Science.gov

Sample records for backbone structure variations

  1. Designed protein G core variants fold to native-like structures: Sequence selection by ORBIT tolerates variation in backbone specification

    PubMed Central

    Ross, Scott A.; Sarisky, Catherine A.; Su, Alyce; Mayo, Stephen L.

    2001-01-01

    The solution structures of two computationally designed core variants of the β1 domain of streptococcal protein G (Gβ1) were solved by 1H NMR methods to assess the robustness of amino acid sequence selection by the ORBIT protein design package under changes in protein backbone specification. One variant has mutations at three of 10 core positions and corresponds to minimal perturbations of the native Gβ1 backbone. The other, with mutations at six of 10 positions, was calculated for a backbone in which the separation between Gβ1's α-helix and β-sheet was increased by 15% relative to native Gβ1. Exchange broadening of some resonances and the complete absence of others in spectra of the sixfold mutant bespeak conformational heterogeneity in this protein. The NMR data were sufficiently abundant, however, to generate structures of similar, moderately high quality for both variants. Both proteins adopt backbone structures similar to their target folds. Moreover, the sequence selection algorithm successfully predicted all core χ1 angles in both variants, five of six χ2 angles in the threefold mutant and four of seven χ2 angles in the sixfold mutant. We conclude that ORBIT calculates sequences that fold specifically to a geometry close to the template, even when the template is moderately perturbed relative to a naturally occurring structure. There are apparently limits to the size of acceptable perturbations: In this study, the larger perturbation led to undesired dynamic behavior. PMID:11266631

  2. External Tank - The Structure Backbone

    NASA Technical Reports Server (NTRS)

    Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle

    2011-01-01

    The External Tank forms the structural backbone of the Space Shuttle in the launch configuration. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. Choice of lightweight materials both for structure and thermal conditioning was necessary. The tank is large, and unique manufacturing facilities, tooling, handling, and transportation operations were required. Weld processes and tooling evolved with the design as it matured through several block changes, to reduce weight. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the 40 year program. The final configuration and tank weight enabled international space station assembly in a high inclination orbit allowing international cooperation with the Russian Federal Space Agency. Numerous process controls were implemented to assure product quality, and innovative proof testing was accomplished prior to delivery. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to

  3. Proteins of well-defined structures can be designed without backbone readjustment by a statistical model.

    PubMed

    Zhou, Xiaoqun; Xiong, Peng; Wang, Meng; Ma, Rongsheng; Zhang, Jiahai; Chen, Quan; Liu, Haiyan

    2016-12-01

    We report that using mainly a statistical energy model, protein sequence design for designable backbones can be carried out with high confidence without considering backbone relaxation. A recently-developed statistical energy function for backbone-based protein sequence design has been rationally revised to improve its accuracy. As a demonstrative example, this revised model is applied to design a de novo protein for a target backbone for which the previous model had relied on after-design directed evolution to produce a well-folded protein. The actual backbone structure of the newly designed protein agrees excellently with the corresponding target. Besides presenting a new protein design protocol with experimentally verifications on different backbone types, our study implies that with an energy model of an appropriate resolution, proteins of well-defined structures instead of molten globules can be designed without the explicit consideration of backbone variations due to side chain changes, even if the side chain changes correspond to complete sequence redesigns.

  4. Structural dependencies of protein backbone 2JNC' couplings.

    PubMed

    Juranić, Nenad; Dannenberg, J J; Cornilescu, Gabriel; Salvador, Pedro; Atanasova, Elena; Ahn, Hee-Chul; Macura, Slobodan; Markley, John L; Prendergast, Franklyn G

    2008-04-01

    Protein folding can introduce strain in peptide covalent geometry, including deviations from planarity that are difficult to detect, especially for a protein in solution. We have found dependencies in protein backbone (2)J(NC') couplings on the planarity and the relative orientation of the sequential peptide planes. These dependences were observed in experimental (2)J(NC') couplings from seven proteins, and also were supported by DFT calculations for a model tripeptide. Findings indicate that elevated (2)J(NC') couplings may serve as reporters of structural strain in the protein backbone imposed by protein folds. Such information, supplemented with the H-bond strengths derived from (h3)J(NC') couplings, provides useful insight into the overall energy profile of the protein backbone in solution.

  5. Structural dependencies of protein backbone 2JNC′ couplings

    PubMed Central

    Juranić, Nenad; Dannenberg, J.J.; Cornilescu, Gabriel; Salvador, Pedro; Atanasova, Elena; Ahn, Hee-Chul; Macura, Slobodan; Markley, John L.; Prendergast, Franklyn G.

    2008-01-01

    Protein folding can introduce strain in peptide covalent geometry, including deviations from planarity that are difficult to detect, especially for a protein in solution. We have found dependencies in protein backbone 2JNC′ couplings on the planarity and the relative orientation of the sequential peptide planes. These dependences were observed in experimental 2JNC′ couplings from seven proteins, and also were supported by DFT calculations for a model tripeptide. Findings indicate that elevated 2JNC′ couplings may serve as reporters of structural strain in the protein backbone imposed by protein folds. Such information, supplemented with the H-bond strengths derived from h3JNC′ couplings, provides useful insight into the overall energy profile of the protein backbone in solution. PMID:18305196

  6. Geometry motivated alternative view on local protein backbone structures.

    PubMed

    Zacharias, Jan; Knapp, Ernst Walter

    2013-11-01

    We present an alternative to the classical Ramachandran plot (R-plot) to display local protein backbone structure. Instead of the (φ, ψ)-backbone angles relating to the chemical architecture of polypeptides generic helical parameters are used. These are the rotation or twist angle ϑ and the helical rise parameter d. Plots with these parameters provide a different view on the nature of local protein backbone structures. It allows to display the local structures in polar (d, ϑ)-coordinates, which is not possible for an R-plot, where structural regimes connected by periodicity appear disconnected. But there are other advantages, like a clear discrimination of the handedness of a local structure, a larger spread of the different local structure domains--the latter can yield a better separation of different local secondary structure motives--and many more. Compared to the R-plot we are not aware of any major disadvantage to classify local polypeptide structures with the (d, ϑ)-plot, except that it requires some elementary computations. To facilitate usage of the new (d, ϑ)-plot for protein structures we provide a web application (http://agknapp.chemie.fu-berlin.de/secsass), which shows the (d, ϑ)-plot side-by-side with the R-plot.

  7. Backbone fractal dimension and fractal hybrid orbital of protein structure

    NASA Astrophysics Data System (ADS)

    Peng, Xin; Qi, Wei; Wang, Mengfan; Su, Rongxin; He, Zhimin

    2013-12-01

    Fractal geometry analysis provides a useful and desirable tool to characterize the configuration and structure of proteins. In this paper we examined the fractal properties of 750 folded proteins from four different structural classes, namely (1) the α-class (dominated by α-helices), (2) the β-class (dominated by β-pleated sheets), (3) the (α/β)-class (α-helices and β-sheets alternately mixed) and (4) the (α + β)-class (α-helices and β-sheets largely segregated) by using two fractal dimension methods, i.e. "the local fractal dimension" and "the backbone fractal dimension" (a new and useful quantitative parameter). The results showed that the protein molecules exhibit a fractal behavior in the range of 1 ⩽ N ⩽ 15 (N is the number of the interval between two adjacent amino acid residues), and the value of backbone fractal dimension is distinctly greater than that of local fractal dimension for the same protein. The average value of two fractal dimensions decreased in order of α > α/β > α + β > β. Moreover, the mathematical formula for the hybrid orbital model of protein based on the concept of backbone fractal dimension is in good coincidence with that of the similarity dimension. So it is a very accurate and simple method to analyze the hybrid orbital model of protein by using the backbone fractal dimension.

  8. Retrieving Backbone String Neighbors Provides Insights Into Structural Modeling of Membrane Proteins*

    PubMed Central

    Sun, Jiang-Ming; Li, Tong-Hua; Cong, Pei-Sheng; Tang, Sheng-Nan; Xiong, Wen-Wei

    2012-01-01

    Identification of protein structural neighbors to a query is fundamental in structure and function prediction. Here we present BS-align, a systematic method to retrieve backbone string neighbors from primary sequences as templates for protein modeling. The backbone conformation of a protein is represented by the backbone string, as defined in Ramachandran space. The backbone string of a query can be accurately predicted by two innovative technologies: a knowledge-driven sequence alignment and encoding of a backbone string element profile. Then, the predicted backbone string is employed to align against a backbone string database and retrieve a set of backbone string neighbors. The backbone string neighbors were shown to be close to native structures of query proteins. BS-align was successfully employed to predict models of 10 membrane proteins with lengths ranging between 229 and 595 residues, and whose high-resolution structural determinations were difficult to elucidate both by experiment and prediction. The obtained TM-scores and root mean square deviations of the models confirmed that the models based on the backbone string neighbors retrieved by the BS-align were very close to the native membrane structures although the query and the neighbor shared a very low sequence identity. The backbone string system represents a new road for the prediction of protein structure from sequence, and suggests that the similarity of the backbone string would be more informative than describing a protein as belonging to a fold. PMID:22415040

  9. Refined solution structure and backbone dynamics of HIV-1 Nef.

    PubMed Central

    Grzesiek, S.; Bax, A.; Hu, J. S.; Kaufman, J.; Palmer, I.; Stahl, S. J.; Tjandra, N.; Wingfield, P. T.

    1997-01-01

    The tendency of HIV-1 Nef to form aggregates in solution, particularly at pH values below 8, together with its large fraction of highly mobile residues seriously complicated determination of its three-dimensional structure, both for heteronuclear solution NMR (Grzesiek et al., 1996a, Nat Struct Biol 3:340-345) and for X-ray crystallography (Lee et al., 1996, Cell 85:931-942). Methods used to determine the Nef structure by NMR at pH 8 and 0.6 mM concentration are presented, together with a detailed description of Nef's secondary and tertiary structure. The described techniques have general applicability for the NMR structure determination of proteins that are aggregating and/or have limited stability at low pH values. Extensive chemical shift assignments are reported for backbone and side chain 1H, 13C, and 15N resonances of the HIV-1 Nef deletion mutants NEF delta 2-39, NEF delta 2-39, delta 159-173, and of NEF delta 2-39, delta 159-173 in complex with the SH3 domain of the Hck tyrosine protein kinase. Besides a type II polyproline helix, Nef's structure consists of three alpha-helices, a 3(10) helix, and a five-stranded anti-parallel beta-sheet. The analysis of 15N relaxation parameters of the backbone amide sites reveals that all the secondary structure elements are non-mobile on the picosecond to nanosecond and on the millisecond time scale. A large number of slowly exchanging amide protons provides evidence for the stability of the Nef core even on the time scale of hours. Significant internal motions on the ps to ns time scale are detected for residues 60 to 71 and for residues 149 to 180, which form solvent-exposed loops. The residues of the HIV-1 protease cleavage site (W57/L58) do not exhibit large amplitude motions on the sub-nanosecond time scale, and their side chains insert themselves into a hydrophobic crevice formed between the C-terminus of helix 1 and the N-terminus of helix 2. A refined structure has been determined based on additional constraints

  10. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments.

    PubMed

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-03-11

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure-function relationship.

  11. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments

    PubMed Central

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-01-01

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure–function relationship. PMID:26978354

  12. Changing the topology of protein backbone: the effect of backbone cyclization on the structure and dynamics of a SH3 domain

    NASA Astrophysics Data System (ADS)

    Schumann, Frank; Varadan, Ranjani; Tayakuniyil, Praveen; Grossman, Jennifer; Camarero, Julio; Fushman, David

    2015-04-01

    Understanding of the effects of the backbone cyclization on the structure and dynamics of a protein is essential for using protein topology engineering to alter protein stability and function. Here we have determined, for the first time, the structure and dynamics of the linear and various circular constructs of the N-SH3 domain from protein c-Crk. These constructs differ in the length and amino acid composition of the cyclization region. The backbone cyclization was carried out using intein-mediated intramolecular chemical ligation between the juxtaposed N- and the C-termini. The structure and backbone dynamics studies were performed using solution NMR. Our data suggest that the backbone cyclization has little effect on the overall three-dimensional structure of the SH3 domain: besides the termini, only minor structural changes were found in the proximity of the cyclization region. In contrast to the structure, backbone dynamics are significantly affected by the cyclization. On the subnanosecond time scale, the backbone of all circular constructs on average appears more rigid than that of the linear SH3 domain; this effect is observed over the entire backbone and is not limited to the cyclization site. The backbone mobility of the circular constructs becomes less restricted with increasing length of the circularization loop. In addition, significant conformational exchange motions (on the sub-millisecond time scale) were found in the N-Src loop and in the adjacent β-strands in all circular constructs studied in this work. These effects of backbone cyclization on protein dynamics have potential implications for the stability of the protein fold and for ligand binding.

  13. Limits on variations in protein backbone dynamics from precise measurements of scalar couplings.

    PubMed

    Vögeli, Beat; Ying, Jinfa; Grishaev, Alexander; Bax, Ad

    2007-08-01

    3JHN,Halpha, 3JHN,Cbeta, and 3JHN,C' couplings, all related to the backbone torsion angle phi, were measured for the third immunoglobulin binding domain of protein G, or GB3. Measurements were carried out using both previously published methods and novel sequences based on the multiple-quantum principle, which limit attenuation of experimental couplings caused by finite lifetimes of the spin states of passive spins. High reproducibility between the multiple-quantum and conventional approaches confirms the accuracy of the measurements. With few exceptions, close agreement between 3JHN,Halpha, 3JHN,Cbeta, and 3JHN,C' and values predicted by their respective Karplus equations is observed. For the three types of couplings, up to 20% better agreement is obtained when fitting the experimental couplings to a dynamic ensemble NMR structure, which has a phi angle root-mean-square spread of 9 +/- 4 degrees and was previously calculated on the basis of a very extensive set of residual dipolar couplings, than for any single static NMR structure. Fits of 3J couplings to a 1.1-A X-ray structure, with hydrogens added in idealized positions, are 40-90% worse. Approximately half of the improvement when fitting to the NMR structures relates to the amide proton deviating from its idealized, in-peptide-plane position, indicating that the positioning of hydrogens relative to the backbone atoms is one of the factors limiting the accuracy at which the backbone torsion angle phi can be extracted from 3J couplings. Introducing an additional, residue-specific variable for the amplitude of phi angle fluctuations does not yield a statistically significant improvement when fitting to a set of dynamic Karplus curves, pointing to a homogeneous behavior of these amplitudes.

  14. East vergent structure of Backbone Range: Insights from A-Lan-Yi area and sandbox modeling

    NASA Astrophysics Data System (ADS)

    Lee, C. A.; Lu, C. Y.

    2015-12-01

    Southern Taiwan, including Pingtung peninsula and Taitung, is the incipient oblique collision zone of Eurasian plate and Philippine Sea plate. The Luzon volcanic arc converged toward Taiwan Island and formed Hengchun Ridge south offshore Taiwan. Thus, Taiwan mountain belt developed from north to south as the Backbone Range, so that we can infer the incipient feature structure from the topography and outcrop study of southern Taiwan. Our field survey of this study concentrated at the southeast coastline of Taiwan, also known as A-Lan-Yi Trail. According to previous study, the deformational structures such as faults and folds are consistent with regional kinematic processes, and the preserved transpression structure is the most important evidence of incipient collision. In this study, we use the sedimentary sequences of study area to trace the regional tectonics from north to south. Discovered structures in this area show the similar kinematic history as the eastern flank of Backbone Range, so that we suggest they are at the same series of a tectonic event. To complete the regional structure mapping in this accessible area, besides the field geological data, we also applied the LiDAR-derived DTM which is a 3D visualization technology to improve our topography information. In addition, we use the sandbox modeling to demonstrate the development of structures in the eastern flank of Backbone Range. After combining the results of field observation and regional structure mapping, this study provides a strong evidence of backthrusting and backfolding deformation during the incipient oblique collision stage.

  15. SABBAC: online Structural Alphabet-based protein BackBone reconstruction from Alpha-Carbon trace

    PubMed Central

    Maupetit, Julien; Gautier, R.; Tufféry, Pierre

    2006-01-01

    SABBAC is an on-line service devoted to protein backbone reconstruction from alpha-carbon trace. It is based on the assembly of fragments taken from a library of reduced size, selected from the encoding of the protein trace in a hidden Markov model-derived structural alphabet. The assembly of the fragments is achieved by a greedy algorithm, using an energy-based scoring. Alpha-carbon coordinates remain unaffected. SABBAC simply positions the missing backbone atoms, no further refinement is performed. From our tests, SABBAC performs equal or better than other similar on-line approach and is robust to deviations on the alpha-carbon coordinates. It can be accessed at . PMID:16844979

  16. Toward Atomistic Resolution Structure of Phosphatidylcholine Headgroup and Glycerol Backbone at Different Ambient Conditions†

    PubMed Central

    2015-01-01

    Phospholipids are essential building blocks of biological membranes. Despite a vast amount of very accurate experimental data, the atomistic resolution structures sampled by the glycerol backbone and choline headgroup in phoshatidylcholine bilayers are not known. Atomistic resolution molecular dynamics simulations have the potential to resolve the structures, and to give an arrestingly intuitive interpretation of the experimental data, but only if the simulations reproduce the data within experimental accuracy. In the present work, we simulated phosphatidylcholine (PC) lipid bilayers with 13 different atomistic models, and compared simulations with NMR experiments in terms of the highly structurally sensitive C–H bond vector order parameters. Focusing on the glycerol backbone and choline headgroups, we showed that the order parameter comparison can be used to judge the atomistic resolution structural accuracy of the models. Accurate models, in turn, allow molecular dynamics simulations to be used as an interpretation tool that translates these NMR data into a dynamic three-dimensional representation of biomolecules in biologically relevant conditions. In addition to lipid bilayers in fully hydrated conditions, we reviewed previous experimental data for dehydrated bilayers and cholesterol-containing bilayers, and interpreted them with simulations. Although none of the existing models reached experimental accuracy, by critically comparing them we were able to distill relevant chemical information: (1) increase of choline order parameters indicates the P–N vector tilting more parallel to the membrane, and (2) cholesterol induces only minor changes to the PC (glycerol backbone) structure. This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as a communication platform; all the scientific contributions were made publicly on this blog. During the open research process, the repository holding our simulation trajectories and files (https

  17. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2017-01-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature ( T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature ( T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  18. The structure of the carbohydrate backbone of the lipopolysaccharide of Pectinatus frisingensis strain VTT E-79104.

    PubMed

    Vinogradov, Evgeny; Li, Jianjun; Sadovskaya, Irina; Jabbouri, Said; Helander, Ilkka M

    2004-06-22

    The structure of the carbohydrate backbone of the lipopolysaccharide from Pectinatus frisingensis strain VTT E-79104 was analyzed using chemical degradations, NMR spectroscopy, mass spectrometry, and chemical methods. The LPS contains two major structural variants, differing in the presence or absence of an octasaccharide fragment. The largest structure of the carbohydrate backbone of the LPS, that could be deduced from experimental results, consists of 20 monosaccharides arranged in a nonrepetitive sequence: [carbohydrate structure: see text] where R is H or 4-O-Me-alpha-L-Fuc-(1-2)-4-O-Me-beta-Hep-(1-3)-alpha-GlcNAc-(1-2)-beta-Man-(1-3)-beta-ManNAc-(1-4)-alpha-Gal-(1-4)-beta-Hep-(1-3)-beta-GalNAc-(1- where Hep is a residue of D-glycero-D-galacto-heptose; all monosaccharides have the D-configuration except for 4-O-Me-L-Fuc and L-Ara4N. This structure is architecturally similar to the oligosaccharide system reported previously in P. frisingensis VTT E-82164 LPS, but differs from the latter in composition and also in the size of the outer region.

  19. Improved variation calling via an iterative backbone remapping and local assembly method for bacterial genomes

    PubMed Central

    Tae, Hongseok; Settlage, Robert E.; Shallom, Shamira; Bavarva, Jasmin H.; Preston, Dale; Hawkins, Gregory N.; Adams, L. Garry; Garner, Harold R.

    2012-01-01

    Sequencing data analysis remains limiting and problematic, especially for low complexity repeat sequences and transposon elements due to inherent sequencing errors and short sequence read lengths. We have developed a program, ReviSeq, which uses a hybrid method comprised of iterative remapping and local assembly upon a bacterial sequence backbone. Application of this method to six Brucella suis field isolates compared to the newly revised Brucella suis 1330 reference genome identified on average 13, 15, 19 and 9 more variants per sample than STAMPY/SAMtools, BWA/SAMtools, iCORN and BWA/PINDEL pipelines, and excluded on average 4, 2, 3 and 19 variants per sample, respectively. In total, using this iterative approach, we identified on average 87 variants including SNVs, short INDELs and long INDELs per strain when compared to the reference. Our program outperforms other methods especially for long INDEL calling. The program is available at http://reviseq.sourceforge.net. PMID:22967795

  20. Facile backbone structure determination of human membrane proteins by NMR spectroscopy

    PubMed Central

    Klammt, Christian; Maslennikov, Innokentiy; Bayrhuber, Monika; Eichmann, Cédric; Vajpai, Navratna; Chiu, Ellis Jeremy Chua; Blain, Katherine Y; Esquivies, Luis; Kwon, June Hyun Jung; Balana, Bartosz; Pieper, Ursula; Sali, Andrej; Slesinger, Paul A; Kwiatkowski, Witek; Riek, Roland; Choe, Senyon

    2013-01-01

    Although nearly half of today’s major pharmaceutical drugs target human integral membrane proteins (hIMPs), only 30 hIMP structures are currently available in the Protein Data Bank, largely owing to inefficiencies in protein production. Here we describe a strategy for the rapid structure determination of hIMPs, using solution NMR spectroscopy with systematically labeled proteins produced via cell-free expression. We report new backbone structures of six hIMPs, solved in only 18 months from 15 initial targets. Application of our protocols to an additional 135 hIMPs with molecular weight <30 kDa yielded 38 hIMPs suitable for structural characterization by solution NMR spectroscopy without additional optimization. PMID:22609626

  1. Statistical mechanics of protein allostery: Roles of backbone and side-chain structural fluctuations

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuhito; Sasai, Masaki

    2011-03-01

    A statistical mechanical model of allosteric transition of proteins is developed by extending the structure-based model of protein folding to cases that a protein has two different native conformations. Partition function is calculated exactly within the model and free-energy surfaces associated with allostery are derived. In this paper, the model of allosteric transition proposed in a previous paper [Proc. Natl. Acad. Sci. U.S.A 134, 7775 (2010)] is reformulated to describe both fluctuation in side-chain configurations and that in backbone structures in a balanced way. The model is applied to example proteins, Ras, calmodulin, and CheY: Ras undergoes the allosteric transition between guanosine diphosphate (GDP)-bound and guanosine triphosphate (GTP)-bound forms, and the model results show that the GDP-bound form is stabilized enough to prevent unnecessary signal transmission, but the conformation in the GTP-bound state bears large fluctuation in side-chain configurations, which may help to bind multiple target proteins for multiple pathways of signaling. The calculated results of calmodulin show the scenario of sequential ordering in Ca2 + binding and the associated allosteric conformational change, which are realized though the sequential appearing of pre-existing structural fluctuations, i.e., fluctuations to show structures suitable to bind Ca2 + before its binding. Here, the pre-existing fluctuations to accept the second and third Ca2 + ions are dominated by the side-chain fluctuation. In CheY, the calculated side-chain fluctuation of Tyr106 is coordinated with the backbone structural change in the β4-α4 loop, which explains the pre-existing Y-T coupling process in this protein. Ability of the model to explain allosteric transitions of example proteins supports the view that the large entropic effects lower the free-energy barrier of allosteric transition.

  2. Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers

    SciTech Connect

    Burgess, Mark; Chénard, Etienne; Hernández-Burgos, Kenneth; Nagarjuna, Gavvalapalli; Assary, Rajeev S.; Hui, Jingshu; Moore, Jeffrey S.; Rodríguez-López, Joaquín

    2016-10-25

    The design of chemically stable and electrochemically reversible redox active polymers (RAPs) is of great interest for energy storage technologies. Particularly, RAPs are new players for flow batteries relying on a size-exclusion based mechanism of electrolyte separation, but few studies have provided detailed molecular understanding of redox polymers in solution. Here, we use a systematic molecular design approach to investigate the impact of linker and redox-pendant electronic interactions on the performance of viologen RAPs. We used scanning electrochemical microscopy, cyclic voltammetry, bulk electrolysis, temperature-dependent absorbance, and spectroelectrochemistry to study the redox properties, charge transfer kinetics, and self-exchange of electrons through redox active dimers and their equivalent polymers. Stark contrast was observed between the electrochemical properties of viologen dimers and their corresponding polymers. Electron self-exchange kinetics in redox active dimers that only differ by their tether length and rigidity influences their charge transfer properties. Predictions from the Marcus Hush theory were consistent with observations in redox active dimers, but they failed to fully capture the behavior of macromolecular systems. For example, polymer bound viologen pendants, if too close in proximity, do not retain chemical reversibility. In contrast to polymer films, small modifications to the backbone structure decisively impact the bulk electrolysis of polymer solutions. This first comprehensive study highlights the careful balance between electronic interactions and backbone rigidity required to design RAPs with superior electrochemical performance.

  3. APSY-NMR for protein backbone assignment in high-throughput structural biology

    PubMed Central

    Dutta, Samit Kumar; Serrano, Pedro; Proudfoot, Andrew; Geralt, Michael; Pedrini, Bill; Herrmann, Torsten; Wüthrich, Kurt

    2014-01-01

    A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90% of the residues. For most proteins the APSY data acquisition was completed in less than 30 hours. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [1H,1H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination. PMID:25428764

  4. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR

    PubMed Central

    Knight, Michael J.; Pell, Andrew J.; Bertini, Ivano; Felli, Isabella C.; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido

    2012-01-01

    We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with 1H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of 15N and 13C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu+ (diamagnetic) or Cu2+ (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to 1H-1H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a Gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable. PMID:22723345

  5. Solution structure and backbone dynamics of human epidermal-type fatty acid-binding protein (E-FABP).

    PubMed Central

    Gutiérrez-González, Luis H; Ludwig, Christian; Hohoff, Carsten; Rademacher, Martin; Hanhoff, Thorsten; Rüterjans, Heinz; Spener, Friedrich; Lücke, Christian

    2002-01-01

    Human epidermal-type fatty acid-binding protein (E-FABP) belongs to a family of intracellular 14-15 kDa lipid-binding proteins, whose functions have been associated with fatty acid signalling, cell growth, regulation and differentiation. As a contribution to understanding the structure-function relationship, we report in the present study features of its solution structure and backbone dynamics determined by NMR spectroscopy. Applying multi-dimensional high-resolution NMR techniques on unlabelled and 15N-enriched recombinant human E-FABP, the 1H and 15N resonance assignments were completed. On the basis of 2008 distance restraints, the three-dimensional solution structure of human E-FABP was subsequently obtained (backbone atom root-mean-square deviation of 0.92+/-0.11 A; where 1 A=0.1 nm), consisting mainly of 10 anti-parallel beta-strands that form a beta-barrel structure. 15N relaxation experiments (T1, T2 and heteronuclear nuclear Overhauser effects) at 500, 600 and 800 MHz provided information on the internal dynamics of the protein backbone. Nearly all non-terminal backbone amide groups showed order parameters S(2)>0.8, with an average value of 0.88+/-0.04, suggesting a uniformly low backbone mobility in the nanosecond-to-picosecond time range. Moreover, hydrogen/deuterium exchange experiments indicated a direct correlation between the stability of the hydrogen-bonding network in the beta-sheet structure and the conformational exchange in the millisecond-to-microsecond time range. The features of E-FABP backbone dynamics elaborated in the present study differ markedly from those of the phylogenetically closely related heart-type FABP and the more distantly related ileal lipid-binding protein, implying a strong interdependence with the overall protein stability and possibly also with the ligand-binding affinity for members of the lipid-binding protein family. PMID:12049637

  6. Dual-functional ROMP-based betaines: effect of hydrophilicity and backbone structure on nonfouling properties.

    PubMed

    Colak, Semra; Tew, Gregory N

    2012-01-10

    Foundational materials for nonfouling coatings were designed and synthesized from a series of novel dual-functional zwitterionic polymers, Poly[NRZI], which were easily obtained via ring-opening metathesis polymerization (ROMP) followed by a single step transformation of the cationic precursor, Poly[NR(+)], to the zwitterion, Poly[NRZI]. The resulting unique dual-functional structure contained the anion and the cation within the same repeat unit but on separate side chains, enabling the hydrophilicity of the system to be tuned at the repeat unit level. These dual-functional zwitterionic polymers were specifically designed to investigate the impact of structural changes, including the backbone, hydrophilicity, and charge, on the overall nonfouling properties. To evaluate the importance of backbone structure, and as a direct comparison to previously studied methacrylate-based betaines, norbornene-based carbo- and sulfobetaines (Poly[NCarboZI] and Poly[NSulfoZI]) as well as a methacrylate-based sulfobetaine (Poly[MASulfoZI]) were synthesized. These structures contain the anion-cation pairs on the same side chain. Nonfouling coatings were prepared from copolymers, composed of the zwitterionic/cationic precursor monomer and an ethoxysilane-containing monomer. The coatings were evaluated by using protein adsorption studies, which clearly indicated that the overall hydrophilicity has a major influence on the nonfouling character of the materials. The most hydrophilic coating, from the oligoethylene glycol (OEG)-containing dual-functional betaine, Poly[NOEGZI-co-NSi], showed the best resistance to nonspecific protein adsorption (Γ(FIB) = 0.039 ng/mm(2)). Both norbornene-based polymers systems, Poly[NSulfoZI] and Poly[NCarboZI], were more hydrophilic and thus more resistant to protein adsorption than the methacrylate-based Poly[MASulfoZI]. Comparing the protein resistance of the dual-functional zwitterionic coatings, Poly[NRZI-co-NSi], to that of their cationic

  7. Polarity engineering of conjugated polymers by variation of chemical linkages connecting conjugated backbones.

    PubMed

    Yun, Hui-Jun; Choi, Hyun Ho; Kwon, Soon-Ki; Kim, Yun-Hi; Cho, Kilwon

    2015-03-18

    The fine tuning of the dominant polarity in polymer semiconductors is a key issue for high-performance organic complementary circuits. In this paper, we demonstrate a new methodology for addressing this issue in terms of molecular design. In an alternating conjugated donor-acceptor copolymer system, we systematically engineered the chemical linkages that connect the aromatic units in donor moieties. Three donor moieties, thiophene-vinylene-thiophene (TVT), thiophene-acetylene-thiophene (TAT), and thiophene-cyanovinylene-thiophene (TCNT), were combined with an acceptor moiety, thienoisoindigo (TIID), and finally, three novel TIID-based copolymers were synthesized: PTIID-TVT, PTIID-TAT, and PTIID-TCNT. We found that the vinylene, acetylene, and cyanovinylene linkages decisively affect the energy structure, molecular orbital delocalization, microstructure, and, most importantly, the dominant polarity of the polymers. The vinylene-linked PTIID-TVT field-effect transistors (FETs) exhibited intrinsic hole and electron mobilities of 0.12 and 1.5 × 10(-3) cm(2) V(-1 )s(-1), respectively. By contrast, the acetylene-linked PTIID-TAT FETs exhibited significantly improved intrinsic hole and electron mobilities of 0.38 and 0.03 cm(2) V(-1) s(-1), respectively. Interestingly, cyanovinylene-linked PTIID-TCNT FETs exhibited reverse polarity, with hole and electron mobilities of 0.07 and 0.19 cm(2) V(-1) s(-1). As a result, the polarity balance, which is quantified as the electron/hole mobility ratio, was dramatically tuned from 0.01 to 2.7. Our finding demonstrates a new methodology for the molecular design of high-performance organic complementary circuits.

  8. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    PubMed

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins.

  9. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    PubMed Central

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-01-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6. PMID:27340016

  10. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism

    NASA Astrophysics Data System (ADS)

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre

    2016-06-01

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.

  11. STARD6 on steroids: solution structure, multiple timescale backbone dynamics and ligand binding mechanism.

    PubMed

    Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; LeHoux, Jean-Guy; Lavigne, Pierre

    2016-06-24

    START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through (15)N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.

  12. Charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion

    SciTech Connect

    Rahmi, Kinanti Aldilla Yudiarsah, Efta

    2016-04-19

    By using tight binding Hamiltonian model, charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion is studied. The DNA chain used is 32 base pairs long poly(dA)-poly(dT) molecule. The molecule is contacted to electrode at both ends. The influence of environment on charge transport in DNA is modeled as variation of backbone disorder. The twisting motion amplitude is taking into account by assuming that the twisting angle distributes following Gaussian distribution function with zero average and standard deviation proportional to square root of temperature and inversely proportional to the twisting motion frequency. The base-pair twisting motion influences both the onsite energy of the bases and electron hopping constant between bases. The charge transport properties are studied by calculating current using Landauer-Buttiker formula from transmission probabilities which is calculated by transfer matrix methods. The result shows that as the backbone disorder increases, the maximum current decreases. By decreasing the twisting motion frequency, the current increases rapidly at low voltage, but the current increases slower at higher voltage. The threshold voltage can increase or decrease with increasing backbone disorder and increasing twisting frequency.

  13. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning

    PubMed Central

    Heffernan, Rhys; Paliwal, Kuldip; Lyons, James; Dehzangi, Abdollah; Sharma, Alok; Wang, Jihua; Sattar, Abdul; Yang, Yuedong; Zhou, Yaoqi

    2015-01-01

    Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking. PMID:26098304

  14. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    SciTech Connect

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-07

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of C{sub α} atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  15. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-01

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of Cα atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  16. Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases.

    PubMed

    Nyffenegger, Christian; Nordvang, Rune Thorbjørn; Zeuner, Birgitte; Łężyk, Mateusz; Difilippo, Elisabetta; Logtenberg, Madelon J; Schols, Henk A; Meyer, Anne S; Mikkelsen, Jørn Dalgaard

    2015-10-01

    This paper describes the discovery and characterization of two novel β-N-acetylhexosaminidases HEX1 and HEX2, capable of catalyzing the synthesis of human milk oligosaccharides (HMO) backbone structures with fair yields using chitin oligomers as β-N-acetylglucosamine (GlcNAc) donor. The enzyme-encoding genes were identified by functional screening of a soil-derived metagenomic library. The β-N-acetylhexosaminidases were expressed in Escherichia coli with an N-terminal His6-tag and were purified by nickel affinity chromatography. The sequence similarities of the enzymes with their respective closest homologues are 59 % for HEX1 and 51 % for HEX2 on the protein level. Both β-N-acetylhexosaminidases are classified into glycosyl hydrolase family 20 (GH 20) are able to hydrolyze para-nitrophenyl-β-N-acetylglucosamine (pNP-GlcNAc) as well as para-nitrophenyl-β-N-acetylgalactosamine (pNP-GalNAc) and exhibit pH optima of 8 and 6 for HEX1 and HEX2, respectively. The enzymes are able to hydrolyze N-acetylchitooligosaccharides with a degree of polymerization of two, three, and four. The major findings were, that HEX1 and HEX2 catalyze trans-glycosylation reactions with lactose as acceptor, giving rise to the human milk oligosaccharide precursor lacto-N-triose II (LNT2) with yields of 2 and 8 % based on the donor substrate. In total, trans-glycosylation reactions were tested with the disaccharide acceptors β-lactose, sucrose, and maltose, as well as with the monosaccharides galactose and glucose resulting in the successful attachment of GlcNAc to the acceptor in all cases.

  17. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  18. RNA-Binding Affinities and Crystal Structure of Oligonucleotides Containing Five-Atom Amide-Based Backbone Structures

    SciTech Connect

    Pallan, Pradeep S.; von Matt, Peter; Wilds, Christopher J.; Altmann, Karl-Heinz; Egli, Martin

    2010-03-08

    Among the hundreds of nucleic acid analogues that have been studied over the last two decades only very few exhibit backbones with linkers between residues that are either shorter or longer than the four-atom linker O3{prime}-P-O5{prime}-C5{prime} connecting sugar ring moieties in DNA and RNA. 2{prime}-Deoxyribonucleoside dimers connected by a five-atom linker O3{prime}-CH*(CH{sub 3})-CO-NH-CH{sub 2} (* designates a chiral center) were reported to lead to only a slight destabilization of RNA-DNA hybrids in which the DNA strand contained one or several of these amide-linked dimers (De Napoli, L., Iadonisi, A., Montesarchio, D., Varra, M., and Piccialli, G. (1995) Synthesis of thymidine dimers containing a new internucleosidic amide linkage and their incorporation into oligodeoxyribonucleotides, Bioorg. Med. Chem. Lett. 5, 1647-1652). To analyze the influence of various chemistries of such five-atom amide linkers on the RNA-binding affinity of modified DNA strands, we have synthesized five different amide-linked dimers, including structures with homochiral linkers of the type X3{prime}-C*H(CH{sub 3})-CO-NH-CH{sub 2} (X = O, CH{sub 2}) as well as the corresponding analogues carrying methoxy groups at the 2{prime}-position of the 3{prime}-nucleosides. We have conducted a detailed thermodynamic analysis of duplex formation between the modified DNA and RNA, with the DNA strands containing between one and seven consecutive modified dimers. Some of the five-atom-linked dimers lead to significantly higher RNA-binding affinities compared with that of native DNA. Interestingly, the linkers with opposite stereochemistry at the chiral center stabilize duplexes between the modified DNA and RNA to different degrees. CD spectroscopy in solution and a crystal structure of an RNA-DNA duplex with a single amide-linked dimer demonstrate that the longer amide backbones do not disrupt the duplex geometry. These observations provide further evidence that stable cross-pairing between two

  19. The DNA and RNA sugar-phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies.

    PubMed

    Šponer, Jiří; Mládek, Arnošt; Šponer, Judit E; Svozil, Daniel; Zgarbová, Marie; Banáš, Pavel; Jurečka, Petr; Otyepka, Michal

    2012-11-28

    Knowledge of geometrical and physico-chemical properties of the sugar-phosphate backbone substantially contributes to the comprehension of the structural dynamics, function and evolution of nucleic acids. We provide a side by side overview of structural biology/bioinformatics, quantum chemical and molecular mechanical/simulation studies of the nucleic acids backbone. We highlight main features, advantages and limitations of these techniques, with a special emphasis given to their synergy. The present status of the research is then illustrated by selected examples which include classification of DNA and RNA backbone families, benchmark structure-energy quantum chemical calculations, parameterization of the dihedral space of simulation force fields, incorporation of arsenate into DNA, sugar-phosphate backbone self-cleavage in small RNA enzymes, and intricate geometries of the backbone in recurrent RNA building blocks. Although not apparent from the current literature showing limited overlaps between the QM, simulation and bioinformatics studies of the nucleic acids backbone, there in fact should be a major cooperative interaction between these three approaches in studies of the sugar-phosphate backbone.

  20. Solution structure of murine epidermal growth factor: determination of the polypeptide backbone chain-fold by nuclear magnetic resonance and distance geometry

    SciTech Connect

    Montelione, G.T.; Wuethrich, K.; Nice, E.C.; Burgess, A.W.; Scheraga, H.A.

    1987-08-01

    The polypeptide backbone fold in the solution structure of murine epidermal growth factor has been determined by nuclear magnetic resonance spectroscopy and distance geometry calculations. The results are based on nearly complete sequence-specific resonance assignments and on 333 distance and dihedral-angle constraints; these were determined from nuclear Overhauser effect measurements, identification of hydrogen-bonded amide protons, the known locations of disulfide bonds, and backbone vicinal spin-spin coupling constants. The polypeptide chains of the protein is arranged into two distinct domains. The structures of these domains were determined independently in separate calculations and then combined to obtain an overall view of the protein. The backbone fold thus determined includes the regular backbone structure elements that were previously identified using different techniques for the analysis of the nuclear magnetic resonance data. The distance geometry calculations also provided additional details about the conformations of bends and loops and about the twists of the ..beta..-sheets.

  1. Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation

    PubMed Central

    Marassi, Francesca M.; Ding, Yi; Schwieters, Charles D.; Tian, Ye; Yao, Yong

    2015-01-01

    SUMMARY The outer membrane protein Ail (attachment invasion locus) is a virulence factor of Yersinia pestis that mediates cell invasion, cell attachment and complement resistance. Here we describe its three-dimensional backbone structure determined in decyl-phosphocholine (DePC) micelles by NMR spectroscopy. The NMR structure was calculated using the membrane function of the implicit solvation potential, eefxPot, which we have developed to facilitate NMR structure calculations in a physically realistic environment. We show that the eefxPot force field guides the protein towards its native fold. The resulting structures provide information about the membrane-embedded global position of Ail, and have higher accuracy, higher precision and improved conformational properties, compared to the structures calculated with the standard repulsive potential. PMID:26143069

  2. The Synthesis and Structural Characterization of Graft Copolymers Composed of γ-PGA Backbone and Oligoesters Pendant Chains

    NASA Astrophysics Data System (ADS)

    Kwiecień, Iwona; Radecka, Iza; Kowalczuk, Marek; Jelonek, Katarzyna; Orchel, Arkadiusz; Adamus, Grażyna

    2017-07-01

    The novel copolymers composed of poly-γ-glutamic acid (γ-PGA) and oligoesters have been developed. The structures of the obtained copolymers including variety of end groups were determined at the molecular level with the aid of electrospray ionization multistage mass spectrometry (ESI-MSn). The fragmentation experiment performed for the selected sodium adducts of the copolymers confirmed that the developed methods lead to the formation of graft copolymers composed of poly-γ-glutamic acid (γ-PGA) backbone and oligoesters pendant chains. Moreover, it was established that fragmentation of selected sodium adducts of graft copolymers proceeded via random breakage of amide bonds along the backbone and ester bonds of the oligoesters pendant chains. Considering potential applications of the synthesized copolymers in the area of biomaterials, the hydrolytic degradation under laboratory conditions and in vitro cytotoxicity tests were performed. The ESI-MSn technique applied in this study has been proven to be a useful tool in structural studies of novel graft copolymers as well as their degradation products.

  3. The Synthesis and Structural Characterization of Graft Copolymers Composed of γ-PGA Backbone and Oligoesters Pendant Chains

    NASA Astrophysics Data System (ADS)

    Kwiecień, Iwona; Radecka, Iza; Kowalczuk, Marek; Jelonek, Katarzyna; Orchel, Arkadiusz; Adamus, Grażyna

    2017-10-01

    The novel copolymers composed of poly-γ-glutamic acid (γ-PGA) and oligoesters have been developed. The structures of the obtained copolymers including variety of end groups were determined at the molecular level with the aid of electrospray ionization multistage mass spectrometry (ESI-MSn). The fragmentation experiment performed for the selected sodium adducts of the copolymers confirmed that the developed methods lead to the formation of graft copolymers composed of poly-γ-glutamic acid (γ-PGA) backbone and oligoesters pendant chains. Moreover, it was established that fragmentation of selected sodium adducts of graft copolymers proceeded via random breakage of amide bonds along the backbone and ester bonds of the oligoesters pendant chains. Considering potential applications of the synthesized copolymers in the area of biomaterials, the hydrolytic degradation under laboratory conditions and in vitro cytotoxicity tests were performed. The ESI-MSn technique applied in this study has been proven to be a useful tool in structural studies of novel graft copolymers as well as their degradation products. [Figure not available: see fulltext.

  4. The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: a side-chain prediction algorithm based on side-chain backbone interactions.

    PubMed

    Spassov, Velin Z; Yan, Lisa; Flook, Paul K

    2007-03-01

    The basic differences between the 20 natural amino acid residues are due to differences in their side-chain structures. This characteristic design of protein building blocks implies that side-chain-side-chain interactions play an important, even dominant role in 3D-structural realization of amino acid codes. Here we present the results of a comparative analysis of the contributions of side-chain-side-chain (s-s) and side-chain-backbone (s-b) interactions to the stabilization of folded protein structures within the framework of the CHARMm molecular data model. Contrary to intuition, our results suggest that side-chain-backbone interactions play the major role in side-chain packing, in stabilizing the folded structures, and in differentiating the folded structures from the unfolded or misfolded structures, while the interactions between side chains have a secondary effect. An additional analysis of electrostatic energies suggests that combinatorial dominance of the interactions between opposite charges makes the electrostatic interactions act as an unspecific folding force that stabilizes not only native structure, but also compact random conformations. This observation is in agreement with experimental findings that, in the denatured state, the charge-charge interactions stabilize more compact conformations. Taking advantage of the dominant role of side-chain-backbone interactions in side-chain packing to reduce the combinatorial problem, we developed a new algorithm, ChiRotor, for rapid prediction of side-chain conformations. We present the results of a validation study of the method based on a set of high resolution X-ray structures.

  5. Mechanics and chemistry: single molecule bond rupture forces correlate with molecular backbone structure.

    PubMed

    Frei, Michael; Aradhya, Sriharsha V; Koentopp, Max; Hybertsen, Mark S; Venkataraman, L

    2011-04-13

    We simultaneously measure conductance and force across nanoscale junctions. A new, two-dimensional histogram technique is introduced to statistically extract bond rupture forces from a large data set of individual junction elongation traces. For the case of Au point contacts, we find a rupture force of 1.4 ± 0.2 nN, which is in good agreement with previous measurements. We then study systematic trends for single gold metal-molecule-metal junctions for a series of molecules terminated with amine and pyridine linkers. For all molecules studied, single molecule junctions rupture at the Au-N bond. Selective binding of the linker group allows us to correlate the N-Au bond-rupture force to the molecular backbone. We find that the rupture force ranges from 0.8 nN for 4,4' bipyridine to 0.5 nN in 1,4 diaminobenzene. These experimental results are in excellent quantitative agreement with density functional theory based adiabatic molecular junction elongation and rupture calculations.

  6. Bilayer surface association of the pHLIP peptide promotes extensive backbone desolvation and helically-constrained structures.

    PubMed

    Brown, Mia C; Yakubu, Rauta A; Taylor, Jay; Halsey, Christopher M; Xiong, Jian; Jiji, Renee D; Cooley, Jason W

    2014-01-01

    Despite their presence in many aspects of biology, the study of membrane proteins lags behind that of their soluble counterparts. Improving structural analysis of membrane proteins is essential. Deep-UV resonance Raman (DUVRR) spectroscopy is an emerging technique in this area and has demonstrated sensitivity to subtle structural transitions and changes in protein environment. The pH low insertion peptide (pHLIP) has three distinct structural states: disordered in an aqueous environment, partially folded and associated with a lipid membrane, and inserted into a lipid bilayer as a transmembrane helix. While the soluble and membrane-inserted forms are well characterized, the partially folded membrane-associated state has not yet been clearly described. The amide I mode, known to be sensitive to protein environment, is the same in spectra of membrane-associated and membrane-inserted pHLIP, indicating comparable levels of backbone dehydration. The amide S mode, sensitive to helical structure, indicates less helical character in the membrane-associated form compared to the membrane-inserted state, consistent with previous findings. However, the structurally sensitive amide III region is very similar in both membrane-associated and membrane-inserted pHLIP, suggesting that the membrane-associated form has a large amount of ordered structure. Where before the membrane-associated state was thought to contain mostly unordered structure and reside in a predominantly aqueous environment, we have shown that it contains a significant amount of ordered structure and rests deeper within the lipid membrane.

  7. Complete backbone and DENQ side chain NMR assignments in proteins from a single experiment: implications to structure-function studies.

    PubMed

    Reddy, Jithender G; Hosur, Ramakrishna V

    2014-03-01

    Resonance assignment is the first and the most crucial step in all nuclear magnetic resonance (NMR) investigations on structure-function relationships in biological macromolecules. Often, the assignment exercise has to be repeated several times when specific interactions with ligands, substrates etc., have to be elucidated for understanding the functional mechanisms. While the protein backbone serves to provide a scaffold, the side chains interact directly with the ligands. Such investigations will be greatly facilitated, if there are rapid methods for obtaining exhaustive information with minimum of NMR experimentation. In this context, we present here a pulse sequence which exploits the recently introduced technique of parallel detection of multiple nuclei, e.g. (1)H and (13)C, and results in two 3D-data sets simultaneously. These yield complete backbone resonance assignment ((1)H(N), (15)N, (13)CO, (1)Hα/(13)Cα, and (1)Hβ/(13)Cβ chemical shifts) and side chain assignment of D, E, N and Q residues. Such an exhaustive assignment has the potential of yielding accurate 3D structures using one or more of several algorithms which calculate structures of the molecules very reliably on the basis of NMR chemical shifts alone. The side chain assignments of D, E, N, and Q will be extremely valuable for interaction studies with different ligands; D and E side chains are known to be involved in majority of catalytic activities. Utility of this experiment has been demonstrated with Ca(2+) bound M-crystallin, which contains largely D, E, N and Q residues at the metal binding sites.

  8. Backbone chemical shifts assignments, secondary structure, and ligand binding of a family GH-19 chitinase from moss, Bryum coronatum.

    PubMed

    Shinya, Shoko; Nagata, Takuya; Ohnuma, Takayuki; Taira, Toki; Nishimura, Shigenori; Fukamizo, Tamo

    2012-10-01

    Family GH19 chitinases have been recognized as important in the plant defense against fungal pathogens. However, their substrate-recognition mechanism is still unknown. We report here the first resonance assignment of NMR spectrum of a GH19 chitinase from moss, Bryum coronatum (BcChi-A). The backbone signals were nearly completely assigned, and the secondary structure was estimated based on the chemical shift values. The addition of the chitin dimer to the enzyme solution perturbed the chemical shifts of HSQC resonances of the amino acid residues forming the putative substrate-binding cleft. Further NMR analysis of the ligand binding to BcChi-A will improve understanding of the substrate-recognition mechanism of GH-19 enzymes.

  9. Structure of the exceptionally large nonrepetitive carbohydrate backbone of the lipopolysaccharide of Pectinatus frisingensis strain VTT E-82164.

    PubMed

    Vinogradov, Evgeny; Petersen, Bent O; Sadovskaya, Irina; Jabbouri, Said; Duus, Jens Ø; Helander, Ilkka M

    2003-07-01

    The structures of the oligosaccharides obtained after acetic acid hydrolysis and alkaline deacylation of the rough-type lipopolysaccharide (LPS) from Pectinatus frisingensis strain VTT E-82164 were analysed using NMR spectroscopy, MS and chemical methods. The LPS contains two major structural variants, differing by a decasaccharide fragment, and some minor variants lacking the terminal glucose residue. The largest structure of the carbohydrate backbone of the LPS that could be deduced from experimental results consists of 25 monosaccharides (including the previously found Ara4NP residue in lipid A) arranged in a well-defined nonrepetitive structure: We presume that the shorter variant with R1 = H represents the core-lipid A part of the LPS, and the additional fragment is present instead of the O-specific polysaccharide. Structures of this type have not been previously described. Analysis of the deacylation products obtained from the LPS of the smooth strain, VTT E-79100T, showed that it contains a very similar core but with one different glycosidic linkage.

  10. Protein structure quality assessment based on the distance profiles of consecutive backbone Cα atoms

    PubMed Central

    Chakraborty, Sandeep; Venkatramani, Ravindra; Rao, Basuthkar J.; Asgeirsson, Bjarni; Dandekar, Abhaya M.

    2013-01-01

    Predicting the three dimensional native state structure of a protein from its primary sequence is an unsolved grand challenge in molecular biology. Two main computational approaches have evolved to obtain the structure from the protein sequence - ab initio/de novo methods and template-based modeling - both of which typically generate multiple possible native state structures. Model quality assessment programs (MQAP) validate these predicted structures in order to identify the correct native state structure. Here, we propose a MQAP for assessing the quality of protein structures based on the distances of consecutive Cα atoms. We hypothesize that the root-mean-square deviation of the distance of consecutive Cα (RDCC) atoms from the ideal value of 3.8 Å, derived from a statistical analysis of high quality protein structures (top100H database), is minimized in native structures. Based on tests with the top100H set, we propose a RDCC cutoff value of 0.012 Å, above which a structure can be filtered out as a non-native structure. We applied the RDCC discriminator on decoy sets from the Decoys 'R' Us database to show that the native structures in all decoy sets tested have RDCC below the 0.012 Å cutoff. While most decoy sets were either indistinguishable using this discriminator or had very few violations, all the decoy structures in the fisa decoy set were discriminated by applying the RDCC criterion. This highlights the physical non-viability of the fisa decoy set, and possible issues in benchmarking other methods using this set. The source code and manual is made available at https://github.com/sanchak/mqap and permanently available on 10.5281/zenodo.7134. PMID:24555103

  11. Rapid Classification of Protein Structure Models Using Unassigned Backbone RDCs and Probability Density Profile Analysis (PDPA)

    PubMed Central

    Bansal, Sonal; Miao, Xijiang; Adams, Michael W. W.; Prestegard, James H.; Valafar, Homayoun

    2009-01-01

    A method of identifying the best structural model for a protein of unknown structure from a list of structural candidates using unassigned 15N-1H residual dipolar coupling (RDC) data and probability density profile analysis (PDPA) is described. Ten candidate structures have been obtained for the structural genomics target protein PF2048.1 using ROBETTA. 15N-1H residual dipolar couplings have been measured from NMR spectra of the protein in two alignment media and these data have been analyzed using PDPA to rank the models in terms of their ability to represent the actual structure. A number of advantages in using this method to characterize a protein structure become apparent. RDCs can easily and rapidly be acquired, and without the need for assignment, the cost and duration of data acquisition is greatly reduced. The approach is quite robust with respect to imprecise and missing data. In the case of PF2048.1, a 79 residue protein, only 58 and 55 of the total RDC data were observed. The method can accelerate structure determination at higher resolution using traditional NMR spectroscopy by providing a starting point for the addition of NOEs and other NMR structural data. PMID:18321742

  12. Rapid classification of protein structure models using unassigned backbone RDCs and probability density profile analysis (PDPA).

    PubMed

    Bansal, Sonal; Miao, Xijiang; Adams, Michael W W; Prestegard, James H; Valafar, Homayoun

    2008-05-01

    A method of identifying the best structural model for a protein of unknown structure from a list of structural candidates using unassigned 15N1H residual dipolar coupling (RDC) data and probability density profile analysis (PDPA) is described. Ten candidate structures have been obtained for the structural genomics target protein PF2048.1 using ROBETTA. 15N1H residual dipolar couplings have been measured from NMR spectra of the protein in two alignment media and these data have been analyzed using PDPA to rank the models in terms of their ability to represent the actual structure. A number of advantages in using this method to characterize a protein structure become apparent. RDCs can easily and rapidly be acquired, and without the need for assignment, the cost and duration of data acquisition is greatly reduced. The approach is quite robust with respect to imprecise and missing data. In the case of PF2048.1, a 79 residue protein, only 58 and 55 of the total RDC data were observed. The method can accelerate structure determination at higher resolution using traditional NMR spectroscopy by providing a starting point for the addition of NOEs and other NMR structural data.

  13. Rapid classification of protein structure models using unassigned backbone RDCs and probability density profile analysis ( PDPA)

    NASA Astrophysics Data System (ADS)

    Bansal, Sonal; Miao, Xijiang; Adams, Michael W. W.; Prestegard, James H.; Valafar, Homayoun

    2008-05-01

    A method of identifying the best structural model for a protein of unknown structure from a list of structural candidates using unassigned 15N sbnd 1H residual dipolar coupling (RDC) data and probability density profile analysis ( PDPA) is described. Ten candidate structures have been obtained for the structural genomics target protein PF2048.1 using ROBETTA. 15N sbnd 1H residual dipolar couplings have been measured from NMR spectra of the protein in two alignment media and these data have been analyzed using PDPA to rank the models in terms of their ability to represent the actual structure. A number of advantages in using this method to characterize a protein structure become apparent. RDCs can easily and rapidly be acquired, and without the need for assignment, the cost and duration of data acquisition is greatly reduced. The approach is quite robust with respect to imprecise and missing data. In the case of PF2048.1, a 79 residue protein, only 58 and 55 of the total RDC data were observed. The method can accelerate structure determination at higher resolution using traditional NMR spectroscopy by providing a starting point for the addition of NOEs and other NMR structural data.

  14. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry.

    PubMed

    Karchin, Rachel; Cline, Melissa; Mandel-Gutfreund, Yael; Karplus, Kevin

    2003-06-01

    An important problem in computational biology is predicting the structure of the large number of putative proteins discovered by genome sequencing projects. Fold-recognition methods attempt to solve the problem by relating the target proteins to known structures, searching for template proteins homologous to the target. Remote homologs that may have significant structural similarity are often not detectable by sequence similarities alone. To address this, we incorporated predicted local structure, a generalization of secondary structure, into two-track profile hidden Markov models (HMMs). We did not rely on a simple helix-strand-coil definition of secondary structure, but experimented with a variety of local structure descriptions, following a principled protocol to establish which descriptions are most useful for improving fold recognition and alignment quality. On a test set of 1298 nonhomologous proteins, HMMs incorporating a 3-letter STRIDE alphabet improved fold recognition accuracy by 15% over amino-acid-only HMMs and 23% over PSI-BLAST, measured by ROC-65 numbers. We compared two-track HMMs to amino-acid-only HMMs on a difficult alignment test set of 200 protein pairs (structurally similar with 3-24% sequence identity). HMMs with a 6-letter STRIDE secondary track improved alignment quality by 62%, relative to DALI structural alignments, while HMMs with an STR track (an expanded DSSP alphabet that subdivides strands into six states) improved by 40% relative to CE.

  15. Enzyme IIBcellobiose of the phosphoenol-pyruvate-dependent phosphotransferase system of Escherichia coli: backbone assignment and secondary structure determined by three-dimensional NMR spectroscopy.

    PubMed Central

    Ab, E.; Schuurman-Wolters, G. K.; Saier, M. H.; Reizer, J.; Jacuinod, M.; Roepstorff, P.; Dijkstra, K.; Scheek, R. M.; Robillard, G. T.

    1994-01-01

    The assignment of backbone resonances and the secondary structure determination of the Cys 10 Ser mutant of enzyme IIBcellobiose of the Escherichia coli cellobiose-specific phosphoenol-pyruvate-dependent phosphotransferase system are presented. The backbone resonances were assigned using 4 triple resonance experiments, the HNCA and HN(CO)CA experiments, correlating backbone 1H, 15N, and 13C alpha resonances, and the HN(CA)CO and HNCO experiments, correlating backbone 1H,15N and 13CO resonances. Heteronuclear 1H-NOE 1H-15N single quantum coherence (15N-NOESY-HSQC) spectroscopy and heteronuclear 1H total correlation 1H-15N single quantum coherence (15N-TOCSY-HSQC) spectroscopy were used to resolve ambiguities arising from overlapping 13C alpha and 13CO frequencies and to check the assignments from the triple resonance experiments. This procedure, together with a 3-dimensional 1H alpha-13C alpha-13CO experiment (COCAH), yielded the assignment for all observed backbone resonances. The secondary structure was determined using information both from the deviation of observed 1H alpha and 13C alpha chemical shifts from their random coil values and 1H-NOE information from the 15N-NOESY-HSQC. These data show that enzyme IIBcellobiose consists of a 4-stranded parallel beta-sheet and 5 alpha-helices. In the wild-type enzyme IIBcellobiose, the catalytic residue appears to be located at the end of a beta-strand. PMID:8003964

  16. Folding of RNA tertiary structure: Linkages between backbone phosphates, ions, and water.

    PubMed

    Draper, David E

    2013-12-01

    The functional forms of many RNAs have compact architectures. The placement of phosphates within such structures must be influenced not only by the strong electrostatic repulsion between phosphates, but also by networks of interactions between phosphates, water, and mobile ions. This review first explores what has been learned of the basic thermodynamic constraints on these arrangements from studies of hydration and ions in simple DNA molecules, and then gives an overview of what is known about ion and water interactions with RNA structures. A brief survey of RNA crystal structures identifies several interesting architectures in which closely spaced phosphates share hydration shells or phosphates are buried in environments that provide intramolecular hydrogen bonds or site-bound cations. Formation of these structures must require strong coupling between the uptake of ions and release of water.

  17. Folding of RNA tertiary structure: linkages between backbone phosphates, ions, and water

    PubMed Central

    Draper, David E.

    2013-01-01

    The functional forms of many RNAs have compact architectures. The placement of phosphates within such structures must be influenced not only by the strong electrostatic repulsion between phosphates, but also by networks of interactions between phosphates, water, and mobile ions. This review first explores what has been learned of the basic thermodynamic constraints on these arrangements from studies of hydration and ions in simple DNA molecules, and then gives an overview of what is known about ion and water interactions with RNA structures. A brief survey of RNA crystal structures identifies several interesting architectures in which closely spaced phosphates share hydration shells or phosphates are buried in environments that provide intramolecular hydrogen bonds or site-bound cations. Formation of these structures must require strong coupling between the uptake of ions and release of water. PMID:23568785

  18. The role of molecular structure of sugar-phosphate backbone and nucleic acid bases in the formation of single-stranded and double-stranded DNA structures.

