Sample records for backfill geochemical modelling

  1. Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radiactive waste repository.

    PubMed

    Yang, Changbing; Samper, Javier; Molinero, Jorge; Bonilla, Mercedes

    2007-08-15

    Dissolved oxygen (DO) left in the voids of buffer and backfill materials of a deep geological high level radioactive waste (HLW) repository could cause canister corrosion. Available data from laboratory and in situ experiments indicate that microbes play a substantial role in controlling redox conditions near a HLW repository. This paper presents the application of a coupled hydro-bio-geochemical model to evaluate geochemical and microbial consumption of DO in bentonite porewater after backfilling of a HLW repository designed according to the Swedish reference concept. In addition to geochemical reactions, the model accounts for dissolved organic carbon (DOC) respiration and methane oxidation. Parameters for microbial processes were derived from calibration of the REX in situ experiment carried out at the Aspö underground laboratory. The role of geochemical and microbial processes in consuming DO is evaluated for several scenarios. Numerical results show that both geochemical and microbial processes are relevant for DO consumption. However, the time needed to consume the DO trapped in the bentonite buffer decreases dramatically from several hundreds of years when only geochemical processes are considered to a few weeks when both geochemical reactions and microbially-mediated DOC respiration and methane oxidation are taken into account simultaneously.

  2. Geochemical processes and the effects of natural organic solutes on the solubility of selenium in coal-mine backfill samples from the Powder River basin, Wyoming

    USGS Publications Warehouse

    See, R.B.; Reddy, K.J.; Vance, G.F.; Fadlelmawla, A.A.; Blaylock, M.J.

    1995-01-01

    Geochemical processes and the effects of natural organic solutes on the solubility of selenium in coal-mine backfill aquifers were investigated. Backfill and ground-water samples were collected at coal mines in the Powder River Basin, Wyoming. Backfill was generally dominated by aluminum (14,400 to 49,000 mg/kg (milligrams per kilogram)), iron (3,330 to 23,200 mg/kg), and potassium (7,950 to 18,000 mg/kg). Backfill saturated-paste selenium concentrations ranged from 1 to 156 mg/kg (microsiemens per kilogram). Ground-water total selenium concentrations ranged from 3 to 125 mg/L. Dissolved organic carbon in all ground-water samples was dominated by hydrophobic and hydrophilic acids (38 to 84 percent). Selenite sorption/desorption experiments were conducted using background solutions of distilled-deionized water, 0.1 molar calcium chloride, and isolated hydrophobic and hydrophilic acids. Selenite sorption was larger when 0.1 molar calcium chloride was used. The addition of hydrophilic acid decreased selenite sorption more than the addition of hydrophobic acids. Geochemical modelling was used to predict the solid phases controlling dissolved selenium concentrations and to evaluate the effects of dissolved organic carbon on selenium solubility. Results suggested that 55 to 90 percent of selenium in backfill precipitation/dissolution extracts was dominated by magnesium selenate ion pairs. Dissolved organic carbon had little effect on selenium speciation. A redox chamber was constructed to control Eh and pH in water and backfill-core sample suspensions. The response of selenite and selenate in water samples to redox conditions did not follow thermodynamic predictions. Reduction of selenate in water samples did not occur at any of the redox levels tested.

  3. Modelling of cementitious backfill interactions with vitrified intermediate-level waste

    NASA Astrophysics Data System (ADS)

    Baston, Graham; Heath, Timothy; Hunter, Fiona; Swanton, Stephen

    2017-06-01

    New types of wasteform are being considered for the geological disposal of radioactive intermediate-level waste (ILW) in the UK. These include vitrified ILW products arising from the application of thermal treatment processes. For disposal of such wasteforms in a geological disposal facility, a range of concepts are under consideration, including those with a high-pH cementitious backfill (the NRVB, Nirex Reference Vault Backfill). Alternatively, a cement-based material that buffers to a less alkaline pH could be used (an LPB, Low-pH Backfill). To assess the compatibility of these potential new wasteforms with cement-based disposal concepts, it is necessary to understand their impacts on the long-term evolution of the backfill. A scoping thermodynamic modelling study was undertaken to help understand the possible effects of these wasteforms on the performance of the backfill. The model primarily considers the interactions occurring between the vitirified waste, the porewater and the backfill, within a static and (in most cases) totally closed system. The approach was simplified by assuming equilibrium between the backfill and the corroded glass available at selected times, rather than involving detailed, reactive transport modelling. The aim was to provide an understanding of whether the impacts of the vitrified wastes on backfill performance are sufficient to compromise disposal in such environments. The calculations indicated that for NRVB, the overall alkaline buffering capacity of the backfill is not expected to be impaired by interactions with vitrified waste; rather the buffering will be to less alkaline pH values (above pH 9) but for a longer period. For the LPB, slightly lower pH values were predicted in some cases. The sorption capacities of the backfills are unlikely to be impaired by interactions with vitrified ILW. Indeed they may be increased, due to the additional C-S-H phase formation. The results of this study suggest that disposal of vitrified ILW

  4. Dynamics of metals in backfill of a phosphate mine of guiyang, China using a three-step sequential extraction technique.

