reagents such as ZnEt2, PhLi, PhC≡CLi, NsLi, or ((4F)Bn)2Mg(THF)2 gave the corresponding alkyl, alkynyl, or aryl complexes. The availability of the new nonisomerizable PdmBox pincer ligands allowed the comparative study of their ligation to square-planar complexes as helically twisted spectator ligands as opposed to the enforced planar rigidity of their iso-PmBox analogues and the way this influences the reactivity of the Ni complexes.

  19. Protein structure prediction from sequence variation

    PubMed Central

    Marks, Debora S; Hopf, Thomas A; Sander, Chris

    2015-01-01

    Genomic sequences contain rich evolutionary information about functional constraints on macromolecules such as proteins. This information can be efficiently mined to detect evolutionary couplings between residues in proteins and address the long-standing challenge to compute protein three-dimensional structures from amino acid sequences. Substantial progress has recently been made on this problem owing to the explosive growth in available sequences and the application of global statistical methods. In addition to three-dimensional structure, the improved understanding of covariation may help identify functional residues involved in ligand binding, protein-complex formation and conformational changes. We expect computation of covariation patterns to complement experimental structural biology in elucidating the full spectrum of protein structures, their functional interactions and evolutionary dynamics. PMID:23138306

  20. The backbone of a city

    NASA Astrophysics Data System (ADS)

    Scellato, S.; Cardillo, A.; Latora, V.; Porta, S.

    2006-03-01

    Recent studies have revealed the importance of centrality measures to analyze various spatial factors affecting human life in cities. Here we show how it is possible to extract the backbone of a city by deriving spanning trees based on edge betweenness and edge information. By using as sample cases the cities of Bologna and San Francisco, we show how the obtained trees are radically different from those based on edge lengths, and allow an extended comprehension of the “skeleton” of most important routes that so much affects pedestrian/vehicular flows, retail commerce vitality, land-use separation, urban crime and collective dynamical behaviours.

  1. Making the difference: integrating structural variation detection tools.

    PubMed

    Lin, Ke; Smit, Sandra; Bonnema, Guusje; Sanchez-Perez, Gabino; de Ridder, Dick

    2015-09-01

    From prokaryotes to eukaryotes, phenotypic variation, adaptation and speciation has been associated with structural variation between genomes of individuals within the same species. Many computer algorithms detecting such variations (callers) have recently been developed, spurred by the advent of the next-generation sequencing technology. Such callers mainly exploit split-read mapping or paired-end read mapping. However, as different callers are geared towards different types of structural variation, there is still no single caller that can be considered a community standard; instead, increasingly the various callers are combined in integrated pipelines. In this article, we review a wide range of callers, discuss challenges in the integration step and present a survey of pipelines used in population genomics studies. Based on our findings, we provide general recommendations on how to set-up such pipelines. Finally, we present an outlook on future challenges in structural variation detection.

  2. Prototype Schemas, Variation Theory, and the Structural Syllabus.

    ERIC Educational Resources Information Center

    Adamson, H. D.

    1990-01-01

    A review of theories and research regarding cognitive psychology and second-language acquisition discusses Krashen's monitor model (1982), Pienemann's teachability hypothesis (1985), variation theory, the structural syllabus, and grammatical prototypes. (29 references) (CB)

  3. Nonlinear backbone torsional pair correlations in proteins

    NASA Astrophysics Data System (ADS)

    Long, Shiyang; Tian, Pu

    2016-10-01

    Protein allostery requires dynamical structural correlations. Physical origin of which, however, remain elusive despite intensive studies during last two and half decades. Based on analysis of molecular dynamics (MD) simulation trajectories for ten proteins with different sizes and folds, we found that nonlinear backbone torsional pair (BTP) correlations, which are mainly spatially long-ranged and are dominantly executed by loop residues, exist extensively in most analyzed proteins. Examination of torsional motion for correlated BTPs suggested that such nonlinear correlations are mainly associated aharmonic torsional state transitions and in some cases strongly anisotropic local torsional motion of participating torsions, and occur on widely different and relatively longer time scales. In contrast, correlations between backbone torsions in stable α helices and β strands are mainly linear and spatially short-ranged, and are more likely to associate with harmonic local torsional motion. Further analysis revealed that the direct cause of nonlinear contributions are heterogeneous linear correlations. These findings implicate a general search strategy for novel allosteric modulation sites of protein activities.

  4. Nonlinear backbone torsional pair correlations in proteins

    PubMed Central

    Long, Shiyang; Tian, Pu

    2016-01-01

    Protein allostery requires dynamical structural correlations. Physical origin of which, however, remain elusive despite intensive studies during last two and half decades. Based on analysis of molecular dynamics (MD) simulation trajectories for ten proteins with different sizes and folds, we found that nonlinear backbone torsional pair (BTP) correlations, which are mainly spatially long-ranged and are dominantly executed by loop residues, exist extensively in most analyzed proteins. Examination of torsional motion for correlated BTPs suggested that such nonlinear correlations are mainly associated aharmonic torsional state transitions and in some cases strongly anisotropic local torsional motion of participating torsions, and occur on widely different and relatively longer time scales. In contrast, correlations between backbone torsions in stable α helices and β strands are mainly linear and spatially short-ranged, and are more likely to associate with harmonic local torsional motion. Further analysis revealed that the direct cause of nonlinear contributions are heterogeneous linear correlations. These findings implicate a general search strategy for novel allosteric modulation sites of protein activities. PMID:27708342

  5. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    PubMed

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.

  6. Assessing side-chain perturbations of the protein backbone: a knowledge-based classification of residue Ramachandran space.

    PubMed

    Dahl, David B; Bohannan, Zach; Mo, Qianxing; Vannucci, Marina; Tsai, Jerry

    2008-05-02

    Grouping the 20 residues is a classic strategy to discover ordered patterns and insights about the fundamental nature of proteins, their structure, and how they fold. Usually, this categorization is based on the biophysical and/or structural properties of a residue's side-chain group. We extend this approach to understand the effects of side chains on backbone conformation and to perform a knowledge-based classification of amino acids by comparing their backbone phi, psi distributions in different types of secondary structure. At this finer, more specific resolution, torsion angle data are often sparse and discontinuous (especially for nonhelical classes) even though a comprehensive set of protein structures is used. To ensure the precision of Ramachandran plot comparisons, we applied a rigorous Bayesian density estimation method that produces continuous estimates of the backbone phi, psi distributions. Based on this statistical modeling, a robust hierarchical clustering was performed using a divergence score to measure the similarity between plots. There were seven general groups based on the clusters from the complete Ramachandran data: nonpolar/beta-branched (Ile and Val), AsX (Asn and Asp), long (Met, Gln, Arg, Glu, Lys, and Leu), aromatic (Phe, Tyr, His, and Cys), small (Ala and Ser), bulky (Thr and Trp), and, lastly, the singletons of Gly and Pro. At the level of secondary structure (helix, sheet, turn, and coil), these groups remain somewhat consistent, although there are a few significant variations. Besides the expected uniqueness of the Gly and Pro distributions, the nonpolar/beta-branched and AsX clusters were very consistent across all types of secondary structure. Effectively, this consistency across the secondary structure classes implies that side-chain steric effects strongly influence a residue's backbone torsion angle conformation. These results help to explain the plasticity of amino acid substitutions on protein structure and should help in

  7. A Variational Monte Carlo Approach to Atomic Structure

    ERIC Educational Resources Information Center

    Davis, Stephen L.

    2007-01-01

    The practicality and usefulness of variational Monte Carlo calculations to atomic structure are demonstrated. It is found to succeed in quantitatively illustrating electron shielding, effective nuclear charge, l-dependence of the orbital energies, and singlet-tripetenergy splitting and ionization energy trends in atomic structure theory.

  8. New insights about pilus formation in gut-adapted Lactobacillus rhamnosus GG from the crystal structure of the SpaA backbone-pilin subunit

    PubMed Central

    Chaurasia, Priyanka; Pratap, Shivendra; von Ossowski, Ingemar; Palva, Airi; Krishnan, Vengadesan

    2016-01-01

    Thus far, all solved structures of pilin-proteins comprising sortase-assembled pili are from pathogenic genera and species. Here, we present the first crystal structure of a pilin subunit (SpaA) from a non-pathogen host (Lactobacillus rhamnosus GG). SpaA consists of two tandem CnaB-type domains, each with an isopeptide bond and E-box motif. Intriguingly, while the isopeptide bond in the N-terminal domain forms between lysine and asparagine, the one in the C-terminal domain atypically involves aspartate. We also solved crystal structures of mutant proteins where residues implicated in forming isopeptide bonds were replaced. Expectedly, the E-box-substituted E139A mutant lacks an isopeptide bond in the N-terminal domain. However, the C-terminal E269A substitution gave two structures; one of both domains with their isopeptide bonds present, and another of only the N-terminal domain, but with an unformed isopeptide bond and significant conformational changes. This latter crystal structure has never been observed for any other Gram-positive pilin. Notably, the C-terminal isopeptide bond still forms in D295N-substituted SpaA, irrespective of E269 being present or absent. Although E-box mutations affect SpaA proteolytic and thermal stability, a cumulative effect perturbing normal pilus polymerization was unobserved. A model showing the polymerized arrangement of SpaA within the SpaCBA pilus is proposed. PMID:27349405

  9. Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope.

    PubMed

    Azoitei, Mihai L; Ban, Yih-En Andrew; Julien, Jean-Philippe; Bryson, Steve; Schroeter, Alexandria; Kalyuzhniy, Oleksandr; Porter, Justin R; Adachi, Yumiko; Baker, David; Pai, Emil F; Schief, William R

    2012-01-06

    Computational grafting of functional motifs onto scaffold proteins is a promising way to engineer novel proteins with pre-specified functionalities. Typically, protein grafting involves the transplantation of protein side chains from a functional motif onto structurally homologous regions of scaffold proteins. Using this approach, we previously transplanted the human immunodeficiency virus 2F5 and 4E10 epitopes onto heterologous proteins to design novel "epitope-scaffold" antigens. However, side-chain grafting is limited by the availability of scaffolds with compatible backbone for a given epitope structure and offers no route to modify backbone structure to improve mimicry or binding affinity. To address this, we report here a new and more aggressive computational method-backbone grafting of linear motifs-that transplants the backbone and side chains of linear functional motifs onto scaffold proteins. To test this method, we first used side-chain grafting to design new 2F5 epitope scaffolds with improved biophysical characteristics. We then independently transplanted the 2F5 epitope onto three of the same parent scaffolds using the newly developed backbone grafting procedure. Crystal structures of side-chain and backbone grafting designs showed close agreement with both the computational models and the desired epitope structure. In two cases, backbone grafting scaffolds bound antibody 2F5 with 30- and 9-fold higher affinity than corresponding side-chain grafting designs. These results demonstrate that flexible backbone methods for epitope grafting can significantly improve binding affinities over those achieved by fixed backbone methods alone. Backbone grafting of linear motifs is a general method to transplant functional motifs when backbone remodeling of the target scaffold is necessary.

  10. Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee.

    PubMed

    Ventura, Mario; Catacchio, Claudia R; Alkan, Can; Marques-Bonet, Tomas; Sajjadian, Saba; Graves, Tina A; Hormozdiari, Fereydoun; Navarro, Arcadi; Malig, Maika; Baker, Carl; Lee, Choli; Turner, Emily H; Chen, Lin; Kidd, Jeffrey M; Archidiacono, Nicoletta; Shendure, Jay; Wilson, Richard K; Eichler, Evan E

    2011-10-01

    Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes.

  11. Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee

    PubMed Central

    Ventura, Mario; Catacchio, Claudia R.; Alkan, Can; Marques-Bonet, Tomas; Sajjadian, Saba; Graves, Tina A.; Hormozdiari, Fereydoun; Navarro, Arcadi; Malig, Maika; Baker, Carl; Lee, Choli; Turner, Emily H.; Chen, Lin; Kidd, Jeffrey M.; Archidiacono, Nicoletta; Shendure, Jay; Wilson, Richard K.; Eichler, Evan E.

    2011-01-01

    Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes. PMID:21685127

  12. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  13. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  14. Nucleosome structure(s) and stability: variations on a theme.

    PubMed

    Andrews, Andrew J; Luger, Karolin

    2011-01-01

    Chromatin is a highly regulated, modular nucleoprotein complex that is central to many processes in eukaryotes. The organization of DNA into nucleosomes and higher-order structures has profound implications for DNA accessibility. Alternative structural states of the nucleosome, and the thermodynamic parameters governing its assembly and disassembly, need to be considered in order to understand how access to nucleosomal DNA is regulated. In this review, we provide a brief historical account of how the overriding perception regarding aspects of nucleosome structure has changed over the past thirty years. We discuss recent technical advances regarding nucleosome structure and its physical characterization and review the evidence for alternative nucleosome conformations and their implications for nucleosome and chromatin dynamics.

  15. 55P0110, a Novel Synthetic Compound Developed from a Plant Derived Backbone Structure, Shows Promising Anti-Hyperglycaemic Activity in Mice.

    PubMed

    Brunmair, Barbara; Lehner, Zsuzsanna; Stadlbauer, Karin; Adorjan, Immanuel; Frobel, Klaus; Scherer, Thomas; Luger, Anton; Bauer, Leonhardt; Fürnsinn, Clemens

    2015-01-01

    Starting off with a structure derived from the natural compound multiflorine, a derivatisation program aimed at the discovery and initial characterisation of novel compounds with antidiabetic potential. Design and discovery of the structures was guided by oral bioactivities obtained in oral glucose tolerance tests in mice. 55P0110, one among several new compounds with distinct anti-hyperglycaemic activity, was further examined to characterise its pharmacology and mode of action. Whereas a single oral dose of 55P0110 did not affect basal glycaemia, it markedly improved the glucose tolerance of healthy and diabetic mice (peak blood glucose in glucose tolerance test, mmol/l: healthy mice with 90 mg/kg 55P0110, 17.0 ± 1.2 vs. 10.1 ± 1.1; diabetic mice with 180 mg/kg 55P0110, 23.1 ± 0.9 vs. 11.1 ± 1.4; p<0.001 each). Closer examination argued against retarded glucose resorption from the gut, increased glucose excretion in urine, acute insulin-like or insulin sensitising properties, and direct inhibition of dipeptidyl peptidase-4 as the cause of glucose lowering. Hence, 55P0110 seems to act via a target not exploited by any drug presently approved for the treatment of diabetes mellitus. Whereas the insulinotropic sulfonylurea gliclazide (16 mg/kg) distinctly increased the circulating insulin-per-glucose ratio under basal conditions, 55P0110 (90 mg/kg) lacked such an effect (30 min. after dosing, nmol/mol: vehicle, 2.49 ± 0.27; 55P0110, 2.99 ± 0.35; gliclazide, 8.97 ± 0.49; p<0.001 each vs. gliclazide). Under an exogenous glucose challenge, however, 55P0110 increased this ratio to the same extent as gliclazide (20 min. after glucose feeding: vehicle, 2.53 ± 0.41; 55P0110, 3.80 ± 0.46; gliclazide, 3.99 ± 0.26; p<0.05 each vs. vehicle). By augmenting the glucose stimulated increase in plasma insulin, 55P0110 thus shows distinct anti-hyperglycaemic action in combination with low risk for fasting hypoglycaemia in mice. In summary, we have discovered a novel class of

  16. Structure and backbone dynamics of vanadate-bound PRL-3: comparison of 15N nuclear magnetic resonance relaxation profiles of free and vanadate-bound PRL-3.

    PubMed

    Jeong, Ki-Woong; Kang, Dong-Il; Lee, Eunjung; Shin, Areum; Jin, Bonghwan; Park, Young-Guen; Lee, Chung-Kyoung; Kim, Eun-Hee; Jeon, Young Ho; Kim, Eunice Eunkyeong; Kim, Yangmee

    2014-07-29

    Phosphatases of regenerating liver (PRLs) constitute a novel class of small, prenylated phosphatases with oncogenic activity. PRL-3 is particularly important in cancer metastasis and represents a potential therapeutic target. The flexibility of the WPD loop as well as the P-loop of protein tyrosine phosphatases is closely related to their catalytic activity. Using nuclear magnetic resonance spectroscopy, we studied the structure of vanadate-bound PRL-3, which was generated by addition of sodium orthovanadate to PRL-3. The WPD loop of free PRL-3 extended outside of the active site, forming an open conformation, whereas that of vanadate-bound PRL-3 was directed into the active site by a large movement, resulting in a closed conformation. We suggest that vanadate binding induced structural changes in the WPD loop, P-loop, helices α4-α6, and the polybasic region. Compared to free PRL-3, vanadate-bound PRL-3 has a longer α4 helix, where the catalytic R110 residue coordinates with vanadate in the active site. In addition, the hydrophobic cavity formed by helices α4-α6 with a depth of 14-15 Å can accommodate a farnesyl chain at the truncated prenylation motif of PRL-3, i.e., from R169 to M173. Conformational exchange data suggested that the WPD loop moves between open and closed conformations with a closing rate constant k(close) of 7 s(-1). This intrinsic loop flexibility of PRL-3 may be related to their catalytic rate and may play a role in substrate recognition.

  17. Bats aloft: Variation in echolocation call structure at high altitudes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bats alter their echolocation calls in response to changes in ecological and behavioral conditions, but little is known about how they adjust their call structure in response to changes in altitude. This study examines altitudinal variation in the echolocation calls of Brazilian free-tailed bats, T...

  18. Free backbone carbonyls mediate rhodopsin activation

    PubMed Central

    Kimata, Naoki; Pope, Andreyah; Sanchez-Reyes, Omar B.; Eilers, Markus; Opefi, Chikwado A.; Ziliox, Martine; Reeves, Philip J.; Smith, Steven O.

    2016-01-01

    Conserved prolines in the transmembrane helices of G protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilize receptor structure. To address the role of conserved prolines in family A GPCRs, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily, using solid-state NMR spectroscopy. The free backbone C=O groups on helices H5 and H7 are found to stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released facilitating H5 and H7 repacking onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles prolines play in membrane proteins. PMID:27376589

  19. Study of a chimeric foot-and-mouth disease virus DNA vaccine containing structural genes of serotype O in a genome backbone of serotype Asia 1 in guinea pigs.

    PubMed

    Chockalingam, A K; Thiyagarajan, S; Govindasamy, N; Patnaikuni, R; Garlapati, S; Golla, R R; Joyappa, D H; Krishnamshetty, P; Veluvarti, V V S; Veluvati, V V S

    2010-01-01

    Since foot-and-mouth disease virus (FMDV) serotypes display a great genetic and antigenic diversity, there is a constant requirement to monitor the performance of FMDV vaccines in the field with respect to their antigenic coverage. To avoid possible antigenic changes in field FMDV isolates during their adaptation to BHK-21 cells, a standard step used in production of conventional FMDV vaccines, the custom-made chimeric conventional or DNA vaccines, in which antigenic determinants are replaced with those of appropriate field strains, should be constructed. Using this approach, we made a plasmid-based chimeric FMDV DNA vaccine containing structural genes of serotype O in the genome backbone of serotype Asia 1, all under the control of Human cytomegalovirus (HCMV) immediate early gene promoter. BHK-21 cells transfected with the chimeric DNA vaccine did not show cytopathic effect (CPE), but expressed virus-specific proteins as demonstrated by 35S-methionine labeling and immunoprecipitation. Guinea pigs immunized with the chimeric DNA vaccine produced virus-specific antibodies assayed by ELISA and virus neutralization test (VNT), respectively. The chimeric DNA vaccine showed a partial protection of guinea pigs challenged with the virulent FMDV. Although the chimeric DNA vaccine, in general, was not as effective as a conventional one, this study encourages further work towards the development of genetically engineered custom-made chimeric vaccines against FMDV.

  20. New Tests for Variations of the Fine Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    We describe a new test for possible variations of the fine structure constant, by comparisons of rates between clocks based on hyperfine transitions in alkali atomos with different atomic number Z. H- maser, Cs and Hg+ clocks have a different dependence on ia relativistic contributions of order (Z. Recent H-maser vs Hg+ clock comparison data improves laboratory limits on a time variation by 100-fold to giveFuture laser cooled clocks (Be+, Rb, Cs, Hg+, etc.), when compared, will yield the most senstive of all tests for.

  1. Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold

    SciTech Connect

    Azoitei, Mihai L.; Correia, Bruno E.; Ban, Yih-En Andrew; Carrico, Chris; Kalyuzhniy, Oleksandr; Chen, Lei; Schroeter, Alexandria; Huang, Po-Ssu; McLellan, Jason S.; Kwong, Peter D.; Baker, David; Strong, Roland K.; Schief, William R.

    2012-02-07

    The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.

  2. Identification of systems containing nonlinear stiffnesses using backbone curves

    NASA Astrophysics Data System (ADS)

    Londoño, Julián M.; Cooper, Jonathan E.; Neild, Simon A.

    2017-02-01

    This paper presents a method for the dynamic identification of structures containing discrete nonlinear stiffnesses. The approach requires the structure to be excited at a single resonant frequency, enabling measurements to be made in regimes of large displacements where nonlinearities are more likely to be significant. Measured resonant decay data is used to estimate the system backbone curves. Linear natural frequencies and nonlinear parameters are identified using these backbone curves assuming a form for the nonlinear behaviour. Numerical and experimental examples, inspired by an aerospace industry test case study, are considered to illustrate how the method can be applied. Results from these models demonstrate that the method can successfully deliver nonlinear models able to predict the response of the test structure nonlinear dynamics.

  3. The Backbone of the Climate Networks

    NASA Astrophysics Data System (ADS)

    Zou, Y.; Donges, J. F.; Marwan, N.; Kurths, J.

    2009-12-01

    We propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system, relying on the nonlinear mutual information of time series analysis and betweenness centrality of complex network theory. We show, that this approach reveals a rich internal structure in complex climate networks constructed from reanalysis and model surface air temperature data. Our novel method uncovers peculiar wave-like structures of high energy flow, that we relate to global surface ocean currents. This points to a major role of the oceanic surface circulation in coupling and stabilizing the global temperature field in the long term mean (140 years for the model run and 60 years for reanalysis data). We find that these results cannot be obtained using classical linear methods of multivariate data analysis. Furthermore, we introduce significance tests to quantify the robustness of measured network properties to uncertainties. References: [1] J.F. Donges, Y. Zou, N. Marwan, and J. Kurths. Complex networks in climate dynamics -- -- Comparing linear and nonlinear network construction methods. European Physical Journal -- Special Topics, 174, 157-179, 2009. [2] J.F. Donges, Y. Zou, N. Marwan, and J. Kurths. Backbone of the climate network. Europhysics Letters, in press, 2009.

  4. Latitudinal variation in population structure of wintering Pacific Black Brant

    USGS Publications Warehouse

    Schamber, J.L.; Sedinger, J.S.; Ward, D.H.; Hagmeier, K.R.

    2007-01-01

    Latitudinal variation in population structure during the winter has been reported in many migratory birds, but has been documented in few species of waterfowl. Variation in environmental and social conditions at wintering sites can potentially influence the population dynamics of differential migrants. We examined latitudinal variation in sex and age classes of wintering Pacific Black Brant (Branta bernicla nigricans). Brant are distributed along a wide latitudinal gradient from Alaska to Mexico during the winter. Accordingly, migration distances for brant using different wintering locations are highly variable and winter settlement patterns are likely associated with a spatially variable food resource. We used resightings of brant banded in southwestern Alaska to examine sex and age ratios of birds wintering at Boundary Bay in British Columbia, and at San Quintin Bay, Ojo de Liebre Lagoon, and San Ignacio Lagoon in Baja California from 1998 to 2000. Sex ratios were similar among wintering locations for adults and were consistent with the mating strategy of geese. The distribution of juveniles varied among wintering areas, with greater proportions of juveniles observed at northern (San Quintin Bay and Ojo de Liebre Lagoon) than at southern (San Ignacio Lagoon) locations in Baja California. We suggest that age-related variation in the winter distribution of Pacific Black Brant is mediated by variation in productivity among individuals at different wintering locations and by social interactions among wintering family groups.

  5. Geographic variation in salt marsh structure and function.

    PubMed

    McCall, Brittany D; Pennings, Steven C

    2012-11-01

    We examined geographic variation in the structure and function of salt marsh communities along the Atlantic and Gulf coasts of the United States. Focusing on the arthropod community in the dominant salt marsh plant Spartina alterniflora, we tested two hypotheses: first, that marsh community structure varies geographically, and second, that two aspects of marsh function (response to eutrophication and addition of dead plant material) also vary geographically. We worked at eleven sites on the Gulf Coast and eleven sites on the Atlantic Coast, dividing each coast up into two geographic areas. Abiotic conditions (tidal range, soil organic content, and water content, but not soil salinity), plant variables (Spartina nitrogen content, height, cover of dead plant material, but not live Spartina percent cover or light interception), and arthropod variables (proportional abundances of predators, sucking herbivores, stem-boring herbivores, parasitoids, and detritivores, but not total arthropod numbers) varied among the four geographic regions. Latitude and mean tidal range explained much of this geographic variation. Nutrient enrichment increased all arthropod functional groups in the community, consistent with previous experimental results, and had similar effects in all geographic regions, contrary to our hypothesis, suggesting widespread consistency in this aspect of ecosystem function. The addition of dead plant material had surprisingly little effect on the arthropod community. Our results caution against the uncritical extrapolation of work done in one geographic region to another, but indicate that some aspects of marsh function may operate in similar ways in different geographic regions, despite spatial variation in community structure.

  6. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    SciTech Connect

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.; Machius, Mischa; Szyperski, Thomas; Kuhlman, Brian

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helix bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).

  7. Variation in compound eye structure: effects of diet and family.

    PubMed

    Merry, Justin W; Kemp, Darrell J; Rutowski, Ronald L

    2011-07-01

    Studies of compound eyes have revealed that variation in eye structure can substantially affect visual performance. Here, we investigate the degree to which a stressful rearing environment, which decreases body size, affects the eye phenotype. Full siblings of the Orange Sulphur butterfly, Colias eurytheme, were collected from known parents and split within families among two diet treatments that varied in quality. In both sexes, individuals reared on the high-quality diet had larger eye height and anterior facet diameter, and therefore, by inference, superior vision. However, relative to their reduced body size, individuals reared on low-quality diet had proportionally larger eyes and facets than individuals reared on high-quality diet. We interpret this finding as evidence that butterflies encountering nutritional stress increased proportional investment in eye development to reduce loss of visual performance. We also found significant broad-sense genetic variation underlying eye structure in both males and females, and report novel heritability estimates for eye height and facet diameter. Surprisingly, there was greater genetic variation in eye height among males than among females, despite apparently stronger directional selection on male vision. We discuss the implications of these data for our understanding of eye development and evolution.

  8. Quantifying side-chain conformational variations in protein structure

    NASA Astrophysics Data System (ADS)

    Miao, Zhichao; Cao, Yang

    2016-11-01

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  9. Quantifying side-chain conformational variations in protein structure.

    PubMed

    Miao, Zhichao; Cao, Yang

    2016-11-15

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  10. Optical extinction due to intrinsic structural variations of photonic crystals

    NASA Astrophysics Data System (ADS)

    Koenderink, A. Femius; Lagendijk, Ad; Vos, Willem L.

    2005-10-01

    Unavoidable variations in size and position of the building blocks of photonic crystals cause light scattering and extinction of coherent beams. We present a model for both two- and three-dimensional photonic crystals that relates the extinction length to the magnitude of the variations. The predicted lengths agree well with our experiments on high-quality opals and inverse opals, and with literature data analyzed by us. As a result, control over photons is limited to distances up to 50 lattice parameters (˜15 μm) in state-of-the-art structures, thereby impeding applications that require large photonic crystals, such as proposed optical integrated circuits. Conversely, scattering in photonic crystals may lead to different physics such as Anderson localization and nonclassical diffusion.

  11. Atomic Clocks and Variations of the FIne Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    1995-01-01

    We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.

  12. Variation in Community Structure across Vertical Intertidal Stress Gradients: How Does It Compare with Horizontal Variation at Different Scales?

    PubMed Central

    Valdivia, Nelson; Scrosati, Ricardo A.; Molis, Markus; Knox, Amanda S.

    2011-01-01

    In rocky intertidal habitats, the pronounced increase in environmental stress from low to high elevations greatly affects community structure, that is, the combined measure of species identity and their relative abundance. Recent studies have shown that ecological variation also occurs along the coastline at a variety of spatial scales. Little is known, however, on how vertical variation compares with horizontal variation measured at increasing spatial scales (in terms of sampling interval). Because broad-scale processes can generate geographical patterns in community structure, we tested the hypothesis that vertical ecological variation is higher than fine-scale horizontal variation but lower than broad-scale horizontal variation. To test this prediction, we compared the variation in community structure across intertidal elevations on rocky shores of Helgoland Island with independent estimates of horizontal variation measured at the scale of patches (quadrats separated by 10s of cm), sites (quadrats separated by a few m), and shores (quadrats separated by 100s to 1000s of m). The multivariate analyses done on community structure supported our prediction. Specifically, vertical variation was significantly higher than patch- and site-scale horizontal variation but lower than shore-scale horizontal variation. Similar patterns were found for the variation in abundance of foundation taxa such as Fucus spp. and Mastocarpus stellatus, suggesting that the effects of these canopy-forming algae, known to function as ecosystem engineers, may explain part of the observed variability in community structure. Our findings suggest that broad-scale processes affecting species performance increase ecological variability relative to the pervasive fine-scale patchiness already described for marine coasts and the well known variation caused by vertical stress gradients. Our results also indicate that experimental research aiming to understand community structure on marine shores

  13. Diverse mechanisms of somatic structural variations in human cancer genomes

    PubMed Central

    Yang, Lixing; Luquette, Lovelace J.; Gehlenborg, Nils; Xi, Ruibin; Haseley, Psalm S.; Hsieh, Chih-Heng; Zhang, Chengsheng; Ren, Xiaojia; Protopopov, Alexei; Chin, Lynda; Kucherlapati, Raju; Lee, Charles; Park, Peter J.

    2013-01-01

    Summary Identification of somatic rearrangements in cancer genomes has accelerated through analysis of high-throughput sequencing data. However, characterization of complex structural alterations and their underlying mechanisms remains inadequate. Here, applying an algorithm to predict structural variations from short reads, we report a comprehensive catalog of somatic structural variations and the mechanisms generating them, using high-coverage whole-genome sequencing data from 140 patients across ten tumor types. We characterize the relative contributions of different types of rearrangements and their mutational mechanisms, find that ~20% of the somatic deletions are complex deletions formed by replication errors, and describe the differences between the mutational mechanisms in somatic and germline alterations. Importantly, we provide detailed reconstructions of the events responsible for loss of CDKN2A/B and gain of EGFR in glioblastoma, revealing that these alterations can result from multiple mechanisms even in a single genome and that both DNA double-strand breaks and replication errors drive somatic rearrangements. PMID:23663786

  14. Mapping the backbone of science.

    SciTech Connect

    Klavans, Richard; BÞorner, Katy; Boyack, Kevin W.

    2004-11-01

    This paper presents a new map representing the structure of all of science, based on journal articles, including both the natural and social sciences. Similar to cartographic maps of our world, the map of science provides a bird's eye view of today's scientific landscape. It can be used to visually identify major areas of science, their size, similarity, and interconnectedness. In order to be useful, the map needs to be accurate on a local and on a global scale. While our recent work has focused on the former aspect, this paper summarizes results on how to achieve structural accuracy. Eight alternative measures of journal similarity were applied to a data set of 7,121 journals covering over 1 million documents in the combined Science Citation and Social Science Citation Indexes. For each journal similarity measure we generated two-dimensional spatial layouts using the force-directed graph layout tool, VxOrd. Next, mutual information values were calculated for each graph at different clustering levels to give a measure of structural accuracy for each map. The best co-citation and inter-citation maps according to local and structural accuracy were selected and are presented and characterized. These two maps are compared to establish robustness. The inter-citation map is then used to examine linkages between disciplines. Biochemistry appears as the most interdisciplinary discipline in science.

  15. Functional significance of genetic variation underlying limb bone diaphyseal structure

    PubMed Central

    Wallace, Ian J.; Middleton, Kevin M.; Lublinsky, Svetlana; Kelly, Scott A.; Judex, Stefan; Garland, Theodore; Demes, Brigitte

    2010-01-01

    Limb bone diaphyseal structure is frequently used to infer hominin activity levels from skeletal remains, an approach based on the well-documented ability of bone to adjust to its loading environment during life. However, diaphyseal structure is also determined in part by genetic factors. This study investigates the possibility that genetic variation underlying diaphyseal structure is influenced by the activity levels of ancestral populations and might also have functional significance in an evolutionary context. We adopted an experimental evolution approach and tested for differences in femoral diaphyseal structure in one-week-old mice from a line that had been artificially selected (45 generations) for high voluntary wheel running and unselected controls. As adults, selected mice are significantly more active on wheels and in home cages, and have thicker diaphyses. Structural differences at one week can be assumed to primarily reflect the effects of selective breeding rather than direct mechanical stimuli, given that the onset of locomotion in mice is shortly after day seven. We hypothesized that if genetically determined diaphyseal structure reflects the activity patterns of members of a lineage, then selected animals will have relatively larger diaphyseal dimensions at one week compared to controls. The results provide strong support for this hypothesis and suggest that limb bone cross sections may not always only reflect the activity levels of particular fossil individuals, but also convey an evolutionary signal providing information about hominin activity in the past. PMID:20310061

  16. 4-Oxalocrotonate tautomerase, a 41-kDa homohexamer: backbone and side-chain resonance assignments, solution secondary structure, and location of active site residues by heteronuclear NMR spectroscopy.

    PubMed Central

    Stivers, J. T.; Abeygunawardana, C.; Whitman, C. P.; Mildvan, A. S.

    1996-01-01

    4-Oxalocrotonate tautomerase (4-OT), a homohexamer consisting of 62 residues per subunit, catalyzes the isomerization of unsaturated alpha-keto acids using Pro-1 as a general base (Stivers et al., 1996a, 1996b). We report the backbone and side-chain 1H, 15N, and 13C NMR assignments and the solution secondary structure for 4-OT using 2D and 3D homonuclear and heteronuclear NMR methods. The subunit secondary structure consists of an alpha-helix (residues 13-30), two beta-strands (beta 1, residues 2-8; beta 2, residues 39-45), a beta-hairpin (residues 50-57), two loops (I, residues 9-12; II, 34-38), and two turns (I, residues 30-33; II, 47-50). The remaining residues form coils. The beta 1 strand is parallel to the beta 2 strand of the same subunit on the basis of cross stand NH(i)-NH(j) NOEs in a 2D 15N-edited 1H-NOESY spectrum of hexameric 4-OT containing two 15N-labeled subunits/hexamer. The beta 1 strand is also antiparallel to another beta 1 strand from an adjacent subunit forming a subunit interface. Because only three such pairwise interactions are possible, the hexamer is a trimer of dimers. The diffusion constant, determined by dynamic light scattering, and the rotational correlation time (14.5 ns) estimated from 15N T1/T2 measurements, are consistent with the hexameric molecular weight of 41 kDa. Residue Phe-50 is in the active site on the basis of transferred NOEs to the bound partial substrate 2-oxo-1,6-hexanedioate. Modification of the general base, Pro-1, with the active site-directed irreversible inhibitor, 3-bromopyruvate, significantly alters the amide 15N and NH chemical shifts of residues in the beta-hairpin and in loop II, providing evidence that these regions change conformation when the active site is occupied. PMID:8845763

  17. fastSTRUCTURE: variational inference of population structure in large SNP data sets.

    PubMed

    Raj, Anil; Stephens, Matthew; Pritchard, Jonathan K

    2014-06-01

    Tools for estimating population structure from genetic data are now used in a wide variety of applications in population genetics. However, inferring population structure in large modern data sets imposes severe computational challenges. Here, we develop efficient algorithms for approximate inference of the model underlying the STRUCTURE program using a variational Bayesian framework. Variational methods pose the problem of computing relevant posterior distributions as an optimization problem, allowing us to build on recent advances in optimization theory to develop fast inference tools. In addition, we propose useful heuristic scores to identify the number of populations represented in a data set and a new hierarchical prior to detect weak population structure in the data. We test the variational algorithms on simulated data and illustrate using genotype data from the CEPH-Human Genome Diversity Panel. The variational algorithms are almost two orders of magnitude faster than STRUCTURE and achieve accuracies comparable to those of ADMIXTURE. Furthermore, our results show that the heuristic scores for choosing model complexity provide a reasonable range of values for the number of populations represented in the data, with minimal bias toward detecting structure when it is very weak. Our algorithm, fastSTRUCTURE, is freely available online at http://pritchardlab.stanford.edu/structure.html.

  18. A variational formulation for translation and assimilation of coherent structures

    NASA Astrophysics Data System (ADS)

    Plu, M.

    2013-10-01

    The assimilation of observations from teledetected images in geophysical models requires one to develop algorithms that would account for the existence of coherent structures. In the context of variational data assimilation, a method is proposed to allow the background to be translated so as to fit structure positions deduced from images. Translation occurs as a first step before assimilating all the observations using a classical assimilation procedure with specific covariances for the translated background. A simple validation is proposed using a dynamical system based on the one-dimensional complex Ginzburg-Landau equation in a regime prone to phase and amplitude errors. Assimilation of observations after background translation leads to better scores and a better representation of extremas than the method without translation.

  19. Localization of binding sites of Ulex europaeus I, Helix pomatia and Griffonia simplicifolia I-B4 lectins and analysis of their backbone structures by several glycosidases and poly-N-acetyllactosamine-specific lectins in human breast carcinomas.

    PubMed

    Ito, N; Imai, S; Haga, S; Nagaike, C; Morimura, Y; Hatake, K

    1996-09-01

    Several studies have shown the deletion of blood group A or B antigens and the accumulation of H antigens in human breast carcinomas. Other studies have independently demonstrated that the binding sites of lectins such as Helix pomatia agglutinin (HPA) and Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) are highly expressed in these cells. In order to clarify the molecular mechanisms of malignant transformation and metastasis of carcinoma cells, it is important to understand the relationship between such phenotypically distinct events. For this purpose, we examined whether the binding sites of these lectins and Ulex europaeus agglutinin I (UEA-I) are expressed concomitantly in the same carcinoma cells and analyzed their backbone structures. The expression of the binding sites of these lectins was observed independently of the blood group (ABO) of the patients and was not affected by the histological type of the carcinomas. Observation of serial sections stained with these lectins revealed that the distribution of HPA binding sites was almost identical to that of GSAI-B4 in most cases. Furthermore, in some cases, UEA-I binding patterns were similar to those of HPA and GSAI-B4 but in other cases, mosaic staining patterns with these lectins were also observed, i.e., some cell clusters were stained with both HPA and GSAI-B4 but not with UEA-I and adjacent cell clusters were stained only with UEA-I. Digestion with endo-beta-galactosidase or N-glycosidase F markedly reduced the staining intensity of these lectins. Together with the reduction of staining by these lectins, reactivity with Griffonia simplicifolia agglutinin II appeared in carcinoma cells following endo-beta-galactosidase digestion. Among the lectins specific to poly-N-acetyllactosamine, Lycopersicon esculentum agglutinin (LEA) most vividly and consistently stained the cancer cells. Next to LEA, pokeweed mitogen agglutinin was also effective in staining these cells. Carcinoma cells reactive with these

  20. Statistical Analysis of RNA Backbone

    PubMed Central

    Hershkovitz, Eli; Sapiro, Guillermo; Tannenbaum, Allen; Williams, Loren Dean

    2009-01-01

    Local conformation is an important determinant of RNA catalysis and binding. The analysis of RNA conformation is particularly difficult due to the large number of degrees of freedom (torsion angles) per residue. Proteins, by comparison, have many fewer degrees of freedom per residue. In this work, we use and extend classical tools from statistics and signal processing to search for clusters in RNA conformational space. Results are reported both for scalar analysis, where each torsion angle is separately studied, and for vectorial analysis, where several angles are simultaneously clustered. Adapting techniques from vector quantization and clustering to the RNA structure, we find torsion angle clusters and RNA conformational motifs. We validate the technique using well-known conformational motifs, showing that the simultaneous study of the total torsion angle space leads to results consistent with known motifs reported in the literature and also to the finding of new ones. PMID:17048391

  1. Geographic variation and genetic structure in Spotted Owls

    USGS Publications Warehouse

    Haig, Susan M.; Wagner, R.S.; Forsman, E.D.; Mullins, Thomas D.

    2001-01-01

    We examined genetic variation, population structure, and definition of conservation units in Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory, long-lived, socially monogamous birds that have decreased population viability due to their occupation of highly-fragmented late successional forests in western North America. To investigate potential effects of habitat fragmentation on population structure, we used random amplified polymorphic DNA (RAPD) to examine genetic variation hierarchically among local breeding areas, subregional groups, regional groups, and subspecies via sampling of 21 breeding areas (276 individuals) among the three subspecies of Spotted Owls. Data from 11 variable bands suggest a significant relationship between geographic distance among local breeding groups and genetic distance (Mantel r = 0.53, P < 0.02) although multi-dimensional scaling of three significant axes did not identify significant grouping at any hierarchical level. Similarly, neighbor-joining clustering of Manhattan distances indicated geographic structure at all levels and identified Mexican Spotted Owls as a distinct clade. RAPD analyses did not clearly differentiate Northern Spotted Owls from California Spotted Owls. Among Northern Spotted Owls, estimates of population differentiation (FST) ranged from 0.27 among breeding areas to 0.11 among regions. Concordantly, within-group agreement values estimated via multi-response permutation procedures of Jaccarda??s distances ranged from 0.22 among local sites to 0.11 among regions. Pairwise comparisons of FST and geographic distance within regions suggested only the Klamath region was in equilibrium with respect to gene flow and genetic drift. Merging nuclear data with recent mitochondrial data provides support for designation of an Evolutionary Significant Unit for Mexican Spotted Owls and two overlapping Management Units for Northern and California Spotted Owls.

  2. The challenges and importance of structural variation detection in livestock

    PubMed Central

    Bickhart, Derek M.; Liu, George E.

    2014-01-01

    Recent studies in humans and other model organisms have demonstrated that structural variants (SVs) comprise a substantial proportion of variation among individuals of each species. Many of these variants have been linked to debilitating diseases in humans, thereby cementing the importance of refining methods for their detection. Despite progress in the field, reliable detection of SVs still remains a problem even for human subjects. Many of the underlying problems that make SVs difficult to detect in humans are amplified in livestock species, whose lower quality genome assemblies and incomplete gene annotation can often give rise to false positive SV discoveries. Regardless of the challenges, SV detection is just as important for livestock researchers as it is for human researchers, given that several productive traits and diseases have been linked to copy number variations (CNVs) in cattle, sheep, and pig. Already, there is evidence that many beneficial SVs have been artificially selected in livestock such as a duplication of the agouti signaling protein gene that causes white coat color in sheep. In this review, we will list current SV and CNV discoveries in livestock and discuss the problems that hinder routine discovery and tracking of these polymorphisms. We will also discuss the impacts of selective breeding on CNV and SV frequencies and mention how SV genotyping could be used in the future to improve genetic selection. PMID:24600474

  3. Evolution of polymer photovoltaic performances from subtle chemical structure variations.

    PubMed

    Yan, Han; Li, Denghua; Lu, Kun; Zhu, Xiangwei; Zhang, Yajie; Yang, Yanlian; Wei, Zhixiang

    2012-11-21

    Conjugated polymers are promising replacements for their inorganic counterparts in photovoltaics due to their low cost, ease of processing, and straightforward thin film formation. New materials have been able to improve the power conversion efficiency of photovoltaic cells up to 8%. However, rules for rational material design are still lacking, and subtle chemical structure variations usually result in large performance discrepancies. The present paper reports a detailed study on the crystalline structure, morphology, and in situ optoelectronic properties of blend films of polythiophene derivatives and [6,6]-phenyl C61-butyric acid methyl ester by changing the alkyl side chain length and position of polythiophene. The correlation among the molecular structure, mesoscopic morphology, mesoscopic optoelectronic property and macroscopic device performance (highest efficiency above 4%) was directly established. Both solubility and intermolecular interactions should be considered in rational molecular design. Knowledge obtained from this study can aid the selection of appropriate processing conditions that improve blend film morphology, charge transport property, and overall solar cell efficiency.

  4. Symplectic structures related with higher order variational problems

    NASA Astrophysics Data System (ADS)

    Kijowski, Jerzy; Moreno, Giovanni

    2015-06-01

    In this paper, we derive the symplectic framework for field theories defined by higher order Lagrangians. The construction is based on the symplectic reduction of suitable spaces of iterated jets. The possibility of reducing a higher order system of partial differential equations to a constrained first-order one, the symplectic structures naturally arising in the dynamics of a first-order Lagrangian theory, and the importance of the Poincaré-Cartan form for variational problems, are all well-established facts. However, their adequate combination corresponding to higher order theories is missing in the literature. Here we obtain a consistent and truly finite-dimensional canonical formalism, as well as a higher order version of the Poincaré-Cartan form. In our exposition, the rigorous global proofs of the main results are always accompanied by their local coordinate descriptions, indispensable to work out practical examples.

  5. Crustal structure variations along the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Schlaphorst, D.; Kendall, J. M.; Melekhova, E.; Blundy, J.; Baptie, B.; Latchman, J. L.

    2013-12-01

    Continental crust is predominantly formed along subduction zones. Therefore, an investigation of the crustal and mantle structure variation of these areas is crucial for understanding the growth of continental crust. This work deals with the seismological characteristics along the Lesser Antilles Arc, an island arc system built by the relatively slow subduction (~2cm/yr) of the North and South American plates beneath the Caribbean plate. The amount of subducted sediments changes significantly from sediment-rich subduction in the South to sediment-poor subduction in the North. The abundance of broadband seismic stations on the Lesser Antilles islands enables a range of seismic methods to be used to study arc processes. Furthermore, the abundance of cumulate samples allows for a detailed petrological analysis, which can be related to the seismological patterns. We use data from three component broadband stations located on the individual islands along the arc. From the island of Grenada in the South to the Virgin Islands in the North significant variations in sediment load, petrology and volcanism are observed along the arc. In this work, we investigate crustal structure using receiver functions to determine Moho depth and Vp/Vs ratio. The ratio gives an idea about the material of the subsurface as well as its water and its melt contents. The receiver functions are computed using the extended-time multitaper frequency domain cross-correlation receiver-function (ETMTRF) by Helffrich (2006). This method has the advantage of resistance to noise, which is helpful since most of the data around the arc will have been collected by stations close to the ocean, thus containing a large amount of noise. Our results show clear variations in these measurements. There are also regions where the Moho is not very sharp due to a low velocity contrast. The real data results were then compared to synthetic receiver functions from subsurface models. We compute a range of synthetic

  6. Extensive Natural Variation in Arabidopsis Seed Mucilage Structure

    PubMed Central

    Voiniciuc, Cătălin; Zimmermann, Eva; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Fu, Lanbao; North, Helen M.; Usadel, Björn

    2016-01-01

    Hydrated Arabidopsis thaliana seeds are coated by a gelatinous layer called mucilage, which is mainly composed of cell wall polysaccharides. Since mucilage is rich in pectin, its architecture can be visualized with the ruthenium red (RR) dye. We screened the seeds of around 280 Arabidopsis natural accessions for variation in mucilage structure, and identified a large number of novel variants that differed from the Col-0 wild-type. Most of the accessions released smaller RR-stained capsules compared to the Col-0 reference. By biochemically characterizing the phenotypes of 25 of these accessions in greater detail, we discovered that distinct changes in polysaccharide structure resulted in gelatinous coatings with a deceptively similar appearance. Monosaccharide composition analysis of total mucilage extracts revealed a remarkable variation (from 50 to 200% of Col-0 levels) in the content of galactose and mannose, which are important subunits of heteromannan. In addition, most of the natural variants had altered Pontamine Fast Scarlet 4B staining of cellulose and significantly reduced birefringence of crystalline structures. This indicates that the production or organization of cellulose may be affected by the presence of different amounts of hemicellulose. Although, the accessions described in this study were primarily collected from Western Europe, they form five different phenotypic classes based on the combined results of our experiments. This suggests that polymorphisms at multiple loci are likely responsible for the observed mucilage structure. The transcription of MUCILAGE-RELATED10 (MUCI10), which encodes a key enzyme for galactoglucomannan synthesis, was severely reduced in multiple variants that phenocopied the muci10-1 insertion mutant. Although, we could not pinpoint any causal polymorphisms in this gene, constitutive expression of fluorescently-tagged MUCI10 proteins complemented the mucilage defects of a muci10-like accession. This leads us to

  7. Modeling 15N NMR chemical shift changes in protein backbone with pressure

    NASA Astrophysics Data System (ADS)

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-01

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.