    PubMed

    Poltev, Valeri; Anisimov, Victor M; Danilov, Victor I; Garcia, Dolores; Sanchez, Carolina; Deriabina, Alexandra; Gonzalez, Eduardo; Rivas, Francisco; Polteva, Nina

    2014-06-01

    Our previous DFT computations of deoxydinucleoside monophosphate complexes with Na(+)-ions (dDMPs) have demonstrated that the main characteristics of Watson-Crick (WC) right-handed duplex families are predefined in the local energy minima of dDMPs. In this work, we study the mechanisms of contribution of chemically monotonous sugar-phosphate backbone and the bases into the double helix irregularity. Geometry optimization of sugar-phosphate backbone produces energy minima matching the WC DNA conformations. Studying the conformational variability of dDMPs in response to sequence permutation, we found that simple replacement of bases in the previously fully optimized dDMPs, e.g. by constructing Pyr-Pur from Pur-Pyr, and Pur-Pyr from Pyr-Pur sequences, while retaining the backbone geometry, automatically produces the mutual base position characteristic of the target sequence. Based on that, we infer that the directionality and the preferable regions of the sugar-phosphate torsions, combined with the difference of purines from pyrimidines in ring shape, determines the sequence dependence of the structure of WC DNA. No such sequence dependence exists in dDMPs corresponding to other DNA conformations (e.g., Z-family and Hoogsteen duplexes). Unlike other duplexes, WC helix is unique by its ability to match the local energy minima of the free single strand to the preferable conformations of the duplex.

  19. Synthesis and structural characterization of one- and two-dimensional coordination polymers based on platinum-silver metallic backbones.

    PubMed

    Liu, Fenghui; Chen, Wanzhi; Wang, Daqi

    2006-06-28

    Seven Pt-Ag coordination polymers [Pt(NH3)2(NHCO(t)Bu)2Ag(H2O)](ClO4) (1), [Pt2(dap)2(NHCO(t)Bu)4Ag2(NO3)(ClO4)] (dap = 1,2-diaminopropane, 2), [Pt2(en)2(NHCO(t)Bu)4Ag2(m-C6H4(CO2)2)].3H2O (en = ethylenediamine, 3), [Pt2(NH3)2(NHCO(t)Bu)2Ag2(p-C6H4(CO2)2)].2H2O (4), [Pt3(en)3(NHCO(t)Bu)6Ag2(p-C6H4(CO2)2)(1.5)].6H2O (5), [Pt(NH3)2(NHCO(t)Bu)4Ag(4-C5H4NCO2)2].10H2O (6), and [Pt2(en)2(NHCO(t)Bu)4Ag2(4-C5H4NCO2)](ClO4) (7) were synthesized from the corresponding [Pt(RNH2)2(NHCO(t)Bu)2] and Ag salts, respectively, and their structures were determined by X-ray crystallography. The Pt and Ag units aggregate into one-dimensional chains based on Pt-Ag backbones. Compounds 1, 2, and 6 possess an extended zigzag Pt-Ag chain motif, and the metallic chains arrange in a parallel fashion into layered structures. Compounds 3-5, and 7 form 2-D brick wall sheets due to the coordination of the bifunctional anions to the Ag+ ions of the neighboring chains. These polymers are constructed based on the Pt-Ag interactions and the coordination of amidate oxygen atoms to Ag ions. There are three kinds of short Pt-Ag bonds observed in the structures of these compounds. The Pt-Ag metallic backbone is formed by the stacking unsupported Pt-Ag bonds, the amidate doubly bridged Pt-Ag bonds, and the amidate singly bridged Pt-Ag bonds. In the chains, the Pt-Ag bond distances are quite short, and appear in the range of 2.78-2.97 A, which are comparable to known Pt-Ag dative bonds.

  20. Backbone and side-chain (1)H, (15)N, (13)C assignment and secondary structure of BPSL1445 from Burkholderia pseudomallei.

    PubMed

    Quilici, Giacomo; Berardi, Andrea; Gaudesi, Davide; Gourlay, Louise J; Bolognesi, Martino; Musco, Giovanna

    2015-10-01

    BPSL1445 is a lipoprotein produced by the Gram-negative bacterium Burkholderia pseudomallei (B. pseudomallei), the etiological agent of melioidosis. Immunodetection assays against sera patients using protein microarray suggest BPSL1445 involvement in melioidosis. Herein we report backbone, side chain NMR assignment and secondary structure for the recombinant protein.

  1. Backbone assignments and secondary structure of the Escherichia coli enzyme-II mannitol A domain determined by heteronuclear three-dimensional NMR spectroscopy.

    PubMed Central

    Kroon, G. J.; Grötzinger, J.; Dijkstra, K.; Scheek, R. M.; Robillard, G. T.

    1993-01-01

    This report presents the backbone assignments and the secondary structure determination of the A domain of the Escherichia coli mannitol transport protein, enzyme-IImtl. The backbone resonances were partially assigned using three-dimensional heteronuclear 1H NOE 1H-15N single-quantum coherence (15N NOESY-HSQC) spectroscopy and three-dimensional heteronuclear 1H total correlation 1H-15N single-quantum coherence (15N TOCSY-HSQC) spectroscopy on uniformly 15N enriched protein. Triple-resonance experiments on uniformly 15N/13C enriched protein were necessary to complete the backbone assignments, due to overlapping 1H and 15N frequencies. Data obtained from three-dimensional 1H-15N-13C alpha correlation experiments (HNCA and HN(CO)CA), a three-dimensional 1H-15N-13CO correlation experiment (HNCO), and a three-dimensional 1H alpha-13C alpha-13CO correlation experiment (COCAH) were combined using SNARF software, and yielded the assignments of virtually all observed backbone resonances. Determination of the secondary structure of IIAmtl is based upon NOE information from the 15N NOESY-HSQC and the 1H alpha and 13C alpha secondary chemical shifts. The resulting secondary structure is considerably different from that reported for IIAglc of E. coli and Bacillus subtilis determined by NMR and X-ray. PMID:8401218

  2. Structural basis for the enhanced stability of protein model compounds and peptide backbone unit in ammonium ionic liquids.

    PubMed

    Vasantha, T; Attri, Pankaj; Venkatesu, Pannuru; Devi, R S Rama

    2012-10-04

    Protein folding/unfolding is a fascinating study in the presence of cosolvents, which protect/disrupt the native structure of protein, respectively. The structure and stability of proteins and their functional groups may be modulated by the addition of cosolvents. Ionic liquids (ILs) are finding a vast array of applications as novel cosolvents for a wide variety of biochemical processes that include protein folding. Here, the systematic and quantitative apparent transfer free energies (ΔG'(tr)) of protein model compounds from water to ILs through solubility measurements as a function of IL concentration at 25 °C have been exploited to quantify and interpret biomolecular interactions between model compounds of glycine peptides (GPs) with ammonium based ILs. The investigated aqueous systems consist of zwitterionic glycine peptides: glycine (Gly), diglycine (Gly(2)), triglycine (Gly(3)), tetraglycine (Gly(4)), and cyclic glycylglycine (c(GG)) in the presence of six ILs such as diethylammonium acetate (DEAA), diethylammonium hydrogen sulfate (DEAS), triethylammonium acetate (TEAA), triethylammonium hydrogen sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), and trimethylammonium acetate (TMAA). We have observed positive values of ΔG'(tr) for GPs from water to ILs, indicating that interactions between ILs and GPs are unfavorable, which leads to stabilization of the structure of model protein compounds. Moreover, our experimental data ΔG'(tr) is used to obtain transfer free energies (Δg'(tr)) of the peptide backbone unit (or glycyl unit) (-CH(2)C═ONH-), which is the most numerous group in globular proteins, from water to IL solutions. To obtain the mechanism events of the ILs' role in enhancing the stability of the model compounds, we have further obtained m-values for GPs from solubility limits. These results explicitly elucidate that all alkyl ammonium ILs act as stabilizers for model compounds through the exclusion of ILs from model compounds of

  3. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    PubMed Central

    2012-01-01

    Background Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule's introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening. Results We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better. Conclusions Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. PMID:22536902

  4. Variational identities and Hamiltonian structures

    SciTech Connect

    Ma Wenxiu

    2010-03-08

    This report is concerned with Hamiltonian structures of classical and super soliton hierarchies. In the classical case, basic tools are variational identities associated with continuous and discrete matrix spectral problems, targeted to soliton equations derived from zero curvature equations over general Lie algebras, both semisimple and non-semisimple. In the super case, a supertrace identity is presented for constructing Hamiltonian structures of super soliton equations associated with Lie superalgebras. We illustrate the general theories by the KdV hierarchy, the Volterra lattice hierarchy, the super AKNS hierarchy, and two hierarchies of dark KdV equations and dark Volterra lattices. The resulting Hamiltonian structures show the commutativity of each hierarchy discussed and thus the existence of infinitely many commuting symmetries and conservation laws.

  5. Role of monomer sequence and backbone structure in polypeptoid and polypeptide polymers for anti-fouling applications

    NASA Astrophysics Data System (ADS)

    Patterson, Anastasia; Rizis, Georgios; Wenning, Brandon; Finlay, John; Ober, Christopher; Segalman, Rachel

    Polymeric coatings rely on a fine balance of surface properties to achieve biofouling resistance. Bioinsipired polymers and oligomers provide a modular strategy for the inclusion of multiple functionalities with controlled architecture, sequence and surface properties. In this work, polypeptoid and polypeptide functionalized coatings based on PEO and PDMS block copolymers were compared with respect to surface presentation and fouling by Ulva linza. While polypeptoids and polypeptides are simple isomers of each other, the lack of backbone chirality and hydrogen bonding in polypeptoids leads to surprisingly different surface behavior. Specifically, the polypeptoids surface segregate much more strongly than analogous polypeptide functionalized polymers, which in turn affects the performance of the coating. Indeed, polypeptoid functionalized surfaces were significantly better both in terms of anti-fouling and fouling release than the corresponding polypeptide-bearing polymers. The role of specific monomer sequence and backbone chemistry will be further discussed in this poster.

  6. Identification of structural variation in mouse genomes

    PubMed Central

    Keane, Thomas M.; Wong, Kim; Adams, David J.; Flint, Jonathan; Reymond, Alexandre; Yalcin, Binnaz

    2014-01-01

    Structural variation is variation in structure of DNA regions affecting DNA sequence length and/or orientation. It generally includes deletions, insertions, copy-number gains, inversions, and transposable elements. Traditionally, the identification of structural variation in genomes has been challenging. However, with the recent advances in high-throughput DNA sequencing and paired-end mapping (PEM) methods, the ability to identify structural variation and their respective association to human diseases has improved considerably. In this review, we describe our current knowledge of structural variation in the mouse, one of the prime model systems for studying human diseases and mammalian biology. We further present the evolutionary implications of structural variation on transposable elements. We conclude with future directions on the study of structural variation in mouse genomes that will increase our understanding of molecular architecture and functional consequences of structural variation. PMID:25071822

  7. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin.

    PubMed

    Nishimura, S; Kandori, H; Nakagawa, M; Tsuda, M; Maeda, A

    1997-01-28

    Difference Fourier transform infrared spectra were recorded for the formation of the photointermediates and isorhodopsin from octopus rhodopsin at low temperatures. Analysis was done for H bonding of the Schiff base, internal water molecules, and the peptide backbone. The imine hydrogen of the Schiff base was in the same H bonding state throughout the photointermediates and the unphotolyzed state. In contrast, H bonding of the hydrogen of the water molecule whose oxygen might be complexed with the imine hydrogen of the Schiff base was altered upon the formation of bathorhodopsin. The same water molecule was in a different H bonding state in the subsequent intermediates, lumirhodopsin and mesorhodopsin. These intermediates were also characterized by a decrease in the C = N bond order of the Schiff base as a reflection of distorted structure around the Schiff base. The polar N-H bond in these intermediates could be also ascribed to the Schiff base. Some changes in H bonding of water and the perturbation of the polyene chain in lumirhodopsin and mesorhodopsin were also observed in isorhodopsin. Acid metarhodopsin exhibited extensive changes in the H bonding states of the peptide backbone and internal water molecules. A large part of these changes was extinguished in alkaline metarhodopsin with the unprotonated Schiff base, suggesting interaction of the protonated Schiff base with the peptide backbone and intramembrane water molecules in acid metarhodopsin.

  8. Contribution of a putative salt bridge and backbone dynamics in the structural instability of human prion protein upon R208H mutation.

    PubMed

    Bamdad, Kourosh; Naderi-Manesh, Hossein

    2007-12-28

    Molecular dynamics simulation method is used to assess the contribution of a disease-associated salt bridge in the early stages of the conformational rearrangement of human prion protein upon Arg208-->His mutation, which causes Creutzfeldt-Jakob disease. Previous investigations have suggested that the breakage of this putative salt bridge (D144/E146<-->Arg208) between helix 1 and helix 3 is responsible for such a mutation-driven process. So far, no experimental data has been reported in order to distinguish the contribution of this single salt bridge in the initial steps of amyloid formation. Consequently, we decided to investigate the role of this salt bridge in early conformational rearrangements. To remove the salt bridge without perturbations in the backbone structure, the neutralized states of the involved residues were used. Three 10-ns molecular dynamics simulations on three initial structures have been performed. The results revealed that the early stages of the conformational rearrangements, against common belief, are mainly associated with the mutation-induced global changes in the backbone dynamics but not with the breaking of the salt bridge.

  9. Solution NMR structure, backbone dynamics, and heme-binding properties of a novel cytochrome c maturation protein CcmE from Desulfovibrio vulgaris.

    PubMed

    Aramini, James M; Hamilton, Keith; Rossi, Paolo; Ertekin, Asli; Lee, Hsiau-Wei; Lemak, Alexander; Wang, Huang; Xiao, Rong; Acton, Thomas B; Everett, John K; Montelione, Gaetano T

    2012-05-08

    Cytochrome c maturation protein E, CcmE, plays an integral role in the transfer of heme to apocytochrome c in many prokaryotes and some mitochondria. A novel subclass featuring a heme-binding cysteine has been identified in archaea and some bacteria. Here we describe the solution NMR structure, backbone dynamics, and heme binding properties of the soluble C-terminal domain of Desulfovibrio vulgaris CcmE, dvCcmE'. The structure adopts a conserved β-barrel OB fold followed by an unstructured C-terminal tail encompassing the CxxxY heme-binding motif. Heme binding analyses of wild-type and mutant dvCcmE' demonstrate the absolute requirement of residue C127 for noncovalent heme binding in vitro.

  10. 1H, 13C, and 15N backbone assignment and secondary structure of the receptor-binding domain of vascular endothelial growth factor.

    PubMed Central

    Fairbrother, W. J.; Champe, M. A.; Christinger, H. W.; Keyt, B. A.; Starovasnik, M. A.

    1997-01-01

    Nearly complete sequence-specific 1H, 13C, and 15N resonance assignments are reported for the backbone atoms of the receptor-binding domain of vascular endothelial growth factor (VEGF), a 23-kDa homodimeric protein that is a major regulator of both normal and pathological angiogenesis. The assignment strategy relied on the use of seven 3D triple-resonance experiments [HN(CO)CA, HNCA, HNCO, (HCA)CONH, HN(COCA)HA, HN(CA)HA, and CBCA-(CO)NH] and a 3D 15N-TOCSY-HSQC experiment recorded on a 0.5 mM (12 mg/mL) sample at 500 MHz, pH 7.0, 45 degrees C. Under these conditions, 15N relaxation data show that the protein has a rotational correlation time of 15.0 ns. Despite this unusually long correlation time, assignments were obtained for 94 of the 99 residues; 8 residues lack amide 1H and 15N assignments, presumably due to rapid exchange of the amide 1H with solvent under the experimental conditions used. The secondary structure of the protein was deduced from the chemical shift indices of the 1H alpha, 13C alpha, 13C beta, and 13CO nuclei, and from analysis of backbone NOEs observed in a 3D 15N-NOESY-HSQC spectrum. Two helices and a significant amount of beta-sheet structure were identified, in general agreement with the secondary structure found in a recently determined crystal structure of a similar VEGF construct [Muller YA et al., 1997, Proc Natl Acad Sci USA 94:7192-7197]. PMID:9336848

  11. Improvement of the treatment of loop structures in the UNRES force field by inclusion of coupling between backbone- and side-chain-local conformational states

    PubMed Central

    Baranowski, Maciej; Ołldziej, Stanisław; Scheraga, Harold A.; Liwo, Adam; Czaplewski, Cezary

    2013-01-01

    The UNited RESidue (UNRES) coarse-grained model of polypeptide chains, developed in our laboratory, enables us to carry out millisecond-scale molecular-dynamics simulations of large proteins effectively. It performs well in ab initio predictions of protein structure, as demonstrated in the last Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP10). However, the resolution of the simulated structure is too coarse, especially in loop regions, which results from insufficient specificity of the model of local interactions. To improve the representation of local interactions, in this work we introduced new side-chain-backbone correlation potentials, derived from a statistical analysis of loop regions of 4585 proteins. To obtain sufficient statistics, we reduced the set of amino-acid-residue types to five groups, derived in our earlier work on structurally optimized reduced alphabets, based on a statistical analysis of the properties of amino-acid structures. The new correlation potentials are expressed as one-dimensional Fourier series in the virtual-bond-dihedral angles involving side-chain centroids. The weight of these new terms was determined by a trial-and-error method, in which Multiplexed Replica Exchange Molecular Dynamics (MREMD) simulations were run on selected test proteins. The best average root-mean-square deviations (RMSDs) of the calculated structures from the experimental structures below the folding-transition temperatures were obtained with the weight of the new side-chain-backbone correlation potentials equal to 0.57. The resulting conformational ensembles were analyzed in detail by using the Weighted Histogram Analysis Method (WHAM) and Ward's minimum-variance clustering. This analysis showed that the RMSDs from the experimental structures dropped by 0.5 Å on average, compared to simulations without the new terms, and the deviation of individual residues in the loop region of the computed

  12. Structure variations of pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Yajima, N.; Izutsu, N.; Honda, H.

    2004-01-01

    A lobed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super-pressure balloon. This paper deals with extensions of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes, belts or a strut. When the original pumpkin shape is modified by these systems, the superior characteristics of the 3-D gore design, incorporating large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail. Application for ground structures are also mentioned.

  13. Structure variations of pumpkin balloon

    NASA Astrophysics Data System (ADS)

    Yajima, N.; Izutsu, N.; Honda, H.

    A robed pumpkin balloon by 3-D gore design concept is recognized as a basic form for a super -pressure balloon. This paper deals with an extension of this design concept for other large pressurized membrane structures, such as a stratospheric airship and a balloon of which volume is controllable. The structural modifications are performed by means of additional ropes or poles. When the original pumpkin shape is modified for those systems, superior characteristics of 3-D gore design, those are large bulges with a small local radius and unidirectional film tension, should be maintained. Improved design methods which are adequate for the above subjects will be discussed in detail.

  14. Structural variations in plant genomes

    PubMed Central

    Edwards, David; Varshney, Rajeev K.

    2014-01-01

    Differences between plant genomes range from single nucleotide polymorphisms to large-scale duplications, deletions and rearrangements. The large polymorphisms are termed structural variants (SVs). SVs have received significant attention in human genetics and were found to be responsible for various chronic diseases. However, little effort has been directed towards understanding the role of SVs in plants. Many recent advances in plant genetics have resulted from improvements in high-resolution technologies for measuring SVs, including microarray-based techniques, and more recently, high-throughput DNA sequencing. In this review we describe recent reports of SV in plants and describe the genomic technologies currently used to measure these SVs. PMID:24907366

  15. Structural insights into the evolution of a sexy protein: novel topology and restricted backbone flexibility in a hypervariable pheromone from the red-legged salamander, Plethodon shermani.

    PubMed

    Wilburn, Damien B; Bowen, Kathleen E; Doty, Kari A; Arumugam, Sengodagounder; Lane, Andrew N; Feldhoff, Pamela W; Feldhoff, Richard C

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions - such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake "three-finger" topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this unique

  16. Structural Insights into the Evolution of a Sexy Protein: Novel Topology and Restricted Backbone Flexibility in a Hypervariable Pheromone from the Red-Legged Salamander, Plethodon shermani

    PubMed Central

    Wilburn, Damien B.; Bowen, Kathleen E.; Doty, Kari A.; Arumugam, Sengodagounder; Lane, Andrew N.; Feldhoff, Pamela W.; Feldhoff, Richard C.

    2014-01-01

    In response to pervasive sexual selection, protein sex pheromones often display rapid mutation and accelerated evolution of corresponding gene sequences. For proteins, the general dogma is that structure is maintained even as sequence or function may rapidly change. This phenomenon is well exemplified by the three-finger protein (TFP) superfamily: a diverse class of vertebrate proteins co-opted for many biological functions – such as components of snake venoms, regulators of the complement system, and coordinators of amphibian limb regeneration. All of the >200 structurally characterized TFPs adopt the namesake “three-finger” topology. In male red-legged salamanders, the TFP pheromone Plethodontid Modulating Factor (PMF) is a hypervariable protein such that, through extensive gene duplication and pervasive sexual selection, individual male salamanders express more than 30 unique isoforms. However, it remained unclear how this accelerated evolution affected the protein structure of PMF. Using LC/MS-MS and multidimensional NMR, we report the 3D structure of the most abundant PMF isoform, PMF-G. The high resolution structural ensemble revealed a highly modified TFP structure, including a unique disulfide bonding pattern and loss of secondary structure, that define a novel protein topology with greater backbone flexibility in the third peptide finger. Sequence comparison, models of molecular evolution, and homology modeling together support that this flexible third finger is the most rapidly evolving segment of PMF. Combined with PMF sequence hypervariability, this structural flexibility may enhance the plasticity of PMF as a chemical signal by permitting potentially thousands of structural conformers. We propose that the flexible third finger plays a critical role in PMF:receptor interactions. As female receptors co-evolve, this flexibility may allow PMF to still bind its receptor(s) without the immediate need for complementary mutations. Consequently, this

  17. Improvements to REDCRAFT: a software tool for simultaneous characterization of protein backbone structure and dynamics from residual dipolar couplings.

    PubMed

    Simin, Mikhail; Irausquin, Stephanie; Cole, Casey A; Valafar, Homayoun

    2014-12-01

    Within the past two decades, there has been an increase in the acquisition of residual dipolar couplings (RDC) for investigations of biomolecular structures. Their use however is still not as widely adopted as the traditional methods of structure determination by NMR, despite their potential for extending the limits in studies that examine both the structure and dynamics of biomolecules. This is in part due to the difficulties associated with the analysis of this information-rich data type. The software analysis tool REDCRAFT was previously introduced to address some of these challenges. Here we describe and evaluate a number of additional features that have been incorporated in order to extend its computational and analytical capabilities. REDCRAFT's more traditional enhancements integrate a modified steric collision term, as well as structural refinement in the rotamer space. Other, non-traditional improvements include: the filtering of viable structures based on relative order tensor estimates, decimation of the conformational space based on structural similarity, and forward/reverse folding of proteins. Utilizing REDCRAFT's newest features we demonstrate de-novo folding of proteins 1D3Z and 1P7E to within less than 1.6 Å of the corresponding X-ray structures, using as many as four RDCs per residue and as little as two RDCs per residue, in two alignment media. We also show the successful folding of a structure to less than 1.6 Å of the X-ray structure using {C(i-1)-N(i), N(i)-H(i), and C(i-1)-H(i)} RDCs in one alignment medium, and only {N(i)-H(i)} in the second alignment medium (a set of data which can be collected on deuterated samples). The program is available for download from our website at http://ifestos.cse.sc.edu .

  18. Radical or not radical: compared structures of metal (M = Ni, Au) bis-dithiolene complexes with a thiazole backbone.

    PubMed

    Filatre-Furcate, Agathe; Bellec, Nathalie; Jeannin, Olivier; Auban-Senzier, Pascale; Fourmigué, Marc; Vacher, Antoine; Lorcy, Dominique

    2014-08-18

    A complete series of dianionic, monoanionic, and neutral dithiolene complexes formulated as [Ni(Et-thiazdt)2](n), with n = -2, -1, 0, and Et-thiazdt: N-ethyl-1,3-thiazoline-2-thione-4,5-dithiolate, is prepared using an optimized procedure described earlier for the N-Me derivatives. Electrochemical and spectroscopic properties confirm the electron-rich character of the Et-thiazdt dithiolate ligand. The three complexes are structurally characterized by single-crystal X-ray diffraction. The paramagnetic anionic complex [Ni(Et-thiazdt)2](-1), as Ph4P(+) salt, exhibits side-by-side lateral interactions leading to a Heisenberg spin chain behavior. The solid-state structure of the neutral, diamagnetic [Ni(Et-thiazdt)2](0) complex shows a face-to-face organization with a large longitudinal shift, at variance with the structure of its radical and neutral gold dithiolene analogue described earlier and formulated as [Au(Et-thiazdt)2](•). Comparison of the two structures, and those of the other few structurally characterized pairs of Ni/Au dithiolene complexes, demonstrates the important role played by overlap interactions between gold dithiolene radical species. Despite its closed-shell character, the neutral nickel complex [Ni(Et-thiazdt)2](0) exhibits a semiconducting behavior with a room-temperature conductivity σRT ≈ 0.014 S cm(-1).

  19. Structural and dynamic implications of an effector-induced backbone amide cis-trans isomerization in cytochrome P450cam

    PubMed Central

    Asciutto, Eliana K.; Madura, Jeffry D.; Pochapsky, Susan Sondej; OuYang, Bo; Pochapsky, Thomas C.

    2009-01-01

    Experimental evidence has been provided for a functionally relevant cis-trans isomerization of the Ile 88-Pro 89 peptide bond in cytochrome P450cam (CYP101). The isomerization is proposed to be a key element of the structural reorganization leading to the catalytically competent form of CYP101 upon binding of the effector protein putidaredoxin (Pdx). A detailed comparison of the results of molecular dynamics simulations on the cis and trans conformations of substrate- and carbonmonoxy-bound ferrous CYP101 with sequence-specific Pdx-induced structural perturbations identified by nuclear magnetic resonance is presented, providing insight into the structural and dynamic consequences of the isomerization. The mechanical coupling between the Pdx binding site on the proximal face of CYP101 and the site of isomerization is described. PMID:19327368

  20. Alternation of Side-Chain Mesogen Orientation Caused by the Backbone Structure in Liquid-Crystalline Polymer Thin Films.

    PubMed

    Tanaka, Daisuke; Nagashima, Yuki; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro

    2015-10-27

    In side-chain-type liquid-crystalline (LC) polymers, the main chain rigidity significantly affects the LC structure and properties. We show herein a relevant new effect regarding the orientation of side-chain mesogenic groups of LC polymers in a thin-film state. A subtle change in the main chain structure, i.e., polyacrylate and polymethacrylate, leads to a clear alternation of mesogens in the homeotropic and planar modes, respectively. This orientational discrimination is triggered from the free surface region (film-air interface) as revealed by surface micropatterning via inkjet printing.

  1. Phenotypic variation explains food web structural patterns.

    PubMed

    Gibert, Jean P; DeLong, John P

    2017-10-02

    Food webs (i.e., networks of species and their feeding interactions) share multiple structural features across ecosystems. The factors explaining such similarities are still debated, and the role played by most organismal traits and their intraspecific variation is unknown. Here, we assess how variation in traits controlling predator-prey interactions (e.g., body size) affects food web structure. We show that larger phenotypic variation increases connectivity among predators and their prey as well as total food intake rate. For predators able to eat only a few species (i.e., specialists), low phenotypic variation maximizes intake rates, while the opposite is true for consumers with broader diets (i.e., generalists). We also show that variation sets predator trophic level by determining interaction strengths with prey at different trophic levels. Merging these results, we make two general predictions about the structure of food webs: (i) trophic level should increase with predator connectivity, and (ii) interaction strengths should decrease with prey trophic level. We confirm these predictions empirically using a global dataset of well-resolved food webs. Our results provide understanding of the processes structuring food webs that include functional traits and their naturally occurring variation. Published under the PNAS license.

  2. Understanding traffic dynamics at a backbone POP

    NASA Astrophysics Data System (ADS)

    Taft, Nina; Bhattacharyya, Supratik; Jetcheva, Jorjeta; Diot, Christophe

    2001-07-01

    Spatial and temporal information about traffic dynamics is central to the design of effective traffic engineering practices for IP backbones. In this paper we study backbone traffic dynamics using data collected at a major POP on a tier-1 IP backbone. We develop a methodology that combines packet-level traces from access links in the POP and BGP routing information to build components of POP-to-POP traffic matrices. Our results show that there is wide disparity in the volume of traffic headed towards different egress POPs. At the same time, we find that current routing practices in the backbone tend to constrain traffic between ingress-egress POP pairs to a small number of paths. As a result, there is a wide variation in the utilization level of links in the backbone. Frequent capacity upgrades of the heavily used links are expensive; the need for such upgrades can be reduced by designing load balancing policies that will route more traffic over less utilized links. We identify traffic aggregates based on destination address prefixes and find that this set of criteria isolates a few aggregates that account for an overwhelmingly large portion of inter-POP traffic. We also demonstrate that these aggregates exhibit stability throughout the day on per-hour time scales, and thus they form a natural basis for splitting traffic over multiple paths in order to improve load balancing.

  3. Extended weak bonding interactions in DNA: pi-stacking (base-base), base-backbone, and backbone-backbone interactions.

    PubMed

    Matta, Chérif F; Castillo, Norberto; Boyd, Russell J

    2006-01-12

    We report on several weak interactions in nucleic acids, which, collectively, can make a nonnegligible contribution to the structure and stability of these molecules. Fragments of DNA were obtained from previously determined accurate experimental geometries and their electron density distributions calculated using density functional theory (DFT). The electron densities were analyzed topologically according to the quantum theory of atoms in molecules (AIM). A web of closed-shell bonding interactions is shown to connect neighboring base pairs in base-pair duplexes and in dinuleotide steps. This bonding underlies the well-known pi-stacking interaction between adjacent nucleic acid bases and is characterized topologically for the first time. Two less widely appreciated modes of weak closed-shell interactions in nucleic acids are also described: (i) interactions between atoms in the bases and atoms belonging to the backbone (base-backbone) and (ii) interactions among atoms within the backbone itself (backbone-backbone). These interactions include hydrogen bonding, dihydrogen bonding, hydrogen-hydrogen bonding, and several other weak closed-shell X-Y interactions (X, Y = O, N, C). While each individual interaction is very weak and typically accompanied by perhaps 0.5-3 kcal/mol, the sum total of these interactions is postulated to play a role in stabilizing the structure of nucleic acids. The Watson-and-Crick hydrogen bonding is also characterized in detail at the experimental geometries as a prelude to the discussion of the modes of interactions listed in the title.

  4. Solution Structure, Copper Binding and Backbone Dynamics of Recombinant Ber e 1–The Major Allergen from Brazil Nut

    PubMed Central

    Rundqvist, Louise; Tengel, Tobias; Zdunek, Janusz; Björn, Erik; Schleucher, Jürgen; Alcocer, Marcos J. C.; Larsson, Göran

    2012-01-01

    Background The 2S albumin Ber e 1 is the major allergen in Brazil nuts. Previous findings indicated that the protein alone does not cause an allergenic response in mice, but the addition of components from a Brazil nut lipid fraction were required. Structural details of Ber e 1 may contribute to the understanding of the allergenic properties of the protein and its potential interaction partners. Methodology/Principal Findings The solution structure of recombinant Ber e 1 was solved using NMR spectroscopy and measurements of the protein back bone dynamics at a residue-specific level were extracted using 15N-spin relaxation. A hydrophobic cavity was identified in the structure of Ber e 1. Using the paramagnetic relaxation enhancement property of Cu2+ in conjunction with NMR, it was shown that Ber e 1 is able to specifically interact with the divalent copper ion and the binding site was modeled into the structure. The IgE binding region as well as the copper binding site show increased dynamics on both fast ps-ns timescale as well as slower µs-ms timescale. Conclusions/Significance The overall fold of Ber e 1 is similar to other 2S albumins, but the hydrophobic cavity resembles that of a homologous non-specific lipid transfer protein. Ber e 1 is the first 2S albumin shown to interact with Cu2+ ions. This Cu2+ binding has minimal effect on the electrostatic potential on the surface of the protein, but the charge distribution within the hydrophobic cavity is significantly altered. As the hydrophobic cavity is likely to be involved in a putative lipid interaction the Cu2+ can in turn affect the interaction that is essential to provoke an allergenic response. PMID:23056307

  5. 2D IR spectroscopy of histidine: probing side-chain structure and dynamics via backbone amide vibrations.

    PubMed

    Ghosh, Ayanjeet; Tucker, Matthew J; Gai, Feng

    2014-07-17

    It is well known that histidine is involved in many biological functions due to the structural versatility of its side chain. However, probing the conformational transitions of histidine in proteins, especially those occurring on an ultrafast time scale, is difficult. Herein we show, using a histidine dipeptide as a model, that it is possible to probe the tautomer and protonation status of a histidine residue by measuring the two-dimensional infrared (2D IR) spectrum of its amide I vibrational transition. Specifically, for the histidine dipeptide studied, the amide unit of the histidine gives rise to three spectrally resolvable amide I features at approximately 1630, 1644, and 1656 cm(-1), respectively, which, based on measurements at different pH values and frequency calculations, are assigned to a τ tautomer (1630 cm(-1) component) and a π tautomer with a hydrated (1644 cm(-1) component) or dehydrated (1656 cm(-1) component) amide. Because of the intrinsic ultrafast time resolution of 2D IR spectroscopy, we believe that the current approach, when combined with the isotope editing techniques, will be useful in revealing the structural dynamics of key histidine residues in proteins that are important for function.

  6. Computational protein design with backbone plasticity

    PubMed Central

    MacDonald, James T.; Freemont, Paul S.

    2016-01-01

    The computational algorithms used in the design of artificial proteins have become increasingly sophisticated in recent years, producing a series of remarkable successes. The most dramatic of these is the de novo design of artificial enzymes. The majority of these designs have reused naturally occurring protein structures as ‘scaffolds’ onto which novel functionality can be grafted without having to redesign the backbone structure. The incorporation of backbone flexibility into protein design is a much more computationally challenging problem due to the greatly increased search space, but promises to remove the limitations of reusing natural protein scaffolds. In this review, we outline the principles of computational protein design methods and discuss recent efforts to consider backbone plasticity in the design process. PMID:27911735

  7. Allosteric Transmission along a Loosely Structured Backbone Allows a Cardiac Troponin C Mutant to Function with Only One Ca(2+) Ion.

    PubMed

    Marques, Mayra de A; Pinto, Jose Renato; Moraes, Adolfo H; Iqbal, Anwar; de Magalhães, Mariana T Q; Monteiro, Jamila; Pedrote, Murilo M; Sorenson, Martha M; Silva, Jerson L; de Oliveira, Guilherme A P

    2017-02-10

    Hypertrophic cardiomyopathy (HCM) is one of the most common cardiomyopathies and a major cause of sudden death in young athletes. The Ca(2+) sensor of the sarcomere, cardiac troponin C (cTnC), plays an important role in regulating muscle contraction. Although several cardiomyopathy-causing mutations have been identified in cTnC, the limited information about their structural defects has been mapped to the HCM phenotype. Here, we used high-resolution electron-spray ionization mass spectrometry (ESI-MS), Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG-RD), and affinity measurements of cTnC for the thin filament in reconstituted papillary muscles to provide evidence of an allosteric mechanism in mutant cTnC that may play a role to the HCM phenotype. We showed that the D145E mutation leads to altered dynamics on a μs-ms time scale and deactivates both of the divalent cation-binding sites of the cTnC C-domain. CPMG-RD captured a low populated protein-folding conformation triggered by the Glu-145 replacement of Asp. Paradoxically, although D145E C-domain was unable to bind Ca(2+), these changes along its backbone allowed it to attach more firmly to thin filaments than the wild-type isoform, providing evidence for an allosteric response of the Ca(2+)-binding site II in the N-domain. Our findings explain how the effects of an HCM mutation in the C-domain reflect up into the N-domain to cause an increase of Ca(2+) affinity in site II, thus opening up new insights into the HCM phenotype.

  8. Identical repeated backbone of the human genome

    PubMed Central

    2010-01-01

    Background Identical sequences with a minimal length of about 300 base pairs (bp) have been involved in the generation of various meiotic/mitotic genomic rearrangements through non-allelic homologous recombination (NAHR) events. Genomic disorders and structural variation, together with gene remodelling processes have been associated with many of these rearrangements. Based on these observations, we identified and integrated all the 100% identical repeats of at least 300 bp in the NCBI version 36.2 human genome reference assembly into non-overlapping regions, thus defining the Identical Repeated Backbone (IRB) of the reference human genome. Results The IRB sequences are distributed all over the genome in 66,600 regions, which correspond to ~2% of the total NCBI human genome reference assembly. Important structural and functional elements such as common repeats, segmental duplications, and genes are contained in the IRB. About 80% of the IRB bp overlap with known copy-number variants (CNVs). By analyzing the genes embedded in the IRB, we were able to detect some identical genes not previously included in the Ensembl release 50 annotation of human genes. In addition, we found evidence of IRB gene copy-number polymorphisms in raw sequence reads of two diploid sequenced genomes. Conclusions In general, the IRB offers new insight into the complex organization of the identical repeated sequences of the human genome. It provides an accurate map of potential NAHR sites which could be used in targeting the study of novel CNVs, predicting DNA copy-number variation in newly sequenced genomes, and improve genome annotation. PMID:20096123

  9. Motor Task Variation Induces Structural Learning

    PubMed Central

    Braun, Daniel A.; Aertsen, Ad; Wolpert, Daniel M.; Mehring, Carsten

    2009-01-01

    Summary When we have learned a motor skill, such as cycling or ice-skating, we can rapidly generalize to novel tasks, such as motorcycling or rollerblading [1–8]. Such facilitation of learning could arise through two distinct mechanisms by which the motor system might adjust its control parameters. First, fast learning could simply be a consequence of the proximity of the original and final settings of the control parameters. Second, by structural learning [9–14], the motor system could constrain the parameter adjustments to conform to the control parameters' covariance structure. Thus, facilitation of learning would rely on the novel task parameters' lying on the structure of a lower-dimensional subspace that can be explored more efficiently. To test between these two hypotheses, we exposed subjects to randomly varying visuomotor tasks of fixed structure. Although such randomly varying tasks are thought to prevent learning, we show that when subsequently presented with novel tasks, subjects exhibit three key features of structural learning: facilitated learning of tasks with the same structure, strong reduction in interference normally observed when switching between tasks that require opposite control strategies, and preferential exploration along the learned structure. These results suggest that skill generalization relies on task variation and structural learning. PMID:19217296

  10. Diurnal variations of vegetation canopy structure

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Kirchner, J. A.

    1983-01-01

    The significance and magnitude of diurnal variations of vegetation canopy structure are reviewed. Diurnal leaf inclination-azimuth angle distributions of a soybean and cotton canopy were documented using a simple measurement technique. The precision of the measurements was on the order of + or -5 deg for the inclination and + or -14 deg for the azimuth. The experimental results and a review of the literature showed that this distribution can vary significantly on a diurnal basis due to vegetation type, heliotropic leaf movement, environmental conditions, and vegetation stress. The study also showed that it is erroneous to treat two separate distributions of azimuth and inclination angles rather than one three-dimensional distribution of leaf orientation. The latter distribution needs to be routinely collected in studies which document variations of diurnal spectral reflectance with changes in solar zenith angle.

  11. Invariant variational structures on fibered manifolds

    NASA Astrophysics Data System (ADS)

    Krupka, Demeter

    2015-12-01

    The aim of this paper is to present a relatively complete theory of invariance of global, higher-order integral variational functionals in fibered spaces, as developed during a few past decades. We unify and extend recent results of the geometric invariance theory; new results on deformations of extremals are also included. We show that the theory can be developed by means of the general concept of invariance of a differential form in geometry, which does not require different ad hoc modifications. The concept applies to invariance of Lagrangians, source forms and Euler-Lagrange forms, as well as to extremals of the given variational functional. Equations for generators of invariance transformations of the Lagrangians and the Euler-Lagrange forms are characterized in terms of Lie derivatives. As a consequence of invariance, we derive the global Noether's theorem on existence of conserved currents along extremals, and discuss the meaning of conservation equations. We prove a theorem describing extremals, whose deformations by a vector field are again extremals. The general settings and structures we use admit extension of the global invariance theory to variational principles in physics, especially in field theory.

  12. The structure of an alternative wall teichoic acid produced by a Lactobacillus plantarum WCFS1 mutant contains a 1,5-linked poly(ribitol phosphate) backbone with 2-α-D-glucosyl substitutions.

    PubMed

    Tomita, Satoru; de Waard, Pieter; Bakx, Edwin J; Schols, Henk A; Kleerebezem, Michiel; Bron, Peter A

    2013-04-05

    A tagF1-tagF2 deletion mutant of Lactobacillus plantarum lacks poly(glycerol phosphate) polymerase activity required for glycerol-type wall teichoic acid (WTA) biosynthesis. The mutant activates an alternative genetic locus, tarIJKL, encoding the enzymes for nucleotide activation and incorporation of ribitol in the WTA backbone polymer. This alternative ribitol-type WTA backbone and its repeating unit were isolated and characterized by HPAEC, UPLC-MS, NMR spectroscopy, and MALDI-TOF MS, using synthetic molecules as references. The structure was established as 1,5-linked poly(ribitol phosphate) which was substituted at the C-2 hydroxyl group of the ribitol residue with α-D-glucosyl at a frequency of 28%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Mechanical reliability of porous low-k dielectrics for advanced interconnect: Study of the instability mechanisms in porous low-k dielectrics and their mediation through inert plasma induced re-polymerization of the backbone structure

    NASA Astrophysics Data System (ADS)

    Sa, Yoonki

    Continuous scaling down of critical dimensions in interconnect structures requires the use of ultralow dielectric constant (k) films as interlayer dielectrics to reduce resistance-capacitance delays. Porous carbon-doped silicon oxide (p-SiCOH) dielectrics have been the leading approach to produce these ultralow-k materials. However, embedding of porosity into dielectric layer necessarily decreases the mechanical reliability and increases its susceptibility to adsorption of potentially deleterious chemical species during device fabrication process. Among those, exposure of porous-SiCOH low-k (PLK) dielectrics to oxidizing plasma environment causes the increase in dielectric constant and their vulnerability to mechanical instability of PLKs due to the loss of methyl species and increase in moisture uptake. These changes in PLK properties and physical stability have been persisting challenges for next-generation interconnects because they are the sources of failure in interconnect integration as well as functional and physical failures appearing later in IC device manufacturing. It is therefore essential to study the fundamentals of the interactions on p-SiCOH matrix induced by plasma exposure and find an effective and easy-to-implement way to reverse such changes by repairing damage in PLK structure. From these perspectives, the present dissertation proposes 1) a fundamental understanding of structural transformation occurring during oxidative plasma exposure in PLK matrix structure and 2) its restoration by using silylating treatment, soft x-ray and inert Ar-plasma radiation, respectively. Equally important, 3) as an alternative way of increasing the thermo-mechanical reliability, PLK dielectric film with an intrinsically robust structure by controlling pore morphology is fabricated and investigated. Based on the investigations, stability of PLK films studied by time-dependent ball indentation tester under the elevated temperature, variation in film thickness and

  14. Variational approach for static mirror structures

    SciTech Connect

    Kuznetsov, E. A.; Passot, T.; Sulem, P. L.; Ruban, V. P.

    2015-04-15

    Anisotropic static plasma equilibria where the parallel and perpendicular pressures are only functions of the amplitude of the local magnetic field are shown to be amenable to a variational principle with a free energy density given by the parallel tension. This approach is used to demonstrate that two-dimensional small-amplitude static magnetic holes constructed from a Grad-Shafranov type equation slightly below the (subcritical) mirror instability threshold identify with lump solitons of KPII equation, but turn out to be unstable. Differently, large-amplitude magnetic structures, which are stable as they realize a minimum of the free energy, are computed using a gradient method within two-dimensional numerical simulations where the regularizing effect of finite Larmor radius corrections is retained. Interestingly, these structures transform from stripes to bubbles when the angle of the magnetic field with the coordinate plane is increased.

  15. Human Structural Variation: Mechanisms of Chromosome Rearrangements.

    PubMed

    Weckselblatt, Brooke; Rudd, M Katharine

    2015-10-01

    Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Human structural variation: mechanisms of chromosome rearrangements

    PubMed Central

    Weckselblatt, Brooke; Rudd, M. Katharine

    2015-01-01

    Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074

  17. Constructing backbone network by using tinker algorithm

    NASA Astrophysics Data System (ADS)

    He, Zhiwei; Zhan, Meng; Wang, Jianxiong; Yao, Chenggui

    2017-01-01

    Revealing how a biological network is organized to realize its function is one of the main topics in systems biology. The functional backbone network, defined as the primary structure of the biological network, is of great importance in maintaining the main function of the biological network. We propose a new algorithm, the tinker algorithm, to determine this core structure and apply it in the cell-cycle system. With this algorithm, the backbone network of the cell-cycle network can be determined accurately and efficiently in various models such as the Boolean model, stochastic model, and ordinary differential equation model. Results show that our algorithm is more efficient than that used in the previous research. We hope this method can be put into practical use in relevant future studies.

  18. Variational modeling of ionic polymer plate structures

    NASA Astrophysics Data System (ADS)

    Buechler, Miles A.; Leo, Donald J.

    2006-03-01

    Ionomeric polymers are a promising class of intelligent material which exhibit electromechanical coupling similar to that of piezoelectric bimorphs. Ionomeric polymers are much more compliant than piezoelectric ceramics or polymers and have been shown to produce actuation strain on the order of 5% at operating voltages between 1 V and 5 V. This performance indicates the potential for self-actuating devices manufactured from ionomeric polymers, such as deformable mirrors or low pressure pump diaphragms. This paper presents a variational approach to the dynamic modeling of ionic polymer plates in rectangular coordinates. A linear matrix equation, which relates displacement and charge to applied forces and voltage, is developed to determine the response of the structure to applied forces and applied potentials. The modeling method is based on the incorporation of empirically determined material properties, which have been shown to be highly frequency dependent. The matrices are calculated at discrete frequencies and solved frequency-by-frequency to determine the response of the ionomeric plate structures. A model of a thin rectangular plate is developed and validated experimentally. Simulated frequency response functions are compared to experimental results for several locations on the plate. The response of the plate at certain frequencies is computed and compared to experimentally-determined response shapes. The results demonstrate the validity of the modeling approach in predicting the dynamic response of the ionomeric plate structure. These spatial solutions are also compared to experimentally determined response shapes.

  19. Chapter 6: Structural variation and medical genomics.

    PubMed

    Raphael, Benjamin J

    2012-01-01

    Differences between individual human genomes, or between human and cancer genomes, range in scale from single nucleotide variants (SNVs) through intermediate and large-scale duplications, deletions, and rearrangements of genomic segments. The latter class, called structural variants (SVs), have received considerable attention in the past several years as they are a previously under appreciated source of variation in human genomes. Much of this recent attention is the result of the availability of higher-resolution technologies for measuring these variants, including both microarray-based techniques, and more recently, high-throughput DNA sequencing. We describe the genomic technologies and computational techniques currently used to measure SVs, focusing on applications in human and cancer genomics.

  20. Analysis of the Rotational Structure in the High-Resolution Infrared Spectrum of trans-Hexatriene-1-13C1; a Semiexperimental Equilibrium Structure for the C6 Backbone for trans-Hexatriene

    SciTech Connect

    Craig, Norman C.; Tian, Hengfeng; Blake, Thomas A.

    2012-03-29

    trans-Hexatriene-1-13C1 (tHTE-1-13C1) has been synthesized, and its high-resolution (0.0015 cm-1) infrared spectrum has been recorded. The rotational structure in the C-type bands for v26 at 1011 cm-1 and v30 at 894 cm-1 has been analyzed. To the 1458 ground state combination differences from these bands, ground state rotational constants were fitted to a Watson-type Hamiltonian to give A0 = 0.8728202(9), B0 = 0.0435868(4), and C0 = 0.0415314(2) cm-1. Upper state rotational constants for the v30 band were also fitted. Predictions of the ground state rotational constants for t-HTE-1-13C1 from a B3LYP/cc-pVTZ model with scale factors based on the normal species were in excellent agreement with observations. Similar good agreement was found between predicted and observed ground state rotational constants for the three 13C1 isotopologues of cis-hexatriene (cHTE), as determined from microwave spectroscopy. Equilibrium rotational constants for tHTE and its three 13C1 isotopologues, of which two were predicted, were used to find a semiexperimental equilibrium structure for the C6 backbone of tHTE. This structure shows increased structural effects of pi-electron delocalization in comparison with butadiene.

  1. ANSS Backbone Station Installation and Site Characterization

    NASA Astrophysics Data System (ADS)

    Meremonte, M.; Leeds, A.; Overturf, D.; McMillian, J.; Allen, J.; McNamara, D.

    2004-12-01

    During 2004 several new broadband seismic stations have been deployed as a part of the USGS's Advanced National Seismic System (ANSS) backbone and regional networks. New stations include: ERPA, MNTX, OGLA, AMTX, NATX, KCCO, BMO, MARC, TZTN, LAO, DGMT, REDW, KSU1, MOOW, TPAW, LOHW, RAMW. Permanent station locations were chosen to minimize the local noise conditions by recording continuous data and using a quantitative analysis of the statistical distribution of noise power estimates. For each one-hour segment of continuous data, a power spectral density (PSD) is estimated and smoothed in full octave averages at 1/8 octave intervals. Powers for each 1/8 period interval were then accumulated in one dB power bins. A statistical analysis of power bins yields probability density functions (PDFs) as a function of noise power for each of the octave bands at each station and component. Examination of earthquake signal, artifacts related to station operation and episodic cultural noise in the PDFs allow us to estimate both the overall station quality and the level of earth noise at each potential backbone site. The main function of a seismic network, such as the ANSS, is to provide high quality data for earthquake monitoring, source studies, and Earth structure research. The utility of seismic data is greatly increased when noise levels are reduced. A good quantification and understanding of seismic noise is a first step at reducing noise levels in seismic data and improving overall data quality from the ANSS backbone network.

  2. Semiexperimental equilibrium structure for the C6 backbone of cis-1,3,5-hexatriene; structural evidence for greater pi-electron delocalization with increasing chain length in polyenes.

    PubMed

    Suenram, Richard D; Pate, Brooks H; Lesarri, Alberto; Neill, Justin L; Shipman, Steven; Holmes, Robin A; Leyden, Matthew C; Craig, Norman C

    2009-03-05

    Twenty-five microwave lines were observed for cis-1,3,5-hexatriene (0.05 D dipole moment) and a smaller number for its three (13)C isotopomers in natural abundance. Ground-state rotational constants were fitted for all four species to a Watson-type rotational Hamiltonian for an asymmetric top (kappa = -0.9768). Vibration-rotation (alpha) constants were predicted with a B3LYP/cc-pVTZ model and used to adjust the ground-state rotational constants to equilibrium rotational constants. The small inertial defect for cis-hexatriene shows that the molecule is planar, despite significant H-H repulsion. The substitution method was applied to the equilibrium rotational constants to give a semiexperimental equilibrium structure for the C(6) backbone. This structure and one predicted with the B3LYP/cc-pVTZ model show structural evidence for increased pi-electron delocalization in comparison with butadiene, the first member of the polyene series.

  3. Large-scale measurement and modeling of backbone Internet traffic

    NASA Astrophysics Data System (ADS)

    Roughan, Matthew; Gottlieb, Joel

    2002-07-01

    There is a brewing controversy in the traffic modeling community concerning how to model backbone traffic. The fundamental work on self-similarity in data traffic appears to be contradicted by recent findings that suggest that backbone traffic is smooth. The traffic analysis work to date has focused on high-quality but limited-scope packet trace measurements; this limits its applicability to high-speed backbone traffic. This paper uses more than one year's worth of SNMP traffic data covering an entire Tier 1 ISP backbone to address the question of how backbone network traffic should be modeled. Although the limitations of SNMP measurements do not permit us to comment on the fine timescale behavior of the traffic, careful analysis of the data suggests that irrespective of the variation at fine timescales, we can construct a simple traffic model that captures key features of the observed traffic. Furthermore, the model's parameters are measurable using existing network infrastructure, making this model practical in a present-day operational network. In addition to its practicality, the model verifies basic statistical multiplexing results, and thus sheds deep insight into how smooth backbone traffic really is.

  4. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    PubMed

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions.

  5. ANSS Backbone Station Quality Assessment

    NASA Astrophysics Data System (ADS)

    Leeds, A.; McNamara, D.; Benz, H.; Gee, L.

    2006-12-01

    In this study we assess the ambient noise levels of the broadband seismic stations within the United States Geological Survey's (USGS) Advanced National Seismic System (ANSS) backbone network. The backbone consists of stations operated by the USGS as well as several regional network stations operated by universities. We also assess the improved detection capability of the network due to the installation of 13 additional backbone stations and the upgrade of 26 existing stations funded by the Earthscope initiative. This assessment makes use of probability density functions (PDF) of power spectral densities (PSD) (after McNamara and Buland, 2004) computed by a continuous noise monitoring system developed by the USGS- ANSS and the Incorporated Research Institutions in Seismology (IRIS) Data Management Center (DMC). We compute the median and mode of the PDF distribution and rank the stations relative to the Peterson Low noise model (LNM) (Peterson, 1993) for 11 different period bands. The power of the method lies in the fact that there is no need to screen the data for system transients, earthquakes or general data artifacts since they map into a background probability level. Previous studies have shown that most regional stations, instrumented with short period or extended short period instruments, have a higher noise level in all period bands while stations in the US network have lower noise levels at short periods (0.0625-8.0 seconds), high frequencies (8.0- 0.125Hz). The overall network is evaluated with respect to accomplishing the design goals set for the USArray/ANSS backbone project which were intended to increase broadband performance for the national monitoring network.

  6. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dinesh, Bhimareddy; Squillaci, Marco A.; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-09-01

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to

  7. Child Development and Structural Variation in the Human Genome

    ERIC Educational Resources Information Center

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  8. Child Development and Structural Variation in the Human Genome

    ERIC Educational Resources Information Center

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  9. Constructing optimal backbone segments for joining fixed DNA base pairs.

    PubMed Central

    Mazur, J; Jernigan, R L; Sarai, A

    1996-01-01

    A method is presented to link a sequence of space-fixed base pairs by the sugar-phosphate segments of single nucleotides and to evaluate the effects in the backbone caused by this positioning of the bases. The entire computational unit comprises several nucleotides that are energy-minimized, subject to constraints imposed by the sugar-phosphate backbone segments being anchored to space-fixed base pairs. The minimization schemes are based on two stages, a conjugate gradient method followed by a Newton-Raphson algorithm. Because our purpose is to examine the response, or relaxation, of an artificially stressed backbone, it is essential to be able to obtain, as closely as possible, a lowest minimum energy conformation of the backbone segment in conformational space. For this purpose, an algorithm is developed that leads to the generation of an assembly of many local energy minima. From these sets of local minima, one conformation corresponding to the one with the lowest minimum is then selected and designated to represent the backbone segment at its minimum. The effective electrostatic potential of mean force is expressed in terms of adjustable parameters that incorporate solvent screening action in the Coulombic interactions between charged backbone atoms; these parameters are adjusted to obtain the best fit of the nearest-neighbor phosphorous atoms in an x-ray structure. PMID:8874023

  10. NMR study of non-structural proteins-part III: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Chikungunya virus (CHIKV).

    PubMed

    Lykouras, Michail V; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2017-09-05

    Macro domains are conserved protein domains found in eukaryotic organisms, bacteria, and archaea as well as in certain viruses. They consist of 130-190 amino acids and can bind ADP-ribose. Although the exact role of these domains is not fully understood, the conserved binding affinity for ADP-ribose indicates that this ligand is important for the function of the domain. Such a macro domain is also present in the non-structural protein 3 (nsP3) of Chikungunya Alphavirus (CHIKV) and consists of 160 amino acids. In this study we describe the high yield expression of the macro domain from CHIKV and its preliminary structural analysis via solution NMR spectroscopy. The macro domain seems to be folded in solution and an almost complete backbone assignment was achieved. In addition, the α/β/α sandwich topology with 4 α-helices and 6 β-strands was predicted by TALOS+.

  11. Variational fitting methods for electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Dunlap, Brett I.; Rösch, Notker; Trickey, S. B.

    2010-11-01

    We review the basics and the evolution of a powerful and widely applicable general approach to the systematic reduction of computational burden in many-electron calculations. Variational fitting of electron densities (either total or partial) has the great advantage, for quantum mechanical calculations, that it respects the stationarity property, which is at the heart of the success of the basis set expansion methods ubiquitous in computational chemistry and materials physics. The key point is easy. In a finite system, independent of whether the fitted charge distribution is constrained to contain the proper amount of charge, variational fitting guarantees that the quantum mechanical total energy retains the stationarity property. Thus, many-electron quantum mechanics with variational fitting of an electronic density in an incomplete density-fitting basis set behaves similarly as the exact quantum mechanical energy does when evaluated with an incomplete basis set to fit wavefunctions or spin-orbitals. Periodically bounded systems are a bit more subtle but the essential stationarity is preserved. This preservation of an exact property is quite distinct from truncation of the resolution of the identity in a basis. Variational fitting has proven to have benefits far beyond the original objective of making a Gaussian-orbital basis calculation of an early density functional computationally feasible. We survey many of those developments briefly, with guidance to the pertinent literature and a few remarks about the connections with Quantum Theory Project.

  12. A Readily Accessible Chiral NNN Pincer Ligand with a Pyrrole Backbone and Its Ni(II) Chemistry: Syntheses, Structural Chemistry, and Bond Activations.

    PubMed

    Wenz, Jan; Kochan, Alexander; Wadepohl, Hubert; Gade, Lutz H

    2017-03-20

    A new class of chiral C2-symmetric N-donor pincer ligands, 2,5-bis(2-oxazolinyldimethylmethyl)pyrroles (PdmBox)H, was synthesized starting from the readily available ethyl 2,2-dimethyl-3-oxobutanoate (1). The synthesis of the ligand backbone was achieved by oxidative enole coupling with CuC12 followed by Paal-Knorr-type pyrrole synthesis. The corresponding protioligands ((R)PdmBox)H (R = iPr: 5a; Ph: 5b) were obtained by condensation with amino alcohols and subsequent zinc-catalyzed cyclization. Reaction of the lithiated ligands with [NiCl2(dme)] yielded the corresponding square-planar nickel(II) complexes [((R)PdmBox)NiCl] (6a/b). Salt metathesis of 6a with the corresponding alkali or cesium salts in acetone led to the formation of air- and moisture-stable [((iPr)PdmBox)NiX] (X = F (7), X = Br (8), X = I (9), X = N3 (10), X = OAc (11). Furthermore, the conversion of [((iPr)PdmBox)NiF] (7) with hydride transfer reagents such as PhSiH3 led to the stable hydrido species [((iPr)PdmBox)NiH] (27), the stoichiometric transformations of which were studied. Treatment of 6a with organometallic reagents such as ZnEt2, PhLi, PhC≡CLi, NsLi, or ((4F)Bn)2Mg(THF)2 gave the corresponding alkyl, alkynyl, or aryl complexes. The availability of the new nonisomerizable PdmBox pincer ligands allowed the comparative study of their ligation to square-planar complexes as helically twisted spectator ligands as opposed to the enforced planar rigidity of their iso-PmBox analogues and the way this influences the reactivity of the Ni complexes.

  13. Structure-activity study for (bis)ureidopropyl- and (bis)thioureidopropyldiamine LSD1 inhibitors with 3-5-3 and 3-6-3 carbon backbone architectures.

    PubMed

    Nowotarski, Shannon L; Pachaiyappan, Boobalan; Holshouser, Steven L; Kutz, Craig J; Li, Youxuan; Huang, Yi; Sharma, Shiv K; Casero, Robert A; Woster, Patrick M

    2015-04-01

    Methylation at specific histone lysine residues is a critical post-translational modification that alters chromatin architecture, and dysregulated lysine methylation/demethylation is associated with the silencing of tumor suppressor genes. The enzyme lysine-specific demethylase 1 (LSD1) complexed to specific transcription factors catalyzes the oxidative demethylation of mono- and dimethyllysine 4 of histone H3 (H3K4me and H3K4me2, respectively). We have previously reported potent (bis)urea and (bis)thiourea LSD1 inhibitors that increase cellular levels of H3K4me and H3K4me2, promote the re-expression of silenced tumor suppressor genes and suppress tumor growth in vitro. Here we report the design additional (bis)urea and (bis)thiourea LSD1 inhibitors that feature 3-5-3 or 3-6-3 carbon backbone architectures. Three of these compounds displayed single-digit IC50 values in a recombinant LSD1 assay. In addition, compound 6d exhibited an IC50 of 4.2μM against the Calu-6 human lung adenocarcinoma line, and 4.8μM against the MCF7 breast tumor cell line, in an MTS cell viability assay. Following treatment with 6b-6d, Calu-6 cells exhibited a significant increase in the mRNA expression for the silenced tumor suppressor genes SFRP2, HCAD and p16, and modest increases in GATA4 message. The compounds described in this paper represent the most potent epigenetic modulators in this series, and have potential for use as antitumor agents.