    PubMed

    Shi, Ying; Gan, Lei; Li, Xibing; He, Suya; Sun, Cheng; Gao, Li

    2018-02-01

    Phosphate rock in Guiyang (Southwest of China) is used for the phosphate production, and hence generating a by-product phosphogypsum (PG). From 2007, part of the PG was used as main raw material for cemented backfill. The main objective of this paper is to investigate the geochemical evolution of metals before and after the PG inclusion into the backfill matrix. A sequential extraction procedure was selected to determine the chemical speciation of metals in phosphate rock, PG, binder and field backfill samples. Dynamics of metals going from phosphate rock and PG to backfill have been evaluated. The results showed that almost all the metals in the PG and binder had been effectively transferred to the backfill. Furthermore, compared to metals taken out along with phosphate rock exploitation, PG-based cemented backfill might bring some metals back but with only little metals in mobile fraction. Additionally, in order to determine the long-term behavior of metals in PG-based cemented backfill, the field samples which were backfilled from 2007 to 2016 were collected and analyzed. The results showed that total amounts of metals in backfill were all within similar range, indicating that the cemented PG backfill could be an effective method to solidify/stabilize metals in PG. Nevertheless, Due to the high water-soluble fractions detected, the concentrations of As, Mn and Zn should be continuously monitored. Copyright © 2017. Published by Elsevier Ltd.

  5. SEDIMENT GEOCHEMICAL MODEL

    EPA Science Inventory

    Until recently, sediment geochemical models (diagenetic models) have been only able to explain sedimentary flux and concentration profiles for a few simplified geochemical cycles (e.g., nitrogen, carbon and sulfur). However with advances in numerical methods, increased accuracy ...

  6. Repository Drift Backfilling Demonstrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Londe, I.; Dubois, J.Ph.; Bauer, C.

    2008-07-01

    The 'Backfilling Demonstrator' is one of the technological demonstrators developed by ANDRA in the framework of the feasibility studies for a geological repository for high-level long-lived (HL-LL waste) within a clay formation. The demonstrator concerns the standard and supporting backfills as defined in Andra's 2005 design. The standard backfill is intended to fill up almost all drifts of the underground repository in order to limit any deformation of the rock after the degradation of the drift lining. The supporting backfill only concerns a small portion of the volume to be backfilled in order to counter the swelling pressure of themore » swelling clay contained in the sealing structures. The first objective of the demonstrator was to show the possibility of manufacturing a satisfactory backfill, in spite of the exiguity of the underground structures, and of reusing as much as possible the argillite muck. For the purpose of this experiment, the argillite muck was collected on Andra's work-site for the implementation of an underground research laboratory. Still ongoing, the second objective is to follow up the long-term evolution of the backfill. Approximately 200 m{sup 3} of compacted backfill material have been gathered in a large concrete tube simulating a repository drift. The standard backfill was manufactured exclusively with argillite. The supporting backfill was made by forming a mixture of argillite and sand. Operations were carried out mostly at Richwiller, close to Mulhouse, France. The objectives of the demonstrator were met: an application method was tested and proven satisfactory. The resulting dry densities are relatively high, although the moduli of deformation do not always reach the set goal. The selected objective for the demonstrator was a dry density corresponding to a relatively high compaction level (95% of the standard Proctor optimum [SPO]), for both pure argillite and the argillite-sand mixture. The plate-percussion compaction

  7. Wormhole Formation in RSRM Nozzle Joint Backfill

    NASA Technical Reports Server (NTRS)

    Stevens, J.

    2000-01-01

    The RSRM nozzle uses a barrier of RTV rubber upstream of the nozzle O-ring seals. Post flight inspection of the RSRM nozzle continues to reveal occurrence of "wormholes" into the RTV backfill. The term "wormholes", sometimes called "gas paths", indicates a gas flow path not caused by pre-existing voids, but by a little-understood internal failure mode of the material during motor operation. Fundamental understanding of the mechanics of the RSRM nozzle joints during motor operation, nonlinear viscoelastic characterization of the RTV backfill material, identification of the conditions that predispose the RTV to form wormholes, and screening of candidate replacement materials is being pursued by a joint effort between Thiokol Propulsion, NASA, and the Army Propulsion & Structures Directorate at Redstone Arsenal. The performance of the RTV backfill in the joint is controlled by the joint environment. Joint movement, which applies a tension and shear load on the material, coupled with the introduction of high pressure gas in combination create an environment that exceeds the capability of the material to withstand the wormhole effect. Little data exists to evaluate why the material fails under the modeled joint conditions, so an effort to characterize and evaluate the material under these conditions was undertaken. Viscoelastic property data from characterization testing will anchor structural analysis models. Data over a range of temperatures, environmental pressures, and strain rates was used to develop a nonlinear viscoelastic model to predict material performance, develop criteria for replacement materials, and quantify material properties influencing wormhole growth. Three joint simulation analogs were developed to analyze and validate joint thermal barrier (backfill) material performance. Two exploratory tests focus on detection of wormhole failure under specific motor operating conditions. A "validation" test system provides data to "validate" computer models and