  8. Modeling (15)N NMR chemical shift changes in protein backbone with pressure.

    PubMed

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.

  9. Vertical variations in the turbulent structure over vineyards

    NASA Astrophysics Data System (ADS)

    Alfieri, J. G.; Kustas, W. P.; Prueger, J. H.; Hipps, L.

    2015-12-01

    Due to their highly-structured canopy, turbulent characteristics within and above vineyards, may not conform to those exhibited by other agricultural and natural ecosystems. As a result, the current generation of land surface models may not adequately describe the turbulent exchange of heat and moisture between the atmosphere and the surface over vineyards. Using data collected during 2014 as a part of the Grape Remote Sensing Atmospheric Profiling and Evapotranspiration Experiment (GRAPEX), an ongoing multi-agency field campaign conducted in the Central Valley of California, this study sought to characterize the variations in the turbulent structure over vineyards. Focusing on unstable daytime conditions, the study compared the turbulent structure at three above-canopy heights: 2.5 m, 3.75 m, and 8 m, agl. Both wavelet and Fourier-based spectral analysis of the wind velocity components indicates a strong tendency for the spectral peak to broaden and shift to lower frequencies as the measurement height increases. Also, beginning with the highest-frequency eddies, the turbulent structure at differing heights become increasingly decoupled as the distance between the measurements increases. In other terms, eddies contributing to a measurement at one height act independently of similarly-sized eddies at another height. As a result, the overall correlation between the turbulent flows measured at differing heights decreases exponential with increasing separation distance. While this effect was seen for all of the periods analyzed, the magnitude of the effect does appear to vary in response to the direction of the wind relative to the vineyard rows.

  10. Structural genomic variation in childhood epilepsies with complex phenotypes

    PubMed Central

    Helbig, Ingo; Swinkels, Marielle E M; Aten, Emmelien; Caliebe, Almuth; van 't Slot, Ruben; Boor, Rainer; von Spiczak, Sarah; Muhle, Hiltrud; Jähn, Johanna A; van Binsbergen, Ellen; van Nieuwenhuizen, Onno; Jansen, Floor E; Braun, Kees P J; de Haan, Gerrit-Jan; Tommerup, Niels; Stephani, Ulrich; Hjalgrim, Helle; Poot, Martin; Lindhout, Dick; Brilstra, Eva H; Møller, Rikke S; Koeleman, Bobby PC

    2014-01-01

    A genetic contribution to a broad range of epilepsies has been postulated, and particularly copy number variations (CNVs) have emerged as significant genetic risk factors. However, the role of CNVs in patients with epilepsies with complex phenotypes is not known. Therefore, we investigated the role of CNVs in patients with unclassified epilepsies and complex phenotypes. A total of 222 patients from three European countries, including patients with structural lesions on magnetic resonance imaging (MRI), dysmorphic features, and multiple congenital anomalies, were clinically evaluated and screened for CNVs. MRI findings including acquired or developmental lesions and patient characteristics were subdivided and analyzed in subgroups. MRI data were available for 88.3% of patients, of whom 41.6% had abnormal MRI findings. Eighty-eight rare CNVs were discovered in 71 out of 222 patients (31.9%). Segregation of all identified variants could be assessed in 42 patients, 11 of which were de novo. The frequency of all structural variants and de novo variants was not statistically different between patients with or without MRI abnormalities or MRI subcategories. Patients with dysmorphic features were more likely to carry a rare CNV. Genome-wide screening methods for rare CNVs may provide clues for the genetic etiology in patients with a broader range of epilepsies than previously anticipated, including in patients with various brain anomalies detectable by MRI. Performing genome-wide screens for rare CNVs can be a valuable contribution to the routine diagnostic workup in patients with a broad range of childhood epilepsies. PMID:24281369

  11. Brillouin resonance broadening due to structural variations in nanoscale waveguides

    NASA Astrophysics Data System (ADS)

    Wolff, C.; Van Laer, R.; Steel, M. J.; Eggleton, B. J.; Poulton, C. G.

    2016-02-01

    We study the impact of structural variations (that is slowly varying geometry aberrations and internal strain fields) on the width and shape of the stimulated Brillouin scattering (SBS) resonance in nanoscale waveguides. We find that they lead to an inhomogeneous resonance broadening through two distinct mechanisms: firstly, the acoustic frequency is directly influenced via mechanical nonlinearities; secondly, the optical wave numbers are influenced via the opto-mechanical nonlinearity leading to an additional acoustic frequency shift via the phase-matching condition. We find that this second mechanism is proportional to the opto-mechanical coupling and, hence, related to the SBS-gain itself. It is absent in intra-mode forward SBS, while it plays a significant role in backward scattering. In backward SBS increasing the opto-acoustic overlap beyond a threshold defined by the fabrication tolerances will therefore no longer yield the expected quadratic increase in overall Stokes amplification. Finally, we illustrate in a numerical example that in backward SBS and inter-mode forward SBS the existence of two broadening mechanisms with opposite sign also opens the possibility to compensate the effect of geometry-induced broadening. Our results can be transferred to other micro- and nano-structured waveguide geometries such as photonic crystal fibres.

  12. Variation.

    ERIC Educational Resources Information Center

    Hamilton City Board of Education (Ontario).

    Suggestions for studying the topic of variation of individuals and objects (balls) to help develop elementary school students' measurement, comparison, classification, evaluation, and data collection and recording skills are made. General suggestions of variables that can be investigated are made for the study of human variation. Twelve specific…

  13. Crustal structure variation along the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, Mike; Blundy, Jon; Melekhova, Elena; Baptie, Brian; Latchman, Joan; Bouin, Marie-Paule; Tait, Steve

    2014-05-01

    Subduction zones are the major location for the formation of continental crust. Therefore, an investigation of the crustal and mantle structure variation of these areas helps understanding the process of continental crust growth. Here we focus on a seismological investigation of the Lesser Antilles Arc. This island arc system is built by the relatively slow subduction (~ 2cm/yr) of the North and South American plates beneath the Caribbean plate. From the island of Grenada in the South to the Virgin Islands in the North significant variations in sediment load, petrology and volcanism are observed along the arc. The abundance of broadband seismic stations on the Lesser Antilles islands in combination with the abundance of cumulated samples allows for a link between the seismic methods with a detailed petrological analysis. We use data from three-component broadband stations located on the individual islands along the arc. We investigate crustal structure using receiver functions to determine Moho depth and V P/V S ratio. The ratio gives an idea about the material of the subsurface as well as its water and its melt contents. We use the extended-time multitaper frequency domain cross-correlation receiver-function (ETMTRF) by Helffrich (2006) to compute the receiver functions. This method has the advantage of resistance to noise and gives stable solutions for the data, despite its large amount of oceanic noise. Our results show clear along-arc crustal properties. There are regions where the Moho is not very sharp due to a low velocity contrast. The real data results are then compared to synthetic receiver functions based on plausible models. We compute a range of synthetic crustal models and receiver functions based on petrologic constraints from cumulates. The seismic velocities are obtained from experimental data using different temperatures and pressures to simulate different depths. The initial water content was also varied to model dry and wet slab conditions. Our

  14. A simple model of backbone flexibility improves modeling of side-chain conformational variability.

    PubMed

    Friedland, Gregory D; Linares, Anthony J; Smith, Colin A; Kortemme, Tanja

    2008-07-18

    The considerable flexibility of side-chains in folded proteins is important for protein stability and function, and may have a role in mediating allosteric interactions. While sampling side-chain degrees of freedom has been an integral part of several successful computational protein design methods, the predictions of these approaches have not been directly compared to experimental measurements of side-chain motional amplitudes. In addition, protein design methods frequently keep the backbone fixed, an approximation that may substantially limit the ability to accurately model side-chain flexibility. Here, we describe a Monte Carlo approach to modeling side-chain conformational variability and validate our method against a large dataset of methyl relaxation order parameters derived from nuclear magnetic resonance (NMR) experiments (17 proteins and a total of 530 data points). We also evaluate a model of backbone flexibility based on Backrub motions, a type of conformational change frequently observed in ultra-high-resolution X-ray structures that accounts for correlated side-chain backbone movements. The fixed-backbone model performs reasonably well with an overall rmsd between computed and predicted side-chain order parameters of 0.26. Notably, including backbone flexibility leads to significant improvements in modeling side-chain order parameters for ten of the 17 proteins in the set. Greater accuracy of the flexible backbone model results from both increases and decreases in side-chain flexibility relative to the fixed-backbone model. This simple flexible-backbone model should be useful for a variety of protein design applications, including improved modeling of protein-protein interactions, design of proteins with desired flexibility or rigidity, and prediction of correlated motions within proteins.

  15. AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences

    PubMed Central

    Lapidoth, Gideon D.; Baran, Dror; Pszolla, Gabriele M.; Norn, Christoffer; Alon, Assaf; Tyka, Michael D.; Fleishman, Sarel J.

    2016-01-01

    Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function – essential to exert control over all polypeptide degrees of freedom – remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in six the backbone conformation at the core of the antibody binding surface is similar to the natural antibody targets, and in several cases sequence and sidechain conformations recapitulate those seen in the natural antibodies. In the case of an anti-lysozyme antibody, designed antibody CDRs at the periphery of the interface, such as L1 and H2, show a greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, which could enhance affinity and specificity. PMID:25670500

  16. Variational Reconstruction of Left Cardiac Structure from CMR Images

    PubMed Central

    Wan, Min; Huang, Wei; Zhang, Jun-Mei; Zhao, Xiaodan; Tan, Ru San; Wan, Xiaofeng; Zhong, Liang

    2015-01-01

    Cardiovascular Disease (CVD), accounting for 17% of overall deaths in the USA, is the leading cause of death over the world. Advances in medical imaging techniques make the quantitative assessment of both the anatomy and function of heart possible. The cardiac modeling is an invariable prerequisite for quantitative analysis. In this study, a novel method is proposed to reconstruct the left cardiac structure from multi-planed cardiac magnetic resonance (CMR) images and contours. Routine CMR examination was performed to acquire both long axis and short axis images. Trained technologists delineated the endocardial contours. Multiple sets of two dimensional contours were projected into the three dimensional patient-based coordinate system and registered to each other. The union of the registered point sets was applied a variational surface reconstruction algorithm based on Delaunay triangulation and graph-cuts. The resulting triangulated surfaces were further post-processed. Quantitative evaluation on our method was performed via computing the overlapping ratio between the reconstructed model and the manually delineated long axis contours, which validates our method. We envisage that this method could be used by radiographers and cardiologists to diagnose and assess cardiac function in patients with diverse heart diseases. PMID:26689551

  17. Vibroacoustic processes and structural variations in muscular tissue

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Klochkov, B. N.; Kovaleva, E. P.

    1995-03-01

    This paper reviews the problems and results obtained in the course of experimental and theoretical investigations of the vibroacoustic activity of contracting muscles. Two types of such processes are examined: (1) acoustic vibrations due to the macromolecular recombinations of muscle proteins, which are responsible for the muscle contraction, and (2) acoustic vibrations associated with the finite accuracy and speed of the receptor-effector system that controls the muscle contraction. By investigating the acoustic vibrations, we examine structural recombinations (conformation variations) in macromolecules during mechanochemical reactions. Since chemical reactions of macromolecules are always accompanied by conformational recombinations, the generation mechanism, which is responsible for the contraction processes in a muscular tissue, can also be extended to other macromolecular media. Investigation of infrasound vibrations makes it possible to explore the quality and error of control for the processes in the muscle under different types of loading. Since a living body is controlled via perceptions, the latter can be quantitatively estimated by the parametess of infrasound vibrations.

  18. Variations in Self-Gravity Wake Structures Across Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Jerousek, R.; Esposito, L. W.

    2012-12-01

    Optical depths measured in stellar occultations by Saturn's rings depend on viewing geometry due to the presence of aligned, trailing, elongated ephemeral clumps of particles known as self-gravity wakes. Combining observations from multiple viewing geometries makes it possible to untangle the properties of the self-gravity wakes, such as their orientation, aspect ratio, mutual spacing, and inter-wake optical depth. Simple geometric models (Colwell et al. 2006, Geophys. Res. Lett. 33, L07201; Hedman et al. 2007, Astron. J. 133, 2624-2629) have explained most of the variation in optical depths as a function of viewing geometry. Many more occultations have been observed since those initial models were published: more than 100 have been observed by Cassini UVIS, while the initial model results were based on only ~10 measurements. In particular, some measurements made by UVIS at high elevation angle did not agree with predictions from the initial self-gravity wake "granola bar" model of Colwell et al. (2006). Here we present results of a systematic re-analysis of the self-gravity wakes in Saturn's rings taking advantage of more than 80 UVIS occultations with a strong signal and including different geometric models. We find no evidence for self-gravity wakes in the C ring or in the Cassini Division. While we cannot rule out the presence of some preferential orientation of particle structures from these data alone, the theoretically expected wavelength for self-gravity wakes in these regions is comparable to a particle size (~ 1 m), consistent with our non-detection of aligned clumps. We use three different geometric models of self-gravity wakes: an elliptical cross-section (Hedman et al. 2007), a rectangular cross-section (Colwell et al. 2006), and a rectangular cross-section with Gaussian "wings" in optical depth on the self-gravity wakes. The model with wings on the wakes, despite having an extra free parameter, does not provide a better overall fit to the data outside

  19. Conceptual Structure and Semantic Variation for Spatial Relations

    ERIC Educational Resources Information Center

    Khetarpal, Naveen Mohan

    2012-01-01

    Semantic categories across languages appear to reflect both universal conceptual tendencies and linguistic convention. To accommodate this pattern of constrained variation, many theories assume the existence of a universal conceptual space and explain cross-language variation in category extension as language-specific partitions of that space.…

  20. Telephone wire is backbone of security system

    SciTech Connect

    Brede, K.; Rackson, L.T.

    1995-09-01

    Video provides a variety of low-cost, high-quality solutions in today`s security environment. Cost-conscious managers of power generation stations, casinos, prison facilities, military bases and office buildings are considering using regular telephone wire (unshielded twisted pair-UTP) within their existing systems as the backbone of a video to the PC, personal and video-conferencing and training are other areas where phone wire in a building can save money and provide an alternative to coax or fiber for video. More and more, businesses and government agencies are meeting their needs efficiently by using telephone wires for more than just telephones.

  1. Coseismic Slip Variation and the Intimate Link with Fault Structure

    NASA Astrophysics Data System (ADS)

    Milliner, C. W. D.; Sammis, C. G.; Allam, A. A.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.

    2015-12-01

    Co-seismic along-strike slip heterogeneity is widely observed for many surface-rupturing earthquakes as revealed by field and high-resolution geodetic methods. However, this co-seismic slip variability is currently a poorly understood phenomenon. Key unanswered questions include: What are the characteristics and underlying causes of along-strike slip variability? Do the properties of slip variability change from fault-to-fault, along-strike or at different scales? We cross-correlate optical, pre- and post-event air photos using the program COSI-Corr to measure the near-field, surface deformation pattern of the 1992 Mw = 7.3 Landers and 1999 Mw = 7.1 Hector Mine earthquakes in high-resolution. We produce the co-seismic slip profiles of both events from over 1,500 displacement measurements and observe consistent along-strike slip variability. Although the observed slip heterogeneity seems apparently complex and disordered, a spectral analysis reveals that the slip distributions are self-affine fractal and variations of slip are not random. We find a fractal dimension of 1.68 + 0.25 and 1.58 + 0.30 for the Landers and Hector Mine earthquakes, respectively, indicating the slip distribution is rougher for the former. We show deterministically that the wavelength and amplitude of slip fluctuations of both earthquakes can be directly correlated to points of geometrical fault complexities (such as stepovers, kinks or bends) of similar size. We find the correlation of the wavelength of slip fluctuations to the size of geometrical fault complexities at all observable length scales, can explain why the complex surface rupture of the Landers earthquake has a rougher slip distribution than the geometrically simpler surface rupture of the Hector Mine event. Our results address longstanding questions concerning co-seismic slip variability, resulting in a more complete understanding of the relationship between slip distributions and fault structure.

  2. Prosomes. Ubiquity and inter-species structural variation.

    PubMed

    Martins de Sa, C; Grossi de Sa, M F; Akhayat, O; Broders, F; Scherrer, K; Horsch, A; Schmid, H P

    1986-02-20

    that, in its structural variations shown here, reflects function and species.

  3. A comparison of the structures of some 2- and 3-substituted chromone derivatives: a structural study on the importance of the secondary carboxamide backbone for the inhibitory activity of MAO-B

    PubMed Central

    Gomes, Ligia R.; Low, John Nicolson; Cagide, Fernando; Gaspar, Alexandra; Borges, Fernanda

    2015-01-01

    The crystal structures of the 3-substituted tertiary chromone carboxamide derivative, C17H13NO3, N-methyl-4-oxo-N-phenyl-4H-chromene-3-carboxamide (1), and the chromone carbonyl pyrrolidine derivatives, C14H13NO3, 3-(pyrrolidine-1-carbon­yl)-4H-chromen-4-one (3) and 2-(pyrrolidine-1-carbon­yl)-4H-chromen-4-one (4) have been determined. Their structural features are discussed and compared with similar compounds namely with respect to their MAO-B inhibitory activities. The chromone carboxamide presents a –syn conformation with the aromatic rings twisted with respect to each other [the dihedral angle between the mean planes of the chromone system and the exocyclic phenyl ring is 58.48 (8)°]. The pyrrolidine derivatives also display a significant twist: the dihedral angles between the chromone system and the best plane formed by the pyrrolidine atoms are 48.9 (2) and 23.97 (12)° in (3) and (4), respectively. Compound (3) shows a short C—H⋯O intra­molecular contact forming an S(7) ring. The supra­molecular structures for each compound are defined by weak C—H⋯O hydrogen bonds, which link the mol­ecules into chains and sheets. The Cambridge Structural Database gave 45 hits for compounds with a pyrrolidinecarbonyl group. A simple statistical analysis of their geometric parameters is made in order to compare them with those of the mol­ecules determined in the present work. PMID:26594490

  4. Backbone building from quadrilaterals: a fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates.

    PubMed

    Gront, Dominik; Kmiecik, Sebastian; Kolinski, Andrzej

    2007-07-15

    In this contribution, we present an algorithm for protein backbone reconstruction that comprises very high computational efficiency with high accuracy. Reconstruction of the main chain atomic coordinates from the alpha carbon trace is a common task in protein modeling, including de novo structure prediction, comparative modeling, and processing experimental data. The method employed in this work follows the main idea of some earlier approaches to the problem. The details and careful design of the present approach are new and lead to the algorithm that outperforms all commonly used earlier applications. BBQ (Backbone Building from Quadrilaterals) program has been extensively tested both on native structures as well as on near-native decoy models and compared with the different available existing methods. Obtained results provide a comprehensive benchmark of existing tools and evaluate their applicability to a large scale modeling using a reduced representation of protein conformational space. The BBQ package is available for downloading from our website at http://biocomp.chem.uw.edu.pl/services/BBQ/. This webpage also provides a user manual that describes BBQ functions in detail.

  5. Peptide-functionalized semiconductor surfaces: strong surface electronic effects from minor alterations to backbone composition.

    PubMed

    Matmor, Maayan; Lengyel, George A; Horne, W Seth; Ashkenasy, Nurit

    2017-02-22

    The use of non-canonical amino acids is a powerful way to control protein structure. Here, we show that subtle changes to backbone composition affect the ability of a dipeptide to modify solid surface electronic properties. The extreme sensitivity of the interactions to the peptide structure suggests potential applications in improving the performance of electronic devices.

  6. Ebolavirus VP35 Coats the Backbone of Double-Stranded RNA for Interferon Antagonism

    PubMed Central

    Bale, Shridhar; Julien, Jean-Philippe; Bornholdt, Zachary A.; Krois, Alexander S.; Wilson, Ian A.

    2013-01-01

    Recognition of viral double-stranded RNA (dsRNA) activates interferon production and immune signaling in host cells. Crystal structures of ebolavirus VP35 show that it caps dsRNA ends to prevent sensing by pattern recognition receptors such as RIG-I. In contrast, structures of marburgvirus VP35 show that it primarily coats the dsRNA backbone. Here, we demonstrate that ebolavirus VP35 also coats the dsRNA backbone in solution, although binding to the dsRNA ends probably constitutes the initial binding event. PMID:23824825

  7. Advanced routing in interplanetary backbone network

    NASA Astrophysics Data System (ADS)

    Xu, Ge; Sheng, Min; Wu, Chengke

    2007-11-01

    Interplanetary (IPN) Internet is a communication infrastructure providing communication services for scientific data delivery and navigation services for the explorer spacecrafts and orbiters of the future deep space missions. The interplanetary backbone network has the unique characteristics hence routing through the backbone network present many challenges that are not presented in traditional networks. Some routing algorithms have been proposed, in which, LPDB integrates the shortest path algorithm and the directional broadcast method to guarantee fast and reliable message delivery. Through this mutipath routing strategy, unpredictable link failures is addressed, but additional network overhead is introduced. In this paper, we propose an improvement of the LPDB named ALPDB in which the source could adaptively decide the next-hop nodes according to the link condition, hence reduce the network overhead. We model this algorithm on the network simulation platform of OPNET and compare it with other applicable algorithms in data passing ratio, data delay and network overhead. The result indicates that the ALPDB algorithm could not only guarantee reliable message delivery, but also decrease the cost significantly.

  8. Active structural vibration control: Robust to temperature variations

    NASA Astrophysics Data System (ADS)

    Gupta, Vivek; Sharma, Manu; Thakur, Nagesh

    2012-11-01

    d-form augmented piezoelectric constitutive equations which take into account temperature dependence of piezoelectric strain coefficient (d31) and permittivity (∈33), are converted into e-form. Using e-form constitutive equations, a finite element model of a smart two dimensional plate instrumented with piezoelectric patches is derived. Equations of motion are derived using Hamilton's variational principle. Coupled equations of motion are uncoupled using modal analysis. Modal state vectors are estimated using the Kalman observer. The first mode of smart cantilevered plate is actively controlled using negative first modal velocity feedback at various temperatures. Total control effort required to do so is calculated using the electro-mechanical impedance method. The temperature dependence of sensor voltage, control voltage, control effort and Kalman observer equations is shown analytically. Simulation results are presented using MATLAB. Variations in (i) peak sensor voltage, (ii) actual and estimated first modal velocities, (iii) peak control voltage, (iv) total control effort and (v) settling time with respect to temperature are presented. Active vibration control performance is not maintained at temperature away from reference temperature when the temperature dependence of piezoelectric stress coefficient ‘e31' and permittivity ‘∈33' is not included in piezoelectric constitutive equations. Active control of vibrations becomes robust to temperature variations when the temperature dependence of ‘e31' and ‘∈33' is included in piezoelectric constitutive equations.

  9. Insights on chiral, backbone modified peptide nucleic acids: Properties and biological activity

    PubMed Central

    Moccia, Maria; Adamo, Mauro F A; Saviano, Michele

    2014-01-01

    PNAs are emerging as useful synthetic devices targeting natural miRNAs. In particular 3 classes of structurally modified PNAs analogs are herein described, namely α, β and γ, which differ by their backbone modification. Their mode and binding affinity for natural nucleic acids and their use in medicinal chemistry as potential miRNA binders is discussed. PMID:26752710

  10. Morphodynamics structures induced by variations of the channel width

    NASA Astrophysics Data System (ADS)

    Duro, Gonzalo; Crosato, Alessandra; Tassi, Pablo

    2014-05-01

    In alluvial channels, forcing effects, such as a longitudinally varying width, can induce the formation of steady bars (Olesen, 1984). The type of bars that form, such as alternate, central or multiple, will mainly depend on the local flow width-to-depth ratio and on upstream conditions (Struiksma et al., 1985). The effects on bar formation of varying the channel width received attention only recently and investigations, based on flume experiments and mathematical modelling, are mostly restricted to small longitudinal sinusoidal variations of the channel width (e.g. Repetto et al., 2002; Wu and Yeh, 2005, Zolezzi et al., 2012; Frascati and Lanzoni, 2013). In this work, we analyze the variations in equilibrium bed topography in a longitudinal width-varying channel with characteristic scales of the Waal River (The Netherlands) using two different 2D depth-averaged morphodynamic models, one based on the Delft3D code and one on Telemac-Mascaret system. In particular, we explore the effects of changing the wavelength of sinusoidal width variations in a straight channel, focusing on the effects of the spatial lag between bar formation and forcing that is observed in numerical models and laboratory experiments (e.g. Crosato et al, 2011). We extend the investigations to finite width variations in which longitudinal changes of the width-to-depth ratio are such that they may affect the type of bars that become unstable (alternate, central or multiple bars). Numerical results are qualitatively validated with field observations and the resulting morphodynamic pattern is compared with the physics-based predictor of river bar modes by Crosato and Mosselman (2009). The numerical models are finally used to analyse the experimental conditions of Wu and Yeh (2005). The study should be seen as merely exploratory. The aim is to investigate possible approaches for future research aiming at assessing the effects of artificial river widening and narrowing to control bar formation in

  11. High Speed Fibre Optic Backbone LAN

    NASA Astrophysics Data System (ADS)

    Tanimoto, Masaaki; Hara, Shingo; Kajita, Yuji; Kashu, Fumitoshi; Ikeuchi, Masaru; Hagihara, Satoshi; Tsuzuki, Shinji

    1987-09-01

    Our firm has developed the SUMINET-4100 series, a fibre optic local area network (LAN), to serve the communications system trunk line needs for facilities, such as steel refineries, automobile plants and university campuses, that require large transmission capacity, and for the backbone networks used in intelligent building systems. The SUMINET-4100 series is already in service in various fields of application. Of the networks available in this series, the SUMINET-4150 has a trunk line speed of 128 Mbps and the multiplexer used for time division multiplexing (TDM) was enabled by designing an ECL-TTL gate array (3000 gates) based custom LSI. The synchronous, full-duplex V.24 and V.3.5 interfaces (SUMINET-2100) are provided for use with general purpose lines. And the IBM token ring network, the SUMINET-3200, designed for heterogeneous PCs and the Ethernet can all be connected to sub loops. Further, the IBM 3270 TCA and 5080 CADAM can be connected in the local mode. Interfaces are also provided for the NTT high-speed digital service, the digital PBX systems, and the Video CODEC system. The built-in loop monitor (LM) and network supervisory processor (NSP) provide management of loop utilization and send loop status signals to the host CPU's network configuration and control facility (NCCF). These built-in functions allow both the computer system and LAN to be managed from a single source at the host. This paper outlines features of the SUMINET-4150 and provides an example of its installation.

  12. AbDesign: An algorithm for combinatorial backbone design guided by natural conformations and sequences.

    PubMed

    Lapidoth, Gideon D; Baran, Dror; Pszolla, Gabriele M; Norn, Christoffer; Alon, Assaf; Tyka, Michael D; Fleishman, Sarel J

    2015-08-01

    Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function--essential to exert control over all polypeptide degrees of freedom--remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in five cases interface sequence identity is above 30%, and in four of those the backbone conformation at the core of the antibody binding surface is within 1 Å root-mean square deviation from the natural antibodies. Designs recapitulate polar interaction networks observed in natural complexes, and amino acid sidechain rigidity at the designed binding surface, which is likely important for affinity and specificity, is high compared to previous design studies. In designed anti-lysozyme antibodies, complementarity-determining regions (CDRs) at the periphery of the interface, such as L1 and H2, show greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, potentially enhancing affinity and specificity.

  13. Detecting the Significant Flux Backbone of Escherichia coli metabolism.

    PubMed

    Güell, Oriol; Sagués, Francesc; Serrano, M Ángeles

    2017-04-09

    The heterogeneity of computationally predicted reaction fluxes in metabolic networks within a single flux state can be exploited to detect their significant flux backbone. Here, we disclose the backbone of Escherichia coli, and compare it with the backbones of other bacteria. We find that, in general, the core of the backbones is mainly composed of reactions in energy metabolism corresponding to ancient pathways. In E. coli, the synthesis of nucleotides and the metabolism of lipids form smaller cores which rely critically on energy metabolism. Moreover, the consideration of different media leads to the identification of pathways sensitive to environmental changes. The metabolic backbone of an organism is thus useful for tracing, simultaneously, both its evolution and adaptation fingerprints. This article is protected by copyright. All rights reserved.

  14. Studies on cattle genomic structural variation provide insights into ruminant speciation and adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic structural variations, including segmental duplications (SD) and copy number variations (CNV), contribute significantly to individual health and disease in primates and rodents. As a part of the bovine genome annotation effort, we performed the first genome-wide analysis of SD in cattle usin...

  15. Buckling of Thermoviscoelastic Structures Under Temporal and Spatial Temperature Variations

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Richard; Knauss, Wolfgang G.

    1992-01-01

    The problem of lateral instability of a viscoelastic in-plane loaded structure is considered in terms of thermorheolgically simple materials. As an example of a generally in-plane loaded structure, we examine the simple column under axial load: Both cyclic loading is considered (with constant or in-phase variable temperature excursions) as well as the case of constant load in the presence of thermal gradients through the thickness of the structure. The latter case involves a continuous movement of the neutral axis from the center to the colder side and then back to the center. In both cases, temperature has a very strong effect on the instability evolution, and under in-phase thermal cycling the critical loads are reduced compared to those at constant temperatures. The primary effect of thermal gradients beyond that of thermally-induced rate accelerations is occasioned by the generation of an "initial imperfection" or "structural bowing." Because the coefficient of thermal expansion tends to be large for many polymeric materials, it it may be necessary to take special care in lay-up design of composite structures intended for use under compressive loads in high-temperature applications. Finally, the implications for the temperature sensitivities of composites to micro-instability (fiber crimping) are also apparent from the results delineated here.

  16. DNA and RNA ligases: structural variations and shared mechanisms.

    PubMed

    Pascal, John M

    2008-02-01

    DNA and RNA ligases join 3' OH and 5' PO4 ends in polynucleotide substrates using a three-step reaction mechanism that involves covalent modification of both the ligase enzyme and the polynucleotide substrate with AMP. In the past three years, several polynucleotide ligases have been crystallized in complex with nucleic acid, providing the introductory views of ligase enzymes engaging their substrates. Crystal structures for two ATP-dependent DNA ligases, an NAD+-dependent DNA ligase, and an ATP-dependent RNA ligase demonstrate how ligases utilize the AMP group and their multi-domain architectures to manipulate nucleic acid structure and catalyze the end-joining reaction. Together with unliganded crystal structures of DNA and RNA ligases, a more comprehensive and dynamic understanding of the multi-step ligation reaction mechanism has emerged.

  17. Interpretation of O K-edge EELS in zircon using a structural variation approach

    SciTech Connect

    Spence, John C.H; Jiang, Nan

    2009-12-01

    This work describes an approach to interpret the near-edge fine structure of electron energy-loss spectroscopy (EELS) of O K-edge in zircon using a structural variation method. The positions and intensities of several peaks in the O K-edge EELS spectrum are assigned to specific structural parameters. It suggests that the near-edge structures in EELS can be used to measure atomic structure changes.

  18. Interpretation of O K-edge EELS in zircon using a structural variation approach.

    PubMed

    Jiang, Nan; Spence, John C H

    2009-12-01

    This work describes an approach to interpret the near-edge fine structure of electron energy-loss spectroscopy (EELS) of O K-edge in zircon using a structural variation method. The positions and intensities of several peaks in the O K-edge EELS spectrum are assigned to specific structural parameters. It suggests that the near-edge structures in EELS can be used to measure atomic structure changes.

  19. Single-molecule analysis reveals widespread structural variation in multiple myeloma

    PubMed Central

    Gupta, Aditya; Place, Michael; Goldstein, Steven; Sarkar, Deepayan; Zhou, Shiguo; Potamousis, Konstantinos; Kim, Jaehyup; Flanagan, Claire; Li, Yang; Newton, Michael A.; Callander, Natalie S.; Hematti, Peiman; Bresnick, Emery H.; Ma, Jian; Asimakopoulos, Fotis; Schwartz, David C.

    2015-01-01

    Multiple myeloma (MM), a malignancy of plasma cells, is characterized by widespread genomic heterogeneity and, consequently, differences in disease progression and drug response. Although recent large-scale sequencing studies have greatly improved our understanding of MM genomes, our knowledge about genomic structural variation in MM is attenuated due to the limitations of commonly used sequencing approaches. In this study, we present the application of optical mapping, a single-molecule, whole-genome analysis system, to discover new structural variants in a primary MM genome. Through our analysis, we have identified and characterized widespread structural variation in this tumor genome. Additionally, we describe our efforts toward comprehensive characterization of genome structure and variation by integrating our findings from optical mapping with those from DNA sequencing-based genomic analysis. Finally, by studying this MM genome at two time points during tumor progression, we have demonstrated an increase in mutational burden with tumor progression at all length scales of variation. PMID:26056298

  20. Two worlds collide: Image analysis methods for quantifying structural variation in cluster molecular dynamics

    SciTech Connect

    Steenbergen, K. G.; Gaston, N.

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.

  1. Sensitivity of ultracold-atom scattering experiments to variation of the fine-structure constant

    SciTech Connect

    Borschevsky, A.; Beloy, K.; Flambaum, V. V.; Schwerdtfeger, P.

    2011-05-15

    We present numerical calculations for cesium and mercury to estimate the sensitivity of the scattering length to the variation of the fine-structure constant {alpha}. The method used follows the ideas of Chin and Flambaum [Phys. Rev. Lett. 96, 230801 (2006)], where the sensitivity to the variation of the electron-to-proton mass ratio {beta} was considered. We demonstrate that for heavy systems, the sensitivity to the variation of {alpha} is of the same order of magnitude as to the variation of {beta}. Near narrow Feshbach resonances, the enhancement of the sensitivity may exceed nine orders of magnitude.

  2. Genomic structural variations for cardiovascular and metabolic comorbidity

    PubMed Central

    Nazarenko, Maria S.; Sleptcov, Aleksei A.; Lebedev, Igor N.; Skryabin, Nikolay A.; Markov, Anton V.; Golubenko, Maria V.; Koroleva, Iuliia A.; Kazancev, Anton N.; Barbarash, Olga L.; Puzyrev, Valery P.

    2017-01-01

    The objective of this study was to identify genes targeted by both copy number and copy-neutral changes in the right coronary arteries in the area of advanced atherosclerotic plaques and intact internal mammary arteries derived from the same individuals with comorbid coronary artery disease and metabolic syndrome. The artery samples from 10 patients were screened for genomic imbalances using array comparative genomic hybridization. Ninety high-confidence, identical copy number variations (CNVs) were detected. We also identified eight copy-neutral changes (cn-LOHs) > 1.5 Mb in paired arterial samples in 4 of 10 individuals. The frequencies of the two gains located in the 10q24.31 (ERLIN1) and 12q24.11 (UNG, ACACB) genomic regions were evaluated in 33 paired arteries and blood samples. Two patients contained the gain in 10q24.31 (ERLIN1) and one patient contained the gain in 12q24.11 (UNG, ACACB) that affected only the blood DNA. An additional two patients harboured these CNVs in both the arteries and blood. In conclusion, we discovered and confirmed a gain of the 10q24.31 (ERLIN1) and 12q24.11 (UNG, ACACB) genomic regions in patients with coronary artery disease and metabolic comorbidity. Analysis of DNA extracted from blood indicated a possible somatic origin for these CNVs. PMID:28120895

  3. Protein 3D structure computed from evolutionary sequence variation.

    PubMed

    Marks, Debora S; Colwell, Lucy J; Sheridan, Robert; Hopf, Thomas A; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α)-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures

  4. Variations in the fine-structure constant constraining gravity theories

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.

    2016-08-01

    In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.

  5. Polo-like kinases: structural variations lead to multiple functions.

    PubMed

    Zitouni, Sihem; Nabais, Catarina; Jana, Swadhin Chandra; Guerrero, Adán; Bettencourt-Dias, Mónica

    2014-07-01

    Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.

  6. Themes and variations in riboswitch structure and function

    PubMed Central

    Peselis, Alla; Serganov, Alexander

    2015-01-01

    The complexity of gene expression control by non-coding RNA has been highlighted by the recent progress in the field of riboswitches. Discovered a decade ago, riboswitches represent a diverse group of non-coding mRNA regions that possess a unique ability to directly sense cellular metabolites and modulate gene expression through formation of alternative metabolite-free and metabolite-bound conformations. Such protein-free metabolite sensing domains utilize sophisticated three-dimensional folding of RNA molecules to discriminate between a cognate ligand from related compounds so that only the right ligand would trigger a genetic response. Given the variety of riboswitch ligands ranging from small cations to large coenzymes, riboswitches adopt a great diversity of structures. Although many riboswitches share structural principles to build metabolite-competent folds, form precise ligand-binding pockets, and communicate a ligand-binding event to downstream regulatory regions, virtually all riboswitch classes possess unique features for ligand recognition, even those tuned to recognize the same metabolites. Here we present an overview of the biochemical and structural research on riboswitches with a major focus on common principles and individual characteristics adopted by these regulatory RNA elements during evolution to specifically target small molecules and exert genetic responses. PMID:24583553

  7. BreakDancer – Identification of Genomic Structural Variation from Paired-End Read Mapping

    PubMed Central

    Fan, Xian; Abbott, Travis E.; Larson, David; Chen, Ken

    2014-01-01

    The advent of the next-generation sequencing data has made it possible to cost-effectively detect and characterize genomic variation in human genomes. Structural variation, including deletion, duplication, insertion, inversion and translocation, is of great importance to human genetics due to its association with many genetic diseases. BreakDancer is a bioinformatics tool that relates paired-end read alignments from a test genome to the reference genome for the purpose of comprehensively and accurately detecting various types of structural variation. PMID:25152801

  8. Mosaic structural variation in children with developmental disorders

    PubMed Central

    King, Daniel A.; Jones, Wendy D.; Crow, Yanick J.; Dominiczak, Anna F.; Foster, Nicola A.; Gaunt, Tom R.; Harris, Jade; Hellens, Stephen W.; Homfray, Tessa; Innes, Josie; Jones, Elizabeth A.; Joss, Shelagh; Kulkarni, Abhijit; Mansour, Sahar; Morris, Andrew D.; Parker, Michael J.; Porteous, David J.; Shihab, Hashem A.; Smith, Blair H.; Tatton-Brown, Katrina; Tolmie, John L.; Trzaskowski, Maciej; Vasudevan, Pradeep C.; Wakeling, Emma; Wright, Michael; Plomin, Robert; Timpson, Nicholas J.; Hurles, Matthew E.

    2015-01-01

    Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2–1.0% of children ascertained for clinical genetic testing. However, the frequency among healthy children in the community is not well characterized, which, if known, could inform better interpretation of the pathogenic burden of this mutational category in children with developmental disorders. In a case–control analysis, we compared the rate of large-scale mosaicism between 1303 children with developmental disorders and 5094 children lacking developmental disorders, using an analytical pipeline we developed, and identified a substantial enrichment in cases (odds ratio = 39.4, P-value 1.073e − 6). A meta-analysis that included frequency estimates among an additional 7000 children with congenital diseases yielded an even stronger statistical enrichment (P-value 1.784e − 11). In addition, to maximize the detection of low-clonality events in probands, we applied a trio-based mosaic detection algorithm, which detected two additional events in probands, including an individual with genome-wide suspected chimerism. In total, we detected 12 structural mosaic abnormalities among 1303 children (0.9%). Given the burden of mosaicism detected in cases, we suspected that many of the events detected in probands were pathogenic. Scrutiny of the genotypic–phenotypic relationship of each detected variant assessed that the majority of events are very likely pathogenic. This work quantifies the burden of structural mosaicism as a cause of developmental disorders. PMID:25634561

  9. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  10. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-10

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  11. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely. {copyright} {ital 1998 American Institute of Physics.}

  12. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    NASA Astrophysics Data System (ADS)

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  13. Genetic Variation and Population Structure in Native Americans

    PubMed Central

    Ramachandran, Sohini; Ray, Nicolas; Bedoya, Gabriel; Rojas, Winston; Parra, Maria V; Molina, Julio A; Gallo, Carla; Mazzotti, Guido; Poletti, Giovanni; Hill, Kim; Hurtado, Ana M; Labuda, Damian; Klitz, William; Barrantes, Ramiro; Bortolini, Maria Cátira; Salzano, Francisco M; Petzl-Erler, Maria Luiza; Tsuneto, Luiza T; Llop, Elena; Rothhammer, Francisco; Excoffier, Laurent; Feldman, Marcus W; Rosenberg, Noah A; Ruiz-Linares, Andrés

    2007-01-01

    We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians—signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas. PMID:18039031

  14. Stereodependent and solvent-specific formation of unusual β-structure through side chain-backbone H-bonding in C4(S)-(NH2 /OH/NHCHO)-L-prolyl polypeptides.

    PubMed

    Bansode, Nitin D; Madhanagopal, B; Sonar, Mahesh V; Ganesh, Krishna N

    2017-01-01

    It is shown that C4(S)-NH2 /OH/NHCHO-prolyl polypeptides exhibit PPII conformation in aqueous medium, but in a relatively hydrophobic solvent trifluoroethanol (TFE) transform into an unusual β-structure. The stereospecific directing effect of H-bonding in defining the specific structure is demonstrated by the absence of β-structure in the corresponding C4(S)-guanidinyl/(NH/O)-acetyl derivatives and retention of β-structure in C4(S)-(NHCHO)-prolyl polypeptides in TFE. The distinct conformations are identified by the characteristic CD patterns and supported by Raman spectroscopic data. The solvent dependent conformational effects are interpreted in terms of intraresidue H-bonding that promotes PPII conformation in water, switching over to interchain H-bonding in TFE. The present observations add a new design principle to the growing repertoire of strategies for engineering peptide secondary structural motifs for innovative nanoassemblies and new biomaterials.

  15. LINE-1 Elements in Structural Variation and Disease

    PubMed Central

    Beck, Christine R.; Garcia-Perez, José Luis; Badge, Richard M.; Moran, John V.

    2014-01-01

    The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes. PMID:21801021

  16. Uranus' Vertical Haze Structure and its Variation with Latitude

    NASA Astrophysics Data System (ADS)

    Tomasko, Martin

    1997-07-01

    We propose to image Uranus in 27 filters between 220 and 2100 nm wavelength. The wide wavelength range allows determination of aerosol sizes and spectral characteristics superior to previous work. Some of the filters are in methane absorption bands with methane absorption coefficients spanning a factor of 1000, which probe very different altitude layers in Uranus' atmosphere. HST's spatial resolution gives accurate canter-to -limb information for each latitude band, which strongly constrains models of Uranus' vertical haze structure. Our analyzed images of Uranus of Cycle 5 show high albedo contrasts in latitude, but the wavelength coverage of these images was not sufficient. These observations yielded unexpected results on the photometric properties of Uranian rings and satellites. Open questions about the phase function of these objects near zero degree and about their spectral characteristics over an expanded wavelength region can be answered by the proposed observations.

  17. Population Structure Shapes Copy Number Variation in Malaria Parasites

    PubMed Central

    Cheeseman, Ian H.; Miller, Becky; Tan, John C.; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C.; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H.; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J.; Nosten, François; Ferdig, Michael T.; Anderson, Tim J. C.

    2016-01-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  18. Population Structure Shapes Copy Number Variation in Malaria Parasites.

    PubMed

    Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C

    2016-03-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen.

  19. NMR study of non-structural proteins--part I: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Mayaro virus (MAYV).

    PubMed

    Melekis, Efstathios; Tsika, Aikaterini C; Lichière, Julie; Chasapis, Christos T; Margiolaki, Irene; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-04-01

    Macro domains are ADP-ribose-binding modules present in all eukaryotic organisms, bacteria and archaea. They are also found in non-structural proteins of several positive strand RNA viruses such as alphaviruses. Here, we report the high yield expression and preliminary structural analysis through solution NMR spectroscopy of the macro domain from New World Mayaro Alphavirus. The recombinant protein was well-folded and in a monomeric state. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure determined by TALOS+.

  20. Effects of Protein Stabilizing Agents on Thermal Backbone Motions: A Disulfide Trapping Study†

    PubMed Central

    Butler, Scott L.; Falke, Joseph J.

    2010-01-01

    Chemical stabilizers are widely used to enhance protein stability, both in nature and in the laboratory. Here, the molecular mechanism of chemical stabilizers is studied using a disulfide trapping assay to measure the effects of stabilizers on thermal backbone dynamics in the Escherichia coli galactose/glucose binding protein. Two types of backbone fluctuations are examined: (a) relative movements of adjacent surface α-helices within the same domain and (b) interdomain twisting motions. Both types of fluctuations are significantly reduced by all six stabilizers tested (glycerol, sucrose, trehalose, l-glucose, d-glucose, and d-galactose), and in each case larger amplitude motions are inhibited more than smaller ones. Motional inhibition does not require a high-affinity stabilizer binding site, indicating that the effects of stabilizers are nonspecific. Overall, the results support the theory that effective stabilizing agents act by favoring the most compact structure of a protein, thereby reducing local backbone fluctuations away from the fully folded state. Such inhibition of protein backbone dynamics may be a general mechanism of protein stabilization in extreme thermal or chemical environments. PMID:8718847

  1. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    PubMed

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements.

  2. Spatial variation of phytoplankton community structure in Daya Bay, China.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Zhang, Jian-Dong; Fei, Jiao

    2015-10-01

    Daya Bay is one of the largest and most important gulfs in the southern coast of China, in the northern part of the South China Sea. The phylogenetic diversity and spatial distribution of phytoplankton from the Daya Bay surface water and the relationship with the in situ water environment were investigated by the clone library of the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) gene. The dominant species of phytoplankton were diatoms and eustigmatophytes, which accounted for 81.9 % of all the clones of the rbcL genes. Prymnesiophytes were widely spread and wide varieties lived in Daya Bay, whereas the quantity was limited. The community structure of phytoplankton was shaped by pH and salinity and the concentration of silicate, phosphorus and nitrite. The phytoplankton biomass was significantly positively affected by phosphorus and nitrite but negatively by salinity and pH. Therefore, the phytoplankton distribution and biomass from Daya Bay were doubly affected by anthropic activities and natural factors.

  3. Experimental investigation of crustacean swimming with variation of limb structures

    NASA Astrophysics Data System (ADS)

    Lai, Hong Kuan; Samaee, Milad; Donnell, Geoffrey; Santhanakrishnan, Arvind; Guy, Robert; Lewis, Timothy

    2015-11-01

    Crustaceans such as crayfish and krill swim by rhythmically paddling a set of four to five limbs (known as swimmerets or pleopods) originating from their abdomen. The limb motion in these animals has been observed to follow tail-to-head metachronal wave pattern with an approximate quarter-period inter-limb phase difference. The goal of this study is to investigate the hydrodynamics of this swimming mechanism as a function of inter-limb phase difference, inclusion of hinges in the limbs, and Reynolds number (Re). 2D PIV measurements were conducted on a scaled robotic model of metachronal paddling, consisting of a rectangular tank fitted with stepper motors coupled to a four-bar linkage that actuated four paddles immersed in water-glycerin fluid medium. The inter-limb phase difference was varied from 0% (synchronous paddling) through 50% across Re range of O(10-1000). Two types of limb models were used, including a simple flat plate and a `split-paddle' structure with two flat plates connected halfway with hinges. The results of the study show that limb models with hinges generated increased horizontal (thrust-producing direction) fluid velocity compared to the simple flat plate paddles, suggesting that asymmetry between power and return strokes is important to augment thrust.

  4. Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL).

    PubMed

    Subramaniam, Sabareesh; Senes, Alessandro

    2014-11-01

    Side chain optimization is an integral component of many protein modeling applications. In these applications, the conformational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations. Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an innovative method to create a conformer library with enhanced performance. The Energy-based Library (EBL) was obtained by analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accommodate a side chain. Because the method requires a large crystallographic data-set, the EBL was created in a backbone-independent fashion. However, it is well established that side chain conformation is strongly dependent on the local backbone geometry, and that backbone-dependent libraries are more efficient in side chain optimization. Here we present the backbone-dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran space. The resulting library closely mirrors the local backbone-dependent distribution of side chain conformation. Compared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes, thus further improving performance with respect to the already efficient backbone-independent version of the library.