  14. Structure-activity study for (bis)ureidopropyl- and (bis)thioureidopropyldiamine LSD1 inhibitors with 3-5-3 and 3-6-3 carbon backbone architectures

    PubMed Central

    Nowotarski, Shannon L.; Pachaiyappan, Boobalan; Holshouser, Steven L.; Kutz, Craig J.; Li, Youxuan; Huang, Yi; Sharma, Shiv K.; Casero, Robert A.; Woster, Patrick M.

    2015-01-01

    Methylation at specific histone lysine residues is a critical post-translational modification that alters chromatin architecture, and dysregulated lysine methylation/demethylation is associated with the silencing of tumor suppressor genes. The enzyme lysine-specific demethylase 1 (LSD1) complexed to specific transcription factors catalyzes the oxidative demethylation of mono- and dimethyllysine 4 of histone H3 (H3K4me and H3K4me2 respectively). We have previously reported potent (bis)urea and (bis)thiourea LSD1 inhibitors that increase cellular levels of H3K4me and H3K4me2, promote the re-expression of silenced tumor suppressor genes and suppress tumor growth in vitro. Here we report the design additional (bis)urea and (bis)thiourea LSD1 inhibitors that feature 3-5-3 or 3-6-3 carbon backbone architectures. Three of these compounds displayed single-digit IC50 values in a recombinant LSD1 assay. In addition, compound 6d exhibited an IC50 of 4.2 μM against the Calu-6 human lung adenocarcinoma line, and 4.8 μM against the MCF7 breast tumor cell line, in an MTS cell viability assay. Following treatment with 6b–6d, Calu-6 cells exhibited a significant increase in the mRNA expression for the silenced tumor suppressor genes SFRP2, HCAD and p16, and modest increases in GATA4 message. The compounds described in this paper represent the most potent epigenetic modulators in this series, and have potential for use as antitumor agents. PMID:25725609

  15. Evolution of functional nucleic acids in the presence of nonheritable backbone heterogeneity.

    PubMed

    Trevino, Simon G; Zhang, Na; Elenko, Mark P; Lupták, Andrej; Szostak, Jack W

    2011-08-16

    Multiple lines of evidence support the hypothesis that the early evolution of life was dominated by RNA, which can both transfer information from generation to generation through replication directed by base-pairing, and carry out biochemical activities by folding into functional structures. To understand how life emerged from prebiotic chemistry we must therefore explain the steps that led to the emergence of the RNA world, and in particular, the synthesis of RNA. The generation of pools of highly pure ribonucleotides on the early Earth seems unlikely, but the presence of alternative nucleotides would support the assembly of nucleic acid polymers containing nonheritable backbone heterogeneity. We suggest that homogeneous monomers might not have been necessary if populations of heterogeneous nucleic acid molecules could evolve reproducible function. For such evolution to be possible, function would have to be maintained despite the repeated scrambling of backbone chemistry from generation to generation. We have tested this possibility in a simplified model system, by using a T7 RNA polymerase variant capable of transcribing nucleic acids that contain an approximately 11 mixture of deoxy- and ribonucleotides. We readily isolated nucleotide-binding aptamers by utilizing an in vitro selection process that shuffles the order of deoxy- and ribonucleotides in each round. We describe two such RNA/DNA mosaic nucleic acid aptamers that specifically bind ATP and GTP, respectively. We conclude that nonheritable variations in nucleic acid backbone structure may not have posed an insurmountable barrier to the emergence of functionality in early nucleic acids.

  16. The backbone of a city

    NASA Astrophysics Data System (ADS)

    Scellato, S.; Cardillo, A.; Latora, V.; Porta, S.

    2006-03-01

    Recent studies have revealed the importance of centrality measures to analyze various spatial factors affecting human life in cities. Here we show how it is possible to extract the backbone of a city by deriving spanning trees based on edge betweenness and edge information. By using as sample cases the cities of Bologna and San Francisco, we show how the obtained trees are radically different from those based on edge lengths, and allow an extended comprehension of the “skeleton” of most important routes that so much affects pedestrian/vehicular flows, retail commerce vitality, land-use separation, urban crime and collective dynamical behaviours.

  17. Nonlinear backbone torsional pair correlations in proteins

    NASA Astrophysics Data System (ADS)

    Long, Shiyang; Tian, Pu

    2016-10-01

    Protein allostery requires dynamical structural correlations. Physical origin of which, however, remain elusive despite intensive studies during last two and half decades. Based on analysis of molecular dynamics (MD) simulation trajectories for ten proteins with different sizes and folds, we found that nonlinear backbone torsional pair (BTP) correlations, which are mainly spatially long-ranged and are dominantly executed by loop residues, exist extensively in most analyzed proteins. Examination of torsional motion for correlated BTPs suggested that such nonlinear correlations are mainly associated aharmonic torsional state transitions and in some cases strongly anisotropic local torsional motion of participating torsions, and occur on widely different and relatively longer time scales. In contrast, correlations between backbone torsions in stable α helices and β strands are mainly linear and spatially short-ranged, and are more likely to associate with harmonic local torsional motion. Further analysis revealed that the direct cause of nonlinear contributions are heterogeneous linear correlations. These findings implicate a general search strategy for novel allosteric modulation sites of protein activities.

  18. Nonlinear backbone torsional pair correlations in proteins

    PubMed Central

    Long, Shiyang; Tian, Pu

    2016-01-01

    Protein allostery requires dynamical structural correlations. Physical origin of which, however, remain elusive despite intensive studies during last two and half decades. Based on analysis of molecular dynamics (MD) simulation trajectories for ten proteins with different sizes and folds, we found that nonlinear backbone torsional pair (BTP) correlations, which are mainly spatially long-ranged and are dominantly executed by loop residues, exist extensively in most analyzed proteins. Examination of torsional motion for correlated BTPs suggested that such nonlinear correlations are mainly associated aharmonic torsional state transitions and in some cases strongly anisotropic local torsional motion of participating torsions, and occur on widely different and relatively longer time scales. In contrast, correlations between backbone torsions in stable α helices and β strands are mainly linear and spatially short-ranged, and are more likely to associate with harmonic local torsional motion. Further analysis revealed that the direct cause of nonlinear contributions are heterogeneous linear correlations. These findings implicate a general search strategy for novel allosteric modulation sites of protein activities. PMID:27708342

  19. Protein structure prediction from sequence variation

    PubMed Central

    Marks, Debora S; Hopf, Thomas A; Sander, Chris

    2015-01-01

    Genomic sequences contain rich evolutionary information about functional constraints on macromolecules such as proteins. This information can be efficiently mined to detect evolutionary couplings between residues in proteins and address the long-standing challenge to compute protein three-dimensional structures from amino acid sequences. Substantial progress has recently been made on this problem owing to the explosive growth in available sequences and the application of global statistical methods. In addition to three-dimensional structure, the improved understanding of covariation may help identify functional residues involved in ligand binding, protein-complex formation and conformational changes. We expect computation of covariation patterns to complement experimental structural biology in elucidating the full spectrum of protein structures, their functional interactions and evolutionary dynamics. PMID:23138306

  20. Making the difference: integrating structural variation detection tools.

    PubMed

    Lin, Ke; Smit, Sandra; Bonnema, Guusje; Sanchez-Perez, Gabino; de Ridder, Dick

    2015-09-01

    From prokaryotes to eukaryotes, phenotypic variation, adaptation and speciation has been associated with structural variation between genomes of individuals within the same species. Many computer algorithms detecting such variations (callers) have recently been developed, spurred by the advent of the next-generation sequencing technology. Such callers mainly exploit split-read mapping or paired-end read mapping. However, as different callers are geared towards different types of structural variation, there is still no single caller that can be considered a community standard; instead, increasingly the various callers are combined in integrated pipelines. In this article, we review a wide range of callers, discuss challenges in the integration step and present a survey of pipelines used in population genomics studies. Based on our findings, we provide general recommendations on how to set-up such pipelines. Finally, we present an outlook on future challenges in structural variation detection.

  1. Imaging crustal structure variation across southeastern Australia

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice R.; Tkalčić, Hrvoje; Kennett, Brian L. N.

    2013-01-01

    A broad-band seismic network of 28 three-component seismometers was deployed in southeastern Australia to examine variations in crustal thickness across the transition between Precambrian and Phanerozoic lithosphere. Receiver function observations and modelling of P-to-S conversions at the Mohorovičić discontinuity (Moho) have been employed to investigate: (i) the variations in the Moho depth across southeastern Australia, and (ii) the nature of the transition between crust and mantle. Data from temporary deployments were used together with data from the few permanent broad-band stations in the region. The extraction of P-receiver functions from high-quality seismic data recorded on these stations has enabled the determination of the crustal thickness across the region. The crustal thicknesses lie in the range 28-48 km. The Moho depth is generally well correlated with the Earth surface elevation in the southeastern Australia. The Moho estimates from receiver functions are in good agreement with results from reflection profiling. The average crustal thickness is found to be around 39 km beneath the Precambrian area in the west and even thicker beneath the Lachlan Orogen in the east (~ 43 km). The average crustal thickness in between, beneath the Murray Basin is thinner ~ 32 km. Interestingly, the crust in the Mount Gambier volcanic area is rather thick ~ 41 km, suggesting that the limit between the Delamerian and western Lachlan orogens is located east of Mount Gambier. Our results favour a position for the Tasman Line generally consistent with the interpretation by Direen and Crawford (2003) and thus to the east of the location favoured by many authors. The broader crust-mantle transition and thicker crust beneath the Lachlan Orogen suggest the presence of magmatic underplating at the base of the lower crust. The intermediate nature of the crust-mantle transition also suggests magmatic underplating beneath the Gawler Craton and the Curnamona Province.

  2. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    PubMed

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.

  3. Prototype Schemas, Variation Theory, and the Structural Syllabus.

    ERIC Educational Resources Information Center

    Adamson, H. D.

    1990-01-01

    A review of theories and research regarding cognitive psychology and second-language acquisition discusses Krashen's monitor model (1982), Pienemann's teachability hypothesis (1985), variation theory, the structural syllabus, and grammatical prototypes. (29 references) (CB)

  4. Assessing side-chain perturbations of the protein backbone: a knowledge-based classification of residue Ramachandran space.

    PubMed

    Dahl, David B; Bohannan, Zach; Mo, Qianxing; Vannucci, Marina; Tsai, Jerry

    2008-05-02

    Grouping the 20 residues is a classic strategy to discover ordered patterns and insights about the fundamental nature of proteins, their structure, and how they fold. Usually, this categorization is based on the biophysical and/or structural properties of a residue's side-chain group. We extend this approach to understand the effects of side chains on backbone conformation and to perform a knowledge-based classification of amino acids by comparing their backbone phi, psi distributions in different types of secondary structure. At this finer, more specific resolution, torsion angle data are often sparse and discontinuous (especially for nonhelical classes) even though a comprehensive set of protein structures is used. To ensure the precision of Ramachandran plot comparisons, we applied a rigorous Bayesian density estimation method that produces continuous estimates of the backbone phi, psi distributions. Based on this statistical modeling, a robust hierarchical clustering was performed using a divergence score to measure the similarity between plots. There were seven general groups based on the clusters from the complete Ramachandran data: nonpolar/beta-branched (Ile and Val), AsX (Asn and Asp), long (Met, Gln, Arg, Glu, Lys, and Leu), aromatic (Phe, Tyr, His, and Cys), small (Ala and Ser), bulky (Thr and Trp), and, lastly, the singletons of Gly and Pro. At the level of secondary structure (helix, sheet, turn, and coil), these groups remain somewhat consistent, although there are a few significant variations. Besides the expected uniqueness of the Gly and Pro distributions, the nonpolar/beta-branched and AsX clusters were very consistent across all types of secondary structure. Effectively, this consistency across the secondary structure classes implies that side-chain steric effects strongly influence a residue's backbone torsion angle conformation. These results help to explain the plasticity of amino acid substitutions on protein structure and should help in

  5. Genetic variation, predator–prey interactions and food web structure

    PubMed Central

    Moya-Laraño, Jordi

    2011-01-01

    Food webs are networks of species that feed on each other. The role that within-population phenotypic and genetic variation plays in food web structure is largely unknown. Here, I show via simulation how variation in two key traits, growth rates and phenology, by influencing the variability of body sizes present through time, can potentially affect several structural parameters in the direction of enhancing food web persistence: increased connectance, decreased interaction strengths, increased variation among interaction strengths and increased degree of omnivory. I discuss other relevant traits whose variation could affect the structure of food webs, such as morphological and additional life-history traits, as well as animal personalities. Furthermore, trait variation could also contribute to the stability of food web modules through metacommunity dynamics. I propose future research to help establish a link between within-population variation and food web structure. If appropriately established, such a link could have important consequences for biological conservation, as it would imply that preserving (functional) genetic variation within populations could ensure the preservation of entire communities. PMID:21444316

  6. Structured grid variational adaption: Reaching the limit?

    NASA Astrophysics Data System (ADS)

    Jacquotte, Olivier-Pierre; Coussement, Gregory

    In recent years, mesh generation and adaption have become very important subjects in modern Computational Fluid Dynamics (CFD) and it is now well recognized that the clever use of good mesh generators can have a significant effect on the efficiency of computer modeling. Although finite element or finite volume methods based on unstructured meshed are obtaining more and more successful theoretical results, industries still feel the need to have methods and codes for the generation of `good' structured grids. It is important to distinguish the problems encountered by engineers who need to build grids to run a code, and the ones encountered by scientists developing the grid generation methods and codes. Three types of constraint must generally be taken into account when generating a grid: the geometry of the domain, the physical problem solved and the numerical scheme and code used for the discretization of the equations; of course the handling of these constraints is different whether one belongs to the structured or to the unstructured world. With the motivation of offering tools fulfilling these requirements, we have been proposing for several years a method for the optimization and adaption of structured grids. This method is based on the use of principles of continuum mechanics and on several mathematical properties that ensure the good behavior of the method, the robustness of the optimization algorithm and code, and the quality of the resulting grids; the method will be briefly reviewed. We will outline some of the features of the resulting code and also show and analyze results on cases that force the method close to its limits.

  7. New insights about pilus formation in gut-adapted Lactobacillus rhamnosus GG from the crystal structure of the SpaA backbone-pilin subunit

    PubMed Central

    Chaurasia, Priyanka; Pratap, Shivendra; von Ossowski, Ingemar; Palva, Airi; Krishnan, Vengadesan

    2016-01-01

    Thus far, all solved structures of pilin-proteins comprising sortase-assembled pili are from pathogenic genera and species. Here, we present the first crystal structure of a pilin subunit (SpaA) from a non-pathogen host (Lactobacillus rhamnosus GG). SpaA consists of two tandem CnaB-type domains, each with an isopeptide bond and E-box motif. Intriguingly, while the isopeptide bond in the N-terminal domain forms between lysine and asparagine, the one in the C-terminal domain atypically involves aspartate. We also solved crystal structures of mutant proteins where residues implicated in forming isopeptide bonds were replaced. Expectedly, the E-box-substituted E139A mutant lacks an isopeptide bond in the N-terminal domain. However, the C-terminal E269A substitution gave two structures; one of both domains with their isopeptide bonds present, and another of only the N-terminal domain, but with an unformed isopeptide bond and significant conformational changes. This latter crystal structure has never been observed for any other Gram-positive pilin. Notably, the C-terminal isopeptide bond still forms in D295N-substituted SpaA, irrespective of E269 being present or absent. Although E-box mutations affect SpaA proteolytic and thermal stability, a cumulative effect perturbing normal pilus polymerization was unobserved. A model showing the polymerized arrangement of SpaA within the SpaCBA pilus is proposed. PMID:27349405

  8. A solution structure for poly(rA).poly(dT) with different furanose pucker and backbone geometry in rA and dT strands and intrastrand hydrogen bonding of adenine 8CH.

    PubMed

    Benevides, J M; Thomas, G J

    1988-05-17

    Equilibrium Raman spectra show that A- and B-form phosphodiester backbone geometries are both present in the solution structure of the RNA.DNA hybrid poly(rA).poly(dT) and that these arise from C3'-endo-rA and C2'-endo-dT nucleosides, respectively. Raman dynamic measurement of deuterium exchange of adenine 8CH groups reveals (i) a single kinetic class of rA conformers and (ii) extraordinary retardation of 8CH exchange in this class--more than 100-fold slower than in canonical DNA structures. The equilibrium and kinetic results, in conjunction with model building, indicate an unusual intrastrand hydrogen bond involving adenosine donor (8C-H) and acceptor (5'O) groups and a double-helical conformation in solution similar to that proposed for fibers at high relative humidity [Zimmerman, S. B., & Pheiffer, B. H. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 78-82]. In fibers of poly(rA).poly(dT) at low relative humidity, the Raman spectra indicate a conventional A-helix structure.

  9. Crystal Structure of a B-form DNA Duplex Containing (L)-alpha-Threofuranosyl (3'-2') Nucleosides (TNA): A Simple Four Carbon Sugar is Easily Accommodated into the Backbone of DNA

    SciTech Connect

    Wilds, C.J.; Wawrzak, Z.; Krishnamurthy, R.; Eschenmoser, A.; Egli, M.

    2010-03-08

    (L)-{alpha}-Threofuranosyl-(3' {yields} 2')-oligonucleotides (TNA) containing vicinally connected phosphodiester linkages undergo informational base pairing in an antiparallel strand orientation and are capable of cross-pairing with RNA and DNA. TNA is derived from a sugar containing only four carbon atoms and is one of the simplest potentially natural nucleic acid alternatives investigated thus far in the context of a chemical etiology of nucleic acid structure. Compared to DNA and RNA that contain six covalent bonds per repeating nucleotide unit, TNA contains only five. We have determined the atomic-resolution crystal structure of the B-form DNA duplex [d(CGCGAA)T*d(TCGCG)]{sub 2} containing a single (L)-{alpha}-threofuranosyl thymine (T*) per strand. In the modified duplex base stacking interactions are practically unchanged relative to the reference DNA structure. The orientations of the backbone at the TNA incorporation sites are slightly altered in order to accommodate fewer atoms and covalent bonds. The conformation of the threose is C4'-exo with the 2'- and 3'-substituents assuming quasi-diaxial orientation.

  10. Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope.

    PubMed

    Azoitei, Mihai L; Ban, Yih-En Andrew; Julien, Jean-Philippe; Bryson, Steve; Schroeter, Alexandria; Kalyuzhniy, Oleksandr; Porter, Justin R; Adachi, Yumiko; Baker, David; Pai, Emil F; Schief, William R

    2012-01-06

    Computational grafting of functional motifs onto scaffold proteins is a promising way to engineer novel proteins with pre-specified functionalities. Typically, protein grafting involves the transplantation of protein side chains from a functional motif onto structurally homologous regions of scaffold proteins. Using this approach, we previously transplanted the human immunodeficiency virus 2F5 and 4E10 epitopes onto heterologous proteins to design novel "epitope-scaffold" antigens. However, side-chain grafting is limited by the availability of scaffolds with compatible backbone for a given epitope structure and offers no route to modify backbone structure to improve mimicry or binding affinity. To address this, we report here a new and more aggressive computational method-backbone grafting of linear motifs-that transplants the backbone and side chains of linear functional motifs onto scaffold proteins. To test this method, we first used side-chain grafting to design new 2F5 epitope scaffolds with improved biophysical characteristics. We then independently transplanted the 2F5 epitope onto three of the same parent scaffolds using the newly developed backbone grafting procedure. Crystal structures of side-chain and backbone grafting designs showed close agreement with both the computational models and the desired epitope structure. In two cases, backbone grafting scaffolds bound antibody 2F5 with 30- and 9-fold higher affinity than corresponding side-chain grafting designs. These results demonstrate that flexible backbone methods for epitope grafting can significantly improve binding affinities over those achieved by fixed backbone methods alone. Backbone grafting of linear motifs is a general method to transplant functional motifs when backbone remodeling of the target scaffold is necessary.

  11. A Variational Monte Carlo Approach to Atomic Structure

    ERIC Educational Resources Information Center

    Davis, Stephen L.

    2007-01-01

    The practicality and usefulness of variational Monte Carlo calculations to atomic structure are demonstrated. It is found to succeed in quantitatively illustrating electron shielding, effective nuclear charge, l-dependence of the orbital energies, and singlet-tripetenergy splitting and ionization energy trends in atomic structure theory.

  12. A Variational Monte Carlo Approach to Atomic Structure

    ERIC Educational Resources Information Center

    Davis, Stephen L.

    2007-01-01

    The practicality and usefulness of variational Monte Carlo calculations to atomic structure are demonstrated. It is found to succeed in quantitatively illustrating electron shielding, effective nuclear charge, l-dependence of the orbital energies, and singlet-tripetenergy splitting and ionization energy trends in atomic structure theory.

  13. Impact of template backbone heterogeneity on RNA polymerase II transcription

    PubMed Central

    Xu, Liang; Wang, Wei; Zhang, Lu; Chong, Jenny; Huang, Xuhui; Wang, Dong

    2015-01-01

    Variations in the sugar component (ribose or deoxyribose) and the nature of the phosphodiester linkage (3′-5′ or 2′-5′ orientation) have been a challenge for genetic information transfer from the very beginning of evolution. RNA polymerase II (pol II) governs the transcription of DNA into precursor mRNA in all eukaryotic cells. How pol II recognizes DNA template backbone (phosphodiester linkage and sugar) and whether it tolerates the backbone heterogeneity remain elusive. Such knowledge is not only important for elucidating the chemical basis of transcriptional fidelity but also provides new insights into molecular evolution. In this study, we systematically and quantitatively investigated pol II transcriptional behaviors through different template backbone variants. We revealed that pol II can well tolerate and bypass sugar heterogeneity sites at the template but stalls at phosphodiester linkage heterogeneity sites. The distinct impacts of these two backbone components on pol II transcription reveal the molecular basis of template recognition during pol II transcription and provide the evolutionary insight from the RNA world to the contemporary ‘imperfect’ DNA world. In addition, our results also reveal the transcriptional consequences from ribose-containing genomic DNA. PMID:25662224

  14. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  15. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St.clair, Terry L.

    1988-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  16. Flexible backbone aromatic polyimide adhesives

    NASA Technical Reports Server (NTRS)

    Progar, Donald J.; St. Clair, Terry L.

    1989-01-01

    Continuing research at Langley Research Center on the synthesis and development of new inexpensive flexible aromatic polyimides as adhesives has resulted in a material identified as LARC-F-SO2 with similarities to polyimidesulfone, PISO2, and other flexible backbone polyimides recently reported by Progar and St. Clair. Also prepared and evaluated was an endcapped version of PISO2. These two polymers were compared with LARC-TPI and LARC-STPI, polyimides research in our laboratory and reported in the literature. The adhesive evaluation, primarily based on lap shear strength (LSS) tests at RT, 177 C and 204 C, involved preparing adhesive tapes, conducting bonding studies and exposing lap shear specimens to 204 C air for up to 1000 hrs and to a 72-hour water boil. The type of adhesive failure as well as the Tg was determined for the fractured specimens. The results indicate that LARC-TPI provides the highest LSSs. LARC-F-SO2, LARC-TPI and LARC-STPI all retain their strengths after thermal exposure for 1000 hrs and PISO2 retains greater than 80 percent of its control strengths. After a 72-hr water boil exposure, most of the four adhesive systems showed reduced strengths for all test temperatures although still retaining a high percentage of their original strength (greater than 60 percent) except for one case. The predominant failure type was cohesive with no significant change in the Tgs.

  17. 55P0110, a Novel Synthetic Compound Developed from a Plant Derived Backbone Structure, Shows Promising Anti-Hyperglycaemic Activity in Mice.

    PubMed

    Brunmair, Barbara; Lehner, Zsuzsanna; Stadlbauer, Karin; Adorjan, Immanuel; Frobel, Klaus; Scherer, Thomas; Luger, Anton; Bauer, Leonhardt; Fürnsinn, Clemens

    2015-01-01

    Starting off with a structure derived from the natural compound multiflorine, a derivatisation program aimed at the discovery and initial characterisation of novel compounds with antidiabetic potential. Design and discovery of the structures was guided by oral bioactivities obtained in oral glucose tolerance tests in mice. 55P0110, one among several new compounds with distinct anti-hyperglycaemic activity, was further examined to characterise its pharmacology and mode of action. Whereas a single oral dose of 55P0110 did not affect basal glycaemia, it markedly improved the glucose tolerance of healthy and diabetic mice (peak blood glucose in glucose tolerance test, mmol/l: healthy mice with 90 mg/kg 55P0110, 17.0 ± 1.2 vs. 10.1 ± 1.1; diabetic mice with 180 mg/kg 55P0110, 23.1 ± 0.9 vs. 11.1 ± 1.4; p<0.001 each). Closer examination argued against retarded glucose resorption from the gut, increased glucose excretion in urine, acute insulin-like or insulin sensitising properties, and direct inhibition of dipeptidyl peptidase-4 as the cause of glucose lowering. Hence, 55P0110 seems to act via a target not exploited by any drug presently approved for the treatment of diabetes mellitus. Whereas the insulinotropic sulfonylurea gliclazide (16 mg/kg) distinctly increased the circulating insulin-per-glucose ratio under basal conditions, 55P0110 (90 mg/kg) lacked such an effect (30 min. after dosing, nmol/mol: vehicle, 2.49 ± 0.27; 55P0110, 2.99 ± 0.35; gliclazide, 8.97 ± 0.49; p<0.001 each vs. gliclazide). Under an exogenous glucose challenge, however, 55P0110 increased this ratio to the same extent as gliclazide (20 min. after glucose feeding: vehicle, 2.53 ± 0.41; 55P0110, 3.80 ± 0.46; gliclazide, 3.99 ± 0.26; p<0.05 each vs. vehicle). By augmenting the glucose stimulated increase in plasma insulin, 55P0110 thus shows distinct anti-hyperglycaemic action in combination with low risk for fasting hypoglycaemia in mice. In summary, we have discovered a novel class of

  18. Structure and backbone dynamics of vanadate-bound PRL-3: comparison of 15N nuclear magnetic resonance relaxation profiles of free and vanadate-bound PRL-3.

    PubMed

    Jeong, Ki-Woong; Kang, Dong-Il; Lee, Eunjung; Shin, Areum; Jin, Bonghwan; Park, Young-Guen; Lee, Chung-Kyoung; Kim, Eun-Hee; Jeon, Young Ho; Kim, Eunice Eunkyeong; Kim, Yangmee

    2014-07-29

    Phosphatases of regenerating liver (PRLs) constitute a novel class of small, prenylated phosphatases with oncogenic activity. PRL-3 is particularly important in cancer metastasis and represents a potential therapeutic target. The flexibility of the WPD loop as well as the P-loop of protein tyrosine phosphatases is closely related to their catalytic activity. Using nuclear magnetic resonance spectroscopy, we studied the structure of vanadate-bound PRL-3, which was generated by addition of sodium orthovanadate to PRL-3. The WPD loop of free PRL-3 extended outside of the active site, forming an open conformation, whereas that of vanadate-bound PRL-3 was directed into the active site by a large movement, resulting in a closed conformation. We suggest that vanadate binding induced structural changes in the WPD loop, P-loop, helices α4-α6, and the polybasic region. Compared to free PRL-3, vanadate-bound PRL-3 has a longer α4 helix, where the catalytic R110 residue coordinates with vanadate in the active site. In addition, the hydrophobic cavity formed by helices α4-α6 with a depth of 14-15 Å can accommodate a farnesyl chain at the truncated prenylation motif of PRL-3, i.e., from R169 to M173. Conformational exchange data suggested that the WPD loop moves between open and closed conformations with a closing rate constant k(close) of 7 s(-1). This intrinsic loop flexibility of PRL-3 may be related to their catalytic rate and may play a role in substrate recognition.

  19. Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee

    PubMed Central

    Ventura, Mario; Catacchio, Claudia R.; Alkan, Can; Marques-Bonet, Tomas; Sajjadian, Saba; Graves, Tina A.; Hormozdiari, Fereydoun; Navarro, Arcadi; Malig, Maika; Baker, Carl; Lee, Choli; Turner, Emily H.; Chen, Lin; Kidd, Jeffrey M.; Archidiacono, Nicoletta; Shendure, Jay; Wilson, Richard K.; Eichler, Evan E.

    2011-01-01

    Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes. PMID:21685127

  20. Mapping and sequencing of structural variation from eight human genomes

    PubMed Central

    Kidd, Jeffrey M.; Cooper, Gregory M.; Donahue, William F.; Hayden, Hillary S.; Sampas, Nick; Graves, Tina; Hansen, Nancy; Teague, Brian; Alkan, Can; Antonacci, Francesca; Haugen, Eric; Zerr, Troy; Yamada, N. Alice; Tsang, Peter; Newman, Tera L.; Tüzün, Eray; Cheng, Ze; Ebling, Heather M.; Tusneem, Nadeem; David, Robert; Gillett, Will; Phelps, Karen A.; Weaver, Molly; Saranga, David; Brand, Adrianne; Tao, Wei; Gustafson, Erik; McKernan, Kevin; Chen, Lin; Malig, Maika; Smith, Joshua D.; Korn, Joshua M.; McCarroll, Steven A.; Altshuler, David A.; Peiffer, Daniel A.; Dorschner, Michael; Stamatoyannopoulos, John; Schwartz, David; Nickerson, Deborah A.; Mullikin, James C.; Wilson, Richard K.; Bruhn, Laurakay; Olson, Maynard V.; Kaul, Rajinder; Smith, Douglas R.; Eichler, Evan E.

    2008-01-01

    Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale—particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation—a standard for genotyping platforms and a prelude to future individual genome sequencing projects. PMID:18451855

  1. Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee.

    PubMed

    Ventura, Mario; Catacchio, Claudia R; Alkan, Can; Marques-Bonet, Tomas; Sajjadian, Saba; Graves, Tina A; Hormozdiari, Fereydoun; Navarro, Arcadi; Malig, Maika; Baker, Carl; Lee, Choli; Turner, Emily H; Chen, Lin; Kidd, Jeffrey M; Archidiacono, Nicoletta; Shendure, Jay; Wilson, Richard K; Eichler, Evan E

    2011-10-01

    Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes.

  2. Solution structure and backbone dynamics of the pleckstrin homology domain of the human protein kinase B (PKB/Akt). Interaction with inositol phosphates.

    PubMed

    Auguin, Daniel; Barthe, Philippe; Augé-Sénégas, Marie-Thérèse; Stern, Marc-Henri; Noguchi, Masayuki; Roumestand, Christian

    2004-02-01

    The programmed cell death occurs as part of normal mammalian development. The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 3'-OH kinase (PI3K)/Protein Kinase B (PKB, also named Akt) cascade. Several targets of the PI3K/PKB signaling pathway have been identified that may underlie the ability of this regulatory cascade to promote cell survival. PKB possesses a N-terminal Pleckstrin Homology (PH) domain that binds specifically and with high affinity to PtIns(3,4,5)P(3) and PtIns(3,4)P(2), the PI3K second messengers. PKB is then recruited to the plasma membrane by virtue of its interaction with 3'-OH phosphatidylinositides and activated. Recent evidence indicates that PKB is active in various types of human cancer; constitutive PKB signaling activation is believed to promote proliferation and increased cell survival, thereby contributing to cancer progression. Thus, it has been shown that induction of PKB activity is augmented by the TCL1/MTCP1 oncoproteins through a physical association requiring the PKB PH domain. Here we present the three-dimensional solution structure of the PH domain of the human protein PKB (isoform beta). PKBbeta-PH is an electrostatically polarized molecule that adopts the same fold and topology as other PH-domains, consisting of a beta-sandwich of seven strands capped on one top by an alpha-helix. The opposite face presents three variable loops that appear poorly defined in the NMR structure. Measurements of (15)N spin relaxation times and heteronuclear (15)N[(1)H]NOEs showed that this poor definition is due to intrinsic flexibility, involving complex motions on different time scales. Chemical shift mapping studies correctly defined the binding site of Ins(1,3,4,5)P(4) (the head group of PtIns(3,4,5)P(3)), as was previously proposed

  3. Semi-Experimental (r_s/r_e) Structures for the Heavy Atom Backbones of Two Moderately Large Molecules Obtained from Microwave Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.; Lesarri, Alberto; Cocinero, Emilio J.; Grabow, Jens-Uwe

    2011-06-01

    From recent microwave investigations of 1-methyl-4-piperidone and tropinone ground state rotational constants are available for the equatorial conformers of the normal species and the isotopologues with single substitution of all the heavy atoms. Vibration-rotation constants (alphas) were computed with Gaussian 03 (G03) for the B3LYP/cc-pVTZ model and used to convert ground state rotational constants into equilibrium rotational constants. Using the Kraitchman equations (RS method), the equilibrium (RE) Cartesian coordinates were determined for all the heavy atoms in the principal axis framework. Equilibrium bond lengths and bond angles are compared with those computed with the B3LYP/cc-pVTZ model. We have compared the ground state rotational constants computed with G03, after scaling by factors based on the normal species, with observed values. The agreement is within 0.1% for the full set of constants (0.04% for methyl-piperidone and 0.1% for tropinone). This agreement between experiment and theory is so good that it seems possible to use calculated ground state rotational constants in place of experimental ones for determining RS/RE structures for organic molecules of this size. L. Evangelisti, A. Lesarri, M. Jahn, E. Cocinero, W. Caminati, J.-U. Grabow J. Phys. Chem. A, submitted. E. J. Concinero, A. Lesarri, P. Ecija, J.-U. Grabow, J. A. Fernandez, F. Castano PCCP 12, 6076-6083 (2010). } ground state rotational constants are available for the equatorial conformers of the normal species and the isotopologues with single substitution of all the heavy atoms. Vibration-rotation constants (alphas) were computed with Gaussian 03 (G03) for the B3LYP/cc-pVTZ model and used to convert ground state rotational constants into equilibrium rotational constants. Using the Kraitchman equations (RS method), the equilibrium (RE) Cartesian coordinates were determined for all the heavy atoms in the principal axis framework. Equilibrium bond lengths and bond angles are compared

  4. Hydrophobic core packing and backbone flexibility in coiled coils

    NASA Astrophysics Data System (ADS)

    Plecs, Joseph John

    1999-11-01

    An understanding of the structure and function of protein molecules requires an understanding of how their hydrophobic cores are assembled, including how the peptide backbone can adjust to accommodate different packing arrangements. Using coiled-coil molecules as a model of protein structures, we studied several cases in which the arrangement of packing groups in the hydrophobic core controls the structure of a folded molecule. First, we consider an example of a prosthetic packing group, where the addition of a hydrophobic ligand permits a new packing arrangement that incorporates the ligand, leading to a new overall structure. Second, the crystal structures of two peptides designed to adopt a novel fold, the right-handed coiled coils, reveal how a small change in core packing can discriminate between two different folds. And last, the design of heterodimers based on core-packing complementarity establishes that core packing can convey specificity of association between different molecules, as well as determining the molecular structure. The heterodimer designs also demonstrate the importance of a combination of backbone freedom and restriction in predicting the energetics of folded molecules. In this case, a parametrized coiled- coil backbone with appropriate parameters and restrictions was required to predict stabilities. We conclude that core packing can exert a great deal of control over the structure of proteins, and that many of its effects can be accurately predicted by modeling the molecular interactions in the context of a flexible overall structure.

  5. Nucleosome structure(s) and stability: variations on a theme.

    PubMed

    Andrews, Andrew J; Luger, Karolin

    2011-01-01

    Chromatin is a highly regulated, modular nucleoprotein complex that is central to many processes in eukaryotes. The organization of DNA into nucleosomes and higher-order structures has profound implications for DNA accessibility. Alternative structural states of the nucleosome, and the thermodynamic parameters governing its assembly and disassembly, need to be considered in order to understand how access to nucleosomal DNA is regulated. In this review, we provide a brief historical account of how the overriding perception regarding aspects of nucleosome structure has changed over the past thirty years. We discuss recent technical advances regarding nucleosome structure and its physical characterization and review the evidence for alternative nucleosome conformations and their implications for nucleosome and chromatin dynamics.

  6. Backbone flexibility of CDR3 and immune recognition of antigens.

    PubMed

    Haidar, Jaafar N; Zhu, Wei; Lypowy, Jacqueline; Pierce, Brian G; Bari, Amtul; Persaud, Kris; Luna, Xenia; Snavely, Marshall; Ludwig, Dale; Weng, Zhiping

    2014-04-03

    Conformational entropy is an important component of protein-protein interactions; however, there is no reliable method for computing this parameter. We have developed a statistical measure of residual backbone entropy in folded proteins by using the ϕ-ψ distributions of the 20 amino acids in common secondary structures. The backbone entropy patterns of amino acids within helix, sheet or coil form clusters that recapitulate the branching and hydrogen bonding properties of the side chains in the secondary structure type. The same types of residues in coil and sheet have identical backbone entropies, while helix residues have much smaller conformational entropies. We estimated the backbone entropy change for immunoglobulin complementarity-determining regions (CDRs) from the crystal structures of 34 low-affinity T-cell receptors and 40 high-affinity Fabs as a result of the formation of protein complexes. Surprisingly, we discovered that the computed backbone entropy loss of only the CDR3, but not all CDRs, correlated significantly with the kinetic and affinity constants of the 74 selected complexes. Consequently, we propose a simple algorithm to introduce proline mutations that restrict the conformational flexibility of CDRs and enhance the kinetics and affinity of immunoglobulin interactions. Combining the proline mutations with rationally designed mutants from a previous study led to 2400-fold increase in the affinity of the A6 T-cell receptor for Tax-HLAA2. However, this mutational scheme failed to induce significant binding changes in the already-high-affinity C225-Fab/huEGFR interface. Our results will serve as a roadmap to formulate more effective target functions to design immune complexes with improved biological functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Study of a chimeric foot-and-mouth disease virus DNA vaccine containing structural genes of serotype O in a genome backbone of serotype Asia 1 in guinea pigs.

    PubMed

    Chockalingam, A K; Thiyagarajan, S; Govindasamy, N; Patnaikuni, R; Garlapati, S; Golla, R R; Joyappa, D H; Krishnamshetty, P; Veluvarti, V V S; Veluvati, V V S

    2010-01-01

    Since foot-and-mouth disease virus (FMDV) serotypes display a great genetic and antigenic diversity, there is a constant requirement to monitor the performance of FMDV vaccines in the field with respect to their antigenic coverage. To avoid possible antigenic changes in field FMDV isolates during their adaptation to BHK-21 cells, a standard step used in production of conventional FMDV vaccines, the custom-made chimeric conventional or DNA vaccines, in which antigenic determinants are replaced with those of appropriate field strains, should be constructed. Using this approach, we made a plasmid-based chimeric FMDV DNA vaccine containing structural genes of serotype O in the genome backbone of serotype Asia 1, all under the control of Human cytomegalovirus (HCMV) immediate early gene promoter. BHK-21 cells transfected with the chimeric DNA vaccine did not show cytopathic effect (CPE), but expressed virus-specific proteins as demonstrated by 35S-methionine labeling and immunoprecipitation. Guinea pigs immunized with the chimeric DNA vaccine produced virus-specific antibodies assayed by ELISA and virus neutralization test (VNT), respectively. The chimeric DNA vaccine showed a partial protection of guinea pigs challenged with the virulent FMDV. Although the chimeric DNA vaccine, in general, was not as effective as a conventional one, this study encourages further work towards the development of genetically engineered custom-made chimeric vaccines against FMDV.

  8. Free backbone carbonyls mediate rhodopsin activation

    PubMed Central

    Kimata, Naoki; Pope, Andreyah; Sanchez-Reyes, Omar B.; Eilers, Markus; Opefi, Chikwado A.; Ziliox, Martine; Reeves, Philip J.; Smith, Steven O.

    2016-01-01

    Conserved prolines in the transmembrane helices of G protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilize receptor structure. To address the role of conserved prolines in family A GPCRs, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily, using solid-state NMR spectroscopy. The free backbone C=O groups on helices H5 and H7 are found to stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released facilitating H5 and H7 repacking onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles prolines play in membrane proteins. PMID:27376589

  9. Solar cycle variation of large-scale coronal structures

    NASA Technical Reports Server (NTRS)

    Antonucci, E.; Duvall, T. L.

    1974-01-01

    A green line intensity variation is associated with the interplanetary and photospheric magnetic sector structure. This effect depends on the solar cycle and occurs with the same amplitude in the latitude range 60 deg N - 60 deg S. Extended longitudinal coronal structures are suggested, which indicate the existence of closed magnetic field lines over the neutral line, separating adjacent regions of opposite polarities on the photospheric surface.

  10. Bats aloft: Variation in echolocation call structure at high altitudes

    USDA-ARS?s Scientific Manuscript database

    Bats alter their echolocation calls in response to changes in ecological and behavioral conditions, but little is known about how they adjust their call structure in response to changes in altitude. This study examines altitudinal variation in the echolocation calls of Brazilian free-tailed bats, T...

  11. The Backbone of the Climate Networks

    NASA Astrophysics Data System (ADS)

    Zou, Y.; Donges, J. F.; Marwan, N.; Kurths, J.

    2009-12-01

    We propose a method to reconstruct and analyze a complex network from data generated by a spatio-temporal dynamical system, relying on the nonlinear mutual information of time series analysis and betweenness centrality of complex network theory. We show, that this approach reveals a rich internal structure in complex climate networks constructed from reanalysis and model surface air temperature data. Our novel method uncovers peculiar wave-like structures of high energy flow, that we relate to global surface ocean currents. This points to a major role of the oceanic surface circulation in coupling and stabilizing the global temperature field in the long term mean (140 years for the model run and 60 years for reanalysis data). We find that these results cannot be obtained using classical linear methods of multivariate data analysis. Furthermore, we introduce significance tests to quantify the robustness of measured network properties to uncertainties. References: [1] J.F. Donges, Y. Zou, N. Marwan, and J. Kurths. Complex networks in climate dynamics -- -- Comparing linear and nonlinear network construction methods. European Physical Journal -- Special Topics, 174, 157-179, 2009. [2] J.F. Donges, Y. Zou, N. Marwan, and J. Kurths. Backbone of the climate network. Europhysics Letters, in press, 2009.

  12. Computation-Guided Backbone Grafting of a Discontinuous Motif onto a Protein Scaffold

    SciTech Connect

    Azoitei, Mihai L.; Correia, Bruno E.; Ban, Yih-En Andrew; Carrico, Chris; Kalyuzhniy, Oleksandr; Chen, Lei; Schroeter, Alexandria; Huang, Po-Ssu; McLellan, Jason S.; Kwong, Peter D.; Baker, David; Strong, Roland K.; Schief, William R.

    2012-02-07

    The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.

  13. Identification of systems containing nonlinear stiffnesses using backbone curves

    NASA Astrophysics Data System (ADS)

    Londoño, Julián M.; Cooper, Jonathan E.; Neild, Simon A.

    2017-02-01

    This paper presents a method for the dynamic identification of structures containing discrete nonlinear stiffnesses. The approach requires the structure to be excited at a single resonant frequency, enabling measurements to be made in regimes of large displacements where nonlinearities are more likely to be significant. Measured resonant decay data is used to estimate the system backbone curves. Linear natural frequencies and nonlinear parameters are identified using these backbone curves assuming a form for the nonlinear behaviour. Numerical and experimental examples, inspired by an aerospace industry test case study, are considered to illustrate how the method can be applied. Results from these models demonstrate that the method can successfully deliver nonlinear models able to predict the response of the test structure nonlinear dynamics.

  14. Cervical Exercise: The Backbone of Spine Treatment

    MedlinePlus

    Cervical Exercise: The Backbone of Spine Treatment How important is it? What can be done? North American Spine Society Public Education Series ... flow comes to the area to help repair injury. Your ability to function in your daily activities ...

  15. Cervical Exercise: The Backbone of Spine Treatment

    MedlinePlus

    Cervical Exercise: The Backbone of Spine Treatment How important is it? What can be done? North American Spine Society ... you should see your physician before starting any exercises. The Importance of Exercise for the Neck Spine ...

  16. New Tests for Variations of the Fine Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    We describe a new test for possible variations of the fine structure constant, by comparisons of rates between clocks based on hyperfine transitions in alkali atomos with different atomic number Z. H- maser, Cs and Hg+ clocks have a different dependence on ia relativistic contributions of order (Z. Recent H-maser vs Hg+ clock comparison data improves laboratory limits on a time variation by 100-fold to giveFuture laser cooled clocks (Be+, Rb, Cs, Hg+, etc.), when compared, will yield the most senstive of all tests for.

  17. Induced helical backbone conformations of self-organizable dendronized polymers.

    PubMed

    Rudick, Jonathan G; Percec, Virgil

    2008-12-01

    Control of function through the primary structure of a molecule presents a significant challenge with valuable rewards for nanoscience. Dendritic building blocks encoded with information that defines their three-dimensional shape (e.g., flat-tapered or conical) and how they associate with each other are referred to as self-assembling dendrons. Self-organizable dendronized polymers possess a flat-tapered or conical self-assembling dendritic side chain on each repeat unit of a linear polymer backbone. When appended to a covalent polymer, the self-assembling dendrons direct a folding process (i.e., intramolecular self-assembly). Alternatively, intermolecular self-assembly of dendrons mediated by noncovalent interactions between apex groups can generate a supramolecular polymer backbone. Self-organization, as we refer to it, is the spontaneous formation of periodic and quasiperiodic arrays from supramolecular elements. Covalent and supramolecular polymers jacketed with self-assembling dendrons self-organize. The arrays are most often comprised of cylindrical or spherical objects. The shape of the object is determined by the primary structure of the dendronized polymer: the structure of the self-assembling dendron and the length of the polymer backbone. It is therefore possible to predictably generate building blocks for single-molecule nanotechnologies or arrays of supramolecules for bottom-up self-assembly. We exploit the self-organization of polymers jacketed with self-assembling dendrons to elucidate how primary structure determines the adopted conformation and fold (i.e., secondary and tertiary structure), how the supramolecules associate (i.e., quaternary structure), and their resulting functions. A combination of experimental techniques is employed to interrogate the primary, secondary, tertiary, and quaternary structure of the self-organizable dendronized polymers. We refer to the process by which we interpolate between the various levels of structural

  18. Genetic variation in the rhythmonome: ethnic variation and haplotype structure in candidate genes for arrhythmias

    PubMed Central

    Bush, William S; Crawford, Dana C; Alexander, Charles; George, Alfred L; Roden, Dan M; Ritchie, Marylyn D

    2009-01-01

    Aims The ‘rhythmonome’ is the term we have adopted to describe the set of genes that determine the normal coordinated electrical activity in the heart. Elements of this set include pore-forming ion channels, function-modifying proteins and intracellular calcium control elements. Rare mutations in many of these genes are known to cause unusual congenital monogenic arrhythmia syndromes, and single common variants have been reported to modify arrhythmia phenotypes. Here, we report an evaluation of the variation and haplotype structure in six key components of the rhythmonome. Materials & methods SNPs were typed using DNA extracted from Coriell cell lines to survey allele frequencies and haplotype structure in six genes (ANK2, SCN5A, KCNE1 and 2 gene cluster, KCNQ1, KCNH2 and RYR2) across four human populations (African—American, European American, Han Chinese and Mexican American). Results A total of 307 SNPs were analyzed across the six genes, revealing significant allele-frequency differences between populations and clear differences in haplotype structure. Conclusions The pattern of variation we report is an important step towards incorporating common variation across the rhythmonome in studies of arrhythmia susceptibility. PMID:19530973

  19. Asymmetry of Raman scattering by structure variation in space.

    PubMed

    Wang, Ridong; Yuan, Pengyu; Han, Meng; Xu, Shen; Wang, Tianyu; Wang, Xinwei

    2017-07-24

    We report on the discovery of asymmetries of Raman scattering along one scanning direction, between two scanning directions, and by structure variation of the sample in space. Asymmetry of Raman shift along the x direction, and the asymmetry of Raman shift and linewidth between the two scanning directions (x and y) are found for a 1210 nm diameter silica particle. The observed asymmetries are confirmed by further 2D Raman scanning of the same particle. To further explore the asymmetry of Raman scattering, glass fibers of three diameters (0.53, 1.00, and 3.20 μm) are scanned along two directions. The asymmetry of Raman shift along each direction, the asymmetry of linewidth along the y direction, and the asymmetry of Raman shift and linewidth between the two scanning directions are discovered. Additionally, 11 nm-thick MoSe2 nanosheets on silicon are used to discover whether an asymmetry of Raman scattering exists at the edge of the nanosheets. One edge of the nanosheet is scanned in four directions and the asymmetry of Raman scattering caused by the step variation is also detected. All the observed Raman scattering asymmetries are explained soundly by the Raman signal diffraction and image shift on the CCD detector arrays of the Raman spectrometer. In practice, to use scanning Raman for surface structure study, great measure has to be taken to consider the structure-induced asymmetries to uncover the real Raman wave number variation by intrinsic material structure. We propose a signal processing method by averaging the scanning points along four directions to eliminate the interference of the edge. This method works well to significantly suppress the asymmetries of Raman properties and uncover the real Raman signal change by structure variation.

  20. Temporal variation of oceanic sound speed structure affecting seafloor geodesy

    NASA Astrophysics Data System (ADS)

    Kido, M.; Osada, Y.; Fujimoto, H.

    2010-12-01

    Seafloor geodesy, measuring crustal deformation or displacement beneath the ocean, relies on acoustic ranging principal. Traveltime of an acoustic signal between two sites is proportional to averaged slowness or reciprocal of sound speed along the acoustic ray path. A typical sound speed variation produces ~1m of apparent distance change for sea surface-seafloor ranging. Most of such variation can be explained with temporal variation of sound speed depth profile for laterally stratified structure, which have been properly estimated and corrected for using ranging procedure alone with multiple transponders in our past survey strategy. However there still remains 10--30cm of inexplicable apparent fluctuation in position of transponders. These fluctuations can be evened out within 5cm precision by taking 24-hours average. For achievement of higher precision or shorter survey time, the fluctuation must be explicitly corrected without averaging. The fluctuation is interpreted as violation of stratified condition, i.e., existence of lateral variation. Our recent data along Nankai trough and Japan trench indicate that the horizontal scale of the lateral variation is not always large enough ( ˜10km) to be approximated as gradient and that the time scale extends from 1-hour to DC. The DC component is associated with ocean current while the short-time periodic undulation might be due to higher-order internal waves, which are exited by semi-diurnal tidal wave. The tidal wave is large enough ( ˜100km) to generate only stratified temporal variation, which is clearly observed in our surveys. In this study, we summarize the knowledge obtained through the fact addressed above and interpret them in the oceanographic point of view, and further propose a new generation of seafloor geodetic survey strategy to control the variations along with instrumental development for efficient observation.

  1. Latitudinal variation in population structure of wintering Pacific Black Brant

    USGS Publications Warehouse

    Schamber, J.L.; Sedinger, J.S.; Ward, D.H.; Hagmeier, K.R.

    2007-01-01

    Latitudinal variation in population structure during the winter has been reported in many migratory birds, but has been documented in few species of waterfowl. Variation in environmental and social conditions at wintering sites can potentially influence the population dynamics of differential migrants. We examined latitudinal variation in sex and age classes of wintering Pacific Black Brant (Branta bernicla nigricans). Brant are distributed along a wide latitudinal gradient from Alaska to Mexico during the winter. Accordingly, migration distances for brant using different wintering locations are highly variable and winter settlement patterns are likely associated with a spatially variable food resource. We used resightings of brant banded in southwestern Alaska to examine sex and age ratios of birds wintering at Boundary Bay in British Columbia, and at San Quintin Bay, Ojo de Liebre Lagoon, and San Ignacio Lagoon in Baja California from 1998 to 2000. Sex ratios were similar among wintering locations for adults and were consistent with the mating strategy of geese. The distribution of juveniles varied among wintering areas, with greater proportions of juveniles observed at northern (San Quintin Bay and Ojo de Liebre Lagoon) than at southern (San Ignacio Lagoon) locations in Baja California. We suggest that age-related variation in the winter distribution of Pacific Black Brant is mediated by variation in productivity among individuals at different wintering locations and by social interactions among wintering family groups.

  2. Structure linguistique: problemes de la constance et des variations (Linguistic Structure: Constance and Variation Problems).

    ERIC Educational Resources Information Center

    Mahmoudian, Morteza

    1980-01-01

    Language is viewed as a nonhomogeneous hierarchical system, where complex correlations between a psychological/social dimension (external) and a linguistic dimension (internal) permit measurements of the stability and acceptability of its structures. Frequency of occurrence and integration in the system are presented as the key factors in the…

  3. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    SciTech Connect

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.; Machius, Mischa; Szyperski, Thomas; Kuhlman, Brian

    2015-10-15

    Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures, most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helix bundle protein. Only small perturbations to the backbone, 12 {angstrom}, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point >140C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 {angstrom}).

  4. Geographic variation in salt marsh structure and function.

    PubMed

    McCall, Brittany D; Pennings, Steven C

    2012-11-01

    We examined geographic variation in the structure and function of salt marsh communities along the Atlantic and Gulf coasts of the United States. Focusing on the arthropod community in the dominant salt marsh plant Spartina alterniflora, we tested two hypotheses: first, that marsh community structure varies geographically, and second, that two aspects of marsh function (response to eutrophication and addition of dead plant material) also vary geographically. We worked at eleven sites on the Gulf Coast and eleven sites on the Atlantic Coast, dividing each coast up into two geographic areas. Abiotic conditions (tidal range, soil organic content, and water content, but not soil salinity), plant variables (Spartina nitrogen content, height, cover of dead plant material, but not live Spartina percent cover or light interception), and arthropod variables (proportional abundances of predators, sucking herbivores, stem-boring herbivores, parasitoids, and detritivores, but not total arthropod numbers) varied among the four geographic regions. Latitude and mean tidal range explained much of this geographic variation. Nutrient enrichment increased all arthropod functional groups in the community, consistent with previous experimental results, and had similar effects in all geographic regions, contrary to our hypothesis, suggesting widespread consistency in this aspect of ecosystem function. The addition of dead plant material had surprisingly little effect on the arthropod community. Our results caution against the uncritical extrapolation of work done in one geographic region to another, but indicate that some aspects of marsh function may operate in similar ways in different geographic regions, despite spatial variation in community structure.

  5. Controls-structures integrated design optimization with shape variations

    NASA Technical Reports Server (NTRS)

    Koganti, Gopichand; Hou, Gene

    1993-01-01

    The shape design variables have been introduced into the set of design variables of the Controls-Structure Integrated (CSI) Design of space-structures. The importance of the shape variations in improving the design (obtained with only control and sizing variables) has been aptly illustrated. Two different types of design variables that describe the shape variations of the structure have been introduced. In the first case, the nodal coordinates have been considered as design variables. This has the inherent difficulty of having too many design variables. This not only is time consuming but also memory intensive and may not yield a manufacturable shape to the structure. The second approach has been introduced to overcome this difficulty. The structure is allowed to vary in a particular pre defined pattern. The coefficients of these patterns are considered as the shape design variables. The eigenvalue and eigenvector sensitivity equations with respect to these coefficient design variables have been developed and are used to approximate the eigenvalues and eigenvectors in a perturbed design.

  6. Mapping the backbone of science.

    SciTech Connect

    Klavans, Richard; BÞorner, Katy; Boyack, Kevin W.

    2004-11-01

    This paper presents a new map representing the structure of all of science, based on journal articles, including both the natural and social sciences. Similar to cartographic maps of our world, the map of science provides a bird's eye view of today's scientific landscape. It can be used to visually identify major areas of science, their size, similarity, and interconnectedness. In order to be useful, the map needs to be accurate on a local and on a global scale. While our recent work has focused on the former aspect, this paper summarizes results on how to achieve structural accuracy. Eight alternative measures of journal similarity were applied to a data set of 7,121 journals covering over 1 million documents in the combined Science Citation and Social Science Citation Indexes. For each journal similarity measure we generated two-dimensional spatial layouts using the force-directed graph layout tool, VxOrd. Next, mutual information values were calculated for each graph at different clustering levels to give a measure of structural accuracy for each map. The best co-citation and inter-citation maps according to local and structural accuracy were selected and are presented and characterized. These two maps are compared to establish robustness. The inter-citation map is then used to examine linkages between disciplines. Biochemistry appears as the most interdisciplinary discipline in science.

  7. 4-Oxalocrotonate tautomerase, a 41-kDa homohexamer: backbone and side-chain resonance assignments, solution secondary structure, and location of active site residues by heteronuclear NMR spectroscopy.

    PubMed Central

    Stivers, J. T.; Abeygunawardana, C.; Whitman, C. P.; Mildvan, A. S.

    1996-01-01

    4-Oxalocrotonate tautomerase (4-OT), a homohexamer consisting of 62 residues per subunit, catalyzes the isomerization of unsaturated alpha-keto acids using Pro-1 as a general base (Stivers et al., 1996a, 1996b). We report the backbone and side-chain 1H, 15N, and 13C NMR assignments and the solution secondary structure for 4-OT using 2D and 3D homonuclear and heteronuclear NMR methods. The subunit secondary structure consists of an alpha-helix (residues 13-30), two beta-strands (beta 1, residues 2-8; beta 2, residues 39-45), a beta-hairpin (residues 50-57), two loops (I, residues 9-12; II, 34-38), and two turns (I, residues 30-33; II, 47-50). The remaining residues form coils. The beta 1 strand is parallel to the beta 2 strand of the same subunit on the basis of cross stand NH(i)-NH(j) NOEs in a 2D 15N-edited 1H-NOESY spectrum of hexameric 4-OT containing two 15N-labeled subunits/hexamer. The beta 1 strand is also antiparallel to another beta 1 strand from an adjacent subunit forming a subunit interface. Because only three such pairwise interactions are possible, the hexamer is a trimer of dimers. The diffusion constant, determined by dynamic light scattering, and the rotational correlation time (14.5 ns) estimated from 15N T1/T2 measurements, are consistent with the hexameric molecular weight of 41 kDa. Residue Phe-50 is in the active site on the basis of transferred NOEs to the bound partial substrate 2-oxo-1,6-hexanedioate. Modification of the general base, Pro-1, with the active site-directed irreversible inhibitor, 3-bromopyruvate, significantly alters the amide 15N and NH chemical shifts of residues in the beta-hairpin and in loop II, providing evidence that these regions change conformation when the active site is occupied. PMID:8845763

  8. Variation in compound eye structure: effects of diet and family.

    PubMed

    Merry, Justin W; Kemp, Darrell J; Rutowski, Ronald L

    2011-07-01

    Studies of compound eyes have revealed that variation in eye structure can substantially affect visual performance. Here, we investigate the degree to which a stressful rearing environment, which decreases body size, affects the eye phenotype. Full siblings of the Orange Sulphur butterfly, Colias eurytheme, were collected from known parents and split within families among two diet treatments that varied in quality. In both sexes, individuals reared on the high-quality diet had larger eye height and anterior facet diameter, and therefore, by inference, superior vision. However, relative to their reduced body size, individuals reared on low-quality diet had proportionally larger eyes and facets than individuals reared on high-quality diet. We interpret this finding as evidence that butterflies encountering nutritional stress increased proportional investment in eye development to reduce loss of visual performance. We also found significant broad-sense genetic variation underlying eye structure in both males and females, and report novel heritability estimates for eye height and facet diameter. Surprisingly, there was greater genetic variation in eye height among males than among females, despite apparently stronger directional selection on male vision. We discuss the implications of these data for our understanding of eye development and evolution.

  9. Quantifying side-chain conformational variations in protein structure.

    PubMed

    Miao, Zhichao; Cao, Yang

    2016-11-15

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  10. Atomic Clocks and Variations of the FIne Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    1995-01-01

    We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.

  11. Quantifying side-chain conformational variations in protein structure

    NASA Astrophysics Data System (ADS)

    Miao, Zhichao; Cao, Yang

    2016-11-01

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs.

  12. Optical extinction due to intrinsic structural variations of photonic crystals

    NASA Astrophysics Data System (ADS)

    Koenderink, A. Femius; Lagendijk, Ad; Vos, Willem L.

    2005-10-01

    Unavoidable variations in size and position of the building blocks of photonic crystals cause light scattering and extinction of coherent beams. We present a model for both two- and three-dimensional photonic crystals that relates the extinction length to the magnitude of the variations. The predicted lengths agree well with our experiments on high-quality opals and inverse opals, and with literature data analyzed by us. As a result, control over photons is limited to distances up to 50 lattice parameters (˜15 μm) in state-of-the-art structures, thereby impeding applications that require large photonic crystals, such as proposed optical integrated circuits. Conversely, scattering in photonic crystals may lead to different physics such as Anderson localization and nonclassical diffusion.