  5. Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella.

    PubMed

    Crowhurst, Karin A; Horn, James V C; Weers, Paul M M

    2016-04-01

    Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain (1)H, (13)C and (15)N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein.

  6. Surgical anatomy and morphologic variations of umbilical structures.

    PubMed

    Fathi, Amir H; Soltanian, Hooman; Saber, Alan A

    2012-05-01

    The umbilicus is the main access route to the abdominal cavity in laparoscopic surgeries. However, its anatomical configuration is rarely studied in the surgical and anatomical literature. With introduction of laparoendoscopic single-site surgery and considering the significant number of primary and postoperative umbilical hernias, we felt the necessity to comprehensively study the umbilical structures and analyze their protective function against hernias. Twenty-four embalmed cadavers were studied in the anatomy laboratory of Case Western Reserve University. Round hepatic, median and medial ligaments, umbilical ring, umbilical and umbilicovesicular fasciae, and pattern of attachment to the ring were dissected and measured. Mean age was 82.1 years, ranging between 56 and 96 years, with a male-to-female ratio of 1.4:1. Ninety-two per cent was white and 8 per cent black adults. According to shape and attachment pattern of ligaments, umbilical ring is classified into five types. Hernia incidence was 25 per cent. All hernia cases lacked the umbilical fascia and the round hepatic ligament was not attached to the inferior border of the ring. The umbilical ring and its morphologic relation with adjacent ligaments are described and classified into five types. In contrary to sparse existing literature, we propose that umbilical fascia is continuation and condensation of umbilicovesicular rather than transversalis fascia. It was absent in cadavers forming conjoined median and medial ligaments with a single insertion site to the ring. Round ligament insertion to the inferior border of the ring provides another protective factor. These two protective measures were absent in all the observed umbilical hernias.

  7. Towards Structural Analysis of Audio Recordings in the Presence of Musical Variations

    NASA Astrophysics Data System (ADS)

    Müller, Meinard; Kurth, Frank

    2006-12-01

    One major goal of structural analysis of an audio recording is to automatically extract the repetitive structure or, more generally, the musical form of the underlying piece of music. Recent approaches to this problem work well for music, where the repetitions largely agree with respect to instrumentation and tempo, as is typically the case for popular music. For other classes of music such as Western classical music, however, musically similar audio segments may exhibit significant variations in parameters such as dynamics, timbre, execution of note groups, modulation, articulation, and tempo progression. In this paper, we propose a robust and efficient algorithm for audio structure analysis, which allows to identify musically similar segments even in the presence of large variations in these parameters. To account for such variations, our main idea is to incorporate invariance at various levels simultaneously: we design a new type of statistical features to absorb microvariations, introduce an enhanced local distance measure to account for local variations, and describe a new strategy for structure extraction that can cope with the global variations. Our experimental results with classical and popular music show that our algorithm performs successfully even in the presence of significant musical variations.

  8. Calculus structure on the Lie conformal algebra complex and the variational complex

    SciTech Connect

    De Sole, Alberto; Hekmati, Pedram; Kac, Victor G.

    2011-05-15

    We construct a calculus structure on the Lie conformal algebra cochain complex. By restricting to degree one chains, we recover the structure of a g-complex introduced in [A. De Sole and V. G. Kac, Commun. Math. Phys. 292, 667 (2009)]. A special case of this construction is the variational calculus, for which we provide explicit formulas.

  9. Interspecific variation in mitochondrial serine transfer RNA (UCN) in Euptychiina butterflies (Lepidoptera: Satyrinae): structure and alignment.

    PubMed

    Marín, Mario Alejandro; López, Andrés; Uribe, Sandra Inés

    2012-06-01

    The nucleotide variation and structural patterns of mitochondrial RNA molecule have been proposed as useful tools in molecular systematics; however, their usefulness is always subject to a proper assessment of homology in the sequence alignment. The present study describes the secondary structure of mitochondrial tRNA for the amino acid serine (UCN) on 13 Euptychiina species and the evaluation of its potential use for evolutionary studies in this group of butterflies. The secondary structure of tRNAs showed variation among the included species except between Hermeuptychia sp1 and sp2. Variation was concentrated in the ribotimidina-pseudouridine-cystosine (TψC), dihydrouridine (DHU) and variable loops and in the DHU and TψC arms. These results suggest this region as a potential marker useful for taxonomic differentiation of species in this group and also confirm the importance of including information from the secondary structure of tRNA to optimize the alignments.

  10. A backbone lever-arm effect enhances polymer mechanochemistry.

    PubMed

    Klukovich, Hope M; Kouznetsova, Tatiana B; Kean, Zachary S; Lenhardt, Jeremy M; Craig, Stephen L

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.

  11. A backbone lever-arm effect enhances polymer mechanochemistry

    NASA Astrophysics Data System (ADS)

    Klukovich, Hope M.; Kouznetsova, Tatiana B.; Kean, Zachary S.; Lenhardt, Jeremy M.; Craig, Stephen L.

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.

  12. Hash: a Program to Accurately Predict Protein Hα Shifts from Neighboring Backbone Shifts3

    PubMed Central

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    2012-01-01

    Chemical shifts provide not only peak identities for analyzing NMR data, but also an important source of conformational information for studying protein structures. Current structural studies requiring Hα chemical shifts suffer from the following limitations. (1) For large proteins, the Hα chemical shifts can be difficult to assign using conventional NMR triple-resonance experiments, mainly due to the fast transverse relaxation rate of Cα that restricts the signal sensitivity. (2) Previous chemical shift prediction approaches either require homologous models with high sequence similarity or rely heavily on accurate backbone and side-chain structural coordinates. When neither sequence homologues nor structural coordinates are available, we must resort to other information to predict Hα chemical shifts. Predicting accurate Hα chemical shifts using other obtainable information, such as the chemical shifts of nearby backbone atoms (i.e., adjacent atoms in the sequence), can remedy the above dilemmas, and hence advance NMR-based structural studies of proteins. By specifically exploiting the dependencies on chemical shifts of nearby backbone atoms, we propose a novel machine learning algorithm, called Hash, to predict Hα chemical shifts. Hash combines a new fragment-based chemical shift search approach with a non-parametric regression model, called the generalized additive model, to effectively solve the prediction problem. We demonstrate that the chemical shifts of nearby backbone atoms provide a reliable source of information for predicting accurate Hα chemical shifts. Our testing results on different possible combinations of input data indicate that Hash has a wide rage of potential NMR applications in structural and biological studies of proteins. PMID:23242797

  13. Genotypic variation in foundation species generates network structure that may drive community dynamics and evolution.

    PubMed

    Lau, Matthew K; Keith, Arthur R; Borrett, Stuart R; Shuster, Stephen M; Whitham, Thomas G

    2016-03-01

    Although genetics in a single species is known to impact whole communities, little is known about how genetic variation influences species interaction networks in complex ecosystems. Here, we examine the interactions in a community of arthropod species on replicated genotypes (clones) of a foundation tree species, Populus angustifolia James (narrowleaf cottonwood), in a long-term, common garden experiment using a bipartite "genotype-species" network perspective. We combine this empirical work with a simulation experiment designed to further investigate how variation among individual tree genotypes can impact network structure. Three findings emerged: (1) the empirical "genotype-species network" exhibited significant network structure with modularity being greater than the highly conservative null model; (2) as would be expected given a modular network structure, the empirical network displayed significant positive arthropod co-occurrence patterns; and (3) furthermore, the simulations of "genotype-species" networks displayed variation in network structure, with modularity in particular clearly increasing, as genotypic variation increased. These results support the conclusion that genetic variation in a single species contributes to the structure of ecological interaction networks, which could influence eco-ogical dynamics (e.g., assembly and stability) and evolution in a community context.

  14. Territory size variation in the ovenbird: the role of habitat structure. [Seiurus aurocapillus

    SciTech Connect

    Smith, T.M.; Shugart, H.H.

    1987-06-01

    The hypothesis that structural habitat cues are the proximate factor determining territory size was tested by examining the relationships among habitat structure, prey abundance, and intrapopulation variation in territory size in Ovenbirds (Seiurus aurocapillus). Territory size was negatively correlated with prey abundance, with territory size decreasing as prey abundance per unit area increased. In addition, there was a significant difference in prey abundance per unit area between territory sites and areas of the study site not occupied by ovenbirds. A regression of prey abundance with variables describing the habitat structure of territory sites was significant, with habitat structure accounting for 73% of the variation in prey abundance among territories. This regression analysis, in combination with an additional discriminant function analysis of habitat occupancy, suggested a gradient of habitat quality as a function of vegetation structure that is related to both habitat selection and variation in territory size. To determine the possible mechanisms responsible for the inverse relationship between prey abundance and territory size, several hypotheses were considered. A partial correlation analysis of territory size with prey abundance and predicted prey abundance supported a structural cues hypothesis, with variation in territory size being related to structural features of the habitat rather than prey abundance per se.

  15. Temporal variations in internal tide multimodal structure on the continental shelf, South China Sea

    NASA Astrophysics Data System (ADS)

    Gao, Dalu; Jin, Guangzhen; Lü, Xianqing

    2017-01-01

    Temporal variations in multimodal structures of diurnal ( D 1) and semidiurnal ( D 2) internal tides were investigated on the continental slope of the Dongsha Plateau, based on 2-month moored acoustic Doppler current profiler observations. Harmonic analysis indicated that the D 1 components ( K 1 and O 1) dominated the internal tide field. The vertical structure of the K 1 constituent presented a first-mode structure while the M 2 constituent seemed to exhibit a high-mode structure. Amplitude spectra analysis of the current data revealed differences in baroclinic current amplitudes between different water depths. Temporal variations in modal structures ware analyzed, based on the D 1 and D 2 baroclinic tides extracted from the baroclinic velocity field with band-pass filters. Analysis showed that the magnitude of the D 1 internal tide current was much larger than the D 2 current, and temporal variations in the modal structure of the D 1 internal tide occurred on an approximately fortnightly cycle. The EOF analyses revealed temporal transformation of multimodal structures for D 1 and D 2 internal tides. The enhancement of the D 1 internal tide was mainly due to the superposition of K 1 and O 1, according to the temporal variation of coherent kinetic energy.

  16. High Density LD-Based Structural Variations Analysis in Cattle Genome

    PubMed Central

    Salomon-Torres, Ricardo; Matukumalli, Lakshmi K.; Van Tassell, Curtis P.; Villa-Angulo, Carlos; Gonzalez-Vizcarra, Víctor M.; Villa-Angulo, Rafael

    2014-01-01

    Genomic structural variations represent an important source of genetic variation in mammal genomes, thus, they are commonly related to phenotypic expressions. In this work, ∼770,000 single nucleotide polymorphism genotypes from 506 animals from 19 cattle breeds were analyzed. A simple LD-based structural variation was defined, and a genome-wide analysis was performed. After applying some quality control filters, for each breed and each chromosome we calculated the linkage disequilibrium (r2) of short range (≤100 Kb). We sorted SNP pairs by distance and obtained a set of LD means (called the expected means) using bins of 5 Kb. We identified 15,246 segments of at least 1 Kb, among the 19 breeds, consisting of sets of at least 3 adjacent SNPs so that, for each SNP, r2 within its neighbors in a 100 Kb range, to the right side of that SNP, were all bigger than, or all smaller than, the corresponding expected mean, and their P-value were significant after a Benjamini-Hochberg multiple testing correction. In addition, to account just for homogeneously distributed regions we considered only SNPs having at least 15 SNP neighbors within 100 Kb. We defined such segments as structural variations. By grouping all variations across all animals in the sample we defined 9,146 regions, involving a total of 53,137 SNPs; representing the 6.40% (160.98 Mb) from the bovine genome. The identified structural variations covered 3,109 genes. Clustering analysis showed the relatedness of breeds given the geographic region in which they are evolving. In summary, we present an analysis of structural variations based on the deviation of the expected short range LD between SNPs in the bovine genome. With an intuitive and simple definition based only on SNPs data it was possible to discern closeness of breeds due to grouping by geographic region in which they are evolving. PMID:25050984

  17. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  18. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    PubMed Central

    Shen, Yang; Bax, Ad

    2013-01-01

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥ 90% fraction of the residues, with an error rate smaller than ca 3.5%, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (φ,ψ) torsion angles of ca 12°. TALOS-N also reports sidechain χ1 rotameric states for about 50% of the residues, and a consistency with reference structures of 89%. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts. PMID:23728592

  19. Adaptive potential of genomic structural variation in human and mammalian evolution.

    PubMed

    Radke, David W; Lee, Charles

    2015-09-01

    Because phenotypic innovations must be genetically heritable for biological evolution to proceed, it is natural to consider new mutation events as well as standing genetic variation as sources for their birth. Previous research has identified a number of single-nucleotide polymorphisms that underlie a subset of adaptive traits in organisms. However, another well-known class of variation, genomic structural variation, could have even greater potential to produce adaptive phenotypes, due to the variety of possible types of alterations (deletions, insertions, duplications, among others) at different genomic positions and with variable lengths. It is from these dramatic genomic alterations, and selection on their phenotypic consequences, that adaptations leading to biological diversification could be derived. In this review, using studies in humans and other mammals, we highlight examples of how phenotypic variation from structural variants might become adaptive in populations and potentially enable biological diversification. Phenotypic change arising from structural variants will be described according to their immediate effect on organismal metabolic processes, immunological response and physical features. Study of population dynamics of segregating structural variation can therefore provide a window into understanding current and historical biological diversification.

  20. Backbone of complex networks of corporations: The flow of control

    NASA Astrophysics Data System (ADS)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  1. Backbone of complex networks of corporations: the flow of control.

    PubMed

    Glattfelder, J B; Battiston, S

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  2. A simple model for the band structure and D.C. conductivity of an infinite C dbond O···H bond N chain perpendicular to the protein backbone

    NASA Astrophysics Data System (ADS)

    Bende, Attila; Bogár, Ferenc; Ladik, János

    The1 Hartree-Fock crystal orbital (CO) method in its linear combination of atomic orbitals form was applied to determine the band structure of histone proteins taking 0.041e charge transfer per nucleotide base from the PO4- groups of poly(guanilic acid) to the arginine, and lysine side chains in histones (see text). Assuming that there are infinite COs, perpendicular to the main chain, formed by the amide groups of one segment of the protein chain bound together by H-bonds with the C dbond O groups of another segment of the chain, we have calculated the band structure. From this, we have determined the mobility using the deformation potential approximation. Multiplying this with the mobile electron concentration due to the charge transfer between the PO4- groups of DNA and the positive side chains in histones, we have obtained for the direct current (D.C.) electron conductivity sigmafib = 1.07 × 10-9 Omega-1 cm for a single fiber and after division by the cross-section of 9.10 × 10-16 cm2, sigmaspec = 1.18 × 106 Omega-1 cm-1 for the specific conductivity.

  3. Small molecule-mediated duplex formation of nucleic acids with 'incompatible' backbones.

    PubMed

    Cafferty, Brian J; Musetti, Caterina; Kim, Keunsoo; Horowitz, Eric D; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-04-07

    Proflavine, a known intercalator of DNA and RNA, promotes duplex formation by nucleic acids with natural and non-natural backbones that otherwise form duplexes with low thermal stability, and even some that show no sign of duplex formation in the absence of proflavine. These findings demonstrate the potential for intercalators to be used as cofactors for the assembly of rationally designed nucleic acid structures, and could provide fundamental insights regarding intercalation of natural nucleic acid duplexes.

  4. NMR study of non-structural proteins--part II: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Venezuelan equine encephalitis virus (VEEV).

    PubMed

    Makrynitsa, Garyfallia I; Ntonti, Dioni; Marousis, Konstantinos D; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-10-01

    Macro domains consist of 130-190 amino acid residues and appear to be highly conserved in all kingdoms of life. Intense research on this field has shown that macro domains bind ADP-ribose and other similar molecules, but their exact function still remains intangible. Macro domains are highly conserved in the Alphavirus genus and the Venezuelan equine encephalitis virus (VEEV) is a member of this genus that causes fatal encephalitis to equines and humans. In this study we report the high yield recombinant expression and preliminary solution NMR study of the macro domain of VEEV. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure predicted by TALOS+. The protein shows a unique mixed α/β-fold.

  5. Backbone dynamics measurements on leukemia inhibitory factor, a rigid four-helical bundle cytokine.

    PubMed Central

    Yao, S.; Smith, D. K.; Hinds, M. G.; Zhang, J. G.; Nicola, N. A.; Norton, R. S.

    2000-01-01

    The backbone dynamics of the four-helical bundle cytokine leukemia inhibitory factor (LIF) have been investigated using 15N NMR relaxation and amide proton exchange measurements on a murine-human chimera, MH35-LIF. For rapid backbone motions (on a time scale of 10 ps to 100 ns), as probed by 15N relaxation measurements, the dynamics parameters were calculated using the model-free formalism incorporating the model selection approach. The principal components of the inertia tensor of MH35-LIF, as calculated from its NMR structure, were 1:0.98:0.38. The global rotational motion of the molecule was, therefore, assumed to be axially symmetric in the analysis of its relaxation data. This yielded a diffusion anisotropy D(parallel)/D(perpendicular) of 1.31 and an effective correlation time (4D(perpendicular) + 2D(parallel))(-1) of 8.9 ns. The average values of the order parameters (S2) for the four helices, the long interhelical loops, and the N-terminus were 0.91, 0.84, and 0.65, respectively, indicating that LIF is fairly rigid in solution, except at the N-terminus. The S2 values for the long interhelical loops of MH35-LIF were higher than those of their counterparts in short-chain members of the four-helical bundle cytokine family. Residues involved in LIF receptor binding showed no consistent pattern of backbone mobilities, with S2 values ranging from 0.71 to 0.95, but residues contributing to receptor binding site III had relatively lower S2 values, implying higher amplitude motions than for the backbone of sites I and II. In the relatively slow motion regime, backbone amide exchange measurements showed that a number of amides from the helical bundle exchanged extremely slowly, persisting for several months in 2H2O at 37 degrees C. Evidence for local unfolding was considered, and correlations among various structure-related parameters and the backbone amide exchange rates were examined. Both sets of data concur in showing that LIF is one of the most rigid four

  6. Improving the accuracy of protein stability predictions with multistate design using a variety of backbone ensembles.

    PubMed

    Davey, James A; Chica, Roberto A

    2014-05-01

    Multistate computational protein design (MSD) with backbone ensembles approximating conformational flexibility can predict higher quality sequences than single-state design with a single fixed backbone. However, it is currently unclear what characteristics of backbone ensembles are required for the accurate prediction of protein sequence stability. In this study, we aimed to improve the accuracy of protein stability predictions made with MSD by using a variety of backbone ensembles to recapitulate the experimentally measured stability of 85 Streptococcal protein G domain β1 sequences. Ensembles tested here include an NMR ensemble as well as those generated by molecular dynamics (MD) simulations, by Backrub motions, and by PertMin, a new method that we developed involving the perturbation of atomic coordinates followed by energy minimization. MSD with the PertMin ensembles resulted in the most accurate predictions by providing the highest number of stable sequences in the top 25, and by correctly binning sequences as stable or unstable with the highest success rate (≈90%) and the lowest number of false positives. The performance of PertMin ensembles is due to the fact that their members closely resemble the input crystal structure and have low potential energy. Conversely, the NMR ensemble as well as those generated by MD simulations at 500 or 1000 K reduced prediction accuracy due to their low structural similarity to the crystal structure. The ensembles tested herein thus represent on- or off-target models of the native protein fold and could be used in future studies to design for desired properties other than stability.

  7. Calculus structure on the Lie conformal algebra complex and the variational complex

    NASA Astrophysics Data System (ADS)

    De Sole, Alberto; Hekmati, Pedram; Kac, Victor G.

    2011-05-01

    We construct a calculus structure on the Lie conformal algebra cochain complex. By restricting to degree one chains, we recover the structure of a {mathfrak g}-complex introduced in [A. De Sole and V. G. Kac, Commun. Math. Phys. 292, 667 (2009), 10.1007/s00220-009-0886-1]. A special case of this construction is the variational calculus, for which we provide explicit formulas.

  8. The determination of the in situ structure by nuclear spin contrast variation

    SciTech Connect

    Stuhrmann, H.B.; Nierhaus, K.H.

    1994-12-31

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.

  9. Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama

    USGS Publications Warehouse

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Thompson, R.

    2005-01-01

    Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora mangle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha-1 in dwarf forests to 194.3 Mg ha-1 in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes. Copyright 2005 College of Arts and Sciences.

  10. Impact of genetic variation on three dimensional structure and function of proteins

    PubMed Central

    Bhattacharya, Roshni; Rose, Peter W.; Burley, Stephen K.

    2017-01-01

    The Protein Data Bank (PDB; http://wwpdb.org) was established in 1971 as the first open access digital data resource in biology with seven protein structures as its initial holdings. The global PDB archive now contains more than 126,000 experimentally determined atomic level three-dimensional (3D) structures of biological macromolecules (proteins, DNA, RNA), all of which are freely accessible via the Internet. Knowledge of the 3D structure of the gene product can help in understanding its function and role in disease. Of particular interest in the PDB archive are proteins for which 3D structures of genetic variant proteins have been determined, thus revealing atomic-level structural differences caused by the variation at the DNA level. Herein, we present a systematic and qualitative analysis of such cases. We observe a wide range of structural and functional changes caused by single amino acid differences, including changes in enzyme activity, aggregation propensity, structural stability, binding, and dissociation, some in the context of large assemblies. Structural comparison of wild type and mutated proteins, when both are available, provide insights into atomic-level structural differences caused by the genetic variation. PMID:28296894

  11. Impact of genetic variation on three dimensional structure and function of proteins.

    PubMed

    Bhattacharya, Roshni; Rose, Peter W; Burley, Stephen K; Prlić, Andreas

    2017-01-01

    The Protein Data Bank (PDB; http://wwpdb.org) was established in 1971 as the first open access digital data resource in biology with seven protein structures as its initial holdings. The global PDB archive now contains more than 126,000 experimentally determined atomic level three-dimensional (3D) structures of biological macromolecules (proteins, DNA, RNA), all of which are freely accessible via the Internet. Knowledge of the 3D structure of the gene product can help in understanding its function and role in disease. Of particular interest in the PDB archive are proteins for which 3D structures of genetic variant proteins have been determined, thus revealing atomic-level structural differences caused by the variation at the DNA level. Herein, we present a systematic and qualitative analysis of such cases. We observe a wide range of structural and functional changes caused by single amino acid differences, including changes in enzyme activity, aggregation propensity, structural stability, binding, and dissociation, some in the context of large assemblies. Structural comparison of wild type and mutated proteins, when both are available, provide insights into atomic-level structural differences caused by the genetic variation.

  12. Population structure and skeletal variation in the Late Woodland of west-central Illinois.

    PubMed

    Conner, M D

    1990-05-01

    This paper analyzes nonmetric trait variation in 11 late Late Woodland (ca. AD 700-1000) and one Mississippian (AD 1000-1300) skeletal samples from west-central Illinois from a population-structure perspective. Most of the sites are of the Bluff phase of Late Woodland in the lower Illinois River valley; others are from a nearby, contemporary archaeological phase. Late Woodland as a whole era (ca. AD 250-1000) was a period of marked population growth and expansion into new regional environments, trends that accompanied horticultural intensification in the area. Overall variation between sites was low, but males, females, and the total sample exhibited a significant geographic component to variation due to interregional morphological differences. The Bluff sites tended to group together relative to the non-Bluff sites. However, there was no significant geographic component to variation among the Bluff sites. The results are only partially consistent with archaeological data suggesting population growth and expansion through fissioning. Previous studies have demonstrated significant heterogeneity for nonmetric trait frequencies among Middle Woodland (ca. 100 BC to AD 250) sites, suggesting a Middle to Late Woodland change in population structure that lowered levels of morphological variation. This supports a model of increased intra- and interregional interaction from Middle to Late Woodland times developed from ceramic data by Braun and by Braun and Plog.

  13. Anomalous variations of crystal habits and solution properties in the context of the crystallization medium structure

    NASA Astrophysics Data System (ADS)

    Kiryanova, E. V.; Ugolkov, V. L.; Pyankova, L. A.; Filatov, S. K.

    2009-12-01

    The effect of the real structure of solutions on crystallization is one of the basic issues of crystallogenesis, which is also important for resolving problems of genetic mineralogy. The study of the NaNO3-H2O and KNO3-H2O model systems yielded new data on anomalous characteristics of crystal-forming systems, including morphological and kinetic properties of crystals, crystal-solution equilibrium, and physical properties of solutions (light scattering, thermal properties, IR parameters, pH), providing information on the structure of solutions. The internally consistent data confirm the previously suggested variations in structural heterogeneity of solutions related to minor (2-4%) variations in their composition, which result in numerous disturbances of monotonicity (thermal-concentration oscillations) in the liquidus curves of salts. It is shown that these variations can be caused by variable size and composition of crystal hydrate clusters. The experimental data indicate that the effect of the real solution structure on crystal morphology and crystal-solution equilibrium is enhanced in multicomponent systems, including natural crystal-forming systems. Anomalous faceting and habit, zoning, a sectorial structure of crystals, and nonuniform entrapment of admixtures cannot be ruled out in these systems.

  14. Environmental diel variation, parasite loads, and local population structuring of a mixed-mating mangrove fish

    PubMed Central

    Ellison, Amy; Wright, Patricia; Taylor, D Scott; Cooper, Chris; Regan, Kelly; Currie, Suzie; Consuegra, Sofia

    2012-01-01

    Genetic variation within populations depends on population size, spatial structuring, and environmental variation, but is also influenced by mating system. Mangroves are some of the most productive and threatened ecosystems on earth and harbor a large proportion of species with mixed-mating (self-fertilization and outcrossing). Understanding population structuring in mixed-mating species is critical for conserving and managing these complex ecosystems. Kryptolebias marmoratus is a unique mixed-mating vertebrate inhabiting mangrove swamps under highly variable tidal regimes and environmental conditions. We hypothesized that geographical isolation and ecological pressures influence outcrossing rates and genetic diversity, and ultimately determine the local population structuring of K. marmoratus. By comparing genetic variation at 32 microsatellites, diel fluctuations of environmental parameters, and parasite loads among four locations with different degrees of isolation, we found significant differences in genetic diversity and genotypic composition but little evidence of isolation by distance. Locations also differed in environmental diel fluctuation and parasite composition. Our results suggest that mating system, influenced by environmental instability and parasites, underpins local population structuring of K. marmoratus. More generally, we discuss how the conservation of selfing species inhabiting mangroves and other biodiversity hotspots may benefit from knowledge of mating strategies and population structuring at small spatial scales. PMID:22957172

  15. Variations of phytoplankton community structure related to water quality trends in a tropical karstic coastal zone.

    PubMed

    Alvarez-Góngora, Cynthia; Herrera-Silveira, Jorge A

    2006-01-01

    Phytoplankton community structure in coastal areas is a result of various environmental factors such as nutrients, light, grazing, temperature, and salinity. The Yucatan Peninsula is a karstic tropical region that is strongly influenced by submerged groundwater discharge (SGD) into the coastal zone. Phytoplankton community structure and its relationship with regional and local water quality variables were studied in four ports of the northwestern Yucatan Peninsula. Water quality was strongly related to SGD, and variations in phytoplankton community structure were related to local nutrient loading and hydrographic conditions, turbulence, and human impacts. Our study provides an ecological baseline for the Yucatan Peninsula and serves as a basis for establishing monitoring programs to predict changes at sites with high hydrological variation and in developing an early alert system for harmful toxic algal blooms.

  16. Multilayer manipulated diffraction in flower beetles Torynorrhina flammea: intraspecific structural colouration variation

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Liu, F.; Hao, Y. H.; Hu, X. H.; Zhang, Y. F.; Liu, X. H.

    2014-10-01

    We report that the intraspecific structural colouration variation of the beetle Torynorrhina flammea is a result of diffraction shifting manipulated by a multilayer sub-structure contained in a three-dimensional (3D) photonic architecture. With a perpendicularly 2D quasiperiodic diffraction grating inserted into the multilayer, the 3D photonic structure gives rise to anticrossing bandgaps of diffraction from the coupling of grating and multilayer bands. The angular dispersion of diffraction induced by the multilayer band shift behaves normally, in contrast to the ‘ultranegative’ behaviour controlled by the quasiperiodic grating. In addition, the diffraction wavelength is more sensitive to the multilayer periodicity than the diffraction grating constant, which explains the ‘smart’ biological selection of T. flammea in its intraspecific colouration variation from red to green to blue. The elucidated mechanism could be advantageous for the potential exploration of novel dispersive optical elements.

  17. Absence of population structure across elevational gradients despite large phenotypic variation in mountain chickadees (Poecile gambeli)

    PubMed Central

    Jahner, Joshua P.; Kozlovsky, Dovid Y.; Parchman, Thomas L.; Pravosudov, Vladimir V.

    2017-01-01

    Montane habitats are characterized by predictably rapid heterogeneity along elevational gradients and are useful for investigating the consequences of environmental heterogeneity for local adaptation and population genetic structure. Food-caching mountain chickadees inhabit a continuous elevation gradient in the Sierra Nevada, and birds living at harsher, high elevations have better spatial memory ability and exhibit differences in male song structure and female mate preference compared to birds inhabiting milder, low elevations. While high elevation birds breed, on average, two weeks later than low elevation birds, the extent of gene flow between elevations is unknown. Despite phenotypic variation and indirect evidence for local adaptation, population genetic analyses based on 18 073 single nucleotide polymorphisms across three transects of high and low elevation populations provided no evidence for genetic differentiation. Analyses based on individual genotypes revealed no patterns of clustering, pairwise estimates of genetic differentiation (FST, Nei's D) were very low, and AMOVA revealed no evidence for genetic variation structured by transect or by low and high elevation sites within transects. In addition, we found no consistent evidence for strong parallel allele frequency divergence between low and high elevation sites within the three transects. Large elevation-related phenotypic variation may be maintained by strong selection despite gene flow and future work should focus on the mechanisms underlying such variation.

  18. Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars.

    PubMed

    Glassmire, Andrea E; Jeffrey, Christopher S; Forister, Matthew L; Parchman, Thomas L; Nice, Chris C; Jahner, Joshua P; Wilson, Joseph S; Walla, Thomas R; Richards, Lora A; Smilanich, Angela M; Leonard, Michael D; Morrison, Colin R; Simbaña, Wilmer; Salagaje, Luis A; Dodson, Craig D; Miller, Jim S; Tepe, Eric J; Villamarin-Cortez, Santiago; Dyer, Lee A

    2016-10-01

    Chemically mediated plant-herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem. We investigated secondary metabolite variation among subpopulations of a single plant species, Piper kelleyi (Piperaceae), using high-performance liquid chromatography (HPLC), to understand associations between plant phytochemistry and host-specialized caterpillars in the genus Eois (Geometridae: Larentiinae) and associated parasitoid wasps and flies. In addition, we used a genotyping-by-sequencing approach to examine the genetic structure of one abundant caterpillar species, Eois encina, in relation to host phytochemical variation. We found substantive concentration differences among three major secondary metabolites, and these differences in chemistry predicted caterpillar and parasitoid community structure among host plant populations. Furthermore, E. encina populations located at high elevations were genetically different from other populations. They fed on plants containing high concentrations of prenylated benzoic acid. Thus, phytochemistry potentially shapes caterpillar and wasp community composition and geographic variation in species interactions, both of which can contribute to diversification of plants and insects.

  19. Strong limit on the spatial and temporal variations of the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Le, T. D.

    2016-10-01

    Observed spectra of quasars provide a powerful tool to test the possible spatial and temporal variations of the fine-structure constant α = e 2/ћc over the history of the Universe. It is demonstrated that high sensitivity to the variation of α can be obtained from a comparison of the spectra of quasars and laboratories. We reported a new constraint on the variation of the fine-structure constant based on the analysis of the optical spectra of the fine-structure transitions in [NeIII], [NeV], [OIII], [OI] and [SII] multiplets from 14 Seyfert 1.5 galaxies. The weighted mean value of the α-variation derived from our analysis over the redshift range 0.035 < z < 0.281 Δα/α= (4.50 +/- 5.53) \\times 10-5. This result presents strong limit improvements on the constraint on Δα/α compared to the published in the literature

  20. Intraspecific variation in a predator affects community structure and cascading trophic interactions.

    PubMed

    Post, David M; Palkovacs, Eric P; Schielke, Erika G; Dodson, Stanley I

    2008-07-01

    Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions.

  1. Effect of protein backbone folding on the stability of protein-ligand complexes.

    PubMed

    Estrada, Ernesto; Uriarte, Eugenio; Vilar, Santiago

    2006-01-01

    The role played by the degree of folding of protein backbones in explaining the binding energetics of protein-ligand interactions has been studied. We analyzed the protein/peptide interactions in the RNase-S system in which amino acids at two positions of the peptide S have been mutated. The global degree of folding of the protein S correlates in a significant way with the free energy and enthalpy of the protein-peptide interactions. A much better correlation is found with the local contribution to the degree of folding of one amino acid residue: Thr36. This residue is shown to have a destabilizing interaction with Lys41, which interacts directly with peptide S. Another system, consisting of the interactions of small organic molecules with HIV-1 protease was also studied. In this case, the global change in the degree of folding of the protease backbone does not explain the binding energetics of protein-ligand interactions. However, a significant correlation is observed between the free energy of binding and the contribution of two amino acid residues in the HVI-1 protease: Gly49 and Ile66. In general, it was observed that the changes in the degree of folding are not restricted to the binding site of the protein chain but are distributed along the whole protein backbone. This study provides a basis for further consideration of the degree of folding as a parameter for empirical structural parametrizations of the binding energetics of protein folding and binding.

  2. On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent

    PubMed Central

    Riml, Christian; Glasner, Heidelinde; Rodgers, M. T.; Micura, Ronald; Breuker, Kathrin

    2015-01-01

    Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in ‘top-down’ strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)n+ and (M−nH)n− ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into c and y ions from phosphodiester bond cleavage. PMID:25904631

  3. Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind

    PubMed Central

    Datta, Ritobrato; Benson, Noah C.; Prasad, Sashank; Jacobson, Samuel G.; Cideciyan, Artur V.; Bridge, Holly; Watkins, Kate E.; Butt, Omar H.; Dain, Aleksandra S.; Brandes, Lauren; Gennatas, Efstathios D.

    2016-01-01

    Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that

  4. Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind.

    PubMed

    Aguirre, Geoffrey K; Datta, Ritobrato; Benson, Noah C; Prasad, Sashank; Jacobson, Samuel G; Cideciyan, Artur V; Bridge, Holly; Watkins, Kate E; Butt, Omar H; Dain, Aleksandra S; Brandes, Lauren; Gennatas, Efstathios D

    2016-01-01

    Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that

  5. NMR Polypeptide Backbone Conformation of the E. coli Outer Membrane Protein W

    PubMed Central

    Horst, Reto; Stanczak, Pawel; Wüthrich, Kurt

    2014-01-01

    SUMMARY The outer membrane proteins (Omp) are key factors for bacterial survival and virulence. Among the Omps which have been structurally characterized either by X-ray crystallography or by NMR in solution, the crystal structure of OmpW stands out because three of its four extracellular loops are well defined, whereas long extracellular loops in other E. coli Omps are disordered in the crystals as well as in NMR structures. OmpW thus presented an opportunity for detailed comparison of the extracellular loops in a β-barrel membrane protein structure in crystals and in non-crystalline milieus. Here the polypeptide backbone conformation of OmpW in 30-Fos micelles was determined. Complete backbone NMR assignments were obtained and the loops were structurally characterized. In combination with the OmpW crystal structure, NMR line shape analyses and 15N{1H}-NOE data, these results showed that intact regular secondary structures in the loops undergo slow hinge motions at the detergent–solvent interface. PMID:25017731

  6. Genetic and Ontogenetic Variation in an Endangered Tree Structures Dependent Arthropod and Fungal Communities

    PubMed Central

    Gosney, Benjamin J.; O′Reilly-Wapstra, Julianne M.; Forster, Lynne G.; Barbour, Robert C.; Iason, Glenn R.; Potts, Brad M.

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings. PMID:25469641

  7. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    PubMed

    Gosney, Benjamin J; O Reilly-Wapstra, Julianne M; Forster, Lynne G; Barbour, Robert C; Iason, Glenn R; Potts, Brad M

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  8. Time variation of the fine structure constant in the early universe and the Bekenstein model

    NASA Astrophysics Data System (ADS)

    Mosquera, M. E.; Scóccola, C. G.; Landau, S. J.; Vucetich, H.

    2008-02-01

    Aims:We calculate the bounds on the variation in the fine structure constant at the time of primordial nucleosynthesis and at the time of neutral hydrogen formation. We used these bounds and other bounds from the late universe to test the Bekenstein model. Methods: We modified the Kawano code, CAMB, and CosmoMC to include the possible variation in the fine structure constant. We used observational primordial abundances of D, ^4He, and ^7Li, recent data from the cosmic microwave background, and the 2dFGRS power spectrum, to obtain bounds on the variation in α. We calculated a piecewise solution to the scalar field equation of the Bekenstein model in two different regimes: i) matter and radiation, ii) matter and cosmological constant. We match both solutions with the appropriate boundary conditions. We performed a statistical analysis, using the bounds obtained from the early universe and other bounds from the late universe to constrain the free parameters of the model. Results: Results are consistent with no variation in α for the early universe. Limits on α are inconsistent with the scale length of the theory l being larger than the Planck scale. Conclusions: In order to fit all observational and experimental data, the assumption l > Lp implied in Bekenstein's model has to be relaxed.

  9. The Graphical Representation of the Digital Astronaut Physiology Backbone

    NASA Technical Reports Server (NTRS)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  10. Localization of strain in the RNA backbone and its functional implication

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Rabitz, Herschel

    1992-07-01

    It is known that an RNA molecule capable of self-splicing shares a common pattern of Watson-Crick base paris with other RNA species endowed with the same capability. The aim of this work is to introduce a minimal model Hamiltonian which determines a localized strain in the RNA backbone as the search for the molecular conformation is subject to the constraint imposed by the concensus secondary structure. The site where the strain is localized is shown to coincide with the splicing site of the molecule. As justified posteriori, the level of structural complexity of the model is sufficient to account for energy localization in a nontrivial fashion.

  11. Structural Variation Mutagenesis of the Human Genome: Impact on Disease and Evolution

    PubMed Central

    Lupski, James R.

    2015-01-01

    Watson-Crick base-pair changes, or single-nucleotide variants (SNV), have long been known as a source of mutations. However, the extent to which DNA structural variation, including duplication and deletion copy number variants (CNV) and copy number neutral inversions and translocations, contribute to human genome variation and disease has been appreciated only recently. Moreover, the potential complexity of structural variants (SV) was not envisioned; thus, the frequency of complex genomic rearrangements (CGR) and how such events form remained a mystery. The concept of genomic disorders, diseases due to genomic rearrangements and not sequence-based changes for which genomic architecture incite genomic instability, delineated a new category of conditions distinct from chromosomal syndromes and single-gene Mendelian diseases. Nevertheless, it is the mechanistic understanding of CNV/SV formation that has promoted further understanding of human biology and disease and provided insights into human genome and gene evolution. PMID:25892534

  12. Probing structural variation and multifunctionality in niobium doped bismuth vanadate materials.

    PubMed

    Saithathul Fathimah, Sameera; Prabhakar Rao, Padala; James, Vineetha; Raj, Athira K V; Chitradevi, G R; Leela, Sandhyakumari

    2014-11-14

    Multifunctional materials are developed in BiV1-xNbxO4 solid solutions via structural variations. A citrate gel route has been employed to synthesize these materials followed by calcination at various temperatures leading to fine particles. The effects of niobium doping over the structural variation and its influence on the optical properties are assessed by powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Vis-NIR spectroscopy. These solid solutions exhibit superior coloristic properties which are comparable to commercially available yellow pigments. These materials also show remarkable reflectance in the NIR region which makes them potential candidates for cool roof applications. A notable methylene blue dye degradation property is observed in Nb(5+) doped BiVO4 under sunlight irradiation.

  13. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.

    PubMed

    Smith, Colin A; Kortemme, Tanja

    2011-01-01

    Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s) are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface), interactions between and within parts of the structure (e.g. domains) can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others.

  14. Enhanced effect of temporal variation of the fine-structure constant in diatomic molecules

    SciTech Connect

    Flambaum, V. V.

    2006-03-15

    We show that the relative effect of variation of the fine-structure constant in microwave transitions between very close and narrow rotational-hyperfine levels may be enhanced 2-3 orders of magnitude in diatomic molecules with unpaired electrons like LaS, LaO, LuS, LuO, YbF, and similar molecular ions. The enhancement is result of cancellation between the hyperfine and rotational intervals.

  15. Cosmological variation of the fine-structure constant versus a new interaction

    SciTech Connect

    Angstmann, E.J.; Flambaum, V.V.; Karshenboim, S.G.

    2004-10-01

    We show that using the modified form of the Dirac Hamiltonian as suggested by Bekenstein does not affect the analysis of QSO data pertaining to a measurement of {alpha} variation. We obtain the present time limit on Bekenstein's parameter, tan{sup 2} {chi}=(0.2{+-}0.7)x10{sup -6}, from the measurement of the hydrogen 2p fine structure using a value of {alpha} obtained from different experiments.

  16. Spatial Structure and Temporal Variation of Fish Communities in the Upper Mississippi River System

    DTIC Science & Technology

    2005-05-01

    O G tLong Term Resource Monitoring Program Technical Report 2005-T004 Spatial Structure and Temporal Variation of Fish Communities in the Upper...River C r o obeti of tRM are long-term goals have been established for the LTRMP: (1) increase understanding of how the the ability to detect long-term...cats Longear sunfish Lepomis megalotis LG, OR bluegill, emerald shiner, gizzard Johnny darter Etheostoma nigrum LG, OR shad, and smallmouth buffalo

  17. Relationship of D'' structure with the velocity variations near the inner-core boundary

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Nian; Ni, Sidao; Helmberger, Don

    2002-06-01

    Variations in regional differential times between PKiKP (i) and PKIKP (I) have been attributed to hemispheric P-velocity variations of about 1% in the upper 100 km of the inner core (referred to as HIC). The top of the inner core appears relatively fast beneath Asia where D'' is also fast. An alternative interpretation could be the lateral variation in P velocity at the lowermost outer core (HOC) producing the same differential times. To resolve this issue, we introduce the diffracted PKP phase near the B caustic (Bdiff) in the range of 139-145° epicenter distances, and the corresponding differential times between Bdiff and PKiKP and PKIKP as observed on broadband arrays. Due to the long-wavelength nature of Bdiff, we scaled the S-wave tomography model with k values (k ≡ dlnVs/dlnVp) to obtain large-scale P-wave velocity structure in the lower mantle as proposed by earlier studies. Waveform synthetics of Bdiff constructed with small k's predict complex waveforms not commonly observed, confirming the validity of large scaling factor k. With P-velocity in lower mantle constrained at large scale, the extra travel-time constraint imposed by Bdiff helps to resolve the HOC-HIC issue. Our preliminary results suggest k > 2 for the lowermost mantle and support HIC hypothesis. An important implication is that there appears to be a relationship of D'' velocity structures with the structures near the inner core boundary via core dynamics.

  18. Variation and Genetic Structure in Platanus mexicana (Platanaceae) along Riparian Altitudinal Gradient

    PubMed Central

    Galván-Hernández, Dulce M.; Lozada-García, J. Armando; Flores-Estévez, Norma; Galindo-González, Jorge; Vázquez-Torres, S. Mario

    2015-01-01

    Platanus mexicana is a dominant arboreal species of riparian ecosystems. These ecosystems are associated with altitudinal gradients that can generate genetic differences in the species, especially in the extremes of the distribution. However, studies on the altitudinal effect on genetic variation to riparian species are scarce. In Mexico, the population of P. mexicana along the Colipa River (Veracruz State) grows below its reported minimum altitude range, possibly the lowest where this tree grows. This suggests that altitude might be an important factor in population genetics differentiation. We examined the genetic variation and population structuring at four sites with different altitudes (70, 200, 600 and 1700 m a.s.l.) using ten inter-simple sequence repeats (ISSR) markers. The highest value for Shannon index and Nei’s gene diversity was obtained at 1700 m a.s.l. (He = 0.27, Ne = 1.47, I = 0.42) and polymorphism reached the top value at the middle altitude (% p = 88.57). Analysis of molecular variance (AMOVA) and STRUCTURE analysis indicated intrapopulation genetic differentiation. The arithmetic average (UPGMA) dendrogram identified 70 m a.s.l. as the most genetically distant site. The genetic structuring resulted from limited gene flow and genetic drift. This is the first report of genetic variation in populations of P. mexicana in Mexico. This research highlights its importance as a dominant species, and its ecological and evolutionary implications in altitudinal gradients of riparian ecosystems. PMID:25607732

  19. Detection of the Temporal Variations of Structure Sensitive Bodies by the Active Monitoring

    NASA Astrophysics Data System (ADS)

    Fujii, N.; Kumazawa, M.

    2004-12-01

    Observable phenomena that cause temporal variations of stress field related to generations of earthquakes and volcanic eruptions could be mainly the reflected wave from scattering sources. The heterogeneity in the lithosphere originated from both stress state and heterogeneous distribution of fluid-bearing rocks can be the scattering sources. Temporal variations of the scattering sources due to the structure sensitivity of rocks are essential characteristics of seismogenic regions as well as the active volcanic regions. The active geophysical monitoring would be the essential tool to detect and clarify such an evolving process that governed by the structure sensitivity of rocks in the crust and upper mantle. Among many structure sensitive phenomena, probable changes in the reflected seismic or electromagnetic signals are expected in the temporal variations of impedance and anisotropic dispersion of the transmitted signals in the subduction zone where the scattering sources are evolving associated with the movement of the fluid mainly composed of supercritical water in the crust and upper mantle conditions. Recently discovered slow slip events and deep non-volcanic tremors in the subduction zone could be one of the most challenging targets to clarify their characteristics by using the active monitoring techniques.

  20. Exploration of Structural and Functional Variations Owing to Point Mutations in α-NAGA.

    PubMed

    Meshach Paul, D; Rajasekaran, R

    2016-05-02

    Schindler disease is a lysosomal storage disorder caused due to deficiency or defective activity of alpha-N-acetylgalactosaminidase (α-NAGA). Mutations in gene encoding α-NAGA cause wide range of diseases, characterized with mild to severe clinical features. Molecular effects of these mutations are yet to be explored in detail. Therefore, this study was focused on four missense mutations of α-NAGA namely, S160C, E325K, R329Q and R329W. Native and mutant structures of α-NAGA were analysed to determine geometrical deviations such as the contours of root mean square deviation, root mean square fluctuation, percentage of residues in allowed regions of Ramachandran plot and solvent accessible surface area, using conformational sampling technique. Additionally, global energy-minimized structures of native and mutants were further analysed to compute their intra-molecular interactions, hydrogen bond dilution and distribution of secondary structure. In addition, docking studies were also performed to determine variations in binding energies between native and mutants. The deleterious effects of mutants were evident due to variations in their active site residues pertaining to spatial conformation and flexibility, comparatively. Hence, variations exhibited by mutants, namely S160C, E325K, R329Q and R329W to that of native, consequently, lead to the detrimental effects causing Schindler disease. This study computationally explains the underlying reasons for the pathogenesis of the disease, thereby aiding future researchers in drug development and disease management.

  1. Sensitivity-based model updating for structural damage identification using total variation regularization

    NASA Astrophysics Data System (ADS)

    Grip, Niklas; Sabourova, Natalia; Tu, Yongming

    2017-02-01

    Sensitivity-based Finite Element Model Updating (FEMU) is one of the widely accepted techniques used for damage identification in structures. FEMU can be formulated as a numerical optimization problem and solved iteratively making automatic updating of the unknown model parameters by minimizing the difference between measured and analytical structural properties. However, in the presence of noise in the measurements, the updating results are usually prone to errors. This is mathematically described as instability of the damage identification as an inverse problem. One way to resolve this problem is by using regularization. In this paper, we compare a well established interpolation-based regularization method against methods based on the minimization of the total variation of the unknown model parameters. These are new regularization methods for structural damage identification. We investigate how using Huber and pseudo Huber functions in the definition of total variation affects important properties of the methods. For instance, for well-localized damages the results show a clear advantage of the total variation based regularization in terms of the identified location and severity of damage compared with the interpolation-based solution. For a practical test of the proposed method we use a reinforced concrete plate. Measurements and analysis were performed first on an undamaged plate, and then repeated after applying four different degrees of damage.

  2. Genetic variation in plant morphology contributes to the species-level structure of grassland communities.

    PubMed

    Whitlock, Raj; Grime, J Phil; Burke, Terry

    2010-05-01

    It is becoming apparent that genetic diversity can influence the species diversity and structure of ecological communities. Here, we investigated the intraspecific trait variation responsible for this relationship. We grew 10 genotypes of the sedge Carex caryophyllea, as monocultures, under standardized conditions and measured traits related to morphology, growth, and life history. The same genotypes had been prominent in determining the structure of multispecies experimental communities, equivalent in species diversity, in which the genetic diversity of the constituent plant species had been varied in parallel. The trait measurements revealed substantial phenotypic variation among Carex genotypes, related predominantly to differences in physical size and to the spatial deployment of above- and belowground tissue. Genotypes successful in experimental communities were larger in size and tended to adopt a "guerrilla" clonal growth strategy. In general, multivariate trait summaries of genotype size (and to a lesser extent, variation along a linear discriminant axis) predicted genotype and species abundance in experimental communities. However, one genotype exhibited a large disparity in this respect. The performance of this genotype lay closer to prediction when it was growing with a highly competitive grass genotype. The strength of the relationship between genotype size and performance within communities decreased with decreasing community genetic diversity. These results indicate that intraspecific trait measurements are useful for predicting and understanding community structure. They also imply that competitive interactions between the genotypes of different species play an increased role in determining phenotype in genetically impoverished communities.

  3. Variation and genetic structure in Platanus mexicana (Platanaceae) along riparian altitudinal gradient.

    PubMed

    Galván-Hernández, Dulce M; Lozada-García, J Armando; Flores-Estévez, Norma; Galindo-González, Jorge; Vázquez-Torres, S Mario

    2015-01-19

    Platanus mexicana is a dominant arboreal species of riparian ecosystems. These ecosystems are associated with altitudinal gradients that can generate genetic differences in the species, especially in the extremes of the distribution. However, studies on the altitudinal effect on genetic variation to riparian species are scarce. In Mexico, the population of P. mexicana along the Colipa River (Veracruz State) grows below its reported minimum altitude range, possibly the lowest where this tree grows. This suggests that altitude might be an important factor in population genetics differentiation. We examined the genetic variation and population structuring at four sites with different altitudes (70, 200, 600 and 1700 m a.s.l.) using ten inter-simple sequence repeats (ISSR) markers. The highest value for Shannon index and Nei's gene diversity was obtained at 1700 m a.s.l. (He = 0.27, Ne = 1.47, I = 0.42) and polymorphism reached the top value at the middle altitude (% p = 88.57). Analysis of molecular variance (AMOVA) and STRUCTURE analysis indicated intrapopulation genetic differentiation. The arithmetic average (UPGMA) dendrogram identified 70 m a.s.l. as the most genetically distant site. The genetic structuring resulted from limited gene flow and genetic drift. This is the first report of genetic variation in populations of P. mexicana in Mexico. This research highlights its importance as a dominant species, and its ecological and evolutionary implications in altitudinal gradients of riparian ecosystems.

  4. Hydrophobic Core Variations Provide a Structural Framework for Tyrosine Kinase Evolution and Functional Specialization

    PubMed Central

    Kwon, Annie; Byrne, Dominic P.; Ferries, Samantha; Ruan, Zheng; Hanold, Laura E.; Katiyar, Samiksha; Kennedy, Eileen J.; Eyers, Patrick A.; Kannan, Natarajan

    2016-01-01

    Protein tyrosine kinases (PTKs) are a group of closely related enzymes that have evolutionarily diverged from serine/threonine kinases (STKs) to regulate pathways associated with multi-cellularity. Evolutionary divergence of PTKs from STKs has occurred through accumulation of mutations in the active site as well as in the commonly conserved hydrophobic core. While the functional significance of active site variations is well understood, relatively little is known about how hydrophobic core variations contribute to PTK evolutionary divergence. Here, using a combination of statistical sequence comparisons, molecular dynamics simulations, mutational analysis and in vitro thermostability and kinase assays, we investigate the structural and functional significance of key PTK-specific variations in the kinase core. We find that the nature of residues and interactions in the hydrophobic core of PTKs is strikingly different from other protein kinases, and PTK-specific variations in the core contribute to functional divergence by altering the stability and dynamics of the kinase domain. In particular, a functionally critical STK-conserved histidine that stabilizes the regulatory spine in STKs is selectively mutated to an alanine, serine or glutamate in PTKs, and this loss-of-function mutation is accommodated, in part, through compensatory PTK-specific interactions in the core. In particular, a PTK-conserved phenylalanine in the I-helix appears to structurally and functionally compensate for the loss of STK-histidine by interacting with the regulatory spine, which has far-reaching effects on enzyme activity, inhibitor sensing, and stability. We propose that hydrophobic core variations provide a selective advantage during PTK evolution by increasing the conformational flexibility, and therefore the allosteric potential of the kinase domain. Our studies also suggest that Tyrosine Kinase Like kinases such as RAF are intermediates in PTK evolutionary divergence inasmuch as they

  5. Phenotypic variation and water selection potential in the stem structure of invasive alligator weed

    NASA Astrophysics Data System (ADS)

    Du, Leshan; Yang, Beifen; Guan, Wenbin; Li, Junmin

    2016-02-01

    The morphological and anatomical characteristics of stems have been found to be related to drought resistance in plants. Testing the phenotypic selection of water availability on stem anatomical traits would be useful for exploring the evolutionary potential of the stem in response to water availability. To test the phenotypic variation of the stem anatomical traits of an invasive plant in response to water availability, we collected a total of 320 individuals of Alternanthera philoxeroides from 16 populations from terrestrial and aquatic habitats in 8 plots in China and then analyzed the variation, differentiation, plasticity and selection potential of water availability on the stem anatomical traits. We found that except for the thickness of the cortex, all of the examined phenotypic parameters of the A. philoxeroides stem were significantly and positively correlated with soil water availability. The phenotypic differentiation coefficient for all of the anatomical structural parameters indicated that most of the variation existed between habitats within the same plot, whereas there was little variation among plots or among individuals within the same habitat except for variation in the thickness of the cortex. A significant phenotypic plasticity response to water availability was found for all of the anatomical traits of A. philoxeroides stem except for the thickness of the cortex. The associations between fitness and some of the anatomical traits, such as the stem diameter, the cortex area-to-stem area ratio, the pith cavity area-to-stem area ratio and the density of vascular bundles, differed with heterogeneous water availability. In both the aquatic and terrestrial habitats, no significant directional selection gradient was found for the stem diameter, the cortex area-to-stem area ratio or the density of vascular bundles. These results indicated that the anatomical structure of the A. philoxeroides stem may play an important role in the adaptation to changes

  6. [Spatial variation of non-structural carbohydrates in Betula platyphylla and Tilia amurensis stems].

    PubMed

    Zhang, Hai-Yan; Wang, Chuan-Kuan; Wang, Xing-Chang; Cheng, Fang-Yan

    2013-11-01

    Taking the two diffuse-porous tree species Betula platyphylla and Tilia amurensis in a temperate forest in Northeast China as test objects, this paper studied the spatial variation of the non-structural carbohydrates (NSC) concentrations in the stem xylem after leaf-fall. For the two tree species, the concentrations of total non-structural carbohydrate (TNC, soluble sugars plus starch) and soluble sugars in the stem xylem decreased gradually with the increasing depth from cambium to pith, whereas the starch concentration showed little radial variation. There was still a substantial amount of NSC in the inner wood close to pith. The concentrations of the NSC in the two species stems decreased gradually from the stump to the breast height, and then increased vertically. The maximum concentrations of the TNC, soluble sugars, and starch occurred at different heights, depending on the species and the TNC components. The ratio of sugar to starch showed a contrasting vertical trend for the two species, i. e., increasing from the stump to the top for B. platyphylla, but decreasing for T. amurensis. The estimation error of the stem NSC storage was mainly from the axial variation, and then, from the radial variation of NSC concentration. The TNC concentration (1.0% dry mass) in the stem of shade-intolerant species B. platyphylla was significantly lower than that (4.3% dry mass) of shade-tolerant species T. amurensis, which could be related to their different life-history strategies. Applying the sampling protocols considering the axial and radial variations of NSC could effectively reduce the potential uncertainty in estimating the NSC storage at tree or stand level.

  7. Triazole linkages and backbone branches in nucleic acids for biological and extra-biological applications

    NASA Astrophysics Data System (ADS)

    Paredes, Eduardo

    The recently increasing evidence of nucleic acids' alternative roles in biology and potential as useful nanomaterials and therapeutic agents has enabled the development of useful probes, elaborate nanostructures and therapeutic effectors based on nucleic acids. The study of alternative nucleic acid structure and function, particularly RNA, hinges on the ability to introduce site-specific modifications that either provide clues to the nucleic acid structure function relationship or alter the nucleic acid's function. Although the available chemistries allow for the conjugation of useful labels and molecules, their limitations lie in their tedious conjugation conditions or the lability of the installed probes. The development and optimization of click chemistry with RNA now provides the access to a robust and orthogonal conjugation methodology while providing stable conjugates. Our ability to introduce click reactive groups enzymatically, rather than only in the solid-phase, allows for the modification of larger, more cell relevant RNAs. Additionally, ligation of modified RNAs with larger RNA constructs through click chemistry represents an improvement over traditional ligation techniques. We determined that the triazole linkage generated through click chemistry is compatible in diverse nucleic acid based biological systems. Click chemistry has also been developed for extra-biological applications, particularly with DNA. We have expanded its use to generate useful polymer-DNA conjugates which can form controllable soft nanoparticles which take advantage of DNA's properties, i.e. DNA hybridization and computing. Additionally, we have generated protein-DNA conjugates and assembled protein-polymer hybrids mediated by DNA hybridization. The use of click chemistry in these reactions allows for the facile synthesis of these unnatural conjugates. We have also developed backbone branched DNA through click chemistry and showed that these branched DNAs are useful in generating

  8. Simulation of variation characteristics at thermostabilization of 27 GHz biperiodical accelerating structure

    NASA Astrophysics Data System (ADS)

    Kluchevskaya, Y. D.; Polozov, S. M.

    2016-07-01

    It was proposed to develop the biperiodical accelerating structure with operating frequency of 27 GHz to assess the possibility of design a compact accelerating structure for medical application. It is necessary to do the more careful simulation of variation characteristics this case because of decrease of wavelength 3-10 times in comparison with conventional structures 10 and 3 cm ranges. Results of such study are presented in the article. Also a combination of high electromagnetic fields and long pulses at a high operating frequency leads to the temperature increase in the structure, thermal deformation and significant change of the resonator characteristics, including the frequency of the RF pulse. Development results of three versions of system of temperature stabilization also discuses.

  9. Backbone resonance assignments of an artificially engineered TEM-1/PSE-4 Class A β-lactamase chimera.

    PubMed

    Morin, Sébastien; Clouthier, Christopher M; Gobeil, Sophie; Pelletier, Joelle N; Gagné, Stéphane M

    2010-10-01

    The rapid evolution of Class A β-lactamases, which procure resistance to an increasingly broad panel of β-lactam antibiotics, underscores the urgency to better understand the relation between their sequence variation and their structural and functional features. To date, more than 300 clinically-relevant β-lactamase variants have been reported, and this number continues to increase. With the aim of obtaining insights into the evolutionary potential of β-lactamases, an artificially engineered, catalytically active chimera of the Class A TEM-1 and PSE-4 β-lactamases is under study by kinetics and NMR. Here we report the (1)H, (13)C and (15)N backbone resonance assignments for the 30 kDa chimera cTEM-17m. Despite its high molecular weight, the data provide evidence that this artificially-evolved chimeric enzyme is well folded. The hydrolytic activity of cTEM-17m was determined using the chromogenic substrate CENTA, with K (M) = 160 ± 35 μM and k (cat) = 20 ± 4 s(-1), which is in the same range as the values for TEM-1 and PSE-4 β-lactamases.

  10. Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities

    PubMed Central

    Hansen, Oskar Liset Pryds; Bowden, Joseph J.; Treier, Urs A.; Normand, Signe; Høye, Toke

    2016-01-01

    The Arctic is warming at twice the rate of the rest of the world. This impacts Arctic species both directly, through increased temperatures, and indirectly, through structural changes in their habitats. Species are expected to exhibit idiosyncratic responses to structural change, which calls for detailed investigations at the species and community level. Here, we investigate how arthropod assemblages of spiders and beetles respond to variation in habitat structure at small spatial scales. We sampled transitions in shrub dominance and soil moisture between three different habitats (fen, dwarf shrub heath, and tall shrub tundra) at three different sites along a fjord gradient in southwest Greenland, using yellow pitfall cups. We identified 2,547 individuals belonging to 47 species. We used species richness estimation, indicator species analysis and latent variable modeling to examine differences in arthropod community structure in response to habitat variation at local (within site) and regional scales (between sites). We estimated species responses to the environment by fitting species-specific generalized linear models with environmental covariates. Species assemblages were segregated at the habitat and site level. Each habitat hosted significant indicator species, and species richness and diversity were significantly lower in fen habitats. Assemblage patterns were significantly linked to changes in soil moisture and vegetation height, as well as geographic location. We show that meter-scale variation among habitats affects arthropod community structure, supporting the notion that the Arctic tundra is a heterogeneous environment. To gain sufficient insight into temporal biodiversity change, we require studies of species distributions detailing species habitat preferences. PMID:27478709

  11. Allozyme variation and structure of the Canarian endemic palm tree Phoenix canariensis (Arecaceae): implications for conservation.

    PubMed

    González-Pérez, M A; Caujapé-Castells, J; Sosa, P A

    2004-09-01

    Electrophoretic analysis of 18 allozyme loci was used to estimate the levels and structuring of genetic variation within and among natural populations of the protected endemic palm species from the Canary Islands (Phoenix canariensis) to evaluate its genetic relationship with the widespread congener P. dactylifera, and to assess comparatively the genetic variation in the populations where the two species coexist with morphologically intermediate plants (mixed populations). Our survey revealed that the within-population component explains roughly 75% of the genetic variation levels detected in P. canariensis (A=1.59; P=41.8; He=0.158), which rank higher than those reported for other species of the Arecaceae. A Principal Component analysis (PCA) based on allele frequencies consistently separates populations of P. canariensis and P. dactylifera, and reveals a close genetic relationship between P. canariensis and the mixed populations. Reduced levels of genetic variation in P. canariensis with respect to P. dactylifera, the fact that the genetic makeup of the Canarian endemic (with no unique alleles) is a subset of that found in P. dactylifera, and the high genetic identity between both species strongly suggest that P. canariensis is recently derived from a common ancestor closely related to P. dactylifera.

  12. ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using Next Generation Sequence

    PubMed Central

    2011-01-01

    Background The possibilities offered by next generation sequencing (NGS) platforms are revolutionizing biotechnological laboratories. Moreover, the combination of NGS sequencing and affordable high-throughput genotyping technologies is facilitating the rapid discovery and use of SNPs in non-model species. However, this abundance of sequences and polymorphisms creates new software needs. To fulfill these needs, we have developed a powerful, yet easy-to-use application. Results The ngs_backbone software is a parallel pipeline capable of analyzing Sanger, 454, Illumina and SOLiD (Sequencing by Oligonucleotide Ligation and Detection) sequence reads. Its main supported analyses are: read cleaning, transcriptome assembly and annotation, read mapping and single nucleotide polymorphism (SNP) calling and selection. In order to build a truly useful tool, the software development was paired with a laboratory experiment. All public tomato Sanger EST reads plus 14.2 million Illumina reads were employed to test the tool and predict polymorphism in tomato. The cleaned reads were mapped to the SGN tomato transcriptome obtaining a coverage of 4.2 for Sanger and 8.5 for Illumina. 23,360 single nucleotide variations (SNVs) were predicted. A total of 76 SNVs were experimentally validated, and 85% were found to be real. Conclusions ngs_backbone is a new software package capable of analyzing sequences produced by NGS technologies and predicting SNVs with great accuracy. In our tomato example, we created a highly polymorphic collection of SNVs that will be a useful resource for tomato researchers and breeders. The software developed along with its documentation is freely available under the AGPL license and can be downloaded from http://bioinf.comav.upv.es/ngs_backbone/ or http://github.com/JoseBlanca/franklin. PMID:21635747

  13. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    PubMed

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  14. Polar front associated variation in prokaryotic community structure in Arctic shelf seafloor.

    PubMed

    Nguyen, Tan T; Landfald, Bjarne

    2015-01-01

    Spatial variations in composition of marine microbial communities and its causes have largely been disclosed in studies comprising rather large environmental and spatial differences. In the present study, we explored if a moderate but temporally permanent climatic division within a contiguous arctic shelf seafloor was traceable in the diversity patterns of its bacterial and archaeal communities. Soft bottom sediment samples were collected at 10 geographical locations, spanning spatial distances of up to 640 km, transecting the oceanic polar front in the Barents Sea. The northern sampling sites were generally colder, less saline, shallower, and showed higher concentrations of freshly sedimented phytopigments compared to the southern study locations. Sampling sites depicted low variation in relative abundances of taxa at class level, with persistent numerical dominance by lineages of Gamma- and Deltaproteobacteria (57-66% of bacterial sequence reads). The Archaea, which constituted 0.7-1.8% of 16S rRNA gene copy numbers in the sediment, were overwhelmingly (85.8%) affiliated with the Thaumarchaeota. Beta-diversity analyses showed the environmental variations throughout the sampling range to have a stronger impact on the structuring of both the bacterial and archaeal communities than spatial effects. While bacterial communities were significantly influenced by the combined effect of several weakly selective environmental differences, including temperature, archaeal communities appeared to be more uniquely structured by the level of freshly sedimented phytopigments.

  15. Structural Variations of Human Glucokinase Glu256Lys in MODY2 Condition Using Molecular Dynamics Study.

    PubMed

    Yellapu, Nanda Kumar; Kandlapalli, Kalpana; Valasani, Koteswara Rao; Sarma, P V G K; Matcha, Bhaskar

    2013-01-01

    Glucokinase (GK) is the predominant hexokinase that acts as glucose sensor and catalyses the formation of Glucose-6-phosphate. The mutations in GK gene influence the affinity for glucose and lead to altered glucose levels in blood causing maturity onset diabetes of the young type 2 (MODY2) condition, which is one of the prominent reasons of type 2 diabetic condition. In view of the importance of mutated GK resulting in hyperglycemic condition, in the present study, molecular dynamics simulations were carried out in intact and 256 E-K mutated GK structures and their energy values and conformational variations were correlated. Energy variations were observed in mutated GK (3500 Kcal/mol) structure with respect to intact GK (5000 Kcal/mol), and it showed increased γ -turns, decreased β -turns, and more helix-helix interactions that affected substrate binding region where its volume increased from 1089.152 Å(2) to 1246.353 Å(2). Molecular docking study revealed variation in docking scores (intact = -12.199 and mutated = -8.383) and binding mode of glucose in the active site of mutated GK where the involvement of A53, S54, K56, K256, D262 and Q286 has resulted in poor glucose binding which probably explains the loss of catalytic activity and the consequent prevailing of high glucose levels in MODY2 condition.

  16. Structural Variations of Human Glucokinase Glu256Lys in MODY2 Condition Using Molecular Dynamics Study

    PubMed Central

    Yellapu, Nanda Kumar; Kandlapalli, Kalpana; Valasani, Koteswara Rao; Sarma, P. V. G. K.; Matcha, Bhaskar

    2013-01-01

    Glucokinase (GK) is the predominant hexokinase that acts as glucose sensor and catalyses the formation of Glucose-6-phosphate. The mutations in GK gene influence the affinity for glucose and lead to altered glucose levels in blood causing maturity onset diabetes of the young type 2 (MODY2) condition, which is one of the prominent reasons of type 2 diabetic condition. In view of the importance of mutated GK resulting in hyperglycemic condition, in the present study, molecular dynamics simulations were carried out in intact and 256 E-K mutated GK structures and their energy values and conformational variations were correlated. Energy variations were observed in mutated GK (3500 Kcal/mol) structure with respect to intact GK (5000 Kcal/mol), and it showed increased γ-turns, decreased β-turns, and more helix-helix interactions that affected substrate binding region where its volume increased from 1089.152 Å2 to 1246.353 Å2. Molecular docking study revealed variation in docking scores (intact = −12.199 and mutated = −8.383) and binding mode of glucose in the active site of mutated GK where the involvement of A53, S54, K56, K256, D262 and Q286 has resulted in poor glucose binding which probably explains the loss of catalytic activity and the consequent prevailing of high glucose levels in MODY2 condition. PMID:23476789

  17. Normal Variations of Sphenoid Sinus and the Adjacent Structures Detected in Cone Beam Computed Tomography

    PubMed Central

    Rahmati, Azadeh; Ghafari, Roshanak; AnjomShoa, Maryam

    2016-01-01

    Statement of the Problem The sphenoid sinus is a common target of paranasal surgery. Functional endoscopic sinus surgery is likely to endanger the anatomic variations of vital structures adjacent to the sphenoid sinus. Purpose The aim of this study was to determine the variations of sphenoid sinus and the related structures by using cone-beam computed tomography (CBCT). Materials and Method In this descriptive-analytic study, CBCT images of 103 patients aged above 20-years were selected (206 sides). Degree of pneumatization of sphenoid sinus, pneumatization of the anterior clinoid process, pterygoid process, protrusion of optic canal, vidian canal, and foramen rotundum, as well as prevalence of sinus septa were recorded. Examinations were performed using On-Demand software (Version 1); data were analyzed by using chi-square test. Results There was a statistically significant correlation between the pterygoid pneumatization and vidian canal protrusion (p< 0.001), and foramen rotundum protrusion (p< 0.001). The optic canal protrusion was found to be significantly associated with the anterior clinoid pneumatization and pterygoid process (p< 0.001). Statistically significant relationship was also observed between the carotid canal protrusion and pterygoid process pneumatization (p< 0.001). Conclusion The anatomical variations of the sphenoid sinus tend to give rise to a complexity of symptoms and potentially serious complications. This variability necessitates a comprehensive understanding of the regional sphenoid sinus anatomy by a detailed CBCT sinus examination. PMID:26966706

  18. Line profiles variations from atmospheric eclipses: Constraints on the wind structure in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Koenigsberger, G.

    1994-01-01

    Binary systems in which one of the components has a stellar wind may present a phenomenon known as 'wind' or 'atmospheric eclipse', in which that wind occults the luminous disk of the companion. The enhanced absorption profile, relative to the spectrum at uneclipsed orbital phases, can be be modeled to yield constraints on the spatial structure of the eclipsing wind. A new, very efficient approach to the radiative transfer problem, which makes no requirements with respect to monotonicity of the velocity gradient or size of that gradient, is presented. The technique recovers both the comoving frame calculation and the Sobolev approximation in the appropiate limits. Sample computer simulations of the line profile variations induced by wind eclipses are presented. It is shown that the location of the wind absorption features in frequency is a diagnostic tool for identifying the size of the wind acceleration region. Comparison of the model profile variations with the observed variations in the Wolf-Rayet (W-R)+6 binary system V444 Cyg illustrate how the method can be used to derive information on the structure of the wind of the W-R star constrain the size of the W-R core radius.

  19. Polar front associated variation in prokaryotic community structure in Arctic shelf seafloor

    PubMed Central

    Nguyen, Tan T.; Landfald, Bjarne

    2015-01-01

    Spatial variations in composition of marine microbial communities and its causes have largely been disclosed in studies comprising rather large environmental and spatial differences. In the present study, we explored if a moderate but temporally permanent climatic division within a contiguous arctic shelf seafloor was traceable in the diversity patterns of its bacterial and archaeal communities. Soft bottom sediment samples were collected at 10 geographical locations, spanning spatial distances of up to 640 km, transecting the oceanic polar front in the Barents Sea. The northern sampling sites were generally colder, less saline, shallower, and showed higher concentrations of freshly sedimented phytopigments compared to the southern study locations. Sampling sites depicted low variation in relative abundances of taxa at class level, with persistent numerical dominance by lineages of Gamma- and Deltaproteobacteria (57–66% of bacterial sequence reads). The Archaea, which constituted 0.7–1.8% of 16S rRNA gene copy numbers in the sediment, were overwhelmingly (85.8%) affiliated with the Thaumarchaeota. Beta-diversity analyses showed the environmental variations throughout the sampling range to have a stronger impact on the structuring of both the bacterial and archaeal communities than spatial effects. While bacterial communities were significantly influenced by the combined effect of several weakly selective environmental differences, including temperature, archaeal communities appeared to be more uniquely structured by the level of freshly sedimented phytopigments. PMID:25667586

  20. The variation of the fine-structure constant from disformal couplings

    SciTech Connect

    De Bruck, Carsten van; Mifsud, Jurgen; Nunes, Nelson J. E-mail: jmifsud1@sheffield.ac.uk

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  1. Allelic genome structural variations in maize detected by array comparative genome hybridization.

    PubMed

    Beló, André; Beatty, Mary K; Hondred, David; Fengler, Kevin A; Li, Bailin; Rafalski, Antoni

    2010-01-01

    DNA polymorphisms such as insertion/deletions and duplications affecting genome segments larger than 1 kb are known as copy-number variations (CNVs) or structural variations (SVs). They have been recently studied in animals and humans by using array-comparative genome hybridization (aCGH), and have been associated with several human diseases. Their presence and phenotypic effects in plants have not been investigated on a genomic scale, although individual structural variations affecting traits have been described. We used aCGH to investigate the presence of CNVs in maize by comparing the genome of 13 maize inbred lines to B73. Analysis of hybridization signal ratios of 60,472 60-mer oligonucleotide probes between inbreds in relation to their location in the reference genome (B73) allowed us to identify clusters of probes that deviated from the ratio expected for equal copy-numbers. We found CNVs distributed along the maize genome in all chromosome arms. They occur with appreciable frequency in different germplasm subgroups, suggesting ancient origin. Validation of several CNV regions showed both insertion/deletions and copy-number differences. The nature of CNVs detected suggests CNVs might have a considerable impact on plant phenotypes, including disease response and heterosis.

  2. Parietal structure and function explain human variation in working memory biases of visual attention.

    PubMed

    Soto, David; Rotshtein, Pia; Kanai, Ryota

    2014-04-01

    Recent research indicates that human attention appears inadvertently biased by items that match the contents of working memory (WM). WM-biases can lead to attentional costs when the memory content matches goal-irrelevant items and to attentional benefits when it matches the sought target. Here we used functional and structural MRI data to determine the neural basis of human variation in WM biases. We asked whether human variation in WM-benefits and WM-costs merely reflects the process of attentional capture by the contents of WM or whether variation in WM biases may be associated with distinct forms of cognitive control over internal WM signals based on selection goals. Human ability to use WM contents to facilitate selection was positively correlated with gray matter volume in the left superior posterior parietal cortex (PPC), while the ability to overcome interference by WM-matching distracters was associated with the left inferior PPC in the anterior IPS. Functional activity in the left PPC, measured by functional MRI, also predicted the magnitude of WM-costs on selection. Both structure and function of left PPC mediate the expression of WM biases in human visual attention.

  3. Variation Principles and Applications in the Study of Cell Structure and Aging

    NASA Technical Reports Server (NTRS)

    Economos, Angelos C.; Miquel, Jaime; Ballard, Ralph C.; Johnson, John E., Jr.

    1981-01-01

    In this report we have attempted to show that "some reality lies concealed in biological variation". This "reality" has its principles, laws, mechanisms, and rules, only a few of which we have sketched. A related idea we pursued was that important information may be lost in the process of ignoring frequency distributions of physiological variables (as is customary in experimental physiology and gerontology). We suggested that it may be advantageous to expand one's "statistical field of vision" beyond simple averages +/- standard deviations. Indeed, frequency distribution analysis may make visible some hidden information not evident from a simple qualitative analysis, particularly when the effect of some external factor or condition (e.g., aging, dietary chemicals) is being investigated. This was clearly illustrated by the application of distribution analysis in the study of variation in mouse liver cellular and fine structure, and may be true of fine structural studies in general. In living systems, structure and function interact in a dynamic way; they are "inseparable," unlike in technological systems or machines. Changes in fine structure therefore reflect changes in function. If such changes do not exceed a certain physiologic range, a quantitative analysis of structure will provide valuable information on quantitative changes in function that may not be possible or easy to measure directly. Because there is a large inherent variation in fine structure of cells in a given organ of an individual and among individuals, changes in fine structure can be analyzed only by studying frequency distribution curves of various structural characteristics (dimensions). Simple averages +/- S.D. do not in general reveal all information on the effect of a certain factor, because often this effect is not uniform; on the contrary, this will be apparent from distribution analysis because the form of the curves will be affected. We have also attempted to show in this chapter that

  4. Effect of molecular structure variation on the disintegrant action of sodium starch glycolate.

    PubMed

    Rudnic, E M; Kanig, J L; Rhodes, C T

    1985-06-01

    The effect of variation in the degree of cross-linkage and extent of carboxymethylation on the disintegration and dissolution properties of sodium starch glycolate has been examined. Samples of sodium starch glycolate were evaluated for particle size distributions and bulk and tapped densities. The bulk powders were also tested for sedimentation volumes, water uptake, and bulk swelling. Direct compression formulations containing aspirin and hydrochlorothiazide and varying concentrations of the modified starches were tableted on a rotary tablet press and evaluated for weight variation, hardness, disintegration, and dissolution. The results indicate that relatively small changes in molecular structure can cause substantial modification of disintegrant properties and suggest that the specifications for one commercially available sodium starch glycolate are within optimal specifications for both cross-linkage and degree of substitution.

  5. The latitude-height structure of 40-50 day variations in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.; Rosen, R. D.

    1983-01-01

    Using five years of U.S. National Meteorological Center twice-daily global analyses, a description of the two-dimensional latitude-height structure of the winds responsible for quasi-periodic variations in the relative angular momentum of the atmosphere observed by Langley et al. (1981) is constructed. Cross-spectral and amplitude phase eigenvector techniques indicate that these variations are associated with wave-like motions in the tropical upper troposphere which propagate poleward and downward in phase within the tropics. The tropical component is suggested to be the zonally averaged part of the motions described by Madden and Julian (1971, 1972), while a Northern Hemisphere midlatitude component whose phase is essentially independent of height may be a direct response to the tropical motions. Alternatively, both motions may be the common response to an as yet unidentified tropical forcing.

  6. Enhanced sensitivity to the fine-structure-constant variation in the Th IV atomic clock transition

    SciTech Connect

    Flambaum, V. V.; Porsev, S. G.

    2009-12-15

    Our calculations have shown that the 5f{sub 5/2}-7s{sub 1/2} 23 131 cm{sup -1} transition from the ground state in the ion Th{sup 3+} is very sensitive to the temporal variation of the fine-structure constant alpha=e{sup 2}/(Planck constant/2pi)c (q=-75 300 cm{sup -1}). The line is very narrow, the ion has been trapped and laser cooled, and the positive shifter line 5f{sub 5/2}-5f{sub 7/2} 4325 cm{sup -1} (q=+2900 cm{sup -1}) may be used as a reference. A comparison may also be made with a positive shifter in another atom or ion. This makes Th{sup 3+} a good candidate to search for the alpha variation.

  7. Highly charged ions for atomic clocks and search for variation of the fine structure constant

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.

    2015-11-01

    We review a number of highly charged ions which have optical transitions suitable for building extremely accurate atomic clocks. This includes ions from Hf 12+ to U 34+, which have the 4 f 12 configuration of valence electrons, the Ir 17+ ion, which has a hole in almost filled 4 f subshell, the Ho 14+, Cf 15+, Es 17+ and Es 16+ ions. Clock transitions in most of these ions are sensitive to variation of the fine structure constant, α (α = e2/hbar c). E.g., californium and einsteinium ions have largest known sensitivity to α-variation while holmium ion looks as the most suitable ion for experimental study. We study the spectra of the ions and their features relevant to the use as frequency standards.

  8. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mad Island Marsh estuary, Texas

    NASA Astrophysics Data System (ADS)

    Akin, S.; Winemiller, K. O.; Gelwick, F. P.

    2003-05-01

    Fish and macrocrustacean assemblage structure was analyzed along an estuarine gradient at Mad Island Marsh (MIM), Matagorda Bay, TX, during March 1998-August 1999. Eight estuarine-dependent fish species accounted for 94% of the individual fishes collected, and three species accounted for 96% of macrocrustacean abundance. Consistent with evidence from other Gulf of Mexico estuarine studies, species richness and abundance were highest during late spring and summer, and lowest during winter and early spring. Sites near the bay supported the most individuals and species. Associations between fish abundance and environmental variables were examined with canonical correspondence analysis. The dominant gradient was associated with water depth and distance from the bay. The secondary gradient reflected seasonal variation and was associated with temperature, salinity, dissolved oxygen, and vegetation cover. At the scales examined, estuarine biota responded to seasonal variation more than spatial variation. Estuarine-dependent species dominated the fauna and were common throughout the open waters of the shallow lake during winter-early spring when water temperature and salinity were low and dissolved oxygen high. During summer-early fall, sub-optimal environmental conditions (high temperature, low DO) in upper reaches accounted for strong spatial variation in assemblage composition. Small estuarine-resident fishes and the blue crab ( Callinectes sapidus) were common in warm, shallow, vegetated inland sites during summer-fall. Estuarine-dependent species were common at deeper, more saline locations near the bay during this period. During summer, freshwater species, such as gizzard shad ( Dorosoma cepedianum) and gars ( Lepisosteus spp.), were positively associated with water depth and proximity to the bay. The distribution and abundance of fishes in MIM appear to result from the combined effects of endogenous, seasonal patterns of reproduction and migration operating on large

  9. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement

    SciTech Connect

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; Karplus, P. Andrew

    2014-06-17

    Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common usage today have been designed based on the assumption that each type of bond or angle has a single ideal value independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and as a first step toward using such information to build more accurate models, ultra-high resolution protein crystal structures have been used to derive a conformation-dependent library (CDL) of restraints for the protein backbone (Berkholz et al. 2009. Structure. 17, 1316). Here, we report the introduction of this CDL into the Phenix package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the conformation dependent library yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In Phenix usage of the CDL can be selected by simply specifying the cdl=True option. This successful implementation paves the way for further aspects of the context-dependence of ideal geometry to be characterized and applied to improve experimental and predictive modelling accuracy.

  10. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement

    DOE PAGES

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; ...

    2014-06-17

    Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common usage today have been designed based on the assumption that each type of bond or angle has a single ideal value independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and as a first step toward using such information to build more accurate models, ultra-high resolution protein crystal structures have been used to derive a conformation-dependent library (CDL)more » of restraints for the protein backbone (Berkholz et al. 2009. Structure. 17, 1316). Here, we report the introduction of this CDL into the Phenix package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the conformation dependent library yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In Phenix usage of the CDL can be selected by simply specifying the cdl=True option. This successful implementation paves the way for further aspects of the context-dependence of ideal geometry to be characterized and applied to improve experimental and predictive modelling accuracy.« less

  11. Real-time aircraft structural damage identification with flight condition variations

    NASA Astrophysics Data System (ADS)

    Lew, Jiann-Shiun; Loh, Chin-Hsiung

    2012-04-01

    This paper presents a real-time structural damage identification method for aircraft with flight condition variations. The proposed approach begins by identifying the dynamic models under various test conditions from time-domain input/output data. A singular value decomposition technique is then used to characterize and quantify the parameter uncertainties from the identified models. The uncertainty coordinates, corresponding to the identified principal directions, of the identified models are computed, and the residual errors between the identified uncertainty coordinates and the estimated uncertainty coordinates of the health structure are used to identify damage status. A correlation approach is applied to identify damage type and intensity, based on the difference between the identified parameters and the estimated parameters of the healthy structure. The proposed approach is demonstrated by application to the Benchmark Active Controls Technology (BACT) wind-tunnel model.

  12. Identification of high-affinity P2Y₁₂ antagonists based on a phenylpyrazole glutamic acid piperazine backbone.

    PubMed

    Zech, Gernot; Hessler, Gerhard; Evers, Andreas; Weiss, Tilo; Florian, Peter; Just, Melitta; Czech, Jörg; Czechtizky, Werngard; Görlitzer, Jochen; Ruf, Sven; Kohlmann, Markus; Nazaré, Marc

    2012-10-25

    A series of novel, highly potent P2Y₁₂ antagonists as inhibitors of platelet aggregation based on a phenylpyrazole glutamic acid piperazine backbone is described. Exploration of the structural requirements of the substituents by probing the structure-activity relationship along this backbone led to the discovery of the N-acetyl-(S)-proline cyclobutyl amide moiety as a highly privileged motif. Combining the most favorable substituents led to remarkably potent P2Y₁₂ antagonists displaying not only low nanomolar binding affinity to the P2Y₁₂ receptor but also a low nanomolar inhibition of platelet aggregation in the human platelet rich plasma assay with IC₅₀ values below 50 nM. Using a homology and a three-dimensional quantitative structure-activity relationship model, a binding hypothesis elucidating the impact of several structural features was developed.

  13. Graphene-network-backboned architectures for high-performance lithium storage.

    PubMed

    Gong, Yongji; Yang, Shubin; Liu, Zheng; Ma, Lulu; Vajtai, Robert; Ajayan, Pulickel M

    2013-08-07

    An efficient hydrothermal approach is demonstrated to fabricate a series of graphene-network-backboned hybrid architectures such as MoS₂/graphene and FeOx/graphene, showing high specific surface area, porous structure, and continuous graphene networks. Such unique architectures exhibit a high reversible capacity (about 1100 mA h g⁻¹) for lithium ion batteries. High-rate capabilities of full charge to discharge in 25-45 s with a long cycle life (1500 cycles) are achieved at different rates.

  14. Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone.

    PubMed

    Chang, Hojun; Min, Kyungtaek; Lee, Myungjae; Kang, Minsu; Park, Yeonsang; Cho, Kyung-Sang; Roh, Young-Geun; Hwang, Sung Woo; Jeon, Heonsu

    2016-03-28

    We report the room-temperature lasing action from two-dimensional photonic crystal (PC) structures composed of a passive Si3N4 backbone with an over-coat of CdSe/CdS/ZnS colloidal quantum dots (CQDs) for optical gain. When optically excited, devices lased in dual PC band-edge modes, with the modal dominance governed by the thickness of the CQD over-layer. The demonstrated laser platform should have an impact on future photonic integrated circuits as the on-chip coupling between active and passive components is readily achievable.

  15. Backbone resonance assignments of the micro-RNA precursor binding region of human TRBP.

    PubMed

    Benoit, Matthieu P M H; Plevin, Michael J

    2013-10-01

    TAR-RNA binding protein (TRBP) is a multidomain human protein involved in micro-RNA (miRNA) biogenesis. TRBP is a component of both the Dicer complex, which processes precursor miRNAs, and the RNA-induced silencing complex-loading complex. In addition, TRBP is implicated in the human immunodeficiency virus replication cycle and interferon-protein kinase R activity. TRBP contains 3 double-stranded RNA binding domains the first two of which have been shown to interact with miRNA precursors. Here we present the backbone resonance assignments and secondary structure of residues 19-228 of human TRBP2.

  16. Beyond sex differences: new approaches for thinking about variation in brain structure and function.

    PubMed

    Joel, Daphna; Fausto-Sterling, Anne

    2016-02-19

    In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being.

  17. Correlation between structure and resistivity variations of the live human skull.

    PubMed

    Tang, Chi; You, Fusheng; Cheng, Guang; Gao, Dakuan; Fu, Feng; Yang, Guosheng; Dong, Xiuzhen

    2008-09-01

    A study on correlation between structure and resistivity variations was performed for live adult human skull. The resistivities of 388 skull samples, excised from 48 skull flaps of patients undergoing surgery, were measured at body temperature (36.5 degrees C) using the well-known four-electrode method in the frequency range of 1-4 MHz. According to different structures of the skull samples, all the 388 samples were classified into six categories and measured their resistivities: standard trilayer skull (7943 +/- 1752 ohm x cm, 58 samples), quasi-trilayer skull (14,471 +/- 3061 ohm x cm, 110 samples), standard compact skull (26,546 +/- 5374 ohm x cm, 62 samples), quasi-compact skull (19,824 +/- 3232 ohm x cm, 53 samples), dentate suture skull (5782 +/- 1778 ohm x cm, 41 samples), and squamous suture skull (12747 +/- 4120 ohm x cm, 64 samples). The results showed that the skull resistivities were not homogenous and were significantly influenced by local structural variations. The presence of sutures appeared to decrease the overall resistivity of particular regions largely and dentate suture decreased the resistivity more than squamous suture. The absence of diploe appeared to increase skull resistivity. The percentage on thickness of diploe would be the primary factor in determining the resistivity of the skull sample without suture. From resistivity spectra results, an inverse relationship between skull resistivity and signal frequency was found.

  18. Spatio-temporal variation in the structure of a chromosomal polymorphism zone in the house mouse.

    PubMed

    Medarde, N; López-Fuster, M J; Muñoz-Muñoz, F; Ventura, J

    2012-08-01

    Several long-term temporal analyses of the structure of Robertsonian (Rb) hybrid zones in the western house mouse, Mus musculus domesticus, have been performed. Nevertheless, the detection of gradual or very rapid variations in a zone may be overlooked when the time elapsed between periods of study is too long. The Barcelona chromosomal polymorphism zone of the house mouse covers about 5000, km(2) around the city of Barcelona and is surrounded by 40 chromosome telocentric populations. Seven different metacentrics and mice with diploid numbers between 27 and 40 chromosomes and several fusions in heterozygous state (from one to seven) have been reported. We compare the present (period 2008-2010) and past (period 1996-2000) structure of this zone before examining its dynamics in more detail. Results indicate that there is not a Rb race in this area, which is consistent with the proposal that this zone was probably originated in situ, under a primary intergradation scenario. The lack of individuals with more than five metacentrics in heterozygous state in the current period suggests that selection acted against such mice. By contrast, this situation did not occur for mice with fewer than five fusions in heterozygous condition. Changes in human activity may affect the dynamics of gene flow between subpopulations, thus altering the chromosomal composition of certain sites. Although these local variations may have modified the clinal trend for certain metacentrics, the general staggered structure of the zone has not varied significantly in a decade.

  19. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure.

    PubMed

    Tang, Hao; Dubayah, Ralph

    2017-03-07

    Light-regime variability is an important limiting factor constraining tree growth in tropical forests. However, there is considerable debate about whether radiation-induced green-up during the dry season is real, or an apparent artifact of the remote-sensing techniques used to infer seasonal changes in canopy leaf area. Direct and widespread observations of vertical canopy structures that drive radiation regimes have been largely absent. Here we analyze seasonal dynamic patterns between the canopy and understory layers in Amazon evergreen forests using observations of vertical canopy structure from a spaceborne lidar. We discovered that net leaf flushing of the canopy layer mainly occurs in early dry season, and is followed by net abscission in late dry season that coincides with increasing leaf area of the understory layer. Our observations of understory development from lidar either weakly respond to or are not correlated to seasonal variations in precipitation or insolation, but are strongly related to the seasonal structural dynamics of the canopy layer. We hypothesize that understory growth is driven by increased light gaps caused by seasonal variations of the canopy. This light-regime variability that exists in both spatial and temporal domains can better reveal the drought-induced green-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  20. Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes.

    PubMed

    Cubo, Jorge; Legendre, Pierre; de Ricqlès, Armand; Montes, Laëtitia; de Margerie, Emmanuel; Castanet, Jacques; Desdevises, Yves

    2008-01-01

    The biological features observed in every living organism are the outcome of three sets of factors: historical (inherited by homology), functional (biological adaptation), and structural (properties inherent to the materials with which organs are constructed, and the morphogenetic rules by which they grow). Integrating them should bring satisfactory causal explanations of empirical data. However, little progress has been accomplished in practice toward this goal, because a methodologically efficient tool was lacking. Here we use a new statistical method of variation partitioning to analyze bone growth in amniotes. (1) Historical component. The variation of bone growth rates contains a significant phylogenetic signal, suggesting that the observed patterns are partly the outcome of shared ancestry. (2) Functional causation. High growth rates, although energy costly, may be adaptive (i.e., they may increase survival rates) in taxa showing short growth periods (e.g., birds). In ectothermic amniotes, low resting metabolic rates may limit the maximum possible growth rates. (3) Structural constraint. Whereas soft tissues grow through a multiplicative process, growth of mineralized tissues is accretionary (additive, i.e., mineralization fronts occur only at free surfaces). Bone growth of many amniotes partially circumvents this constraint: it is achieved not only at the external surface of the bone shaft, but also within cavities included in the bone cortex as it grows centrifugally. Our approach contributes to the unification of historicism, functionalism, and structuralism toward a more integrated evolutionary biology.

  1. Beyond sex differences: new approaches for thinking about variation in brain structure and function

    PubMed Central

    Joel, Daphna; Fausto-Sterling, Anne

    2016-01-01

    In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being. PMID:26833844

  2. Condition-dependent variation in the blue-ultraviolet coloration of a structurally based plumage ornament

    PubMed Central

    Keyser, A. J.; Hill, G. E.

    1999-01-01

    After years of investigation into the function of sexually dimorphic ornamental traits, researchers are beginning to understand how bright plumage colour in birds acts as an intraspecific signal. This work has focused primarily on pigment-based ornaments because they are highly variable in patch size, hue and brightness for some species. In contrast, structurally based ornaments have been little studied, in part because they do not appear to be as variable as pigment-based ornaments. We investigated a structurally based plumage ornament in a wild population of blue grosbeaks (Guiraca caerulea), a sexually dimorphic passerine. We report plumage variation that extends into the ultraviolet region of the spectrum. The pattern of covariation between four out of five elements of plumage variation suggests that structurally based ornamentation is pushed towards extreme expression of the trait as predicted by the sexual selection theory. The 'bluest' birds have the highest percentage of blue feathers on the body. These ornamental feathers reflect light maximally at the shortest wavelengths (ultraviolet), with the greatest intensity and the greatest contrast. Age may have some effect on expression of blueness. In addition, plumage variables are correlated with growth bars in tail feathers (a record of nutritional condition during moult in a non-ornamental trait). This suggests that the ornament is partially condition dependent. Thus, blue plumage in male grosbeaks may serve as an honest indicator of age and quality.

  3. Assessing the effects of common variation in the FOXP2 gene on human brain structure

    PubMed Central

    Hoogman, Martine; Guadalupe, Tulio; Zwiers, Marcel P.; Klarenbeek, Patricia; Francks, Clyde; Fisher, Simon E.

    2014-01-01

    The FOXP2 transcription factor is one of the most well-known genes to have been implicated in developmental speech and language disorders. Rare mutations disrupting the function of this gene have been described in different families and cases. In a large three-generation family carrying a missense mutation, neuroimaging studies revealed significant effects on brain structure and function, most notably in the inferior frontal gyrus, caudate nucleus, and cerebellum. After the identification of rare disruptive FOXP2 variants impacting on brain structure, several reports proposed that common variants at this locus may also have detectable effects on the brain, extending beyond disorder into normal phenotypic variation. These neuroimaging genetics studies used groups of between 14 and 96 participants. The current study assessed effects of common FOXP2 variants on neuroanatomy using voxel-based morphometry (VBM) and volumetric techniques in a sample of >1300 people from the general population. In a first targeted stage we analyzed single nucleotide polymorphisms (SNPs) claimed to have effects in prior smaller studies (rs2253478, rs12533005, rs2396753, rs6980093, rs7784315, rs17137124, rs10230558, rs7782412, rs1456031), beginning with regions proposed in the relevant papers, then assessing impact across the entire brain. In the second gene-wide stage, we tested all common FOXP2 variation, focusing on volumetry of those regions most strongly implicated from analyses of rare disruptive mutations. Despite using a sample that is more than 10 times that used for prior studies of common FOXP2 variation, we found no evidence for effects of SNPs on variability in neuroanatomy in the general population. Thus, the impact of this gene on brain structure may be largely limited to extreme cases of rare disruptive alleles. Alternatively, effects of common variants at this gene exist but are too subtle to be detected with standard volumetric techniques. PMID:25013396

  4. Enhanced Laboratory Sensitivity to Variation of the Fine-Structure Constant using Highly Charged Ions

    SciTech Connect

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant {alpha}. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest {alpha} sensitivities seen in atomic systems.