  13. Quantifying side-chain conformational variations in protein structure

    PubMed Central

    Miao, Zhichao; Cao, Yang

    2016-01-01

    Protein side-chain conformation is closely related to their biological functions. The side-chain prediction is a key step in protein design, protein docking and structure optimization. However, side-chain polymorphism comprehensively exists in protein as various types and has been long overlooked by side-chain prediction. But such conformational variations have not been quantitatively studied and the correlations between these variations and residue features are vague. Here, we performed statistical analyses on large scale data sets and found that the side-chain conformational flexibility is closely related to the exposure to solvent, degree of freedom and hydrophilicity. These analyses allowed us to quantify different types of side-chain variabilities in PDB. The results underscore that protein side-chain conformation prediction is not a single-answer problem, leading us to reconsider the assessment approaches of side-chain prediction programs. PMID:27845406

  14. Variational structure of inverse problems in wave propagation and vibration

    SciTech Connect

    Berryman, J.G.

    1995-03-01

    Practical algorithms for solving realistic inverse problems may often be viewed as problems in nonlinear programming with the data serving as constraints. Such problems are most easily analyzed when it is possible to segment the solution space into regions that are feasible (satisfying all the known constraints) and infeasible (violating some of the constraints). Then, if the feasible set is convex or at least compact, the solution to the problem will normally lie on the boundary of the feasible set. A nonlinear program may seek the solution by systematically exploring the boundary while satisfying progressively more constraints. Examples of inverse problems in wave propagation (traveltime tomography) and vibration (modal analysis) will be presented to illustrate how the variational structure of these problems may be used to create nonlinear programs using implicit variational constraints.

  15. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma.

    PubMed

    Chen, Xiang; Bahrami, Armita; Pappo, Alberto; Easton, John; Dalton, James; Hedlund, Erin; Ellison, David; Shurtleff, Sheila; Wu, Gang; Wei, Lei; Parker, Matthew; Rusch, Michael; Nagahawatte, Panduka; Wu, Jianrong; Mao, Shenghua; Boggs, Kristy; Mulder, Heather; Yergeau, Donald; Lu, Charles; Ding, Li; Edmonson, Michael; Qu, Chunxu; Wang, Jianmin; Li, Yongjin; Navid, Fariba; Daw, Najat C; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Zhang, Jinghui; Dyer, Michael A

    2014-04-10

    Pediatric osteosarcoma is characterized by multiple somatic chromosomal lesions, including structural variations (SVs) and copy number alterations (CNAs). To define the landscape of somatic mutations in pediatric osteosarcoma, we performed whole-genome sequencing of DNA from 20 osteosarcoma tumor samples and matched normal tissue in a discovery cohort, as well as 14 samples in a validation cohort. Single-nucleotide variations (SNVs) exhibited a pattern of localized hypermutation called kataegis in 50% of the tumors. We identified p53 pathway lesions in all tumors in the discovery cohort, nine of which were translocations in the first intron of the TP53 gene. Beyond TP53, the RB1, ATRX, and DLG2 genes showed recurrent somatic alterations in 29%-53% of the tumors. These data highlight the power of whole-genome sequencing for identifying recurrent somatic alterations in cancer genomes that may be missed using other methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Atomic Clocks and Variations of the FIne Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    1995-01-01

    We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.

  17. Variation in Community Structure across Vertical Intertidal Stress Gradients: How Does It Compare with Horizontal Variation at Different Scales?

    PubMed Central

    Valdivia, Nelson; Scrosati, Ricardo A.; Molis, Markus; Knox, Amanda S.

    2011-01-01

    In rocky intertidal habitats, the pronounced increase in environmental stress from low to high elevations greatly affects community structure, that is, the combined measure of species identity and their relative abundance. Recent studies have shown that ecological variation also occurs along the coastline at a variety of spatial scales. Little is known, however, on how vertical variation compares with horizontal variation measured at increasing spatial scales (in terms of sampling interval). Because broad-scale processes can generate geographical patterns in community structure, we tested the hypothesis that vertical ecological variation is higher than fine-scale horizontal variation but lower than broad-scale horizontal variation. To test this prediction, we compared the variation in community structure across intertidal elevations on rocky shores of Helgoland Island with independent estimates of horizontal variation measured at the scale of patches (quadrats separated by 10s of cm), sites (quadrats separated by a few m), and shores (quadrats separated by 100s to 1000s of m). The multivariate analyses done on community structure supported our prediction. Specifically, vertical variation was significantly higher than patch- and site-scale horizontal variation but lower than shore-scale horizontal variation. Similar patterns were found for the variation in abundance of foundation taxa such as Fucus spp. and Mastocarpus stellatus, suggesting that the effects of these canopy-forming algae, known to function as ecosystem engineers, may explain part of the observed variability in community structure. Our findings suggest that broad-scale processes affecting species performance increase ecological variability relative to the pervasive fine-scale patchiness already described for marine coasts and the well known variation caused by vertical stress gradients. Our results also indicate that experimental research aiming to understand community structure on marine shores

  18. Peptide backbone circularization enhances antifreeze protein thermostability.

    PubMed

    Stevens, Corey A; Semrau, Joanna; Chiriac, Dragos; Litschko, Morgan; Campbell, Robert L; Langelaan, David N; Smith, Steven P; Davies, Peter L; Allingham, John S

    2017-10-01

    Antifreeze proteins (AFPs) are a class of ice-binding proteins that promote survival of a variety of cold-adapted organisms by decreasing the freezing temperature of bodily fluids. A growing number of biomedical, agricultural, and commercial products, such as organs, foods, and industrial fluids, have benefited from the ability of AFPs to control ice crystal growth and prevent ice recrystallization at subzero temperatures. One limitation of AFP use in these latter contexts is their tendency to denature and irreversibly lose activity at the elevated temperatures of certain industrial processing or large-scale AFP production. Using the small, thermolabile type III AFP as a model system, we demonstrate that AFP thermostability is dramatically enhanced via split intein-mediated N- and C-terminal end ligation. To engineer this circular protein, computational modeling and molecular dynamics simulations were applied to identify an extein sequence that would fill the 20-Å gap separating the free ends of the AFP, yet impose little impact on the structure and entropic properties of its ice-binding surface. The top candidate was then expressed in bacteria, and the circularized protein was isolated from the intein domains by ice-affinity purification. This circularized AFP induced bipyramidal ice crystals during ice growth in the hysteresis gap and retained 40% of this activity even after incubation at 100°C for 30 min. NMR analysis implicated enhanced thermostability or refolding capacity of this protein compared to the noncyclized wild-type AFP. These studies support protein backbone circularization as a means to expand the thermostability and practical applications of AFPs. © 2017 The Protein Society.

  19. Structured light profilometry for designated breast surface coordinate variation analysis

    NASA Astrophysics Data System (ADS)

    Vairavan, Rajendaran; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Leng, Lai Siang; Wan Norhaimi, Wan Mokhzani; Retnasamy, Prema Boshani; Abdullah, Othman; Kirtsaeng, Supap

    2017-02-01

    Early detection of breast carcinoma is vital for effective treatment option and to enhance the survival rate. Existing breast imaging systems such as ultrasound, mammography, and magnetic resonance imaging (MRI) have been utilized for early detection of breast carcinoma which requires contact with the breast surface. However, these existing methods require contact to the breast surface, which causes discomfort to the test subject. Hence, there is a need for alternative modality, which exhibits a total non-contact nature. Structured light profilometry has developed into a vital system with its application in diverse fields of surface metrology analysis. Therefore, in this work structured light profilometry based on phase shift technique is setup to analyze the surface variation of the breast due to the presence of a lesion in the context of surface tension. The sinusoidal fringe pattern is projected through three step phase shift onto the surface of the breast, and a resulting phase map is produced. Pixel tracing was performed to evaluate the variation of surface changes on the breast based on surface marker coordinates. The comparison was made between breast with lump and breast without a lump. Maiden results have established that the structured light profilometry is capable of detecting breast surface changes at various locations on the breast.

  20. Diverse mechanisms of somatic structural variations in human cancer genomes

    PubMed Central

    Yang, Lixing; Luquette, Lovelace J.; Gehlenborg, Nils; Xi, Ruibin; Haseley, Psalm S.; Hsieh, Chih-Heng; Zhang, Chengsheng; Ren, Xiaojia; Protopopov, Alexei; Chin, Lynda; Kucherlapati, Raju; Lee, Charles; Park, Peter J.

    2013-01-01

    Summary Identification of somatic rearrangements in cancer genomes has accelerated through analysis of high-throughput sequencing data. However, characterization of complex structural alterations and their underlying mechanisms remains inadequate. Here, applying an algorithm to predict structural variations from short reads, we report a comprehensive catalog of somatic structural variations and the mechanisms generating them, using high-coverage whole-genome sequencing data from 140 patients across ten tumor types. We characterize the relative contributions of different types of rearrangements and their mutational mechanisms, find that ~20% of the somatic deletions are complex deletions formed by replication errors, and describe the differences between the mutational mechanisms in somatic and germline alterations. Importantly, we provide detailed reconstructions of the events responsible for loss of CDKN2A/B and gain of EGFR in glioblastoma, revealing that these alterations can result from multiple mechanisms even in a single genome and that both DNA double-strand breaks and replication errors drive somatic rearrangements. PMID:23663786

  1. Localization of binding sites of Ulex europaeus I, Helix pomatia and Griffonia simplicifolia I-B4 lectins and analysis of their backbone structures by several glycosidases and poly-N-acetyllactosamine-specific lectins in human breast carcinomas.

    PubMed

    Ito, N; Imai, S; Haga, S; Nagaike, C; Morimura, Y; Hatake, K

    1996-09-01

    Several studies have shown the deletion of blood group A or B antigens and the accumulation of H antigens in human breast carcinomas. Other studies have independently demonstrated that the binding sites of lectins such as Helix pomatia agglutinin (HPA) and Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) are highly expressed in these cells. In order to clarify the molecular mechanisms of malignant transformation and metastasis of carcinoma cells, it is important to understand the relationship between such phenotypically distinct events. For this purpose, we examined whether the binding sites of these lectins and Ulex europaeus agglutinin I (UEA-I) are expressed concomitantly in the same carcinoma cells and analyzed their backbone structures. The expression of the binding sites of these lectins was observed independently of the blood group (ABO) of the patients and was not affected by the histological type of the carcinomas. Observation of serial sections stained with these lectins revealed that the distribution of HPA binding sites was almost identical to that of GSAI-B4 in most cases. Furthermore, in some cases, UEA-I binding patterns were similar to those of HPA and GSAI-B4 but in other cases, mosaic staining patterns with these lectins were also observed, i.e., some cell clusters were stained with both HPA and GSAI-B4 but not with UEA-I and adjacent cell clusters were stained only with UEA-I. Digestion with endo-beta-galactosidase or N-glycosidase F markedly reduced the staining intensity of these lectins. Together with the reduction of staining by these lectins, reactivity with Griffonia simplicifolia agglutinin II appeared in carcinoma cells following endo-beta-galactosidase digestion. Among the lectins specific to poly-N-acetyllactosamine, Lycopersicon esculentum agglutinin (LEA) most vividly and consistently stained the cancer cells. Next to LEA, pokeweed mitogen agglutinin was also effective in staining these cells. Carcinoma cells reactive with these

  2. Statistical Analysis of RNA Backbone

    PubMed Central

    Hershkovitz, Eli; Sapiro, Guillermo; Tannenbaum, Allen; Williams, Loren Dean

    2009-01-01

    Local conformation is an important determinant of RNA catalysis and binding. The analysis of RNA conformation is particularly difficult due to the large number of degrees of freedom (torsion angles) per residue. Proteins, by comparison, have many fewer degrees of freedom per residue. In this work, we use and extend classical tools from statistics and signal processing to search for clusters in RNA conformational space. Results are reported both for scalar analysis, where each torsion angle is separately studied, and for vectorial analysis, where several angles are simultaneously clustered. Adapting techniques from vector quantization and clustering to the RNA structure, we find torsion angle clusters and RNA conformational motifs. We validate the technique using well-known conformational motifs, showing that the simultaneous study of the total torsion angle space leads to results consistent with known motifs reported in the literature and also to the finding of new ones. PMID:17048391

  3. Functional significance of genetic variation underlying limb bone diaphyseal structure

    PubMed Central

    Wallace, Ian J.; Middleton, Kevin M.; Lublinsky, Svetlana; Kelly, Scott A.; Judex, Stefan; Garland, Theodore; Demes, Brigitte

    2010-01-01

    Limb bone diaphyseal structure is frequently used to infer hominin activity levels from skeletal remains, an approach based on the well-documented ability of bone to adjust to its loading environment during life. However, diaphyseal structure is also determined in part by genetic factors. This study investigates the possibility that genetic variation underlying diaphyseal structure is influenced by the activity levels of ancestral populations and might also have functional significance in an evolutionary context. We adopted an experimental evolution approach and tested for differences in femoral diaphyseal structure in one-week-old mice from a line that had been artificially selected (45 generations) for high voluntary wheel running and unselected controls. As adults, selected mice are significantly more active on wheels and in home cages, and have thicker diaphyses. Structural differences at one week can be assumed to primarily reflect the effects of selective breeding rather than direct mechanical stimuli, given that the onset of locomotion in mice is shortly after day seven. We hypothesized that if genetically determined diaphyseal structure reflects the activity patterns of members of a lineage, then selected animals will have relatively larger diaphyseal dimensions at one week compared to controls. The results provide strong support for this hypothesis and suggest that limb bone cross sections may not always only reflect the activity levels of particular fossil individuals, but also convey an evolutionary signal providing information about hominin activity in the past. PMID:20310061

  4. A comprehensive library of blocked dipeptides reveals intrinsic backbone conformational propensities of unfolded proteins.

    PubMed

    Oh, Kwang-Im; Lee, Kyung-Koo; Park, Eun-Kyung; Jung, Youngae; Hwang, Geum-Sook; Cho, Minhaeng

    2012-04-01

    Despite prolonged scientific efforts to elucidate the intrinsic peptide backbone preferences of amino-acids based on understanding of intermolecular forces, many open questions remain, particularly concerning neighboring peptide interaction effects on the backbone conformational distribution of short peptides and unfolded proteins. Here, we show that spectroscopic studies of a complete library of 400 dipeptides reveal that, irrespective of side-chain properties, the backbone conformation distribution is narrow and they adopt polyproline II and β-strand, indicating the importance of backbone peptide solvation and electronic effects. By directly comparing the dipeptide circular dichroism and NMR results with those of unfolded proteins, the comprehensive dipeptides form a complete set of structural motifs of unfolded proteins. We thus anticipate that the present dipeptide library with spectroscopic data can serve as a useful database for understanding the nature of unfolded protein structures and for further refinements of molecular mechanical parameters. Copyright © 2011 Wiley Periodicals, Inc.

  5. Side-chain and backbone ordering in homopolymers.

    PubMed

    Wei, Yanjie; Nadler, Walter; Hansmann, Ulrich H E

    2007-04-26

    In order to study the relation between backbone and side-chain ordering in proteins, we have performed multicanonical simulations of deka-peptide chains with various side groups. Glu(10), Gln(10), Asp(10), Asn(10), and Lys(10) were selected to cover a wide variety of possible interactions between the side chains of the monomers. All homopolymers undergo helix-coil transitions. We found that peptides with long side chains that are capable of hydrogen bonding, i.e., Glu(10), and Gln(10), exhibit a second transition at lower temperatures connected with side-chain ordering. This occurs in the gas phase as well as in solvent, although the character of the side-chain structure is different in each case. However, in polymers with short side chains capable of hydrogen bonding, i.e., Asp(10) and Asn(10), side-chain ordering takes place over a wide temperature range and exhibits no phase transition-like character. Moreover, non-backbone hydrogen bonds show enhanced formation and fluctuations already at the helix-coil transition temperature, indicating competition between side-chain and backbone hydrogen bond formation. Again, these results are qualitatively independent of the environment. Side-chain ordering in Lys(10), whose side groups are long and polar, also takes place over a wide temperature range and exhibits no phase transition-like character in both environments. Reasons for the observed chain length threshold and consequences from these results for protein folding are discussed.

  6. fastSTRUCTURE: variational inference of population structure in large SNP data sets.

    PubMed

    Raj, Anil; Stephens, Matthew; Pritchard, Jonathan K

    2014-06-01

    Tools for estimating population structure from genetic data are now used in a wide variety of applications in population genetics. However, inferring population structure in large modern data sets imposes severe computational challenges. Here, we develop efficient algorithms for approximate inference of the model underlying the STRUCTURE program using a variational Bayesian framework. Variational methods pose the problem of computing relevant posterior distributions as an optimization problem, allowing us to build on recent advances in optimization theory to develop fast inference tools. In addition, we propose useful heuristic scores to identify the number of populations represented in a data set and a new hierarchical prior to detect weak population structure in the data. We test the variational algorithms on simulated data and illustrate using genotype data from the CEPH-Human Genome Diversity Panel. The variational algorithms are almost two orders of magnitude faster than STRUCTURE and achieve accuracies comparable to those of ADMIXTURE. Furthermore, our results show that the heuristic scores for choosing model complexity provide a reasonable range of values for the number of populations represented in the data, with minimal bias toward detecting structure when it is very weak. Our algorithm, fastSTRUCTURE, is freely available online at http://pritchardlab.stanford.edu/structure.html. Copyright © 2014 by the Genetics Society of America.

  7. ExScal Backbone Network Architecture

    DTIC Science & Technology

    2005-01-01

    802.11 battery powered nodes was laid over the sensor network. We adopted the Stargate platform for the backbone tier to serve as the basis for...its head. XSS Hardware and Network: XSS stands for eXtreme Scaling Stargate . A stargate is a linux-based single board computer. It has a 400 MHz

  8. A variational formulation for translation and assimilation of coherent structures

    NASA Astrophysics Data System (ADS)

    Plu, M.

    2013-10-01

    The assimilation of observations from teledetected images in geophysical models requires one to develop algorithms that would account for the existence of coherent structures. In the context of variational data assimilation, a method is proposed to allow the background to be translated so as to fit structure positions deduced from images. Translation occurs as a first step before assimilating all the observations using a classical assimilation procedure with specific covariances for the translated background. A simple validation is proposed using a dynamical system based on the one-dimensional complex Ginzburg-Landau equation in a regime prone to phase and amplitude errors. Assimilation of observations after background translation leads to better scores and a better representation of extremas than the method without translation.

  9. Molecular and structural analysis of genetic variations in congenital cataract

    PubMed Central

    Kumar, Manoj; Agarwal, Tushar; Kaur, Punit; Kumar, Manoj; Khokhar,, Sudarshan

    2013-01-01

    Objective To determine the relative contributions of mutations in congenital cataract cases in an Indian population by systematic screening of genes associated with cataract. Methods We enrolled 100 congenital cataract cases presenting at the Dr. R. P. Centre for Ophthalmic Sciences, a tertiary research and referral hospital (AIIMS, New Delhi, India). Crystallin, alpha A (CRYAA), CRYAB, CRYGs, CRYBA1, CRYBA4, CRYBB1, CRYBB2, CRYBB3, beaded filament structural protein 1 (BFSP1), gap function protein, alpha 3 (GJA3), GJA8, and heat shock transcription factor 4 gene genes were amplified. Protein structure differences analysis was performed using Discovery Studio (DS) 2.0. Results The mean age of the patients was 17.45±16.51 months, and the age of onset was 1.618±0.7181 months. Sequencing analysis of 14 genes identified 18 nucleotide variations. Fourteen variations were found in the crystallin genes, one in Cx-46 (GJA3), and three in BFSP1. Conclusions Congenital cataract shows marked clinical and genetic heterogeneity. Five nucleotide variations (CRYBA4:p.Y67N, CRYBB1:p.D85N, CRYBB1:p.E75K, CRYBB1:p.E155K, and GJA3:p.M1V) were predicted to be pathogenic. Variants in other genes might also be involved in maintaining lens development, growth, and transparency. The study confirms that the crystallin beta cluster on chromosome 22, Cx-46, and BFSP1 plays a major role in maintaining lens transparency. This study also expands the mutation spectrum of the genes associated with congenital cataract. PMID:24319337

  10. Structural Variation of Chromosomes in Autism Spectrum Disorder

    PubMed Central

    Marshall, Christian R.; Noor, Abdul; Vincent, John B.; Lionel, Anath C.; Feuk, Lars; Skaug, Jennifer; Shago, Mary; Moessner, Rainald; Pinto, Dalila; Ren, Yan; Thiruvahindrapduram, Bhooma; Fiebig, Andreas; Schreiber, Stefan; Friedman, Jan; Ketelaars, Cees E.J.; Vos, Yvonne J.; Ficicioglu, Can; Kirkpatrick, Susan; Nicolson, Rob; Sloman, Leon; Summers, Anne; Gibbons, Clare A.; Teebi, Ahmad; Chitayat, David; Weksberg, Rosanna; Thompson, Ann; Vardy, Cathy; Crosbie, Vicki; Luscombe, Sandra; Baatjes, Rebecca; Zwaigenbaum, Lonnie; Roberts, Wendy; Fernandez, Bridget; Szatmari, Peter; Scherer, Stephen W.

    2008-01-01

    Structural variation (copy number variation [CNV] including deletion and duplication, translocation, inversion) of chromosomes has been identified in some individuals with autism spectrum disorder (ASD), but the full etiologic role is unknown. We performed genome-wide assessment for structural abnormalities in 427 unrelated ASD cases via single-nucleotide polymorphism microarrays and karyotyping. With microarrays, we discovered 277 unbalanced CNVs in 44% of ASD families not present in 500 controls (and re-examined in another 1152 controls). Karyotyping detected additional balanced changes. Although most variants were inherited, we found a total of 27 cases with de novo alterations, and in three (11%) of these individuals, two or more new variants were observed. De novo CNVs were found in ∼7% and ∼2% of idiopathic families having one child, or two or more ASD siblings, respectively. We also detected 13 loci with recurrent/overlapping CNV in unrelated cases, and at these sites, deletions and duplications affecting the same gene(s) in different individuals and sometimes in asymptomatic carriers were also found. Notwithstanding complexities, our results further implicate the SHANK3-NLGN4-NRXN1 postsynaptic density genes and also identify novel loci at DPP6-DPP10-PCDH9 (synapse complex), ANKRD11, DPYD, PTCHD1, 15q24, among others, for a role in ASD susceptibility. Our most compelling result discovered CNV at 16p11.2 (p = 0.002) (with characteristics of a genomic disorder) at ∼1% frequency. Some of the ASD regions were also common to mental retardation loci. Structural variants were found in sufficiently high frequency influencing ASD to suggest that cytogenetic and microarray analyses be considered in routine clinical workup. PMID:18252227

  11. Geographic variation and genetic structure in Spotted Owls

    USGS Publications Warehouse

    Haig, Susan M.; Wagner, R.S.; Forsman, E.D.; Mullins, Thomas D.

    2001-01-01

    We examined genetic variation, population structure, and definition of conservation units in Spotted Owls (Strix occidentalis). Spotted Owls are mostly non-migratory, long-lived, socially monogamous birds that have decreased population viability due to their occupation of highly-fragmented late successional forests in western North America. To investigate potential effects of habitat fragmentation on population structure, we used random amplified polymorphic DNA (RAPD) to examine genetic variation hierarchically among local breeding areas, subregional groups, regional groups, and subspecies via sampling of 21 breeding areas (276 individuals) among the three subspecies of Spotted Owls. Data from 11 variable bands suggest a significant relationship between geographic distance among local breeding groups and genetic distance (Mantel r = 0.53, P < 0.02) although multi-dimensional scaling of three significant axes did not identify significant grouping at any hierarchical level. Similarly, neighbor-joining clustering of Manhattan distances indicated geographic structure at all levels and identified Mexican Spotted Owls as a distinct clade. RAPD analyses did not clearly differentiate Northern Spotted Owls from California Spotted Owls. Among Northern Spotted Owls, estimates of population differentiation (FST) ranged from 0.27 among breeding areas to 0.11 among regions. Concordantly, within-group agreement values estimated via multi-response permutation procedures of Jaccarda??s distances ranged from 0.22 among local sites to 0.11 among regions. Pairwise comparisons of FST and geographic distance within regions suggested only the Klamath region was in equilibrium with respect to gene flow and genetic drift. Merging nuclear data with recent mitochondrial data provides support for designation of an Evolutionary Significant Unit for Mexican Spotted Owls and two overlapping Management Units for Northern and California Spotted Owls.

  12. Modeling 15N NMR chemical shift changes in protein backbone with pressure

    NASA Astrophysics Data System (ADS)

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-01

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.

  13. Modeling (15)N NMR chemical shift changes in protein backbone with pressure.

    PubMed

    La Penna, Giovanni; Mori, Yoshiharu; Kitahara, Ryo; Akasaka, Kazuyuki; Okamoto, Yuko

    2016-08-28

    Nitrogen chemical shift is a useful parameter for determining the backbone three-dimensional structure of proteins. Empirical models for fast calculation of N chemical shift are improving their reliability, but there are subtle effects that cannot be easily interpreted. Among these, the effects of slight changes in hydrogen bonds, both intramolecular and with water molecules in the solvent, are particularly difficult to predict. On the other hand, these hydrogen bonds are sensitive to changes in protein environment. In this work, the change of N chemical shift with pressure for backbone segments in the protein ubiquitin is correlated with the change in the population of hydrogen bonds involving the backbone amide group. The different extent of interaction of protein backbone with the water molecules in the solvent is put in evidence.

  14. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    PubMed

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Morphological structure and variations of lumbar plexus in human fetuses.

    PubMed

    Yasar, Soner; Kaya, Serdar; Temiz, Cağlar; Tehli, Ozkan; Kural, Cahit; Izci, Yusuf

    2014-04-01

    The objective of this study is to study the anatomy of lumbar plexus on human fetuses and to establish its morphometric characteristics and differences compared with adults. Twenty lumbar plexus of 10 human fetal cadavers in different gestational ages and genders were dissected. Lumbar spinal nerves, ganglions, and peripheral nerves were exposed. Normal anatomical structure and variations of lumbar plexus were investigated and morphometric analyses were performed. The diameters of lumbar spinal nerves increased from L1 to L4. The thickest nerve forming the plexus was femoral nerve, the thinnest was ilioinguinal nerve, the longest nerve through posterior abdominal wall was iliohypogastric nerve, and the shortest nerve was femoral nerve. Each plexus had a single furcal nerve and this arose from L4 nerve in all fetuses. No prefix or postfix plexus variation was observed. In two plexuses, L1 nerve was in the form of a single branch. Also, in two plexuses, genitofemoral nerve arose only from L2 nerve. Accessory obturator nerve was observed in four plexuses. According to these findings, the morphological pattern of the lumbar plexus in the fetus was found to be very similar to the lumbar plexus in adults. Copyright © 2012 Wiley Periodicals, Inc.

  16. The challenges and importance of structural variation detection in livestock

    PubMed Central

    Bickhart, Derek M.; Liu, George E.

    2014-01-01

    Recent studies in humans and other model organisms have demonstrated that structural variants (SVs) comprise a substantial proportion of variation among individuals of each species. Many of these variants have been linked to debilitating diseases in humans, thereby cementing the importance of refining methods for their detection. Despite progress in the field, reliable detection of SVs still remains a problem even for human subjects. Many of the underlying problems that make SVs difficult to detect in humans are amplified in livestock species, whose lower quality genome assemblies and incomplete gene annotation can often give rise to false positive SV discoveries. Regardless of the challenges, SV detection is just as important for livestock researchers as it is for human researchers, given that several productive traits and diseases have been linked to copy number variations (CNVs) in cattle, sheep, and pig. Already, there is evidence that many beneficial SVs have been artificially selected in livestock such as a duplication of the agouti signaling protein gene that causes white coat color in sheep. In this review, we will list current SV and CNV discoveries in livestock and discuss the problems that hinder routine discovery and tracking of these polymorphisms. We will also discuss the impacts of selective breeding on CNV and SV frequencies and mention how SV genotyping could be used in the future to improve genetic selection. PMID:24600474

  17. Evolution of polymer photovoltaic performances from subtle chemical structure variations.

    PubMed

    Yan, Han; Li, Denghua; Lu, Kun; Zhu, Xiangwei; Zhang, Yajie; Yang, Yanlian; Wei, Zhixiang

    2012-11-21

    Conjugated polymers are promising replacements for their inorganic counterparts in photovoltaics due to their low cost, ease of processing, and straightforward thin film formation. New materials have been able to improve the power conversion efficiency of photovoltaic cells up to 8%. However, rules for rational material design are still lacking, and subtle chemical structure variations usually result in large performance discrepancies. The present paper reports a detailed study on the crystalline structure, morphology, and in situ optoelectronic properties of blend films of polythiophene derivatives and [6,6]-phenyl C61-butyric acid methyl ester by changing the alkyl side chain length and position of polythiophene. The correlation among the molecular structure, mesoscopic morphology, mesoscopic optoelectronic property and macroscopic device performance (highest efficiency above 4%) was directly established. Both solubility and intermolecular interactions should be considered in rational molecular design. Knowledge obtained from this study can aid the selection of appropriate processing conditions that improve blend film morphology, charge transport property, and overall solar cell efficiency.

  18. Computing Lagrangian coherent structures from their variational theory.

    PubMed

    Farazmand, Mohammad; Haller, George

    2012-03-01

    Using the recently developed variational theory of hyperbolic Lagrangian coherent structures (LCSs), we introduce a computational approach that renders attracting and repelling LCSs as smooth, parametrized curves in two-dimensional flows. The curves are obtained as trajectories of an autonomous ordinary differential equation for the tensor lines of the Cauchy-Green strain tensor. This approach eliminates false positives and negatives in LCS detection by separating true exponential stretching from shear in a frame-independent fashion. Having an explicitly parametrized form for hyperbolic LCSs also allows for their further in-depth analysis and accurate advection as material lines. We illustrate these results on a kinematic model flow and on a direct numerical simulation of two-dimensional turbulence.

  19. Altitude variations of the peak auroral emissions within auroral structures

    NASA Astrophysics Data System (ADS)

    Sangalli, L.; Partamies, N.; Gustavsson, B.

    2014-12-01

    The MIRACLE network monitors auroral activity in the Fennoscandian sector of Europe. Network stations cover the range of 55° to 57° magnetic latitude North and span two hours in magnetic local time. Some of the MIRACLE network stations include digital all-sky cameras (ASC) with overlapping field-of-views located at the latitude aurora occurs. The ASCs in this network operate at three different wavelengths: 427.8 nm (blue line), 557.7 nm (green line) and 630.0 nm (red line). These wavelengths are selected using narrow band filters. The new ASC systems are based on electron multiplying CCDs (emCCD), which allow higher time and spatial resolutions. The peak auroral emission altitude is determined using two ASC images from a station pair. Different auroral events are used to evaluate the altitude variations of the peak auroral emissions within auroral structures and its evolution in time.

  20. Altitude Variations of the Peak Auroral Emissions within Auroral Structures

    NASA Astrophysics Data System (ADS)

    Sangalli, L.

    2015-12-01

    The MIRACLE network monitors auroral activity in the Fennoscandian sector of Europe. Network stations cover the range of 55° to 57° magnetic latitude North and span two hours in magnetic local time. Some of the MIRACLE network stations include digital all-sky cameras (ASC) with overlapping field-of-views located at the latitude aurora occurs. The ASCs in this network operate at three different wavelengths: 427.8 nm (blue line), 557.7 nm (green line) and 630.0 nm (red line). These wavelengths are selected using narrow band filters. The new ASC systems are based on electron multiplying CCDs (emCCD), which allow higher time and spatial resolutions. The peak auroral emission altitude is determined using two ASC images from a station pair. Different auroral events are used to evaluate the altitude variations of the peak auroral emissions within auroral structures and its evolution in time.

  1. Symplectic structures related with higher order variational problems

    NASA Astrophysics Data System (ADS)

    Kijowski, Jerzy; Moreno, Giovanni

    2015-06-01

    In this paper, we derive the symplectic framework for field theories defined by higher order Lagrangians. The construction is based on the symplectic reduction of suitable spaces of iterated jets. The possibility of reducing a higher order system of partial differential equations to a constrained first-order one, the symplectic structures naturally arising in the dynamics of a first-order Lagrangian theory, and the importance of the Poincaré-Cartan form for variational problems, are all well-established facts. However, their adequate combination corresponding to higher order theories is missing in the literature. Here we obtain a consistent and truly finite-dimensional canonical formalism, as well as a higher order version of the Poincaré-Cartan form. In our exposition, the rigorous global proofs of the main results are always accompanied by their local coordinate descriptions, indispensable to work out practical examples.

  2. Variational grand-canonical electronic structure method for open systems.

    PubMed

    Jacobi, Shlomit; Baer, Roi

    2005-07-22

    An ab initio method is developed for variational grand-canonical molecular electronic structure of open systems based on the Gibbs-Peierls-Boguliobov inequality. We describe the theory and a practical method for performing the calculations within standard quantum chemistry codes using Gaussian basis sets. The computational effort scales similarly to the ground-state Hartree-Fock method. The quality of the approximation is studied on a hydrogen molecule by comparing to the exact Gibbs free energy, computed using full configuration-interaction calculations. We find the approximation quite accurate, with errors similar to those of the Hartree-Fock method for ground-state (zero-temperature) calculations. A further demonstration is given of the temperature effects on the bending potential curve for water. Some future directions and applications of the method are discussed. Several appendices give the mathematical and algorithmic details of the method.

  3. Variational asymptotic modeling of composite dimensionally reducible structures

    NASA Astrophysics Data System (ADS)

    Yu, Wenbin

    A general framework to construct accurate reduced models for composite dimensionally reducible structures (beams, plates and shells) was formulated based on two theoretical foundations: decomposition of the rotation tensor and the variational asymptotic method. Two engineering software systems, Variational Asymptotic Beam Sectional Analysis (VABS, new version) and Variational Asymptotic Plate and Shell Analysis (VAPAS), were developed. Several restrictions found in previous work on beam modeling were removed in the present effort. A general formulation of Timoshenko-like cross-sectional analysis was developed, through which the shear center coordinates and a consistent Vlasov model can be obtained. Recovery relations are given to recover the asymptotic approximations for the three-dimensional field variables. A new version of VABS has been developed, which is a much improved program in comparison to the old one. Numerous examples are given for validation. A Reissner-like model being as asymptotically correct as possible was obtained for composite plates and shells. After formulating the three-dimensional elasticity problem in intrinsic form, the variational asymptotic method was used to systematically reduce the dimensionality of the problem by taking advantage of the smallness of the thickness. The through-the-thickness analysis is solved by a one-dimensional finite element method to provide the stiffnesses as input for the two-dimensional nonlinear plate or shell analysis as well as recovery relations to approximately express the three-dimensional results. The known fact that there exists more than one theory that is asymptotically correct to a given order is adopted to cast the refined energy into a Reissner-like form. A two-dimensional nonlinear shell theory consistent with the present modeling process was developed. The engineering computer code VAPAS was developed and inserted into DYMORE to provide an efficient and accurate analysis of composite plates and

  4. Extensive Natural Variation in Arabidopsis Seed Mucilage Structure

    PubMed Central

    Voiniciuc, Cătălin; Zimmermann, Eva; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Fu, Lanbao; North, Helen M.; Usadel, Björn

    2016-01-01

    Hydrated Arabidopsis thaliana seeds are coated by a gelatinous layer called mucilage, which is mainly composed of cell wall polysaccharides. Since mucilage is rich in pectin, its architecture can be visualized with the ruthenium red (RR) dye. We screened the seeds of around 280 Arabidopsis natural accessions for variation in mucilage structure, and identified a large number of novel variants that differed from the Col-0 wild-type. Most of the accessions released smaller RR-stained capsules compared to the Col-0 reference. By biochemically characterizing the phenotypes of 25 of these accessions in greater detail, we discovered that distinct changes in polysaccharide structure resulted in gelatinous coatings with a deceptively similar appearance. Monosaccharide composition analysis of total mucilage extracts revealed a remarkable variation (from 50 to 200% of Col-0 levels) in the content of galactose and mannose, which are important subunits of heteromannan. In addition, most of the natural variants had altered Pontamine Fast Scarlet 4B staining of cellulose and significantly reduced birefringence of crystalline structures. This indicates that the production or organization of cellulose may be affected by the presence of different amounts of hemicellulose. Although, the accessions described in this study were primarily collected from Western Europe, they form five different phenotypic classes based on the combined results of our experiments. This suggests that polymorphisms at multiple loci are likely responsible for the observed mucilage structure. The transcription of MUCILAGE-RELATED10 (MUCI10), which encodes a key enzyme for galactoglucomannan synthesis, was severely reduced in multiple variants that phenocopied the muci10-1 insertion mutant. Although, we could not pinpoint any causal polymorphisms in this gene, constitutive expression of fluorescently-tagged MUCI10 proteins complemented the mucilage defects of a muci10-like accession. This leads us to

  5. Crustal structure variations along the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Schlaphorst, D.; Kendall, J. M.; Melekhova, E.; Blundy, J.; Baptie, B.; Latchman, J. L.

    2013-12-01

    Continental crust is predominantly formed along subduction zones. Therefore, an investigation of the crustal and mantle structure variation of these areas is crucial for understanding the growth of continental crust. This work deals with the seismological characteristics along the Lesser Antilles Arc, an island arc system built by the relatively slow subduction (~2cm/yr) of the North and South American plates beneath the Caribbean plate. The amount of subducted sediments changes significantly from sediment-rich subduction in the South to sediment-poor subduction in the North. The abundance of broadband seismic stations on the Lesser Antilles islands enables a range of seismic methods to be used to study arc processes. Furthermore, the abundance of cumulate samples allows for a detailed petrological analysis, which can be related to the seismological patterns. We use data from three component broadband stations located on the individual islands along the arc. From the island of Grenada in the South to the Virgin Islands in the North significant variations in sediment load, petrology and volcanism are observed along the arc. In this work, we investigate crustal structure using receiver functions to determine Moho depth and Vp/Vs ratio. The ratio gives an idea about the material of the subsurface as well as its water and its melt contents. The receiver functions are computed using the extended-time multitaper frequency domain cross-correlation receiver-function (ETMTRF) by Helffrich (2006). This method has the advantage of resistance to noise, which is helpful since most of the data around the arc will have been collected by stations close to the ocean, thus containing a large amount of noise. Our results show clear variations in these measurements. There are also regions where the Moho is not very sharp due to a low velocity contrast. The real data results were then compared to synthetic receiver functions from subsurface models. We compute a range of synthetic

  6. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness (h)

    PubMed Central

    2017-01-01

    The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom—the backbone dihedral angles φ and ψ (Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function of φ and ψ has not been completely described for both cis and trans backbones. Additionally, little intuitive understanding is available about a peptide’s conformation simply from knowing the φ and ψ values of a peptide (e.g., is the regular peptide defined by φ = ψ =  − 100°  left-handed or right-handed?). This report provides a new metric for backbone handedness (h) based on interpreting a peptide backbone as a helix with axial displacement d and angular displacement θ, both of which are derived from a peptide backbone’s internal coordinates, especially dihedral angles φ, ψ and ω. In particular, h equals sin(θ)d∕|d|, with range [−1, 1] and negative (or positive) values indicating left(or right)-handedness. The metric h is used to characterize the handedness of every region of the Ramachandran plot for both cis (ω = 0°) and trans (ω = 180°) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ, ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013), this report presents a new plot based on d and θ that serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone including cis

  7. The Latitudinal Variation of Jupiter's Deep Cloud Structure

    NASA Astrophysics Data System (ADS)

    Bjoraker, Gordon; de Pater, Imke; Wong, Michael H.; Adamkovics, Mate

    2014-11-01

    In March 2014, we used NIRSPEC on the Keck telescope to spectrally resolve line profiles of CH3D and other molecules on Jupiter in order to derive the pressure of the line formation region in the 5-micron window. The slit was aligned north/south on the Central Meridian of Jupiter. Two slit positions ensured pole to pole coverage. Deuterated methane is a good choice for studying cloud structure because methane and its isotopologues do not condense on Jupiter. Variations in CH3D line shape with position on Jupiter are therefore ONLY due to cloud structure rather than due to changes in gas mole fraction. The profile of the CH3D lines is very broad in Hot Spots in the North and South Equatorial Belts due to collisions with up to 8 bars of H2, where unit optical depth due to collision-induced H2 opacity occurs. The extreme width of these CH3D features implies that Hot Spots do not have significant cloud opacity where water is expected to condense. In Jupiter's zones, the line profiles are substantially narrower than in Hot Spots, but they are broader than would be expected if they were formed in a column above an opaque cloud at 0.7 bars (NH3) or 2 bars (NH4SH). Once we have established a cloud structure, gas mole fractions may then be retrieved. Strong and weak H2O absorption features were detected at the same time as CH3D, which provides independent evidence that we are sounding deep in Jupiter’s atmosphere. These data will allow us to retrieve NH3, PH3, and gaseous H2O as a function of latitude from pole to pole on Jupiter. This technique can be applied to study the deep cloud structure anywhere on Jupiter whether or not upper level clouds are present.

  8. Vertical variations in the turbulent structure over vineyards

    NASA Astrophysics Data System (ADS)

    Alfieri, J. G.; Kustas, W. P.; Prueger, J. H.; Hipps, L.

    2015-12-01

    Due to their highly-structured canopy, turbulent characteristics within and above vineyards, may not conform to those exhibited by other agricultural and natural ecosystems. As a result, the current generation of land surface models may not adequately describe the turbulent exchange of heat and moisture between the atmosphere and the surface over vineyards. Using data collected during 2014 as a part of the Grape Remote Sensing Atmospheric Profiling and Evapotranspiration Experiment (GRAPEX), an ongoing multi-agency field campaign conducted in the Central Valley of California, this study sought to characterize the variations in the turbulent structure over vineyards. Focusing on unstable daytime conditions, the study compared the turbulent structure at three above-canopy heights: 2.5 m, 3.75 m, and 8 m, agl. Both wavelet and Fourier-based spectral analysis of the wind velocity components indicates a strong tendency for the spectral peak to broaden and shift to lower frequencies as the measurement height increases. Also, beginning with the highest-frequency eddies, the turbulent structure at differing heights become increasingly decoupled as the distance between the measurements increases. In other terms, eddies contributing to a measurement at one height act independently of similarly-sized eddies at another height. As a result, the overall correlation between the turbulent flows measured at differing heights decreases exponential with increasing separation distance. While this effect was seen for all of the periods analyzed, the magnitude of the effect does appear to vary in response to the direction of the wind relative to the vineyard rows.

  9. Improving the Binding Affinity of in-Vitro-Evolved Cyclic Peptides by Inserting Atoms into the Macrocycle Backbone.

    PubMed

    Wilbs, Jonas; Middendorp, Simon J; Heinis, Christian

    2016-12-14

    Cyclic peptides binding to targets of interest can be generated efficiently with powerful in vitro display techniques, such as phage display or mRNA display. The cyclic peptide libraries screened with these methods are generated by altering in a combinatorial fashion the amino acid sequence of the peptides, the number of amino acids in the macrocycle rings, and the cyclization chemistry. A structural element that cannot easily be varied in the cyclic peptides is the backbone, which is built from amino acids, each of which contributes three atoms to the macrocyclic ring structure. Here, we proposed to improve the affinity of a phage-selected bicyclic peptide inhibitor of coagulation factor XII (FXII) by screening variants with one or two carbon atoms inserted into different positions of the backbone, and thus tapping into a structural space that was not sampled by phage display. Two mutants showed 4.7- and 2.5-fold improved Ki values. The better one blocked FXII with a Ki of 1.5±0.1 nm and inhibited activation of the intrinsic coagulation pathway (EC2x 1.7 μm). The strategy of ring size variation by one or several atoms should be generally applicable for the affinity maturation of in-vitro-evolved cyclic peptides. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structural genomic variation in childhood epilepsies with complex phenotypes

    PubMed Central

    Helbig, Ingo; Swinkels, Marielle E M; Aten, Emmelien; Caliebe, Almuth; van 't Slot, Ruben; Boor, Rainer; von Spiczak, Sarah; Muhle, Hiltrud; Jähn, Johanna A; van Binsbergen, Ellen; van Nieuwenhuizen, Onno; Jansen, Floor E; Braun, Kees P J; de Haan, Gerrit-Jan; Tommerup, Niels; Stephani, Ulrich; Hjalgrim, Helle; Poot, Martin; Lindhout, Dick; Brilstra, Eva H; Møller, Rikke S; Koeleman, Bobby PC

    2014-01-01

    A genetic contribution to a broad range of epilepsies has been postulated, and particularly copy number variations (CNVs) have emerged as significant genetic risk factors. However, the role of CNVs in patients with epilepsies with complex phenotypes is not known. Therefore, we investigated the role of CNVs in patients with unclassified epilepsies and complex phenotypes. A total of 222 patients from three European countries, including patients with structural lesions on magnetic resonance imaging (MRI), dysmorphic features, and multiple congenital anomalies, were clinically evaluated and screened for CNVs. MRI findings including acquired or developmental lesions and patient characteristics were subdivided and analyzed in subgroups. MRI data were available for 88.3% of patients, of whom 41.6% had abnormal MRI findings. Eighty-eight rare CNVs were discovered in 71 out of 222 patients (31.9%). Segregation of all identified variants could be assessed in 42 patients, 11 of which were de novo. The frequency of all structural variants and de novo variants was not statistically different between patients with or without MRI abnormalities or MRI subcategories. Patients with dysmorphic features were more likely to carry a rare CNV. Genome-wide screening methods for rare CNVs may provide clues for the genetic etiology in patients with a broader range of epilepsies than previously anticipated, including in patients with various brain anomalies detectable by MRI. Performing genome-wide screens for rare CNVs can be a valuable contribution to the routine diagnostic workup in patients with a broad range of childhood epilepsies. PMID:24281369

  11. Brillouin resonance broadening due to structural variations in nanoscale waveguides

    NASA Astrophysics Data System (ADS)

    Wolff, C.; Van Laer, R.; Steel, M. J.; Eggleton, B. J.; Poulton, C. G.

    2016-02-01

    We study the impact of structural variations (that is slowly varying geometry aberrations and internal strain fields) on the width and shape of the stimulated Brillouin scattering (SBS) resonance in nanoscale waveguides. We find that they lead to an inhomogeneous resonance broadening through two distinct mechanisms: firstly, the acoustic frequency is directly influenced via mechanical nonlinearities; secondly, the optical wave numbers are influenced via the opto-mechanical nonlinearity leading to an additional acoustic frequency shift via the phase-matching condition. We find that this second mechanism is proportional to the opto-mechanical coupling and, hence, related to the SBS-gain itself. It is absent in intra-mode forward SBS, while it plays a significant role in backward scattering. In backward SBS increasing the opto-acoustic overlap beyond a threshold defined by the fabrication tolerances will therefore no longer yield the expected quadratic increase in overall Stokes amplification. Finally, we illustrate in a numerical example that in backward SBS and inter-mode forward SBS the existence of two broadening mechanisms with opposite sign also opens the possibility to compensate the effect of geometry-induced broadening. Our results can be transferred to other micro- and nano-structured waveguide geometries such as photonic crystal fibres.

  12. A simple model of backbone flexibility improves modeling of side-chain conformational variability.

    PubMed

    Friedland, Gregory D; Linares, Anthony J; Smith, Colin A; Kortemme, Tanja

    2008-07-18

    The considerable flexibility of side-chains in folded proteins is important for protein stability and function, and may have a role in mediating allosteric interactions. While sampling side-chain degrees of freedom has been an integral part of several successful computational protein design methods, the predictions of these approaches have not been directly compared to experimental measurements of side-chain motional amplitudes. In addition, protein design methods frequently keep the backbone fixed, an approximation that may substantially limit the ability to accurately model side-chain flexibility. Here, we describe a Monte Carlo approach to modeling side-chain conformational variability and validate our method against a large dataset of methyl relaxation order parameters derived from nuclear magnetic resonance (NMR) experiments (17 proteins and a total of 530 data points). We also evaluate a model of backbone flexibility based on Backrub motions, a type of conformational change frequently observed in ultra-high-resolution X-ray structures that accounts for correlated side-chain backbone movements. The fixed-backbone model performs reasonably well with an overall rmsd between computed and predicted side-chain order parameters of 0.26. Notably, including backbone flexibility leads to significant improvements in modeling side-chain order parameters for ten of the 17 proteins in the set. Greater accuracy of the flexible backbone model results from both increases and decreases in side-chain flexibility relative to the fixed-backbone model. This simple flexible-backbone model should be useful for a variety of protein design applications, including improved modeling of protein-protein interactions, design of proteins with desired flexibility or rigidity, and prediction of correlated motions within proteins.

  13. AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences

    PubMed Central

    Lapidoth, Gideon D.; Baran, Dror; Pszolla, Gabriele M.; Norn, Christoffer; Alon, Assaf; Tyka, Michael D.; Fleishman, Sarel J.

    2016-01-01

    Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function – essential to exert control over all polypeptide degrees of freedom – remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in six the backbone conformation at the core of the antibody binding surface is similar to the natural antibody targets, and in several cases sequence and sidechain conformations recapitulate those seen in the natural antibodies. In the case of an anti-lysozyme antibody, designed antibody CDRs at the periphery of the interface, such as L1 and H2, show a greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, which could enhance affinity and specificity. PMID:25670500

  14. Electric field induced localization phenomena in a ladder network with superlattice configuration: Effect of backbone environment

    SciTech Connect

    Dutta, Paramita; Karmakar, S. N.; Maiti, Santanu K.

    2014-09-15

    Electric field induced localization properties of a tight-binding ladder network in presence of backbone sites are investigated. Based on Green's function formalism we numerically calculate two-terminal transport together with density of states for different arrangements of atomic sites in the ladder and its backbone. Our results lead to a possibility of getting multiple mobility edges which essentially plays a switching action between a completely opaque to fully or partly conducting region upon the variation of system Fermi energy, and thus, support in fabricating mesoscopic or DNA-based switching devices.

  15. Structure and variation of the mitochondrial genome of fishes.

    PubMed

    Satoh, Takashi P; Miya, Masaki; Mabuchi, Kohji; Nishida, Mutsumi

    2016-09-07

    The mitochondrial (mt) genome has been used as an effective tool for phylogenetic and population genetic analyses in vertebrates. However, the structure and variability of the vertebrate mt genome are not well understood. A potential strategy for improving our understanding is to conduct a comprehensive comparative study of large mt genome data. The aim of this study was to characterize the structure and variability of the fish mt genome through comparative analysis of large datasets. An analysis of the secondary structure of proteins for 250 fish species (248 ray-finned and 2 cartilaginous fishes) illustrated that cytochrome c oxidase subunits (COI, COII, and COIII) and a cytochrome bc1 complex subunit (Cyt b) had substantial amino acid conservation. Among the four proteins, COI was the most conserved, as more than half of all amino acid sites were invariable among the 250 species. Our models identified 43 and 58 stems within 12S rRNA and 16S rRNA, respectively, with larger numbers than proposed previously for vertebrates. The models also identified 149 and 319 invariable sites in 12S rRNA and 16S rRNA, respectively, in all fishes. In particular, the present result verified that a region corresponding to the peptidyl transferase center in prokaryotic 23S rRNA, which is homologous to mt 16S rRNA, is also conserved in fish mt 16S rRNA. Concerning the gene order, we found 35 variations (in 32 families) that deviated from the common gene order in vertebrates. These gene rearrangements were mostly observed in the area spanning the ND5 gene to the control region as well as two tRNA gene cluster regions (IQM and WANCY regions). Although many of such gene rearrangements were unique to a specific taxon, some were shared polyphyletically between distantly related species. Through a large-scale comparative analysis of 250 fish species mt genomes, we elucidated various structural aspects of the fish mt genome and the encoded genes. The present results will be important for

  16. Crustal structure variation along the Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Schlaphorst, David; Kendall, Mike; Blundy, Jon; Melekhova, Elena; Baptie, Brian; Latchman, Joan; Bouin, Marie-Paule; Tait, Steve

    2014-05-01

    Subduction zones are the major location for the formation of continental crust. Therefore, an investigation of the crustal and mantle structure variation of these areas helps understanding the process of continental crust growth. Here we focus on a seismological investigation of the Lesser Antilles Arc. This island arc system is built by the relatively slow subduction (~ 2cm/yr) of the North and South American plates beneath the Caribbean plate. From the island of Grenada in the South to the Virgin Islands in the North significant variations in sediment load, petrology and volcanism are observed along the arc. The abundance of broadband seismic stations on the Lesser Antilles islands in combination with the abundance of cumulated samples allows for a link between the seismic methods with a detailed petrological analysis. We use data from three-component broadband stations located on the individual islands along the arc. We investigate crustal structure using receiver functions to determine Moho depth and V P/V S ratio. The ratio gives an idea about the material of the subsurface as well as its water and its melt contents. We use the extended-time multitaper frequency domain cross-correlation receiver-function (ETMTRF) by Helffrich (2006) to compute the receiver functions. This method has the advantage of resistance to noise and gives stable solutions for the data, despite its large amount of oceanic noise. Our results show clear along-arc crustal properties. There are regions where the Moho is not very sharp due to a low velocity contrast. The real data results are then compared to synthetic receiver functions based on plausible models. We compute a range of synthetic crustal models and receiver functions based on petrologic constraints from cumulates. The seismic velocities are obtained from experimental data using different temperatures and pressures to simulate different depths. The initial water content was also varied to model dry and wet slab conditions. Our

  17. Regional Variations of the Inner Core Attenuation Structure

    NASA Astrophysics Data System (ADS)

    Sun, X.; Qin, J.

    2016-12-01

    Three-dimensional velocity structure of the inner core has raised great challenge to the inner core formation and evolution mechanisms. Besides velocity, attenuation is also studied to help answering these questions. However, because of the waveform quality and limited earthquake-station distribution in high latitudes, attenuation studies are even harder. Previous inner core attenuation results showthat the shallow part of the inner core attenuation may have hemispherical differences and may change with depths, but the study areas are very limited, and conflictresults still exist. In this study, we systematically collect seismic data from global, regional and temporary seismic networks from year 1990 to 2014, in distance range of 146-156 degree. To ensure the quality of the data, we only chose earthquakes with magnitudesgreater than 5.5 and depths deeper than 50 km. After carefully checked the coverage of the good data, we finally select three regions (Australia, Africa and central Pacific) where PKP phases are generally good in both polar and equatorial directions to study inner core structure. During the data processing, we also compared different methods, such as spectral amplitude ratio of BC and DF, attenuation inversion from observed and synthetic data, to obtain the more reliable results. Our results show that the inner core velocity underneath Australia has no anisotropy, while Africa and central Pacific region have obvious anisotropy; Meanwhile, the average velocity is 0.5% faster underneath Australia, and 0.3% slower underneath Africa and central Pacific than AK135. For inner core attenuation structure, we have the following results: 1) Underneath Australia, Q value remain almost constant, ranging between 300-400, and show no anisotropy; 2) Underneath Africa and central Pacific, Q value change with depth, and show obvious anisotropy structure. Finally, we find that the velocity and attenuation in all three areas have good correlation, with fast velocity

  18. Variation.

    ERIC Educational Resources Information Center

    Hamilton City Board of Education (Ontario).

    Suggestions for studying the topic of variation of individuals and objects (balls) to help develop elementary school students' measurement, comparison, classification, evaluation, and data collection and recording skills are made. General suggestions of variables that can be investigated are made for the study of human variation. Twelve specific…

  19. Structural Determination and Daily Variations of Porcine Milk Oligosaccharides

    PubMed Central

    Tao, Nannan; Ochonicky, Karen L.; German, J. Bruce; Donovan, Sharon M.; Lebrilla, Carlito B.

    2010-01-01

    Free milk oligosaccharides (OS) is a major component of mammalian milk. Swine are important agricultural species and biomedical models. Despite their importance, little is known of the OS profile of porcine milk. Herein, the porcine milk glycome was elucidated and monitored over the entire lactation period by liquid chromatography profiling and structural determination with mass spectrometry. Milk was collected from second parity sows (n=3) at farrowing and on days 1, 4, 7 and 24 of lactation. Twenty-nine distinct porcine milk oligosaccharides (pMO) were identified. The pMO are highly sialylated, which is more similar to bovine milk than human milk OS. Six fucosylated pMO were detected at low levels in porcine milk, making it more similar to human milk than bovine. In general, the pMO content was highest in milk collected at farrowing and day 1 of lactation, decreased during early lactation, but then rose at day 24, however, the pMO displayed different patterns of variation across lactation. In summary, porcine milk contains both acidic (sialylated) and neutral (fucosylated) OS, but sialic-acid containing OS predominate throughout lactation. PMID:20369835

  20. Variational Reconstruction of Left Cardiac Structure from CMR Images

    PubMed Central

    Wan, Min; Huang, Wei; Zhang, Jun-Mei; Zhao, Xiaodan; Tan, Ru San; Wan, Xiaofeng; Zhong, Liang

    2015-01-01

    Cardiovascular Disease (CVD), accounting for 17% of overall deaths in the USA, is the leading cause of death over the world. Advances in medical imaging techniques make the quantitative assessment of both the anatomy and function of heart possible. The cardiac modeling is an invariable prerequisite for quantitative analysis. In this study, a novel method is proposed to reconstruct the left cardiac structure from multi-planed cardiac magnetic resonance (CMR) images and contours. Routine CMR examination was performed to acquire both long axis and short axis images. Trained technologists delineated the endocardial contours. Multiple sets of two dimensional contours were projected into the three dimensional patient-based coordinate system and registered to each other. The union of the registered point sets was applied a variational surface reconstruction algorithm based on Delaunay triangulation and graph-cuts. The resulting triangulated surfaces were further post-processed. Quantitative evaluation on our method was performed via computing the overlapping ratio between the reconstructed model and the manually delineated long axis contours, which validates our method. We envisage that this method could be used by radiographers and cardiologists to diagnose and assess cardiac function in patients with diverse heart diseases. PMID:26689551

  1. Vibroacoustic processes and structural variations in muscular tissue

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Klochkov, B. N.; Kovaleva, E. P.

    1995-03-01

    This paper reviews the problems and results obtained in the course of experimental and theoretical investigations of the vibroacoustic activity of contracting muscles. Two types of such processes are examined: (1) acoustic vibrations due to the macromolecular recombinations of muscle proteins, which are responsible for the muscle contraction, and (2) acoustic vibrations associated with the finite accuracy and speed of the receptor-effector system that controls the muscle contraction. By investigating the acoustic vibrations, we examine structural recombinations (conformation variations) in macromolecules during mechanochemical reactions. Since chemical reactions of macromolecules are always accompanied by conformational recombinations, the generation mechanism, which is responsible for the contraction processes in a muscular tissue, can also be extended to other macromolecular media. Investigation of infrasound vibrations makes it possible to explore the quality and error of control for the processes in the muscle under different types of loading. Since a living body is controlled via perceptions, the latter can be quantitatively estimated by the parametess of infrasound vibrations.

  2. Pyridoxamine Protects Protein Backbone from Oxidative Fragmentation

    PubMed Central

    Chetyrkin, Sergei; Mathis, Missy; McDonald, W. Hayes; Shackelford, Xavier; Hudson, Billy; Voziyan, Paul

    2011-01-01

    Oxidative damage to proteins is one of the major pathogenic mechanisms in many chronic diseases. Therefore, inhibition of this oxidative damage can be an important part of therapeutic strategies. Pyridoxamine (PM), a prospective drug for treatment of diabetic nephropathy, has been previously shown to inhibit several oxidative and glycoxidative pathways, thus protecting amino acid side chains of the proteins from oxidative damage. Here, we demonstrated that PM can also protect protein backbone from fragmentation induced via different oxidative mechanisms including autoxidation of glucose. This protection was due to hydroxyl radical scavenging by PM and may contribute to PM therapeutic effects shown in clinical trials. PMID:21763683

  3. Telephone wire is backbone of security system

    SciTech Connect

    Brede, K.; Rackson, L.T.

    1995-09-01

    Video provides a variety of low-cost, high-quality solutions in today`s security environment. Cost-conscious managers of power generation stations, casinos, prison facilities, military bases and office buildings are considering using regular telephone wire (unshielded twisted pair-UTP) within their existing systems as the backbone of a video to the PC, personal and video-conferencing and training are other areas where phone wire in a building can save money and provide an alternative to coax or fiber for video. More and more, businesses and government agencies are meeting their needs efficiently by using telephone wires for more than just telephones.