  5. Along strike structural variation in the northern part of the Japan Trench axis region

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Kodaira, S.; Yamashita, M.; Miura, S.; Fujie, G.

    2015-12-01

    Great earthquakes have occurred along the Japan trench subduction zone, and some of them, e.g. Meiji Sanriku earthquake in 1896, could have ruptured the shallow portion of the plate boundary fault similar to the 2011 Tohoku earthquake. Geological/geophysical structure in the vicinity of the trench axis is one of the keys to understand the nature of shallow mega thrust events and tsunamigenesis. We have conducted high resolution seismic surveys in the northern part of the Japan Trench axis region in 38 - 40.5 N to investigate the detailed structure in the trench axis area. Thrust faults and possible slope failures are observed landward of the trench axis, beneath the lowermost landward trench slope. The deformation and evolution styles of the lowermost landward slope show variation along the trench strike. To the south of the survey area in 38 - 39 N, imbricate thrust-and-fold packages is observed but limited within the vicinity of the trench axis. Thickness of the hanging wall sediment is relatively thinner in the lowermost landward slope. These observation could suggest that the lowermost slope has not been well developed in this area. To the north around 40 - 40.5 N, frontal thrusts and imbricate structure are clearly observed on the seismic profiles through ~ 10 - 15 km landward of the trench axis. Thickness of the hanging wall sediment is thicker in this area. The bending-related faults on the subducted plate are generally not located beneath the lowermost slope up to ~ 10 km landward of the trench. These observations suggest that the imbricate structure has been well developed in the last ~ 10 kyr in this area. Around 39.5 N, it is suggested that slope failures have occurred. The trench axis is filled by slump deposits and debris with chaotic acoustic characteristics. Above mentioned variations in the deformation and evolution style in the lowermost landward slope could affect the mechanism of tsunami generation in the northern Japan Trench. The variation on

  6. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.

  7. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics

    NASA Astrophysics Data System (ADS)

    Krokhotin, Andrey; Niemi, Antti J.; Peng, Xubiao

    2013-05-01

    We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.

  8. Exposing Hidden Alternative Backbone Conformations in X-ray Crystallography Using qFit.

    PubMed

    Keedy, Daniel A; Fraser, James S; van den Bedem, Henry

    2015-10-01

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the "flap" regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.

  9. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    SciTech Connect

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; Shehu, Amarda

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.

  10. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    DOE PAGES

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; ...

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechainmore » conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.« less

  11. Exposing Hidden Alternative Backbone Conformations in X-ray Crystallography Using qFit

    PubMed Central

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry

    2015-01-01

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems. PMID:26506617

  12. Interpopulation Variation in Contour Feather Structure Is Environmentally Determined in Great Tits

    PubMed Central

    Broggi, Juli; Gamero, Anna; Hohtola, Esa; Orell, Markku; Nilsson, Jan-Åke

    2011-01-01

    Background The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored. Methodology/Principal Findings We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland) and one southern population in Lund (Sweden). Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu. Conclusions/Significance Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations. PMID:21949798

  13. Effects of temperature variations on guided waves propagating in composite structures

    NASA Astrophysics Data System (ADS)

    Shoja, Siavash; Berbyuk, Viktor; Boström, Anders

    2016-04-01

    Effects of temperature on guided waves propagating in composite materials is a well-known problem which has been investigated in many studies. The majority of the studies is focused on effects of high temperature. Understanding the effects of low temperature has major importance in composite structures and components which are operating in cold climate conditions such as e.g. wind turbines operating in cold climate regions. In this study first the effects of temperature variations on guided waves propagating in a composite plate is investigated experimentally in a cold climate chamber. The material is a common material used to manufacture rotor blades of wind turbines. The temperature range is 25°C to -25°C and effects of temperature variations on amplitude and phase shift of the received signal are investigated. In order to apply the effects of lowering the temperature on the received signal, the Baseline Signal Stretch (BSS) method is modified and used. The modification is based on decomposing the signal into symmetric and asymmetric modes and applying two different stretch factors on each of them. Finally the results obtained based on the new method is compared with the results of application of BSS with one stretch factor and experimental measurements. Comparisons show that an improvement is obtained using the BSS with the mode decomposition method at temperature variations of more than 25°C.

  14. Sensitivity of MR Diffusion Measurements to Variations in Intracellular Structure: Effects of Nuclear Size

    PubMed Central

    Xu, Junzhong; Does, Mark D.; Gore, John C.

    2009-01-01

    Magnetic resonance imaging measurements of the apparent rate of water diffusion in tumors are sensitive to variations in tissue cellularity, which have been shown useful for characterizing tumors and their responses to treatments. However, because of technical limitations on most MRI systems, conventional pulse gradient spin echo (PGSE) methods measure relatively long time scales, during which water molecules may encounter diffusion barriers at multiple spatial scales, including those much greater than typical cell dimensions. As such they cannot distinguish changes on sub-cellular scales from gross changes in cell density. Oscillating gradient spin echo (OGSE) methods have the potential to distinguish effects on restriction at much shorter time and length scales. Both PGSE and OGSE methods have been studied numerically by simulating diffusion in a three-dimensional, multi-compartment tissue model. The results show that conventional measurements with the PGSE method cannot selectively probe variations over short length scales and, therefore, are relatively insensitive to intracellular structure, whereas results using OGSE methods at moderate gradient frequencies are affected by variations in cell nuclear sizes and can distinguish tissues that differ only over sub-cellular length scales. This additional sensitivity suggests that OGSE imaging may have significant advantages over conventional PGSE methods for characterizing tumors. PMID:19205020

  15. New limits on variation of the fine-structure constant using atomic dysprosium.

    PubMed

    Leefer, N; Weber, C T M; Cingöz, A; Torgerson, J R; Budker, D

    2013-08-09

    We report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant α owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of α, competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and 235-MHz transition in 162Dy are measured over the span of two years. The linear variation of α is α·/α=(-5.8±6.9([1σ]))×10(-17)  yr(-1), consistent with zero. The same data are used to constrain the dimensionless parameter kα characterizing a possible coupling of α to a changing gravitational potential. We find that kα=(-5.5±5.2([1σ]))×10(-7), essentially consistent with zero and the best constraint to date.

  16. Spatial Evolution of the Thickness Variations over a CFRP Laminated Structure

    NASA Astrophysics Data System (ADS)

    Davila, Yves; Crouzeix, Laurent; Douchin, Bernard; Collombet, Francis; Grunevald, Yves-Henri

    2017-01-01

    Ply thickness is one of the main drivers of the structural performance of a composite part. For stress analysis calculations (e.g., finite element analysis), composite plies are commonly considered to have a constant thickness compared to the reality (coefficients of variation up to 9% of the mean ply thickness). Unless this variability is taken into account reliable property predictions cannot be made. A modelling approach of such variations is proposed using parameters obtained from a 16-ply quasi-isotropic CFRP plate cured in an autoclave. A discrete Fourier transform algorithm is used to analyse the frequency response of the observed ply and plate thickness profiles. The model inputs, obtained by a mathematical representation of the ply thickness profiles, permit the generation of a representative stratification considering the spatial continuity of the thickness variations that are in good agreement with the real ply profiles spread over the composite part. A residual deformation FE model of the composite plate is used to illustrate the feasibility of the approach.

  17. Noncanonical α/γ Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field.

    PubMed

    Zgarbová, Marie; Jurečka, Petr; Banáš, Pavel; Havrila, Marek; Šponer, Jiří; Otyepka, Michal

    2017-03-23

    The sugar-phosphate backbone of RNA can exist in diverse rotameric substates, giving RNA molecules enormous conformational variability. The most frequent noncanonical backbone conformation in RNA is α/γ = t/t, which is derived from the canonical backbone by a crankshaft motion and largely preserves the standard geometry of the RNA duplex. A similar conformation also exists in DNA, where it has been extensively studied and shown to be involved in DNA-protein interactions. However, the function of the α/γ = t/t conformation in RNA is poorly understood. Here, we present molecular dynamics simulations of several prototypical RNA structures obtained from X-ray and NMR experiments, including canonical and mismatched RNA duplexes, UUCG and GAGA tetraloops, Loop E, the sarcin-ricin loop, a parallel guanine quadruplex, and a viral pseudoknot. The stability of various noncanonical α/γ backbone conformations was analyzed with two AMBER force fields, ff99bsc0χOL3 and ff99bsc0χOL3 with the recent εζOL1 and βOL1 corrections for DNA. Although some α/γ substates were stable with seemingly well-described equilibria, many were unstable in our simulations. Notably, the most frequent noncanonical conformer α/γ = t/t was unstable in both tested force fields. Possible reasons for this instability are discussed. Our work reveals a potentially important artifact in RNA force fields and highlights a need for further force field refinement.

  18. Icosahedral medium-range orders and backbone formation in an amorphous alloy

    NASA Astrophysics Data System (ADS)

    Lee, Mirim; Kim, Hong-Kyu; Lee, Jae-Chul

    2010-12-01

    Analyses of metallic amorphous solids constructed using molecular dynamics (MD) simulations have demonstrated that individual short-range orders (SROs) are linked with neighboring SROs and form various medium-range orders (MROs). These MROs have been observed to have different structural stability depending on their linking patterns. On the basis of the assessment of the structural stability of various MROs, we propose new types of structural organization, namely, icosahedral medium-range orders (I-MROs) and their extended-range order that forms the backbone of amorphous solids. We also discuss why the atomic-scale structure of an amorphous alloy can be more appropriately described in terms of I-MROs, rather than by the degree of short-range ordering as characterized by the fractions of SROs.

  19. Imaging anatomy and variation of vertebral artery and bone structure at craniocervical junction.

    PubMed

    Duan, Shaoyin; Lv, Shaomao; Ye, Feng; Lin, Qingchi

    2009-08-01

    The objective of this article is to display the vertebral artery and bone structure at the craniocervical junction (CJVA and C(0-1-2)) with three-dimensional CT angiography (3DCTA) and identify their anatomic features and variations. Eighty-eight subjects without pathology of vertebral artery (VA) and C(0-1-2) were selected from head-neck CTA examination. 3D images were formed with volume rendering (VR) and multiplanar reconstruction (MPR). On the 3D images, CJVA and C(0-1-2) were measured, and their variations were observed. CJVA goes along C(0-1-2) with five curves, of which three curves are visibly away from C(0-1-2), one is 0.0-8.3 mm away at the second curve with 0.0-11.2 mm in width, another is 0.0-9.2 mm away at the fourth with 2.8-14.8 mm and the other is 0.0-6.2 mm away at the fifth. Statistical comparisons show that there is no significant difference in the measurements between left and right, and that the curves become smaller and farther away from C(0-1-2) with the increase of age. CJVA is not equal in size, with the biggest in the fourth curve and the smallest in the fifth. Statistical comparison shows the left CJVA is larger than the right in the fifth curve. Variations were found on CJVA in 16 cases and on C(1) in 12 cases. The anatomy and variations of CJVA and C(0-1-2) are complicated. It is of vital significance to identify their anatomic features in clinical practice.

  20. Robust classification of protein variation using structural modelling and large-scale data integration

    PubMed Central

    Baugh, Evan H.; Simmons-Edler, Riley; Müller, Christian L.; Alford, Rebecca F.; Volfovsky, Natalia; Lash, Alex E.; Bonneau, Richard

    2016-01-01

    Existing methods for interpreting protein variation focus on annotating mutation pathogenicity rather than detailed interpretation of variant deleteriousness and frequently use only sequence-based or structure-based information. We present VIPUR, a computational framework that seamlessly integrates sequence analysis and structural modelling (using the Rosetta protein modelling suite) to identify and interpret deleterious protein variants. To train VIPUR, we collected 9477 protein variants with known effects on protein function from multiple organisms and curated structural models for each variant from crystal structures and homology models. VIPUR can be applied to mutations in any organism's proteome with improved generalized accuracy (AUROC .83) and interpretability (AUPR .87) compared to other methods. We demonstrate that VIPUR's predictions of deleteriousness match the biological phenotypes in ClinVar and provide a clear ranking of prediction confidence. We use VIPUR to interpret known mutations associated with inflammation and diabetes, demonstrating the structural diversity of disrupted functional sites and improved interpretation of mutations associated with human diseases. Lastly, we demonstrate VIPUR's ability to highlight candidate variants associated with human diseases by applying VIPUR to de novo variants associated with autism spectrum disorders. PMID:26926108

  1. Structural variation of the feeder dikes of explosive eruptions in Miyakejima, Japan

    NASA Astrophysics Data System (ADS)

    Geshi, Nobuo

    2013-04-01

    Explosive eruptions of basaltic volcanoes exhibit wide variation about its explosivity, from stable lava effusion, mild strombolian eruption, to plinian eruption. Complex behavior of magma within the conduit may control the style of eruption activities, and the structure of the conduit controls the behavior of the ascending magma through the conduit. Existence of external water (ground water) may also affect the explosivity of the eruption. In the caldera wall of Miyakejima, Japan, we can observe various type of the cross section of feeder dikes with its surface products. The new caldera wall exhibits the cross section of a basaltic stratovolcano with numerous feeder and non-feeder dikes. Some feeder dikes connect directly to the lava flow. Some feeder dikes connect to the base of scoria cone with 100- 200 meters across and several tens meters high. Size and internal structure of the scoria cone indicates the mild strombolian activity. Uppermost ten meters of these feeder dikes shows upward-flaring (widen the dike thickness to the surface), which infers the magmatic erosion of the dike wall by explosive activities. More explosive activities formed some diatremes. The depth of these diatreme reaches 100 meters from the original ground surface. Typically, these diatremes connect to very-flat scoria cone and wide-spread thick scoria-fall deposit, which indicates the explosive magmatic activities. The sizes of these flat scoria cones are comparable to that of the scoria cones which was built by sub-plinian eruption (e.g., Izu-Oshima 1986). Upward flaring structure of the diatreme indicates the effective mechanical erosion of the dike wall by the explosive activities. The caldera wall also exhibits some diatremes which formed by the phreatomagmatic eruptions (Suoana diatreme). The wider feeder dikes for lager diatreme suggests the higher magmatic overpressure for the explosive activities in comparison to the less-explosive feeder dikes. Comparison of the structures of

  2. Temporal variations in crustal scattering structure near Parkfield, California, using receiver functions

    NASA Astrophysics Data System (ADS)

    Audet, P.

    2009-12-01

    The accurate determination of crustal velocity structure in the region surrounding a fault is an essential component in the investigation of fault processes since it yields important information on the composition and state of the crust (e.g. anisotropy, pore-fluid pressure). In addition, temporal variations in crustal architecture (i.e. 4-D imaging) can provide key constraints on the conditions under which they occur. One method that provides accurate point measurements of crustal velocity structure is based on the characterization of body-wave scattering beneath a broadband station using a collection of teleseismic events, i.e. the so-called receiver function method. Although spatial sampling of the crust is biased by event distribution, coverage is fairly regular in time with more than 100, M>5.5 occurring annually. The repeatability in raypath coverage is similar to successive structural studies; consequently, this technique has the potential to resolve temporal changes in crustal velocity structure. Here we investigate time variations in teleseismic receiver functions using 11 years of data at station PKD near Parkfield, California, by stacking Power Spectral Density (PSD) functions within 12-month windows. We find that PSD levels for both radial and transverse components drop by ~5 dB following the San Simeon, 2003 (M6.5) earthquake, with a persistent reduction in background levels of ~2 dB after the Parkfield, 2004 (M6) earthquake, corresponding to an estimated decrease in shear-wave velocity of ~0.12 and ~0.06 km s-1, respectively, or equivalent negative changes in Poisson’s ratio of ~0.02 and ~0.01. Our results suggest that the perturbation originates at middle to lower crustal levels, possibly caused by the redistribution of crustal pore-fluids, consistent with increased and sustained tremor activity near Parkfield following both earthquakes. These results show that we can resolve temporal variations in crustal scattering structure near a major

  3. Implementation of Speed Variation in the Structural Dynamic Assessment of Turbomachinery Flow-Path Components

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael

    2013-01-01

    During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two

  4. Implementation of Speed Variation in the Structural Dynamic Assessment of Turbomachinery Flow-Path Components

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael K.

    2013-01-01

    During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two.

  5. Understanding device-structure-induced variations in open-circuit voltage for organic photovoltaics.

    PubMed

    Wang, Zhiping; Uemura, Yu; Zhou, Ying; Miyadera, Tetsuhiko; Azumi, Reiko; Yoshida, Yuji; Chikamatsu, Masayuki

    2015-05-27

    We investigate the structural influences on the device performance, especially on open-circuit voltage (V(OC)) in squaraine (SQ)/fullerene (C60) bilayer cells. Simply changing the SQ thickness could lead to 40% variation in V(OC) from 0.62 to 0.86 V. The ionization potential (IP) of SQ films and recombination at the anode surface as well as donor/acceptor (D/A) interface sensitively vary with film thicknesses, which account for the shifts in V(OC). The anode recombination can be effectively suppressed by preventing direct contact between C60 and the anode with a buffer layer, delivering an elevated V(OC). Through polarized infrared-multiple-angle incidence resolution spectroscopy measurement, the molecular structure of SQ films is found to gradually evolve from lying-down on indium-tin oxide substrates with noncentrosymmetric orientation at low thicknesses to random structure at high thicknesses. The different molecular orientation may yield different strengths of electronic coupling, which affects the charge-carrier recombination and thus V(OC). Moreover, the oriented SQ films would spontaneously compose aligned dipole moments at the D/A interface because of the strong dipolar effects in SQ molecules identified by density functional theory calculations, whereas no aligned interfacial dipole moment exists in the random structure. The resulting interfacial dipole moments would form an electric field at the D/A interface, leading to variations in the IP and thus impacting V(OC). Our findings demonstrate that V(OC) in organic photovoltaic cells is critically associated with the molecular orientation that affects the charge-carrier recombination and interfacial dipole alignment, which should be seriously taken into consideration for the design of organic molecules and optimization of the cell efficiency.

  6. Biogenic sedimentary structures on a Korean mud flat: Spring-neap variations

    NASA Astrophysics Data System (ADS)

    Lee, Youn-Ho; Koh, Chul-Hwan

    Biogenic sedimentary structures created by dominant benthic animals of a mud flat were investigated in a small embayment at Panweol on the west coast of Korea. Burrows were replicated using the resin casting method on a sufficiently large scale to evaluate their variations statistically. The size and shape of burrows and other traces varied with locations and tidal phases. Burrows of the upper-intertidal crabs Helice tridens sheni and Ilyoplax dentimerosa were T- or I-shaped, vertical and deep whereas those of the mid-intertidal crab Macrophthalmus japonicus were U-shaped, oblique and shallow. The upper-intertidal polychaete Perineris aibuhitensis, a subsurface feeder, had sinuous and highly-branched burrows while the mid-internal one Periserrula leucophryna, a surface feeder, had vertical burrows without subsurface branches. Variations of crab burrows with tidal phases were distinct: The burrows of both H. tridens sheni and M. japonicus were significantly deeper and wider during neap tides than during spring tides. Sediment mounds were common in the upper intertidal zone, while crawling and feeding traces such as trails, trackways and cheliped scrapings were more prominent in the mid-intertidal zone. These traces were also observed in the upper intertidal zone during spring tides when surface sediments became watery. The size of the sediment mounds varied, being largest during neap tides. These biogenic sedimentary structures observed at Panweol were distinctly different from those found near Inchon only 50 km away, probably due to differences in hydrology and sedimentology.

  7. Genetic variation and structure in remnant population of critically endangered Melicope zahlbruckneri

    USGS Publications Warehouse

    Raji, J. A.; Atkinson, Carter T.

    2016-01-01

    The distribution and amount of genetic variation within and between populations of plant species are important for their adaptability to future habitat changes and also critical for their restoration and overall management. This study was initiated to assess the genetic status of the remnant population of Melicope zahlbruckneri–a critically endangered species in Hawaii, and determine the extent of genetic variation and diversity in order to propose valuable conservation approaches. Estimated genetic structure of individuals based on molecular marker allele frequencies identified genetic groups with low overall differentiation but identified the most genetically diverse individuals within the population. Analysis of Amplified Fragment Length Polymorphic (AFLP) marker loci in the population based on Bayesian model and multivariate statistics classified the population into four subgroups. We inferred a mixed species population structure based on Bayesian clustering and frequency of unique alleles. The percentage of Polymorphic Fragment (PPF) ranged from 18.8 to 64.6% for all marker loci with an average of 54.9% within the population. Inclusion of all surviving M. zahlbruckneri trees in future restorative planting at new sites are suggested, and approaches for longer term maintenance of genetic variability are discussed. To our knowledge, this study represents the first report of molecular genetic analysis of the remaining population of M. zahlbruckneri and also illustrates the importance of genetic variability for conservation of a small endangered population.

  8. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.

    PubMed

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-11-01

    The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations.

  9. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone

    PubMed Central

    Doucet, Christine M.; Esmery, Nina; de Saint-Jean, Maud; Antonny, Bruno

    2015-01-01

    Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests

  10. Importance of backbone angles versus amino acid configurations in peptide vibrational Raman optical activity spectra

    NASA Astrophysics Data System (ADS)

    Herrmann, Carmen; Ruud, Kenneth; Reiher, Markus

    2008-01-01

    In this work, we investigate whether the differential scattering of right- and left-circularly polarized light in peptide Raman optical activity spectra are uniquely dominated by the backbone conformation, or whether the configurations of the individual amino acid also play a significant role. This is achieved by calculating Raman optical activity spectra using density functional theory for four structurally related peptides with a common backbone conformation, but with different sequences of amino acid configurations. Furthermore, the ROA signals of the amide normal modes are decomposed into contributions from groups of individual atoms. It is found that the amino acid configuration has a considerable influence on the ROA peaks in the amide I, II, and III regions, although the local decomposition reveals that the side-chain atoms only contribute to those peaks directly in the case of the amide II vibrations. Furthermore, small changes in the amide normal modes may lead to large and irregular modifications in the ROA intensity differences, making it difficult to establish transferable ROA intensity differences even for structurally similar vibrations.

  11. RNA-Redesign: a web server for fixed-backbone 3D design of RNA.

    PubMed

    Yesselman, Joseph D; Das, Rhiju

    2015-07-01

    RNA is rising in importance as a design medium for interrogating fundamental biology and for developing therapeutic and bioengineering applications. While there are several online servers for design of RNA secondary structure, there are no tools available for the rational design of 3D RNA structure. Here we present RNA-Redesign (http://rnaredesign.stanford.edu), an online 3D design tool for RNA. This resource utilizes fixed-backbone design to optimize the sequence identity and nucleobase conformations of an RNA to match a desired backbone, analogous to fundamental tools that underlie rational protein engineering. The resulting sequences suggest thermostabilizing mutations that can be experimentally verified. Further, sequence preferences that differ between natural and computationally designed sequences can suggest whether natural sequences possess functional constraints besides folding stability, such as cofactor binding or conformational switching. Finally, for biochemical studies, the designed sequences can suggest experimental tests of 3D models, including concomitant mutation of base triples. In addition to the designs generated, detailed graphical analysis is presented through an integrated and user-friendly environment.

  12. UNCOVERING THE ORIGINS OF SPIRAL STRUCTURE BY MEASURING RADIAL VARIATION IN PATTERN SPEEDS

    SciTech Connect

    Meidt, Sharon E.; Rand, Richard J.; Merrifield, Michael R.

    2009-09-01

    Current theories of spiral and bar structure predict a variety of pattern speed behaviors, calling for detailed, direct measurement of the radial variation of pattern speeds. Our recently developed Radial Tremaine-Weinberg (TWR) method allows this goal to be achieved for the first time. Here, we present TWR spiral pattern speed estimates for M101, IC 342, NGC 3938, and NGC 3344 in order to investigate whether spiral structure is steady or winding, whether spirals are described by multiple pattern speeds, and the relation between bar and spiral speeds. Where possible, we interpret our pattern speeds estimates according to the resonance radii associated with each (established with the disk angular rotation), and compare these to previous determinations. By analyzing the high-quality H I and CO data cubes available for these galaxies, we show that it is possible to determine directly multiple pattern speeds within these systems, and hence identify the characteristic signatures of the processes that drive the spiral structure. Even this small sample of galaxies reveals a surprisingly complex taxonomy, with the first direct evidence for the presence of resonant coupling of multiple patterns found in some systems, and the measurement of a simple single-pattern speed in others. Overall, this study demonstrates that we are now in a position to uncover more of the apparently complex physics that lies behind spiral structure.

  13. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds.

    PubMed

    Kijas, James W; Townley, David; Dalrymple, Brian P; Heaton, Michael P; Maddox, Jillian F; McGrath, Annette; Wilson, Peter; Ingersoll, Roxann G; McCulloch, Russell; McWilliam, Sean; Tang, Dave; McEwan, John; Cockett, Noelle; Oddy, V Hutton; Nicholas, Frank W; Raadsma, Herman

    2009-01-01

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability.

  14. Resistance of Feynman diagrams and the percolation backbone dimension.

    PubMed

    Janssen, H K; Stenull, O; Oerding, K

    1999-06-01

    We present an alternative view of Feynman diagrams for the field theory of random resistor networks, in which the diagrams are interpreted as being resistor networks themselves. This simplifies the field theory considerably as we demonstrate by calculating the fractal dimension D(B) of the percolation backbone to three loop order. Using renormalization group methods we obtain D(B)=2+epsilon/21-172epsilon(2)/9261+2epsilon(3)[-74 639+22 680zeta(3)]/4 084 101, where epsilon=6-d with d being the spatial dimension and zeta(3)=1.202 057... .

  15. The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs.

    PubMed

    Williams, Richard J; Purves, Drew W

    2011-09-01

    The structure of food webs, complex networks of interspecies feeding interactions, plays a crucial role in ecosystem resilience and function, and understanding food web structure remains a central problem in ecology. Previous studies have shown that key features of empirical food webs can be reproduced by low-dimensional "niche" models. Here we examine the form and variability of food web niche structure by fitting a probabilistic niche model to 37 empirical food webs, a much larger number of food webs than used in previous studies. The model relaxes previous assumptions about parameter distributions and hierarchy and returns parameter estimates for each species in each web. The model significantly outperforms previous niche model variants and also performs well for several webs where a body-size-based niche model performs poorly, implying that traits other than body size are important in structuring these webs' niche space. Parameter estimates frequently violate previous models' assumptions: in 19 of 37 webs, parameter values are not significantly hierarchical, 32 of 37 webs have nonuniform niche value distributions, and 15 of 37 webs lack a correlation between niche width and niche position. Extending the model to a two-dimensional niche space yields networks with a mixture of one- and two-dimensional niches and provides a significantly better fit for webs with a large number of species and links. These results confirm that food webs are strongly niche-structured but reveal substantial variation in the form of the niche structuring, a result with fundamental implications for ecosystem resilience and function.

  16. Variation in CACNA1C is Associated with Amygdala Structure and Function in Adolescents

    PubMed Central

    Sheridan, Margaret A.; Drury, Stacy S.; Esteves, Kyle C.; Walsh, Kate; Koenen, Karestan C.; McLaughlin, Katie A.

    2015-01-01

    Abstract Objective: Genome-wide association studies have identified allelic variation in CACNA1C as a risk factor for multiple psychiatric disorders associated with limbic system dysfunction, including bipolar disorder, schizophrenia, and depression. The CACNA1C gene codes for a subunit of L-type voltage-gated calcium channels, which modulate amygdala function. Although CACNA1C genotype appears to be associated with amygdala morphology and function in adults with and without psychopathology, whether genetic variation influences amygdala structure and function earlier in development has not been examined. Methods: In this first investigation of the neural correlates of CACNA1C in young individuals, we examined associations between two single nucleotide polymorphisms in CACNA1C (rs1006737 and rs4765914) with amygdala volume and activation during an emotional processing task in 58 adolescents and young adults 13–20 years of age. Results: Minor (T) allele carriers of rs4765914 exhibited smaller amygdala volume than major (C) allele homozygotes (β=−0.33, p=0.006). Furthermore, minor (A) allele homozygotes of rs1006737 exhibited increased blood–oxygen-level-dependent (BOLD) signal in the amygdala when viewing negative (vs. neutral) stimuli (β=0.29, p=0.040) and decreased BOLD signal in the amygdala when instructed to downregulate their emotional response to negative stimuli (β=−0.38, p=0.009). Follow-up analyses indicated that childhood trauma did not moderate the associations of CACNA1C variation with amygdala structure and function (ps>0.170). Conclusions: Findings indicate that CACNA1C-related differences in amygdala structure and function are present by adolescence. However, population stratification is a concern, given the racial/ethnic heterogeneity of our sample, and our findings do not have direct clinical implications currently. Nevertheless, these results suggest that developmentally informed research can begin to shed light on the time course by

  17. Spectrophotometry of zonal cloud structure variations on Jupiter, 1988-1993

    NASA Astrophysics Data System (ADS)

    Tejfel, V. G.; Vdovichenko, V. D.; Sinyaeva, N. V.; Mosina, S. A.; Gajsina, W. N.; Kharitonova, G. A.; Aksenov, A. N.

    1994-04-01

    Global changes of zonal cloud structure on Jupiter have been observed and analyzed from data obtained with a 1-m telescope and a low-dispersion spectrograph in the spectral range wavelengths 400-680 nm, and with a 70-cm telescope and planetary three-channel spectrometer in the spectral range wavelengths 320-1100 nm during each Jovian apparition from 1988 to 1992. Variations of the observed meridional intensity profiles and relative spectrophotometric gradients are described as well as the changes of absolute spectral reflectivity of five main belts on Jupiter (North and South Equatorial belts, North and South Tropical zones, and Equatorial region). Some peculiarities in the behavior of spectrophotometric gradients may be interpreted as a result of increased Rayleigh scattering in the gas layer over the deeper effective cloud boundary within main dark belts. The polar limb darkening varies only slightly with wavelength and it may be considered as evidence for dark aerosols in the stratosphere at high latitudes. The intensity of the methane absorption band centered at 8860 A shows an increase from the equator to temperate latitudes throughout the 1988-1992 period, despite the large variations in belt and zone reflectivities observed during this period in the southern hemisphere.

  18. Population genetic structure of the invasive red swamp crayfish in China revealed by ITS1 variation.

    PubMed

    Liu, Gang; Zhou, Lizhi; Li, Xiaohua; Lu, Dimiao

    2013-12-01

    The invasive red swamp crayfish (Procambarus clarkii) provides a valuable opportunity for studying the population genetics of invasive species that disperse rapidly. We analyzed the population genetic structure among 12 populations of the crayfish in China based on the internal transcribed spacer 1 (ITS1) region. The ITS1 of 815 bp aligned across 34 haplotypes; the average GC content was 53.9%. AMOVA showed that intrapopulation variation (95.26%) was much higher than interpopulation variation (4.74%). Genetic differentiation between the Taiwan and mainland populations (Fst = 0.160) was moderate, but the Chinese population (Taiwan and the mainland combined) and an American population were highly differentiated (0.682 and 0.977, respectively). Gene flow between the Chinese and American populations (Nm = 0.006 and 0.117, respectively) was lower than that between Taiwan and the mainland (1.536). Phylogenetic trees showed that three major genealogical clusters matched the sample locations well, suggesting that genetic differentiation is created largely by geographic isolation.

  19. A preliminary investigation into the genetic variation and population structure of Taenia hydatigena from Sardinia, Italy.

    PubMed

    Boufana, Belgees; Scala, Antonio; Lahmar, Samia; Pointing, Steve; Craig, Philip S; Dessì, Giorgia; Zidda, Antonella; Pipia, Anna Paola; Varcasia, Antonio

    2015-11-30

    Cysticercosis caused by the metacestode stage of Taenia hydatigena is endemic in Sardinia. Information on the genetic variation of this parasite is important for epidemiological studies and implementation of control programs. Using two mitochondrial genes, the cytochrome c oxidase subunit 1 (cox1) and the NADH dehydrogenase subunit 1 (ND1) we investigated the genetic variation and population structure of Cysticercus tenuicollis from Sardinian intermediate hosts and compared it to that from other hosts from various geographical regions. The parsimony cox1 network analysis indicated the existence of a common lineage for T. hydatigena and the overall diversity and neutrality indices indicated demographic expansion. Using the cox1 sequences, low pairwise fixation index (Fst) values were recorded for Sardinian, Iranian and Palestinian sheep C. tenuicollis which suggested the absence of genetic differentiation. Using the ND1 sequences, C. tenuicollis from Sardinian sheep appeared to be differentiated from those of goat and pig origin. In addition, goat C. tenuicollis were genetically different from adult T. hydatigena as indicated by the statistically significant Fst value. Our results are consistent with biochemical and morphological studies that suggest the existence of variants of T. hydatigena.

  20. Cranial shape and size variation in human evolution: structural and functional perspectives.

    PubMed

    Bruner, Emiliano

    2007-12-01

    A GLIMPSE INTO MODERN PALEOANTHROPOLOGY: In the last decades, paleoanthropology has been deeply modified, changing from a descriptive and historical science to a more quantitative and analytical discipline. The covariation of multiple traits is investigated to study the evolutionary changes of the underlying anatomical models, mostly through the introduction of digital biomedical imaging procedures and of computed geometrical analyses supported by multivariate statistics. FUNCTIONAL CRANIOLOGY: The evolution of the human cranium is consequently considered in terms of functional and structural relationships between its components, largely influenced by the allometric variations associated with the increase in the relative cranial capacity. In the human genus, the changes in the face, base, and neurocranium are characterised by a mosaic variation, in which adaptations, secondary consequences, and stochastic factors concur to generate a set of anatomical possibilities and constraints. SYSTEMIC PERSPECTIVES TO THE EVOLUTION OF THE HUMAN CRANIAL MORPHOLOGY: Concepts like morphological modularity, anatomical integration, and heterochrony represent key issues in the development of the current human evolutionary studies.

  1. Implication of Spatial and Temporal Variations of the Fine-Structure Constant

    NASA Astrophysics Data System (ADS)

    Feng, Sze-Shiang; Yan, Mu-Lin

    2016-02-01

    Temporal and spatial variations of fine-structure constant α ≡ e2/hbar c in cosmology have been reported in analysis of combination Keck and VLT data. This paper studies the variations based on consideration of basic spacetime symmetry in physics. Both laboratory α 0 and distant α z are deduced from relativistic spectrum equations of atoms (e.g., hydrogen atom) defined in inertial reference systems. When Einstein's Λ≠0, the metric of local inertial reference systems in SM of cosmology is Beltrami metric instead of Minkowski, and the basic spacetime symmetry has to be de Sitter (dS) group. The corresponding special relativity (SR) is dS-SR. A model based on dS-SR is suggested. Comparing the predictions on α-varying with the data, the parameters are determined. The best-fit dipole mode in α's spatial varying is reproduced by this dS-SR model. α-varyings in whole sky are also studied. The results are generally in agreement with the estimations of observations. The main conclusion is that the phenomenon of α-varying cosmologically with dipole mode dominating is due to the de Sitter (or anti de Sitter) spacetime symmetry with a Minkowski point in an extended special relativity called de Sitter invariant special relativity (dS-SR) developed by Dirac-Inönü-Wigner-Gürsey-Lee-Lu-Zou-Guo.

  2. Clonal population structure and genetic variation in sand-shinnery oak,Quercus havardii (Fagaceae).

    PubMed

    Mayes, S G; McGinley, M A; Werth, C R

    1998-11-01

    We investigated clonal population structure and genetic variation in Quercus havardii (sand-shinnery oak), a deciduous rhizomatous shrub that dominates vegetation by forming uninterrupted expanses of ground cover over sandy deposits on the plains of western Texas, western Oklahoma, and eastern New Mexico. Isozyme electrophoresis (15 loci coding 11 enzymes) was used to recognize and map clones arrayed in a 2000-m transect (50-m sample intervals) and a 200 × 190 m grid (10-m sample intervals). Ninety-four clones were discovered, 38 in the transect and 56 in the grid, resulting in an estimated density of ∼15 clones per hectare. Clones varied greatly in size (∼100-7000 m), shape, and degree of fragmentation. The larger clones possessed massive interiors free of intergrowth by other clones, while the smaller clones varied in degree of intergrowth. The population maintained substantial levels of genetic variation (P = 60%, A = 2.5, H(exp) = 0.289) comparable to values obtained for other Quercus spp. and for other long-lived perennials. The population was outcrossing as evidenced by conformance of most loci to Hardy-Weinberg expected genotype proportions, although exceptions indicated a limited degree of population substructuring. These data indicate that despite apparent reproduction primarily through vegetative means, Q. havardii possesses conventional attributes of a sexual population.

  3. Genomic structural variation contributes to phenotypic change of industrial bioethanol yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Ke; Zhang, Li-Jie; Fang, Ya-Hong; Jin, Xin-Na; Qi, Lei; Wu, Xue-Chang; Zheng, Dao-Qiong

    2016-03-01

    Genomic structural variation (GSV) is a ubiquitous phenomenon observed in the genomes of Saccharomyces cerevisiae strains with different genetic backgrounds; however, the physiological and phenotypic effects of GSV are not well understood. Here, we first revealed the genetic characteristics of a widely used industrial S. cerevisiae strain, ZTW1, by whole genome sequencing. ZTW1 was identified as an aneuploidy strain and a large-scale GSV was observed in the ZTW1 genome compared with the genome of a diploid strain YJS329. These GSV events led to copy number variations (CNVs) in many chromosomal segments as well as one whole chromosome in the ZTW1 genome. Changes in the DNA dosage of certain functional genes directly affected their expression levels and the resultant ZTW1 phenotypes. Moreover, CNVs of large chromosomal regions triggered an aneuploidy stress in ZTW1. This stress decreased the proliferation ability and tolerance of ZTW1 to various stresses, while aneuploidy response stress may also provide some benefits to the fermentation performance of the yeast, including increased fermentation rates and decreased byproduct generation. This work reveals genomic characters of the bioethanol S. cerevisiae strain ZTW1 and suggests that GSV is an important kind of mutation that changes the traits of industrial S. cerevisiae strains.

  4. Genetic variation and population structure in Scandinavian wolverine (Gulo gulo) populations.

    PubMed

    Walker, C W; Vilà, C; Landa, A; Lindén, M; Ellegren, H

    2001-01-01

    Wolverine (Gulo gulo) numbers in Scandinavia were significantly reduced during the early part of the century as a result of predator removal programmes and hunting. Protective legislation in both Sweden and Norway in the 1960s and 1970s has now resulted in increased wolverine densities in Scandinavia. We report here the development of 15 polymorphic microsatellite markers in wolverine and their use to examine the population sub-structure and genetic variability in free-ranging Scandinavian wolverine populations as well as in a sample of individuals collected before 1970. Significant subdivision between extant populations was discovered, in particular for the small and isolated population of southern Norway, which represents a recent recolonization. Overall genetic variability was found to be lower than previously reported for other mustelids, with only two to five alleles per locus and observed heterozygosities (H(O)) ranging from 0.269 to 0.376 across the examined populations, being lowest in southern Norway. Analysis of the mitochondrial DNA control region revealed no variation throughout the surveyed populations. As the historical sample did not show higher levels of genetic variability, our results are consistent with a reduction in the genetic variation in Scandinavian wolverines that pre-dates the demographic bottleneck observed during the last century. The observed subdivision between populations calls for management caution when issuing harvest quotas, especially for the geographically isolated south Norwegian population.

  5. Population Structure in a Comprehensive Genomic Data Set on Human Microsatellite Variation

    PubMed Central

    Pemberton, Trevor J.; DeGiorgio, Michael; Rosenberg, Noah A.

    2013-01-01

    Over the past two decades, microsatellite genotypes have provided the data for landmark studies of human population-genetic variation. However, the various microsatellite data sets have been prepared with different procedures and sets of markers, so that it has been difficult to synthesize available data for a comprehensive analysis. Here, we combine eight human population-genetic data sets at the 645 microsatellite loci they share in common, accounting for procedural differences in the production of the different data sets, to assemble a single data set containing 5795 individuals from 267 worldwide populations. We perform a systematic analysis of genetic relatedness, detecting 240 intra-population and 92 inter-population pairs of previously unidentified close relatives and proposing standardized subsets of unrelated individuals for use in future studies. We then augment the human data with a data set of 84 chimpanzees at the 246 loci they share in common with the human samples. Multidimensional scaling and neighbor-joining analyses of these data sets offer new insights into the structure of human populations and enable a comparison of genetic variation patterns in chimpanzees with those in humans. Our combined data sets are the largest of their kind reported to date and provide a resource for use in human population-genetic studies. PMID:23550135

  6. Variations in Crystalline Structures and Electrical Properties of Single Crystalline Boron Nitride Nanosheets.

    PubMed

    Aldalbahi, Ali; Zhou, Andrew Feng; Feng, Peter

    2015-11-13

    We report the studies of (1) the basic mechanism underlying the formation of defect-free, single crystalline boron nitride nanosheets (BNNSs) synthesized using pulsed laser plasma deposition (PLPD) technique, (2) the variation in the crystalline structure at the edges of the hexagonal boron nitride (h-BN) nanosheets, and (3) the basic electrical properties related to the BNNSs tunneling effect and electrical breakdown voltage. The nanoscale morphologies of BNNSs are characterized using scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM). The results show that each sample consisted of a number of transparent BNNSs that partially overlapped one another. Varying the deposition duration yielded different thicknesses of sample but did not affect the morphology, structure, and thickness of individual BNNSs pieces. Analysis of the SEM and HRTEM data revealed changes in the spatial period of the B3-N3 hexagonal structures and the interlayer distance at the edge of the BNNSs, which occurred due to the limited number of atomic layers and was confirmed further by x-ray diffraction (XRD) study. The experimental results clearly indicate that the values of the electrical conductivities of the super-thin BNNSs and the effect of temperature relied strongly on the direction of observation.

  7. Variations in Crystalline Structures and Electrical Properties of Single Crystalline Boron Nitride Nanosheets

    NASA Astrophysics Data System (ADS)

    Aldalbahi, Ali; Zhou, Andrew Feng; Feng, Peter

    2015-11-01

    We report the studies of (1) the basic mechanism underlying the formation of defect-free, single crystalline boron nitride nanosheets (BNNSs) synthesized using pulsed laser plasma deposition (PLPD) technique, (2) the variation in the crystalline structure at the edges of the hexagonal boron nitride (h-BN) nanosheets, and (3) the basic electrical properties related to the BNNSs tunneling effect and electrical breakdown voltage. The nanoscale morphologies of BNNSs are characterized using scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM). The results show that each sample consisted of a number of transparent BNNSs that partially overlapped one another. Varying the deposition duration yielded different thicknesses of sample but did not affect the morphology, structure, and thickness of individual BNNSs pieces. Analysis of the SEM and HRTEM data revealed changes in the spatial period of the B3-N3 hexagonal structures and the interlayer distance at the edge of the BNNSs, which occurred due to the limited number of atomic layers and was confirmed further by x-ray diffraction (XRD) study. The experimental results clearly indicate that the values of the electrical conductivities of the super-thin BNNSs and the effect of temperature relied strongly on the direction of observation.

  8. Geographic variation and genetic structure in the Bahama Oriole (Icterus northropi), a critically endangered synanthropic species

    PubMed Central

    Person, Carl; Hayes, William K.

    2015-01-01

    Bird species may exhibit unexpected population structuring over small distances, with gene flow restricted by geographic features such as water or mountains. The Bahama Oriole (Icterus northropi) is a critically endangered, synanthropic island endemic with a declining population of fewer than 300 individuals. It now remains only on Andros Island (The Bahamas), which is riddled with waterways that past studies assumed did not hinder gene flow. We examined 1,858 base pairs of mitochondrial DNA sequenced from four gene regions in 14 birds (roughly 5% of the remaining population) found on the largest land masses of Andros Island (North Andros and Mangrove Cay/South Andros). We sought to discern genetic structuring between the remaining subpopulations and its relationship to current conservation concerns. Four unique haplotypes were identified, with only one shared between the two subpopulations. Nucleotide and haplotype diversity were higher for the North Andros subpopulation than for the Mangrove Cay/South Andros subpopulation. Analysis of molecular variance (AMOVA) yielded a Wright’s fixation index (Fst) of 0.60 (PFst = 0.016), with 40.2% of the molecular variation explained by within-population differences and 59.8% by among-population differences. Based on the mitochondrial regions examined in this study, we suggest the extant subpopulations of Bahama Oriole exhibit significant population structuring over short distances, consistent with some other non-migratory tropical songbird species. PMID:26644974

  9. New limit on the present temporal variation of the fine structure constant

    SciTech Connect

    Peik, E.; Lipphardt, B.; Schnatz, H.; Schneider, T.; Tamm, Chr.; Karshenboim, S.G.

    2005-05-05

    A comparison of different atomic frequency standards over time can be used to perform a measurement of the present value of the temporal derivative of the fine structure constant {alpha} in a model-independent way without assumptions on constancy or variability of other parameters. We have measured an optical transition frequency at 688 THz in Yb+ with a cesium atomic clock at two times separated by 2.8 years and find that a variation of this frequency can be excluded within a 1{sigma} relative uncertainty of 4.4{center_dot}10-15 yr-1. Combined with recently published values for the constancy of other transition frequencies this measurement provides a limit on the present variability of {alpha} at the level of 2.0{center_dot}10-15 yr-1. Constraints are also derived for the drift rates of other fundamental constants like the electron/proton mass ratio and the proton g-factor.

  10. Spatial and temporal variations in the age structure of Arctic sea ice

    USGS Publications Warehouse

    Belchansky, G.I.; Douglas, D.C.; Platonov, N.G.

    2005-01-01

    Spatial and temporal variations in the age structure of Arctic sea ice are investigated using a new reverse chronology algorithm that tracks ice-covered pixels to their location and date of origin based on ice motion and concentration data. The Beaufort Gyre tends to harbor the oldest (>10 years old) sea ice in the western Arctic while direct ice advection pathways toward the Transpolar Drift Stream maintain relatively young (10 years old (10+ year age class) were observed during 1989-2003. Since the mid-1990s, losses to the 10+ year age class lacked compensation by recruitment due to a prior depletion of all mature (6-10 year) age classes. Survival of the 1994 and 1996-1998 sea ice generations reestablished most mature age classes, and thereby the potential to increase extent of the 10+ year age class during the mid-2000s.

  11. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast

    PubMed Central

    Jeffares, Daniel C.; Jolly, Clemency; Hoti, Mimoza; Speed, Doug; Shaw, Liam; Rallis, Charalampos; Balloux, Francois; Dessimoz, Christophe; Bähler, Jürg; Sedlazeck, Fritz J.

    2017-01-01

    Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases. PMID:28117401

  12. A phylogenetic backbone for Bivalvia: an RNA-seq approach.

    PubMed

    González, Vanessa L; Andrade, Sónia C S; Bieler, Rüdiger; Collins, Timothy M; Dunn, Casey W; Mikkelsen, Paula M; Taylor, John D; Giribet, Gonzalo

    2015-02-22

    Bivalves are an ancient and ubiquitous group of aquatic invertebrates with an estimated 10 000-20 000 living species. They are economically significant as a human food source, and ecologically important given their biomass and effects on communities. Their phylogenetic relationships have been studied for decades, and their unparalleled fossil record extends from the Cambrian to the Recent. Nevertheless, a robustly supported phylogeny of the deepest nodes, needed to fully exploit the bivalves as a model for testing macroevolutionary theories, is lacking. Here, we present the first phylogenomic approach for this important group of molluscs, including novel transcriptomic data for 31 bivalves obtained through an RNA-seq approach, and analyse these data with published genomes and transcriptomes of other bivalves plus outgroups. Our results provide a well-resolved, robust phylogenetic backbone for Bivalvia with all major lineages delineated, addressing long-standing questions about the monophyly of Protobranchia and Heterodonta, and resolving the position of particular groups such as Palaeoheterodonta, Archiheterodonta and Anomalodesmata. This now fully resolved backbone demonstrates that genomic approaches using hundreds of genes are feasible for resolving phylogenetic questions in bivalves and other animals.

  13. Long-term forecasting of internet backbone traffic.

    PubMed

    Papagiannaki, Konstantina; Taft, Nina; Zhang, Zhi-Li; Diot, Christophe

    2005-09-01

    We introduce a methodology to predict when and where link additions/upgrades have to take place in an Internet protocol (IP) backbone network. Using simple network management protocol (SNMP) statistics, collected continuously since 1999, we compute aggregate demand between any two adjacent points of presence (PoPs) and look at its evolution at time scales larger than 1 h. We show that IP backbone traffic exhibits visible long term trends, strong periodicities, and variability at multiple time scales. Our methodology relies on the wavelet multiresolution analysis (MRA) and linear time series models. Using wavelet MRA, we smooth the collected measurements until we identify the overall long-term trend. The fluctuations around the obtained trend are further analyzed at multiple time scales. We show that the largest amount of variability in the original signal is due to its fluctuations at the 12-h time scale. We model inter-PoP aggregate demand as a multiple linear regression model, consisting of the two identified components. We show that this model accounts for 98% of the total energy in the original signal, while explaining 90% of its variance. Weekly approximations of those components can be accurately modeled with low-order autoregressive integrated moving average (ARIMA) models. We show that forecasting the long term trend and the fluctuations of the traffic at the 12-h time scale yields accurate estimates for at least 6 months in the future.

  14. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide.

    PubMed

    Salguero-Gómez, Roberto; Jones, Owen R; Jongejans, Eelke; Blomberg, Simon P; Hodgson, David J; Mbeau-Ache, Cyril; Zuidema, Pieter A; de Kroon, Hans; Buckley, Yvonne M

    2016-01-05

    The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast-slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast-slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments.

  15. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide

    PubMed Central

    Salguero-Gómez, Roberto; Jones, Owen R.; Jongejans, Eelke; Blomberg, Simon P.; Hodgson, David J.; Mbeau-Ache, Cyril; Zuidema, Pieter A.; de Kroon, Hans; Buckley, Yvonne M.

    2016-01-01

    The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast–slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast–slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments. PMID:26699477

  16. Modeling Subducting Slabs: Structural Variations due to Thermal Models, Latent Heat Feedback, and Thermal Parameter

    NASA Astrophysics Data System (ADS)

    Marton, F. C.

    2001-12-01

    The thermal, mineralogical, and buoyancy structures of thermal-kinetic models of subducting slabs are highly dependent upon a number of parameters, especially if the metastable persistence of olivine in the transition zone is investigated. The choice of starting thermal model for the lithosphere, whether a cooling halfspace (HS) or plate model, can have a significant effect, resulting in metastable wedges of olivine that differ in size by up to two to three times for high values of the thermal parameter (ǎrphi). Moreover, as ǎrphi is the product of the age of the lithosphere at the trench, convergence rate, and dip angle, slabs with similar ǎrphis can show great variations in structures as these constituents change. This is especially true for old lithosphere, as the lithosphere continually cools and thickens with age for HS models, but plate models, with parameters from Parson and Sclater [1977] (PS) or Stein and Stein [1992] (GDH1), achieve a thermal steady-state and constant thickness in about 70 My. In addition, the latent heats (q) of the phase transformations of the Mg2SiO4 polymorphs can also have significant effects in the slabs. Including q feedback in models raises the temperature and reduces the extent of metastable olivine, causing the sizes of the metastable wedges to vary by factors of up to two times. The effects of the choice of thermal model, inclusion and non-inclusion of q feedback, and variations in the constituents of ǎrphi are investigated for several model slabs.

  17. Low Molecular Weight Oligomers with Aromatic Backbone as Efficient Nonviral Gene Vectors.

    PubMed

    Luan, Chao-Ran; Liu, Yan-Hong; Zhang, Ji; Yu, Qing-Ying; Huang, Zheng; Wang, Bing; Yu, Xiao-Qi

    2016-05-04

    A series of oligomers were synthesized via ring-opening polymerization. Although the molecular weights of these oligomers are only ∼2.5 kDa, they could efficiently bind and condense DNA into nanoparticles. These oligomers gave comparable transfection efficiency (TE) to PEI 25 kDa, while their TE could even increase with the presence of serum, and up to 65 times higher TE than PEI was obtained. The excellent serum tolerance was also confirmed by TEM, flow cytometry, and BSA adsorption assay. Moreover, structure-activity relationship studies revealed some interesting factors. First, oligomers containing aromatic rings in the backbone showed better DNA binding ability. These materials could bring more DNA cargo into the cells, leading to much better TE. Second, the isomerism of the disubstituted phenyl group on the oligomer backbone has large effect on the transfection. The ortho-disubstituted ones gave at least 1 order of magnitude higher TE than meta- or para-disubstituted oligomers. Gel electrophoresis involving DNase and heparin indicated that the difficulty to release DNA might contribute to the lower TE of the latter. Such clues may help us to design novel nonviral gene vectors with high efficiency and biocompatibility.

  18. The Nanomechanical Properties of Lactococcus lactis Pili Are Conditioned by the Polymerized Backbone Pilin

    PubMed Central

    Castelain, Mickaël; Duviau, Marie-Pierre; Canette, Alexis; Schmitz, Philippe; Loubière, Pascal; Cocaign-Bousquet, Muriel; Piard, Jean-Christophe; Mercier-Bonin, Muriel

    2016-01-01

    Pili produced by Lactococcus lactis subsp. lactis are putative linear structures consisting of repetitive subunits of the major pilin PilB that forms the backbone, pilin PilA situated at the distal end of the pilus, and an anchoring pilin PilC that tethers the pilus to the peptidoglycan. We determined the nanomechanical properties of pili using optical-tweezers force spectroscopy. Single pili were exposed to optical forces that yielded force-versus-extension spectra fitted using the Worm-Like Chain model. Native pili subjected to a force of 0–200 pN exhibit an inextensible, but highly flexible ultrastructure, reflected by their short persistence length. We tested a panel of derived strains to understand the functional role of the different pilins. First, we found that both the major pilin PilB and sortase C organize the backbone into a full-length organelle and dictate the nanomechanical properties of the pili. Second, we found that both PilA tip pilin and PilC anchoring pilin were not essential for the nanomechanical properties of pili. However, PilC maintains the pilus on the bacterial surface and may play a crucial role in the adhesion- and biofilm-forming properties of L. lactis. PMID:27010408

  19. Optimization of Protein Backbone Dihedral Angles by Means of Hamiltonian Reweighting

    PubMed Central

    2016-01-01

    Molecular dynamics simulations depend critically on the accuracy of the underlying force fields in properly representing biomolecules. Hence, it is crucial to validate the force-field parameter sets in this respect. In the context of the GROMOS force field, this is usually achieved by comparing simulation data to experimental observables for small molecules. In this study, we develop new amino acid backbone dihedral angle potential energy parameters based on the widely used 54A7 parameter set by matching to experimental J values and secondary structure propensity scales. In order to find the most appropriate backbone parameters, close to 100 000 different combinations of parameters have been screened. However, since the sheer number of combinations considered prohibits actual molecular dynamics simulations for each of them, we instead predicted the values for every combination using Hamiltonian reweighting. While the original 54A7 parameter set fails to reproduce the experimental data, we are able to provide parameters that match significantly better. However, to ensure applicability in the context of larger peptides and full proteins, further studies have to be undertaken. PMID:27559757

  20. Backbone dynamics of the monomeric lambda repressor denatured state ensemble under nondenaturing conditions.

    PubMed

    Chugha, Preeti; Oas, Terrence G

    2007-02-06

    Oxidizing two native methionine residues predominantly populates the denatured state of monomeric lambda repressor (MetO-lambdaLS) under nondenaturing conditions. NMR was used to characterize the secondary structure and dynamics of MetO-lambdaLS in standard phosphate buffer. 13Calpha and 1Halpha chemical shift indices reveal a region of significant helicity between residues 9 and 29. This helical content is further supported by the observation of medium-range amide NOEs. The remaining residues do not exhibit significant helicity as determined by NMR. We determined 15N relaxation parameters for 64 of 85 residues at 600 and 800 MHz. There are two distinct regions of reduced flexibility, residues 8-32 in the N-terminal third and residues 50-83 in the C-terminal third. The middle third, residues 33-50, has greater flexibility. We have analyzed the amplitude of the backbone motions in terms of the physical properties of the amino acids and conclude that conformational restriction of the backbone MetO-lambdaLS is due to nascent helix formation in the region corresponding to native helix 1. The bulkiness of amino acid residues in the C-terminal third leads to the potential for hydrophobic interactions, which is suggested by chemical exchange detected by the difference in spectral density J(0) at the two static magnetic fields. The more flexible middle region is the result of a predominance of small side chains in this region.

  1. Variations in Seismic Structure of the Incoming Juan de Fuca Plate Along the Cascadia Deformation Front

    NASA Astrophysics Data System (ADS)

    Canales, J.; Carton, H. D.; Carbotte, S. M.; Nedimovic, M. R.

    2013-12-01

    The Cascadia subduction zone displays regional-scale variations in its structural characteristics, rupture zones of paleo-earthquakes, intra-slab seismicity and episodic tremor and slip, and submarine morphology. In Summer 2012 we conducted an active-source multichannel seismic (MCS) reflection and wide-angle ocean bottom seismometer (OBS) study of the Juan de Fuca plate to investigate the north-south structural segmentation of the incoming plate and its role in contributing to regional variations in Cascadia subduction zone processes. Here we present traveltime P-wave tomography results from a combined MCS+OBS ~400-km-long seismic profile extending from offshore Northern Washington to offshore Central Oregon, ~10 km seaward from the Cascadia deformation front. Data were acquired with a single 8-km-long, 636-hydrophone streamer (shot spacing of 37.5 m), and with 26 OBSs spaced ~15 km apart (shot spacing of 500 m). Preliminary results from the southern 120-km section of the profile indicate that offshore Oregon, sediment thickness varies between 2.4 and 3.0 km. In this region at latitude 45°N, the profile crosses a 9-m.y.-old pseudofault formed at the paleo Juan de Fuca Ridge. Across the pseudofault, P-wave velocities in the upper ~2 km of the igneous crust are 3-4% lower than average, indicating localized increased porosity and hydration. However there is no evidence for such anomaly extending deeper into the lower crust. Along the examined section of the profile, crustal thickness is relatively homogeneous (6 km) but mantle velocities vary laterally between 7.5 km/s and 8.2 km/s at lateral scales of ~30 km. These results thus suggest along-margin variations in the state of alteration of the sub-oceanic mantle prior to subduction, although further data analysis is needed to asses their spatial correlation with the segmentation inherited from the ridge axis. Results from the complete profile will be presented at the meeting.

  2. Magma redox and structural controls on iron isotope variations in Earth's mantle and crust

    NASA Astrophysics Data System (ADS)

    Dauphas, N.; Roskosz, M.; Alp, E. E.; Neuville, D. R.; Hu, M. Y.; Sio, C. K.; Tissot, F. L. H.; Zhao, J.; Tissandier, L.; Médard, E.; Cordier, C.

    2014-07-01

    The heavy iron isotopic composition of Earth's crust relative to chondrites has been explained by vaporization during the Moon-forming impact, equilibrium partitioning between metal and silicate at core-mantle-boundary conditions, or partial melting and magma differentiation. The latter view is supported by the observed difference in the iron isotopic compositions of MORBS and peridotites. However, the precise controls on iron isotope variations in igneous rocks remain unknown. Here, we show that equilibrium iron isotope fractionation is mainly controlled by redox (Fe3+/Fetot ratio) and structural (e.g., polymerization) conditions in magmas. We measured, for the first time, the mean force constants of iron bonds in silicate glasses by synchrotron Nuclear Resonant Inelastic X-ray Scattering (NRIXS, also known as Nuclear Resonance Vibrational Spectroscopy - NRVS, or Nuclear Inelastic Scattering - NIS). The same samples were studied by conventional Mössbauer and X-ray Absorption Near Edge Structure (XANES) spectroscopy. The NRIXS results reveal a +0.2 to +0.4‰ equilibrium fractionation on 56Fe/54Fe ratio between Fe2+ and Fe3+ end-members in basalt, andesite, and dacite glasses at magmatic temperatures. These first measurements can already explain ∼1/3 of the iron isotopic shift measured in MORBs relative to their source. Further work will be required to investigate how pressure, temperature, and structural differences between melts and glasses affect equilibrium fractionation factors. In addition, large fractionation is also found between rhyolitic glass and commonly occurring oxide and silicate minerals. This fractionation reflects mainly changes in the coordination environment of Fe2+ in rhyolites relative to less silicic magmas and mantle minerals, as also seen by XANES. We provide a new calibration of XANES features vs. Fe3+/Fetot ratio determinations by Mössbauer to estimate Fe3+/Fetot ratio in situ in glasses of basaltic, andesitic, dacitic, and rhyolitic

  3. Sequence-dependent Structural Variation in DNA Undergoing Intrahelical Inspection by the DNA glycosylase MutM

    SciTech Connect

    Sung, Rou-Jia; Zhang, Michael; Qi, Yan; Verdine, Gregory L.

    2012-08-31

    MutM, a bacterial DNA-glycosylase, plays a critical role in maintaining genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions to initiate base excision DNA repair. The task faced by MutM of locating rare oxoG residues embedded in an overwhelming excess of undamaged bases is especially challenging given the close structural similarity between oxoG and its normal progenitor, guanine (G). MutM actively interrogates the DNA to detect the presence of an intrahelical, fully base-paired oxoG, whereupon the enzyme promotes extrusion of the target nucleobase from the DNA duplex and insertion into the extrahelical active site. Recent structural studies have begun to provide the first glimpse into the protein-DNA interactions that enable MutM to distinguish an intrahelical oxoG from G; however, these initial studies left open the important question of how MutM can recognize oxoG residues embedded in 16 different neighboring sequence contexts (considering only the 5'- and 3'-neighboring base pairs). In this study we set out to understand the manner and extent to which intrahelical lesion recognition varies as a function of the 5'-neighbor. Here we report a comprehensive, systematic structural analysis of the effect of the 5'-neighboring base pair on recognition of an intrahelical oxoG lesion. These structures reveal that MutM imposes the same extrusion-prone ('extrudogenic') backbone conformation on the oxoG lesion irrespective of its 5'-neighbor while leaving the rest of the DNA relatively free to adjust to the particular demands of individual sequences.

  4. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations.

    PubMed

    Lu, Biao; Vayssade, Muriel; Miao, Yong; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Drelich, Audrey; Egles, Christophe; Pezron, Isabelle

    2016-09-01

    Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels.

  5. Electronic states in low-dimensional nano-structures: Comparison between the variational and plane wave basis method

    NASA Astrophysics Data System (ADS)

    Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin

    2017-04-01

    A comparison is made between the plane wave basis and variational method. Within the framework of effective-mass approximation theory, the variational and plane wave basis method are used to calculate ground state energy and ground state binding energy in low-dimensional nano-structures under the external electric field. Comparing calculation results, the donor binding energies of ground state display the consistent trend, both of them are strongly dependent on the quantum size, impurity position and external electric field. However, the impurity ground state energy calculated using variational method may be larger than the real value and it results in the smaller binding energy for variational method. In addition, the binding energy is more sensitive to the external electric field for the variational method, which can be seen more clearly from Stark shift.

  6. Time variation of the proton-electron mass ratio and the fine structure constant with a runaway dilaton

    SciTech Connect

    Chiba, Takeshi; Kobayashi, Tatsuo; Yamaguchi, Masahide; Yokoyama, Jun'ichi

    2007-02-15

    Recent astrophysical observations indicate that the proton-electron mass ratio and the fine structure constant have gone through nontrivial time evolution. We discuss their time variation in the context of a dilaton runaway scenario with gauge coupling unification at the string scale M{sub s}. We show that the choice of adjustable parameters allows them to fit the same order magnitude of both variations and their (opposite) signs in such a scenario.

  7. Large-scale variation in lithospheric structure along and across the Kenya rift

    USGS Publications Warehouse

    Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.

    1991-01-01

    The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.

  8. Hygroscopic movements in Geraniaceae: the structural variations that are responsible for coiling or bending.

    PubMed

    Abraham, Yael; Elbaum, Rivka

    2013-07-01

    The family Geraniaceae is characterized by a beak-like fruit, consisting of five seeds appended by a tapering awn. The awns exhibit coiling or bending hygroscopic movement as part of the seed dispersal strategy. Here we explain the variation in the hygroscopic reaction based on structural principles. We examined five representative species from three genera: Erodium, Geranium, and Pelargonium. Using X-ray diffraction, and electron and polarized light microscopy, we measured the cellulose microfibril angles in relation to the cell and cellulose helix axes. The behavior of separated single cells during dehydration was also examined. A bi-layered structure characterizes all the representative genera studied, with a hygroscopically contracting inner layer, and a stiff outer layer. We found that the cellulose arrangement in the inner layer is responsible for the type of awn deformation (coiling or bending). In three of the five awns examined, we identified an additional coiling outer sublayer, which adds coiling deformation to the awn. We divide the movements into three types: bending, coiling, and coiled-bending. All movement types are found in the Geranium genus. These characteristics are of importance for understanding the evolution of seed dispersal mechanisms in the Geraniaceae family.

  9. Temporal Variation in Genetic Diversity and Structure of a Lotic Population of Burkholderia (Pseudomonas) cepacia

    PubMed Central

    Wise, M. G.; McArthur, J. V.; Wheat, C.; Shimkets, L. J.

    1996-01-01

    The genetic structure and temporal patterns of genetic diversity in a population of Burkholderia (Pseudomonas) cepacia, isolated from a southeastern blackwater stream, were investigated by multilocus enzyme electrophoresis. Allelic variation in seven structural gene loci was monitored at a single stream location at 0, 6, 12, and 24 h and at 2, 4, 8, 16, and 32 days. Over the length of the study, 217 isolates were collected, from which 65 unique electrophoretic types (ETs) were identified. Most of these ETs were present at only one or two time periods and were considered transients; however, one resident ET was particularly abundant (64 of the 217 isolates [29.4%]) and was found at all time points except day 32. The mean genetic diversity of the entire population was 0.520, and the index of association (a measure of multilocus linkage disequilibrium) was 1.33. These results, taken in conjunction with a previous study focusing on spatial patterns of genetic diversity in lotic B. cepacia, show that these bacterial populations exhibit greater variability among sites than within a site over time, suggesting relative stability over short time periods. PMID:16535308

  10. A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations

    NASA Astrophysics Data System (ADS)

    Michel, Jean-Claude; Suquet, Pierre

    2016-05-01

    In 2003 the authors proposed a model-reduction technique, called the Nonuniform Transformation Field Analysis (NTFA), based on a decomposition of the local fields of internal variables on a reduced basis of modes, to analyze the effective response of composite materials. The present study extends and improves on this approach in different directions. It is first shown that when the constitutive relations of the constituents derive from two potentials, this structure is passed to the NTFA model. Another structure-preserving model, the hybrid NTFA model of Fritzen and Leuschner, is analyzed and found to differ (slightly) from the primal NTFA model (it does not exhibit the same variational upper bound character). To avoid the "on-line" computation of local fields required by the hybrid model, new reduced evolution equations for the reduced variables are proposed, based on an expansion to second order (TSO) of the potential of the hybrid model. The coarse dynamics can then be entirely expressed in terms of quantities which can be pre-computed once for all. Roughly speaking, these pre-computed quantities depend only on the average and fluctuations per phase of the modes and of the associated stress fields. The accuracy of the new NTFA-TSO model is assessed by comparison with full-field simulations. The acceleration provided by the new coarse dynamics over the full-field computations (and over the hybrid model) is then spectacular, larger by three orders of magnitude than the acceleration due to the sole reduction of unknowns.

  11. Neutrons reveal how nature uses structural themes and variation in biological regulation

    NASA Astrophysics Data System (ADS)

    Trewhella, Jill

    2006-11-01

    Healthy cellular function requires tight regulation of a multitude of bio-molecular interactions and processes, often in response to external stimuli. In achieving this regulation, nature uses a number of ‘second messengers’ that are released inside cells in response to first messengers, such as hormones that bind to the cell surface. Divalent calcium and cyclic nucleotides, like cAMP, are among nature's second messengers that bind to receptor proteins inside cells order to regulate the activities of various targets, including many protein kinases. Kinases are enzymes that catalyze the attachment of phosphate groups to proteins in order to modulate their functions. We have been using neutron contrast variation and small-angle solution scattering to study the interactions of the second messenger receptor proteins and their regulatory targets in order to understand the structural basis for these complex processes that use a number of common structural motifs to accomplish highly regulated function. Our most recent work has focused on the different isoforms of the cAMP-dependent protein kinase and the muscle regulatory complex troponin.

  12. Dipole Structure of Interannual Variations in Summertime Tropical Cyclone Activity over East Asia.

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Hong; Ho, Chang-Hoi; Sui, Chung-Hsiung; Park, Seon Ki

    2005-12-01

    The present study examines variations in summertime (July September) tropical cyclone (TC) activity over East Asia during the period 1951 2003. To represent TC activity, a total of 853 TC best tracks for the period were converted to TC passage frequencies (TPFs) within 5° × 5° latitude longitude grids; TPFs are defined as the percentage values obtained by dividing the number of TC appearances in each grid box by the total number of TCs each year. Empirical orthogonal function analysis of the TPF showed three leading modes: two tropical modes that represent the long-term trend and the relationship with ENSO and one midlatitude mode that oscillates between south of Korea and southeast of Japan with an interannual time scale. The latter proved to be the most remarkable climatic fluctuation of summertime TC activity in the midlatitudes and is referred to as the East Asian dipole pattern (EADP) in this paper.Anomalous atmospheric flows directly connected to the EADP are an enhanced anticyclonic (cyclonic) circulation centering around Japan when the TPF is high south of Korea (southeast of Japan), thereby showing an equivalent barotropic structure in the entire troposphere. This regional circulation anomaly varies in conjunction with the zonally oriented quasi-stationary Rossby wave train in the upper troposphere. This wave train is meridionally trapped in the vicinity of the summer-mean jet stream; therefore, the mean jet stream alters its internal meandering structure according to the phase of the wave train.

  13. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    SciTech Connect

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of

  14. Towards inferring elastic structural variations from Earth's response to surface mass loading

    NASA Astrophysics Data System (ADS)

    Martens, H. R.; Simons, M.; Rivera, L. A.; Owen, S. E.

    2015-12-01

    We explore the sensitivity of surface mass loading displacement response to perturbations in elastic structure, with the goal to refine profiles of elastic moduli and density through the crust and upper mantle. Examples of surface mass loads include tidal and non-tidal ocean loads, atmospheric loads and hydrological loads. Using software developed in-house (LoadDef), we derive sensitivity kernels for Love numbers and load Green's functions (LGFs) using calculus of variations and finite difference methods. Perturbations to the two elastic moduli and density exhibit unique LGF sensitivity patterns, retaining the possibility that the material parameters may be independently constrained given a spatially distributed set of sufficiently accurate loading response observations. To further elucidate the ability to invert for structure in a particular region, a thorough investigation into model resolution must also be performed. We garner a more palpable sense for the effects of structural variations on the response to surface mass loading by calculating and comparing sets of predicted ocean tidal loading (OTL) displacement responses across a global network of land-based locations, generated from convolutions of an ocean tide model with LGFs derived from a variety of reference Earth models. We find that discrepancies between predictions for the M2 harmonic differ by less than 0.2 mm at over 95% of the locations considered, a value generally exceeded, albeit not substantially, by current observational and forward modeling errors. Although predicted discrepancies can reach 2 mm or more at some coastal locations, errors in the ocean tide models and convolution algorithms are also largest near the coasts. As a case study, we examine the residuals between Global Positioning System (GPS) observations and modeled predictions of OTL response across the South American continent. A comparison of ocean models suggests that a common mode (mean displacement) accounts for a dominant

  15. Constraining the Variation of the Fine-structure Constant with Observations of Narrow Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10-5, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (- 0.59 ± 0.55) × 10-5 in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10-5, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (- 0.47 ± 0.53) × 10-5. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (- 0.01 ± 0.26) × 10-5. We conclude that spectroscopic measurements of quasar absorption lines are not yet capable of

  16. Living in isolation – population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink)

    PubMed Central

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-01-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential. PMID:26380690

  17. Living in isolation - population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink).

    PubMed

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-09-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.

  18. Along-strike variation in subducting plate velocity induced by along-strike variation in overriding plate structure: Insights from 3D numerical models

    NASA Astrophysics Data System (ADS)

    Rodríguez-González, Juan; Billen, Magali I.; Negredo, Ana M.; Montesi, Laurent G. J.

    2016-10-01

    Subduction dynamics can be understood as the result of the balance between driving and resisting forces. Previous work has traditionally regarded gravitational slab pull and viscous mantle drag as the main driving and resistive forces for plate motion respectively. However, this paradigm fails to explain many of the observations in subduction zones. For example, subducting plate velocity varies significantly along-strike in many subduction zones and this variation is not correlated to the age of subducting lithosphere. Here we present three-dimensional and time-dependent numerical models of subduction. We show that along-strike variations of the overriding plate thermal structure can lead to along-strike variations in subducting plate velocity. In turn, velocity variations lead to significant migration of the Euler pole over time. Our results show that the subducting plate is slower beneath the colder portion of the overriding plate due to two related mechanisms. First, the mantle wedge beneath the colder portion of the overriding plate is more viscous, which increases mantle drag. Second, where the mantle wedge is more viscous, hydrodynamic suction increases, leading to a lower slab dip. Both factors contribute to decreasing subducting plate velocity in the region; therefore, if the overriding plate is not uniform, the resulting velocity varies significantly along-strike, which causes the Euler pole to migrate closer to the subducting plate. We present a new mechanism to explain observations of subducting plate velocity in the Cocos and Nazca plates. These results shed new light on the balance of forces that control subduction dynamics and prove that future studies should take into consideration the three-dimensional structure of the overriding plate.

  19. Oxygen K edge scattering from bulk comb diblock copolymer reveals extended, ordered backbones above lamellar order-disorder transition

    DOE PAGES

    Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.; ...

    2016-12-14

    The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc12-b-pNte21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODT corresponds tomore » loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.« less

  20. Oxygen K edge scattering from bulk comb diblock copolymer reveals extended, ordered backbones above lamellar order-disorder transition

    SciTech Connect

    Kortright, Jeffrey Barrett; Sun, Jing; Spencer, Ryan K.; Jiang, Xi; Zuckermann, Ronald N.

    2016-12-14

    The evolution of molecular morphology in bulk samples of comb diblock copolymer pNdc12-b-pNte21 across the lamellar order-disorder transition (ODT) is studied using resonant x-ray scattering at the oxygen K edge, with the goal of determining whether the molecules remain extended or collapse above the ODT. The distinct spectral resonances of carbonyl oxygen on the backbone and ether oxygen in the pNte side chains combine with their different site symmetry within the molecule to yield strong differences in bulk structural sensitivity at all temperatures. Comparison with simple models for the disordered phase clearly reveals that disordering at the ODT corresponds to loss of positional order of molecules with extended backbones that retain orientational order, rather than backbone collapse into a locally isotropic disordered phase. This conclusion is facilitated directly by the distinct structural sensitivity at the two resonances. Lastly, we discuss the roles of depolarized scattering in enhancing this sensitivity, and background fluorescence in limiting dynamic range, in oxygen resonant scattering.

  1. Influence of the vertical structure of the atmosphere on the seasonal variation of precipitable water and greenhouse effect

    SciTech Connect

    Bony, S.; Duvel, J.P.

    1994-06-01

    By using satellite observations and European Centre for Medium Range Weather Forecasts (ECMWF) analyses, we study the seasonal variations of the precipitable water and the greenhouse effect, defined as the normalized difference between the longwave flux emitted at the surface and that emergent at the top of the atmosphere. Results show a strong systematic influence of the vertical structure of the atmosphere on geographical and seasonal variations of both precipitable water and greenhouse effect. Over ocean, in middle and high latitudes, the seasonal variation of the mean temperature lapse rate in the troposphere leads to large seasonal phase lags between greenhouse effect and precipitable water. By contrast, the seasonal variation of the clear-sky greenhouse effect over tropical oceans is mainly driven by the total atmospheric transmittance and thus by precipitable water variations. Over land, the seasonal variations of the tropospheric lapse rate acts to amplify the radiative impact of water vapor changes, giving a strong seasonal variation of the greenhouse effect. Over tropical land regions, monsoon activity generates a seasonal phase lag between surface temperature and relative humidity variations that gives a seasonal lag of about 2 months between the surface temperature and the clear-sky greenhouse effect. Generally, the cloudiness amplifies clear-sky tendencies. Finally, as an illustration, obtained results are used to evaluate the general circulation model of the Laboratoire de Meteorologie Dynamique.

  2. Geographic variation in plant community structure of salt marshes: species, functional and phylogenetic perspectives.

    PubMed

    Guo, Hongyu; Chamberlain, Scott A; Elhaik, Eran; Jalli, Inder; Lynes, Alana-Rose; Marczak, Laurie; Sabath, Niv; Vargas, Amy; Więski, Kazimierz; Zelig, Emily M; Pennings, Steven C

    2015-01-01

    In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in

  3. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires

    NASA Astrophysics Data System (ADS)

    Davies, G. M.; Domènech, R.; Gray, A.; Johnson, P. C. D.

    2015-09-01

    Temperate peatland wildfires are of significant environmental concern but information on their environmental effects is lacking. We assessed variation in burn severity and fuel consumption within and between wildfires that burnt British moorlands in 2011 and 2012. We adapted the Composite Burn Index (pCBI) to provide semi-quantitative estimates of burn severity. Pre- and post-fire surface (shrubs and graminoids) and ground (litter, moss, duff) fuel loads associated with large wildfires were assessed using destructive sampling and analysed using a Generalised Linear Mixed Model (GLMM). Consumption during wildfires was compared with published estimates of consumption during prescribed burns. Burn severity and fuel consumption were related to fire weather, assessed using the Canadian Fire Weather Index System (FWI System), and pre-fire fuel structure. pCBI varied 1.6 fold between, and up to 1.7 fold within, wildfires. pCBI was higher where moisture codes of the FWI System indicated drier fuels. Spatial variation in pre- and post-fire fuel load accounted for a substantial proportion of the variance in fuel loads. Average surface fuel consumption was a linear function of pre-fire fuel load. Average ground fuel combustion completeness could be predicted by the Buildup Index. Carbon release ranged between 0.36 and 1.00 kg C m-2. The flammability of ground fuel layers may explain the higher C release-rates seen for wildfires in comparison to prescribed burns. Drier moorland community types appear to be at greater risk of severe burns than blanket-bog communities.

  4. Geographic Variation in Plant Community Structure of Salt Marshes: Species, Functional and Phylogenetic Perspectives

    PubMed Central

    Guo, Hongyu; Chamberlain, Scott A.; Elhaik, Eran; Jalli, Inder; Lynes, Alana-Rose; Marczak, Laurie; Sabath, Niv; Vargas, Amy; Więski, Kazimierz; Zelig, Emily M.; Pennings, Steven C.

    2015-01-01

    In general, community similarity is thought to decay with distance; however, this view may be complicated by the relative roles of different ecological processes at different geographical scales, and by the compositional perspective (e.g. species, functional group and phylogenetic lineage) used. Coastal salt marshes are widely distributed worldwide, but no studies have explicitly examined variation in salt marsh plant community composition across geographical scales, and from species, functional and phylogenetic perspectives. Based on studies in other ecosystems, we hypothesized that, in coastal salt marshes, community turnover would be more rapid at local versus larger geographical scales; and that community turnover patterns would diverge among compositional perspectives, with a greater distance decay at the species level than at the functional or phylogenetic levels. We tested these hypotheses in salt marshes of two regions: The southern Atlantic and Gulf Coasts of the United States. We examined the characteristics of plant community composition at each salt marsh site, how community similarity decayed with distance within individual salt marshes versus among sites in each region, and how community similarity differed among regions, using species, functional and phylogenetic perspectives. We found that results from the three compositional perspectives generally showed similar patterns: there was strong variation in community composition within individual salt marsh sites across elevation; in contrast, community similarity decayed with distance four to five orders of magnitude more slowly across sites within each region. Overall, community dissimilarity of salt marshes was lowest on the southern Atlantic Coast, intermediate on the Gulf Coast, and highest between the two regions. Our results indicated that local gradients are relatively more important than regional processes in structuring coastal salt marsh communities. Our results also suggested that in

  5. Decadal-Scale Variations in Eastern Pacific Thermocline Structure from Soledad Basin, Baja California

    NASA Astrophysics Data System (ADS)

    Levi, C.; van Geen, A.; Ortiz, J. D.; Zheng, Y.; Marchitto, T. M.; Dean, W. E.; Carriquiry, J.

    2004-12-01

    Soledad Basin, a semi-enclosed basin on the Pacific margin of southern Baja California at 25oN, is ideally located to document past variations of ocean/atmosphere interactions responding to the Pacific Decadal Oscillation (PDO) and the El Nino-Southern Oscillation (ENSO). Very high sedimentation rates (~108 cm/kyr; van Geen et al., Paleoceanography, v. 8, no. 4, 2003) combined with low bottow-water oxygen levels have prevented sediment bioturbation throughout the Holocene, setting the stage for high-resolution paleoclimatic reconstructions in this key climatic area. Current studies of this site focus on the combination of a 210Pb-dated multicore and 14C-dated gravity and piston cores. Available data include a 1-cm resolution diffuse spectral reflectance record, indicative of diagenetic processes linked to productivity (Ortiz et al., Geology, v. 32, no. 6, 2004) and Mg/Ca ratios for several planktonic foraminifera species. Mg/Ca results for two shallow-dwelling species in the multicore indicate little change in sea surface temperature (+/-1.1 deg C) over the mean value of 23 deg C observed over the past two centuries. In contrast, variations of Mg/Ca ratios for a deeper-dwelling species suggest considerably larger temperature variations of +/-1.8 deg C with respect to the mean value of 17.5 deg C at the depth habitat of this species. This suggests fluctuations in the temperature, and therefore nutrient content, of thermocline waters upwelling toward the surface at this site without any appreciable changes in upwelling. Periods of low subsurface temperatures in the water column inferred from Mg/Ca correspond to darker sediment bands, suggesting a connection between the structure of the thermocline, the supply of nutrients to the photic zone, and surface productivity. This interpretation is supported by elevated authigenic Mo concentrations in those same dark bands of 30-40 mg/kg. The presentation will include a comparison of these results with instrumental and other

  6. Structure-adaptive CBCT reconstruction using weighted total variation and Hessian penalties.

    PubMed

    Shi, Qi; Sun, Nanbo; Sun, Tao; Wang, Jing; Tan, Shan

    2016-09-01

    The exposure of normal tissues to high radiation during cone-beam CT (CBCT) imaging increases the risk of cancer and genetic defects. Statistical iterative algorithms with the total variation (TV) penalty have been widely used for low dose CBCT reconstruction, with state-of-the-art performance in suppressing noise and preserving edges. However, TV is a first-order penalty and sometimes leads to the so-called staircase effect, particularly over regions with smooth intensity transition in the reconstruction images. A second-order penalty known as the Hessian penalty was recently used to replace TV to suppress the staircase effect in CBCT reconstruction at the cost of slightly blurring object edges. In this study, we proposed a new penalty, the TV-H, which combines TV and Hessian penalties for CBCT reconstruction in a structure-adaptive way. The TV-H penalty automatically differentiates the edges, gradual transition and uniform local regions within an image using the voxel gradient, and adaptively weights TV and Hessian according to the local image structures in the reconstruction process. Our proposed penalty retains the benefits of TV, including noise suppression and edge preservation. It also maintains the structures in regions with gradual intensity transition more successfully. A majorization-minimization (MM) approach was designed to optimize the objective energy function constructed with the TV-H penalty. The MM approach employed a quadratic upper bound of the original objective function, and the original optimization problem was changed to a series of quadratic optimization problems, which could be efficiently solved using the Gauss-Seidel update strategy. We tested the reconstruction algorithm on two simulated digital phantoms and two physical phantoms. Our experiments indicated that the TV-H penalty visually and quantitatively outperformed both TV and Hessian penalties.

  7. Structure-adaptive CBCT reconstruction using weighted total variation and Hessian penalties

    PubMed Central

    Shi, Qi; Sun, Nanbo; Sun, Tao; Wang, Jing; Tan, Shan

    2016-01-01

    The exposure of normal tissues to high radiation during cone-beam CT (CBCT) imaging increases the risk of cancer and genetic defects. Statistical iterative algorithms with the total variation (TV) penalty have been widely used for low dose CBCT reconstruction, with state-of-the-art performance in suppressing noise and preserving edges. However, TV is a first-order penalty and sometimes leads to the so-called staircase effect, particularly over regions with smooth intensity transition in the reconstruction images. A second-order penalty known as the Hessian penalty was recently used to replace TV to suppress the staircase effect in CBCT reconstruction at the cost of slightly blurring object edges. In this study, we proposed a new penalty, the TV-H, which combines TV and Hessian penalties for CBCT reconstruction in a structure-adaptive way. The TV-H penalty automatically differentiates the edges, gradual transition and uniform local regions within an image using the voxel gradient, and adaptively weights TV and Hessian according to the local image structures in the reconstruction process. Our proposed penalty retains the benefits of TV, including noise suppression and edge preservation. It also maintains the structures in regions with gradual intensity transition more successfully. A majorization-minimization (MM) approach was designed to optimize the objective energy function constructed with the TV-H penalty. The MM approach employed a quadratic upper bound of the original objective function, and the original optimization problem was changed to a series of quadratic optimization problems, which could be efficiently solved using the Gauss-Seidel update strategy. We tested the reconstruction algorithm on two simulated digital phantoms and two physical phantoms. Our experiments indicated that the TV-H penalty visually and quantitatively outperformed both TV and Hessian penalties. PMID:27699100

  8. Mapping landscape scale variations of forest structure, biomass, and productivity in Amazonia

    NASA Astrophysics Data System (ADS)

    Saatchi, S.; Malhi, Y.; Zutta, B.; Buermann, W.; Anderson, L. O.; Araujo, A. M.; Phillips, O. L.; Peacock, J.; Ter Steege, H.; Lopez Gonzalez, G.; Baker, T.; Arroyo, L.; Almeida, S.; Higuchi, N.; Killeen, T.; Monteagudo, A.; Neill, D.; Pitman, N.; Prieto, A.; Salomão, R.; Silva, N.; Vásquez Martínez, R.; Laurance, W.; Ramírez, H. A.

    2009-06-01

    Landscape and environmental variables such as topography, geomorphology, soil types, and climate are important factors affecting forest composition, structure, productivity, and biomass. Here, we combine a network of forest inventories with recently developed global data products from satellite observations in modeling the potential distributions of forest structure and productivity in Amazonia and examine how geomorphology, soil, and precipitation control these distributions. We use the RAINFOR network of forest plots distributed in lowland forests across Amazonia, and satellite observations of tree cover, leaf area index, phenology, moisture, and topographical variations. A maximum entropy estimation (Maxent) model is employed to predict the spatial distribution of several key forest structure parameters: basal area, fraction of large trees, fraction of palms, wood density, productivity, and above-ground biomass at 5 km spatial resolution. A series of statistical tests at selected thresholds as well as across all thresholds and jackknife analysis are used to examine the accuracy of distribution maps and the relative contributions of environmental variables. The final maps were interpreted using soil, precipitation, and geomorphological features of Amazonia and it was found that the length of dry season played a key role in impacting the distribution of all forest variables except the wood density. Soil type had a significant impact on the wood productivity. Most high productivity forests were distributed either on less infertile soils of western Amazonia and Andean foothills, on crystalline shields, and younger alluvial deposits. Areas of low elevation and high density of small rivers of Central Amazonia showed distinct features, hosting mainly forests with low productivity and smaller trees.

  9. Large-insert genome analysis technology detects structural variation in Pseudomonas aeruginosa clinical strains from cystic fibrosis patients.

    PubMed

    Hayden, Hillary S; Gillett, Will; Saenphimmachak, Channakhone; Lim, Regina; Zhou, Yang; Jacobs, Michael A; Chang, Jean; Rohmer, Laurence; D'Argenio, David A; Palmieri, Anthony; Levy, Ruth; Haugen, Eric; Wong, Gane K S; Brittnacher, Mitch J; Burns, Jane L; Miller, Samuel I; Olson, Maynard V; Kaul, Rajinder

    2008-06-01

    Large-insert genome analysis (LIGAN) is a broadly applicable, high-throughput technology designed to characterize genome-scale structural variation. Fosmid paired-end sequences and DNA fingerprints from a query genome are compared to a reference sequence using the Genomic Variation Analysis (GenVal) suite of software tools to pinpoint locations of insertions, deletions, and rearrangements. Fosmids spanning regions that contain new structural variants can then be sequenced. Clonal pairs of Pseudomonas aeruginosa isolates from four cystic fibrosis patients were used to validate the LIGAN technology. Approximately 1.5 Mb of inserted sequences were identified, including 743 kb containing 615 ORFs that are absent from published P. aeruginosa genomes. Six rearrangement breakpoints and 220 kb of deleted sequences were also identified. Our study expands the "genome universe" of P. aeruginosa and validates a technology that complements emerging, short-read sequencing methods that are better suited to characterizing single-nucleotide polymorphisms than structural variation.

  10. Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone.

    PubMed

    Gui, Meng; Song, Juyi; Zhang, Lu; Wang, Shun; Wu, Ruiyun; Ma, Changwei; Li, Pinglan

    2015-06-05

    Chondroitin sulfates (CSs) were extracted from sturgeon skull and backbone, and their chemical composition, anticoagulant, anti-platelet and thrombolysis activities were evaluated. The average molecular weights of CS from sturgeon skull and backbone were 38.5kDa and 49.2kDa, respectively. Disaccharide analysis indicated that the sturgeon backbone CS was primarily composed of disaccharide monosulfated in position four of the GalNAc (37.8%) and disaccharide monosulfated in position six of the GalNAc (59.6%) while sturgeon skull CS was primarily composed of nonsulfated disaccharide (74.2%). Sturgeon backbone CS showed stronger antithrombotic effect than sturgeon skull CS. Sturgeon backbone CS could significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT), inhibited ADP-induced platelet aggregation and dissolved platelet plasma clots in vitro. The results suggested that sturgeon backbone CS can be explored as a functional food with antithrombotic function.

  11. Reconstruction of the Sunspot Group Number: The Backbone Method

    NASA Astrophysics Data System (ADS)

    Svalgaard, Leif; Schatten, Kenneth H.

    2016-11-01

    We have reconstructed the sunspot-group count, not by comparisons with other reconstructions and correcting those where they were deemed to be deficient, but by a re-assessment of original sources. The resulting series is a pure solar index and does not rely on input from other proxies, e.g. radionuclides, auroral sightings, or geomagnetic records. "Backboning" the data sets, our chosen method, provides substance and rigidity by using long-time observers as a stiffness character. Solar activity, as defined by the Group Number, appears to reach and sustain for extended intervals of time the same level in each of the last three centuries since 1700 and the past several decades do not seem to have been exceptionally active, contrary to what is often claimed.

  12. Genetic Variation and Structure in Contrasting Geographic Distributions: Widespread Versus Restricted Black-Tailed Prairie Dogs (Subgenus Cynomys).

    PubMed

    Castellanos-Morales, Gabriela; Ortega, Jorge; Castillo-Gámez, Reyna A; Sackett, Loren C; Eguiarte, Luis E

    2015-01-01

    Species of restricted distribution are considered more vulnerable to extinction because of low levels of genetic variation relative to widespread taxa. Species of the subgenus Cynomys are an excellent system to compare genetic variation and degree of genetic structure in contrasting geographic distributions. We assessed levels of genetic variation, genetic structure, and genetic differentiation in widespread Cynomys ludovicianus and restricted C. mexicanus using 1997bp from the cytochrome b and control region (n = 223 C. ludovicianus; 77 C. mexicanus), and 10 nuclear microsatellite loci (n = 207 and 78, respectively). Genetic variation for both species was high, and genetic structure in the widespread species was higher than in the restricted species. C. mexicanus showed values of genetic variation, genetic structure, and genetic differentiation similar to C. ludovicianus at smaller geographic scales. Results suggest the presence of at least 2 historical refuges for C. ludovicianus and that the Sierra Madre Occidental represents a barrier to gene flow. Chihuahua and New Mexico possess high levels of genetic diversity and should be protected, while Sonora should be treated as an independent management unit. For C. mexicanus, connectivity among colonies is very important and habitat fragmentation and habitat loss should be mitigated to maintain gene flow.

  13. Marburg Virus VP35 Can Both Fully Coat the Backbone and Cap the Ends of dsRNA for Interferon Antagonism

    PubMed Central

    Bale, Shridhar; Halfmann, Peter; Zandonatti, Michelle A.; Kunert, John; Kroon, Gerard J. A.; Kawaoka, Yoshihiro; MacRae, Ian J.; Wilson, Ian A.; Saphire, Erica Ollmann

    2012-01-01

    Filoviruses, including Marburg virus (MARV) and Ebola virus (EBOV), cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (ds)RNA-binding domain (RBD) of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules. PMID:23028316

  14. Seasonal variations in phytoplankton community structure in the Sanggou, Ailian, and Lidao Bays

    NASA Astrophysics Data System (ADS)

    Yuan, Mingli; Zhang, Cuixia; Jiang, Zengjie; Guo, Shujin; Sun, Jun

    2014-12-01

    The seasonal variations in phytoplankton community structure were investigated for the Sanggou Bay (SGB) and the adjacent Ailian Bay (ALB) and Lidao Bay (LDB) in Shandong Peninsula, eastern China. The species composition and cell abundance of phytoplankton in the bay waters in spring (April 2011), summer (August 2011), autumn (October 2011), and winter (January 2012) were examined using the Utermöhl method. A total of 80 taxa of phytoplankton that belong to 39 genera of 3 phyla were identified. These included 64 species of 30 genera in the Phylum Bacillariophyta, 13 species of 8 genera in the Phylum Dinophyta, and 3 species of 1 genus in the Phylum Chrysophyta. During the four seasons, the number of phytoplankton species (43) was the highest in spring, followed by summer and autumn (40), and the lowest number of phytoplankton species (35) was found in winter. Diatoms, especially Paralia sulcata (Ehrenberg) Cleve and Coscinodiscus oculus-iridis Ehrenberg, were predominant in the phytoplankton community throughout the study period, whereas the dominance of dinoflagellate appeared in summer only. The maximum cell abundance of phytoplankton was detected in summer (average 8.08 × 103 cells L-1) whereas their minimum abundance was found in autumn (average 2.60 × 103 cells L-1). The phytoplankton abundance was generally higher in the outer bay than in the inner bay in spring and autumn. In summer, the phytoplankton cells were mainly concentrated in the south of inner SGB, with peak abundance observed along the western coast. In winter, the distribution of phytoplankton cells showed 3 patches, with peak abundance along the western coast as well. On seasonal average, the Shannon-Wiener diversity indices of phytoplankton community ranged from 1.17 to 1.78 (autumn > summer > spring > winter), and the Pielou's evenness indices of phytoplankton ranged from 0.45 to 0.65 (autumn > spring > summer > winter). According to the results of canonical correspondence analysis

  15. Variation of the upper mantle velocity structure along the central-south Andes

    NASA Astrophysics Data System (ADS)

    Liang, X.; Sandvol, E. A.; Shen, Y.; Gao, H.; Zhang, Z.