  4. A comparison of the structures of some 2- and 3-substituted chromone derivatives: a structural study on the importance of the secondary carboxamide backbone for the inhibitory activity of MAO-B

    PubMed Central

    Gomes, Ligia R.; Low, John Nicolson; Cagide, Fernando; Gaspar, Alexandra; Borges, Fernanda

    2015-01-01

    The crystal structures of the 3-substituted tertiary chromone carboxamide derivative, C17H13NO3, N-methyl-4-oxo-N-phenyl-4H-chromene-3-carboxamide (1), and the chromone carbonyl pyrrolidine derivatives, C14H13NO3, 3-(pyrrolidine-1-carbon­yl)-4H-chromen-4-one (3) and 2-(pyrrolidine-1-carbon­yl)-4H-chromen-4-one (4) have been determined. Their structural features are discussed and compared with similar compounds namely with respect to their MAO-B inhibitory activities. The chromone carboxamide presents a –syn conformation with the aromatic rings twisted with respect to each other [the dihedral angle between the mean planes of the chromone system and the exocyclic phenyl ring is 58.48 (8)°]. The pyrrolidine derivatives also display a significant twist: the dihedral angles between the chromone system and the best plane formed by the pyrrolidine atoms are 48.9 (2) and 23.97 (12)° in (3) and (4), respectively. Compound (3) shows a short C—H⋯O intra­molecular contact forming an S(7) ring. The supra­molecular structures for each compound are defined by weak C—H⋯O hydrogen bonds, which link the mol­ecules into chains and sheets. The Cambridge Structural Database gave 45 hits for compounds with a pyrrolidinecarbonyl group. A simple statistical analysis of their geometric parameters is made in order to compare them with those of the mol­ecules determined in the present work. PMID:26594490

  5. Variations in Self-Gravity Wake Structures Across Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Jerousek, R.; Esposito, L. W.

    2012-12-01

    Optical depths measured in stellar occultations by Saturn's rings depend on viewing geometry due to the presence of aligned, trailing, elongated ephemeral clumps of particles known as self-gravity wakes. Combining observations from multiple viewing geometries makes it possible to untangle the properties of the self-gravity wakes, such as their orientation, aspect ratio, mutual spacing, and inter-wake optical depth. Simple geometric models (Colwell et al. 2006, Geophys. Res. Lett. 33, L07201; Hedman et al. 2007, Astron. J. 133, 2624-2629) have explained most of the variation in optical depths as a function of viewing geometry. Many more occultations have been observed since those initial models were published: more than 100 have been observed by Cassini UVIS, while the initial model results were based on only ~10 measurements. In particular, some measurements made by UVIS at high elevation angle did not agree with predictions from the initial self-gravity wake "granola bar" model of Colwell et al. (2006). Here we present results of a systematic re-analysis of the self-gravity wakes in Saturn's rings taking advantage of more than 80 UVIS occultations with a strong signal and including different geometric models. We find no evidence for self-gravity wakes in the C ring or in the Cassini Division. While we cannot rule out the presence of some preferential orientation of particle structures from these data alone, the theoretically expected wavelength for self-gravity wakes in these regions is comparable to a particle size (~ 1 m), consistent with our non-detection of aligned clumps. We use three different geometric models of self-gravity wakes: an elliptical cross-section (Hedman et al. 2007), a rectangular cross-section (Colwell et al. 2006), and a rectangular cross-section with Gaussian "wings" in optical depth on the self-gravity wakes. The model with wings on the wakes, despite having an extra free parameter, does not provide a better overall fit to the data outside

  6. Backbone building from quadrilaterals: a fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates.

    PubMed

    Gront, Dominik; Kmiecik, Sebastian; Kolinski, Andrzej

    2007-07-15

    In this contribution, we present an algorithm for protein backbone reconstruction that comprises very high computational efficiency with high accuracy. Reconstruction of the main chain atomic coordinates from the alpha carbon trace is a common task in protein modeling, including de novo structure prediction, comparative modeling, and processing experimental data. The method employed in this work follows the main idea of some earlier approaches to the problem. The details and careful design of the present approach are new and lead to the algorithm that outperforms all commonly used earlier applications. BBQ (Backbone Building from Quadrilaterals) program has been extensively tested both on native structures as well as on near-native decoy models and compared with the different available existing methods. Obtained results provide a comprehensive benchmark of existing tools and evaluate their applicability to a large scale modeling using a reduced representation of protein conformational space. The BBQ package is available for downloading from our website at http://biocomp.chem.uw.edu.pl/services/BBQ/. This webpage also provides a user manual that describes BBQ functions in detail.

  7. Conceptual Structure and Semantic Variation for Spatial Relations

    ERIC Educational Resources Information Center

    Khetarpal, Naveen Mohan

    2012-01-01

    Semantic categories across languages appear to reflect both universal conceptual tendencies and linguistic convention. To accommodate this pattern of constrained variation, many theories assume the existence of a universal conceptual space and explain cross-language variation in category extension as language-specific partitions of that space.…

  8. Conceptual Structure and Semantic Variation for Spatial Relations

    ERIC Educational Resources Information Center

    Khetarpal, Naveen Mohan

    2012-01-01

    Semantic categories across languages appear to reflect both universal conceptual tendencies and linguistic convention. To accommodate this pattern of constrained variation, many theories assume the existence of a universal conceptual space and explain cross-language variation in category extension as language-specific partitions of that space.…

  9. Peptide-functionalized semiconductor surfaces: strong surface electronic effects from minor alterations to backbone composition.

    PubMed

    Matmor, Maayan; Lengyel, George A; Horne, W Seth; Ashkenasy, Nurit

    2017-02-22

    The use of non-canonical amino acids is a powerful way to control protein structure. Here, we show that subtle changes to backbone composition affect the ability of a dipeptide to modify solid surface electronic properties. The extreme sensitivity of the interactions to the peptide structure suggests potential applications in improving the performance of electronic devices.

  10. Advanced routing in interplanetary backbone network

    NASA Astrophysics Data System (ADS)

    Xu, Ge; Sheng, Min; Wu, Chengke

    2007-11-01

    Interplanetary (IPN) Internet is a communication infrastructure providing communication services for scientific data delivery and navigation services for the explorer spacecrafts and orbiters of the future deep space missions. The interplanetary backbone network has the unique characteristics hence routing through the backbone network present many challenges that are not presented in traditional networks. Some routing algorithms have been proposed, in which, LPDB integrates the shortest path algorithm and the directional broadcast method to guarantee fast and reliable message delivery. Through this mutipath routing strategy, unpredictable link failures is addressed, but additional network overhead is introduced. In this paper, we propose an improvement of the LPDB named ALPDB in which the source could adaptively decide the next-hop nodes according to the link condition, hence reduce the network overhead. We model this algorithm on the network simulation platform of OPNET and compare it with other applicable algorithms in data passing ratio, data delay and network overhead. The result indicates that the ALPDB algorithm could not only guarantee reliable message delivery, but also decrease the cost significantly.

  11. Ebolavirus VP35 Coats the Backbone of Double-Stranded RNA for Interferon Antagonism

    PubMed Central

    Bale, Shridhar; Julien, Jean-Philippe; Bornholdt, Zachary A.; Krois, Alexander S.; Wilson, Ian A.

    2013-01-01

    Recognition of viral double-stranded RNA (dsRNA) activates interferon production and immune signaling in host cells. Crystal structures of ebolavirus VP35 show that it caps dsRNA ends to prevent sensing by pattern recognition receptors such as RIG-I. In contrast, structures of marburgvirus VP35 show that it primarily coats the dsRNA backbone. Here, we demonstrate that ebolavirus VP35 also coats the dsRNA backbone in solution, although binding to the dsRNA ends probably constitutes the initial binding event. PMID:23824825

  12. Coseismic Slip Variation and the Intimate Link with Fault Structure

    NASA Astrophysics Data System (ADS)

    Milliner, C. W. D.; Sammis, C. G.; Allam, A. A.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.

    2015-12-01

    Co-seismic along-strike slip heterogeneity is widely observed for many surface-rupturing earthquakes as revealed by field and high-resolution geodetic methods. However, this co-seismic slip variability is currently a poorly understood phenomenon. Key unanswered questions include: What are the characteristics and underlying causes of along-strike slip variability? Do the properties of slip variability change from fault-to-fault, along-strike or at different scales? We cross-correlate optical, pre- and post-event air photos using the program COSI-Corr to measure the near-field, surface deformation pattern of the 1992 Mw = 7.3 Landers and 1999 Mw = 7.1 Hector Mine earthquakes in high-resolution. We produce the co-seismic slip profiles of both events from over 1,500 displacement measurements and observe consistent along-strike slip variability. Although the observed slip heterogeneity seems apparently complex and disordered, a spectral analysis reveals that the slip distributions are self-affine fractal and variations of slip are not random. We find a fractal dimension of 1.68 + 0.25 and 1.58 + 0.30 for the Landers and Hector Mine earthquakes, respectively, indicating the slip distribution is rougher for the former. We show deterministically that the wavelength and amplitude of slip fluctuations of both earthquakes can be directly correlated to points of geometrical fault complexities (such as stepovers, kinks or bends) of similar size. We find the correlation of the wavelength of slip fluctuations to the size of geometrical fault complexities at all observable length scales, can explain why the complex surface rupture of the Landers earthquake has a rougher slip distribution than the geometrically simpler surface rupture of the Hector Mine event. Our results address longstanding questions concerning co-seismic slip variability, resulting in a more complete understanding of the relationship between slip distributions and fault structure.

  13. Prosomes. Ubiquity and inter-species structural variation.

    PubMed

    Martins de Sa, C; Grossi de Sa, M F; Akhayat, O; Broders, F; Scherrer, K; Horsch, A; Schmid, H P

    1986-02-20

    that, in its structural variations shown here, reflects function and species.

  14. Spiral structures and regularities in magnetic field variations and auroras

    NASA Astrophysics Data System (ADS)

    Feldstein, Y. I.; Gromova, L. I.; Förster, M.; Levitin, A. E.

    2012-02-01

    The conception of spiral shaped precipitation regions, where solar corpuscles penetrate the upper atmosphere, was introduced into geophysics by C. Störmer and K. Birkeland at the beginning of the last century. Later, in the course of the XX-th century, spiral distributions were disclosed and studied in various geophysical phenomena. Most attention was devoted to spiral shapes in the analysis of regularities pertaining to the geomagnetic activity and auroras. We review the historical succession of perceptions about the number and positions of spiral shapes, that characterize the spatial-temporal distribution of magnetic disturbances. We describe the processes in the upper atmosphere, which are responsible for the appearance of spiral patterns. We considered the zones of maximal aurora frequency and of maximal particle precipitation intensity, as offered in the literature, in their connection with the spirals. We discuss the current system model, that is closely related to the spirals and that appears to be the source for geomagnetic field variations during magnetospheric substorms and storms. The currents in ionosphere and magnetosphere constitute together with field-aligned (along the geomagnetic field lines) currents (FACs) a common 3-D current system. At ionospheric heights, the westward and eastward electrojets represent characteristic elements of the current system. The westward electrojet covers the longitudinal range from the morning to the evening hours, while the eastward electrojet ranges from afternoon to near-midnight hours. The polar electrojet is positioned in the dayside sector at cusp latitudes. All these electrojets map along the magnetic field lines to certain plasma structures in the near-Earth space. The first spiral distribution of auroras was found based on observations in Antarctica for the nighttime-evening sector (N-spiral), and later in the nighttime-evening (N-spiral) and morning (M-spiral) sectors both in the Northern and Southern

  15. An exhaustive survey of regular peptide conformations using a new metric for backbone handedness ( h )

    DOE PAGES

    Mannige, Ranjan V.

    2017-05-16

    The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom—the backbone dihedral anglesφandψ(Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function ofφandψhas not been completely described for bothcisandtransbackbones. Additionally, little intuitive understanding is available about a peptide’s conformation simply from knowing theφandψvalues of a peptide (e.g., is the regular peptide defined byφ = ψ =  - 100°  left-handed or right-handed?). This report provides a new metric for backbone handednessmore » (h) based on interpreting a peptide backbone as a helix with axial displacementdand angular displacementθ, both of which are derived from a peptide backbone’s internal coordinates, especially dihedral anglesφ,ψandω. In particular,hequals sin(θ)d/d|, with range [-1, 1] and negative (or positive) values indicating left(or right)-handedness. The metrichis used to characterize the handedness of every region of the Ramachandran plot for bothcis(ω = 0°) and trans (ω = 180°) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ,ψ) space. These maps fill in the ‘dead space’ within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013), this report presents a new plot based ondandθthat serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone includingcisandtransbackbones. The intuitiveness

  16. Sofosbuvir as backbone of interferon free treatments.

    PubMed

    Bourlière, Marc; Oules, Valèrie; Ansaldi, Christelle; Adhoute, Xavier; Castellani, Paul

    2014-12-15

    Sofosbuvir is the first-in-class NS5B nucleotide analogues to be launched for hepatitis C virus (HCV) treatment. Its viral potency, pangenotypic activity and high barrier to resistance make it the ideal candidate to become a backbone for several IFN-free regimens. Recent data demonstrated that sofosbuvir either with ribavirin alone or in combination with other direct-acting antivirals (DAAs) as daclatasvir, ledipasvir or simeprevir are able to cure HCV in at least 90% or over of patients. Treatment experienced genotype 3 population may remain the most difficult to treat population, but ongoing DAA combination studies will help to fill this gap. Safety profile of sofosbuvir or combination with other DAAs is good. Resistance to sofosbuvir did not appear as a significant issue. The rationale for using this class of drug and the available clinical data are reviewed. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  17. Structural Variation Shapes the Landscape of Recombination in Mouse.

    PubMed

    Morgan, Andrew P; Gatti, Daniel M; Najarian, Maya L; Keane, Thomas M; Galante, Raymond J; Pack, Allan I; Mott, Richard; Churchill, Gary A; de Villena, Fernando Pardo-Manuel

    2017-06-01

    Meiotic recombination is an essential feature of sexual reproduction that ensures faithful segregation of chromosomes and redistributes genetic variants in populations. Multiparent populations such as the Diversity Outbred (DO) mouse stock accumulate large numbers of crossover (CO) events between founder haplotypes, and thus present a unique opportunity to study the role of genetic variation in shaping the recombination landscape. We obtained high-density genotype data from [Formula: see text] DO mice, and localized 2.2 million CO events to intervals with a median size of 28 kb. The resulting sex-averaged genetic map of the DO population is highly concordant with large-scale (order 10 Mb) features of previously reported genetic maps for mouse. To examine fine-scale (order 10 kb) patterns of recombination in the DO, we overlaid putative recombination hotspots onto our CO intervals. We found that CO intervals are enriched in hotspots compared to the genomic background. However, as many as [Formula: see text] of CO intervals do not overlap any putative hotspots, suggesting that our understanding of hotspots is incomplete. We also identified coldspots encompassing 329 Mb, or [Formula: see text] of observable genome, in which there is little or no recombination. In contrast to hotspots, which are a few kilobases in size, and widely scattered throughout the genome, coldspots have a median size of 2.1 Mb and are spatially clustered. Coldspots are strongly associated with copy-number variant (CNV) regions, especially multi-allelic clusters, identified from whole-genome sequencing of 228 DO mice. Genes in these regions have reduced expression, and epigenetic features of closed chromatin in male germ cells, which suggests that CNVs may repress recombination by altering chromatin structure in meiosis. Our findings demonstrate how multiparent populations, by bridging the gap between large-scale and fine-scale genetic mapping, can reveal new features of the recombination

  18. Evaluation of impact of backbone outages in IP networks

    NASA Astrophysics Data System (ADS)

    Kogan, Yaakov; Choudhury, Gagan L.; Tarapore, Percy

    2004-09-01

    Nationwide IP networks typically include nodes in major cities and the following elements: customer equipment, access routers, backbone routers, peering routers, access links connecting customer equipment to access routers, access routers to backbone routers, and backbone links interconnecting backbone routers. The part of this network consisting of backbone routers and related interconnecting links is referred to as the "backbone". We develop a new approach for accurately computing the Availability measure of IP networks by directly simulating each type of backbone outage event and its impact on traffic loss. We use this approach to quantify availability improvement as a result of introducing various technological changes in the network such as IGP tuning, high availability router architecture, MPLS-TE and Fast Reroute. A situation, where operational backbone links do not have enough spare capacity to carry additional traffic during the outage time, is referred to as bandwidth loss. We concentrate on one unidirectional backbone link and derive asymptotic approximations for the expected bandwidth loss in the framework of generalized Erlang and Engset models when the total number of resource units and request arrival rates are proportionally large. Simulation results demonstrate good accuracy of the approximations.

  19. A Native to Amyloidogenic Transition Regulated by a Backbone Trigger

    SciTech Connect

    Eakin,C.; Berman, A.; Miranker, A.

    2006-01-01

    Many polypeptides can self-associate into linear, aggregated assemblies termed amyloid fibers. High-resolution structural insights into the mechanism of fibrillogenesis are elusive owing to the transient and mixed oligomeric nature of assembly intermediates. Here, we report the conformational changes that initiate fiber formation by beta-2-microglobulin (beta2m) in dialysis-related amyloidosis. Access of beta2m to amyloidogenic conformations is catalyzed by selective binding of divalent cations. The chemical basis of this process was determined to be backbone isomerization of a conserved proline. On the basis of this finding, we designed a beta2m variant that closely adopts this intermediate state. The variant has kinetic, thermodynamic and catalytic properties consistent with its being a fibrillogenic intermediate of wild-type beta2m. Furthermore, it is stable and folded, enabling us to unambiguously determine the initiating conformational changes for amyloid assembly at atomic resolution.

  20. Insights on chiral, backbone modified peptide nucleic acids: Properties and biological activity

    PubMed Central

    Moccia, Maria; Adamo, Mauro F A; Saviano, Michele

    2014-01-01

    PNAs are emerging as useful synthetic devices targeting natural miRNAs. In particular 3 classes of structurally modified PNAs analogs are herein described, namely α, β and γ, which differ by their backbone modification. Their mode and binding affinity for natural nucleic acids and their use in medicinal chemistry as potential miRNA binders is discussed. PMID:26752710

  1. Increasing Sequence Diversity with Flexible Backbone Protein Design: The Complete Redesign of a Protein Hydrophobic Core

    PubMed Central

    Murphy, Grant S.; Mills, Jeffrey L.; Miley, Michael J.; Machius, Mischa; Szyperski, Thomas; Kuhlman, Brian

    2012-01-01

    Summary Protein design tests our understanding of protein stability and structure. Successful design methods should allow the exploration of sequence space not found in nature. However, when redesigning naturally occurring protein structures most fixed backbone design algorithms return amino acid sequences that share strong sequence identity with wild-type sequences, especially in the protein core. This behavior places a restriction on functional space that can be explored and is not consistent with observations from nature, where sequences of low identity have similar structures. Here, we allow backbone flexibility during design to mutate every position in the core (38 residues) of a four-helix bundle protein. Only small perturbations to the backbone, 1-2 Å, were needed to entirely mutate the core. The redesigned protein, DRNN, is exceptionally stable (melting point > 140 °C). An NMR and X-ray crystal structure show that the side chains and backbone were accurately modeled (all-atom RMSD = 1.3 Å). PMID:22632833

  2. Active structural vibration control: Robust to temperature variations

    NASA Astrophysics Data System (ADS)

    Gupta, Vivek; Sharma, Manu; Thakur, Nagesh

    2012-11-01

    d-form augmented piezoelectric constitutive equations which take into account temperature dependence of piezoelectric strain coefficient (d31) and permittivity (∈33), are converted into e-form. Using e-form constitutive equations, a finite element model of a smart two dimensional plate instrumented with piezoelectric patches is derived. Equations of motion are derived using Hamilton's variational principle. Coupled equations of motion are uncoupled using modal analysis. Modal state vectors are estimated using the Kalman observer. The first mode of smart cantilevered plate is actively controlled using negative first modal velocity feedback at various temperatures. Total control effort required to do so is calculated using the electro-mechanical impedance method. The temperature dependence of sensor voltage, control voltage, control effort and Kalman observer equations is shown analytically. Simulation results are presented using MATLAB. Variations in (i) peak sensor voltage, (ii) actual and estimated first modal velocities, (iii) peak control voltage, (iv) total control effort and (v) settling time with respect to temperature are presented. Active vibration control performance is not maintained at temperature away from reference temperature when the temperature dependence of piezoelectric stress coefficient ‘e31' and permittivity ‘∈33' is not included in piezoelectric constitutive equations. Active control of vibrations becomes robust to temperature variations when the temperature dependence of ‘e31' and ‘∈33' is included in piezoelectric constitutive equations.

  3. High Speed Fibre Optic Backbone LAN

    NASA Astrophysics Data System (ADS)

    Tanimoto, Masaaki; Hara, Shingo; Kajita, Yuji; Kashu, Fumitoshi; Ikeuchi, Masaru; Hagihara, Satoshi; Tsuzuki, Shinji

    1987-09-01

    Our firm has developed the SUMINET-4100 series, a fibre optic local area network (LAN), to serve the communications system trunk line needs for facilities, such as steel refineries, automobile plants and university campuses, that require large transmission capacity, and for the backbone networks used in intelligent building systems. The SUMINET-4100 series is already in service in various fields of application. Of the networks available in this series, the SUMINET-4150 has a trunk line speed of 128 Mbps and the multiplexer used for time division multiplexing (TDM) was enabled by designing an ECL-TTL gate array (3000 gates) based custom LSI. The synchronous, full-duplex V.24 and V.3.5 interfaces (SUMINET-2100) are provided for use with general purpose lines. And the IBM token ring network, the SUMINET-3200, designed for heterogeneous PCs and the Ethernet can all be connected to sub loops. Further, the IBM 3270 TCA and 5080 CADAM can be connected in the local mode. Interfaces are also provided for the NTT high-speed digital service, the digital PBX systems, and the Video CODEC system. The built-in loop monitor (LM) and network supervisory processor (NSP) provide management of loop utilization and send loop status signals to the host CPU's network configuration and control facility (NCCF). These built-in functions allow both the computer system and LAN to be managed from a single source at the host. This paper outlines features of the SUMINET-4150 and provides an example of its installation.

  4. Extracting the Information Backbone in Online System

    PubMed Central

    Zhang, Qian-Ming; Zeng, An; Shang, Ming-Sheng

    2013-01-01

    Information overload is a serious problem in modern society and many solutions such as recommender system have been proposed to filter out irrelevant information. In the literature, researchers have been mainly dedicated to improving the recommendation performance (accuracy and diversity) of the algorithms while they have overlooked the influence of topology of the online user-object bipartite networks. In this paper, we find that some information provided by the bipartite networks is not only redundant but also misleading. With such “less can be more” feature, we design some algorithms to improve the recommendation performance by eliminating some links from the original networks. Moreover, we propose a hybrid method combining the time-aware and topology-aware link removal algorithms to extract the backbone which contains the essential information for the recommender systems. From the practical point of view, our method can improve the performance and reduce the computational time of the recommendation system, thus improving both of their effectiveness and efficiency. PMID:23690946

  5. Morphodynamics structures induced by variations of the channel width

    NASA Astrophysics Data System (ADS)

    Duro, Gonzalo; Crosato, Alessandra; Tassi, Pablo

    2014-05-01

    In alluvial channels, forcing effects, such as a longitudinally varying width, can induce the formation of steady bars (Olesen, 1984). The type of bars that form, such as alternate, central or multiple, will mainly depend on the local flow width-to-depth ratio and on upstream conditions (Struiksma et al., 1985). The effects on bar formation of varying the channel width received attention only recently and investigations, based on flume experiments and mathematical modelling, are mostly restricted to small longitudinal sinusoidal variations of the channel width (e.g. Repetto et al., 2002; Wu and Yeh, 2005, Zolezzi et al., 2012; Frascati and Lanzoni, 2013). In this work, we analyze the variations in equilibrium bed topography in a longitudinal width-varying channel with characteristic scales of the Waal River (The Netherlands) using two different 2D depth-averaged morphodynamic models, one based on the Delft3D code and one on Telemac-Mascaret system. In particular, we explore the effects of changing the wavelength of sinusoidal width variations in a straight channel, focusing on the effects of the spatial lag between bar formation and forcing that is observed in numerical models and laboratory experiments (e.g. Crosato et al, 2011). We extend the investigations to finite width variations in which longitudinal changes of the width-to-depth ratio are such that they may affect the type of bars that become unstable (alternate, central or multiple bars). Numerical results are qualitatively validated with field observations and the resulting morphodynamic pattern is compared with the physics-based predictor of river bar modes by Crosato and Mosselman (2009). The numerical models are finally used to analyse the experimental conditions of Wu and Yeh (2005). The study should be seen as merely exploratory. The aim is to investigate possible approaches for future research aiming at assessing the effects of artificial river widening and narrowing to control bar formation in

  6. Detecting the Significant Flux Backbone of Escherichia coli metabolism.

    PubMed

    Güell, Oriol; Sagués, Francesc; Serrano, M Ángeles

    2017-04-09

    The heterogeneity of computationally predicted reaction fluxes in metabolic networks within a single flux state can be exploited to detect their significant flux backbone. Here, we disclose the backbone of Escherichia coli, and compare it with the backbones of other bacteria. We find that, in general, the core of the backbones is mainly composed of reactions in energy metabolism corresponding to ancient pathways. In E. coli, the synthesis of nucleotides and the metabolism of lipids form smaller cores which rely critically on energy metabolism. Moreover, the consideration of different media leads to the identification of pathways sensitive to environmental changes. The metabolic backbone of an organism is thus useful for tracing, simultaneously, both its evolution and adaptation fingerprints. This article is protected by copyright. All rights reserved.

  7. AbDesign: An algorithm for combinatorial backbone design guided by natural conformations and sequences.

    PubMed

    Lapidoth, Gideon D; Baran, Dror; Pszolla, Gabriele M; Norn, Christoffer; Alon, Assaf; Tyka, Michael D; Fleishman, Sarel J

    2015-08-01

    Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function--essential to exert control over all polypeptide degrees of freedom--remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in five cases interface sequence identity is above 30%, and in four of those the backbone conformation at the core of the antibody binding surface is within 1 Å root-mean square deviation from the natural antibodies. Designs recapitulate polar interaction networks observed in natural complexes, and amino acid sidechain rigidity at the designed binding surface, which is likely important for affinity and specificity, is high compared to previous design studies. In designed anti-lysozyme antibodies, complementarity-determining regions (CDRs) at the periphery of the interface, such as L1 and H2, show greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, potentially enhancing affinity and specificity.

  8. Spatial variation of the thermal structure of Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Bezanger, C.; Bezard, B.; Gautier, D.

    1986-01-01

    The radiative seasonal model described by Bezard and Gautier for the case of Saturn was adapted to Jupiter. That the atmosphere is radiatively controlled above the 500 mb pressure level and that the temperature at the radiative-convective boundary level is constant for all latitudes is assumed. An internal heat source and absorption by methane and aerosols contribute to atmospheric heating. Absorption by aerosols was adjusted to give a planetary Bond albedo equal to 0.343. Despite Jupiter's low obliquity, the model predicts seasonal variations of temperature of several degrees for the 1 mb pressure level at mid-latitude regions.

  9. Genome-Wide Structural Variation Detection by Genome Mapping on Nanochannel Arrays.

    PubMed

    Mak, Angel C Y; Lai, Yvonne Y Y; Lam, Ernest T; Kwok, Tsz-Piu; Leung, Alden K Y; Poon, Annie; Mostovoy, Yulia; Hastie, Alex R; Stedman, William; Anantharaman, Thomas; Andrews, Warren; Zhou, Xiang; Pang, Andy W C; Dai, Heng; Chu, Catherine; Lin, Chin; Wu, Jacob J K; Li, Catherine M L; Li, Jing-Woei; Yim, Aldrin K Y; Chan, Saki; Sibert, Justin; Džakula, Željko; Cao, Han; Yiu, Siu-Ming; Chan, Ting-Fung; Yip, Kevin Y; Xiao, Ming; Kwok, Pui-Yan

    2016-01-01

    Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules imaged on nanochannel arrays can be used for whole-genome structural variation detection without sequencing. While whole-genome haplotyping is not achieved, local phasing (across >150-kb regions) is routine, as molecules from the parental chromosomes are examined separately. In one experiment, we generated genome maps from a trio from the 1000 Genomes Project, compared the maps against that derived from the reference human genome, and identified structural variations that are >5 kb in size. We find that these individuals have many more structural variants than those published, including some with the potential of disrupting gene function or regulation. Copyright © 2016 by the Genetics Society of America.

  10. Impact of Temperature on Cooling Structural Variation of Forging Dies

    NASA Astrophysics Data System (ADS)

    Piesova, Marianna; Czan, Andrej

    2014-12-01

    The article is focused on the issue of die forging in the automotive industry. The cooling effect of temperature on the structure of forged die are under review. In the article, there is elaborated the analysis of theoretical knowledge in the field, focusing on die forging and experimentally proven effect of the cooling rate on the final structure of forged dies made of hypoeutectic carbon steel C56E2.

  11. Buckling of Thermoviscoelastic Structures Under Temporal and Spatial Temperature Variations

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Richard; Knauss, Wolfgang G.

    1992-01-01

    The problem of lateral instability of a viscoelastic in-plane loaded structure is considered in terms of thermorheolgically simple materials. As an example of a generally in-plane loaded structure, we examine the simple column under axial load: Both cyclic loading is considered (with constant or in-phase variable temperature excursions) as well as the case of constant load in the presence of thermal gradients through the thickness of the structure. The latter case involves a continuous movement of the neutral axis from the center to the colder side and then back to the center. In both cases, temperature has a very strong effect on the instability evolution, and under in-phase thermal cycling the critical loads are reduced compared to those at constant temperatures. The primary effect of thermal gradients beyond that of thermally-induced rate accelerations is occasioned by the generation of an "initial imperfection" or "structural bowing." Because the coefficient of thermal expansion tends to be large for many polymeric materials, it it may be necessary to take special care in lay-up design of composite structures intended for use under compressive loads in high-temperature applications. Finally, the implications for the temperature sensitivities of composites to micro-instability (fiber crimping) are also apparent from the results delineated here.

  12. Studies on cattle genomic structural variation provide insights into ruminant speciation and adaptation

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variations, including segmental duplications (SD) and copy number variations (CNV), contribute significantly to individual health and disease in primates and rodents. As a part of the bovine genome annotation effort, we performed the first genome-wide analysis of SD in cattle usin...

  13. DNA and RNA ligases: structural variations and shared mechanisms.

    PubMed

    Pascal, John M

    2008-02-01

    DNA and RNA ligases join 3' OH and 5' PO4 ends in polynucleotide substrates using a three-step reaction mechanism that involves covalent modification of both the ligase enzyme and the polynucleotide substrate with AMP. In the past three years, several polynucleotide ligases have been crystallized in complex with nucleic acid, providing the introductory views of ligase enzymes engaging their substrates. Crystal structures for two ATP-dependent DNA ligases, an NAD+-dependent DNA ligase, and an ATP-dependent RNA ligase demonstrate how ligases utilize the AMP group and their multi-domain architectures to manipulate nucleic acid structure and catalyze the end-joining reaction. Together with unliganded crystal structures of DNA and RNA ligases, a more comprehensive and dynamic understanding of the multi-step ligation reaction mechanism has emerged.

  14. Identification of local variations within secondary structures of proteins.

    PubMed

    Kumar, Prasun; Bansal, Manju

    2015-05-01

    Secondary-structure elements (SSEs) play an important role in the folding of proteins. Identification of SSEs in proteins is a common problem in structural biology. A new method, ASSP (Assignment of Secondary Structure in Proteins), using only the path traversed by the C(α) atoms has been developed. The algorithm is based on the premise that the protein structure can be divided into continuous or uniform stretches, which can be defined in terms of helical parameters, and depending on their values the stretches can be classified into different SSEs, namely α-helices, 310-helices, π-helices, extended β-strands and polyproline II (PPII) and other left-handed helices. The methodology was validated using an unbiased clustering of these parameters for a protein data set consisting of 1008 protein chains, which suggested that there are seven well defined clusters associated with different SSEs. Apart from α-helices and extended β-strands, 310-helices and π-helices were also found to occur in substantial numbers. ASSP was able to discriminate non-α-helical segments from flanking α-helices, which were often identified as part of α-helices by other algorithms. ASSP can also lead to the identification of novel SSEs. It is believed that ASSP could provide a better understanding of the finer nuances of protein secondary structure and could make an important contribution to the better understanding of comparatively less frequently occurring structural motifs. At the same time, it can contribute to the identification of novel SSEs. A standalone version of the program for the Linux as well as the Windows operating systems is freely downloadable and a web-server version is also available at http://nucleix.mbu.iisc.ernet.in/assp/index.php.

  15. Interpretation of O K-edge EELS in zircon using a structural variation approach

    SciTech Connect

    Spence, John C.H; Jiang, Nan

    2009-12-01

    This work describes an approach to interpret the near-edge fine structure of electron energy-loss spectroscopy (EELS) of O K-edge in zircon using a structural variation method. The positions and intensities of several peaks in the O K-edge EELS spectrum are assigned to specific structural parameters. It suggests that the near-edge structures in EELS can be used to measure atomic structure changes.

  16. Interpretation of O K-edge EELS in zircon using a structural variation approach.

    PubMed

    Jiang, Nan; Spence, John C H

    2009-12-01

    This work describes an approach to interpret the near-edge fine structure of electron energy-loss spectroscopy (EELS) of O K-edge in zircon using a structural variation method. The positions and intensities of several peaks in the O K-edge EELS spectrum are assigned to specific structural parameters. It suggests that the near-edge structures in EELS can be used to measure atomic structure changes.

  17. Detection and interpretation of genomic structural variation in health and disease.

    PubMed

    Vandeweyer, Geert; Kooy, R Frank

    2013-01-01

    Recent technological advances in the detection of genomic structural variation have revolutionized the field of medical genetics. Genome-wide screening for copy-number variants in routine molecular diagnostics unveiled the presence of an unforeseen amount of structural variation in the genome. Owing to the massive amount of patients analyzed, the analysis of the resulting data became exponentially more complex. Simultaneously, novel insights in the impact of structural variation on the phenotype forced the re-evaluation of the pathogenicity of copy-number variations in more complex inheritance models. As a consequence, the challenge of today's genetics shifted from the mere detection of structural variation to the correct annotation and interpretation of the data. Various databases and data mining tools are available to help in the interpretation of the data, but making decisions on the pathogeniticy of the variation is still challenging. This review provides an overview of current laboratory techniques to detect structural variation, options to analyze and annotate data from genome-wide methods and caveats to take into account in interpretation of results.

  18. Single-molecule analysis reveals widespread structural variation in multiple myeloma

    PubMed Central

    Gupta, Aditya; Place, Michael; Goldstein, Steven; Sarkar, Deepayan; Zhou, Shiguo; Potamousis, Konstantinos; Kim, Jaehyup; Flanagan, Claire; Li, Yang; Newton, Michael A.; Callander, Natalie S.; Hematti, Peiman; Bresnick, Emery H.; Ma, Jian; Asimakopoulos, Fotis; Schwartz, David C.

    2015-01-01

    Multiple myeloma (MM), a malignancy of plasma cells, is characterized by widespread genomic heterogeneity and, consequently, differences in disease progression and drug response. Although recent large-scale sequencing studies have greatly improved our understanding of MM genomes, our knowledge about genomic structural variation in MM is attenuated due to the limitations of commonly used sequencing approaches. In this study, we present the application of optical mapping, a single-molecule, whole-genome analysis system, to discover new structural variants in a primary MM genome. Through our analysis, we have identified and characterized widespread structural variation in this tumor genome. Additionally, we describe our efforts toward comprehensive characterization of genome structure and variation by integrating our findings from optical mapping with those from DNA sequencing-based genomic analysis. Finally, by studying this MM genome at two time points during tumor progression, we have demonstrated an increase in mutational burden with tumor progression at all length scales of variation. PMID:26056298

  19. Estimating variation in a landscape simulation of forest structure.

    Treesearch

    S. Hummel; P. Cunningham

    2006-01-01

    Modern technology makes it easy to show how forested landscapes might change with time but it remains difficult to estimate how sampling error affects landscape simulation results. To address this problem we used two methods to project the area in late-sera1 forest (LSF) structure for the same 6070 hectare (ha) study site over 30 years. The site was stratified into...

  20. Variation in the Helical Structure of Native Collagen

    DTIC Science & Technology

    2014-02-24

    domain’. Materials and Methods Fiber Diffraction and Coordinate Data X-ray fiber diffraction data from native, hydrated, rat tail tendon and lamprey ...including helical, structure) from rat tail tendon (collagen type I) and lamprey notochord (collagen type II) show several common features (Figure 5). Of

  1. Radiation safety system (RSS) backbones: Design, engineering, fabrication and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) Backbones are part of an electrical/electronic/mechanical system insuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS Backbones control the safety fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low energy beam transport. The Backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the Backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two Linac Backbone segments and experimental area segments form a continuous cable plant over 3,500 feet from beam plugs to the tip on the longest tail. The Backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  2. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J.E.; Sturrock, J.C.; Gallegos, F.R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely. {copyright} {ital 1998 American Institute of Physics.}

  3. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    SciTech Connect

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-10

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  4. Radiation Safety System (RSS) backbones: Design, engineering, fabrication, and installation

    NASA Astrophysics Data System (ADS)

    Wilmarth, J. E.; Sturrock, J. C.; Gallegos, F. R.

    1998-12-01

    The Radiation Safety System (RSS) backbones are part of an electrical/electronic/mechanical system ensuring safe access and exclusion of personnel to areas at the Los Alamos Neutron Science Center (LANSCE) accelerator. The RSS backbones control the safety-fusible beam plugs which terminate transmission of accelerated ion beams in response to predefined conditions. Any beam or access fault of the backbone inputs will cause insertion of the beam plugs in the low-energy beam transport. The backbones serve the function of tying the beam plugs to the access control systems, beam spill monitoring systems and current-level limiting systems. In some ways the backbones may be thought of as a spinal column with beam plugs at the head and nerve centers along the spinal column. The two linac backbone segments and the experimental area segments form a continuous cable plant over 3500 feet from the beam plugs to the tip on the longest tail. The backbones were installed in compliance with current safety standards, such as installation of the two segments in separate conduits or tray. Monitoring for ground-faults and input wiring verification was an added enhancement to the system. The system has the capability to be tested remotely.

  5. Two worlds collide: Image analysis methods for quantifying structural variation in cluster molecular dynamics

    SciTech Connect

    Steenbergen, K. G.; Gaston, N.

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.

  6. Two worlds collide: image analysis methods for quantifying structural variation in cluster molecular dynamics.

    PubMed

    Steenbergen, K G; Gaston, N

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.

  7. Stereodependent and solvent-specific formation of unusual β-structure through side chain-backbone H-bonding in C4(S)-(NH2 /OH/NHCHO)-L-prolyl polypeptides.

    PubMed

    Bansode, Nitin D; Madhanagopal, B; Sonar, Mahesh V; Ganesh, Krishna N

    2017-01-01

    It is shown that C4(S)-NH2 /OH/NHCHO-prolyl polypeptides exhibit PPII conformation in aqueous medium, but in a relatively hydrophobic solvent trifluoroethanol (TFE) transform into an unusual β-structure. The stereospecific directing effect of H-bonding in defining the specific structure is demonstrated by the absence of β-structure in the corresponding C4(S)-guanidinyl/(NH/O)-acetyl derivatives and retention of β-structure in C4(S)-(NHCHO)-prolyl polypeptides in TFE. The distinct conformations are identified by the characteristic CD patterns and supported by Raman spectroscopic data. The solvent dependent conformational effects are interpreted in terms of intraresidue H-bonding that promotes PPII conformation in water, switching over to interchain H-bonding in TFE. The present observations add a new design principle to the growing repertoire of strategies for engineering peptide secondary structural motifs for innovative nanoassemblies and new biomaterials.

  8. Protein 3D Structure Computed from Evolutionary Sequence Variation

    PubMed Central

    Sheridan, Robert; Hopf, Thomas A.; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing. In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy. We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Cα-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein

  9. Protein 3D structure computed from evolutionary sequence variation.

    PubMed

    Marks, Debora S; Colwell, Lucy J; Sheridan, Robert; Hopf, Thomas A; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α)-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures

  10. Sensitivity of ultracold-atom scattering experiments to variation of the fine-structure constant

    SciTech Connect

    Borschevsky, A.; Beloy, K.; Flambaum, V. V.; Schwerdtfeger, P.

    2011-05-15

    We present numerical calculations for cesium and mercury to estimate the sensitivity of the scattering length to the variation of the fine-structure constant {alpha}. The method used follows the ideas of Chin and Flambaum [Phys. Rev. Lett. 96, 230801 (2006)], where the sensitivity to the variation of the electron-to-proton mass ratio {beta} was considered. We demonstrate that for heavy systems, the sensitivity to the variation of {alpha} is of the same order of magnitude as to the variation of {beta}. Near narrow Feshbach resonances, the enhancement of the sensitivity may exceed nine orders of magnitude.

  11. Genomic structural variations for cardiovascular and metabolic comorbidity

    PubMed Central

    Nazarenko, Maria S.; Sleptcov, Aleksei A.; Lebedev, Igor N.; Skryabin, Nikolay A.; Markov, Anton V.; Golubenko, Maria V.; Koroleva, Iuliia A.; Kazancev, Anton N.; Barbarash, Olga L.; Puzyrev, Valery P.

    2017-01-01

    The objective of this study was to identify genes targeted by both copy number and copy-neutral changes in the right coronary arteries in the area of advanced atherosclerotic plaques and intact internal mammary arteries derived from the same individuals with comorbid coronary artery disease and metabolic syndrome. The artery samples from 10 patients were screened for genomic imbalances using array comparative genomic hybridization. Ninety high-confidence, identical copy number variations (CNVs) were detected. We also identified eight copy-neutral changes (cn-LOHs) > 1.5 Mb in paired arterial samples in 4 of 10 individuals. The frequencies of the two gains located in the 10q24.31 (ERLIN1) and 12q24.11 (UNG, ACACB) genomic regions were evaluated in 33 paired arteries and blood samples. Two patients contained the gain in 10q24.31 (ERLIN1) and one patient contained the gain in 12q24.11 (UNG, ACACB) that affected only the blood DNA. An additional two patients harboured these CNVs in both the arteries and blood. In conclusion, we discovered and confirmed a gain of the 10q24.31 (ERLIN1) and 12q24.11 (UNG, ACACB) genomic regions in patients with coronary artery disease and metabolic comorbidity. Analysis of DNA extracted from blood indicated a possible somatic origin for these CNVs. PMID:28120895

  12. Lateral variations of crustal structure beneath the Indochina Peninsula

    NASA Astrophysics Data System (ADS)

    Yu, Youqiang; Hung, Tran D.; Yang, Ting; Xue, Mei; Liu, Kelly H.; Gao, Stephen S.

    2017-08-01

    Crustal thickness (H) and Vp/Vs (κ) measurements obtained by stacking P-to-S receiver functions recorded at 32 broadband seismic stations covering the Indochina Peninsula reveal systematic spatial variations in crustal properties. Mafic bulk crustal composition as indicated by high κ (>1.81) observations is found to exist along major strike-slip faults and the southern part of the Peninsula, where pervasive basaltic magmatism is found and is believed to be the results of lithospheric thinning associated with the indentation of the Indian into the Eurasian plates. In contrast, crust beneath the Khorat Plateau, which occupies the core of the Indochina Block, has relatively large H values with a mean of 36.9 ± 3 km and small κ measurements with an average of 1.74 ± 0.04, which indicates an overall felsic bulk composition. Those observations for the Khorat Plateau are comparable to the undeformed part of the South China Block. The laterally heterogeneous distribution of crustal properties and its correspondence with indentation-related tectonic features suggest that the Indochina lithosphere is extruded as rigid blocks rather than as a viscous flow.

  13. Variations in the fine-structure constant constraining gravity theories

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.

    2016-08-01

    In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.

  14. Polo-like kinases: structural variations lead to multiple functions.

    PubMed

    Zitouni, Sihem; Nabais, Catarina; Jana, Swadhin Chandra; Guerrero, Adán; Bettencourt-Dias, Mónica

    2014-07-01

    Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.

  15. Themes and variations in riboswitch structure and function

    PubMed Central

    Peselis, Alla; Serganov, Alexander

    2015-01-01

    The complexity of gene expression control by non-coding RNA has been highlighted by the recent progress in the field of riboswitches. Discovered a decade ago, riboswitches represent a diverse group of non-coding mRNA regions that possess a unique ability to directly sense cellular metabolites and modulate gene expression through formation of alternative metabolite-free and metabolite-bound conformations. Such protein-free metabolite sensing domains utilize sophisticated three-dimensional folding of RNA molecules to discriminate between a cognate ligand from related compounds so that only the right ligand would trigger a genetic response. Given the variety of riboswitch ligands ranging from small cations to large coenzymes, riboswitches adopt a great diversity of structures. Although many riboswitches share structural principles to build metabolite-competent folds, form precise ligand-binding pockets, and communicate a ligand-binding event to downstream regulatory regions, virtually all riboswitch classes possess unique features for ligand recognition, even those tuned to recognize the same metabolites. Here we present an overview of the biochemical and structural research on riboswitches with a major focus on common principles and individual characteristics adopted by these regulatory RNA elements during evolution to specifically target small molecules and exert genetic responses. PMID:24583553

  16. Structural Variation in Human Apolipoprotein E3 and E4: Secondary Structure, Tertiary Structure, and Size Distribution

    PubMed Central

    Chou, Chi-Yuan; Lin, Yi-Ling; Huang, Yu-Chyi; Sheu, Sheh-Yi; Lin, Ta-Hsien; Tsay, Huey-Jen; Chang, Gu-Gang; Shiao, Ming-Shi

    2005-01-01

    Human apolipoprotein E (apoE) is a 299-amino-acid protein with a molecular weight of 34 kDa. The difference between the apoE3 and apoE4 isoforms is a single residue substitution involving a Cys-Arg replacement at residue 112. ApoE4 is positively associated with atherosclerosis and late-onset and sporadic Alzheimer's disease (AD). ApoE4 and its C-terminal truncated fragments have been found in the senile plaques and neurofibrillary tangles in the brain of AD patients. However, detail structural information regarding isoform and domain interaction remains poorly understood. We prepared full-length, N-, and C-terminal truncated apoE3 and apoE4 proteins and studied their structural variation. Sedimentation velocity and continuous size distribution analysis using analytical ultracentrifugation revealed apoE372-299 as consisting of a major species with a sedimentation coefficient of 5.9. ApoE472-299 showed a wider and more complicated species distribution. Both apoE3 and E4 N-terminal domain (1–191) existed with monomers as the major component together with some tetramer. The oligomerization and aggregation of apoE protein increased when the C-terminal domain (192–271) was incorporated. The structural influence of the C-terminal domain on apoE is to assist self-association with no significant isoform preference. Circular dichroism and fluorescence studies demonstrated that apoE472-299 possessed a more α-helical structure with more hydrophobic residue exposure. The structural variation of the N-terminal truncated apoE3 and apoE4 protein provides useful information that helps to explain the greater aggregation of the apoE4 isoform and thus has implication for the involvement of apoE4 in AD. PMID:15475580

  17. NMR study of non-structural proteins--part I: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Mayaro virus (MAYV).

    PubMed

    Melekis, Efstathios; Tsika, Aikaterini C; Lichière, Julie; Chasapis, Christos T; Margiolaki, Irene; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-04-01

    Macro domains are ADP-ribose-binding modules present in all eukaryotic organisms, bacteria and archaea. They are also found in non-structural proteins of several positive strand RNA viruses such as alphaviruses. Here, we report the high yield expression and preliminary structural analysis through solution NMR spectroscopy of the macro domain from New World Mayaro Alphavirus. The recombinant protein was well-folded and in a monomeric state. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure determined by TALOS+.

  18. BreakDancer – Identification of Genomic Structural Variation from Paired-End Read Mapping

    PubMed Central

    Fan, Xian; Abbott, Travis E.; Larson, David; Chen, Ken

    2014-01-01

    The advent of the next-generation sequencing data has made it possible to cost-effectively detect and characterize genomic variation in human genomes. Structural variation, including deletion, duplication, insertion, inversion and translocation, is of great importance to human genetics due to its association with many genetic diseases. BreakDancer is a bioinformatics tool that relates paired-end read alignments from a test genome to the reference genome for the purpose of comprehensively and accurately detecting various types of structural variation. PMID:25152801

  19. Mosaic structural variation in children with developmental disorders

    PubMed Central

    King, Daniel A.; Jones, Wendy D.; Crow, Yanick J.; Dominiczak, Anna F.; Foster, Nicola A.; Gaunt, Tom R.; Harris, Jade; Hellens, Stephen W.; Homfray, Tessa; Innes, Josie; Jones, Elizabeth A.; Joss, Shelagh; Kulkarni, Abhijit; Mansour, Sahar; Morris, Andrew D.; Parker, Michael J.; Porteous, David J.; Shihab, Hashem A.; Smith, Blair H.; Tatton-Brown, Katrina; Tolmie, John L.; Trzaskowski, Maciej; Vasudevan, Pradeep C.; Wakeling, Emma; Wright, Michael; Plomin, Robert; Timpson, Nicholas J.; Hurles, Matthew E.

    2015-01-01

    Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2–1.0% of children ascertained for clinical genetic testing. However, the frequency among healthy children in the community is not well characterized, which, if known, could inform better interpretation of the pathogenic burden of this mutational category in children with developmental disorders. In a case–control analysis, we compared the rate of large-scale mosaicism between 1303 children with developmental disorders and 5094 children lacking developmental disorders, using an analytical pipeline we developed, and identified a substantial enrichment in cases (odds ratio = 39.4, P-value 1.073e − 6). A meta-analysis that included frequency estimates among an additional 7000 children with congenital diseases yielded an even stronger statistical enrichment (P-value 1.784e − 11). In addition, to maximize the detection of low-clonality events in probands, we applied a trio-based mosaic detection algorithm, which detected two additional events in probands, including an individual with genome-wide suspected chimerism. In total, we detected 12 structural mosaic abnormalities among 1303 children (0.9%). Given the burden of mosaicism detected in cases, we suspected that many of the events detected in probands were pathogenic. Scrutiny of the genotypic–phenotypic relationship of each detected variant assessed that the majority of events are very likely pathogenic. This work quantifies the burden of structural mosaicism as a cause of developmental disorders. PMID:25634561

  20. Phylogenetic community structure: temporal variation in fish assemblage.

    PubMed

    Santorelli, Sergio; Magnusson, William; Ferreira, Efrem; Caramaschi, Erica; Zuanon, Jansen; Amadio, Sidnéia

    2014-06-01

    Hypotheses about phylogenetic relationships among species allow inferences about the mechanisms that affect species coexistence. Nevertheless, most studies assume that phylogenetic patterns identified are stable over time. We used data on monthly samples of fish from a single lake over 10 years to show that the structure in phylogenetic assemblages varies over time and conclusions depend heavily on the time scale investigated. The data set was organized in guild structures and temporal scales (grouped at three temporal scales). Phylogenetic distance was measured as the mean pairwise distances (MPD) and as mean nearest-neighbor distance (MNTD). Both distances were based on counts of nodes. We compared the observed values of MPD and MNTD with values that were generated randomly using null model independent swap. A serial runs test was used to assess the temporal independence of indices over time. The phylogenetic pattern in the whole assemblage and the functional groups varied widely over time. Conclusions about phylogenetic clustering or dispersion depended on the temporal scales. Conclusions about the frequency with which biotic processes and environmental filters affect the local assembly do not depend only on taxonomic grouping and spatial scales. While these analyzes allow the assertion that all proposed patterns apply to the fish assemblages in the floodplain, the assessment of the relative importance of these processes, and how they vary depending on the temporal scale and functional group studied, cannot be determined with the effort commonly used. It appears that, at least in the system that we studied, the assemblages are forming and breaking continuously, resulting in various phylogeny-related structures that makes summarizing difficult.

  1. Phylogenetic community structure: temporal variation in fish assemblage

    PubMed Central

    Santorelli, Sergio; Magnusson, William; Ferreira, Efrem; Caramaschi, Erica; Zuanon, Jansen; Amadio, Sidnéia

    2014-01-01

    Hypotheses about phylogenetic relationships among species allow inferences about the mechanisms that affect species coexistence. Nevertheless, most studies assume that phylogenetic patterns identified are stable over time. We used data on monthly samples of fish from a single lake over 10 years to show that the structure in phylogenetic assemblages varies over time and conclusions depend heavily on the time scale investigated. The data set was organized in guild structures and temporal scales (grouped at three temporal scales). Phylogenetic distance was measured as the mean pairwise distances (MPD) and as mean nearest-neighbor distance (MNTD). Both distances were based on counts of nodes. We compared the observed values of MPD and MNTD with values that were generated randomly using null model independent swap. A serial runs test was used to assess the temporal independence of indices over time. The phylogenetic pattern in the whole assemblage and the functional groups varied widely over time. Conclusions about phylogenetic clustering or dispersion depended on the temporal scales. Conclusions about the frequency with which biotic processes and environmental filters affect the local assembly do not depend only on taxonomic grouping and spatial scales. While these analyzes allow the assertion that all proposed patterns apply to the fish assemblages in the floodplain, the assessment of the relative importance of these processes, and how they vary depending on the temporal scale and functional group studied, cannot be determined with the effort commonly used. It appears that, at least in the system that we studied, the assemblages are forming and breaking continuously, resulting in various phylogeny-related structures that makes summarizing difficult. PMID:25360256

  2. Temporal variation in the mating structure of Sanday, Orkney Islands.

    PubMed

    Brennan, E R; Relethford, J H

    1983-01-01

    Pedigree and vital statistics data from the population of Sanday, Orkney Islands, Scotland, were used to assess temporal changes in population structure. Secular trends in patterns of mate choice were analysed for three separate birth cohorts of spouses: 1855-1884, 1885-1924 and 1925-1964. The degree to which mating was random or assortative with respect to both genealogical and geographic distance was determined by comparing average characteristics of all potential mates of married males with those of actual wives. We integrated this procedure, originally developed by Dyke (1971), into a three-fold investigation of population structure: (1) comparison of random and non-random components of relatedness as measured from pedigree data; (2) an analysis of marital distance distributions for actual and potential mates of married males; and (3) the relationship between genealogical relatedness and geographic distance. As population size decreased from 1881 to the present, total kinship and spatial distances between spouses increased. Whereas the random component of relatedness increased over time, consanguinity avoidance was sufficient to decrease the total coefficient of kinship over time. Part of the increase in consanguinity avoidance was associated with isolate breakdown, as distances between island-born spouses, as well as the total amount of off-island migration, increased from the mid-nineteenth century to the present. Mate choice was influenced by geographic distance for all time periods, although this effect diminished over time. Since decreases in population size, concomitant with increases in consanguinity avoidance and community exogamy, have probably occurred quite frequently in small human populations, as well as in rural Western communities in the past century, observed secular trends illustrate the potential for change in population structure characteristic of isolate breakdown.

  3. Mosaic structural variation in children with developmental disorders.

    PubMed

    King, Daniel A; Jones, Wendy D; Crow, Yanick J; Dominiczak, Anna F; Foster, Nicola A; Gaunt, Tom R; Harris, Jade; Hellens, Stephen W; Homfray, Tessa; Innes, Josie; Jones, Elizabeth A; Joss, Shelagh; Kulkarni, Abhijit; Mansour, Sahar; Morris, Andrew D; Parker, Michael J; Porteous, David J; Shihab, Hashem A; Smith, Blair H; Tatton-Brown, Katrina; Tolmie, John L; Trzaskowski, Maciej; Vasudevan, Pradeep C; Wakeling, Emma; Wright, Michael; Plomin, Robert; Timpson, Nicholas J; Hurles, Matthew E

    2015-05-15

    Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2-1.0% of children ascertained for clinical genetic testing. However, the frequency among healthy children in the community is not well characterized, which, if known, could inform better interpretation of the pathogenic burden of this mutational category in children with developmental disorders. In a case-control analysis, we compared the rate of large-scale mosaicism between 1303 children with developmental disorders and 5094 children lacking developmental disorders, using an analytical pipeline we developed, and identified a substantial enrichment in cases (odds ratio = 39.4, P-value 1.073e - 6). A meta-analysis that included frequency estimates among an additional 7000 children with congenital diseases yielded an even stronger statistical enrichment (P-value 1.784e - 11). In addition, to maximize the detection of low-clonality events in probands, we applied a trio-based mosaic detection algorithm, which detected two additional events in probands, including an individual with genome-wide suspected chimerism. In total, we detected 12 structural mosaic abnormalities among 1303 children (0.9%). Given the burden of mosaicism detected in cases, we suspected that many of the events detected in probands were pathogenic. Scrutiny of the genotypic-phenotypic relationship of each detected variant assessed that the majority of events are very likely pathogenic. This work quantifies the burden of structural mosaicism as a cause of developmental disorders. © The Author 2015. Published by Oxford University Press.

  4. Effects of Protein Stabilizing Agents on Thermal Backbone Motions: A Disulfide Trapping Study†

    PubMed Central

    Butler, Scott L.; Falke, Joseph J.

    2010-01-01

    Chemical stabilizers are widely used to enhance protein stability, both in nature and in the laboratory. Here, the molecular mechanism of chemical stabilizers is studied using a disulfide trapping assay to measure the effects of stabilizers on thermal backbone dynamics in the Escherichia coli galactose/glucose binding protein. Two types of backbone fluctuations are examined: (a) relative movements of adjacent surface α-helices within the same domain and (b) interdomain twisting motions. Both types of fluctuations are significantly reduced by all six stabilizers tested (glycerol, sucrose, trehalose, l-glucose, d-glucose, and d-galactose), and in each case larger amplitude motions are inhibited more than smaller ones. Motional inhibition does not require a high-affinity stabilizer binding site, indicating that the effects of stabilizers are nonspecific. Overall, the results support the theory that effective stabilizing agents act by favoring the most compact structure of a protein, thereby reducing local backbone fluctuations away from the fully folded state. Such inhibition of protein backbone dynamics may be a general mechanism of protein stabilization in extreme thermal or chemical environments. PMID:8718847

  5. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    PubMed

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  6. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes

    PubMed Central

    Sharp, Kim A.; O’Brien, Evan; Kasinath, Vignesh; Wand, A. Joshua

    2015-01-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O2NH) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O2NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O2axis. A calibration curve for backbone entropy vs. O2NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O2NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O2axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. PMID:25739366

  7. Dead-End Elimination with Perturbations (“DEEPer”): A provable protein design algorithm with continuous sidechain and backbone flexibility

    PubMed Central

    Hallen, Mark A.; Keedy, Daniel A.; Donald, Bruce R.

    2012-01-01

    Computational protein and drug design generally require accurate modeling of protein conformations. This modeling typically starts with an experimentally-determined protein structure and considers possible conformational changes due to mutations or new ligands. The DEE/A* algorithm provably finds the GMEC (global minimum-energy conformation) of a protein assuming the backbone does not move and the sidechains take on conformations from a set of discrete, experimentally-observed conformations called rotamers. DEE/A* can efficiently find the overall GMEC for exponentially many mutant sequences. Previous improvements to DEE/A* include modeling ensembles of sidechain conformations and either continuous sidechain or backbone flexibility. We present a new algorithm, DEEPer (Dead-End Elimination with Perturbations), that combines these advantages and can also handle much more extensive backbone flexibility and backbone ensembles. DEEPer provably finds the GMEC or, if desired by the user, all conformations and sequences within a specified energy window of the GMEC. It includes the new abilities to handle arbitrarily large backbone perturbations and to generate ensembles of backbone conformations. It also incorporates the shear, an experimentally-observed local backbone motion never before used in design. Additionally, we derive a new method to accelerate DEE/A*-based calculations, indirect pruning, that is particularly useful for DEEPer. In 67 benchmark tests on 64 proteins, DEEPer consistently identified lower-energy conformations than previous methods did, indicating more accurate modeling. Additional tests demonstrated its ability to incorporate larger, experimentally-observed backbone conformational changes and to model realistic conformational ensembles. These capabilities provide significant advantages for modeling protein mutations and protein-ligand interactions. PMID:22821798

  8. [Influence of anatomic variations of the structures of the middle nasal meatus on sinonasal diseases].

    PubMed

    Buljcik-Cupić, Maja M; Savović, Slobodan N; Jovićević, Jasna S

    2008-01-01

    The most common anatomic variations of the structures of the middle nasal meatus are variations of agger nasi cells, variations of the middle turbinate, variations of uncinate process, variations of the ethmoidal bulla, deviations and deformations of nasal septum in the region of the middle nasal meatus, Haller's cell (orbitoethmoidal) and Onodi's cell (sphenoethmoidal cell). In 1997, the Otorhinolaryngology-Head Neck Surgery, Task Force on Chronic Rhinosinusitis defined chronic sinusitis and nasal disease initially by including sinusitis and rhinitis with one term-chronic rhinosinusitis. This was done because it was apparent to many that nasal disoders often affected the sinuses, and vice versa. Also they established baseline parameters, major and minor signs and symptoms, for definition of rhinosinusitis. Two major factors or one major factor and two minor factors constitute a strong history for rhinosinusitis. The following methods were used in the study: 1. Anamnestic data processing about: disease symptoms that were recognized by American Academy for ENT as major and minor criteria in diagnosing nosinusitis; the duration of symptoms; the kind of sinonasal disorder and the secondary disorders. 2. Data processing obtained by anterior/posterior rhinoscopy. 3. Data processing obtained by endoscopic examination. 4. Data processing obtained by CT of paranasal cavities and the nose. The data about anatomic variations were statistically processed by Eives's correlation coefficient that indicates the degree of correlation between sinonasal disorders and anatomic variation. By analyzing the obtained data in the examined patients with sinonasal disorders, anatomic variations were present in over 50% of the patients and are defined by percentage. 1. The deviation of nasal septum in 83.33% patients. 2. The variations of the form of the middle nasal chonha in 58.92% patients. 3. The presence of agger nasi cells in 50% patients. 4. Variations of the form of ethomoidal bulla

  9. Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL).