    2013-12-01

    Variations in the subduction angle of the Nazca plate beneath the South American plate has lead to different modes of deformation and volcanism along the Andean active margin. The volcanic gap between the central and southern Andean volcanic zones is correlated with the Pampean flat-slab subduction zone, where the subducting Nazca slab changes from a 30-degree dipping slab beneath the Puna plateau to a horizontal slab beneath the Sierras Pampeanas, and then to a 30-degree dipping slab beneath the south Andes from north to south. The Pampean flat-slab subduction correlates spatially with the track of the Juan Fernandez Ridge, and is associated with the inboard migration of crustal deformation. A major Pliocene delamination event beneath the southern Puna plateau has previously been inferred from geochemical, geological, and preliminary geophysical data. The mechanisms for the transition between dipping- and flat-subduction slab and the mountain building process of the central Andean plateau are key issues to understanding the Andean-type orogenic process. We use a new frequency-time normalization approach to extract very-broadband (up to 300 second) empirical Green's functions (EGFs) from continuous seismic records. The long-period EGFs provide the sensitivity needed to constrain the deep mantle structure. The broadband waveform data are from 393 portable stations of eight temporary networks: PUNA, SIEMBRA, CHARGE, RAMP, East Sierras Pampeanas, BANJO/SEDA, REFUCA, ANCORP, and 31 permanent stations accessed from both the IRIS DMC and GFZ GEOFON DMC. A finite difference wave propagation method is used to generate synthetic seismograms from 3-D velocity model. We use 3-D traveltime sensitivity kernels, and traveltime residuals measured by waveform cross-correlation to directly invert the upper mantle shear-wave velocity structure. The preliminary model shows strong along-strike velocity variations within in the mantle wedge and the subducting NAZCA slab. Low upper

  16. Variation of the upper mantle velocity structure along the central-south Andes

    NASA Astrophysics Data System (ADS)

    Liang, Xiaofeng; Sandvol, Eric; Shen, Yang; Gao, Haiying

    2014-05-01

    Variations in the subduction angle of the Nazca plate beneath the South American plate has lead to different modes of deformation and volcanism along the Andean active margin. The volcanic gap between the central and southern Andean volcanic zones is correlated with the Pampean flat-slab subduction zone, where the subducting Nazca slab changes from a 30-degree dipping slab beneath the Puna plateau to a horizontal slab beneath the Sierras Pampeanas, and then to a 30-degree dipping slab beneath the south Andes from north to south. The Pampean flat-slab subduction correlates spatially with the track of the Juan Fernandez Ridge, and is associated with the inboard migration of crustal deformation. A major Pliocene delamination event beneath the southern Puna plateau has previously been inferred from geochemical and geological and preliminary geophysical data. The mechanisms for the transition between dipping- and flat-subduction slab and the mountain building process of the central Andean plateau are key issues to understanding the Andean-type orogenic process. We use a new frequency-time normalization approach with non-linear stacking to extract very-broadband (up to 300 second) empirical Green's functions (EGFs) from continuous seismic records. The long-period EGFs provide the deeper depth-sensitivity needed to constrain the mantle structure. The broadband waveform data are from 393 portable stations of four temporary networks: PUNA, SIEMBRA, CHARGE, RAMP, East Sierras Pampeanas, BANJO/SEDA, REFUCA, ANCORP, and 31 permanent stations accessed from both the IRIS DMC and GFZ GEOFON DMC. A finite difference waveform propagation method is used to generate synthetic seismograms from 3-D velocity model. We use 3-D traveltime sensitivity kernels, and traveltime residuals measurement by waveform cross-correlation to directly invert the upper mantle shear-wave velocity structure. The preliminary model shows strong along-strike velocity variations within in the mantle wedge and

  17. Pentopyranosyl Oligonucleotide Systems. Part 11: Systems with Shortened Backbones: D)-beta-Ribopyranosyl-(4 yields 3 )- and (L)-alpha - Lyxopyranosyl-(4 yields 3 )-oligonucleotides

    NASA Technical Reports Server (NTRS)

    Wippo, Harald; Reck, Folkert; Kudick, Rene; Ramaseshan, Mahesh; Ceulemans, Griet; Bolli, Martin; Krishnamurthy, Ramanarayanan; Eschenmoser, Albert

    2001-01-01

    The (L)-a-lyxopyranosyl-(4'yields 3')-oligonucleotide system-a member of a pentopyranosyl oligonucleotide family containing a shortened backbone-is capable of cooperative base-pairing and of cross-pairing with DNA and RNA. In contrast, corresponding (D)-beta-ribopyransoyl-(4' yields 3')-oligonucleotides do not show base-pairing under similar conditions. We conclude that oligonucleotide systems can violate the six-bonds-per-backbone-unit rule by having five bonds instead, if their vicinally bound phosphodiester bridges can assume an antiperiplanar conformation. An additional structural feature that seems relevant to the cross-pairing capability of the (L)-a-lyxopyranosyl-(4' yields 3')-oligonucleotide system is its (small) backbone/basepair axes inclination. An inclination which is similar to that in B-DNA seems to be a prerequisite for an oligonucleotide system s capability to cross-pair with DNA.

  18. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network.

    PubMed

    Lyons, James; Dehzangi, Abdollah; Heffernan, Rhys; Sharma, Alok; Paliwal, Kuldip; Sattar, Abdul; Zhou, Yaoqi; Yang, Yuedong

    2014-10-30

    Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between C(αi-1)-C(αi)-C(αi+1) (θ) and a dihedral angle rotated about the C(αi)-C(αi+1) bond (τ). θ and τ angles, as the representative of structural properties of three to four amino-acid residues, offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9Å from their corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template-based as well as template-free structure prediction. The deep neural network learning technique is available as an on-line server called Structural Property prediction with Integrated DEep neuRal network (SPIDER) at http://sparks-lab.org.

  19. Modification of Rifamycin Polyketide Backbone Leads to Improved Drug Activity against Rifampicin-resistant Mycobacterium tuberculosis*

    PubMed Central

    Nigam, Aeshna; Almabruk, Khaled H.; Saxena, Anjali; Yang, Jongtae; Mukherjee, Udita; Kaur, Hardeep; Kohli, Puneet; Kumari, Rashmi; Singh, Priya; Zakharov, Lev N.; Singh, Yogendra; Mahmud, Taifo; Lal, Rup

    2014-01-01

    Rifamycin B, a product of Amycolatopsis mediterranei S699, is the precursor of clinically used antibiotics that are effective against tuberculosis, leprosy, and AIDS-related mycobacterial infections. However, prolonged usage of these antibiotics has resulted in the emergence of rifamycin-resistant strains of Mycobacterium tuberculosis. As part of our effort to generate better analogs of rifamycin, we substituted the acyltransferase domain of module 6 of rifamycin polyketide synthase with that of module 2 of rapamycin polyketide synthase. The resulting mutants (rifAT6::rapAT2) of A. mediterranei S699 produced new rifamycin analogs, 24-desmethylrifamycin B and 24-desmethylrifamycin SV, which contained modification in the polyketide backbone. 24-Desmethylrifamycin B was then converted to 24-desmethylrifamycin S, whose structure was confirmed by MS, NMR, and X-ray crystallography. Subsequently, 24-desmethylrifamycin S was converted to 24-desmethylrifampicin, which showed excellent antibacterial activity against several rifampicin-resistant M. tuberculosis strains. PMID:24923585

  20. Side chain and backbone contributions of Phe508 to CFTR folding

    SciTech Connect

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J.

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  1. A renormalization approach to describe charge transport in quasiperiodic dangling backbone ladder (DBL)-DNA molecules

    NASA Astrophysics Data System (ADS)

    Sarmento, R. G.; Fulco, U. L.; Albuquerque, E. L.; Caetano, E. W. S.; Freire, V. N.

    2011-10-01

    We study the charge transport properties of a dangling backbone ladder (DBL)-DNA molecule focusing on a quasiperiodic arrangement of its constituent nucleotides forming a Rudin-Shapiro (RS) and Fibonacci (FB) Poly (CG) sequences, as well as a natural DNA sequence (Ch22) for the sake of comparison. Making use of a one-step renormalization process, the DBL-DNA molecule is modeled in terms of a one-dimensional tight-binding Hamiltonian to investigate its transmissivity and current-voltage (I-V) profiles. Beyond the semiconductor I-V characteristics, a striking similarity between the electronic transport properties of the RS quasiperiodic structure and the natural DNA sequence was found.

  2. Modification of rifamycin polyketide backbone leads to improved drug activity against rifampicin-resistant Mycobacterium tuberculosis.

    PubMed

    Nigam, Aeshna; Almabruk, Khaled H; Saxena, Anjali; Yang, Jongtae; Mukherjee, Udita; Kaur, Hardeep; Kohli, Puneet; Kumari, Rashmi; Singh, Priya; Zakharov, Lev N; Singh, Yogendra; Mahmud, Taifo; Lal, Rup

    2014-07-25

    Rifamycin B, a product of Amycolatopsis mediterranei S699, is the precursor of clinically used antibiotics that are effective against tuberculosis, leprosy, and AIDS-related mycobacterial infections. However, prolonged usage of these antibiotics has resulted in the emergence of rifamycin-resistant strains of Mycobacterium tuberculosis. As part of our effort to generate better analogs of rifamycin, we substituted the acyltransferase domain of module 6 of rifamycin polyketide synthase with that of module 2 of rapamycin polyketide synthase. The resulting mutants (rifAT6::rapAT2) of A. mediterranei S699 produced new rifamycin analogs, 24-desmethylrifamycin B and 24-desmethylrifamycin SV, which contained modification in the polyketide backbone. 24-Desmethylrifamycin B was then converted to 24-desmethylrifamycin S, whose structure was confirmed by MS, NMR, and X-ray crystallography. Subsequently, 24-desmethylrifamycin S was converted to 24-desmethylrifampicin, which showed excellent antibacterial activity against several rifampicin-resistant M. tuberculosis strains.

  3. "Chameleonic" backbone hydrogen bonds in protein binding and as drug targets.

    PubMed

    Menéndez, C A; Accordino, S R; Gerbino, D C; Appignanesi, G A

    2015-10-01

    We carry out a time-averaged contact matrix study to reveal the existence of protein backbone hydrogen bonds (BHBs) whose net persistence in time differs markedly form their corresponding PDB-reported state. We term such interactions as "chameleonic" BHBs, CBHBs, precisely to account for their tendency to change the structural prescription of the PDB for the opposite bonding propensity in solution. We also find a significant enrichment of protein binding sites in CBHBs, relate them to local water exposure and analyze their behavior as ligand/drug targets. Thus, the dynamic analysis of hydrogen bond propensity might lay the foundations for new tools of interest in protein binding-site prediction and in lead optimization for drug design.

  4. Variations in soil microbial community structure induced by the conversion from paddy fields to upland fields

    NASA Astrophysics Data System (ADS)

    Dai, X.

    2015-12-01

    Land-use conversion is an important factor influencing the carbon and nitrogen gas exchange between land and atmosphere, and soil microorganisms is main driver of soil carbon and nitrogen gas production. Understanding the effect of land-use conversion on soil microbial communities and its influencing factor is important for greenhouse gas emission reduction and soil organic carbon and nitrogen sequestration and stability. The influence of land use conversion on soil process was undergoing a dynamic change, but little research has been done to understand the effect on soil microbial communities during the initial years after land conversion. In the study, the influences of land-use conversion from double rice cropping (RR) to maize-maize (MM) and soybean-peanut (SP) double cropping systems on soil physical and chemical properties, and microbial community structure was studied after two years of the conversion in southern China. The results showed that land use conversion significantly changed soil properties, microbial communities and biomass. Soil pH significantly decreased by 0.50 and 0.52 after conversion to MM and SP, respectively. Soil TN and NH4-N also significantly decreased by 9%-15% and 60% after conversion to upland fields, respectively. The total PLFAs, bacterial, gram-positive bacterial (G+), gram-negative bacterial (G-) and actinomycetic PLFAs decreased significantly. The ng g-1 soil concentration of monounsaturated chain PLFAs 16:1ω7c and 18:1ω9t were significantly higher at paddy fields than at upland fields. No significant differences in soil properties, microbial communities and biomass were found between conversed MM and SP. Our results indicated that land use conversion, not crop type conversed had a significant effects on soil properties and microbial communities at the initial of land conversion. And soil pH was the key factor regulating the variations in soil microbial community structure after land use conversion from paddy to upland fields.

  5. Variations in the abundance of fisheries resources and ecosystem structure in the Japan/East Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Chang Ik; Lee, Jae Bong; Seo, Young Il; Yoon, Sang Cheol; Kim, Suam

    2004-05-01

    Evidence supports the hypothesis that two climatic regime shifts in the North Pacific and the Japan/East Sea, have affected the dynamics of the marine ecosystem and fisheries resources from 1960 to 2000. Changes in both mixed layer depth (MLD) and primary production were detected in the Japan/East Sea after 1976. The 1976 regime shift appears to have caused the biomass replacement with changes in catch production of major exploited fisheries resources, including Pacific saury, Pacific sardine and filefish. Both fisheries yield and fish distribution are reflected in these decadal fluctuations. In the 1960s and 1990s, common squid dominated the catches whereas in the 1970s and 1980s, it was replaced by walleye pollock. In the post-1988 regime shift, the distribution of horse mackerel shifted westward and southward and its distributional overlap with common mackerel decreased. The habitat of Pacific sardine also shifted away from mackerel habitats during this period. To evaluate changes in the organization and structure of the ecosystem in the Japan/East Sea, a mass-balanced model, Ecopath, was employed. Based on two mass-balanced models, representing before (1970-75) and after (1978-84) the 1976 regime shift, the weighted mean trophic level of catch increased from 3.09 before to 3.28 after. Total biomass of species groups in the Japan/East Sea ecosystem increased by 15% and total catch production increased by 48% due to the 1976 regime shift. The largest changes occurred at mid-trophic levels, occupied by fishes and cephalopods. The dominant predatory species shifted from cephalopods to walleye pollock due to the 1976 regime shift. It is concluded that the climatic regime shifts caused changes in the structure of the ecosystem and the roles of major species, as well as, large variations in biomass and production of fisheries resources.

  6. Spatial structure of morphological and neutral genetic variation in Brook Trout

    USGS Publications Warehouse

    Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.

    2015-01-01

    Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.

  7. Population structure and cryptic genetic variation in the mango fruit fly, Ceratitis cosyra (Diptera, Tephritidae)

    PubMed Central

    Virgilio, Massimiliano; Delatte, Hélène; Nzogela, Yasinta Beda; Simiand, Christophe; Quilici, Serge; De Meyer, Marc; Mwatawala, Maulid

    2015-01-01

    Abstract The fruit fly Ceratitis cosyra is an important agricultural pest negatively affecting the mango crop production throughout Africa and also feeding on a variety of other wild and cultivated hosts. The occurrence of deeply divergent haplotypes, as well as extensive morphological variability, previously suggested possible cryptic speciation within Ceratitis cosyra. Here we provide the first large-scale characterisation of the population structure of Ceratitis cosyra with the main objective of verifying cryptic genetic variation. A total of 348 specimens from 13 populations were genotyped at 16 polymorphic microsatellite loci. Hardy-Weinberg equilibrium (HWE) deviations were observed in 40.4% of locus-population combinations and suggested the occurrence of genetic substructuring within populations. Discriminant Analysis of Principal Components (DAPC) showed genetic divergence between the vast majority of vouchers from Burundi and Tanzania (plus a few outliers from other African countries) and all other specimens sampled. Individual Bayesian assignments confirmed the existence of two main genotypic groups also occurring in sympatry. These data provided further support to the hypothesis that Ceratitis cosyra might include cryptic species. However, additional integrative taxonomy, possibly combining morphological, ecological and physiological approaches, is required to provide the necessary experimental support to this model. PMID:26798276

  8. Transcription-coupled genetic instability marks acute lymphoblastic leukemia structural variation hotspots

    PubMed Central

    Heinäniemi, Merja; Vuorenmaa, Tapio; Teppo, Susanna; Kaikkonen, Minna U; Bouvy-Liivrand, Maria; Mehtonen, Juha; Niskanen, Henri; Zachariadis, Vasilios; Laukkanen, Saara; Liuksiala, Thomas; Teittinen, Kaisa; Lohi, Olli

    2016-01-01

    Progression of malignancy to overt disease requires multiple genetic hits. Activation-induced deaminase (AID) can drive lymphomagenesis by generating off-target DNA breaks at loci that harbor highly active enhancers and display convergent transcription. The first active transcriptional profiles from acute lymphoblastic leukemia (ALL) patients acquired here reveal striking similarity at structural variation (SV) sites. Specific transcriptional features, namely convergent transcription and Pol2 stalling, were detected at breakpoints. The overlap was most prominent at SV with recognition motifs for the recombination activating genes (RAG). We present signal feature analysis to detect vulnerable regions and quantified from human cells how convergent transcription contributes to R-loop generation and RNA polymerase stalling. Wide stalling regions were characterized by high DNAse hypersensitivity and unusually broad H3K4me3 signal. Based on 1382 pre-B-ALL patients, the ETV6-RUNX1 fusion positive patients had over ten-fold elevation in RAG1 while high expression of AID marked pre-B-ALL lacking common cytogenetic changes. DOI: http://dx.doi.org/10.7554/eLife.13087.001 PMID:27431763

  9. BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers

    PubMed Central

    Abo, Ryan P.; Ducar, Matthew; Garcia, Elizabeth P.; Thorner, Aaron R.; Rojas-Rudilla, Vanesa; Lin, Ling; Sholl, Lynette M.; Hahn, William C.; Meyerson, Matthew; Lindeman, Neal I.; Van Hummelen, Paul; MacConaill, Laura E.

    2015-01-01

    Genomic structural variation (SV), a common hallmark of cancer, has important predictive and therapeutic implications. However, accurately detecting SV using high-throughput sequencing data remains challenging, especially for ‘targeted’ resequencing efforts. This is critically important in the clinical setting where targeted resequencing is frequently being applied to rapidly assess clinically actionable mutations in tumor biopsies in a cost-effective manner. We present BreaKmer, a novel approach that uses a ‘kmer’ strategy to assemble misaligned sequence reads for predicting insertions, deletions, inversions, tandem duplications and translocations at base-pair resolution in targeted resequencing data. Variants are predicted by realigning an assembled consensus sequence created from sequence reads that were abnormally aligned to the reference genome. Using targeted resequencing data from tumor specimens with orthogonally validated SV, non-tumor samples and whole-genome sequencing data, BreaKmer had a 97.4% overall sensitivity for known events and predicted 17 positively validated, novel variants. Relative to four publically available algorithms, BreaKmer detected SV with increased sensitivity and limited calls in non-tumor samples, key features for variant analysis of tumor specimens in both the clinical and research settings. PMID:25428359

  10. Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation.

    PubMed

    Zeng, Yan-Fei; Liao, Wan-Jin; Petit, Rémy J; Zhang, Da-Yong

    2011-12-01

    Studying geographic variation in the rate of hybridization between closely related species could provide a useful window on the evolution of reproductive isolation. Reinforcement theory predicts greater prezygotic isolation in areas of prolonged contact between recently diverged species than in areas of recent contact, which implies that old contact zones would be dominated by parental phenotypes with few hybrids (bimodal hybrid zones), whereas recent contact zones would be characterized by hybrid swarms (unimodal hybrid zones). Here, we investigate how the hybrid zones of two closely related Chinese oaks, Quercus mongolica and Q. liaotungensis, are structured geographically using both nuclear and chloroplast markers. We found that populations of Q. liaotungensis located around the Changbai Mountains in Northeast China, an inferred glacial refugium, were introgressed by genes from Q. mongolica, suggesting historical contact between the two species in this region. However, these introgressed populations form sharp bimodal hybrid zones with Q. mongolica. In contrast, populations of Q. liaotungensis located in North China, which show no sign of ancient introgression with Q. mongolica, form unimodal hybrid zones with Q. mongolica. These results are consistent with the hypothesis that selection against hybrids has had sufficient time to reinforce the reproductive barriers between Q. liaotungensis and Q. mongolica in Northeast China but not in North China.

  11. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium.

    PubMed

    Esteras, Cristina; Formisano, Gelsomina; Roig, Cristina; Díaz, Aurora; Blanca, José; Garcia-Mas, Jordi; Gómez-Guillamón, María Luisa; López-Sesé, Ana Isabel; Lázaro, Almudena; Monforte, Antonio J; Picó, Belén

    2013-05-01

    Novel sequencing technologies were recently used to generate sequences from multiple melon (Cucumis melo L.) genotypes, enabling the in silico identification of large single nucleotide polymorphism (SNP) collections. In order to optimize the use of these markers, SNP validation and large-scale genotyping are necessary. In this paper, we present the first validated design for a genotyping array with 768 SNPs that are evenly distributed throughout the melon genome. This customized Illumina GoldenGate assay was used to genotype a collection of 74 accessions, representing most of the botanical groups of the species. Of the assayed loci, 91 % were successfully genotyped. The array provided a large number of polymorphic SNPs within and across accessions. This set of SNPs detected high levels of variation in accessions from this crop's center of origin as well as from several other areas of melon diversification. Allele distribution throughout the genome revealed regions that distinguished between the two main groups of cultivated accessions (inodorus and cantalupensis). Population structure analysis showed a subdivision into five subpopulations, reflecting the history of the crop. A considerably low level of LD was detected, which decayed rapidly within a few kilobases. Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in melon. Since many of the genotyped accessions are currently being used as the parents of breeding populations in various programs, this set of mapped markers could be used for future mapping and breeding efforts.

  12. BCS-BEC crossover and phase structure of relativistic systems: A variational approach

    SciTech Connect

    Chatterjee, Bhaswar; Mishra, Hiranmaya; Mishra, Amruta

    2009-01-01

    We investigate here the BCS-BEC crossover in relativistic systems using a variational construct for the ground state and the minimization of the thermodynamic potential. This is first studied in a four-fermion point interaction model and with a BCS type ansatz for the ground state with fermion pairs. It is shown that the antiparticle degrees of freedom play an important role in the BCS-BEC crossover physics, even when the ratio of Fermi momentum to the mass of the fermion is small. We also consider the phase structure for the case of fermion pairing with imbalanced populations. Within the ansatz, thermodynamically stable gapless modes for both fermions and antifermions are seen for strong coupling in the Bose-Einstein condensation (BEC) regime. We further investigate the effect of fluctuations of the condensate field by treating it as a dynamical field and generalize the BCS ansatz to include quanta of the condensate field also in a boson-fermion model with quartic self-interaction of the condensate field. It is seen that the critical temperature decreases with inclusion of fluctuations.

  13. Variations of cosmic large-scale structure covariance matrices across parameter space

    NASA Astrophysics Data System (ADS)

    Reischke, Robert; Kiessling, Alina; Schäfer, Björn Malte

    2017-03-01

    The likelihood function for cosmological parameters, given by e.g. weak lensing shear measurements, depends on contributions to the covariance induced by the non-linear evolution of the cosmic web. As highly non-linear clustering to date has only been described by numerical N-body simulations in a reliable and sufficiently precise way, the necessary computational costs for estimating those covariances at different points in parameter space are tremendous. In this work, we describe the change of the matter covariance and the weak lensing covariance matrix as a function of cosmological parameters by constructing a suitable basis, where we model the contribution to the covariance from non-linear structure formation using Eulerian perturbation theory at third order. We show that our formalism is capable of dealing with large matrices and reproduces expected degeneracies and scaling with cosmological parameters in a reliable way. Comparing our analytical results to numerical simulations, we find that the method describes the variation of the covariance matrix found in the SUNGLASS weak lensing simulation pipeline within the errors at one-loop and tree-level for the spectrum and the trispectrum, respectively, for multipoles up to ℓ ≤ 1300. We show that it is possible to optimize the sampling of parameter space where numerical simulations should be carried out by minimizing interpolation errors and propose a corresponding method to distribute points in parameter space in an economical way.

  14. Population structure and genetic variation of the endangered species Elaeagnus mollis Diels (Elaeagnaceae).

    PubMed

    Zhang, J M; Zhang, F

    2015-06-01

    Elaeagnus mollis Diels is a group of shrubs and dwarf trees endemic to China and are endangered plants. However, the reason why these plants are endangered remains controversial. The current study aimed to explore the endangered status of E. mollis from a genetic perspective and to propose conservation strategies for this species. Using 16 polymorphic allozyme loci, the population genetic structure was investigated for three populations representing the taxa and variants. The variants exhibited relatively high levels of genetic variation compared to other woody shrubs with similar geographic distributions. The overall genetic diversity (HE = 0.352) was elevated compared to long-lived woody angiosperms. The average number of alleles per locus (A), percentage polymorphic loci (P), and observed heterozygosity (HO) were 2.0, 85.2, and 0.371, respectively. Furthermore, gene flow estimates within the population groups were also elevated. The life history and habitats of E. mollis play major roles in the levels of genetic diversity. The results of this study may help to device strategies for preserving the genetic diversity of E. mollis and for promoting planting.

  15. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    PubMed Central

    Liu, Biao; Conroy, Jeffrey M.; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome. PMID:25849937

  16. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples.

    PubMed

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-05-05

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis.

  17. Microsatellite variation and genetic structuring in Mugil liza (Teleostei: Mugilidae) populations from Argentina and Brazil

    NASA Astrophysics Data System (ADS)

    Mai, Ana C. G.; Miño, Carolina I.; Marins, Luis F. F.; Monteiro-Neto, Cassiano; Miranda, Laura; Schwingel, Paulo R.; Lemos, Valéria M.; Gonzalez-Castro, Mariano; Castello, Jorge P.; Vieira, João P.

    2014-08-01

    The mullet Mugil liza is distributed along the Atlantic coast of South America, from Argentina to Venezuela, and it is heavily exploited in Brazil. We assessed patterns of distribution of neutral nuclear genetic variation in 250 samples from the Brazilian states of Rio de Janeiro, São Paulo, Santa Catarina and Rio Grande do Sul (latitudinal range of 23-31°S) and from Buenos Aires Province in Argentina (36°S). Nine microsatellite loci revealed 131 total alleles, 3-23 alleles per locus, He: 0.69 and Ho: 0.67. Significant genetic differentiation was observed between Rio de Janeiro samples (23°S) and those from all other locations, as indicated by FST, hierarchical analyses of genetic structure, Bayesian cluster analyses and assignment tests. The presence of two different demographic clusters better explains the allelic diversity observed in mullets from the southernmost portion of the Atlantic coast of Brazil and from Argentina. This may be taken into account when designing fisheries management plans involving Brazilian, Uruguayan and Argentinean M. liza populations.

  18. COSMOS: accurate detection of somatic structural variations through asymmetric comparison between tumor and normal samples

    PubMed Central

    Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun

    2016-01-01

    An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260

  19. Differences in glycosyltransferase family 61 accompany variation in seed coat mucilage composition in Plantago spp.

    PubMed Central

    Phan, Jana L.; Tucker, Matthew R.; Khor, Shi Fang; Shirley, Neil; Lahnstein, Jelle; Beahan, Cherie; Bacic, Antony; Burton, Rachel A.

    2016-01-01

    Xylans are the most abundant non-cellulosic polysaccharide found in plant cell walls. A diverse range of xylan structures influence tissue function during growth and development. Despite the abundance of xylans in nature, details of the genes and biochemical pathways controlling their biosynthesis are lacking. In this study we have utilized natural variation within the Plantago genus to examine variation in heteroxylan composition and structure in seed coat mucilage. Compositional assays were combined with analysis of the glycosyltransferase family 61 (GT61) family during seed coat development, with the aim of identifying GT61 sequences participating in xylan backbone substitution. The results reveal natural variation in heteroxylan content and structure, particularly in P. ovata and P. cunninghamii, species which show a similar amount of heteroxylan but different backbone substitution profiles. Analysis of the GT61 family identified specific sequences co-expressed with IRREGULAR XYLEM 10 genes, which encode putative xylan synthases, revealing a close temporal association between xylan synthesis and substitution. Moreover, in P. ovata, several abundant GT61 sequences appear to lack orthologues in P. cunninghamii. Our results indicate that natural variation in Plantago species can be exploited to reveal novel details of seed coat development and polysaccharide biosynthetic pathways. PMID:27856710

  20. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

    PubMed

    Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

  1. Subpicosecond protein backbone changes detected during the green-absorbing proteorhodopsin primary photoreaction.

    PubMed

    Amsden, Jason J; Kralj, Joel M; Chieffo, Logan R; Wang, Xihua; Erramilli, Shyamsunder; Spudich, Elena N; Spudich, John L; Ziegler, Lawrence D; Rothschild, Kenneth J

    2007-10-11

    Recent studies demonstrate that photoactive proteins can react within several picoseconds to photon absorption by their chromophores. Faster subpicosecond protein responses have been suggested to occur in rhodopsin-like proteins where retinal photoisomerization may impulsively drive structural changes in nearby protein groups. Here, we test this possibility by investigating the earliest protein structural changes occurring in proteorhodopsin (PR) using ultrafast transient infrared (TIR) spectroscopy with approximately 200 fs time resolution combined with nonperturbing isotope labeling. PR is a recently discovered microbial rhodopsin similar to bacteriorhodopsin (BR) found in marine proteobacteria and functions as a proton pump. Vibrational bands in the retinal fingerprint (1175-1215 cm(-1)) and ethylenic stretching (1500-1570 cm(-1)) regions characteristic of all-trans to 13-cis chromophore isomerization and formation of a red-shifted photointermediate appear with a 500-700 fs time constant after photoexcitation. Bands characteristic of partial return to the ground state evolve with a 2.0-3.5 ps time constant. In addition, a negative band appears at 1548 cm(-1) with a time constant of 500-700 fs, which on the basis of total-15N and retinal C15D (retinal with a deuterium on carbon 15) isotope labeling is assigned to an amide II peptide backbone mode that shifts to near 1538 cm(-1) concomitantly with chromophore isomerization. Our results demonstrate that one or more peptide backbone groups in PR respond with a time constant of 500-700 fs, almost coincident with the light-driven retinylidene chromophore isomerization. The protein changes we observe on a subpicosecond time scale may be involved in storage of the absorbed photon energy subsequently utilized for proton transport.

  2. Molecular couplings and energy exchange between DNA and water mapped by femtosecond infrared spectroscopy of backbone vibrations

    PubMed Central

    Liu, Yingliang; Guchhait, Biswajit; Siebert, Torsten; Fingerhut, Benjamin P.; Elsaesser, Thomas

    2017-01-01

    Molecular couplings between DNA and water together with the accompanying processes of energy exchange are mapped via the ultrafast response of DNA backbone vibrations after OH stretch excitation of the water shell. Native salmon testes DNA is studied in femtosecond pump-probe experiments under conditions of full hydration and at a reduced hydration level with two water layers around the double helix. Independent of their local hydration patterns, all backbone vibrations in the frequency range from 940 to 1120 cm–1 display a quasi-instantaneous reshaping of the spectral envelopes of their fundamental absorption bands upon excitation of the water shell. The subsequent reshaping kinetics encompass a one-picosecond component, reflecting the formation of a hot ground state of the water shell, and a slower contribution on a time scale of tens of picoseconds. Such results are benchmarked by measurements with resonant excitation of the backbone modes, resulting in distinctly different absorption changes. We assign the fast changes of DNA absorption after OH stretch excitation to structural changes in the water shell which couple to DNA through the local electric fields. The second slower process is attributed to a flow of excess energy from the water shell into DNA, establishing a common heated ground state in the molecular ensemble. This interpretation is supported by theoretical calculations of the electric fields exerted by the water shell at different temperatures.

  3. Population structure of nuclear and mitochondrial DNA variation among humpback whales in the North Pacific.

    PubMed

    Baker, C S; Medrano-Gonzalez, L; Calambokidis, J; Perry, A; Pichler, F; Rosenbaum, H; Straley, J M; Urban-Ramirez, J; Yamaguchi, M; von Ziegesar, O

    1998-06-01

    The population structure of variation in a nuclear actin intron and the control region of mitochondrial DNA is described for humpback whales from eight regions in the North Pacific Ocean: central California, Baja Peninsula, nearshore Mexico (Bahia Banderas), offshore Mexico (Socorro Island), southeastern Alaska, central Alaska (Prince Williams Sound), Hawaii and Japan (Ogasawara Islands). Primary mtDNA haplotypes and intron alleles were identified using selected restriction fragment length polymorphisms of target sequences amplified by the polymerase chain reaction (PCR-RFLP). There was little evidence of heterogeneity in the frequencies of mtDNA haplotypes or actin intron alleles due to the year or sex composition of the sample. However, frequencies of four mtDNA haplotypes showed marked regional differences in their distributions (phi ST = 0.277; P < 0.001; n = 205 individuals) while the two alleles showed significant, but less marked, regional differences (phi ST = 0.033; P < 0.013; n = 400 chromosomes). An hierarchical analysis of variance in frequencies of haplotypes and alleles supported the grouping of six regions into a central and eastern stock with further partitioning of variance among regions within stocks for haplotypes but not for alleles. Based on available genetic and demographic evidence, the southeastern Alaska and central California feeding grounds were selected for additional analyses of nuclear differentiation using allelic variation at four microsatellite loci. All four loci showed significant differences in allele frequencies (overall FST = 0.043; P < 0.001; average n = 139 chromosomes per locus), indicating at least partial reproductive isolation between the two regions as well as the segregation of mtDNA lineages. Although the two feeding grounds were not panmictic for nuclear or mitochondrial loci, estimates of long-term migration rates suggested that male-mediated gene flow was several-fold greater than female gene flow. These results

  4. Atomic force microscopy of crystalline insulins: the influence of sequence variation on crystallization and interfacial structure.

    PubMed Central

    Yip, C M; Brader, M L; DeFelippis, M R; Ward, M D

    1998-01-01

    The self-association of proteins is influenced by amino acid sequence, molecular conformation, and the presence of molecular additives. In the presence of phenolic additives, LysB28ProB29 insulin, in which the C-terminal prolyl and lysyl residues of wild-type human insulin have been inverted, can be crystallized into forms resembling those of wild-type insulins in which the protein exists as zinc-complexed hexamers organized into well-defined layers. We describe herein tapping-mode atomic force microscopy (TMAFM) studies of single crystals of rhombohedral (R3) LysB28ProB29 that reveal the influence of sequence variation on hexamer-hexamer association at the surface of actively growing crystals. Molecular scale lattice images of these crystals were acquired in situ under growth conditions, enabling simultaneous identification of the rhombohedral LysB28ProB29 crystal form, its orientation, and its dynamic growth characteristics. The ability to obtain crystallographic parameters on multiple crystal faces with TMAFM confirmed that bovine and porcine insulins grown under these conditions crystallized into the same space group as LysB28ProB29 (R3), enabling direct comparison of crystal growth behavior and the influence of sequence variation. Real-time TMAFM revealed hexamer vacancies on the (001) terraces of LysB28ProB29, and more rounded dislocation noses and larger terrace widths for actively growing screw dislocations compared to wild-type bovine and porcine insulin crystals under identical conditions. This behavior is consistent with weaker interhexamer attachment energies for LysB28ProB29 at active growth sites. Comparison of the single crystal x-ray structures of wild-type insulins and LysB28ProB29 suggests that differences in protein conformation at the hexamer-hexamer interface and accompanying changes in interhexamer bonding are responsible for this behavior. These studies demonstrate that subtle changes in molecular conformation due to a single sequence

  5. Structure of a Northwest Atlantic Shelf Macofaurnal Assemblage with Respect to Seasonal Variation in Sediment Nutritional Quality

    EPA Science Inventory

    We examined temporal variation in the relationship between benthic macrofaunal assemblage structure and sediment nutritional quality, using core samples taken seasonally from a 232 m deep site in Wilkinson Basin, Gulf of Maine from October 2003 through August 2004. The benthic as...

  6. Structural and functional impacts of copy number variations on the cattle genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although there have been significant advances in resolving the pattern and nature of single nucleotide polymorphisms (SNPs), similar realizations for larger, more complex forms of genetic variation have just emerged. Several recent publications reveal that copy number variations (CNVs) are common an...

  7. Spatial variation in the phylogenetic structure of flea assemblages across geographic ranges of small mammalian hosts in the Palearctic.

    PubMed

    Krasnov, Boris R; Pilosof, Shai; Shenbrot, Georgy I; Khokhlova, Irina S

    2013-08-01

    We investigated spatial variation in the phylogenetic structure (measured as a degree of phylogenetic clustering) of flea assemblages across the geographic ranges of 11 Palearctic species of small mammalian hosts and asked whether the phylogenetic structure of the flea assemblage of a host in a locality is affected by (i) distance of this locality from the centre of the host's geographic range, (ii) geographic position of the locality (distance to the equator) and (iii) phylogenetic structure of the entire flea assemblage of the locality. Our results demonstrated that the key factor underlying spatial variation of the phylogenetic structure of the flea assemblage of a host was the distance from the centre of the host's geographic range. However, the pattern of this spatial variation differed between host species and might be explained by their species-specific immunogenetic and/or distributional patterns. Local flea assemblages may also, to some extent, be shaped by environmental filtering coupled with historical events. In addition, the phylogenetic structure of a local within-host flea assemblage may mirror the phylogenetic structure of the entire across-host flea assemblage in that locality and, thus, be affected by the availability of certain phylogenetic lineages.

  8. Variation in xylem structure from tropics to tundra: Evidence from vestured pits

    PubMed Central

    Jansen, Steven; Baas, Pieter; Gasson, Peter; Lens, Frederic; Smets, Erik

    2004-01-01

    Bordered pits play an important role in permitting water flow among adjacent tracheary elements in flowering plants. Variation in the bordered pit structure is suggested to be adaptive in optimally balancing the conflict between hydraulic efficiency (conductivity) and safety from air entry at the pit membrane (air seeding). The possible function of vestured pits, which are bordered pits with protuberances from the secondary cell wall of the pit chamber, could be increased hydraulic resistance or minimized vulnerability to air seeding. These functional hypotheses have to be harmonized with the notion that the vestured or nonvestured nature of pits contains strong phylogenetic signals (i.e., often characterize large species-rich clades with broad ecological ranges). A literature survey of 11,843 species covering 6,428 genera from diverse climates indicates that the incidence of vestured pits considerably decreases from tropics to tundra. The highest frequencies of vestured pits occur in deserts and tropical seasonal woodlands. Moreover, a distinctly developed network of branched vestures is mainly restricted to warm habitats in both mesic and dry (sub)tropical lowlands, whereas vestures in woody plants from cold and boreal arctic environments are usually minute and simple. A similar survey of the frequency of exclusively scalariform perforation plates illustrates that the major ecological trend of this feature is opposite that of vestured pits. These findings provide previously undescribed insights suggesting that vessels with vestured pits and simple perforation plates function as an efficient hydraulic system in plants growing in warm environments with periodical or continuous drought stress. PMID:15163796

  9. Variation in the OC Locus of Acinetobacter baumannii Genomes Predicts Extensive Structural Diversity in the Lipooligosaccharide

    PubMed Central

    Kenyon, Johanna J.; Nigro, Steven J.; Hall, Ruth M.

    2014-01-01

    Lipooligosaccharide (LOS) is a complex surface structure that is linked to many pathogenic properties of Acinetobacter baumannii. In A. baumannii, the genes responsible for the synthesis of the outer core (OC) component of the LOS are located between ilvE and aspS. The content of the OC locus is usually variable within a species, and examination of 6 complete and 227 draft A. baumannii genome sequences available in GenBank non-redundant and Whole Genome Shotgun databases revealed nine distinct new types, OCL4-OCL12, in addition to the three known ones. The twelve gene clusters fell into two distinct groups, designated Group A and Group B, based on similarities in the genes present. OCL6 (Group B) was unique in that it included genes for the synthesis of L-Rhamnosep. Genetic exchange of the different configurations between strains has occurred as some OC forms were found in several different sequence types (STs). OCL1 (Group A) was the most widely distributed being present in 18 STs, and OCL6 was found in 16 STs. Variation within clones was also observed, with more than one OC locus type found in the two globally disseminated clones, GC1 and GC2, that include the majority of multiply antibiotic resistant isolates. OCL1 was the most abundant gene cluster in both GC1 and GC2 genomes but GC1 isolates also carried OCL2, OCL3 or OCL5, and OCL3 was also present in GC2. As replacement of the OC locus in the major global clones indicates the presence of sub-lineages, a PCR typing scheme was developed to rapidly distinguish Group A and Group B types, and to distinguish the specific forms found in GC1 and GC2 isolates. PMID:25247305

  10. Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma.

    PubMed

    Cheng, Caixia; Zhou, Yong; Li, Hongyi; Xiong, Teng; Li, Shuaicheng; Bi, Yanghui; Kong, Pengzhou; Wang, Fang; Cui, Heyang; Li, Yaoping; Fang, Xiaodong; Yan, Ting; Li, Yike; Wang, Juan; Yang, Bin; Zhang, Ling; Jia, Zhiwu; Song, Bin; Hu, Xiaoling; Yang, Jie; Qiu, Haile; Zhang, Gehong; Liu, Jing; Xu, Enwei; Shi, Ruyi; Zhang, Yanyan; Liu, Haiyan; He, Chanting; Zhao, Zhenxiang; Qian, Yu; Rong, Ruizhou; Han, Zhiwei; Zhang, Yanlin; Luo, Wen; Wang, Jiaqian; Peng, Shaoliang; Yang, Xukui; Li, Xiangchun; Li, Lin; Fang, Hu; Liu, Xingmin; Ma, Li; Chen, Yunqing; Guo, Shiping; Chen, Xing; Xi, Yanfeng; Li, Guodong; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Jia, JunMei; Li, Qingshan; Cheng, Xiaolong; Zhan, Qimin; Cui, Yongping

    2016-02-04

    Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs.

  11. Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Cheng, Caixia; Zhou, Yong; Li, Hongyi; Xiong, Teng; Li, Shuaicheng; Bi, Yanghui; Kong, Pengzhou; Wang, Fang; Cui, Heyang; Li, Yaoping; Fang, Xiaodong; Yan, Ting; Li, Yike; Wang, Juan; Yang, Bin; Zhang, Ling; Jia, Zhiwu; Song, Bin; Hu, Xiaoling; Yang, Jie; Qiu, Haile; Zhang, Gehong; Liu, Jing; Xu, Enwei; Shi, Ruyi; Zhang, Yanyan; Liu, Haiyan; He, Chanting; Zhao, Zhenxiang; Qian, Yu; Rong, Ruizhou; Han, Zhiwei; Zhang, Yanlin; Luo, Wen; Wang, Jiaqian; Peng, Shaoliang; Yang, Xukui; Li, Xiangchun; Li, Lin; Fang, Hu; Liu, Xingmin; Ma, Li; Chen, Yunqing; Guo, Shiping; Chen, Xing; Xi, Yanfeng; Li, Guodong; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Jia, JunMei; Li, Qingshan; Cheng, Xiaolong; Zhan, Qimin; Cui, Yongping

    2016-01-01

    Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs. PMID:26833333

  12. Poly(sophorolipid) structural variation: effects on biomaterial physical and biological properties.

    PubMed

    Peng, Yifeng; Munoz-Pinto, Dany J; Chen, Mingtao; Decatur, John; Hahn, Mariah; Gross, Richard A

    2014-11-10

    Diacetylated lactonic sophorolipids (polyLSL[6'Ac,6″Ac]), a biosurfactant, can be efficiently polymerized by ring-opening metathesis polymerization (ROMP). In this paper, enzyme-mediated chemical transformations are developed to regioselectively modify LSL[6'Ac,6″Ac] at sophorose primary hydroxyl positions (6' and 6″). The resulting modified LSLs were polymerized to expand polyLSL structural diversity, that is, polyLSL[6'OH,6″Ac], polyLSL[6'OH,6″OH], polyLSL[6'Bu,6″Ac], polyLSL[6'N3,6″Ac], and polyLSL[6'MA,6″Ac]. Controlled placement of azide and methacrylate at sophorolipid moieties enables the use of "click" reactions to introduce bioactive groups. Thermal analyses of polyLSLs showed that the acylation pattern at sugar moieties has a remarkable effect on chain stiffness and crystallinity. Films of polyLSL[6'Ac,6″Ac], polyLSL[6'OH,6″Ac], and polyLSL[6'Bu,6″Ac] exhibited nonbrittle behaviors with compressive elastic moduli ranging from ∼1.5 to ∼4.9 MPa. PolyLSLs were cytocompatible with human mesenchymal stem cells (h-MSCs), and examination of material-induced osteogenic cell lineage progression uncovered a dependence on polyLSL substitution at sophorose 6'-sites. This research reveals opportunities to regulate polyLSL physical properties and cell response behaviors by variation in substituents at polyLSL sophorolipid moieties.

  13. A structure-activity analysis of the variation in oxime efficacy against nerve agents

    SciTech Connect

    Maxwell, Donald M. Koplovitz, Irwin; Worek, Franz; Sweeney, Richard E.

    2008-09-01

    A structure-activity analysis was used to evaluate the variation in oxime efficacy of 2-PAM, obidoxime, HI-6 and ICD585 against nerve agents. In vivo oxime protection and in vitro oxime reactivation were used as indicators of oxime efficacy against VX, sarin, VR and cyclosarin. Analysis of in vivo oxime protection was conducted with oxime protective ratios (PR) from guinea pigs receiving oxime and atropine therapy after sc administration of nerve agent. Analysis of in vitro reactivation was conducted with second-order rate contants (k{sub r2}) for oxime reactivation of agent-inhibited acetylcholinesterase (AChE) from guinea pig erythrocytes. In vivo oxime PR and in vitro k{sub r2} decreased as the volume of the alkylmethylphosphonate moiety of nerve agents increased from VX to cyclosarin. This effect was greater with 2-PAM and obidoxime (> 14-fold decrease in PR) than with HI-6 and ICD585 (< 3.7-fold decrease in PR). The decrease in oxime PR and k{sub r2} as the volume of the agent moiety conjugated to AChE increased was consistent with a steric hindrance mechanism. Linear regression of log (PR-1) against log (k{sub r2} {center_dot} [oxime dose]) produced two offset parallel regression lines that delineated a significant difference between the coupling of oxime reactivation and oxime protection for HI-6 and ICD585 compared to 2-PAM and obidoxime. HI-6 and ICD585 appeared to be 6.8-fold more effective than 2-PAM and obidoxime at coupling oxime reactivation to oxime protection, which suggested that the isonicotinamide group that is common to both of these oximes, but absent from 2-PAM and obidoxime, is important for oxime efficacy.

  14. Variation in xylem structure from tropics to tundra: evidence from vestured pits.

    PubMed

    Jansen, Steven; Baas, Pieter; Gasson, Peter; Lens, Frederic; Smets, Erik

    2004-06-08

    Bordered pits play an important role in permitting water flow among adjacent tracheary elements in flowering plants. Variation in the bordered pit structure is suggested to be adaptive in optimally balancing the conflict between hydraulic efficiency (conductivity) and safety from air entry at the pit membrane (air seeding). The possible function of vestured pits, which are bordered pits with protuberances from the secondary cell wall of the pit chamber, could be increased hydraulic resistance or minimized vulnerability to air seeding. These functional hypotheses have to be harmonized with the notion that the vestured or nonvestured nature of pits contains strong phylogenetic signals (i.e., often characterize large species-rich clades with broad ecological ranges). A literature survey of 11,843 species covering 6,428 genera from diverse climates indicates that the incidence of vestured pits considerably decreases from tropics to tundra. The highest frequencies of vestured pits occur in deserts and tropical seasonal woodlands. Moreover, a distinctly developed network of branched vestures is mainly restricted to warm habitats in both mesic and dry (sub)tropical lowlands, whereas vestures in woody plants from cold and boreal arctic environments are usually minute and simple. A similar survey of the frequency of exclusively scalariform perforation plates illustrates that the major ecological trend of this feature is opposite that of vestured pits. These findings provide previously undescribed insights suggesting that vessels with vestured pits and simple perforation plates function as an efficient hydraulic system in plants growing in warm environments with periodical or continuous drought stress.

  15. MSB: a mean-shift-based approach for the analysis of structural variation in the genome.

    PubMed

    Wang, Lu-Yong; Abyzov, Alexej; Korbel, Jan O; Snyder, Michael; Gerstein, Mark

    2009-01-01

    Genome structural variation includes segmental duplications, deletions, and other rearrangements, and array-based comparative genomic hybridization (array-CGH) is a popular technology for determining this. Drawing relevant conclusions from array-CGH requires computational methods for partitioning the chromosome into segments of elevated, reduced, or unchanged copy number. Several approaches have been described, most of which attempt to explicitly model the underlying distribution of data based on particular assumptions. Often, they optimize likelihood functions for estimating model parameters, by expectation maximization or related approaches; however, this requires good parameter initialization through prespecifying the number of segments. Moreover, convergence is difficult to achieve, since many parameters are required to characterize an experiment. To overcome these limitations, we propose a nonparametric method without a global criterion to be optimized. Our method involves mean-shift-based (MSB) procedures; it considers the observed array-CGH signal as sampling from a probability-density function, uses a kernel-based approach to estimate local gradients for this function, and iteratively follows them to determine local modes of the signal. Overall, our method achieves robust discontinuity-preserving smoothing, thus accurately segmenting chromosomes into regions of duplication and deletion. It does not require the number of segments as input, nor does its convergence depend on this. We successfully applied our method to both simulated data and array-CGH experiments on glioblastoma and adenocarcinoma. We show that it performs at least as well as, and often better than, 10 previously published algorithms. Finally, we show that our approach can be extended to segmenting the signal resulting from the depth-of-coverage of mapped reads from next-generation sequencing.