    PubMed

    Subramaniam, Sabareesh; Senes, Alessandro

    2014-11-01

    Side chain optimization is an integral component of many protein modeling applications. In these applications, the conformational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations. Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an innovative method to create a conformer library with enhanced performance. The Energy-based Library (EBL) was obtained by analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accommodate a side chain. Because the method requires a large crystallographic data-set, the EBL was created in a backbone-independent fashion. However, it is well established that side chain conformation is strongly dependent on the local backbone geometry, and that backbone-dependent libraries are more efficient in side chain optimization. Here we present the backbone-dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran space. The resulting library closely mirrors the local backbone-dependent distribution of side chain conformation. Compared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes, thus further improving performance with respect to the already efficient backbone-independent version of the library.

  10. Genetic Variation and Population Structure in Native Americans

    PubMed Central

    Ramachandran, Sohini; Ray, Nicolas; Bedoya, Gabriel; Rojas, Winston; Parra, Maria V; Molina, Julio A; Gallo, Carla; Mazzotti, Guido; Poletti, Giovanni; Hill, Kim; Hurtado, Ana M; Labuda, Damian; Klitz, William; Barrantes, Ramiro; Bortolini, Maria Cátira; Salzano, Francisco M; Petzl-Erler, Maria Luiza; Tsuneto, Luiza T; Llop, Elena; Rothhammer, Francisco; Excoffier, Laurent; Feldman, Marcus W; Rosenberg, Noah A; Ruiz-Linares, Andrés

    2007-01-01

    We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians—signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas. PMID:18039031

  11. Insurer market structure and variation in commercial health care spending.

    PubMed

    McKellar, Michael R; Naimer, Sivia; Landrum, Mary B; Gibson, Teresa B; Chandra, Amitabh; Chernew, Michael

    2014-06-01

    To examine the relationship between insurance market structure and health care prices, utilization, and spending. Claims for 37.6 million privately insured employees and their dependents from the Truven Health Market Scan Database in 2009. Measures of insurer market structure derived from Health Leaders Inter study data. Regression models are used to estimate the association between insurance market concentration and health care spending, utilization, and price, adjusting for differences in patient characteristics and other market-level traits. Insurance market concentration is inversely related to prices and spending, but positively related to utilization. Our results imply that, after adjusting for input price differences, a market with two equal size insurers is associated with 3.9 percent lower medical care spending per capita (p = .002) and 5.0 percent lower prices for health care services relative to one with three equal size insurers (p < .001). Greater fragmentation in the insurance market might lead to higher prices and higher spending for care, suggesting some of the gains from insurer competition may be absorbed by higher prices for health care. Greater attention to prices and utilization in the provider market may need to accompany procompetitive insurance market strategies. © Health Research and Educational Trust.

  12. Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.

    PubMed

    Pausch, Patrick; Müller-Esparza, Hanna; Gleditzsch, Daniel; Altegoer, Florian; Randau, Lennart; Bange, Gert

    2017-08-17

    CRISPR-Cas systems are prokaryotic immune systems against invading nucleic acids. Type I CRISPR-Cas systems employ highly diverse, multi-subunit surveillance Cascade complexes that facilitate duplex formation between crRNA and complementary target DNA for R-loop formation, retention, and DNA degradation by the subsequently recruited nuclease Cas3. Typically, the large subunit recognizes bona fide targets through the PAM (protospacer adjacent motif), and the small subunit guides the non-target DNA strand. Here, we present the Apo- and target-DNA-bound structures of the I-Fv (type I-F variant) Cascade lacking the small and large subunits. Large and small subunits are functionally replaced by the 5' terminal crRNA cap Cas5fv and the backbone protein Cas7fv, respectively. Cas5fv facilitates PAM recognition from the DNA major groove site, in contrast to all other described type I systems. Comparison of the type I-Fv Cascade with an anti-CRISPR protein-bound I-F Cascade reveals that the type I-Fv structure differs substantially at known anti-CRISPR protein target sites and might therefore be resistant to viral Cascade interception. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella.

    PubMed

    Crowhurst, Karin A; Horn, James V C; Weers, Paul M M

    2016-04-01

    Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain (1)H, (13)C and (15)N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein.

  14. LINE-1 Elements in Structural Variation and Disease

    PubMed Central

    Beck, Christine R.; Garcia-Perez, José Luis; Badge, Richard M.; Moran, John V.

    2014-01-01

    The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes. PMID:21801021

  15. Uranus' Vertical Haze Structure and its Variation with Latitude

    NASA Astrophysics Data System (ADS)

    Tomasko, Martin

    1997-07-01

    We propose to image Uranus in 27 filters between 220 and 2100 nm wavelength. The wide wavelength range allows determination of aerosol sizes and spectral characteristics superior to previous work. Some of the filters are in methane absorption bands with methane absorption coefficients spanning a factor of 1000, which probe very different altitude layers in Uranus' atmosphere. HST's spatial resolution gives accurate canter-to -limb information for each latitude band, which strongly constrains models of Uranus' vertical haze structure. Our analyzed images of Uranus of Cycle 5 show high albedo contrasts in latitude, but the wavelength coverage of these images was not sufficient. These observations yielded unexpected results on the photometric properties of Uranian rings and satellites. Open questions about the phase function of these objects near zero degree and about their spectral characteristics over an expanded wavelength region can be answered by the proposed observations.

  16. LINE-1 elements in structural variation and disease.

    PubMed

    Beck, Christine R; Garcia-Perez, José Luis; Badge, Richard M; Moran, John V

    2011-01-01

    The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes.

  17. Population Structure Shapes Copy Number Variation in Malaria Parasites

    PubMed Central

    Cheeseman, Ian H.; Miller, Becky; Tan, John C.; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C.; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H.; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J.; Nosten, François; Ferdig, Michael T.; Anderson, Tim J. C.

    2016-01-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. PMID:26613787

  18. Population Structure Shapes Copy Number Variation in Malaria Parasites.

    PubMed

    Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C

    2016-03-01

    If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen.

  19. A backbone lever-arm effect enhances polymer mechanochemistry.

    PubMed

    Klukovich, Hope M; Kouznetsova, Tatiana B; Kean, Zachary S; Lenhardt, Jeremy M; Craig, Stephen L

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.

  20. A backbone lever-arm effect enhances polymer mechanochemistry

    NASA Astrophysics Data System (ADS)

    Klukovich, Hope M.; Kouznetsova, Tatiana B.; Kean, Zachary S.; Lenhardt, Jeremy M.; Craig, Stephen L.

    2013-02-01

    Mechanical forces along a polymer backbone can be used to bring about remarkable reactivity in embedded mechanically active functional groups, but little attention has been paid to how a given polymer backbone delivers that force to the reactant. Here, single-molecule force spectroscopy was used to directly quantify and compare the forces associated with the ring opening of gem-dibromo and gem-dichlorocyclopropanes affixed along the backbone of cis-polynorbornene and cis-polybutadiene. The critical force for isomerization drops by about one-third in the polynorbornene scaffold relative to polybutadiene. The root of the effect lies in more efficient chemomechanical coupling through the polynorbornene backbone, which acts as a phenomenological lever with greater mechanical advantage than polybutadiene. The experimental results are supported computationally and provide the foundation for a new strategy by which to engineer mechanochemical reactivity.

  1. Hash: a Program to Accurately Predict Protein Hα Shifts from Neighboring Backbone Shifts3

    PubMed Central

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    2012-01-01

    Chemical shifts provide not only peak identities for analyzing NMR data, but also an important source of conformational information for studying protein structures. Current structural studies requiring Hα chemical shifts suffer from the following limitations. (1) For large proteins, the Hα chemical shifts can be difficult to assign using conventional NMR triple-resonance experiments, mainly due to the fast transverse relaxation rate of Cα that restricts the signal sensitivity. (2) Previous chemical shift prediction approaches either require homologous models with high sequence similarity or rely heavily on accurate backbone and side-chain structural coordinates. When neither sequence homologues nor structural coordinates are available, we must resort to other information to predict Hα chemical shifts. Predicting accurate Hα chemical shifts using other obtainable information, such as the chemical shifts of nearby backbone atoms (i.e., adjacent atoms in the sequence), can remedy the above dilemmas, and hence advance NMR-based structural studies of proteins. By specifically exploiting the dependencies on chemical shifts of nearby backbone atoms, we propose a novel machine learning algorithm, called Hash, to predict Hα chemical shifts. Hash combines a new fragment-based chemical shift search approach with a non-parametric regression model, called the generalized additive model, to effectively solve the prediction problem. We demonstrate that the chemical shifts of nearby backbone atoms provide a reliable source of information for predicting accurate Hα chemical shifts. Our testing results on different possible combinations of input data indicate that Hash has a wide rage of potential NMR applications in structural and biological studies of proteins. PMID:23242797

  2. Side-chain and backbone ordering in a polypeptide.

    PubMed

    Wei, Yanjie; Nadler, Walter; Hansmann, Ulrich H E

    2006-10-28

    We report results from multicanonical simulations of polyglutamic acid chains of length of ten residues. For this simple polypeptide we observe a decoupling of backbone and side-chain ordering in the folding process. While the details of the two transitions vary between the peptide in gas phase and in an implicit solvent, our results indicate that, independent of the specific surroundings, upon continuously lowering the temperature side-chain ordering occurs only after the backbone topology is completely formed.

  3. Spatial variation of phytoplankton community structure in Daya Bay, China.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Zhang, Jian-Dong; Fei, Jiao

    2015-10-01

    Daya Bay is one of the largest and most important gulfs in the southern coast of China, in the northern part of the South China Sea. The phylogenetic diversity and spatial distribution of phytoplankton from the Daya Bay surface water and the relationship with the in situ water environment were investigated by the clone library of the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) gene. The dominant species of phytoplankton were diatoms and eustigmatophytes, which accounted for 81.9 % of all the clones of the rbcL genes. Prymnesiophytes were widely spread and wide varieties lived in Daya Bay, whereas the quantity was limited. The community structure of phytoplankton was shaped by pH and salinity and the concentration of silicate, phosphorus and nitrite. The phytoplankton biomass was significantly positively affected by phosphorus and nitrite but negatively by salinity and pH. Therefore, the phytoplankton distribution and biomass from Daya Bay were doubly affected by anthropic activities and natural factors.

  4. Population-based structural variation discovery with Hydra-Multi.

    PubMed

    Lindberg, Michael R; Hall, Ira M; Quinlan, Aaron R

    2015-04-15

    Current strategies for SNP and INDEL discovery incorporate sequence alignments from multiple individuals to maximize sensitivity and specificity. It is widely accepted that this approach also improves structural variant (SV) detection. However, multisample SV analysis has been stymied by the fundamental difficulties of SV calling, e.g. library insert size variability, SV alignment signal integration and detecting long-range genomic rearrangements involving disjoint loci. Extant tools suffer from poor scalability, which limits the number of genomes that can be co-analyzed and complicates analysis workflows. We have developed an approach that enables multisample SV analysis in hundreds to thousands of human genomes using commodity hardware. Here, we describe Hydra-Multi and measure its accuracy, speed and scalability using publicly available datasets provided by The 1000 Genomes Project and by The Cancer Genome Atlas (TCGA). Hydra-Multi is written in C++ and is freely available at https://github.com/arq5x/Hydra. aaronquinlan@gmail.com or ihall@genome.wustl.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  5. Experimental investigation of crustacean swimming with variation of limb structures

    NASA Astrophysics Data System (ADS)

    Lai, Hong Kuan; Samaee, Milad; Donnell, Geoffrey; Santhanakrishnan, Arvind; Guy, Robert; Lewis, Timothy

    2015-11-01

    Crustaceans such as crayfish and krill swim by rhythmically paddling a set of four to five limbs (known as swimmerets or pleopods) originating from their abdomen. The limb motion in these animals has been observed to follow tail-to-head metachronal wave pattern with an approximate quarter-period inter-limb phase difference. The goal of this study is to investigate the hydrodynamics of this swimming mechanism as a function of inter-limb phase difference, inclusion of hinges in the limbs, and Reynolds number (Re). 2D PIV measurements were conducted on a scaled robotic model of metachronal paddling, consisting of a rectangular tank fitted with stepper motors coupled to a four-bar linkage that actuated four paddles immersed in water-glycerin fluid medium. The inter-limb phase difference was varied from 0% (synchronous paddling) through 50% across Re range of O(10-1000). Two types of limb models were used, including a simple flat plate and a `split-paddle' structure with two flat plates connected halfway with hinges. The results of the study show that limb models with hinges generated increased horizontal (thrust-producing direction) fluid velocity compared to the simple flat plate paddles, suggesting that asymmetry between power and return strokes is important to augment thrust.

  6. Human loci involved in drug biotransformation: worldwide genetic variation, population structure, and pharmacogenetic implications.

    PubMed

    Maisano Delser, Pierpaolo; Fuselli, Silvia

    2013-05-01

    Understanding the role of inheritance in individual variation in drug response is the focus of pharmacogenetics (PGx). A key part of this understanding is quantifying the role of genetic ancestry in this phenotypic outcome. To provide insight into the relationship between ethnicity and drug response, this study first infers the global distribution of PGx variation and defines its structure. Second, the study evaluates if geographic population structure stems from all PGx loci in general, or if structure is caused by specific genes. Lastly, we identify the genetic variants contributing the greatest proportion of such structure. Our study describes the global genetic structure of PGx loci across the 52 populations of the Human Genome Diversity Cell-Line Panel, the most inclusive set of human populations freely available for studies on human genetic variation. By analysing genetic variation at 1,001 single nucleotide polymorphisms (SNPs) involved in biotransformation of exogenous substances, we describe the between-populations PGx variation, as well geographical groupings of diversity. In addition, with discriminant analysis of principal component (DAPC), we infer how many and which groups of populations are supported by PGx variation, and identify which SNPs actually contribute to the PGx structure between such groups. Our results show that intergenic, synonymous and non-synonymous SNPs show similar levels of genetic variation across the globe. Conversely, loci coding for Cytochrome P450s (mainly metabolizing exogenous substances) show significantly higher levels of genetic diversity between populations than the other gene categories. Overall, genetic variation at PGx loci correlates with geographic distances between populations, and the apportionment of genetic variation is similar to that observed for the rest of the genome. In other words, the pattern of PGx variation has been mainly shaped by the demographic history of our species, as in the case of most of our

  7. Surgical anatomy and morphologic variations of umbilical structures.

    PubMed

    Fathi, Amir H; Soltanian, Hooman; Saber, Alan A

    2012-05-01

    The umbilicus is the main access route to the abdominal cavity in laparoscopic surgeries. However, its anatomical configuration is rarely studied in the surgical and anatomical literature. With introduction of laparoendoscopic single-site surgery and considering the significant number of primary and postoperative umbilical hernias, we felt the necessity to comprehensively study the umbilical structures and analyze their protective function against hernias. Twenty-four embalmed cadavers were studied in the anatomy laboratory of Case Western Reserve University. Round hepatic, median and medial ligaments, umbilical ring, umbilical and umbilicovesicular fasciae, and pattern of attachment to the ring were dissected and measured. Mean age was 82.1 years, ranging between 56 and 96 years, with a male-to-female ratio of 1.4:1. Ninety-two per cent was white and 8 per cent black adults. According to shape and attachment pattern of ligaments, umbilical ring is classified into five types. Hernia incidence was 25 per cent. All hernia cases lacked the umbilical fascia and the round hepatic ligament was not attached to the inferior border of the ring. The umbilical ring and its morphologic relation with adjacent ligaments are described and classified into five types. In contrary to sparse existing literature, we propose that umbilical fascia is continuation and condensation of umbilicovesicular rather than transversalis fascia. It was absent in cadavers forming conjoined median and medial ligaments with a single insertion site to the ring. Round ligament insertion to the inferior border of the ring provides another protective factor. These two protective measures were absent in all the observed umbilical hernias.

  8. Calculus structure on the Lie conformal algebra complex and the variational complex

    SciTech Connect

    De Sole, Alberto; Hekmati, Pedram; Kac, Victor G.

    2011-05-15

    We construct a calculus structure on the Lie conformal algebra cochain complex. By restricting to degree one chains, we recover the structure of a g-complex introduced in [A. De Sole and V. G. Kac, Commun. Math. Phys. 292, 667 (2009)]. A special case of this construction is the variational calculus, for which we provide explicit formulas.

  9. Towards Structural Analysis of Audio Recordings in the Presence of Musical Variations

    NASA Astrophysics Data System (ADS)

    Müller, Meinard; Kurth, Frank

    2006-12-01

    One major goal of structural analysis of an audio recording is to automatically extract the repetitive structure or, more generally, the musical form of the underlying piece of music. Recent approaches to this problem work well for music, where the repetitions largely agree with respect to instrumentation and tempo, as is typically the case for popular music. For other classes of music such as Western classical music, however, musically similar audio segments may exhibit significant variations in parameters such as dynamics, timbre, execution of note groups, modulation, articulation, and tempo progression. In this paper, we propose a robust and efficient algorithm for audio structure analysis, which allows to identify musically similar segments even in the presence of large variations in these parameters. To account for such variations, our main idea is to incorporate invariance at various levels simultaneously: we design a new type of statistical features to absorb microvariations, introduce an enhanced local distance measure to account for local variations, and describe a new strategy for structure extraction that can cope with the global variations. Our experimental results with classical and popular music show that our algorithm performs successfully even in the presence of significant musical variations.

  10. Interspecific variation in mitochondrial serine transfer RNA (UCN) in Euptychiina butterflies (Lepidoptera: Satyrinae): structure and alignment.

    PubMed

    Marín, Mario Alejandro; López, Andrés; Uribe, Sandra Inés

    2012-06-01

    The nucleotide variation and structural patterns of mitochondrial RNA molecule have been proposed as useful tools in molecular systematics; however, their usefulness is always subject to a proper assessment of homology in the sequence alignment. The present study describes the secondary structure of mitochondrial tRNA for the amino acid serine (UCN) on 13 Euptychiina species and the evaluation of its potential use for evolutionary studies in this group of butterflies. The secondary structure of tRNAs showed variation among the included species except between Hermeuptychia sp1 and sp2. Variation was concentrated in the ribotimidina-pseudouridine-cystosine (TψC), dihydrouridine (DHU) and variable loops and in the DHU and TψC arms. These results suggest this region as a potential marker useful for taxonomic differentiation of species in this group and also confirm the importance of including information from the secondary structure of tRNA to optimize the alignments.

  11. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  12. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    PubMed Central

    Shen, Yang; Bax, Ad

    2013-01-01

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥ 90% fraction of the residues, with an error rate smaller than ca 3.5%, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (φ,ψ) torsion angles of ca 12°. TALOS-N also reports sidechain χ1 rotameric states for about 50% of the residues, and a consistency with reference structures of 89%. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts. PMID:23728592

  13. Backbone of complex networks of corporations: The flow of control

    NASA Astrophysics Data System (ADS)

    Glattfelder, J. B.; Battiston, S.

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  14. Backbone of complex networks of corporations: the flow of control.

    PubMed

    Glattfelder, J B; Battiston, S

    2009-09-01

    We present a methodology to extract the backbone of complex networks based on the weight and direction of links, as well as on nontopological properties of nodes. We show how the methodology can be applied in general to networks in which mass or energy is flowing along the links. In particular, the procedure enables us to address important questions in economics, namely, how control and wealth are structured and concentrated across national markets. We report on the first cross-country investigation of ownership networks, focusing on the stock markets of 48 countries around the world. On the one hand, our analysis confirms results expected on the basis of the literature on corporate control, namely, that in Anglo-Saxon countries control tends to be dispersed among numerous shareholders. On the other hand, it also reveals that in the same countries, control is found to be highly concentrated at the global level, namely, lying in the hands of very few important shareholders. Interestingly, the exact opposite is observed for European countries. These results have previously not been reported as they are not observable without the kind of network analysis developed here.

  15. Along-trench structural variation and seismic coupling in the northern Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Fujie, Gou; Miura, Seiichi; Kodaira, Shuichi; Kaneda, Yoshiyuki; Shinohara, Masanao; Mochizuki, Kimihiro; Kanazawa, Toshihiko; Murai, Yoshio; Hino, Ryota; Sato, Toshinori; Uehira, Kenji

    2013-02-01

    Large destructive interplate earthquakes, such as the 2011 M w 9.0 Tohoku-oki earthquake, have occurred repeatedly in the northern Japan subduction zone. The spatial distribution of large interplate earthquakes shows distinct along-trench variations, implying regional variations in interplate coupling. We conducted an extensive wide-angle seismic survey to elucidate the along-trench variation in the seismic structure of the forearc and to examine structural factors affecting the interplate coupling beneath the forearc mantle wedge. Seismic structure models derived from wide-angle traveltimes showed significant along-trench variation within the overlying plate. In a weakly coupled segment, (i) the sediment layer was thick and flat, (ii) the forearc upper crust was extremely thin, (iii) the forearc Moho was remarkably shallow (about 5 km), and (iv) the P-wave velocity within the forearc mantle wedge was low, whereas in the strongly coupled segments, opposite conditions were found. The good correlation between the seismic structure and the segmentation of the interplate coupling implies that variations in the forearc structure are closely related to those in the interplate coupling.

  16. Genotypic variation in foundation species generates network structure that may drive community dynamics and evolution.

    PubMed

    Lau, Matthew K; Keith, Arthur R; Borrett, Stuart R; Shuster, Stephen M; Whitham, Thomas G

    2016-03-01

    Although genetics in a single species is known to impact whole communities, little is known about how genetic variation influences species interaction networks in complex ecosystems. Here, we examine the interactions in a community of arthropod species on replicated genotypes (clones) of a foundation tree species, Populus angustifolia James (narrowleaf cottonwood), in a long-term, common garden experiment using a bipartite "genotype-species" network perspective. We combine this empirical work with a simulation experiment designed to further investigate how variation among individual tree genotypes can impact network structure. Three findings emerged: (1) the empirical "genotype-species network" exhibited significant network structure with modularity being greater than the highly conservative null model; (2) as would be expected given a modular network structure, the empirical network displayed significant positive arthropod co-occurrence patterns; and (3) furthermore, the simulations of "genotype-species" networks displayed variation in network structure, with modularity in particular clearly increasing, as genotypic variation increased. These results support the conclusion that genetic variation in a single species contributes to the structure of ecological interaction networks, which could influence eco-ogical dynamics (e.g., assembly and stability) and evolution in a community context.

  17. A simple model for the band structure and D.C. conductivity of an infinite C dbond O···H bond N chain perpendicular to the protein backbone

    NASA Astrophysics Data System (ADS)

    Bende, Attila; Bogár, Ferenc; Ladik, János

    The1 Hartree-Fock crystal orbital (CO) method in its linear combination of atomic orbitals form was applied to determine the band structure of histone proteins taking 0.041e charge transfer per nucleotide base from the PO4- groups of poly(guanilic acid) to the arginine, and lysine side chains in histones (see text). Assuming that there are infinite COs, perpendicular to the main chain, formed by the amide groups of one segment of the protein chain bound together by H-bonds with the C dbond O groups of another segment of the chain, we have calculated the band structure. From this, we have determined the mobility using the deformation potential approximation. Multiplying this with the mobile electron concentration due to the charge transfer between the PO4- groups of DNA and the positive side chains in histones, we have obtained for the direct current (D.C.) electron conductivity sigmafib = 1.07 × 10-9 Omega-1 cm for a single fiber and after division by the cross-section of 9.10 × 10-16 cm2, sigmaspec = 1.18 × 106 Omega-1 cm-1 for the specific conductivity.

  18. Territory size variation in the ovenbird: the role of habitat structure. [Seiurus aurocapillus

    SciTech Connect

    Smith, T.M.; Shugart, H.H.

    1987-06-01

    The hypothesis that structural habitat cues are the proximate factor determining territory size was tested by examining the relationships among habitat structure, prey abundance, and intrapopulation variation in territory size in Ovenbirds (Seiurus aurocapillus). Territory size was negatively correlated with prey abundance, with territory size decreasing as prey abundance per unit area increased. In addition, there was a significant difference in prey abundance per unit area between territory sites and areas of the study site not occupied by ovenbirds. A regression of prey abundance with variables describing the habitat structure of territory sites was significant, with habitat structure accounting for 73% of the variation in prey abundance among territories. This regression analysis, in combination with an additional discriminant function analysis of habitat occupancy, suggested a gradient of habitat quality as a function of vegetation structure that is related to both habitat selection and variation in territory size. To determine the possible mechanisms responsible for the inverse relationship between prey abundance and territory size, several hypotheses were considered. A partial correlation analysis of territory size with prey abundance and predicted prey abundance supported a structural cues hypothesis, with variation in territory size being related to structural features of the habitat rather than prey abundance per se.

  19. Temporal variations in internal tide multimodal structure on the continental shelf, South China Sea

    NASA Astrophysics Data System (ADS)

    Gao, Dalu; Jin, Guangzhen; Lü, Xianqing

    2017-01-01

    Temporal variations in multimodal structures of diurnal ( D 1) and semidiurnal ( D 2) internal tides were investigated on the continental slope of the Dongsha Plateau, based on 2-month moored acoustic Doppler current profiler observations. Harmonic analysis indicated that the D 1 components ( K 1 and O 1) dominated the internal tide field. The vertical structure of the K 1 constituent presented a first-mode structure while the M 2 constituent seemed to exhibit a high-mode structure. Amplitude spectra analysis of the current data revealed differences in baroclinic current amplitudes between different water depths. Temporal variations in modal structures ware analyzed, based on the D 1 and D 2 baroclinic tides extracted from the baroclinic velocity field with band-pass filters. Analysis showed that the magnitude of the D 1 internal tide current was much larger than the D 2 current, and temporal variations in the modal structure of the D 1 internal tide occurred on an approximately fortnightly cycle. The EOF analyses revealed temporal transformation of multimodal structures for D 1 and D 2 internal tides. The enhancement of the D 1 internal tide was mainly due to the superposition of K 1 and O 1, according to the temporal variation of coherent kinetic energy.

  20. Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations.

    PubMed

    Lehr, Dennis; Helgert, Michael; Sundermann, Michael; Morhard, Christoph; Pacholski, Claudia; Spatz, Joachim P; Brunner, Robert

    2010-11-08

    Laterally structured antireflective sub-wavelength structures show unique properties with respect to broadband performance, damage threshold and thermal stability. Thus they are superior to classical layer based antireflective coatings for a number of applications. Dependent on the selected fabrication technology the local topography of the periodic structure may deviate from the perfect repetition of a sub-wavelength unit cell. We used rigorous coupled-wave analysis (RCWA) to simulate the efficiency losses due to scattering effects based on height and displacement variations between the individual protuberances. In these simulations we chose conical and Super-Gaussian shapes to approximate the real profile of fabricated structures. The simulation results are in accordance with the experimentally determined optical properties of sub-wavelength structures over a broad wavelength range. Especially the transmittance reduction in the deep-UV could be ascribed to these variations in the sub-wavelength structures.

  1. NMR study of non-structural proteins--part II: (1)H, (13)C, (15)N backbone and side-chain resonance assignment of macro domain from Venezuelan equine encephalitis virus (VEEV).

    PubMed

    Makrynitsa, Garyfallia I; Ntonti, Dioni; Marousis, Konstantinos D; Tsika, Aikaterini C; Lichière, Julie; Papageorgiou, Nicolas; Coutard, Bruno; Bentrop, Detlef; Spyroulias, Georgios A

    2015-10-01

    Macro domains consist of 130-190 amino acid residues and appear to be highly conserved in all kingdoms of life. Intense research on this field has shown that macro domains bind ADP-ribose and other similar molecules, but their exact function still remains intangible. Macro domains are highly conserved in the Alphavirus genus and the Venezuelan equine encephalitis virus (VEEV) is a member of this genus that causes fatal encephalitis to equines and humans. In this study we report the high yield recombinant expression and preliminary solution NMR study of the macro domain of VEEV. An almost complete sequence-specific assignment of its (1)H, (15)N and (13)C resonances was obtained and its secondary structure predicted by TALOS+. The protein shows a unique mixed α/β-fold.

  2. Small molecule-mediated duplex formation of nucleic acids with 'incompatible' backbones.

    PubMed

    Cafferty, Brian J; Musetti, Caterina; Kim, Keunsoo; Horowitz, Eric D; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-04-07

    Proflavine, a known intercalator of DNA and RNA, promotes duplex formation by nucleic acids with natural and non-natural backbones that otherwise form duplexes with low thermal stability, and even some that show no sign of duplex formation in the absence of proflavine. These findings demonstrate the potential for intercalators to be used as cofactors for the assembly of rationally designed nucleic acid structures, and could provide fundamental insights regarding intercalation of natural nucleic acid duplexes.

  3. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards.

    PubMed

    Saenko, Suzanne V; Teyssier, Jérémie; van der Marel, Dirk; Milinkovitch, Michel C

    2013-10-07

    Color traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling. However, the extensive variation in non-melanic pigments and structural colors in squamate reptiles has been largely disregarded. Here, we used an integrated approach to investigate the morphological basis and physical mechanisms generating variation in color traits in tropical day geckos of the genus Phelsuma. Combining histology, optics, mass spectrometry, and UV and Raman spectroscopy, we found that the extensive variation in color patterns within and among Phelsuma species is generated by complex interactions between, on the one hand, chromatophores containing yellow/red pteridine pigments and, on the other hand, iridophores producing structural color by constructive interference of light with guanine nanocrystals. More specifically, we show that 1) the hue of the vivid dorsolateral skin is modulated both by variation in geometry of structural, highly ordered narrowband reflectors, and by the presence of yellow pigments, and 2) that the reflectivity of the white belly and of dorsolateral pigmentary red marks, is increased by underlying structural disorganized broadband reflectors. Most importantly, these interactions require precise colocalization of yellow and red chromatophores with different types of iridophores, characterized by ordered and disordered nanocrystals, respectively. We validated these results through numerical simulations combining pigmentary components with a multilayer interferential optical model. Finally, we show that melanophores form dark lateral patterns but do not significantly contribute to variation in blue/green or red coloration, and that changes in the pH or redox state of pigments provide yet another source of color variation in squamates. Precisely colocalized interacting pigmentary and structural elements generate extensive variation in lizard color

  4. High Density LD-Based Structural Variations Analysis in Cattle Genome

    PubMed Central

    Salomon-Torres, Ricardo; Matukumalli, Lakshmi K.; Van Tassell, Curtis P.; Villa-Angulo, Carlos; Gonzalez-Vizcarra, Víctor M.; Villa-Angulo, Rafael

    2014-01-01

    Genomic structural variations represent an important source of genetic variation in mammal genomes, thus, they are commonly related to phenotypic expressions. In this work, ∼770,000 single nucleotide polymorphism genotypes from 506 animals from 19 cattle breeds were analyzed. A simple LD-based structural variation was defined, and a genome-wide analysis was performed. After applying some quality control filters, for each breed and each chromosome we calculated the linkage disequilibrium (r2) of short range (≤100 Kb). We sorted SNP pairs by distance and obtained a set of LD means (called the expected means) using bins of 5 Kb. We identified 15,246 segments of at least 1 Kb, among the 19 breeds, consisting of sets of at least 3 adjacent SNPs so that, for each SNP, r2 within its neighbors in a 100 Kb range, to the right side of that SNP, were all bigger than, or all smaller than, the corresponding expected mean, and their P-value were significant after a Benjamini-Hochberg multiple testing correction. In addition, to account just for homogeneously distributed regions we considered only SNPs having at least 15 SNP neighbors within 100 Kb. We defined such segments as structural variations. By grouping all variations across all animals in the sample we defined 9,146 regions, involving a total of 53,137 SNPs; representing the 6.40% (160.98 Mb) from the bovine genome. The identified structural variations covered 3,109 genes. Clustering analysis showed the relatedness of breeds given the geographic region in which they are evolving. In summary, we present an analysis of structural variations based on the deviation of the expected short range LD between SNPs in the bovine genome. With an intuitive and simple definition based only on SNPs data it was possible to discern closeness of breeds due to grouping by geographic region in which they are evolving. PMID:25050984

  5. Adaptive potential of genomic structural variation in human and mammalian evolution.

    PubMed

    Radke, David W; Lee, Charles

    2015-09-01

    Because phenotypic innovations must be genetically heritable for biological evolution to proceed, it is natural to consider new mutation events as well as standing genetic variation as sources for their birth. Previous research has identified a number of single-nucleotide polymorphisms that underlie a subset of adaptive traits in organisms. However, another well-known class of variation, genomic structural variation, could have even greater potential to produce adaptive phenotypes, due to the variety of possible types of alterations (deletions, insertions, duplications, among others) at different genomic positions and with variable lengths. It is from these dramatic genomic alterations, and selection on their phenotypic consequences, that adaptations leading to biological diversification could be derived. In this review, using studies in humans and other mammals, we highlight examples of how phenotypic variation from structural variants might become adaptive in populations and potentially enable biological diversification. Phenotypic change arising from structural variants will be described according to their immediate effect on organismal metabolic processes, immunological response and physical features. Study of population dynamics of segregating structural variation can therefore provide a window into understanding current and historical biological diversification.

  6. Backbone dynamics measurements on leukemia inhibitory factor, a rigid four-helical bundle cytokine.

    PubMed Central

    Yao, S.; Smith, D. K.; Hinds, M. G.; Zhang, J. G.; Nicola, N. A.; Norton, R. S.

    2000-01-01

    The backbone dynamics of the four-helical bundle cytokine leukemia inhibitory factor (LIF) have been investigated using 15N NMR relaxation and amide proton exchange measurements on a murine-human chimera, MH35-LIF. For rapid backbone motions (on a time scale of 10 ps to 100 ns), as probed by 15N relaxation measurements, the dynamics parameters were calculated using the model-free formalism incorporating the model selection approach. The principal components of the inertia tensor of MH35-LIF, as calculated from its NMR structure, were 1:0.98:0.38. The global rotational motion of the molecule was, therefore, assumed to be axially symmetric in the analysis of its relaxation data. This yielded a diffusion anisotropy D(parallel)/D(perpendicular) of 1.31 and an effective correlation time (4D(perpendicular) + 2D(parallel))(-1) of 8.9 ns. The average values of the order parameters (S2) for the four helices, the long interhelical loops, and the N-terminus were 0.91, 0.84, and 0.65, respectively, indicating that LIF is fairly rigid in solution, except at the N-terminus. The S2 values for the long interhelical loops of MH35-LIF were higher than those of their counterparts in short-chain members of the four-helical bundle cytokine family. Residues involved in LIF receptor binding showed no consistent pattern of backbone mobilities, with S2 values ranging from 0.71 to 0.95, but residues contributing to receptor binding site III had relatively lower S2 values, implying higher amplitude motions than for the backbone of sites I and II. In the relatively slow motion regime, backbone amide exchange measurements showed that a number of amides from the helical bundle exchanged extremely slowly, persisting for several months in 2H2O at 37 degrees C. Evidence for local unfolding was considered, and correlations among various structure-related parameters and the backbone amide exchange rates were examined. Both sets of data concur in showing that LIF is one of the most rigid four

  7. Landscape and variation of RNA secondary structure across the human transcriptome.

    PubMed

    Wan, Yue; Qu, Kun; Zhang, Qiangfeng Cliff; Flynn, Ryan A; Manor, Ohad; Ouyang, Zhengqing; Zhang, Jiajing; Spitale, Robert C; Snyder, Michael P; Segal, Eran; Chang, Howard Y

    2014-01-30

    In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.

  8. Improving the accuracy of protein stability predictions with multistate design using a variety of backbone ensembles.

    PubMed

    Davey, James A; Chica, Roberto A

    2014-05-01

    Multistate computational protein design (MSD) with backbone ensembles approximating conformational flexibility can predict higher quality sequences than single-state design with a single fixed backbone. However, it is currently unclear what characteristics of backbone ensembles are required for the accurate prediction of protein sequence stability. In this study, we aimed to improve the accuracy of protein stability predictions made with MSD by using a variety of backbone ensembles to recapitulate the experimentally measured stability of 85 Streptococcal protein G domain β1 sequences. Ensembles tested here include an NMR ensemble as well as those generated by molecular dynamics (MD) simulations, by Backrub motions, and by PertMin, a new method that we developed involving the perturbation of atomic coordinates followed by energy minimization. MSD with the PertMin ensembles resulted in the most accurate predictions by providing the highest number of stable sequences in the top 25, and by correctly binning sequences as stable or unstable with the highest success rate (≈90%) and the lowest number of false positives. The performance of PertMin ensembles is due to the fact that their members closely resemble the input crystal structure and have low potential energy. Conversely, the NMR ensemble as well as those generated by MD simulations at 500 or 1000 K reduced prediction accuracy due to their low structural similarity to the crystal structure. The ensembles tested herein thus represent on- or off-target models of the native protein fold and could be used in future studies to design for desired properties other than stability.

  9. Parametric reduced-order models of battery pack vibration including structural variation and prestress effects

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Kwon; Epureanu, Bogdan I.; Castanier, Matthew P.

    2014-09-01

    The goal of this work is to develop a numerical model for the vibration of hybrid electric vehicle (HEV) battery packs to enable probabilistic forced response simulations for the effects of variations. There are two important types of variations that affect their structural response significantly: the prestress that is applied when joining the cells within a pack; and the small, random structural property discrepancies among the cells of a battery pack. The main contributions of this work are summarized as follows. In order to account for these two important variations, a new parametric reduced order model (PROM) formulation is derived by employing three key observations: (1) the stiffness matrix can be parameterized for different levels of prestress, (2) the mode shapes of a battery pack with cell-to-cell variation can be represented as a linear combination of the mode shapes of the nominal system, and (3) the frame holding each cell has vibratory motion. A numerical example of an academic battery pack with pouch cells is presented to demonstrate that the PROM captures the effects of both prestress and structural variation on battery packs. The PROM is validated numerically by comparing full-order finite element models (FEMs) of the same systems.

  10. Mining the protein data bank to differentiate error from structural variation in clustered static structures: an examination of HIV protease.

    PubMed

    Venkatakrishnan, Balasubramanian; Palii, Miorel-Lucian; Agbandje-McKenna, Mavis; McKenna, Robert

    2012-03-01

    The Protein Data Bank (PDB) contains over 71,000 structures. Extensively studied proteins have hundreds of submissions available, including mutations, different complexes, and space groups, allowing for application of data-mining algorithms to analyze an array of static structures and gain insight about a protein's structural variation and possibly its dynamics. This investigation is a case study of HIV protease (PR) using in-house algorithms for data mining and structure superposition through generalized formulæ that account for multiple conformations and fractional occupancies. Temperature factors (B-factors) are compared with spatial displacement from the mean structure over the entire study set and separately over bound and ligand-free structures, to assess the significance of structural deviation in a statistical context. Space group differences are also examined.

  11. Fine-structure transitions as a tool for studying variation of α at high redshifts

    NASA Astrophysics Data System (ADS)

    Levshakov, S. A.; Kozlov, M. G.

    2017-07-01

    Star-forming galaxies at high redshifts are the ideal targets to probe the hypothetical variation of the fine-structure (FS) constant α over cosmological time-scales. We propose a modification of the alkali doublets method that allows us to search for variation in α combining far-infrared and submillimetre spectroscopic observations. This variation manifests as velocity offsets between the observed positions of the FS and gross-structure transitions when compared to laboratory wavelengths. Here we describe our method whose sensitivity limit to the fractional changes in α is about 5 × 10-7. We also demonstrate that current spectral observations of hydrogen and [C ii] 158 μm lines provide an upper limit on |Δα/α| ≲ 6 × 10 - 5 at redshifts z = 3.1 and 4.7.

  12. Calculus structure on the Lie conformal algebra complex and the variational complex

    NASA Astrophysics Data System (ADS)

    De Sole, Alberto; Hekmati, Pedram; Kac, Victor G.

    2011-05-01

    We construct a calculus structure on the Lie conformal algebra cochain complex. By restricting to degree one chains, we recover the structure of a {mathfrak g}-complex introduced in [A. De Sole and V. G. Kac, Commun. Math. Phys. 292, 667 (2009), 10.1007/s00220-009-0886-1]. A special case of this construction is the variational calculus, for which we provide explicit formulas.

  13. The determination of the in situ structure by nuclear spin contrast variation

    SciTech Connect

    Stuhrmann, H.B.; Nierhaus, K.H.

    1994-12-31

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.

  14. The Structure of Family Paradigms: An Analytical Model of Family Variation.

    ERIC Educational Resources Information Center

    Constantine, Larry L.

    1993-01-01

    Explores geometry of widely used family typologies and derives multidimensional model the geometry of which is equivalent to, but more succinctly captures, underlying structure of variation in family paradigms. Resulting model is then interpreted and explored in terms of implications for family theory, theory construction, and family therapy.…

  15. Seeing an Exercise as a Single Mathematical Object: Using Variation to Structure Sense-Making

    ERIC Educational Resources Information Center

    Watson, Anne; Mason, John

    2006-01-01

    In this theoretical article, we take an exercise to be a collection of procedural questions or tasks. It can be useful to treat such an exercise as a single object, with individual questions seen as elements in a mathematically and pedagogically structured set. We use the notions of dimensions of possible variation and range of permissible change,…

  16. Variation in mangrove forest structure and sediment characteristics in Bocas del Toro, Panama

    USGS Publications Warehouse

    Lovelock, C.E.; Feller, Ilka C.; McKee, K.L.; Thompson, R.

    2005-01-01

    Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora mangle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha-1 in dwarf forests to 194.3 Mg ha-1 in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes. Copyright 2005 College of Arts and Sciences.

  17. Impact of genetic variation on three dimensional structure and function of proteins.

    PubMed

    Bhattacharya, Roshni; Rose, Peter W; Burley, Stephen K; Prlić, Andreas

    2017-01-01

    The Protein Data Bank (PDB; http://wwpdb.org) was established in 1971 as the first open access digital data resource in biology with seven protein structures as its initial holdings. The global PDB archive now contains more than 126,000 experimentally determined atomic level three-dimensional (3D) structures of biological macromolecules (proteins, DNA, RNA), all of which are freely accessible via the Internet. Knowledge of the 3D structure of the gene product can help in understanding its function and role in disease. Of particular interest in the PDB archive are proteins for which 3D structures of genetic variant proteins have been determined, thus revealing atomic-level structural differences caused by the variation at the DNA level. Herein, we present a systematic and qualitative analysis of such cases. We observe a wide range of structural and functional changes caused by single amino acid differences, including changes in enzyme activity, aggregation propensity, structural stability, binding, and dissociation, some in the context of large assemblies. Structural comparison of wild type and mutated proteins, when both are available, provide insights into atomic-level structural differences caused by the genetic variation.

  18. Impact of genetic variation on three dimensional structure and function of proteins

    PubMed Central

    Bhattacharya, Roshni; Rose, Peter W.; Burley, Stephen K.

    2017-01-01

    The Protein Data Bank (PDB; http://wwpdb.org) was established in 1971 as the first open access digital data resource in biology with seven protein structures as its initial holdings. The global PDB archive now contains more than 126,000 experimentally determined atomic level three-dimensional (3D) structures of biological macromolecules (proteins, DNA, RNA), all of which are freely accessible via the Internet. Knowledge of the 3D structure of the gene product can help in understanding its function and role in disease. Of particular interest in the PDB archive are proteins for which 3D structures of genetic variant proteins have been determined, thus revealing atomic-level structural differences caused by the variation at the DNA level. Herein, we present a systematic and qualitative analysis of such cases. We observe a wide range of structural and functional changes caused by single amino acid differences, including changes in enzyme activity, aggregation propensity, structural stability, binding, and dissociation, some in the context of large assemblies. Structural comparison of wild type and mutated proteins, when both are available, provide insights into atomic-level structural differences caused by the genetic variation. PMID:28296894

  19. Scale-dependent variation in forest structures in naturally dynamic boreal forest landscapes

    NASA Astrophysics Data System (ADS)

    Kulha, Niko; Pasanen, Leena; De Grandpré, Louis; Kuuluvainen, Timo; Aakala, Tuomas

    2017-04-01

    Natural forest structures vary at multiple spatial scales. This variation reflects the occurrence of driving factors, such as disturbances and variation in soil or topography. To explore and understand the linkages of forest structural characteristics and factors driving their variation, we need to recognize how the structural characteristics vary in relation to spatial scale. This can be achieved by identifying scale-dependent features in forest structure within unmanaged forest landscapes. By identifying these features and examining their relationship with potential driving factors, we can better understand the dynamics of forest structural development. Here, we examine the spatial variation in forest structures at multiple spatial scales, utilizing data from old-growth boreal forests in two regions with contrasting disturbance regimes: northern Finland and north-eastern Québec, Canada ( 67° 45'N, 29° 36'E, 49° 39'N, 67° 55'W, respectively). The three landscapes (4 km2 each) in Finland are dominated by Pinus sylvestris and Picea abies, whereas the two landscapes in Québec are dominated by Abies balsamea and Picea mariana. Québec's forests are a subject to cyclic outbreaks of the eastern spruce budworm, causing extensive mortality especially in A. balsamea-dominated stands. In the Finnish landscapes, gap- to patch-scale disturbances due to tree senescence, fungi and wind, as well as infrequent surface fires in areas dominated by P. sylvestris, prevail. Owing to the differences in the species compositions and the disturbance regimes, we expect differing scales of variation between the landscapes. To quantify patterns of variation, we visually interpret stereopairs of recent aerial photographs. From the photographs, we collect information on forest canopy coverage, species composition and dead wood. For the interpretation, each 4 km2 plot is divided into 0.1ha square cells (4096 per plot). Interpretations are validated against field observations and compiled

  20. Population structure and skeletal variation in the Late Woodland of west-central Illinois.

    PubMed

    Conner, M D

    1990-05-01

    This paper analyzes nonmetric trait variation in 11 late Late Woodland (ca. AD 700-1000) and one Mississippian (AD 1000-1300) skeletal samples from west-central Illinois from a population-structure perspective. Most of the sites are of the Bluff phase of Late Woodland in the lower Illinois River valley; others are from a nearby, contemporary archaeological phase. Late Woodland as a whole era (ca. AD 250-1000) was a period of marked population growth and expansion into new regional environments, trends that accompanied horticultural intensification in the area. Overall variation between sites was low, but males, females, and the total sample exhibited a significant geographic component to variation due to interregional morphological differences. The Bluff sites tended to group together relative to the non-Bluff sites. However, there was no significant geographic component to variation among the Bluff sites. The results are only partially consistent with archaeological data suggesting population growth and expansion through fissioning. Previous studies have demonstrated significant heterogeneity for nonmetric trait frequencies among Middle Woodland (ca. 100 BC to AD 250) sites, suggesting a Middle to Late Woodland change in population structure that lowered levels of morphological variation. This supports a model of increased intra- and interregional interaction from Middle to Late Woodland times developed from ceramic data by Braun and by Braun and Plog.

  1. Population structure and genetic diversity in tristylous Narcissus triandrus: insights from microsatellite and chloroplast DNA variation.

    PubMed

    Hodgins, Kathryn A; Barrett, Spencer C H

    2007-06-01

    We investigated cpDNA sequence and nuclear microsatellite variation among populations of the wild daffodil Narcissus triandrus to examine the role of historical vs. contemporary forces in shaping population structure, morphological differentiation and sexual-system evolution. This wide-ranging heterostylous species of the Iberian Peninsula is largely composed of two allopatric varieties (vars. cernuus and triandrus), and populations with either stylar trimorphism or dimorphism. Dimorphic populations only occur in var. triandrus, are mainly restricted to the northwestern portion of the species range, and uniformly lack the mid-styled morph (M-morph). Chloroplast DNA (cpDNA) sequence variation revealed strong geographical structuring and evidence for a fragmentation event associated with differentiation of the two varieties. In var. triandrus, population fragmentation, restricted gene flow and isolation-by-distance were also inferred. Significant differences in genetic diversity and population structure between the two varieties likely reflect historical and contemporary differences in demography and gene flow among populations. Discordance between cpDNA markers and both microsatellite and morphological variation indicate that hybridization has occurred between the two varieties at contact zones. There were no differences in genetic diversity or population structure between dimorphic and trimorphic populations, and chloroplast haplotypes were not associated with either sexual system, indicating transitions in morph structure within each maternal lineage. M-morph frequencies were positively correlated with differentiation at microsatellite loci, indicating that the evolutionary processes influencing these neutral markers also influence alleles controlling the style morphs.

  2. Environmental diel variation, parasite loads, and local population structuring of a mixed-mating mangrove fish

    PubMed Central

    Ellison, Amy; Wright, Patricia; Taylor, D Scott; Cooper, Chris; Regan, Kelly; Currie, Suzie; Consuegra, Sofia

    2012-01-01

    Genetic variation within populations depends on population size, spatial structuring, and environmental variation, but is also influenced by mating system. Mangroves are some of the most productive and threatened ecosystems on earth and harbor a large proportion of species with mixed-mating (self-fertilization and outcrossing). Understanding population structuring in mixed-mating species is critical for conserving and managing these complex ecosystems. Kryptolebias marmoratus is a unique mixed-mating vertebrate inhabiting mangrove swamps under highly variable tidal regimes and environmental conditions. We hypothesized that geographical isolation and ecological pressures influence outcrossing rates and genetic diversity, and ultimately determine the local population structuring of K. marmoratus. By comparing genetic variation at 32 microsatellites, diel fluctuations of environmental parameters, and parasite loads among four locations with different degrees of isolation, we found significant differences in genetic diversity and genotypic composition but little evidence of isolation by distance. Locations also differed in environmental diel fluctuation and parasite composition. Our results suggest that mating system, influenced by environmental instability and parasites, underpins local population structuring of K. marmoratus. More generally, we discuss how the conservation of selfing species inhabiting mangroves and other biodiversity hotspots may benefit from knowledge of mating strategies and population structuring at small spatial scales. PMID:22957172

  3. Anomalous variations of crystal habits and solution properties in the context of the crystallization medium structure

    NASA Astrophysics Data System (ADS)

    Kiryanova, E. V.; Ugolkov, V. L.; Pyankova, L. A.; Filatov, S. K.

    2009-12-01

    The effect of the real structure of solutions on crystallization is one of the basic issues of crystallogenesis, which is also important for resolving problems of genetic mineralogy. The study of the NaNO3-H2O and KNO3-H2O model systems yielded new data on anomalous characteristics of crystal-forming systems, including morphological and kinetic properties of crystals, crystal-solution equilibrium, and physical properties of solutions (light scattering, thermal properties, IR parameters, pH), providing information on the structure of solutions. The internally consistent data confirm the previously suggested variations in structural heterogeneity of solutions related to minor (2-4%) variations in their composition, which result in numerous disturbances of monotonicity (thermal-concentration oscillations) in the liquidus curves of salts. It is shown that these variations can be caused by variable size and composition of crystal hydrate clusters. The experimental data indicate that the effect of the real solution structure on crystal morphology and crystal-solution equilibrium is enhanced in multicomponent systems, including natural crystal-forming systems. Anomalous faceting and habit, zoning, a sectorial structure of crystals, and nonuniform entrapment of admixtures cannot be ruled out in these systems.

  4. Variations of phytoplankton community structure related to water quality trends in a tropical karstic coastal zone.

    PubMed

    Alvarez-Góngora, Cynthia; Herrera-Silveira, Jorge A

    2006-01-01

    Phytoplankton community structure in coastal areas is a result of various environmental factors such as nutrients, light, grazing, temperature, and salinity. The Yucatan Peninsula is a karstic tropical region that is strongly influenced by submerged groundwater discharge (SGD) into the coastal zone. Phytoplankton community structure and its relationship with regional and local water quality variables were studied in four ports of the northwestern Yucatan Peninsula. Water quality was strongly related to SGD, and variations in phytoplankton community structure were related to local nutrient loading and hydrographic conditions, turbulence, and human impacts. Our study provides an ecological baseline for the Yucatan Peninsula and serves as a basis for establishing monitoring programs to predict changes at sites with high hydrological variation and in developing an early alert system for harmful toxic algal blooms.

  5. Multilayer manipulated diffraction in flower beetles Torynorrhina flammea: intraspecific structural colouration variation

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Liu, F.; Hao, Y. H.; Hu, X. H.; Zhang, Y. F.; Liu, X. H.

    2014-10-01

    We report that the intraspecific structural colouration variation of the beetle Torynorrhina flammea is a result of diffraction shifting manipulated by a multilayer sub-structure contained in a three-dimensional (3D) photonic architecture. With a perpendicularly 2D quasiperiodic diffraction grating inserted into the multilayer, the 3D photonic structure gives rise to anticrossing bandgaps of diffraction from the coupling of grating and multilayer bands. The angular dispersion of diffraction induced by the multilayer band shift behaves normally, in contrast to the ‘ultranegative’ behaviour controlled by the quasiperiodic grating. In addition, the diffraction wavelength is more sensitive to the multilayer periodicity than the diffraction grating constant, which explains the ‘smart’ biological selection of T. flammea in its intraspecific colouration variation from red to green to blue. The elucidated mechanism could be advantageous for the potential exploration of novel dispersive optical elements.

  6. Absence of population structure across elevational gradients despite large phenotypic variation in mountain chickadees (Poecile gambeli)

    PubMed Central

    Jahner, Joshua P.; Kozlovsky, Dovid Y.; Parchman, Thomas L.; Pravosudov, Vladimir V.

    2017-01-01

    Montane habitats are characterized by predictably rapid heterogeneity along elevational gradients and are useful for investigating the consequences of environmental heterogeneity for local adaptation and population genetic structure. Food-caching mountain chickadees inhabit a continuous elevation gradient in the Sierra Nevada, and birds living at harsher, high elevations have better spatial memory ability and exhibit differences in male song structure and female mate preference compared to birds inhabiting milder, low elevations. While high elevation birds breed, on average, two weeks later than low elevation birds, the extent of gene flow between elevations is unknown. Despite phenotypic variation and indirect evidence for local adaptation, population genetic analyses based on 18 073 single nucleotide polymorphisms across three transects of high and low elevation populations provided no evidence for genetic differentiation. Analyses based on individual genotypes revealed no patterns of clustering, pairwise estimates of genetic differentiation (FST, Nei's D) were very low, and AMOVA revealed no evidence for genetic variation structured by transect or by low and high elevation sites within transects. In addition, we found no consistent evidence for strong parallel allele frequency divergence between low and high elevation sites within the three transects. Large elevation-related phenotypic variation may be maintained by strong selection despite gene flow and future work should focus on the mechanisms underlying such variation. PMID:28405402

  7. Intraspecific phytochemical variation shapes community and population structure for specialist caterpillars.

    PubMed

    Glassmire, Andrea E; Jeffrey, Christopher S; Forister, Matthew L; Parchman, Thomas L; Nice, Chris C; Jahner, Joshua P; Wilson, Joseph S; Walla, Thomas R; Richards, Lora A; Smilanich, Angela M; Leonard, Michael D; Morrison, Colin R; Simbaña, Wilmer; Salagaje, Luis A; Dodson, Craig D; Miller, Jim S; Tepe, Eric J; Villamarin-Cortez, Santiago; Dyer, Lee A

    2016-10-01

    Chemically mediated plant-herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem. We investigated secondary metabolite variation among subpopulations of a single plant species, Piper kelleyi (Piperaceae), using high-performance liquid chromatography (HPLC), to understand associations between plant phytochemistry and host-specialized caterpillars in the genus Eois (Geometridae: Larentiinae) and associated parasitoid wasps and flies. In addition, we used a genotyping-by-sequencing approach to examine the genetic structure of one abundant caterpillar species, Eois encina, in relation to host phytochemical variation. We found substantive concentration differences among three major secondary metabolites, and these differences in chemistry predicted caterpillar and parasitoid community structure among host plant populations. Furthermore, E. encina populations located at high elevations were genetically different from other populations. They fed on plants containing high concentrations of prenylated benzoic acid. Thus, phytochemistry potentially shapes caterpillar and wasp community composition and geographic variation in species interactions, both of which can contribute to diversification of plants and insects.

  8. Strong limit on the spatial and temporal variations of the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Le, T. D.

    2016-10-01

    Observed spectra of quasars provide a powerful tool to test the possible spatial and temporal variations of the fine-structure constant α = e 2/ћc over the history of the Universe. It is demonstrated that high sensitivity to the variation of α can be obtained from a comparison of the spectra of quasars and laboratories. We reported a new constraint on the variation of the fine-structure constant based on the analysis of the optical spectra of the fine-structure transitions in [NeIII], [NeV], [OIII], [OI] and [SII] multiplets from 14 Seyfert 1.5 galaxies. The weighted mean value of the α-variation derived from our analysis over the redshift range 0.035 < z < 0.281 Δα/α= (4.50 +/- 5.53) \\times 10-5. This result presents strong limit improvements on the constraint on Δα/α compared to the published in the literature

  9. Effect of protein backbone folding on the stability of protein-ligand complexes.

    PubMed

    Estrada, Ernesto; Uriarte, Eugenio; Vilar, Santiago

    2006-01-01

    The role played by the degree of folding of protein backbones in explaining the binding energetics of protein-ligand interactions has been studied. We analyzed the protein/peptide interactions in the RNase-S system in which amino acids at two positions of the peptide S have been mutated. The global degree of folding of the protein S correlates in a significant way with the free energy and enthalpy of the protein-peptide interactions. A much better correlation is found with the local contribution to the degree of folding of one amino acid residue: Thr36. This residue is shown to have a destabilizing interaction with Lys41, which interacts directly with peptide S. Another system, consisting of the interactions of small organic molecules with HIV-1 protease was also studied. In this case, the global change in the degree of folding of the protease backbone does not explain the binding energetics of protein-ligand interactions. However, a significant correlation is observed between the free energy of binding and the contribution of two amino acid residues in the HVI-1 protease: Gly49 and Ile66. In general, it was observed that the changes in the degree of folding are not restricted to the binding site of the protein chain but are distributed along the whole protein backbone. This study provides a basis for further consideration of the degree of folding as a parameter for empirical structural parametrizations of the binding energetics of protein folding and binding.

  10. On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent

    PubMed Central

    Riml, Christian; Glasner, Heidelinde; Rodgers, M. T.; Micura, Ronald; Breuker, Kathrin

    2015-01-01

    Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in ‘top-down’ strategies are currently being developed. For this purpose, it is essential to understand the dissociation mechanisms of unmodified and posttranscriptionally or synthetically modified RNA. Here, we have studied the effect of select nucleobase, ribose and backbone modifications on phosphodiester bond cleavage in collisionally activated dissociation (CAD) of positively and negatively charged RNA. We found that CAD of RNA is a stepwise reaction that is facilitated by, but does not require, the presence of positive charge. Preferred backbone cleavage next to adenosine and guanosine in CAD of (M+nH)n+ and (M−nH)n− ions, respectively, is based on hydrogen bonding between nucleobase and phosphodiester moieties. Moreover, CAD of RNA involves an intermediate that is sufficiently stable to survive extension of the RNA structure and intramolecular proton redistribution according to simple Coulombic repulsion prior to backbone cleavage into c and y ions from phosphodiester bond cleavage. PMID:25904631

  11. Anthropometric variation and population structure of the island of Pag, Croatia.

    PubMed

    Smolej-Narancić, N; Chaventré, A; Rudan, P

    1994-04-01

    Anthropometric variation in the population of the island of Pag (eastern Adriatic, Croatia) was investigated by using data on 14 head and 24 body dimensions. The data were related to past and present migration patterns, geography, and linguistics. The analyses revealed heterogeneity among three population groups inhabiting geographically defined regions of the island and heterogeneity among the village populations. The congruence between anthropometric variation, migration history, geographic distances, and current linguistic features says much for the strength of the isolating factors on this ecologically uniform island, which have effected the genetic structure of the population.

  12. ADAR RNA editing below the backbone.

    PubMed

    Keegan, Liam; Khan, Anzer; Vukic, Dragana; O'Connell, Mary

    2017-09-01

    ADAR RNA editing enzymes (adenosine deaminases acting on RNA) that convert adenosine bases to inosines were first identified biochemically 30 years ago. Since then, studies on ADARs in genetic model organisms, and evolutionary comparisons between them, continue to reveal a surprising range of pleiotropic biological effects of ADARs. This review focuses on Drosophila melanogaster, which has a single Adar gene encoding a homolog of vertebrate ADAR2 that site-specifically edits hundreds of transcripts to change individual codons in ion channel subunits and membrane and cytoskeletal proteins. Drosophila ADAR is involved in the control of neuronal excitability and neurodegeneration and, intriguingly, in the control of neuronal plasticity and sleep. Drosophila ADAR also interacts strongly with RNA interference, a key antiviral defense mechanism in invertebrates. Recent crystal structures of human ADAR2 deaminase domain-RNA complexes help to interpret available information on Drosophila ADAR isoforms and on the evolution of ADARs from tRNA deaminase ADAT proteins. ADAR RNA editing is a paradigm for the now rapidly expanding range of RNA modifications in mRNAs and ncRNAs. Even with recent progress, much remains to be understood about these groundbreaking ADAR RNA modification systems. © 2017 Keegan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Trauma system: the backbone of disaster preparedness.

    PubMed

    Cryer, H Gill; Hiatt, Jonathan R

    2009-08-01

    To describe the Los Angeles County trauma system response to disasters. Review of trauma system structure and multicasualty events. The Los Angeles County trauma system is made up of 13 level I and II trauma centers with defined catchment areas that serve 10 million people in 88 cites over 4,000 square miles and receive more than 20,000 trauma activations annually. There is an organized disaster plan, which is orchestrated through the Medical Alert Center that coordinates the distribution of casualties from the scene of a multicasualty event, with the most critically injured patients going to level I centers by air, severe injuries to level I and II centers by ground and air and less severe injuries to local community hospitals by ground. The plan has been used in several multicasualty events over the last 25 years, the most recent of which occurred 6 hours after this paper was presented. The system allows for all critically injured patients to be distributed to several trauma centers, so that all can be cared for in a timely fashion without overwhelming any one trauma center and without critically injured patients being taken to nontrauma centers where they cannot receive optimal care. The answer to disaster preparedness in our country is to develop this kind of trauma system in every state. Doing so will improve access of our population to excellent care on a daily basis and will provide a network of trauma centers that can be mobilized to most effectively care for victims of multicasualty events.

  14. NMR Polypeptide Backbone Conformation of the E. coli Outer Membrane Protein W

    PubMed Central

    Horst, Reto; Stanczak, Pawel; Wüthrich, Kurt

    2014-01-01

    SUMMARY The outer membrane proteins (Omp) are key factors for bacterial survival and virulence. Among the Omps which have been structurally characterized either by X-ray crystallography or by NMR in solution, the crystal structure of OmpW stands out because three of its four extracellular loops are well defined, whereas long extracellular loops in other E. coli Omps are disordered in the crystals as well as in NMR structures. OmpW thus presented an opportunity for detailed comparison of the extracellular loops in a β-barrel membrane protein structure in crystals and in non-crystalline milieus. Here the polypeptide backbone conformation of OmpW in 30-Fos micelles was determined. Complete backbone NMR assignments were obtained and the loops were structurally characterized. In combination with the OmpW crystal structure, NMR line shape analyses and 15N{1H}-NOE data, these results showed that intact regular secondary structures in the loops undergo slow hinge motions at the detergent–solvent interface. PMID:25017731

  15. The Graphical Representation of the Digital Astronaut Physiology Backbone

    NASA Technical Reports Server (NTRS)

    Briers, Demarcus

    2010-01-01

    This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.

  16. Cooperative UAV-Based Communications Backbone for Sensor Networks

    SciTech Connect

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs are used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.

  17. Intraspecific variation in a predator affects community structure and cascading trophic interactions.

    PubMed

    Post, David M; Palkovacs, Eric P; Schielke, Erika G; Dodson, Stanley I

    2008-07-01

    Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions.

  18. Localization of strain in the RNA backbone and its functional implication

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Rabitz, Herschel

    1992-07-01

    It is known that an RNA molecule capable of self-splicing shares a common pattern of Watson-Crick base paris with other RNA species endowed with the same capability. The aim of this work is to introduce a minimal model Hamiltonian which determines a localized strain in the RNA backbone as the search for the molecular conformation is subject to the constraint imposed by the concensus secondary structure. The site where the strain is localized is shown to coincide with the splicing site of the molecule. As justified posteriori, the level of structural complexity of the model is sufficient to account for energy localization in a nontrivial fashion.

  19. Lateral structural variation within the overlying plate and its correlation to the Tonankai earthquake

    NASA Astrophysics Data System (ADS)

    Fujie, G.; Nakanishi, A.; Park, J.; Obana, K.; Kodaira, S.; Kaneda, Y.

    2009-12-01

    Destructive interplate earthquakes have repeatedly occurred every 100-150 years beneath the Kumano-nada, off the Kii peninsula owing to the subduction of the Philippine Sea plate beneath the southwest Japan arc. The last great interplate earthquakes in this seismogenic subduction zone was the 1944 Tonankai earthquakes, and a number of coseismic slip distribution models derived from seismic and tsunami data show remarkable lateral variations along the trough axis. In 2006 and 2007, we conducted extensive wide-angle seismic refraction and reflection surveys in the entire rupture zone of the 1944 Tonankai earthquake. We designed two along-trough and two across-trench seismic survey lines and deployed a number of OBSs (Ocean Bottom Seismometers) with a spacing of 5km and fired an airgun array with a total volume of 200L at every 0.2km. The quality of the obtained wide-angle seismic record section is substantially good and we observed remarkable regional variation in the amplitude of refraction and reflection phases. For example, in some record sections, we can trace seismic signals up to the offset of more than 100 km, but in other sections, the airgun signals become dim at the offset of less than 30km. Such regional variation in the amplitude indicates the lateral variation of the seismic attenuation structure. For revealing lateral structural variation, we developed seismic structure models by the following approach. First, we applied the first arrival tomography for developing P-wave velocity structure models. Then, we imaged structural boundaries by the reflection traveltime mapping method. Finally, we developed seismic attenuation models by using raypaths and amplitude of first arrivals. Our seismic structure models showed remarkable along-trench structural variation. In the P-wave velocity models, we found a height on the subducting Philippine plate at the eastern end of the Kumano basin (south-east off Shima peninsula). In the western area (i.e. Kumano Basin

  20. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.

    PubMed

    Smith, Colin A; Kortemme, Tanja

    2011-01-01

    Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s) are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface), interactions between and within parts of the structure (e.g. domains) can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others.

  1. Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind

    PubMed Central

    Datta, Ritobrato; Benson, Noah C.; Prasad, Sashank; Jacobson, Samuel G.; Cideciyan, Artur V.; Bridge, Holly; Watkins, Kate E.; Butt, Omar H.; Dain, Aleksandra S.; Brandes, Lauren; Gennatas, Efstathios D.

    2016-01-01

    Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that

  2. Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind.

    PubMed

    Aguirre, Geoffrey K; Datta, Ritobrato; Benson, Noah C; Prasad, Sashank; Jacobson, Samuel G; Cideciyan, Artur V; Bridge, Holly; Watkins, Kate E; Butt, Omar H; Dain, Aleksandra S; Brandes, Lauren; Gennatas, Efstathios D

    2016-01-01

    Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that

  3. Compositional variations at ultra-structure length scales in coral skeleton

    NASA Astrophysics Data System (ADS)

    Meibom, Anders; Cuif, Jean-Pierre; Houlbreque, Fanny; Mostefaoui, Smail; Dauphin, Yannicke; Meibom, Karin L.; Dunbar, Robert

    2008-03-01

    Distributions of Mg and Sr in the skeletons of a deep-sea coral ( Caryophyllia ambrosia) and a shallow-water, reef-building coral ( Pavona clavus) have been obtained with a spatial resolution of 150 nm, using the NanoSIMS ion microprobe at the Muséum National d'Histoire Naturelle in Paris. These trace element analyses focus on the two primary ultra-structural components in the skeleton: centers of calcification (COC) and fibrous aragonite. In fibrous aragonite, the trace element variations are typically on the order of 10% or more, on length scales on the order of 1-10 μm. Sr/Ca and Mg/Ca variations are not correlated. However, Mg/Ca variations in Pavona are strongly correlated with the layered organization of the skeleton. These data allow for a direct comparison of trace element variations in zooxanthellate and non-zooxanthellate corals. In both corals, all trace elements show variations far beyond what can be attributed to variations in the marine environment. Furthermore, the observed trace element variations in the fibrous (bulk) part of the skeletons are not related to the activity of zooxanthellae, but result from other biological activity in the coral organism. To a large degree, this biological forcing is independent of the ambient marine environment, which is essentially constant on the growth timescales considered here. Finally, we discuss the possible detection of a new high-Mg calcium carbonate phase, which appears to be present in both deep-sea and reef-building corals and is neither aragonite nor calcite.

  4. Inter-chromosomal variation in the pattern of human population genetic structure

    PubMed Central

    2011-01-01

    Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC), cluster, discriminant, fixation index (FST) and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homogeneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2), hect domain and RLD 2 (HERC2), ectodysplasin A receptor (EDAR) and solute carrier family 45, member 2 (SLC45A2). These genes are associated with melanin production, which is involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes encoding interferon-γ (IFNG) and death-associated protein kinase 1 (DAPK1), which are associated with cell death, inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing chromosome-based population structure and differentiation, and demonstrates the application of

  5. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    PubMed

    Gosney, Benjamin J; O Reilly-Wapstra, Julianne M; Forster, Lynne G; Barbour, Robert C; Iason, Glenn R; Potts, Brad M

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  6. Genetic and Ontogenetic Variation in an Endangered Tree Structures Dependent Arthropod and Fungal Communities

    PubMed Central

    Gosney, Benjamin J.; O′Reilly-Wapstra, Julianne M.; Forster, Lynne G.; Barbour, Robert C.; Iason, Glenn R.; Potts, Brad M.

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings. PMID:25469641

  7. Spatial structure of connection between the troposphere heat content and variations in solar and geomagnetic activities

    NASA Astrophysics Data System (ADS)

    Vasil'eva, L. A.; Molodykh, S. I.; Kovalenko, V. A.

    2016-03-01

    We have carried out correlation analysis of connection between the heat content of different tropospheric layers and variations of solar (F10.7cm) and geomagnetic activity (AA index) in 1950-2007. The heat content response to effects of solar and geomagnetic activity has been found to have an explicit spatial structure. The heat content of the most of the troposphere correlates with solar and geomagnetic activity; however, we have observed significant anticorrelation in some regions. The degree of connection between the tropospheric heat content change and variations of solar and geomagnetic activity have been shown to depend on the time scale (time averaging period). The time averaging period increasing from 5 to 7 years, the correlation coefficient grows in most regions (up to 0.6-0.7), but if the increase continues, only weaker growth is observed. This time-scale dependence can be explained by the fact that the majority of variations in tropospheric heat content on the time-scale of less than 5 years are affected by processes having no connection with solar or geomagnetic activity. We have performed analysis of the influence of atmospheric circulation on connection between the tropospheric heat content change and variations of solar and geomagnetic activity. The heat content change in regions that are frequently occupied by the cyclones is shown to have practically no connection with variations of solar and geomagnetic activity.

  8. Time variation of the fine structure constant in the early universe and the Bekenstein model

    NASA Astrophysics Data System (ADS)

    Mosquera, M. E.; Scóccola, C. G.; Landau, S. J.; Vucetich, H.

    2008-02-01

    Aims:We calculate the bounds on the variation in the fine structure constant at the time of primordial nucleosynthesis and at the time of neutral hydrogen formation. We used these bounds and other bounds from the late universe to test the Bekenstein model. Methods: We modified the Kawano code, CAMB, and CosmoMC to include the possible variation in the fine structure constant. We used observational primordial abundances of D, ^4He, and ^7Li, recent data from the cosmic microwave background, and the 2dFGRS power spectrum, to obtain bounds on the variation in α. We calculated a piecewise solution to the scalar field equation of the Bekenstein model in two different regimes: i) matter and radiation, ii) matter and cosmological constant. We match both solutions with the appropriate boundary conditions. We performed a statistical analysis, using the bounds obtained from the early universe and other bounds from the late universe to constrain the free parameters of the model. Results: Results are consistent with no variation in α for the early universe. Limits on α are inconsistent with the scale length of the theory l being larger than the Planck scale. Conclusions: In order to fit all observational and experimental data, the assumption l > Lp implied in Bekenstein's model has to be relaxed.

  9. Triazole linkages and backbone branches in nucleic acids for biological and extra-biological applications

    NASA Astrophysics Data System (ADS)

    Paredes, Eduardo

    The recently increasing evidence of nucleic acids' alternative roles in biology and potential as useful nanomaterials and therapeutic agents has enabled the development of useful probes, elaborate nanostructures and therapeutic effectors based on nucleic acids. The study of alternative nucleic acid structure and function, particularly RNA, hinges on the ability to introduce site-specific modifications that either provide clues to the nucleic acid structure function relationship or alter the nucleic acid's function. Although the available chemistries allow for the conjugation of useful labels and molecules, their limitations lie in their tedious conjugation conditions or the lability of the installed probes. The development and optimization of click chemistry with RNA now provides the access to a robust and orthogonal conjugation methodology while providing stable conjugates. Our ability to introduce click reactive groups enzymatically, rather than only in the solid-phase, allows for the modification of larger, more cell relevant RNAs. Additionally, ligation of modified RNAs with larger RNA constructs through click chemistry represents an improvement over traditional ligation techniques. We determined that the triazole linkage generated through click chemistry is compatible in diverse nucleic acid based biological systems. Click chemistry has also been developed for extra-biological applications, particularly with DNA. We have expanded its use to generate useful polymer-DNA conjugates which can form controllable soft nanoparticles which take advantage of DNA's properties, i.e. DNA hybridization and computing. Additionally, we have generated protein-DNA conjugates and assembled protein-polymer hybrids mediated by DNA hybridization. The use of click chemistry in these reactions allows for the facile synthesis of these unnatural conjugates. We have also developed backbone branched DNA through click chemistry and showed that these branched DNAs are useful in generating

  10. Structural Variation Mutagenesis of the Human Genome: Impact on Disease and Evolution

    PubMed Central

    Lupski, James R.

    2015-01-01

    Watson-Crick base-pair changes, or single-nucleotide variants (SNV), have long been known as a source of mutations. However, the extent to which DNA structural variation, including duplication and deletion copy number variants (CNV) and copy number neutral inversions and translocations, contribute to human genome variation and disease has been appreciated only recently. Moreover, the potential complexity of structural variants (SV) was not envisioned; thus, the frequency of complex genomic rearrangements (CGR) and how such events form remained a mystery. The concept of genomic disorders, diseases due to genomic rearrangements and not sequence-based changes for which genomic architecture incite genomic instability, delineated a new category of conditions distinct from chromosomal syndromes and single-gene Mendelian diseases. Nevertheless, it is the mechanistic understanding of CNV/SV formation that has promoted further understanding of human biology and disease and provided insights into human genome and gene evolution. PMID:25892534

  11. Probing structural variation and multifunctionality in niobium doped bismuth vanadate materials.

    PubMed

    Saithathul Fathimah, Sameera; Prabhakar Rao, Padala; James, Vineetha; Raj, Athira K V; Chitradevi, G R; Leela, Sandhyakumari

    2014-11-14

    Multifunctional materials are developed in BiV1-xNbxO4 solid solutions via structural variations. A citrate gel route has been employed to synthesize these materials followed by calcination at various temperatures leading to fine particles. The effects of niobium doping over the structural variation and its influence on the optical properties are assessed by powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Vis-NIR spectroscopy. These solid solutions exhibit superior coloristic properties which are comparable to commercially available yellow pigments. These materials also show remarkable reflectance in the NIR region which makes them potential candidates for cool roof applications. A notable methylene blue dye degradation property is observed in Nb(5+) doped BiVO4 under sunlight irradiation.

  12. Backbone resonance assignments of an artificially engineered TEM-1/PSE-4 Class A β-lactamase chimera.

    PubMed

    Morin, Sébastien; Clouthier, Christopher M; Gobeil, Sophie; Pelletier, Joelle N; Gagné, Stéphane M

    2010-10-01

    The rapid evolution of Class A β-lactamases, which procure resistance to an increasingly broad panel of β-lactam antibiotics, underscores the urgency to better understand the relation between their sequence variation and their structural and functional features. To date, more than 300 clinically-relevant β-lactamase variants have been reported, and this number continues to increase. With the aim of obtaining insights into the evolutionary potential of β-lactamases, an artificially engineered, catalytically active chimera of the Class A TEM-1 and PSE-4 β-lactamases is under study by kinetics and NMR. Here we report the (1)H, (13)C and (15)N backbone resonance assignments for the 30 kDa chimera cTEM-17m. Despite its high molecular weight, the data provide evidence that this artificially-evolved chimeric enzyme is well folded. The hydrolytic activity of cTEM-17m was determined using the chromogenic substrate CENTA, with K (M) = 160 ± 35 μM and k (cat) = 20 ± 4 s(-1), which is in the same range as the values for TEM-1 and PSE-4 β-lactamases.

  13. Cosmological variation of the fine-structure constant versus a new interaction

    SciTech Connect

    Angstmann, E.J.; Flambaum, V.V.; Karshenboim, S.G.

    2004-10-01

    We show that using the modified form of the Dirac Hamiltonian as suggested by Bekenstein does not affect the analysis of QSO data pertaining to a measurement of {alpha} variation. We obtain the present time limit on Bekenstein's parameter, tan{sup 2} {chi}=(0.2{+-}0.7)x10{sup -6}, from the measurement of the hydrogen 2p fine structure using a value of {alpha} obtained from different experiments.

  14. Enhanced effect of temporal variation of the fine-structure constant in diatomic molecules

    SciTech Connect

    Flambaum, V. V.

    2006-03-15

    We show that the relative effect of variation of the fine-structure constant in microwave transitions between very close and narrow rotational-hyperfine levels may be enhanced 2-3 orders of magnitude in diatomic molecules with unpaired electrons like LaS, LaO, LuS, LuO, YbF, and similar molecular ions. The enhancement is result of cancellation between the hyperfine and rotational intervals.

  15. Detection of the Temporal Variations of Structure Sensitive Bodies by the Active Monitoring

    NASA Astrophysics Data System (ADS)

    Fujii, N.; Kumazawa, M.

    2004-12-01

    Observable phenomena that cause temporal variations of stress field related to generations of earthquakes and volcanic eruptions could be mainly the reflected wave from scattering sources. The heterogeneity in the lithosphere originated from both stress state and heterogeneous distribution of fluid-bearing rocks can be the scattering sources. Temporal variations of the scattering sources due to the structure sensitivity of rocks are essential characteristics of seismogenic regions as well as the active volcanic regions. The active geophysical monitoring would be the essential tool to detect and clarify such an evolving process that governed by the structure sensitivity of rocks in the crust and upper mantle. Among many structure sensitive phenomena, probable changes in the reflected seismic or electromagnetic signals are expected in the temporal variations of impedance and anisotropic dispersion of the transmitted signals in the subduction zone where the scattering sources are evolving associated with the movement of the fluid mainly composed of supercritical water in the crust and upper mantle conditions. Recently discovered slow slip events and deep non-volcanic tremors in the subduction zone could be one of the most challenging targets to clarify their characteristics by using the active monitoring techniques.

  16. Sensitivity-based model updating for structural damage identification using total variation regularization

    NASA Astrophysics Data System (ADS)

    Grip, Niklas; Sabourova, Natalia; Tu, Yongming

    2017-02-01

    Sensitivity-based Finite Element Model Updating (FEMU) is one of the widely accepted techniques used for damage identification in structures. FEMU can be formulated as a numerical optimization problem and solved iteratively making automatic updating of the unknown model parameters by minimizing the difference between measured and analytical structural properties. However, in the presence of noise in the measurements, the updating results are usually prone to errors. This is mathematically described as instability of the damage identification as an inverse problem. One way to resolve this problem is by using regularization. In this paper, we compare a well established interpolation-based regularization method against methods based on the minimization of the total variation of the unknown model parameters. These are new regularization methods for structural damage identification. We investigate how using Huber and pseudo Huber functions in the definition of total variation affects important properties of the methods. For instance, for well-localized damages the results show a clear advantage of the total variation based regularization in terms of the identified location and severity of damage compared with the interpolation-based solution. For a practical test of the proposed method we use a reinforced concrete plate. Measurements and analysis were performed first on an undamaged plate, and then repeated after applying four different degrees of damage.

  17. Genetic variation in plant morphology contributes to the species-level structure of grassland communities.

    PubMed

    Whitlock, Raj; Grime, J Phil; Burke, Terry

    2010-05-01

    It is becoming apparent that genetic diversity can influence the species diversity and structure of ecological communities. Here, we investigated the intraspecific trait variation responsible for this relationship. We grew 10 genotypes of the sedge Carex caryophyllea, as monocultures, under standardized conditions and measured traits related to morphology, growth, and life history. The same genotypes had been prominent in determining the structure of multispecies experimental communities, equivalent in species diversity, in which the genetic diversity of the constituent plant species had been varied in parallel. The trait measurements revealed substantial phenotypic variation among Carex genotypes, related predominantly to differences in physical size and to the spatial deployment of above- and belowground tissue. Genotypes successful in experimental communities were larger in size and tended to adopt a "guerrilla" clonal growth strategy. In general, multivariate trait summaries of genotype size (and to a lesser extent, variation along a linear discriminant axis) predicted genotype and species abundance in experimental communities. However, one genotype exhibited a large disparity in this respect. The performance of this genotype lay closer to prediction when it was growing with a highly competitive grass genotype. The strength of the relationship between genotype size and performance within communities decreased with decreasing community genetic diversity. These results indicate that intraspecific trait measurements are useful for predicting and understanding community structure. They also imply that competitive interactions between the genotypes of different species play an increased role in determining phenotype in genetically impoverished communities.

  18. Exploration of Structural and Functional Variations Owing to Point Mutations in α-NAGA.

    PubMed

    Meshach Paul, D; Rajasekaran, R

    2016-05-02

    Schindler disease is a lysosomal storage disorder caused due to deficiency or defective activity of alpha-N-acetylgalactosaminidase (α-NAGA). Mutations in gene encoding α-NAGA cause wide range of diseases, characterized with mild to severe clinical features. Molecular effects of these mutations are yet to be explored in detail. Therefore, this study was focused on four missense mutations of α-NAGA namely, S160C, E325K, R329Q and R329W. Native and mutant structures of α-NAGA were analysed to determine geometrical deviations such as the contours of root mean square deviation, root mean square fluctuation, percentage of residues in allowed regions of Ramachandran plot and solvent accessible surface area, using conformational sampling technique. Additionally, global energy-minimized structures of native and mutants were further analysed to compute their intra-molecular interactions, hydrogen bond dilution and distribution of secondary structure. In addition, docking studies were also performed to determine variations in binding energies between native and mutants. The deleterious effects of mutants were evident due to variations in their active site residues pertaining to spatial conformation and flexibility, comparatively. Hence, variations exhibited by mutants, namely S160C, E325K, R329Q and R329W to that of native, consequently, lead to the detrimental effects causing Schindler disease. This study computationally explains the underlying reasons for the pathogenesis of the disease, thereby aiding future researchers in drug development and disease management.

  19. Some reasons of emission variation in InAs quantum dot-in-a-well structures

    NASA Astrophysics Data System (ADS)

    Torchynska, T. V.; Palacios Gomez, J.; Gómez Gasga, G.; Vivas Hernandez, A.; Velazquez Lozada, E.; Polupan, G.; Shcherbyna, Ye S.

    2010-09-01

    Photoluminescence (PL) and X ray diffraction have been studied in InAs quantum dots (QDs) embedded in symmetric In0.15Ga1-0.15As/GaAs quantum wells (dot-in-a-well, DWELL) with QDs grown at different temperatures. The density of QDs decreases from 1.1×1011 down to 1.3×1010 cm-2 with increasing the QD growth temperatures from 470 to 535°C. The QD density decreasing in DWELLs is accompanied by the non monotonous variation of QD parameters. The PL intensity increases and the PL peak shifts to low energy in structures with QDs grown at 490 and 510°C. On the contrary the structures with QDs grown at 525 and 535°C are characterized by lower PL intensities and PL peak positions shifted to higher energy. The method of X-ray diffraction has been applied with the aim to study the variation of elastic strain in DWELL structures with QDs grown at different temperatures. It was shown that the minimum of elastic strain corresponds to DWELL with QDs grown at 490-525 °C. For lower (470 °C) and higher (535 °C) QD growth temperatures the level of compressive strain increased in DWELLs. The reasons of strain variation are discussed as well.

  20. Interspecific variations of inner ear structure in the deep-sea fish family melamphaidae.

    PubMed

    Deng, Xiaohong; Wagner, Hans-Joachim; Popper, Arthur N

    2013-07-01

    Inner ear structures are compared among three major genera of the deep-sea fish family Melamphaidae (bigscales and ridgeheads). Substantial interspecific variation is found in the saccular otoliths, including the presence of a unique otolithic "spur" in the genera Melamphaes and Poromitra. The variation in the saccular otolith is correlated with an increase in the number of hair bundle orientation groups on the sensory epithelia from the genera Scopelogadus to Poromitra to Melamphaes. The diverse structural variations found in the saccule may reflect the evolutionary history of these species. The sensory hair cell bundles in this family have the most variable shapes yet encountered in fish ears. In the saccule, most of the hair bundles are 15-20 μm high, an exceptional height for fish otolithic end organs. These bundles have large numbers of stereovilli, including some that reach the length of the kinocilium. In the utricle, the striolar region separates into two unusually shaped areas that have not been described in any other vertebrates. The brains in all species have a relatively small olfactory bulb and optic tectum, as well as an enlarged posterior cerebellar region that is likely to be involved in inner ear and lateral line (octavolateral) functions. Data from melamphaids support the hypothesis that specialized anatomical structures are found in the ears of some (if not most) deep-sea fishes, presumably enhancing their hearing sensitivity. Copyright © 2013 Wiley Periodicals, Inc.

  1. Variation and Genetic Structure in Platanus mexicana (Platanaceae) along Riparian Altitudinal Gradient

    PubMed Central

    Galván-Hernández, Dulce M.; Lozada-García, J. Armando; Flores-Estévez, Norma; Galindo-González, Jorge; Vázquez-Torres, S. Mario

    2015-01-01

    Platanus mexicana is a dominant arboreal species of riparian ecosystems. These ecosystems are associated with altitudinal gradients that can generate genetic differences in the species, especially in the extremes of the distribution. However, studies on the altitudinal effect on genetic variation to riparian species are scarce. In Mexico, the population of P. mexicana along the Colipa River (Veracruz State) grows below its reported minimum altitude range, possibly the lowest where this tree grows. This suggests that altitude might be an important factor in population genetics differentiation. We examined the genetic variation and population structuring at four sites with different altitudes (70, 200, 600 and 1700 m a.s.l.) using ten inter-simple sequence repeats (ISSR) markers. The highest value for Shannon index and Nei’s gene diversity was obtained at 1700 m a.s.l. (He = 0.27, Ne = 1.47, I = 0.42) and polymorphism reached the top value at the middle altitude (% p = 88.57). Analysis of molecular variance (AMOVA) and STRUCTURE analysis indicated intrapopulation genetic differentiation. The arithmetic average (UPGMA) dendrogram identified 70 m a.s.l. as the most genetically distant site. The genetic structuring resulted from limited gene flow and genetic drift. This is the first report of genetic variation in populations of P. mexicana in Mexico. This research highlights its importance as a dominant species, and its ecological and evolutionary implications in altitudinal gradients of riparian ecosystems. PMID:25607732

  2. Relationship of D'' structure with the velocity variations near the inner-core boundary

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Nian; Ni, Sidao; Helmberger, Don

    2002-06-01

    Variations in regional differential times between PKiKP (i) and PKIKP (I) have been attributed to hemispheric P-velocity variations of about 1% in the upper 100 km of the inner core (referred to as HIC). The top of the inner core appears relatively fast beneath Asia where D'' is also fast. An alternative interpretation could be the lateral variation in P velocity at the lowermost outer core (HOC) producing the same differential times. To resolve this issue, we introduce the diffracted PKP phase near the B caustic (Bdiff) in the range of 139-145° epicenter distances, and the corresponding differential times between Bdiff and PKiKP and PKIKP as observed on broadband arrays. Due to the long-wavelength nature of Bdiff, we scaled the S-wave tomography model with k values (k ≡ dlnVs/dlnVp) to obtain large-scale P-wave velocity structure in the lower mantle as proposed by earlier studies. Waveform synthetics of Bdiff constructed with small k's predict complex waveforms not commonly observed, confirming the validity of large scaling factor k. With P-velocity in lower mantle constrained at large scale, the extra travel-time constraint imposed by Bdiff helps to resolve the HOC-HIC issue. Our preliminary results suggest k > 2 for the lowermost mantle and support HIC hypothesis. An important implication is that there appears to be a relationship of D'' velocity structures with the structures near the inner core boundary via core dynamics.

  3. Crystal structure and phase transformation of BiFeO3 multiferroics on the temperature variation

    NASA Astrophysics Data System (ADS)

    Nuraini, U.; Suasmoro, S.

    2017-04-01

    In this study, multiferroic of BiFeO3 was successfully synthesized using solid state methods. The materials was calcined by variation temperature at 800, 840, 860, and 880°C for 4hours in air atmosphere. Structure analysis and phase transformation were carried out using X-ray diffraction. The results show that not only BiFeO3 phase is formed but also other phases as secondary phases on all variation temperatures. The secondary phases, i.e. Bi25FeO40 and Bi2Fe4O9, have different molar or weight percentage at that variation. BiFeO3 has a perovskite structure and considering as R3c space group, for all secondary phases consist of cubic structure. The results showed that increasing calcination temperaturedecrease the amount of BiFeO3 phases and increase the secondary phases. The highest percentage of BiFeO3 phases (91.69%) is obtained at 800°C.

  4. Variation and genetic structure in Platanus mexicana (Platanaceae) along riparian altitudinal gradient.

    PubMed

    Galván-Hernández, Dulce M; Lozada-García, J Armando; Flores-Estévez, Norma; Galindo-González, Jorge; Vázquez-Torres, S Mario

    2015-01-19

    Platanus mexicana is a dominant arboreal species of riparian ecosystems. These ecosystems are associated with altitudinal gradients that can generate genetic differences in the species, especially in the extremes of the distribution. However, studies on the altitudinal effect on genetic variation to riparian species are scarce. In Mexico, the population of P. mexicana along the Colipa River (Veracruz State) grows below its reported minimum altitude range, possibly the lowest where this tree grows. This suggests that altitude might be an important factor in population genetics differentiation. We examined the genetic variation and population structuring at four sites with different altitudes (70, 200, 600 and 1700 m a.s.l.) using ten inter-simple sequence repeats (ISSR) markers. The highest value for Shannon index and Nei's gene diversity was obtained at 1700 m a.s.l. (He = 0.27, Ne = 1.47, I = 0.42) and polymorphism reached the top value at the middle altitude (% p = 88.57). Analysis of molecular variance (AMOVA) and STRUCTURE analysis indicated intrapopulation genetic differentiation. The arithmetic average (UPGMA) dendrogram identified 70 m a.s.l. as the most genetically distant site. The genetic structuring resulted from limited gene flow and genetic drift. This is the first report of genetic variation in populations of P. mexicana in Mexico. This research highlights its importance as a dominant species, and its ecological and evolutionary implications in altitudinal gradients of riparian ecosystems.

  5. Structural variation of the ribosomal gene cluster within the class Insecta

    SciTech Connect

    Mukha, D.V.; Sidorenko, A.P.; Lazebnaya, I.V.

    1995-09-01

    General estimation of ribosomal DNA variation within the class Insecta is presented. It is shown that, using blot-hybridization, one can detect differences in the structure of the ribosomal gene cluster not only between genera within an order, but also between species within a genera, including sibling species. Structure of the ribosomal gene cluster of the Coccinellidae family (ladybirds) is analyzed. It is shown that cloned highly conservative regions of ribosomal DNA of Tetrahymena pyriformis can be used as probes for analyzing ribosomal genes in insects. 24 refs., 4 figs.

  6. The Effect of Different microRNA Backbones on Artificial miRNA Expression and Knockdown Activity Against HIV-1 Replication.

    PubMed

    Nejati, Ahmad; Soleimani, Masoud; Arefian, Ehsan; Marashi, Sayed M; Tabatabaie, Hamideh; Farahmand, Mohammad; Shoja, Zabihollah; Mahmoodi, Mahmood; Nategh, Rakhshandeh; Shahmahmoodi, Shohreh

    2016-01-01

    Artificial microRNAs (miRNAs) are designed to develop an RNAi-based gene therapy. Recently, it has been suggested that the flanking sequences and terminal loop structure play a critical role in RNAi biogenesis and target recognition, but no extensive study regarding the different miRNA backbone for artificial miRNAs optimization has been conducted. We tested three artificial miRNAs with human hsa-miR30a (common miRNA), hsa-miR150 (T cell specific miRNA), and hsa-miR122 (liver specific miRNA) backbones in HEK-293T and Jurkat cell lines. Artificial miRNA processing and knockdown efficiency were analyzed by stem-loop RT-PCR, qRT-PCR, luciferase assay and target challenging. We identified strikingly different RNAi activities among these different artificial miRNAs. Our results demonstrated that expression and function of art-miR150 was more than art-miR30 and artmiR122 in both HEK-293T and Jurkat cell lines. Since the main difference in these artificial miRNAs was flanking sequences and terminal loop structure, the change between the expression and function of artificial miRNAs can be attributed to these structures. This study showed that expression of cell-specific artificial miRNA in target and nontarget cells is not different, but variation in flanking sequences and terminal loop can be involved in expression and function of artificial miRNAs. These results can be important for improving artificial miRNA design in RNAi-based gene therapy.

  7. ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using Next Generation Sequence

    PubMed Central

    2011-01-01

    Background The possibilities offered by next generation sequencing (NGS) platforms are revolutionizing biotechnological laboratories. Moreover, the combination of NGS sequencing and affordable high-throughput genotyping technologies is facilitating the rapid discovery and use of SNPs in non-model species. However, this abundance of sequences and polymorphisms creates new software needs. To fulfill these needs, we have developed a powerful, yet easy-to-use application. Results The ngs_backbone software is a parallel pipeline capable of analyzing Sanger, 454, Illumina and SOLiD (Sequencing by Oligonucleotide Ligation and Detection) sequence reads. Its main supported analyses are: read cleaning, transcriptome assembly and annotation, read mapping and single nucleotide polymorphism (SNP) calling and selection. In order to build a truly useful tool, the software development was paired with a laboratory experiment. All public tomato Sanger EST reads plus 14.2 million Illumina reads were employed to test the tool and predict polymorphism in tomato. The cleaned reads were mapped to the SGN tomato transcriptome obtaining a coverage of 4.2 for Sanger and 8.5 for Illumina. 23,360 single nucleotide variations (SNVs) were predicted. A total of 76 SNVs were experimentally validated, and 85% were found to be real. Conclusions ngs_backbone is a new software package capable of analyzing sequences produced by NGS technologies and predicting SNVs with great accuracy. In our tomato example, we created a highly polymorphic collection of SNVs that will be a useful resource for tomato researchers and breeders. The software developed along with its documentation is freely available under the AGPL license and can be downloaded from http://bioinf.comav.upv.es/ngs_backbone/ or http://github.com/JoseBlanca/franklin. PMID:21635747

  8. Interpopulation variation in contour feather structure is environmentally determined in great tits.

    PubMed

    Broggi, Juli; Gamero, Anna; Hohtola, Esa; Orell, Markku; Nilsson, Jan-Åke

    2011-01-01

    The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored. We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland) and one southern population in Lund (Sweden). Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu. Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations.

  9. Hydrophobic Core Variations Provide a Structural Framework for Tyrosine Kinase Evolution and Functional Specialization

    PubMed Central

    Kwon, Annie; Byrne, Dominic P.; Ferries, Samantha; Ruan, Zheng; Hanold, Laura E.; Katiyar, Samiksha; Kennedy, Eileen J.; Eyers, Patrick A.; Kannan, Natarajan

    2016-01-01

    Protein tyrosine kinases (PTKs) are a group of closely related enzymes that have evolutionarily diverged from serine/threonine kinases (STKs) to regulate pathways associated with multi-cellularity. Evolutionary divergence of PTKs from STKs has occurred through accumulation of mutations in the active site as well as in the commonly conserved hydrophobic core. While the functional significance of active site variations is well understood, relatively little is known about how hydrophobic core variations contribute to PTK evolutionary divergence. Here, using a combination of statistical sequence comparisons, molecular dynamics simulations, mutational analysis and in vitro thermostability and kinase assays, we investigate the structural and functional significance of key PTK-specific variations in the kinase core. We find that the nature of residues and interactions in the hydrophobic core of PTKs is strikingly different from other protein kinases, and PTK-specific variations in the core contribute to functional divergence by altering the stability and dynamics of the kinase domain. In particular, a functionally critical STK-conserved histidine that stabilizes the regulatory spine in STKs is selectively mutated to an alanine, serine or glutamate in PTKs, and this loss-of-function mutation is accommodated, in part, through compensatory PTK-specific interactions in the core. In particular, a PTK-conserved phenylalanine in the I-helix appears to structurally and functionally compensate for the loss of STK-histidine by interacting with the regulatory spine, which has far-reaching effects on enzyme activity, inhibitor sensing, and stability. We propose that hydrophobic core variations provide a selective advantage during PTK evolution by increasing the conformational flexibility, and therefore the allosteric potential of the kinase domain. Our studies also suggest that Tyrosine Kinase Like kinases such as RAF are intermediates in PTK evolutionary divergence inasmuch as they

  10. Phenotypic variation and water selection potential in the stem structure of invasive alligator weed

    NASA Astrophysics Data System (ADS)

    Du, Leshan; Yang, Beifen; Guan, Wenbin; Li, Junmin

    2016-02-01

    The morphological and anatomical characteristics of stems have been found to be related to drought resistance in plants. Testing the phenotypic selection of water availability on stem anatomical traits would be useful for exploring the evolutionary potential of the stem in response to water availability. To test the phenotypic variation of the stem anatomical traits of an invasive plant in response to water availability, we collected a total of 320 individuals of Alternanthera philoxeroides from 16 populations from terrestrial and aquatic habitats in 8 plots in China and then analyzed the variation, differentiation, plasticity and selection potential of water availability on the stem anatomical traits. We found that except for the thickness of the cortex, all of the examined phenotypic parameters of the A. philoxeroides stem were significantly and positively correlated with soil water availability. The phenotypic differentiation coefficient for all of the anatomical structural parameters indicated that most of the variation existed between habitats within the same plot, whereas there was little variation among plots or among individuals within the same habitat except for variation in the thickness of the cortex. A significant phenotypic plasticity response to water availability was found for all of the anatomical traits of A. philoxeroides stem except for the thickness of the cortex. The associations between fitness and some of the anatomical traits, such as the stem diameter, the cortex area-to-stem area ratio, the pith cavity area-to-stem area ratio and the density of vascular bundles, differed with heterogeneous water availability. In both the aquatic and terrestrial habitats, no significant directional selection gradient was found for the stem diameter, the cortex area-to-stem area ratio or the density of vascular bundles. These results indicated that the anatomical structure of the A. philoxeroides stem may play an important role in the adaptation to changes

  11. [Spatial variation of non-structural carbohydrates in Betula platyphylla and Tilia amurensis stems].

    PubMed

    Zhang, Hai-Yan; Wang, Chuan-Kuan; Wang, Xing-Chang; Cheng, Fang-Yan

    2013-11-01

    Taking the two diffuse-porous tree species Betula platyphylla and Tilia amurensis in a temperate forest in Northeast China as test objects, this paper studied the spatial variation of the non-structural carbohydrates (NSC) concentrations in the stem xylem after leaf-fall. For the two tree species, the concentrations of total non-structural carbohydrate (TNC, soluble sugars plus starch) and soluble sugars in the stem xylem decreased gradually with the increasing depth from cambium to pith, whereas the starch concentration showed little radial variation. There was still a substantial amount of NSC in the inner wood close to pith. The concentrations of the NSC in the two species stems decreased gradually from the stump to the breast height, and then increased vertically. The maximum concentrations of the TNC, soluble sugars, and starch occurred at different heights, depending on the species and the TNC components. The ratio of sugar to starch showed a contrasting vertical trend for the two species, i. e., increasing from the stump to the top for B. platyphylla, but decreasing for T. amurensis. The estimation error of the stem NSC storage was mainly from the axial variation, and then, from the radial variation of NSC concentration. The TNC concentration (1.0% dry mass) in the stem of shade-intolerant species B. platyphylla was significantly lower than that (4.3% dry mass) of shade-tolerant species T. amurensis, which could be related to their different life-history strategies. Applying the sampling protocols considering the axial and radial variations of NSC could effectively reduce the potential uncertainty in estimating the NSC storage at tree or stand level.

  12. Contribution of solar radiation and geomagnetic activity to global structure of 27-day variation of ionosphere

    NASA Astrophysics Data System (ADS)

    Yao, Yibin; Zhai, Changzhi; Kong, Jian; Liu, Lei

    2017-04-01

    Twenty-seven-day variation caused by solar rotation is one of the main periodic effects of solar radiation influence on the ionosphere, and there have been many studies on this periodicity using peak electron density N_{mF2} and solar radio flux index F10.7. In this paper, the global electron content (GEC) and observation of Solar EUV Monitor (SEM) represent the whole ionosphere and solar EUV flux, respectively, to investigate the 27-day variation. The 27-day period components of indices (GEC_{27}, SEM_{27}, F10.7_{27}, Ap_{27}) are obtained using Chebyshev band-pass filter. The comparison of regression results indicates that the index SEM has higher coherence than F10.7 with 27-day variation of the ionosphere. The regression coefficients of SEM_{27 } varied from 0.6 to 1.4 and the coefficients of Ap_{27} varied from - 0.6 to 0.3, which suggests that EUV radiation seasonal variations are the primary driver for the 27-day variations of the ionosphere for most periods. TEC map grid points on three meridians where IGS stations are dense are selected for regression, and the results show that the contribution of solar EUV radiation is positive at all geomagnetic latitudes and larger than geomagnetic activity in most latitudes. The contribution of geomagnetic activity is negative at high geomagnetic latitude, increasing with decreasing geomagnetic latitudes, and positive at low geomagnetic latitudes. The global structure of 27-day variation of ionosphere is presented and demonstrates that there are two zonal anomaly regions along with the geomagnetic latitudes lines and two peaks in the north of Southeast Asia and the Middle Pacific where TEC_{27} magnitude values are notably larger than elsewhere along zonal anomaly regions.

  13. Vascular Structures of the Right Colon: Incidence and Variations with Their Clinical Implications.

    PubMed

    Alsabilah, J; Kim, W R; Kim, N K

    2017-06-01

    There is a demand for a better understanding of the vascular structures around the right colonic area. Although right hemicolectomy with the recent concept of meticulous lymph node dissection is a standardized procedure for malignant diseases among most surgeons, variations in the actual anatomical vascular are not well understood. The aim of the present review was to present a detailed overview of the vascular variation pertinent to the surgery for right colon cancer. Medical literature was searched for the articles highlighting the vascular variation relevant to the right colon cancer surgery. Recently, there have been many detailed studies on applied surgical vascular anatomy based on cadaveric dissections, as well as radiological and intraoperative examinations to overcome misconceptions concerning the arterial supply and venous drainage to the right colon. Ileocolic artery and middle colic artery are consistently present in all patients arising from the superior mesenteric artery. Even though the ileocolic artery passes posterior to the superior mesenteric vein in most of the cases, in some cases courses anterior to the superior mesenteric artery. The right colic artery is inconsistently present ranging from 63% to 10% across different studies. Ileocolic vein and middle colic vein is always present, while the right colic vein is absent in 50% of patients. The gastrocolic trunk of Henle is present in 46%-100% patients across many studies with variation in the tributaries ranging from bipodal to tetrapodal. Commonly, it is found that the right colonic veins, including the right colic vein, middle colic vein, and superior right colic vein, share the confluence forming the gastrocolic trunk of Henle in a highly variable frequency and different forms. Understanding the incidence and variations of the vascular anatomy of right side colon is of crucial importance. Failure to recognize the variation during surgery can result in troublesome bleeding especially during

  14. Simulation of variation characteristics at thermostabilization of 27 GHz biperiodical accelerating structure

    NASA Astrophysics Data System (ADS)

    Kluchevskaya, Y. D.; Polozov, S. M.

    2016-07-01

    It was proposed to develop the biperiodical accelerating structure with operating frequency of 27 GHz to assess the possibility of design a compact accelerating structure for medical application. It is necessary to do the more careful simulation of variation characteristics this case because of decrease of wavelength 3-10 times in comparison with conventional structures 10 and 3 cm ranges. Results of such study are presented in the article. Also a combination of high electromagnetic fields and long pulses at a high operating frequency leads to the temperature increase in the structure, thermal deformation and significant change of the resonator characteristics, including the frequency of the RF pulse. Development results of three versions of system of temperature stabilization also discuses.

  15. Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities

    PubMed Central

    Hansen, Oskar Liset Pryds; Bowden, Joseph J.; Treier, Urs A.; Normand, Signe; Høye, Toke

    2016-01-01

    The Arctic is warming at twice the rate of the rest of the world. This impacts Arctic species both directly, through increased temperatures, and indirectly, through structural changes in their habitats. Species are expected to exhibit idiosyncratic responses to structural change, which calls for detailed investigations at the species and community level. Here, we investigate how arthropod assemblages of spiders and beetles respond to variation in habitat structure at small spatial scales. We sampled transitions in shrub dominance and soil moisture between three different habitats (fen, dwarf shrub heath, and tall shrub tundra) at three different sites along a fjord gradient in southwest Greenland, using yellow pitfall cups. We identified 2,547 individuals belonging to 47 species. We used species richness estimation, indicator species analysis and latent variable modeling to examine differences in arthropod community structure in response to habitat variation at local (within site) and regional scales (between sites). We estimated species responses to the environment by fitting species-specific generalized linear models with environmental covariates. Species assemblages were segregated at the habitat and site level. Each habitat hosted significant indicator species, and species richness and diversity were significantly lower in fen habitats. Assemblage patterns were significantly linked to changes in soil moisture and vegetation height, as well as geographic location. We show that meter-scale variation among habitats affects arthropod community structure, supporting the notion that the Arctic tundra is a heterogeneous environment. To gain sufficient insight into temporal biodiversity change, we require studies of species distributions detailing species habitat preferences. PMID:27478709

  16. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement

    DOE PAGES

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; ...

    2014-06-17

    Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common usage today have been designed based on the assumption that each type of bond or angle has a single ideal value independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and as a first step toward using such information to build more accurate models, ultra-high resolution protein crystal structures have been used to derive a conformation-dependent library (CDL)more » of restraints for the protein backbone (Berkholz et al. 2009. Structure. 17, 1316). Here, we report the introduction of this CDL into the Phenix package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the conformation dependent library yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In Phenix usage of the CDL can be selected by simply specifying the cdl=True option. This successful implementation paves the way for further aspects of the context-dependence of ideal geometry to be characterized and applied to improve experimental and predictive modelling accuracy.« less

  17. Conformation-dependent backbone geometry restraints set a new standard for protein crystallographic refinement

    SciTech Connect

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; Karplus, P. Andrew

    2014-06-17

    Ideal values of bond angles and lengths used as external restraints are crucial for the successful refinement of protein crystal structures at all but the highest of resolutions. The restraints in common usage today have been designed based on the assumption that each type of bond or angle has a single ideal value independent of context. However, recent work has shown that the ideal values are, in fact, sensitive to local conformation, and as a first step toward using such information to build more accurate models, ultra-high resolution protein crystal structures have been used to derive a conformation-dependent library (CDL) of restraints for the protein backbone (Berkholz et al. 2009. Structure. 17, 1316). Here, we report the introduction of this CDL into the Phenix package and the results of test refinements of thousands of structures across a wide range of resolutions. These tests show that use of the conformation dependent library yields models that have substantially better agreement with ideal main-chain bond angles and lengths and, on average, a slightly enhanced fit to the X-ray data. No disadvantages of using the backbone CDL are apparent. In Phenix usage of the CDL can be selected by simply specifying the cdl=True option. This successful implementation paves the way for further aspects of the context-dependence of ideal geometry to be characterized and applied to improve experimental and predictive modelling accuracy.

  18. Allozyme variation and structure of the Canarian endemic palm tree Phoenix canariensis (Arecaceae): implications for conservation.

    PubMed

    González-Pérez, M A; Caujapé-Castells, J; Sosa, P A

    2004-09-01

    Electrophoretic analysis of 18 allozyme loci was used to estimate the levels and structuring of genetic variation within and among natural populations of the protected endemic palm species from the Canary Islands (Phoenix canariensis) to evaluate its genetic relationship with the widespread congener P. dactylifera, and to assess comparatively the genetic variation in the populations where the two species coexist with morphologically intermediate plants (mixed populations). Our survey revealed that the within-population component explains roughly 75% of the genetic variation levels detected in P. canariensis (A=1.59; P=41.8; He=0.158), which rank higher than those reported for other species of the Arecaceae. A Principal Component analysis (PCA) based on allele frequencies consistently separates populations of P. canariensis and P. dactylifera, and reveals a close genetic relationship between P. canariensis and the mixed populations. Reduced levels of genetic variation in P. canariensis with respect to P. dactylifera, the fact that the genetic makeup of the Canarian endemic (with no unique alleles) is a subset of that found in P. dactylifera, and the high genetic identity between both species strongly suggest that P. canariensis is recently derived from a common ancestor closely related to P. dactylifera.

  19. Identification of high-affinity P2Y₁₂ antagonists based on a phenylpyrazole glutamic acid piperazine backbone.

    PubMed

    Zech, Gernot; Hessler, Gerhard; Evers, Andreas; Weiss, Tilo; Florian, Peter; Just, Melitta; Czech, Jörg; Czechtizky, Werngard; Görlitzer, Jochen; Ruf, Sven; Kohlmann, Markus; Nazaré, Marc

    2012-10-25

    A series of novel, highly potent P2Y₁₂ antagonists as inhibitors of platelet aggregation based on a phenylpyrazole glutamic acid piperazine backbone is described. Exploration of the structural requirements of the substituents by probing the structure-activity relationship along this backbone led to the discovery of the N-acetyl-(S)-proline cyclobutyl amide moiety as a highly privileged motif. Combining the most favorable substituents led to remarkably potent P2Y₁₂ antagonists displaying not only low nanomolar binding affinity to the P2Y₁₂ receptor but also a low nanomolar inhibition of platelet aggregation in the human platelet rich plasma assay with IC₅₀ values below 50 nM. Using a homology and a three-dimensional quantitative structure-activity relationship model, a binding hypothesis elucidating the impact of several structural features was developed.

  20. Graphene-network-backboned architectures for high-performance lithium storage.

    PubMed

    Gong, Yongji; Yang, Shubin; Liu, Zheng; Ma, Lulu; Vajtai, Robert; Ajayan, Pulickel M

    2013-08-07

    An efficient hydrothermal approach is demonstrated to fabricate a series of graphene-network-backboned hybrid architectures such as MoS₂/graphene and FeOx/graphene, showing high specific surface area, porous structure, and continuous graphene networks. Such unique architectures exhibit a high reversible capacity (about 1100 mA h g⁻¹) for lithium ion batteries. High-rate capabilities of full charge to discharge in 25-45 s with a long cycle life (1500 cycles) are achieved at different rates.

  1. Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone.

    PubMed

    Chang, Hojun; Min, Kyungtaek; Lee, Myungjae; Kang, Minsu; Park, Yeonsang; Cho, Kyung-Sang; Roh, Young-Geun; Hwang, Sung Woo; Jeon, Heonsu

    2016-03-28

    We report the room-temperature lasing action from two-dimensional photonic crystal (PC) structures composed of a passive Si3N4 backbone with an over-coat of CdSe/CdS/ZnS colloidal quantum dots (CQDs) for optical gain. When optically excited, devices lased in dual PC band-edge modes, with the modal dominance governed by the thickness of the CQD over-layer. The demonstrated laser platform should have an impact on future photonic integrated circuits as the on-chip coupling between active and passive components is readily achievable.

  2. Backbone resonance assignments of the micro-RNA precursor binding region of human TRBP.

    PubMed

    Benoit, Matthieu P M H; Plevin, Michael J

    2013-10-01

    TAR-RNA binding protein (TRBP) is a multidomain human protein involved in micro-RNA (miRNA) biogenesis. TRBP is a component of both the Dicer complex, which processes precursor miRNAs, and the RNA-induced silencing complex-loading complex. In addition, TRBP is implicated in the human immunodeficiency virus replication cycle and interferon-protein kinase R activity. TRBP contains 3 double-stranded RNA binding domains the first two of which have been shown to interact with miRNA precursors. Here we present the backbone resonance assignments and secondary structure of residues 19-228 of human TRBP2.

  3. The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers

    NASA Astrophysics Data System (ADS)

    Liu, Hong-You; Bo, Tian-Li; Liang, Yi-Rui

    2017-03-01

    Field observations were performed to explore the variation of large-scale structure inclination angles in the high Reynolds number atmospheric surface layer (ASL). The high Reynolds number flow measurements [Reτ ˜ Ο (106)] were acquired at the Qingtu Lake observation array site. The structure inclination angles inferred from two-point correlations of the fluctuating streamwise velocity were obtained for different friction velocities in the neutral regime and different thermal stability conditions. Results indicate that, in addition to the Monin- Obukhov stability parameter, the structure inclination angle varies systematically with the friction velocity in the neutral surface layer. An empirical model is proposed to parametrize the variation of the inclination angle with the normalized friction velocity. The empirical formula agrees well with both the current ASL results and the previously documented results. Further analysis suggests that the inclination angle is dominated by the vertical velocity gradient (vertical wind shear) for both neutral and non-neutral regimes. The present work contributes to a better understanding of the inclination angle for the large-scale structures and may be used to improve the existing wall-models in the large-eddy simulation of the ASL.

  4. Effect of material and structure of compression bandage on interface pressure variation over time.

    PubMed

    Kumar, B; Das, A; Alagirusamy, R

    2014-07-01

    Compression bandage consists of fibrous materials which are viscoelastic in nature due to which the internal stress developed in the compression bandage under wrapped position may decay over time. The viscoelastic behaviour of a textile material depends on the fibre type as well as on its structure, and hence these factors could play a prominent role in interface pressure variation over time. To explore the influence of different materials and varying structures on the interface pressure profile generated by the bandages over time during static state of the limb. The material and construction of several compression bandages were engineered first and based on that different knitted bandages were prepared using several yarns (cotton, viscose, polyethylene terephthalate [PET], cotton-Lycra and PET-Lycra) and varying thread density in the structure. Three important factors, namely the material type, the applied tension and the tightness of the structure, were selected to examine their influence on interface pressure variation over time. The interface pressure measurement over time was done using a leg-segment prototype, which allows continuous online measurement of interface pressure over a static mannequin leg. More than 40% reduction of interface pressure was obtained for bandages made of spun yarns (cotton or viscose) in eight hours. Reduction of interface pressure for these bandages was higher when wrapped at a higher tension level. Lower reduction of interface pressure was obtained for the sample having higher thread density as compared with lower thread density in the structure, for the same applied tension level during wrapping. Bandages containing elastomeric yarn in the structure showed good sustenance of pressure for longer period. Bandages made up of elastic core spun yarns are effective for maintaining uniform interface pressure for longer period due to sustained compression developed by the elastic filament and tight structure of these bandages. © The

  5. Towards a comprehensive structural variation map of an individual human genome

    PubMed Central

    2010-01-01

    Background Several genomes have now been sequenced, with millions of genetic variants annotated. While significant progress has been made in mapping single nucleotide polymorphisms (SNPs) and small (<10 bp) insertion/deletions (indels), the annotation of larger structural variants has been less comprehensive. It is still unclear to what extent a typical genome differs from the reference assembly, and the analysis of the genomes sequenced to date have shown varying results for copy number variation (CNV) and inversions. Results We have combined computational re-analysis of existing whole genome sequence data with novel microarray-based analysis, and detect 12,178 structural variants covering 40.6 Mb that were not reported in the initial sequencing of the first published personal genome. We estimate a total non-SNP variation content of 48.8 Mb in a single genome. Our results indicate that this genome differs from the consensus reference sequence by approximately 1.2% when considering indels/CNVs, 0.1% by SNPs and approximately 0.3% by inversions. The structural variants impact 4,867 genes, and >24% of structural variants would not be imputed by SNP-association. Conclusions Our results indicate that a large number of structural variants have been unreported in the individual genomes published to date. This significant extent and complexity of structural variants, as well as the growing recognition of their medical relevance, necessitate they be actively studied in health-related analyses of personal genomes. The new catalogue of structural variants generated for this genome provides a crucial resource for future comparison studies. PMID:20482838

  6. Structural Variations of Human Glucokinase Glu256Lys in MODY2 Condition Using Molecular Dynamics Study.

    PubMed

    Yellapu, Nanda Kumar; Kandlapalli, Kalpana; Valasani, Koteswara Rao; Sarma, P V G K; Matcha, Bhaskar

    2013-01-01

    Glucokinase (GK) is the predominant hexokinase that acts as glucose sensor and catalyses the formation of Glucose-6-phosphate. The mutations in GK gene influence the affinity for glucose and lead to altered glucose levels in blood causing maturity onset diabetes of the young type 2 (MODY2) condition, which is one of the prominent reasons of type 2 diabetic condition. In view of the importance of mutated GK resulting in hyperglycemic condition, in the present study, molecular dynamics simulations were carried out in intact and 256 E-K mutated GK structures and their energy values and conformational variations were correlated. Energy variations were observed in mutated GK (3500 Kcal/mol) structure with respect to intact GK (5000 Kcal/mol), and it showed increased γ -turns, decreased β -turns, and more helix-helix interactions that affected substrate binding region where its volume increased from 1089.152 Å(2) to 1246.353 Å(2). Molecular docking study revealed variation in docking scores (intact = -12.199 and mutated = -8.383) and binding mode of glucose in the active site of mutated GK where the involvement of A53, S54, K56, K256, D262 and Q286 has resulted in poor glucose binding which probably explains the loss of catalytic activity and the consequent prevailing of high glucose levels in MODY2 condition.

  7. Structural Variations of Human Glucokinase Glu256Lys in MODY2 Condition Using Molecular Dynamics Study

    PubMed Central

    Yellapu, Nanda Kumar; Kandlapalli, Kalpana; Valasani, Koteswara Rao; Sarma, P. V. G. K.; Matcha, Bhaskar

    2013-01-01

    Glucokinase (GK) is the predominant hexokinase that acts as glucose sensor and catalyses the formation of Glucose-6-phosphate. The mutations in GK gene influence the affinity for glucose and lead to altered glucose levels in blood causing maturity onset diabetes of the young type 2 (MODY2) condition, which is one of the prominent reasons of type 2 diabetic condition. In view of the importance of mutated GK resulting in hyperglycemic condition, in the present study, molecular dynamics simulations were carried out in intact and 256 E-K mutated GK structures and their energy values and conformational variations were correlated. Energy variations were observed in mutated GK (3500 Kcal/mol) structure with respect to intact GK (5000 Kcal/mol), and it showed increased γ-turns, decreased β-turns, and more helix-helix interactions that affected substrate binding region where its volume increased from 1089.152 Å2 to 1246.353 Å2. Molecular docking study revealed variation in docking scores (intact = −12.199 and mutated = −8.383) and binding mode of glucose in the active site of mutated GK where the involvement of A53, S54, K56, K256, D262 and Q286 has resulted in poor glucose binding which probably explains the loss of catalytic activity and the consequent prevailing of high glucose levels in MODY2 condition. PMID:23476789

  8. Normal Variations of Sphenoid Sinus and the Adjacent Structures Detected in Cone Beam Computed Tomography

    PubMed Central

    Rahmati, Azadeh; Ghafari, Roshanak; AnjomShoa, Maryam

    2016-01-01

    Statement of the Problem The sphenoid sinus is a common target of paranasal surgery. Functional endoscopic sinus surgery is likely to endanger the anatomic variations of vital structures adjacent to the sphenoid sinus. Purpose The aim of this study was to determine the variations of sphenoid sinus and the related structures by using cone-beam computed tomography (CBCT). Materials and Method In this descriptive-analytic study, CBCT images of 103 patients aged above 20-years were selected (206 sides). Degree of pneumatization of sphenoid sinus, pneumatization of the anterior clinoid process, pterygoid process, protrusion of optic canal, vidian canal, and foramen rotundum, as well as prevalence of sinus septa were recorded. Examinations were performed using On-Demand software (Version 1); data were analyzed by using chi-square test. Results There was a statistically significant correlation between the pterygoid pneumatization and vidian canal protrusion (p< 0.001), and foramen rotundum protrusion (p< 0.001). The optic canal protrusion was found to be significantly associated with the anterior clinoid pneumatization and pterygoid process (p< 0.001). Statistically significant relationship was also observed between the carotid canal protrusion and pterygoid process pneumatization (p< 0.001). Conclusion The anatomical variations of the sphenoid sinus tend to give rise to a complexity of symptoms and potentially serious complications. This variability necessitates a comprehensive understanding of the regional sphenoid sinus anatomy by a detailed CBCT sinus examination. PMID:26966706

  9. Line profiles variations from atmospheric eclipses: Constraints on the wind structure in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Koenigsberger, G.