  16. Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation.

    PubMed

    Kuroda, Y; Kaga, A; Tomooka, N; Vaughan, D A

    2006-04-01

    The research objectives were to determine aspects of the population dynamics relevant to effective monitoring of gene flow in the soybean crop complex in Japan. Using 20 microsatellite primers, 616 individuals from 77 wild soybean (Glycine soja) populations were analysed. All samples were of small seed size (< 0.03 g), were directly collected in the field and came from all parts of Japan where wild soybeans grow, except Hokkaido. Japanese wild soybean showed significant reduction in observed heterozygosity, low outcrossing rate (mean 3.4%) and strong genetic differentiation among populations. However, the individual assignment test revealed evidence of rare long-distance seed dispersal (> 10 km) events among populations, and spatial autocorrelation analysis revealed that populations within a radius of 100 km showed a close genetic relationship to one another. When analysis of graphical ordination was applied to compare the microsatellite variation of wild soybean with that of 53 widely grown Japanese varieties of cultivated soybean (Glycine max), the primary factor of genetic differentiation was based on differences between wild and cultivated soybeans and the secondary factor was geographical differentiation of wild soybean populations. Admixture analysis revealed that 6.8% of individuals appear to show introgression from cultivated soybeans. These results indicated that population genetic structure of Japanese wild soybean is (i) strongly affected by the founder effect due to seed dispersal and inbreeding strategy, (ii) generally well differentiated from cultivated soybean, but (iii) introgression from cultivated soybean occurs. The implications of the results for the release of transgenic soybeans where wild soybeans grow are discussed.

  17. Climate structures genetic variation across a species' elevation range: a test of range limits hypotheses.

    PubMed

    Sexton, Jason P; Hufford, Matthew B; Bateman, Ashley C; Lowry, David B; Meimberg, Harald; Strauss, Sharon Y; Rice, Kevin J

    2016-02-01

    Gene flow may influence the formation of species range limits, and yet little is known about the patterns of gene flow with respect to environmental gradients or proximity to range limits. With rapid environmental change, it is especially important to understand patterns of gene flow to inform conservation efforts. Here we investigate the species range of the selfing, annual plant, Mimulus laciniatus, in the California Sierra Nevada. We assessed genetic variation, gene flow, and population abundance across the entire elevation-based climate range. Contrary to expectations, within-population plant density increased towards both climate limits. Mean genetic diversity of edge populations was equivalent to central populations; however, all edge populations exhibited less genetic diversity than neighbouring interior populations. Genetic differentiation was fairly consistent and moderate among all populations, and no directional signals of contemporary gene flow were detected between central and peripheral elevations. Elevation-driven gene flow (isolation by environment), but not isolation by distance, was found across the species range. These findings were the same towards high- and low-elevation range limits and were inconsistent with two common centre-edge hypotheses invoked for the formation of species range limits: (i) decreasing habitat quality and population size; (ii) swamping gene flow from large, central populations. This pattern demonstrates that climate, but not centre-edge dynamics, is an important range-wide factor structuring M. laciniatus populations. To our knowledge, this is the first empirical study to relate environmental patterns of gene flow to range limits hypotheses. Similar investigations across a wide variety of taxa and life histories are needed.

  18. Pendant Dynamics of Ethylene-Oxide Containing Polymers with Diverse Backbones

    NASA Astrophysics Data System (ADS)

    Bartels, Joshua; Wang, Jing-Han Helen; Chen, Quan; Runt, James; Colby, Ralph

    In the last twenty years, a wide variety of ion conducting polymers have used ether oxygens to facilitate ion conduction, and it is therefore important to understand the dynamics of ether oxygens (EOs) when attached to different polymer backbones. Four different EO-containing polymer architectures are studied by dielectric spectroscopy to understand the backbone effect on the EO dipoles. Polysiloxanes, polyphosphazenes, polymethylmethacrylates, and a polyester ether are compared, with different EO pendant lengths for the siloxane and methylmethacrylate backbones. The flexible polysiloxanes and polyphosphazene backbones impart superior segmental mobility with a glass transition temperature 15 K lower than that of the organic backbone polymers. Short EO pendants are found to impart a lower static dielectric constant at comparable EO content as compared to longer EO pendants of either inorganic or organic backbones. The long-pendant polymethylmethacrylate polymers show two relaxations corresponding to fast EOs near the pendant tail end and slow EOs close to the slower backbone, whereas the long-pendant polysiloxane shows a single relaxation due to the siloxane backbone relaxing faster than the EO pendant. Supported by the NSF Division of Materials Research Polymers Program through Grants DMR-1404586 (RHC) and DMR-1505953 (JR).

  19. Dissecting structural and nucleotide genome-wide variation in inbred Iberian pigs

    PubMed Central

    2013-01-01

    further confirm the importance of structural variation in the species, including Iberian pigs, and allowed us to identify new paralogs for known gene families. PMID:23497037

  20. The Relationship between Gene Network Structure and Expression Variation among Individuals and Species

    PubMed Central

    Sears, Karen E.; Maier, Jennifer A.; Rivas-Astroza, Marcelo; Poe, Rachel; Zhong, Sheng; Kosog, Kari; Marcot, Jonathan D.; Behringer, Richard R.; Rasweiler, John J.; Rapti, Zoi

    2015-01-01

    Abstract Variation among individuals is a prerequisite of evolution by natural selection. As such, identifying the origins of variation is a fundamental goal of biology. We investigated the link between gene interactions and variation in gene expression among individuals and species using the mammalian limb as a model system. We first built interaction networks for key genes regulating early (outgrowth; E9.5–11) and late (expansion and elongation; E11-13) limb development in mouse. This resulted in an Early (ESN) and Late (LSN) Stage Network. Computational perturbations of these networks suggest that the ESN is more robust. We then quantified levels of the same key genes among mouse individuals and found that they vary less at earlier limb stages and that variation in gene expression is heritable. Finally, we quantified variation in gene expression levels among four mammals with divergent limbs (bat, opossum, mouse and pig) and found that levels vary less among species at earlier limb stages. We also found that variation in gene expression levels among individuals and species are correlated for earlier and later limb development. In conclusion, results are consistent with the robustness of the ESN buffering among-individual variation in gene expression levels early in mammalian limb development, and constraining the evolution of early limb development among mammalian species. PMID:26317994

  1. Backbone Assignment of the MALT1 Paracaspase by Solution NMR.

    PubMed

    Unnerståle, Sofia; Nowakowski, Michal; Baraznenok, Vera; Stenberg, Gun; Lindberg, Jimmy; Mayzel, Maxim; Orekhov, Vladislav; Agback, Tatiana

    2016-01-01

    Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs). ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients emphasizes the urgent need for alternative treatment options. The characterization of the MALT1 will be an essential tool for developing new target-directed drugs against MALT1 dependent disorders. As the first step in the atomic-level NMR studies of the system, here we report, the (15)N/(13)C/(1)H backbone assignment of the apo form of the MALT1 paracaspase region together with the third immunoglobulin-like (Ig3) domain, 44 kDa, by high resolution NMR. In addition, the non-uniform sampling (NUS) based targeted acquisition procedure is evaluated as a mean of decreasing acquisition and analysis time for larger proteins.

  2. Thermogelling Biodegradable Polymers with Hydrophilic Backbones: PEG-g-PLGA

    SciTech Connect

    Jeong, Byeongmoon; Kibbey, Merinda R.; Birnbaum, Jerome C.; Won, You-Yeong; Gutowska, Anna

    2000-10-31

    The aqueous solutions of poly(ethylene glycol)grafted with poly(lactic acid-co-glycolic acid) flow freely at room temperature but form gels at higher temperature. The existence of micelles in water at low polymer concentration was confirmed by Cro-transmission electron microscopy and dye solubilization studies. The micellar diameter and critical micelle concentration are about 9 nm and 0.47 wt.% respectively. The critical gel concentration, above which a gel phase appears was 16 wt.% and sol-to-gel transition temperature was slightly affected by the concentration in the range of 16 {approx} 25 wt.%. At sol-to-gel transition, viscosity increased abruptly and C-NMR showed molecular motion of hydrophilic poly(lactic acid-co-glycolic acid) side-chains increased. The hydrogel of PEG-g-PLGA with hydrophilic backbones was transparent during degradation and remained a gel for one week, suggesting a promising material for short-term drug delivery.

  3. Backbone Assignment of the MALT1 Paracaspase by Solution NMR

    PubMed Central

    Unnerståle, Sofia; Nowakowski, Michal; Baraznenok, Vera; Stenberg, Gun; Lindberg, Jimmy; Mayzel, Maxim; Orekhov, Vladislav; Agback, Tatiana

    2016-01-01

    Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs). ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients emphasizes the urgent need for alternative treatment options. The characterization of the MALT1 will be an essential tool for developing new target-directed drugs against MALT1 dependent disorders. As the first step in the atomic-level NMR studies of the system, here we report, the 15N/13C/1H backbone assignment of the apo form of the MALT1 paracaspase region together with the third immunoglobulin-like (Ig3) domain, 44 kDa, by high resolution NMR. In addition, the non-uniform sampling (NUS) based targeted acquisition procedure is evaluated as a mean of decreasing acquisition and analysis time for larger proteins. PMID:26788853

  4. Structure-guided unidirectional variation de-striping in the infrared bands of MODIS and hyperspectral images

    NASA Astrophysics Data System (ADS)

    Zhang, Yaozong; Zhang, Tianxu

    2016-07-01

    Images taken using moderate resolution imaging spectroradiometer (MODIS) and hyperspectral imaging systems, especially in their infrared bands, usually lead to undesired stripe noises, which seriously affect the image quality. A variational de-striping model has been proven to have good performance, but knowing how to detect stripes effectively, especially to distinguish them from edges/textures, is still challenging. In this paper, a structure-guided unidirectional variational (SGUV) model that considers the structure of stripes is proposed. Because of the use of structure information, which textures and edges do not have, the proposed algorithm can effectively distinguish stripes from image textures and almost does not blur details while removing stripes. Comparative experiments based on real stripe images demonstrated that the proposed method provides optimal qualitative and quantitative results.

  5. Conformational Variations of Both Phosphodiesterase-5 and Inhibitors Provide the Structural Basis for the Physiological Effects of Vardenafil and Sildenafil

    SciTech Connect

    Wang, H.; Ye, M; Robinson, H; Fransis, S; Ke, H

    2007-01-01

    Vardenafil has higher affinity to phosphodiesterase-5 (PDE5) than sildenafil and lower administered dosage for the treatment of erectile dysfunction. However, the molecular basis for these differences is puzzling because two drugs have similar chemical structures. Reported here is a crystal structure of the fully active and nonmutated PDE5A1 catalytic domain in complex with vardenafil. The structure shows that the conformation of the H-loop in the PDE5A1-vardenafil complex is different from those of any known structures of the unliganded PDE5 and its complexes with the inhibitors. In addition, the molecular configuration of vardenafil differs from that of sildenafil when bound to PDE5. It is noteworthy that the binding of vardenafil causes loss of the divalent metal ions that have been observed in all the previously published PDE structures. The conformational variation of both PDE5 and the inhibitors provides structural insight into the different potencies of the drugs.

  6. Conformational Variations of Both Phosphodiesterase-5 and Inhibitors Provide the Structural Basis for the Physiological Effects of Verdenafil and Sildenafil

    SciTech Connect

    Wang,H.; Ye, M.; Robinson, H.; Francis, S.; Ke, H.

    2008-01-01

    Vardenafil has higher affinity to phosphodiesterase-5 (PDE5) than sildenafil and lower administered dosage for the treatment of erectile dysfunction. However, the molecular basis for these differences is puzzling because two drugs have similar chemical structures. Reported here is a crystal structure of the fully active and nonmutated PDE5A1 catalytic domain in complex with vardenafil. The structure shows that the conformation of the H-loop in the PDE5A1-vardenafil complex is different from those of any known structures of the unliganded PDE5 and its complexes with the inhibitors. In addition, the molecular configuration of vardenafil differs from that of sildenafil when bound to PDE5. It is noteworthy that the binding of vardenafil causes loss of the divalent metal ions that have been observed in all the previously published PDE structures. The conformational variation of both PDE5 and the inhibitors provides structural insight into the different potencies of the drugs.

  7. Signatures of DNA flexibility, interactions and sequence-related structural variations in classical X-ray diffraction patterns

    PubMed Central

    Kornyshev, A. A.; Lee, D. J.; Wynveen, A.; Leikin, S.

    2011-01-01

    The theory of X-ray diffraction from ideal, rigid helices allowed Watson and Crick to unravel the DNA structure, thereby elucidating functions encoded in it. Yet, as we know now, the DNA double helix is neither ideal nor rigid. Its structure varies with the base pair sequence. Its flexibility leads to thermal fluctuations and allows molecules to adapt their structure to optimize their intermolecular interactions. In addition to the double helix symmetry revealed by Watson and Crick, classical X-ray diffraction patterns of DNA contain information about the flexibility, interactions and sequence-related variations encoded within the helical structure. To extract this information, we have developed a new diffraction theory that accounts for these effects. We show how double helix non-ideality and fluctuations broaden the diffraction peaks. Meridional intensity profiles of the peaks at the first three helical layer lines reveal information about structural adaptation and intermolecular interactions. The meridional width of the fifth layer line peaks is inversely proportional to the helical coherence length that characterizes sequence-related and thermal variations in the double helix structure. Analysis of measured fiber diffraction patterns based on this theory yields important parameters that control DNA structure, packing and function. PMID:21593127

  8. Signatures of DNA flexibility, interactions and sequence-related structural variations in classical X-ray diffraction patterns.

    PubMed

    Kornyshev, A A; Lee, D J; Wynveen, A; Leikin, S

    2011-09-01

    The theory of X-ray diffraction from ideal, rigid helices allowed Watson and Crick to unravel the DNA structure, thereby elucidating functions encoded in it. Yet, as we know now, the DNA double helix is neither ideal nor rigid. Its structure varies with the base pair sequence. Its flexibility leads to thermal fluctuations and allows molecules to adapt their structure to optimize their intermolecular interactions. In addition to the double helix symmetry revealed by Watson and Crick, classical X-ray diffraction patterns of DNA contain information about the flexibility, interactions and sequence-related variations encoded within the helical structure. To extract this information, we have developed a new diffraction theory that accounts for these effects. We show how double helix non-ideality and fluctuations broaden the diffraction peaks. Meridional intensity profiles of the peaks at the first three helical layer lines reveal information about structural adaptation and intermolecular interactions. The meridional width of the fifth layer line peaks is inversely proportional to the helical coherence length that characterizes sequence-related and thermal variations in the double helix structure. Analysis of measured fiber diffraction patterns based on this theory yields important parameters that control DNA structure, packing and function.

  9. Differential backbone dynamics of companion helices in the extended helical coiled-coil domain of a bacterial chemoreceptor

    PubMed Central

    Bartelli, Nicholas L; Hazelbauer, Gerald L

    2015-01-01

    Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four-helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent-exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin-labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane-distal tight turn (N-helix), and the other carboxyl terminal (C-helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide-spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N- and C-helices. For bilayer-inserted receptors, EPR spectra from sites in the membrane-distal protein-interaction region and throughout the C-helix were typical of well-structured helices. In contrast, for approximately two-thirds of the N-helix, from its origin as the AS-2 helix of the membrane-proximal HAMP domain to the beginning of the membrane-distal protein-interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four-helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function. PMID:26257396

  10. An Unusual Conformational Isomer of Verrucosidin Backbone from a Hydrothermal Vent Fungus, Penicillium sp. Y-50-10

    PubMed Central

    Pan, Chengqian; Shi, Yutong; Auckloo, Bibi Nazia; Chen, Xuegang; Chen, Chen-Tung Arthur; Tao, Xinyi; Wu, Bin

    2016-01-01

    A new verrucosidin derivative, methyl isoverrucosidinol (1), was isolated from the marine fungus Penicillium sp. Y-50-10, dwelling in sulfur rich sediment in the Kueishantao hydrothermal vents off Taiwan. The structure was established by spectroscopic means including HRMS and 2D-NMR spectroscopic analysis. The absolute configuration was defined mainly by comparison of quantum chemical TDDFT calculated and experimental ECD spectra. Among hitherto known compounds with a verrucosidine backbone isolated from natural resource, compound 1 represents the first example of a new conformational isomer of its skeleton, exhibiting antibiotic activity against Bacillus subtilis with MIC value 32 μg/mL. PMID:27548192

  11. 1H, 15N and 13C backbone resonance assignments of the archetypal serpin α1-antitrypsin.

    PubMed

    Nyon, Mun Peak; Kirkpatrick, John; Cabrita, Lisa D; Christodoulou, John; Gooptu, Bibek

    2012-10-01

    Alpha(1)-antitrypsin is a 45-kDa (394-residue) serine protease inhibitor synthesized by hepatocytes, which is released into the circulatory system and protects the lung from the actions of neutrophil elastase via a conformational transition within a dynamic inhibitory mechanism. Relatively common point mutations subvert this transition, causing polymerisation of α(1)-antitrypsin and deficiency of the circulating protein, predisposing carriers to severe lung and liver disease. We have assigned the backbone resonances of α(1)-antitrypsin using multidimensional heteronuclear NMR spectroscopy. These assignments provide the starting point for a detailed solution state characterization of the structural properties of this highly dynamic protein via NMR methods.

  12. BON-BONs: cyclic molecules with a boron-oxygen-nitrogen backbone. Computational studies of their thermodynamic properties.

    PubMed

    Lawong, Aloysus K; Ball, David W

    2012-04-01

    Although they were first reported in 1963, molecules with a boron-oxygen-nitrogen dimeric backbone do not seem to have been investigated seriously in terms of thermodynamic properties. Here we report on the calculated structures and properties, including thermodynamics, of several so-called "BON-BON" molecules. With the popularity of nitrogen-containing substituents on new high-energy materials, nitro-substituted BON-BONs were a focus of our investigation. A total of 42 BON-BON molecules were evaluated, and thermochemical analysis shows a decrease in the specific enthalpy of combustion or decomposition with increasing NO(2) content, consistent with other systems.

  13. Understanding GFP chromophore biosynthesis: controlling backbone cyclization and modifying post-translational chemistry.

    PubMed

    Barondeau, David P; Kassmann, Carey J; Tainer, John A; Getzoff, Elizabeth D

    2005-02-15

    The Aequorea victoria green fluorescent protein (GFP) undergoes a remarkable post-translational modification to create a chromophore out of its component amino acids S65, Y66, and G67. Here, we describe mutational experiments in GFP designed to convert this chromophore into a 4-methylidene-imidazole-5-one (MIO) moiety similar to the post-translational active-site electrophile of histidine ammonia lyase (HAL). Crystallographic structures of GFP variant S65A Y66S (GFPhal) and of four additional related site-directed mutants reveal an aromatic MIO moiety and mechanistic details of GFP chromophore formation and MIO biosynthesis. Specifically, the GFP scaffold promotes backbone cyclization by (1) favoring nucleophilic attack by close proximity alignment of the G67 amide lone pair with the pi orbital of the residue 65 carbonyl and (2) removing enthalpic barriers by eliminating inhibitory main-chain hydrogen bonds in the precursor state. GFP R96 appears to induce structural rearrangements important in aligning the molecular orbitals for ring cyclization, favor G67 nitrogen deprotonation through electrostatic interactions with the Y66 carbonyl, and stabilize the reduced enolate intermediate. Our structures and analysis also highlight negative design features of the wild-type GFP architecture, which favor chromophore formation by destabilizing alternative conformations of the chromophore tripeptide. By providing a molecular basis for understanding and controlling the driving force and protein chemistry of chromophore creation, this research has implications for expansion of the genetic code through engineering of modified amino acids.

  14. Abundant mitochondrial DNA variation and world-wide population structure in humpback whales.

    PubMed Central

    Baker, C S; Perry, A; Bannister, J L; Weinrich, M T; Abernethy, R B; Calambokidis, J; Lien, J; Lambertsen, R H; Ramírez, J U; Vasquez, O

    1993-01-01

    Hunting during the last 200 years reduced many populations of mysticete whales to near extinction. To evaluate potential genetic bottlenecks in these exploited populations, we examined mitochondrial DNA control region sequences from 90 individual humpback whales (Megaptera novaeangliae) representing six subpopulations in three ocean basins. Comparisons of relative nucleotide and nucleotype diversity reveal an abundance of genetic variation in all but one of the oceanic subpopulations. Phylogenetic reconstruction of nucleotypes and analysis of maternal gene flow show that current genetic variation is not due to postexploitation migration between oceans but is a relic of past population variability. Calibration of the rate of control region evolution across three families of whales suggests that existing humpback whale lineages are of ancient origin. Preservation of preexploitation variation in humpback whales may be attributed to their long life-span and overlapping generations and to an effective, though perhaps not timely, international prohibition against hunting. PMID:8367488

  15. Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes.

    PubMed

    Davies, Chantel; Ellis, Christopher J; Iason, Glenn R; Ennos, Richard A

    2014-01-01

    Community genetics hypothesizes that within a foundation species, the genotype of an individual significantly influences the assemblage of dependent organisms. To assess whether these intra-specific genetic effects are ecologically important, it is required to compare their impact on dependent organisms with that attributable to environmental variation experienced over relevant spatial scales. We assessed bark epiphytes on 27 aspen (Populus tremula L.) genotypes grown in a randomized experimental array at two contrasting sites spanning the environmental conditions from which the aspen genotypes were collected. We found that variation in aspen genotype significantly influenced bark epiphyte community composition, and to the same degree as environmental variation between the test sites. We conclude that maintaining genotypic diversity of foundation species may be crucial for conservation of associated biodiversity.

  16. Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise

    NASA Technical Reports Server (NTRS)

    Eckstein, M. P.; Ahumada, A. J. Jr; Watson, A. B.

    1997-01-01

    Studies of visual detection of a signal superimposed on one of two identical backgrounds show performance degradation when the background has high contrast and is similar in spatial frequency and/or orientation to the signal. To account for this finding, models include a contrast gain control mechanism that pools activity across spatial frequency, orientation and space to inhibit (divisively) the response of the receptor sensitive to the signal. In tasks in which the observer has to detect a known signal added to one of M different backgrounds grounds due to added visual noise, the main sources of degradation are the stochastic noise in the image and the suboptimal visual processing. We investigate how these two sources of degradation (contrast gain control and variations in the background) interact in a task in which the signal is embedded in one of M locations in a complex spatially varying background (structured background). We use backgrounds extracted from patient digital medical images. To isolate effects of the fixed deterministic background (the contrast gain control) from the effects of the background variations, we conduct detection experiments with three different background conditions: (1) uniform background, (2) a repeated sample of structured background, and (3) different samples of structured background. Results show that human visual detection degrades from the uniform background condition to the repeated background condition and degrades even further in the different backgrounds condition. These results suggest that both the contrast gain control mechanism and the background random variations degrade human performance in detection of a signal in a complex, spatially varying background. A filter model and added white noise are used to generate estimates of sampling efficiencies, an equivalent internal noise, an equivalent contrast-gain-control-induced noise, and an equivalent noise due to the variations in the structured background.

  17. Uganda's National Transmission Backbone Infrastructure Project: Technical Challenges and the Way Forward

    NASA Astrophysics Data System (ADS)

    Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.

    2011-10-01

    Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.

  18. Interpretation of DNA vibration modes: IV--A single-helical approach to assign the phosphate-backbone contribution to the vibrational spectra in A and B conformations.

    PubMed

    Letellier, R; Ghomi, M; Taillandier, E

    1989-02-01

    A calculated approach based on the Higgs method for assigning the vibration modes of an infinite helicoidal polymeric chain has been performed on the basis of a reliable valence force field. The calculated results allowed the phosphate-backbone marker modes of the A and B forms, to be interpreted. In the dynamic models used, the bases have been omitted and no interchain interaction was considered. The calculation can also interprete quite satisfactorily the characteristic Raman peaks and infrared bands in the 1250-700 cm-1 spectral region arising from the sugar or sugar-phosphate association and reproduce their evolution upon the B----A DNA conformational transition. They clearly show that the phosphate-backbone modes in the above mentioned spectral region constitute the optical branches of the phonon dispersion curves with no detectable variation in the first Brillouin-zone.

  19. Genetic variation within a dominant shrub structures green and brown community assemblages.

    PubMed

    Crutsinger, Gregory M; Rodriguez-Cabal, Mariano A; Roddy, Adam B; Peay, Kabir G; Bastow, Justin L; Kidder, Allison G; Dawson, Todd E; Fine, Paul V A; Rudgers, Jennifer A

    2014-02-01

    Two rising challenges in ecology are understanding the linkages between above- and belowground components of terrestrial ecosystems and connecting genes to their ecological consequences. Here, we blend these emerging perspectives using a long-term common-garden experiment in a coastal dune ecosystem, whose dominant shrub species, Baccharis pilularis, exists as erect or prostrate architectural morphotypes. We explored variation in green (foliage-based) and brown (detritus-based) community assemblages, local ecosystem processes, and understory microclimate between the two morphs. Prostrate morphs supported more individuals, species, and different compositions of foliage arthropods, litter microarthropods, and soil bacteria than erect morphs. The magnitude of community compositional differences was maintained from crown to litter to soil. Despite showing strikingly similar responses, green and brown assemblages were associated with different underlying mechanisms. Differences in estimated shrub biomass best explained variation in the green assemblage, while understory abiotic conditions accounted for variation in the brown assemblage. Prostrate morphs produced more biomass and litter, which corresponded with their strong lateral growth in a windy environment. Compared to erect morphs, the denser canopy and thicker litter layer of prostrate morphs helped create more humid understory conditions. As a result, decomposition rates were higher under prostrate shrubs, despite prostrate litter being of poorer quality. Together, our results support the hypothesis that intraspecific genetic variation in primary producers is a key mediator of above- and belowground linkages, and that integrating the two perspectives can lead to new insights into how terrestrial communities are linked with ecosystem pools and processes.

  20. Primary structural variation in anaplasma marginale Msp2 efficiently generates immune escape variants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antigenic variation allows microbial pathogens to evade immune clearance and establish persistent infection. Anaplasma marginale utilizes gene conversion of a repertoire of silent msp2 alleles into a single active expression site to encode unique Msp2 variants. As the genomic complement of msp2 alle...

  1. Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase.

    PubMed Central

    Clark, A G; Weiss, K M; Nickerson, D A; Taylor, S L; Buchanan, A; Stengård, J; Salomaa, V; Vartiainen, E; Perola, M; Boerwinkle, E; Sing, C F

    1998-01-01

    Allelic variation in 9.7 kb of genomic DNA sequence from the human lipoprotein lipase gene (LPL) was scored in 71 healthy individuals (142 chromosomes) from three populations: African Americans (24) from Jackson, MS; Finns (24) from North Karelia, Finland; and non-Hispanic Whites (23) from Rochester, MN. The sequences had a total of 88 variable sites, with a nucleotide diversity (site-specific heterozygosity) of .002+/-.001 across this 9.7-kb region. The frequency spectrum of nucleotide variation exhibited a slight excess of heterozygosity, but, in general, the data fit expectations of the infinite-sites model of mutation and genetic drift. Allele-specific PCR helped resolve linkage phases, and a total of 88 distinct haplotypes were identified. For 1,410 (64%) of the 2,211 site pairs, all four possible gametes were present in these haplotypes, reflecting a rich history of past recombination. Despite the strong evidence for recombination, extensive linkage disequilibrium was observed. The number of haplotypes generally is much greater than the number expected under the infinite-sites model, but there was sufficient multisite linkage disequilibrium to reveal two major clades, which appear to be very old. Variation in this region of LPL may depart from the variation expected under a simple, neutral model, owing to complex historical patterns of population founding, drift, selection, and recombination. These data suggest that the design and interpretation of disease-association studies may not be as straightforward as often is assumed. PMID:9683608

  2. Educational Quality and Egalitarian Educational Structures: A Multi-Nation Multi-Variate Analysis

    ERIC Educational Resources Information Center

    Cummings, William K.; Bain, Olga

    2014-01-01

    The degree of equality in the delivery of education is an important dimension of variation. Some nations believe that the provision of a highly stratified system enhances quality, at least for the minority who are able to gain entry to the elite academic stream. In contrast, other nations prefer a more egalitarian approach to education where all…

  3. Fine spatial structure of Atlantic hake (Merluccius merluccius) stocks revealed by variation at microsatellite loci.

    PubMed

    Castillo, Ana G F; Martinez, Jose L; Garcia-Vazquez, Eva

    2004-01-01

    Genetic variation at 5 microsatellite loci was analyzed for European hake Merluccius merluccius sampled from 9 different regions in the Atlantic Ocean and the Mediterranean Sea. Significant genetic differentiation was found between samples, suggesting a fine subdivision of Atlantic and Mediterranean hake stocks. These results are discussed in the context of the decline of demersal fish species, probably due to overfishing.

  4. Influence of Forest Structure on the Sentinel-1 Backscatter Variation- Analysis with Full-Waveform LiDAR Data

    NASA Astrophysics Data System (ADS)

    Dostalova, A.; Milenkovic, M.; Hollaus, M.; Wagner, W.

    2016-08-01

    The availability of Sentinel-1 sensor provided the former unprecedented availability of high resolution dual-polarization Synthetic Aperture Radar (SAR) data over European continent. Dense time-series enables the study of the seasonal variability of C-Band SAR backscatter over forested areas. In this study, the Sentinel-1 backscatter and its annual variation is analysed with respect to forest type and structural parameters provided from the external dataset and airborne laser scanning acquisition. Different seasonal patterns are observed for coniferous and deciduous tree species. Less pronounced backscatter differences are also attributed to forest structure and vegetation cover fraction.

  5. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identi...

  6. Is there a Climate Network - A Backbone of the Climate System? (Invited)

    NASA Astrophysics Data System (ADS)

    Kurths, J.

    2010-12-01

    We consider an inverse problem: Is there a backbone-like structure underlying the climate system? For this we propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system. This technique is then applied to reanalysis and model surface air temperature data. Parameters of this network, as betweenness centrality, uncover relations to global circulation patterns in oceans and atmosphere. We especially study the role of hubs and of long range connections, called teleconnections, in the flows of energy and matter in the climate system. The global scale view on climate networks offers promising new perspectives for detecting dynamical structures based on nonlinear physical processes in the climate system. References Arenas, A., A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys. Reports 2008, 469, 93. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europ. Phys. J. ST 2009, 174, 157-179. Donges, J., Y. Zou, N. Marwan, and J. Kurths, Europhys. Lett. 2009, 87, 48007. Nawrath, J. et al., Phys. Rev. Lett. 2010, 104, 038701. Donner, R., Y. Zou, J. Donges, N. Marwan, and J. Kurths, Phys. Rev. E 2010, 81, 015101(R ).

  7. Aggregation tendencies in the p53 family are modulated by backbone hydrogen bonds

    PubMed Central

    Cino, Elio A.; Soares, Iaci N.; Pedrote, Murilo M.; de Oliveira, Guilherme A. P.; Silva, Jerson L.

    2016-01-01

    The p53 family of proteins is comprised of p53, p63 and p73. Because the p53 DNA binding domain (DBD) is naturally unstable and possesses an amyloidogenic sequence, it is prone to form amyloid fibrils, causing loss of functions. To develop p53 therapies, it is necessary to understand the molecular basis of p53 instability and aggregation. Light scattering, thioflavin T (ThT) and high hydrostatic pressure (HHP) assays showed that p53 DBD aggregates faster and to a greater extent than p63 and p73 DBDs, and was more susceptible to denaturation. The aggregation tendencies of p53, p63, and p73 DBDs were strongly correlated with their thermal stabilities. Molecular Dynamics (MD) simulations indicated specific regions of structural heterogeneity unique to p53, which may be promoted by elevated incidence of exposed backbone hydrogen bonds (BHBs). The results indicate regions of structural vulnerability in the p53 DBD, suggesting new targetable sites for modulating p53 stability and aggregation, a potential approach to cancer therapy. PMID:27600721

  8. Phenotypic impact of genomic structural variation: insights from and for human disease.

    PubMed

    Weischenfeldt, Joachim; Symmons, Orsolya; Spitz, François; Korbel, Jan O

    2013-02-01

    Genomic structural variants have long been implicated in phenotypic diversity and human disease, but dissecting the mechanisms by which they exert their functional impact has proven elusive. Recently however, developments in high-throughput DNA sequencing and chromosomal engineering technology have facilitated the analysis of structural variants in human populations and model systems in unprecedented detail. In this Review, we describe how structural variants can affect molecular and cellular processes, leading to complex organismal phenotypes, including human disease. We further present advances in delineating disease-causing elements that are affected by structural variants, and we discuss future directions for research on the functional consequences of structural variants.

  9. Influence of backbone rigidness on single chain conformation of thiophene-based conjugated polymers.

    PubMed

    Hu, Zhongjian; Liu, Jianhua; Simón-Bower, Lauren; Zhai, Lei; Gesquiere, Andre J

    2013-04-25

    Structural order of conjugated polymers at different length scales directs the optoelectronic properties of the corresponding materials; thus it is of critical importance to understand and control conjugated polymer morphology for successful application of these materials in organic optoelectronics. Herein, with the aim of probing the dependence of single chain folding properties on the chemical structure and rigidness of the polymer backbones, single molecule fluorescence spectroscopy was applied to four thiophene-based conjugated polymers. These include regioregular poly(3-hexylthiophene) (RR-P3HT), poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-14), poly(2,5-bis(3-tetradecylthiophen-2-yl)thiophene-2-yl)thiophen-2-ylthiazolo[5,4-d]thiazole) (PTzQT-12), and poly(3,3-didodecylquaterthiophene)] (PQT-12). Our previous work has shown that RR-P3HT and PBTTT-14 polymer chains fold in their nanostructures, whereas PQT-12 and PTzQT-12 do not fold in their nanostructures. At the single molecule level, it was found that RR-P3HT single chains almost exclusively fold into loosely and strongly aggregated conformations, analogous to the folding properties in nanostructures. PQT-12 displays significant chain folding as well, but only into loosely aggregated conformations, showing an absence of strongly aggregated polymer chains. PBTTT-14 exhibits a significant fraction of rigid polymer chain. The findings made for single molecules of PQT-12 and PBTTT-14 are thus in contrast with the observations made in their corresponding nanostructures. PTzQT-12 appears to be the most rigid and planar conjugated polymer of these four polymers. However, although the presumably nonfolding polymers PQT-12 and PTzQT-12 exhibit less folding than RR-P3HT, there is still a significant occurrence of chain folding for these polymers at the single molecule level. These results suggest that the folding properties of conjugated polymers can be influenced by the architecture of the

  10. An integrated map of structural variation in 2,504 human genomes.

    PubMed

    Sudmant, Peter H; Rausch, Tobias; Gardner, Eugene J; Handsaker, Robert E; Abyzov, Alexej; Huddleston, John; Zhang, Yan; Ye, Kai; Jun, Goo; Hsi-Yang Fritz, Markus; Konkel, Miriam K; Malhotra, Ankit; Stütz, Adrian M; Shi, Xinghua; Paolo Casale, Francesco; Chen, Jieming; Hormozdiari, Fereydoun; Dayama, Gargi; Chen, Ken; Malig, Maika; Chaisson, Mark J P; Walter, Klaudia; Meiers, Sascha; Kashin, Seva; Garrison, Erik; Auton, Adam; Lam, Hugo Y K; Jasmine Mu, Xinmeng; Alkan, Can; Antaki, Danny; Bae, Taejeong; Cerveira, Eliza; Chines, Peter; Chong, Zechen; Clarke, Laura; Dal, Elif; Ding, Li; Emery, Sarah; Fan, Xian; Gujral, Madhusudan; Kahveci, Fatma; Kidd, Jeffrey M; Kong, Yu; Lameijer, Eric-Wubbo; McCarthy, Shane; Flicek, Paul; Gibbs, Richard A; Marth, Gabor; Mason, Christopher E; Menelaou, Androniki; Muzny, Donna M; Nelson, Bradley J; Noor, Amina; Parrish, Nicholas F; Pendleton, Matthew; Quitadamo, Andrew; Raeder, Benjamin; Schadt, Eric E; Romanovitch, Mallory; Schlattl, Andreas; Sebra, Robert; Shabalin, Andrey A; Untergasser, Andreas; Walker, Jerilyn A; Wang, Min; Yu, Fuli; Zhang, Chengsheng; Zhang, Jing; Zheng-Bradley, Xiangqun; Zhou, Wanding; Zichner, Thomas; Sebat, Jonathan; Batzer, Mark A; McCarroll, Steven A; Mills, Ryan E; Gerstein, Mark B; Bashir, Ali; Stegle, Oliver; Devine, Scott E; Lee, Charles; Eichler, Evan E; Korbel, Jan O

    2015-10-01

    Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.

  11. Electronic structures in a CdSe spherical quantum dot in a magnetic field: Diagonalization method and variational method

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Wan, Li

    2012-03-01

    The electronic structures of a CdSe spherical quantum dot in a magnetic field are obtained by using an exact diagonalization method and a variational method within the effective-mass approximation. The dependences of the energies and wave functions of electron states, exciton binding energy, exciton transition energy, and exciton diamagnetic shift on the applied magnetic field are investigated theoretically in detail. It is observed that the degeneracy of magnetic quantum number m is removed due to the Zeeman effect when the magnetic field is present. For the states with m ≥ 0, the electron energies increase as the magnetic field increases. However, for the states with m < 0, the electron energies decrease to a minimum, and then increase with increasing the magnetic field. The energies and wave functions of electron states obtained from the variational method based on the variational functions we proposed are in excellent agreement with the results obtained from the exact diagonalization method we presented. A comparison between the results obtained from the variational functions proposed by us and Xiao is also verified.

  12. Treatment of coupled fluid-structure interaction problems by a mixed variational principle

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Ohayon, Roger

    1989-01-01

    A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. Semidiscrete finite-element equations of motion based on this principle are displayed.

  13. Niche partitioning and the role of intraspecific niche variation in structuring a guild of generalist anurans

    PubMed Central

    Eason, Perri K.

    2017-01-01

    Intra-population niche differences in generalist foragers have captured the interest of ecologists, because such individuality can have important ecological and evolutionary implications. Few researchers have investigated how these differences affect the relationships among ecologically similar, sympatric species. Using stable isotopes, stomach contents, morphology and habitat preference, we examined niche partitioning within a group of five anurans and determined whether variation within species could facilitate resource partitioning. Species partitioned their niches by trophic level and by foraging habitat. However, there was considerable intraspecific variation in trophic level, with larger individuals generally feeding at higher trophic levels. For species at intermediate trophic levels, smaller individuals overlapped in trophic level with individuals of smaller species and larger individuals overlapped with the smallest individuals from larger species. Species varied in carbon isotopes; species with enriched carbon isotope ratios foraged farther from ponds, whereas species with depleted carbon isotope values foraged closer to ponds. Our study shows that these species partition their niches by feeding at different trophic levels and foraging at different distances from ponds. The intraspecific variation in trophic level decreased the number of individuals from each species that overlapped in trophic level with individuals from other species, which can facilitate species coexistence.

  14. Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar-phosphate backbone and their comparison with modern density functional theory.

    PubMed

    Mládek, Arnošt; Krepl, Miroslav; Svozil, Daniel; Cech, Petr; Otyepka, Michal; Banáš, Pavel; Zgarbová, Marie; Jurečka, Petr; Sponer, Jiří

    2013-05-21

    The DNA sugar-phosphate backbone has a substantial influence on the DNA structural dynamics. Structural biology and bioinformatics studies revealed that the DNA backbone in experimental structures samples a wide range of distinct conformational substates, known as rotameric DNA backbone conformational families. Their correct description is essential for methods used to model nucleic acids and is known to be the Achilles heel of force field computations. In this study we report the benchmark database of MP2 calculations extrapolated to the complete basis set of atomic orbitals with aug-cc-pVTZ and aug-cc-pVQZ basis sets, MP2(T,Q), augmented by ΔCCSD(T)/aug-cc-pVDZ corrections. The calculations are performed in the gas phase as well as using a COSMO solvent model. This study includes a complete set of 18 established and biochemically most important families of DNA backbone conformations and several other salient conformations that we identified in experimental structures. We utilize an electronically sufficiently complete DNA sugar-phosphate-sugar (SPS) backbone model system truncated to prevent undesired intramolecular interactions. The calculations are then compared with other QM methods. The BLYP and TPSS functionals supplemented with Grimme's D3(BJ) dispersion term provide the best tradeoff between computational demands and accuracy and can be recommended for preliminary conformational searches as well as calculations on large model systems. Among the tested methods, the best agreement with the benchmark database has been obtained for the double-hybrid DSD-BLYP functional in combination with a quadruple-ζ basis set, which is, however, computationally very demanding. The new hybrid density functionals PW6B95-D3 and MPW1B95-D3 yield outstanding results and even slightly outperform the computationally more demanding PWPB95 double-hybrid functional. B3LYP-D3 is somewhat less accurate compared to the other hybrids. Extrapolated MP2(D,T) calculations are not as

  15. Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber

    PubMed Central

    Zhang, Zhonghua; Mao, Linyong; Chen, Huiming; Bu, Fengjiao; Li, Guangcun; Sun, Jinjing; Li, Shuai; Sun, Honghe; Jiao, Chen; Blakely, Rachel; Pan, Junsong; Cai, Run; Luo, Ruibang; Van de Peer, Yves; Jacobsen, Evert; Fei, Zhangjun; Huang, Sanwen

    2015-01-01

    Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep resequencing of 115 diverse accessions. The largest proportion of cucumber SVs was formed through nonhomologous end-joining rearrangements, and the occurrence of SVs is closely associated with regions of high nucleotide diversity. These SVs affect the coding regions of 1676 genes, some of which are associated with cucumber domestication. Based on the map, we discovered a copy number variation (CNV) involving four genes that defines the Female (F) locus and gives rise to gynoecious cucumber plants, which bear only female flowers and set fruit at almost every node. The CNV arose from a recent 30.2-kb duplication at a meiotically unstable region, likely via microhomology-mediated break-induced replication. The SV set provides a snapshot of structural variations in plants and will serve as an important resource for exploring genes underlying key traits and for facilitating practical breeding in cucumber. PMID:26002866

  16. Variation in grouping patterns, mating systems and social structure: what socio-ecological models attempt to explain

    PubMed Central

    Koenig, Andreas; Scarry, Clara J.; Wheeler, Brandon C.; Borries, Carola

    2013-01-01

    Socio-ecological models aim to predict the variation in social systems based on a limited number of ecological parameters. Since the 1960s, the original model has taken two paths: one relating to grouping patterns and mating systems and one relating to grouping patterns and female social structure. Here, we review the basic ideas specifically with regard to non-human primates, present new results and point to open questions. While most primates live in permanent groups and exhibit female defence polygyny, recent studies indicate more flexibility with cooperative male resource defence occurring repeatedly in all radiations. In contrast to other animals, the potential link between ecology and these mating systems remains, however, largely unexplored. The model of the ecology of female social structure has often been deemed successful, but has recently been criticized. We show that the predicted association of agonistic rates and despotism (directional consistency of relationships) was not supported in a comparative test. The overall variation in despotism is probably due to phylogenetic grade shifts. At the same time, it varies within clades more or less in the direction predicted by the model. This suggests that the model's utility may lie in predicting social variation within but not across clades. PMID:23569296

  17. Is variation in susceptibility to Phytophthora ramorum correlated with population genetic structure in coast live oak (Quercus agrifolia)?

    PubMed

    Dodd, Richard S; Hüberli, Daniel; Douhovnikoff, Vlad; Harnik, Tamar Y; Afzal-Rafii, Zara; Garbelotto, Matteo

    2005-01-01

    California coastal woodlands are suffering severe disease and mortality as a result of infection from Phytophthora ramorum. Quercus agrifolia is one of the major woodland species at risk. This study investigated within- and among-population variation in host susceptibility to inoculation with P. ramorum and compared this with population genetic structure using molecular markers. Susceptibility was assessed using a branch-cutting inoculation test. Trees were selected from seven natural populations in California. Amplified fragment length polymorphism molecular markers were analysed for all trees used in the trials. Lesion sizes varied quantitatively among individuals within populations, with up to an eightfold difference. There was little support for population differences in susceptibility. Molecular structure also showed a strong within-population, and weaker among-population, pattern of variation. Our data suggest that susceptibility of Q. agrifolia to P. ramorum is variable and is under the control of several gene loci. This variation exists within populations, so that less susceptible local genotypes may provide the gene pool for regeneration of woodlands where mortality is high.

  18. Constraining possible variations of the fine structure constant in strong gravitational fields with the Kα iron line

    SciTech Connect

    Bambi, Cosimo

    2014-03-01

    In extensions of general relativity and in theories aiming at unifying gravity with the forces of the Standard Model, the value of the ''fundamental constants'' is often determined by the vacuum expectation value of new fields, which may thus change in different backgrounds. Variations of fundamental constants with respect to the values measured today in laboratories on Earth are expected to be more evident on cosmological timescales and/or in strong gravitational fields. In this paper, I show that the analysis of the Kα iron line observed in the X-ray spectrum of black holes can potentially be used to probe the fine structure constant α in gravitational potentials relative to Earth of Δφ ≈ 0.1. At present, systematic effects not fully under control prevent to get robust and stringent bounds on possible variations of the value of α with this technique, but the fact that current data can be fitted with models based on standard physics already rules out variations of the fine structure constant larger than some percent.

  19. Seasonal and spatial variation of bacterial community structure in river-mouth areas of Gokasho bay, Japan.

    PubMed

    Sakami, Tomoko

    2008-01-01

    This study investigated seasonal and spatial dynamics of the bacterial community in Gokasho bay with denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA gene fragments. The community structure was related to physico-chemical water conditions in the area examined. The bacterial community clustered into three groups: bacteria collected during January-May; those collected from water at the surface in July and September; and those collected from water at the bottom in July and September and from both depths in November. Canonical correspondence analyses indicated that the seasonal variability in bacterial community was associated with water temperature succession. On the other hand, concentrations of particulate organic matter and nitrite plus nitrate were related to the vertical change in community structure in summer and autumn as well as HNF abundance, suggesting that both top-down and bottom-up control affected the community. The influence of salinity was insignificant though bacterial production was related to salinity. No relationship was observed between the variation in community structure and that in hydrolytic enzyme activity. The results indicate that changes in bacterial activity are not coupled with variation in community structure.

  20. Annual variation of the angular distribution of the UV beneath public shade structures.

    PubMed

    Turnbull, D J; Parisi, A V

    2004-10-25

    Local governments provide many shade structures at parks and sporting ovals for public use. However, the question remains of how effective are public shade structures at reducing biologically effective UV radiation throughout the year? Broadband measurements of the angular distribution of scattered UV beneath three specific public shade structures was conducted for relatively clear skies and for a solar zenith angle (SZA) ranging from 13 degrees to 76 degrees. The ultraviolet protection factors (UPF) for the shade structures ranged from 18.3 to 1.5 for an increasing SZA. Measurements showed that the horizontal plane received the highest SUV levels from the SZA of 28 degrees to 75 degrees, 42 degrees to 76 degrees, and 50 degrees to 76 degrees for the small, medium and large structures, respectively. This was due to the angle of the sun causing the shade created by the shade structure to be outside the structure. For the small shade structure, the measurements directed to the west were the highest levels in the shade after approximately 28 degrees. For the medium and large shade structures, the measurements directed to the west and south were the highest levels in the shade after roughly 42 degrees and 50 degrees, respectively.

  1. [Variations of zooplankton's community structure in reclaimed waters of Nanhui east tidal flat of Shanghai, East China].

    PubMed

    Li, Qiang; Ma, Chang-An; Lü, Wei-Wei; Tian, Wei; Yu, Ji; Zhao, Yun-Long

    2012-08-01

    From October 2010 to July 2011, an investigation was conducted on the zooplankton communities in reclaimed and natural waters in Nanhui east tidal flat to study the seasonal