    1994-01-01

    Binary systems in which one of the components has a stellar wind may present a phenomenon known as 'wind' or 'atmospheric eclipse', in which that wind occults the luminous disk of the companion. The enhanced absorption profile, relative to the spectrum at uneclipsed orbital phases, can be be modeled to yield constraints on the spatial structure of the eclipsing wind. A new, very efficient approach to the radiative transfer problem, which makes no requirements with respect to monotonicity of the velocity gradient or size of that gradient, is presented. The technique recovers both the comoving frame calculation and the Sobolev approximation in the appropiate limits. Sample computer simulations of the line profile variations induced by wind eclipses are presented. It is shown that the location of the wind absorption features in frequency is a diagnostic tool for identifying the size of the wind acceleration region. Comparison of the model profile variations with the observed variations in the Wolf-Rayet (W-R)+6 binary system V444 Cyg illustrate how the method can be used to derive information on the structure of the wind of the W-R star constrain the size of the W-R core radius.

  10. The variation of the fine-structure constant from disformal couplings

    SciTech Connect

    De Bruck, Carsten van; Mifsud, Jurgen; Nunes, Nelson J. E-mail: jmifsud1@sheffield.ac.uk

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  11. Line profiles variations from atmospheric eclipses: Constraints on the wind structure in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Koenigsberger, G.

    1994-01-01

    Binary systems in which one of the components has a stellar wind may present a phenomenon known as 'wind' or 'atmospheric eclipse', in which that wind occults the luminous disk of the companion. The enhanced absorption profile, relative to the spectrum at uneclipsed orbital phases, can be be modeled to yield constraints on the spatial structure of the eclipsing wind. A new, very efficient approach to the radiative transfer problem, which makes no requirements with respect to monotonicity of the velocity gradient or size of that gradient, is presented. The technique recovers both the comoving frame calculation and the Sobolev approximation in the appropiate limits. Sample computer simulations of the line profile variations induced by wind eclipses are presented. It is shown that the location of the wind absorption features in frequency is a diagnostic tool for identifying the size of the wind acceleration region. Comparison of the model profile variations with the observed variations in the Wolf-Rayet (W-R)+6 binary system V444 Cyg illustrate how the method can be used to derive information on the structure of the wind of the W-R star constrain the size of the W-R core radius.

  12. Polar front associated variation in prokaryotic community structure in Arctic shelf seafloor.

    PubMed

    Nguyen, Tan T; Landfald, Bjarne

    2015-01-01

    Spatial variations in composition of marine microbial communities and its causes have largely been disclosed in studies comprising rather large environmental and spatial differences. In the present study, we explored if a moderate but temporally permanent climatic division within a contiguous arctic shelf seafloor was traceable in the diversity patterns of its bacterial and archaeal communities. Soft bottom sediment samples were collected at 10 geographical locations, spanning spatial distances of up to 640 km, transecting the oceanic polar front in the Barents Sea. The northern sampling sites were generally colder, less saline, shallower, and showed higher concentrations of freshly sedimented phytopigments compared to the southern study locations. Sampling sites depicted low variation in relative abundances of taxa at class level, with persistent numerical dominance by lineages of Gamma- and Deltaproteobacteria (57-66% of bacterial sequence reads). The Archaea, which constituted 0.7-1.8% of 16S rRNA gene copy numbers in the sediment, were overwhelmingly (85.8%) affiliated with the Thaumarchaeota. Beta-diversity analyses showed the environmental variations throughout the sampling range to have a stronger impact on the structuring of both the bacterial and archaeal communities than spatial effects. While bacterial communities were significantly influenced by the combined effect of several weakly selective environmental differences, including temperature, archaeal communities appeared to be more uniquely structured by the level of freshly sedimented phytopigments.

  13. Parietal structure and function explain human variation in working memory biases of visual attention.

    PubMed

    Soto, David; Rotshtein, Pia; Kanai, Ryota

    2014-04-01

    Recent research indicates that human attention appears inadvertently biased by items that match the contents of working memory (WM). WM-biases can lead to attentional costs when the memory content matches goal-irrelevant items and to attentional benefits when it matches the sought target. Here we used functional and structural MRI data to determine the neural basis of human variation in WM biases. We asked whether human variation in WM-benefits and WM-costs merely reflects the process of attentional capture by the contents of WM or whether variation in WM biases may be associated with distinct forms of cognitive control over internal WM signals based on selection goals. Human ability to use WM contents to facilitate selection was positively correlated with gray matter volume in the left superior posterior parietal cortex (PPC), while the ability to overcome interference by WM-matching distracters was associated with the left inferior PPC in the anterior IPS. Functional activity in the left PPC, measured by functional MRI, also predicted the magnitude of WM-costs on selection. Both structure and function of left PPC mediate the expression of WM biases in human visual attention.

  14. Allelic genome structural variations in maize detected by array comparative genome hybridization.

    PubMed

    Beló, André; Beatty, Mary K; Hondred, David; Fengler, Kevin A; Li, Bailin; Rafalski, Antoni

    2010-01-01

    DNA polymorphisms such as insertion/deletions and duplications affecting genome segments larger than 1 kb are known as copy-number variations (CNVs) or structural variations (SVs). They have been recently studied in animals and humans by using array-comparative genome hybridization (aCGH), and have been associated with several human diseases. Their presence and phenotypic effects in plants have not been investigated on a genomic scale, although individual structural variations affecting traits have been described. We used aCGH to investigate the presence of CNVs in maize by comparing the genome of 13 maize inbred lines to B73. Analysis of hybridization signal ratios of 60,472 60-mer oligonucleotide probes between inbreds in relation to their location in the reference genome (B73) allowed us to identify clusters of probes that deviated from the ratio expected for equal copy-numbers. We found CNVs distributed along the maize genome in all chromosome arms. They occur with appreciable frequency in different germplasm subgroups, suggesting ancient origin. Validation of several CNV regions showed both insertion/deletions and copy-number differences. The nature of CNVs detected suggests CNVs might have a considerable impact on plant phenotypes, including disease response and heterosis.

  15. Polar front associated variation in prokaryotic community structure in Arctic shelf seafloor

    PubMed Central

    Nguyen, Tan T.; Landfald, Bjarne

    2015-01-01

    Spatial variations in composition of marine microbial communities and its causes have largely been disclosed in studies comprising rather large environmental and spatial differences. In the present study, we explored if a moderate but temporally permanent climatic division within a contiguous arctic shelf seafloor was traceable in the diversity patterns of its bacterial and archaeal communities. Soft bottom sediment samples were collected at 10 geographical locations, spanning spatial distances of up to 640 km, transecting the oceanic polar front in the Barents Sea. The northern sampling sites were generally colder, less saline, shallower, and showed higher concentrations of freshly sedimented phytopigments compared to the southern study locations. Sampling sites depicted low variation in relative abundances of taxa at class level, with persistent numerical dominance by lineages of Gamma- and Deltaproteobacteria (57–66% of bacterial sequence reads). The Archaea, which constituted 0.7–1.8% of 16S rRNA gene copy numbers in the sediment, were overwhelmingly (85.8%) affiliated with the Thaumarchaeota. Beta-diversity analyses showed the environmental variations throughout the sampling range to have a stronger impact on the structuring of both the bacterial and archaeal communities than spatial effects. While bacterial communities were significantly influenced by the combined effect of several weakly selective environmental differences, including temperature, archaeal communities appeared to be more uniquely structured by the level of freshly sedimented phytopigments. PMID:25667586

  16. Variation Principles and Applications in the Study of Cell Structure and Aging

    NASA Technical Reports Server (NTRS)

    Economos, Angelos C.; Miquel, Jaime; Ballard, Ralph C.; Johnson, John E., Jr.

    1981-01-01

    In this report we have attempted to show that "some reality lies concealed in biological variation". This "reality" has its principles, laws, mechanisms, and rules, only a few of which we have sketched. A related idea we pursued was that important information may be lost in the process of ignoring frequency distributions of physiological variables (as is customary in experimental physiology and gerontology). We suggested that it may be advantageous to expand one's "statistical field of vision" beyond simple averages +/- standard deviations. Indeed, frequency distribution analysis may make visible some hidden information not evident from a simple qualitative analysis, particularly when the effect of some external factor or condition (e.g., aging, dietary chemicals) is being investigated. This was clearly illustrated by the application of distribution analysis in the study of variation in mouse liver cellular and fine structure, and may be true of fine structural studies in general. In living systems, structure and function interact in a dynamic way; they are "inseparable," unlike in technological systems or machines. Changes in fine structure therefore reflect changes in function. If such changes do not exceed a certain physiologic range, a quantitative analysis of structure will provide valuable information on quantitative changes in function that may not be possible or easy to measure directly. Because there is a large inherent variation in fine structure of cells in a given organ of an individual and among individuals, changes in fine structure can be analyzed only by studying frequency distribution curves of various structural characteristics (dimensions). Simple averages +/- S.D. do not in general reveal all information on the effect of a certain factor, because often this effect is not uniform; on the contrary, this will be apparent from distribution analysis because the form of the curves will be affected. We have also attempted to show in this chapter that

  17. Highly charged ions for atomic clocks and search for variation of the fine structure constant

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.

    2015-11-01

    We review a number of highly charged ions which have optical transitions suitable for building extremely accurate atomic clocks. This includes ions from Hf 12+ to U 34+, which have the 4 f 12 configuration of valence electrons, the Ir 17+ ion, which has a hole in almost filled 4 f subshell, the Ho 14+, Cf 15+, Es 17+ and Es 16+ ions. Clock transitions in most of these ions are sensitive to variation of the fine structure constant, α (α = e2/hbar c). E.g., californium and einsteinium ions have largest known sensitivity to α-variation while holmium ion looks as the most suitable ion for experimental study. We study the spectra of the ions and their features relevant to the use as frequency standards.

  18. The latitude-height structure of 40-50 day variations in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.; Rosen, R. D.

    1983-01-01

    Using five years of U.S. National Meteorological Center twice-daily global analyses, a description of the two-dimensional latitude-height structure of the winds responsible for quasi-periodic variations in the relative angular momentum of the atmosphere observed by Langley et al. (1981) is constructed. Cross-spectral and amplitude phase eigenvector techniques indicate that these variations are associated with wave-like motions in the tropical upper troposphere which propagate poleward and downward in phase within the tropics. The tropical component is suggested to be the zonally averaged part of the motions described by Madden and Julian (1971, 1972), while a Northern Hemisphere midlatitude component whose phase is essentially independent of height may be a direct response to the tropical motions. Alternatively, both motions may be the common response to an as yet unidentified tropical forcing.

  19. Effect of molecular structure variation on the disintegrant action of sodium starch glycolate.

    PubMed

    Rudnic, E M; Kanig, J L; Rhodes, C T

    1985-06-01

    The effect of variation in the degree of cross-linkage and extent of carboxymethylation on the disintegration and dissolution properties of sodium starch glycolate has been examined. Samples of sodium starch glycolate were evaluated for particle size distributions and bulk and tapped densities. The bulk powders were also tested for sedimentation volumes, water uptake, and bulk swelling. Direct compression formulations containing aspirin and hydrochlorothiazide and varying concentrations of the modified starches were tableted on a rotary tablet press and evaluated for weight variation, hardness, disintegration, and dissolution. The results indicate that relatively small changes in molecular structure can cause substantial modification of disintegrant properties and suggest that the specifications for one commercially available sodium starch glycolate are within optimal specifications for both cross-linkage and degree of substitution.

  20. Constraining spatial variations of the fine-structure constant in symmetron models

    NASA Astrophysics Data System (ADS)

    Pinho, A. M. M.; Martinelli, M.; Martins, C. J. A. P.

    2017-06-01

    We introduce a methodology to test models with spatial variations of the fine-structure constant α, based on the calculation of the angular power spectrum of these measurements. This methodology enables comparisons of observations and theoretical models through their predictions on the statistics of the α variation. Here we apply it to the case of symmetron models. We find no indications of deviations from the standard behavior, with current data providing an upper limit to the strength of the symmetron coupling to gravity (log ⁡β2 < - 0.9) when this is the only free parameter, and not able to constrain the model when also the symmetry breaking scale factor aSSB is free to vary.

  1. Effect of Periodic Surface Air Temperature Variations on Subsurface Thermal Structure with Vertical Fluid flow

    NASA Astrophysics Data System (ADS)

    D, R. V.; Ravi, M.; Srivastava, K.

    2016-12-01

    The influence of climate change on near subsurface temperatures is an important research topic for global change impact assessment at the regional scale. The varying temperature of the air over the surface in long term will disturb subsurface thermal structure. Groundwater flow is another important process which perturbs the thermal distribution into the subsurface. To investigate the effect of periodic air temperature on nonisothermal subsurface, one dimensional transient heat conduction-advection equation is solved numerically using finite element method. Thermal response of subsurface for periodic variations in surface air temperature (SAT) with robin type boundary condition on the surface with vertical ground water flow are calculated and the amplitude attenuation of propagation of surface temperature information in the subsurface for different scenarios of advection and convective coefficient are discussed briefly. The results show the coupled response of trigonometric variation in air temperature with surface temperatures along with ground water velocity has significant implications for the effects of climate change.

  2. The latitude-height structure of 40-50 day variations in atmospheric angular momentum

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.; Rosen, R. D.

    1983-01-01

    Using five years of U.S. National Meteorological Center twice-daily global analyses, a description of the two-dimensional latitude-height structure of the winds responsible for quasi-periodic variations in the relative angular momentum of the atmosphere observed by Langley et al. (1981) is constructed. Cross-spectral and amplitude phase eigenvector techniques indicate that these variations are associated with wave-like motions in the tropical upper troposphere which propagate poleward and downward in phase within the tropics. The tropical component is suggested to be the zonally averaged part of the motions described by Madden and Julian (1971, 1972), while a Northern Hemisphere midlatitude component whose phase is essentially independent of height may be a direct response to the tropical motions. Alternatively, both motions may be the common response to an as yet unidentified tropical forcing.

  3. Mixed variational formulations of finite element analysis of elastoacoustic/slosh fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Ohayon, Roger

    1991-01-01

    A general three-field variational principle is obtained for the motion of an acoustic fluid enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. This principle contains a free parameter alpha. Semidiscrete finite-element equations of motion based on this principle are displayed and applied to the transient response and free-vibrations of the coupled fluid-structure problem. It is shown that a particular setting of alpha yields a rich set of formulations that can be customized to fit physical and computational requirements. The variational principle is then extended to handle slosh motions in a uniform gravity field, and used to derive semidiscrete equations of motion that account for such effects.

  4. Enhanced sensitivity to the fine-structure-constant variation in the Th IV atomic clock transition

    SciTech Connect

    Flambaum, V. V.; Porsev, S. G.

    2009-12-15

    Our calculations have shown that the 5f{sub 5/2}-7s{sub 1/2} 23 131 cm{sup -1} transition from the ground state in the ion Th{sup 3+} is very sensitive to the temporal variation of the fine-structure constant alpha=e{sup 2}/(Planck constant/2pi)c (q=-75 300 cm{sup -1}). The line is very narrow, the ion has been trapped and laser cooled, and the positive shifter line 5f{sub 5/2}-5f{sub 7/2} 4325 cm{sup -1} (q=+2900 cm{sup -1}) may be used as a reference. A comparison may also be made with a positive shifter in another atom or ion. This makes Th{sup 3+} a good candidate to search for the alpha variation.

  5. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    SciTech Connect

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; Shehu, Amarda

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.

  6. Exposing hidden alternative backbone conformations in X-ray crystallography using qFit

    DOE PAGES

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry; ...

    2015-10-27

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechainmore » conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Furthermore, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.« less

  7. Exposing Hidden Alternative Backbone Conformations in X-ray Crystallography Using qFit

    PubMed Central

    Keedy, Daniel A.; Fraser, James S.; van den Bedem, Henry

    2015-01-01

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the “flap” regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems. PMID:26506617

  8. On the role of thermal backbone fluctuations in myoglobin ligand gate dynamics

    NASA Astrophysics Data System (ADS)

    Krokhotin, Andrey; Niemi, Antti J.; Peng, Xubiao

    2013-05-01

    We construct an energy function that describes the crystallographic structure of sperm whale myoglobin backbone. As a model in our construction, we use the Protein Data Bank entry 1ABS that has been measured at liquid helium temperature. Consequently, the thermal B-factor fluctuations are very small, which is an advantage in our construction. The energy function that we utilize resembles that of the discrete nonlinear Schrödinger equation. Likewise, ours supports topological solitons as local minimum energy configurations. We describe the 1ABS backbone in terms of topological solitons with a precision that deviates from 1ABS by an average root-mean-square distance, which is less than the experimentally observed Debye-Waller B-factor fluctuation distance. We then subject the topological multi-soliton solution to extensive numerical heating and cooling experiments, over a very wide range of temperatures. We concentrate in particular to temperatures above 300 K and below the Θ-point unfolding temperature, which is around 348 K. We confirm that the behavior of the topological multi-soliton is fully consistent with Anfinsen's thermodynamic principle, up to very high temperatures. We observe that the structure responds to an increase of temperature consistently in a very similar manner. This enables us to characterize the onset of thermally induced conformational changes in terms of three distinct backbone ligand gates. One of the gates is made of the helix F and the helix E. The two other gates are chosen similarly, when open they provide a direct access route for a ligand to reach the heme. We find that out of the three gates we investigate, the one which is formed by helices B and G is the most sensitive to thermally induced conformational changes. Our approach provides a novel perspective to the important problem of ligand entry and exit.

  9. Exposing Hidden Alternative Backbone Conformations in X-ray Crystallography Using qFit.

    PubMed

    Keedy, Daniel A; Fraser, James S; van den Bedem, Henry

    2015-10-01

    Proteins must move between different conformations of their native ensemble to perform their functions. Crystal structures obtained from high-resolution X-ray diffraction data reflect this heterogeneity as a spatial and temporal conformational average. Although movement between natively populated alternative conformations can be critical for characterizing molecular mechanisms, it is challenging to identify these conformations within electron density maps. Alternative side chain conformations are generally well separated into distinct rotameric conformations, but alternative backbone conformations can overlap at several atomic positions. Our model building program qFit uses mixed integer quadratic programming (MIQP) to evaluate an extremely large number of combinations of sidechain conformers and backbone fragments to locally explain the electron density. Here, we describe two major modeling enhancements to qFit: peptide flips and alternative glycine conformations. We find that peptide flips fall into four stereotypical clusters and are enriched in glycine residues at the n+1 position. The potential for insights uncovered by new peptide flips and glycine conformations is exemplified by HIV protease, where different inhibitors are associated with peptide flips in the "flap" regions adjacent to the inhibitor binding site. Our results paint a picture of peptide flips as conformational switches, often enabled by glycine flexibility, that result in dramatic local rearrangements. Our results furthermore demonstrate the power of large-scale computational analysis to provide new insights into conformational heterogeneity. Overall, improved modeling of backbone heterogeneity with high-resolution X-ray data will connect dynamics to the structure-function relationship and help drive new design strategies for inhibitors of biomedically important systems.

  10. Solution Structure of Vibrio Cholerae Protein VC0424: A Variation of the Ferredoxin-like Fold

    SciTech Connect

    Ramelot, Theresa A.; Ni, Shuisong; Goldsmith-Fischman, Sharon; Cort, John R.; Honig, Barry; Kennedy, Michael A.

    2003-06-23

    The structure of Vibrio cholerae protein VC0424 was determined by NMR spectroscopy. VC0424 belongs to a conserved family of bacterial proteins of unknown function (COG 3076) and previously unknown function. The structure has an a-b sandwich architecture consisting of two layers: a four stranded antiparallel b-sheet and three side-by-side a-helices. The secondary structure elements have the order ababbab along the sequence. This fold is the same as the ferredoxin-like fold, except with an additional long N-terminal helix, making it a variation on this common motif. A cluster of conserved surface residues on the b-sheet side of the protein forms a pocket that may be important for the biological function of this conserved family of proteins.

  11. Real-time aircraft structural damage identification with flight condition variations

    NASA Astrophysics Data System (ADS)

    Lew, Jiann-Shiun; Loh, Chin-Hsiung

    2012-04-01

    This paper presents a real-time structural damage identification method for aircraft with flight condition variations. The proposed approach begins by identifying the dynamic models under various test conditions from time-domain input/output data. A singular value decomposition technique is then used to characterize and quantify the parameter uncertainties from the identified models. The uncertainty coordinates, corresponding to the identified principal directions, of the identified models are computed, and the residual errors between the identified uncertainty coordinates and the estimated uncertainty coordinates of the health structure are used to identify damage status. A correlation approach is applied to identify damage type and intensity, based on the difference between the identified parameters and the estimated parameters of the healthy structure. The proposed approach is demonstrated by application to the Benchmark Active Controls Technology (BACT) wind-tunnel model.

  12. Cardiac Structural and Sarcomere Genes Associated with Cardiomyopathy Exhibit Marked Intolerance of Genetic Variation

    PubMed Central

    Pan, Stephen; Caleshu, Colleen A.; Dunn, Kyla E.; Foti, Marcia J.; Moran, Maura K.; Soyinka, Oretunlewa; Ashley, Euan A.

    2012-01-01

    Background The clinical significance of variants in genes associated with inherited cardiomyopathies can be difficult to determine due to uncertainty regarding population genetic variation and a surprising amount of tolerance of the genome even to loss of function variants. We hypothesized that genes associated with cardiomyopathy might be particularly resistant to the accumulation of genetic variation. Methods and Results We analyzed the rates of single nucleotide genetic variation in all known genes from the exomes of >5,000 individuals from the National Heart, Lung, and Blood Institute’s Exome Sequencing Project (ESP), as well as the rates of structural variation from the Database of Genomic Variants. Most variants were rare, with over half unique to one individual. Cardiomyopathy associated genes exhibited a rate of nonsense variants 96.1% lower than other Mendelian disease genes. We tested the ability of in-silico algorithms to distinguish between a set of variants in MYBPC3, MYH7, and TNNT2 with strong evidence for pathogenicity and variants from the ESP data. Algorithms based on conservation at the nucleotide level (GERP, PhastCons) did not perform as well as amino acid level prediction algorithms (Polyphen-2, SIFT). Variants with strong evidence for disease causality were found in the ESP data at prevalence higher than expected. Conclusions Genes associated with cardiomyopathy carry very low rates of population variation. The existence in population data of variants with strong evidence for pathogenicity suggests that even for Mendelian disease genetics, a probabilistic weighting of multiple variants may be preferred over the ‘single gene’ causality model. PMID:23074333

  13. Seasonal and spatial variations in fish and macrocrustacean assemblage structure in Mad Island Marsh estuary, Texas

    NASA Astrophysics Data System (ADS)

    Akin, S.; Winemiller, K. O.; Gelwick, F. P.

    2003-05-01

    Fish and macrocrustacean assemblage structure was analyzed along an estuarine gradient at Mad Island Marsh (MIM), Matagorda Bay, TX, during March 1998-August 1999. Eight estuarine-dependent fish species accounted for 94% of the individual fishes collected, and three species accounted for 96% of macrocrustacean abundance. Consistent with evidence from other Gulf of Mexico estuarine studies, species richness and abundance were highest during late spring and summer, and lowest during winter and early spring. Sites near the bay supported the most individuals and species. Associations between fish abundance and environmental variables were examined with canonical correspondence analysis. The dominant gradient was associated with water depth and distance from the bay. The secondary gradient reflected seasonal variation and was associated with temperature, salinity, dissolved oxygen, and vegetation cover. At the scales examined, estuarine biota responded to seasonal variation more than spatial variation. Estuarine-dependent species dominated the fauna and were common throughout the open waters of the shallow lake during winter-early spring when water temperature and salinity were low and dissolved oxygen high. During summer-early fall, sub-optimal environmental conditions (high temperature, low DO) in upper reaches accounted for strong spatial variation in assemblage composition. Small estuarine-resident fishes and the blue crab ( Callinectes sapidus) were common in warm, shallow, vegetated inland sites during summer-fall. Estuarine-dependent species were common at deeper, more saline locations near the bay during this period. During summer, freshwater species, such as gizzard shad ( Dorosoma cepedianum) and gars ( Lepisosteus spp.), were positively associated with water depth and proximity to the bay. The distribution and abundance of fishes in MIM appear to result from the combined effects of endogenous, seasonal patterns of reproduction and migration operating on large

  14. Consistent scaling of population structure across landscapes despite intraspecific variation in movement and connectivity.

    PubMed

    Reichert, Brian E; Fletcher, Robert J; Cattau, Christopher E; Kitchens, Wiley M

    2016-11-01

    Understanding the spatial scale of population structure is fundamental to long-standing tenets of population biology, landscape ecology and conservation. Nonetheless, identifying such scales has been challenging because a key factor that influences scaling - movement among patches or local populations - is a multicausal process with substantial phenotypic and temporal variation. We resolve this problem via a novel application of network modularity. When applied to movements, modularity provides a formal description of the functional aggregation of populations and identifies potentially critical scales for ecological and evolutionary dynamics. We first test for modularity using several different types of biologically relevant movements across the entire geographic range of an endangered bird, the snail kite (Rostrhamus sociabilis plumbeus). We then ask whether variation in movement based on (i) age, (ii) sex and (iii) time (annual, seasonal and within-season movements) influences spatial population structure (i.e. modularity) in snail kites. We identified significant modularity in annual dispersal of snail kites (all adults, males only, females only, and juveniles only) and in within-breeding season movements of adults, yet no evidence of modularity in seasonal (non-breeding) movements. For those movements with observed modular structure, we found striking similarities in the spatial configuration of population structure, even though movement properties varied considerably among these different types of movements. Our results suggest that the emergence of modularity in population networks can be robust despite movement heterogeneity and differences in patch-based measures of connectivity. Furthermore, our comparison of the population structure and connectivity across multiple movement phases helps to identify wetland patches most critical to population connectivity at multiple spatiotemporal scales. We argue that understanding modularity in populations may provide a

  15. Noncanonical α/γ Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field.

    PubMed

    Zgarbová, Marie; Jurečka, Petr; Banáš, Pavel; Havrila, Marek; Šponer, Jiří; Otyepka, Michal

    2017-03-23

    The sugar-phosphate backbone of RNA can exist in diverse rotameric substates, giving RNA molecules enormous conformational variability. The most frequent noncanonical backbone conformation in RNA is α/γ = t/t, which is derived from the canonical backbone by a crankshaft motion and largely preserves the standard geometry of the RNA duplex. A similar conformation also exists in DNA, where it has been extensively studied and shown to be involved in DNA-protein interactions. However, the function of the α/γ = t/t conformation in RNA is poorly understood. Here, we present molecular dynamics simulations of several prototypical RNA structures obtained from X-ray and NMR experiments, including canonical and mismatched RNA duplexes, UUCG and GAGA tetraloops, Loop E, the sarcin-ricin loop, a parallel guanine quadruplex, and a viral pseudoknot. The stability of various noncanonical α/γ backbone conformations was analyzed with two AMBER force fields, ff99bsc0χOL3 and ff99bsc0χOL3 with the recent εζOL1 and βOL1 corrections for DNA. Although some α/γ substates were stable with seemingly well-described equilibria, many were unstable in our simulations. Notably, the most frequent noncanonical conformer α/γ = t/t was unstable in both tested force fields. Possible reasons for this instability are discussed. Our work reveals a potentially important artifact in RNA force fields and highlights a need for further force field refinement.

  16. Comparative terrestrial planet thermospheres 3. Solar cycle variation of global structure and winds at solstices

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Engel, S.; Roble, R. G.; Foster, B.

    2000-07-01

    The comparison of planetary upper atmospheres using global databases has entered a new era with the advent of recent aerobraking measurements of the Mars thermosphere [e.g., Keating, et al., 1998a]. The present maturity of available modeling capabilities also permits us to contrast the Earth and Mars thermosphere structures, winds, and controlling processes using global three-dimensional models [e.g., Bougher et al., 1999b]. This present effort focuses upon the comparison of the combined seasonal-solar cycle responses of the thermospheres of Earth and Mars using the National Center for Atmospheric Research (NCAR) Thermospheric General Circulation Model (TGCM) utility to address the coupled energetics, dynamics, and neutral-ion composition above ~100 km. Extreme thermospheric conditions are expected at solstices, thereby revealing the changing importance of fundamental physical processes controlling the Earth and Mars thermospheric structures and winds. Seasonal-solar cycle extremes in Mars exobase temperatures are calculated to range from 200 to 380 K, giving rise to maximum horizontal winds of nearly 215 to 400 m/s. Corresponding extremes in Earth exobase temperatures are 700 to 1600 K, with rather small variations in global winds. The orbital eccentricities of Earth and Mars are also shown to drive substantial variations in their thermospheric temperatures. For Mars, dayside exobase temperatures vary by ~60 K (18%) from aphelion to perihelion during solar maximum conditions. Such large temperature variations strongly impact thermospheric densities and global winds. The corresponding Earth dayside temperatures also vary by 60-80 K between solstices. However, the percent temperature variation (5%) over the Earth's orbit and its overall impact on the thermospheric structure and winds are much smaller. Auroral activity may in fact obscure these orbital variations. Changing dust conditions throughout the Martian year modulate the aerosol heating of its lower

  17. Icosahedral medium-range orders and backbone formation in an amorphous alloy

    NASA Astrophysics Data System (ADS)

    Lee, Mirim; Kim, Hong-Kyu; Lee, Jae-Chul

    2010-12-01

    Analyses of metallic amorphous solids constructed using molecular dynamics (MD) simulations have demonstrated that individual short-range orders (SROs) are linked with neighboring SROs and form various medium-range orders (MROs). These MROs have been observed to have different structural stability depending on their linking patterns. On the basis of the assessment of the structural stability of various MROs, we propose new types of structural organization, namely, icosahedral medium-range orders (I-MROs) and their extended-range order that forms the backbone of amorphous solids. We also discuss why the atomic-scale structure of an amorphous alloy can be more appropriately described in terms of I-MROs, rather than by the degree of short-range ordering as characterized by the fractions of SROs.

  18. Beyond sex differences: new approaches for thinking about variation in brain structure and function.

    PubMed

    Joel, Daphna; Fausto-Sterling, Anne

    2016-02-19

    In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being. © 2016 The Author(s).

  19. Small-angle Neutron Scattering and Contrast Variation: A Powerful Combination for Studying Biological Structures

    SciTech Connect

    Heller, William T

    2010-01-01

    The use of small-angle scattering (SAS) in the biological sciences continues to increase, driven as much by the need to study increasingly complex systems that are often resistant to crystallization or are too large for NMR as by the availability of user facilities and advancements in the modelling of biological structures from SAS data. SAS, whether with neutrons (SANS) or X-rays (SAXS), is a structural probe of length scales ranging from 10 to 10,000 {angstrom}. When applied to biological complexes in dilute solution, it provides size and shape information that can be used to produce structural models that can provide insight into function. SANS enables the use of contrast-variation methods through the unique interaction of neutrons with hydrogen and its isotope deuterium. SANS with contrast variation enables the visualization of components within multisubunit complexes, making it a powerful tool for probing protein-protein and protein-nucleic acid complexes, as well as the interaction of proteins with lipids and detergents.

  20. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure.

    PubMed

    Tang, Hao; Dubayah, Ralph

    2017-03-07

    Light-regime variability is an important limiting factor constraining tree growth in tropical forests. However, there is considerable debate about whether radiation-induced green-up during the dry season is real, or an apparent artifact of the remote-sensing techniques used to infer seasonal changes in canopy leaf area. Direct and widespread observations of vertical canopy structures that drive radiation regimes have been largely absent. Here we analyze seasonal dynamic patterns between the canopy and understory layers in Amazon evergreen forests using observations of vertical canopy structure from a spaceborne lidar. We discovered that net leaf flushing of the canopy layer mainly occurs in early dry season, and is followed by net abscission in late dry season that coincides with increasing leaf area of the understory layer. Our observations of understory development from lidar either weakly respond to or are not correlated to seasonal variations in precipitation or insolation, but are strongly related to the seasonal structural dynamics of the canopy layer. We hypothesize that understory growth is driven by increased light gaps caused by seasonal variations of the canopy. This light-regime variability that exists in both spatial and temporal domains can better reveal the drought-induced green-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  1. Spatio-temporal variation in the structure of a chromosomal polymorphism zone in the house mouse.

    PubMed

    Medarde, N; López-Fuster, M J; Muñoz-Muñoz, F; Ventura, J

    2012-08-01

    Several long-term temporal analyses of the structure of Robertsonian (Rb) hybrid zones in the western house mouse, Mus musculus domesticus, have been performed. Nevertheless, the detection of gradual or very rapid variations in a zone may be overlooked when the time elapsed between periods of study is too long. The Barcelona chromosomal polymorphism zone of the house mouse covers about 5000, km(2) around the city of Barcelona and is surrounded by 40 chromosome telocentric populations. Seven different metacentrics and mice with diploid numbers between 27 and 40 chromosomes and several fusions in heterozygous state (from one to seven) have been reported. We compare the present (period 2008-2010) and past (period 1996-2000) structure of this zone before examining its dynamics in more detail. Results indicate that there is not a Rb race in this area, which is consistent with the proposal that this zone was probably originated in situ, under a primary intergradation scenario. The lack of individuals with more than five metacentrics in heterozygous state in the current period suggests that selection acted against such mice. By contrast, this situation did not occur for mice with fewer than five fusions in heterozygous condition. Changes in human activity may affect the dynamics of gene flow between subpopulations, thus altering the chromosomal composition of certain sites. Although these local variations may have modified the clinal trend for certain metacentrics, the general staggered structure of the zone has not varied significantly in a decade.

  2. Correlation between structure and resistivity variations of the live human skull.

    PubMed

    Tang, Chi; You, Fusheng; Cheng, Guang; Gao, Dakuan; Fu, Feng; Yang, Guosheng; Dong, Xiuzhen

    2008-09-01

    A study on correlation between structure and resistivity variations was performed for live adult human skull. The resistivities of 388 skull samples, excised from 48 skull flaps of patients undergoing surgery, were measured at body temperature (36.5 degrees C) using the well-known four-electrode method in the frequency range of 1-4 MHz. According to different structures of the skull samples, all the 388 samples were classified into six categories and measured their resistivities: standard trilayer skull (7943 +/- 1752 ohm x cm, 58 samples), quasi-trilayer skull (14,471 +/- 3061 ohm x cm, 110 samples), standard compact skull (26,546 +/- 5374 ohm x cm, 62 samples), quasi-compact skull (19,824 +/- 3232 ohm x cm, 53 samples), dentate suture skull (5782 +/- 1778 ohm x cm, 41 samples), and squamous suture skull (12747 +/- 4120 ohm x cm, 64 samples). The results showed that the skull resistivities were not homogenous and were significantly influenced by local structural variations. The presence of sutures appeared to decrease the overall resistivity of particular regions largely and dentate suture decreased the resistivity more than squamous suture. The absence of diploe appeared to increase skull resistivity. The percentage on thickness of diploe would be the primary factor in determining the resistivity of the skull sample without suture. From resistivity spectra results, an inverse relationship between skull resistivity and signal frequency was found.

  3. Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes.

    PubMed

    Cubo, Jorge; Legendre, Pierre; de Ricqlès, Armand; Montes, Laëtitia; de Margerie, Emmanuel; Castanet, Jacques; Desdevises, Yves

    2008-01-01

    The biological features observed in every living organism are the outcome of three sets of factors: historical (inherited by homology), functional (biological adaptation), and structural (properties inherent to the materials with which organs are constructed, and the morphogenetic rules by which they grow). Integrating them should bring satisfactory causal explanations of empirical data. However, little progress has been accomplished in practice toward this goal, because a methodologically efficient tool was lacking. Here we use a new statistical method of variation partitioning to analyze bone growth in amniotes. (1) Historical component. The variation of bone growth rates contains a significant phylogenetic signal, suggesting that the observed patterns are partly the outcome of shared ancestry. (2) Functional causation. High growth rates, although energy costly, may be adaptive (i.e., they may increase survival rates) in taxa showing short growth periods (e.g., birds). In ectothermic amniotes, low resting metabolic rates may limit the maximum possible growth rates. (3) Structural constraint. Whereas soft tissues grow through a multiplicative process, growth of mineralized tissues is accretionary (additive, i.e., mineralization fronts occur only at free surfaces). Bone growth of many amniotes partially circumvents this constraint: it is achieved not only at the external surface of the bone shaft, but also within cavities included in the bone cortex as it grows centrifugally. Our approach contributes to the unification of historicism, functionalism, and structuralism toward a more integrated evolutionary biology.

  4. Variation in multiring basic structures as a function of impact angle

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.; Schultz, P. H.

    1992-01-01

    Previous studies have demonstrated that the impact process in the laboratory varies as a function of impact angle. This variation is attributed to changes in energy partitioning and projectile failure during the impact and, in simple craters, produces a sequence of progressively smaller and more asymmetric crater forms as impact angle decreases from approximately 20 degrees. Variations in impact angle can produce differences in the appearance of multiring impact basins. Comparisons of Orientale to the more oblique impact structure at Crisium also suggests that these differences primarily reflect the degree of cavity collapse. The relative changes in massif ring topography, basin scarp relief, and the distribution of peripheral mare units are consistent with a reduction in degree of cavity collapse with decreasing impact angle. The prominent uprange basin scarps and the restriction of tectonically derived peripheral mare units along uprange ring structures also may indicate an uprange enhancement of failure during cavity collapse. Finally, although basin ring faults appear to be preferred pathways for mare volcanism, fault-controlled peripheral mare volcanism occurs most readily uprange of an oblique impact; elsewhere such volcanism apparently requires superposition of an impact structure on the ring fault.

  5. Condition-dependent variation in the blue-ultraviolet coloration of a structurally based plumage ornament

    PubMed Central

    Keyser, A. J.; Hill, G. E.

    1999-01-01

    After years of investigation into the function of sexually dimorphic ornamental traits, researchers are beginning to understand how bright plumage colour in birds acts as an intraspecific signal. This work has focused primarily on pigment-based ornaments because they are highly variable in patch size, hue and brightness for some species. In contrast, structurally based ornaments have been little studied, in part because they do not appear to be as variable as pigment-based ornaments. We investigated a structurally based plumage ornament in a wild population of blue grosbeaks (Guiraca caerulea), a sexually dimorphic passerine. We report plumage variation that extends into the ultraviolet region of the spectrum. The pattern of covariation between four out of five elements of plumage variation suggests that structurally based ornamentation is pushed towards extreme expression of the trait as predicted by the sexual selection theory. The 'bluest' birds have the highest percentage of blue feathers on the body. These ornamental feathers reflect light maximally at the shortest wavelengths (ultraviolet), with the greatest intensity and the greatest contrast. Age may have some effect on expression of blueness. In addition, plumage variables are correlated with growth bars in tail feathers (a record of nutritional condition during moult in a non-ornamental trait). This suggests that the ornament is partially condition dependent. Thus, blue plumage in male grosbeaks may serve as an honest indicator of age and quality.

  6. Beyond sex differences: new approaches for thinking about variation in brain structure and function

    PubMed Central

    Joel, Daphna; Fausto-Sterling, Anne

    2016-01-01

    In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being. PMID:26833844

  7. R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system.

    PubMed

    Buckley, James; Kilbride, Elizabeth; Cevik, Volkan; Vicente, Joana G; Holub, Eric B; Mable, Barbara K

    2016-05-05

    Examining allelic variation of R-genes in closely related perennial species of Arabidopsis thaliana is critical to understanding how population structure and ecology interact with selection to shape the evolution of innate immunity in plants. We finely sampled natural populations of Arabidopsis lyrata from the Great Lakes region of North America (A. l. lyrata) and broadly sampled six European countries (A. l. petraea) to investigate allelic variation of two R-genes (RPM1 and WRR4) and neutral genetic markers (Restriction Associated DNA sequences and microsatellites) in relation to mating system, phylogeographic structure and subspecies divergence. Fine-scale sampling of populations revealed strong effects of mating system and population structure on patterns of polymorphism for both neutral loci and R-genes, with no strong evidence for selection. Broad geographic sampling revealed evidence of balancing selection maintaining polymorphism in R-genes, with elevated heterozygosity and diversity compared to neutral expectations and sharing of alleles among diverged subspecies. Codon-based tests detected both positive and purifying selection for both R-genes, as commonly found for animal immune genes. Our results highlight that combining fine and broad-scale sampling strategies can reveal the multiple factors influencing polymorphism and divergence at potentially adaptive genes such as R-genes.

  8. Regional variations in microstructural properties of vertebral trabeculae with structural groups.

    PubMed

    Gong, He; Zhang, Ming; Qin, Ling; Lee, Kenneth Ka Ho; Guo, Xia; Shi, San-Qiang

    2006-01-01

    Micro-computed tomography (CT) scanning to investigate three-dimensional microstructural properties of L4 vertebral bodies. To identify the regional variations in the three-dimensional microstructural properties of vertebral cancellous bones with respect to structural types for the prediction of related regional fracture risks. The literature contains no reports on regional variations in morphologic properties of vertebral trabeculae with microstructural types, which may shed light on the patterns of osteoporotic fractures. Ninety cubic cancellous specimens were obtained from 6 normal L4 vertebral bodies of 6 male donors 62 to 70 years of age and were scanned using a high-resolution micro-CT system. These specimens were further divided into two groups according to the average structure model index (SMI) of the 15 trabecular specimens in each vertebral body. Adjustment for age differences was done for the microstructural parameters, i.e.-, bone volume fraction, trabecular number, trabecular thickness, structure model index, degree of architectural anisotropy, and connectivity density, to allow investigation on the regional variations in different transverse layers and vertical columns independent of age. Trabecular specimens with lower mass were liable to form high-SMI group and the differences in all parameters reached significance level either between columns or between layers from two groups. The anterior column in the high-SMI group is more susceptible to vertebral body wedge fracture; and in the low-SMI group, off-axis bone damage is most harmful to the central column of vertebral trabeculae. The data obtained may help to identify the most critical locations of fracture risks at an early stage and provide a microstructural basis for the repair and clinical treatment of vertebral fractures.

  9. Assessing the effects of common variation in the FOXP2 gene on human brain structure

    PubMed Central

    Hoogman, Martine; Guadalupe, Tulio; Zwiers, Marcel P.; Klarenbeek, Patricia; Francks, Clyde; Fisher, Simon E.

    2014-01-01

    The FOXP2 transcription factor is one of the most well-known genes to have been implicated in developmental speech and language disorders. Rare mutations disrupting the function of this gene have been described in different families and cases. In a large three-generation family carrying a missense mutation, neuroimaging studies revealed significant effects on brain structure and function, most notably in the inferior frontal gyrus, caudate nucleus, and cerebellum. After the identification of rare disruptive FOXP2 variants impacting on brain structure, several reports proposed that common variants at this locus may also have detectable effects on the brain, extending beyond disorder into normal phenotypic variation. These neuroimaging genetics studies used groups of between 14 and 96 participants. The current study assessed effects of common FOXP2 variants on neuroanatomy using voxel-based morphometry (VBM) and volumetric techniques in a sample of >1300 people from the general population. In a first targeted stage we analyzed single nucleotide polymorphisms (SNPs) claimed to have effects in prior smaller studies (rs2253478, rs12533005, rs2396753, rs6980093, rs7784315, rs17137124, rs10230558, rs7782412, rs1456031), beginning with regions proposed in the relevant papers, then assessing impact across the entire brain. In the second gene-wide stage, we tested all common FOXP2 variation, focusing on volumetry of those regions most strongly implicated from analyses of rare disruptive mutations. Despite using a sample that is more than 10 times that used for prior studies of common FOXP2 variation, we found no evidence for effects of SNPs on variability in neuroanatomy in the general population. Thus, the impact of this gene on brain structure may be largely limited to extreme cases of rare disruptive alleles. Alternatively, effects of common variants at this gene exist but are too subtle to be detected with standard volumetric techniques. PMID:25013396

  10. Enhanced Laboratory Sensitivity to Variation of the Fine-Structure Constant using Highly Charged Ions

    SciTech Connect

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant {alpha}. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest {alpha} sensitivities seen in atomic systems.

  11. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.

  12. Along strike structural variation in the northern part of the Japan Trench axis region

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Kodaira, S.; Yamashita, M.; Miura, S.; Fujie, G.

    2015-12-01

    Great earthquakes have occurred along the Japan trench subduction zone, and some of them, e.g. Meiji Sanriku earthquake in 1896, could have ruptured the shallow portion of the plate boundary fault similar to the 2011 Tohoku earthquake. Geological/geophysical structure in the vicinity of the trench axis is one of the keys to understand the nature of shallow mega thrust events and tsunamigenesis. We have conducted high resolution seismic surveys in the northern part of the Japan Trench axis region in 38 - 40.5 N to investigate the detailed structure in the trench axis area. Thrust faults and possible slope failures are observed landward of the trench axis, beneath the lowermost landward trench slope. The deformation and evolution styles of the lowermost landward slope show variation along the trench strike. To the south of the survey area in 38 - 39 N, imbricate thrust-and-fold packages is observed but limited within the vicinity of the trench axis. Thickness of the hanging wall sediment is relatively thinner in the lowermost landward slope. These observation could suggest that the lowermost slope has not been well developed in this area. To the north around 40 - 40.5 N, frontal thrusts and imbricate structure are clearly observed on the seismic profiles through ~ 10 - 15 km landward of the trench axis. Thickness of the hanging wall sediment is thicker in this area. The bending-related faults on the subducted plate are generally not located beneath the lowermost slope up to ~ 10 km landward of the trench. These observations suggest that the imbricate structure has been well developed in the last ~ 10 kyr in this area. Around 39.5 N, it is suggested that slope failures have occurred. The trench axis is filled by slump deposits and debris with chaotic acoustic characteristics. Above mentioned variations in the deformation and evolution style in the lowermost landward slope could affect the mechanism of tsunami generation in the northern Japan Trench. The variation on

  13. Interpopulation Variation in Contour Feather Structure Is Environmentally Determined in Great Tits

    PubMed Central

    Broggi, Juli; Gamero, Anna; Hohtola, Esa; Orell, Markku; Nilsson, Jan-Åke

    2011-01-01

    Background The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored. Methodology/Principal Findings We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland) and one southern population in Lund (Sweden). Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu. Conclusions/Significance Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations. PMID:21949798

  14. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.

    PubMed

    Improta, Roberto; Vitagliano, Luigi; Esposito, Luciana

    2015-11-01

    The elucidation of the mutual influence between peptide bond geometry and local conformation has important implications for protein structure refinement, validation, and prediction. To gain insights into the structural determinants and the energetic contributions associated with protein/peptide backbone plasticity, we here report an extensive analysis of the variability of the peptide bond angles by combining statistical analyses of protein structures and quantum mechanics calculations on small model peptide systems. Our analyses demonstrate that all the backbone bond angles strongly depend on the peptide conformation and unveil the existence of regular trends as function of ψ and/or φ. The excellent agreement of the quantum mechanics calculations with the statistical surveys of protein structures validates the computational scheme here employed and demonstrates that the valence geometry of protein/peptide backbone is primarily dictated by local interactions. Notably, for the first time we show that the position of the H(α) hydrogen atom, which is an important parameter in NMR structural studies, is also dependent on the local conformation. Most of the trends observed may be satisfactorily explained by invoking steric repulsive interactions; in some specific cases the valence bond variability is also influenced by hydrogen-bond like interactions. Moreover, we can provide a reliable estimate of the energies involved in the interplay between geometry and conformations.

  15. Spatial Evolution of the Thickness Variations over a CFRP Laminated Structure

    NASA Astrophysics Data System (ADS)

    Davila, Yves; Crouzeix, Laurent; Douchin, Bernard; Collombet, Francis; Grunevald, Yves-Henri

    2017-01-01

    Ply thickness is one of the main drivers of the structural performance of a composite part. For stress analysis calculations (e.g., finite element analysis), composite plies are commonly considered to have a constant thickness compared to the reality (coefficients of variation up to 9% of the mean ply thickness). Unless this variability is taken into account reliable property predictions cannot be made. A modelling approach of such variations is proposed using parameters obtained from a 16-ply quasi-isotropic CFRP plate cured in an autoclave. A discrete Fourier transform algorithm is used to analyse the frequency response of the observed ply and plate thickness profiles. The model inputs, obtained by a mathematical representation of the ply thickness profiles, permit the generation of a representative stratification considering the spatial continuity of the thickness variations that are in good agreement with the real ply profiles spread over the composite part. A residual deformation FE model of the composite plate is used to illustrate the feasibility of the approach.

  16. Sensitivity of MR Diffusion Measurements to Variations in Intracellular Structure: Effects of Nuclear Size

    PubMed Central

    Xu, Junzhong; Does, Mark D.; Gore, John C.

    2009-01-01

    Magnetic resonance imaging measurements of the apparent rate of water diffusion in tumors are sensitive to variations in tissue cellularity, which have been shown useful for characterizing tumors and their responses to treatments. However, because of technical limitations on most MRI systems, conventional pulse gradient spin echo (PGSE) methods measure relatively long time scales, during which water molecules may encounter diffusion barriers at multiple spatial scales, including those much greater than typical cell dimensions. As such they cannot distinguish changes on sub-cellular scales from gross changes in cell density. Oscillating gradient spin echo (OGSE) methods have the potential to distinguish effects on restriction at much shorter time and length scales. Both PGSE and OGSE methods have been studied numerically by simulating diffusion in a three-dimensional, multi-compartment tissue model. The results show that conventional measurements with the PGSE method cannot selectively probe variations over short length scales and, therefore, are relatively insensitive to intracellular structure, whereas results using OGSE methods at moderate gradient frequencies are affected by variations in cell nuclear sizes and can distinguish tissues that differ only over sub-cellular length scales. This additional sensitivity suggests that OGSE imaging may have significant advantages over conventional PGSE methods for characterizing tumors. PMID:19205020

  17. Genetic variation and haplotype structures of innate immunity genes in eastern India

    PubMed Central

    Bairagya, Bijan B.; Bhattacharya, Paramita; Bhattacharya, Sujit K.; Dey, Biplab; Dey, Uposoma; Ghosh, Trina; Maiti, Sujit; Majumder, Partha P.; Mishra, Kankadeb; Mukherjee, Sinchita; Mukherjee, Souvik; Narayanasamy, K.; Poddar, Sonia; Roy, Neeta Sarkar; Sengupta, Priya; Sharma, Sangeeta; Sur, Dipika; Sutradhar, Debabrata; Wagener, Diane K.

    2009-01-01

    This study reports results of an extensive and comprehensive study of genetic diversity in 12 genes of the innate immune system in a population of eastern India. Genomic variation was assayed in 171 individuals by resequencing ~75 kb of DNA comprising these genes in each individual. Almost half of the 548 DNA variants discovered was novel. DNA sequence comparisons with human and chimpanzee reference sequences revealed evolutionary features indicative of natural selection operating among individuals, who are residents of an area with a high load of microbial and other pathogens. Significant differences in allele and haplotype frequencies of the study population were observed with the HapMap populations. Gene and haplotype diversities were observed to be high. The genetic positioning of the study population among the HapMap populations based on data of the innate immunity genes substantially differed from what has been observed for Indian populations based on data of other genes. The reported range of variation in SNP density in the human genome is one SNP per 1.19 kb (chromosome 22) to one SNP per 2.18 kb (chromosome 19). The SNP density in innate immunity genes observed in this study (>3 SNPs kb−1) exceeds the highest density observed for any autosomal chromosome in the human genome. The extensive genomic variation and the distinct haplotype structure of innate immunity genes observed among individuals have possibly resulted from the impact of natural selection. PMID:18396467

  18. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry.

    PubMed

    Klingenberg, Christian Peter; Barluenga, Marta; Meyer, Axel

    2002-10-01

    Morphometric studies often consider parts with internal left-right symmetry, for instance, the vertebrate skull. This type of symmetry is called object symmetry and is distinguished from matching symmetry, in which two separate structures exist as mirror images of each other, one on each body side. We explain a method for partitioning the total shape variation of landmark configurations with object symmetry into components of symmetric variation among individuals and asymmetry. This method is based on the Procrustes superimposition of the original and a reflected copy of each landmark configuration and is compatible with the two-factor ANOVA model customary in studies of fluctuating asymmetry. We show a fully multivariate framework for testing the effects in the two-factor model with MANOVA statistics, which also applies to shapes with matching symmetry. We apply the new methods in a small case study of pharyngeal jaws of the Neotropical cichlid fish Amphilophus citrinellus. The analysis revealed that the symmetric component of variation in the pharyngeal jaws is dominated by the contrast between two alternative trophic morphs in this species and that there is subtle but statistically significant directional asymmetry. Finally, we provide some general recommendations for morphometric studies of symmetric shapes.

  19. New limits on variation of the fine-structure constant using atomic dysprosium.

    PubMed

    Leefer, N; Weber, C T M; Cingöz, A; Torgerson, J R; Budker, D

    2013-08-09

    We report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant α owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of α, competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and 235-MHz transition in 162Dy are measured over the span of two years. The linear variation of α is α·/α=(-5.8±6.9([1σ]))×10(-17)  yr(-1), consistent with zero. The same data are used to constrain the dimensionless parameter kα characterizing a possible coupling of α to a changing gravitational potential. We find that kα=(-5.5±5.2([1σ]))×10(-7), essentially consistent with zero and the best constraint to date.

  20. Effects of temperature variations on guided waves propagating in composite structures

    NASA Astrophysics Data System (ADS)

    Shoja, Siavash; Berbyuk, Viktor; Boström, Anders

    2016-04-01

    Effects of temperature on guided waves propagating in composite materials is a well-known problem which has been investigated in many studies. The majority of the studies is focused on effects of high temperature. Understanding the effects of low temperature has major importance in composite structures and components which are operating in cold climate conditions such as e.g. wind turbines operating in cold climate regions. In this study first the effects of temperature variations on guided waves propagating in a composite plate is investigated experimentally in a cold climate chamber. The material is a common material used to manufacture rotor blades of wind turbines. The temperature range is 25°C to -25°C and effects of temperature variations on amplitude and phase shift of the received signal are investigated. In order to apply the effects of lowering the temperature on the received signal, the Baseline Signal Stretch (BSS) method is modified and used. The modification is based on decomposing the signal into symmetric and asymmetric modes and applying two different stretch factors on each of them. Finally the results obtained based on the new method is compared with the results of application of BSS with one stretch factor and experimental measurements. Comparisons show that an improvement is obtained using the BSS with the mode decomposition method at temperature variations of more than 25°C.

  1. Importance of backbone angles versus amino acid configurations in peptide vibrational Raman optical activity spectra

    NASA Astrophysics Data System (ADS)

    Herrmann, Carmen; Ruud, Kenneth; Reiher, Markus

    2008-01-01

    In this work, we investigate whether the differential scattering of right- and left-circularly polarized light in peptide Raman optical activity spectra are uniquely dominated by the backbone conformation, or whether the configurations of the individual amino acid also play a significant role. This is achieved by calculating Raman optical activity spectra using density functional theory for four structurally related peptides with a common backbone conformation, but with different sequences of amino acid configurations. Furthermore, the ROA signals of the amide normal modes are decomposed into contributions from groups of individual atoms. It is found that the amino acid configuration has a considerable influence on the ROA peaks in the amide I, II, and III regions, although the local decomposition reveals that the side-chain atoms only contribute to those peaks directly in the case of the amide II vibrations. Furthermore, small changes in the amide normal modes may lead to large and irregular modifications in the ROA intensity differences, making it difficult to establish transferable ROA intensity differences even for structurally similar vibrations.

  2. RNA-Redesign: a web server for fixed-backbone 3D design of RNA.

    PubMed

    Yesselman, Joseph D; Das, Rhiju

    2015-07-01

    RNA is rising in importance as a design medium for interrogating fundamental biology and for developing therapeutic and bioengineering applications. While there are several online servers for design of RNA secondary structure, there are no tools available for the rational design of 3D RNA structure. Here we present RNA-Redesign (http://rnaredesign.stanford.edu), an online 3D design tool for RNA. This resource utilizes fixed-backbone design to optimize the sequence identity and nucleobase conformations of an RNA to match a desired backbone, analogous to fundamental tools that underlie rational protein engineering. The resulting sequences suggest thermostabilizing mutations that can be experimentally verified. Further, sequence preferences that differ between natural and computationally designed sequences can suggest whether natural sequences possess functional constraints besides folding stability, such as cofactor binding or conformational switching. Finally, for biochemical studies, the designed sequences can suggest experimental tests of 3D models, including concomitant mutation of base triples. In addition to the designs generated, detailed graphical analysis is presented through an integrated and user-friendly environment.

  3. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone

    PubMed Central

    Doucet, Christine M.; Esmery, Nina; de Saint-Jean, Maud; Antonny, Bruno

    2015-01-01

    Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests

  4. Membrane Curvature Sensing by Amphipathic Helices Is Modulated by the Surrounding Protein Backbone.

    PubMed

    Doucet, Christine M; Esmery, Nina; de Saint-Jean, Maud; Antonny, Bruno

    2015-01-01

    Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests

  5. Vortex structure variation with flapping-wing stroke-reversal kinematics

    NASA Astrophysics Data System (ADS)

    Burge, Matthew

    The behavior of three-dimensional (3D) vortex structures formed during the pitching stroke-reversal of a two degree-of-freedom (2DOF) flapping wing in hover is investigated. Dye flow visualization is conducted using a scaled wing model with an internal dye manifold executing periodic flapping during dye injection, facilitating the identification of unsteady vortices. A vortex skeleton model is developed to represent the vortex loop topology, and used for description of the 3D flow structure evolutions generated with varying kinematics. Qualitative conclusions are drawn from varying the pitching reduced frequency for an advanced and symmetric pitch timing with respect to the rotational turn-around. Advanced pitch timing typically promoted the growth of pitching structures at the trailing edge, while a symmetric pitch timing promoted the growth of vortex structures at the leading edge. Large pitching reduced frequency produces stronger pitching vortices at the leading edge which remain near the wing longer and interfere with subsequent vortex formations in the following half-stroke. These dye visualization results motivate the study of the quantitative behavior via an experiment using stereo digital particle imagine velocimetry (S-DPIV). The instantaneous, phase-averaged out-of-plane vorticity, span-wise velocity, vorticity flux, and circulation at five planes along the span of the wing are measured at the end of stroke reversal for varied pitching reduced frequency with advanced pitch timing. Vortex structures formed at the leading and trailing edges from pitching have significant span-wise variation due to the rotating DOF, with the outboard structures, typically, having stronger vorticity and circulation. The circulation is normalized by the sum of a local velocity characteristic of the spanwise position and the pitching edge speed to capture the contributions of both rotating and pitching motions to the formation of the circulating structures. This scaling both

  6. Imaging anatomy and variation of vertebral artery and bone structure at craniocervical junction.

    PubMed

    Duan, Shaoyin; Lv, Shaomao; Ye, Feng; Lin, Qingchi

    2009-08-01

    The objective of this article is to display the vertebral artery and bone structure at the craniocervical junction (CJVA and C(0-1-2)) with three-dimensional CT angiography (3DCTA) and identify their anatomic features and variations. Eighty-eight subjects without pathology of vertebral artery (VA) and C(0-1-2) were selected from head-neck CTA examination. 3D images were formed with volume rendering (VR) and multiplanar reconstruction (MPR). On the 3D images, CJVA and C(0-1-2) were measured, and their variations were observed. CJVA goes along C(0-1-2) with five curves, of which three curves are visibly away from C(0-1-2), one is 0.0-8.3 mm away at the second curve with 0.0-11.2 mm in width, another is 0.0-9.2 mm away at the fourth with 2.8-14.8 mm and the other is 0.0-6.2 mm away at the fifth. Statistical comparisons show that there is no significant difference in the measurements between left and right, and that the curves become smaller and farther away from C(0-1-2) with the increase of age. CJVA is not equal in size, with the biggest in the fourth curve and the smallest in the fifth. Statistical comparison shows the left CJVA is larger than the right in the fifth curve. Variations were found on CJVA in 16 cases and on C(1) in 12 cases. The anatomy and variations of CJVA and C(0-1-2) are complicated. It is of vital significance to identify their anatomic features in clinical practice.

  7. Robust classification of protein variation using structural modelling and large-scale data integration

    PubMed Central

    Baugh, Evan H.; Simmons-Edler, Riley; Müller, Christian L.; Alford, Rebecca F.; Volfovsky, Natalia; Lash, Alex E.; Bonneau, Richard

    2016-01-01

    Existing methods for interpreting protein variation focus on annotating mutation pathogenicity rather than detailed interpretation of variant deleteriousness and frequently use only sequence-based or structure-based information. We present VIPUR, a computational framework that seamlessly integrates sequence analysis and structural modelling (using the Rosetta protein modelling suite) to identify and interpret deleterious protein variants. To train VIPUR, we collected 9477 protein variants with known effects on protein function from multiple organisms and curated structural models for each variant from crystal structures and homology models. VIPUR can be applied to mutations in any organism's proteome with improved generalized accuracy (AUROC .83) and interpretability (AUPR .87) compared to other methods. We demonstrate that VIPUR's predictions of deleteriousness match the biological phenotypes in ClinVar and provide a clear ranking of prediction confidence. We use VIPUR to interpret known mutations associated with inflammation and diabetes, demonstrating the structural diversity of disrupted functional sites and improved interpretation of mutations associated with human diseases. Lastly, we demonstrate VIPUR's ability to highlight candidate variants associated with human diseases by applying VIPUR to de novo variants associated with autism spectrum disorders. PMID:26926108