  8. Backfilled, self-assembled monolayers and methods of making same

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Addleman, R Shane [Benton City, WA; Aardahl, Christopher L [Sequim, WA; Zheng, Feng [Richland, WA; Busche, Brad [Raleigh, NC; Egorov, Oleg B [West Richland, WA

    2009-06-30

    Backfilled, self-assembled monolayers and methods of making the same are disclosed. The self-assembled monolayer comprises at least one functional organosilane species and a substantially random dispersion of at least one backfilling organosilane species among the functional organosilane species, wherein the functional and backfilling organosilane species have been sequentially deposited on a substrate. The method comprises depositing sequentially a first organosilane species followed by a backfilling organosilane species, and employing a relaxation agent before or during deposition of the backfilling organosilane species, wherein the first and backfilling organosilane species are substantially randomly dispersed on a substrate.

  9. Modeling Low-temperature Geochemical Processes

    NASA Astrophysics Data System (ADS)

    Nordstrom, D. K.

    2003-12-01

    Geochemical modeling has become a popular and useful tool for a wide number of applications from research on the fundamental processes of water-rock interactions to regulatory requirements and decisions regarding permits for industrial and hazardous wastes. In low-temperature environments, generally thought of as those in the temperature range of 0-100 °C and close to atmospheric pressure (1 atm=1.01325 bar=101,325 Pa), complex hydrobiogeochemical reactions participate in an array of interconnected processes that affect us, and that, in turn, we affect. Understanding these complex processes often requires tools that are sufficiently sophisticated to portray multicomponent, multiphase chemical reactions yet transparent enough to reveal the main driving forces. Geochemical models are such tools. The major processes that they are required to model include mineral dissolution and precipitation; aqueous inorganic speciation and complexation; solute adsorption and desorption; ion exchange; oxidation-reduction; or redox; transformations; gas uptake or production; organic matter speciation and complexation; evaporation; dilution; water mixing; reaction during fluid flow; reaction involving biotic interactions; and photoreaction. These processes occur in rain, snow, fog, dry atmosphere, soils, bedrock weathering, streams, rivers, lakes, groundwaters, estuaries, brines, and diagenetic environments. Geochemical modeling attempts to understand the redistribution of elements and compounds, through anthropogenic and natural means, for a large range of scale from nanometer to global. "Aqueous geochemistry" and "environmental geochemistry" are often used interchangeably with "low-temperature geochemistry" to emphasize hydrologic or environmental objectives.Recognition of the strategy or philosophy behind the use of geochemical modeling is not often discussed or explicitly described. Plummer (1984, 1992) and Parkhurst and Plummer (1993) compare and contrast two approaches for

  10. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    PubMed Central

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  11. Implementation of paste backfill mining technology in Chinese coal mines.

    PubMed

    Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.

  12. Field demonstration of two pneumatic backfilling technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyni, R.C.; Burnett, M.; Philbin, D.

    1995-12-31

    This US Bureau of Mines (USBM) report summarizes a field demonstration of pneumatic backfilling technologies conducted at the abandoned Hillside Coal and Iron Slope in Vandling, PA. Researchers demonstrated two pneumatic backfilling technologies recently developed under the USBM`s Abandoned Mine Reclamation Research Program, the Pneumatic Pipefeeder and the High-Efficiency Ejector. Both systems had previously been evaluated at the USBM`s subsidence abatement investigation laboratory near Fairchance, PA. The objective of the demonstration was to fill 100% of the abandoned tunnel with backfill stone to prevent further subsidence. The pneumatic Pipefeeder was used for 21 days, at a rate of 63 tomore » 124 t/d (69 to 136 st/d), to fill 88% of the tunnel. The High-Efficiency Ejector was used for 2 days, at a rate of 125 to 132 T/d (138 to 146 st/d) to fill the remaining 12% of the tunnel. The backfill placed by both systems was tightly compacted. The major problem encountered was wear on the polyethylene pipeline from the abrasion of the high-velocity backfill. The use of heavier steel pipe minimized the problem. A cost analysis for the entire project is given.« less

  13. Modeling low-temperature geochemical processes: Chapter 2

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Campbell, Kate M.

    2014-01-01

    This chapter provides an overview of geochemical modeling that applies to water–rock interactions under ambient conditions of temperature and pressure. Topics include modeling definitions, historical background, issues of activity coefficients, popular codes and databases, examples of modeling common types of water–rock interactions, and issues of model reliability. Examples include speciation, microbial redox kinetics and ferrous iron oxidation, calcite dissolution, pyrite oxidation, combined pyrite and calcite dissolution, dedolomitization, seawater–carbonate groundwater mixing, reactive-transport modeling in streams, modeling catchments, and evaporation of seawater. The chapter emphasizes limitations to geochemical modeling: that a proper understanding and ability to communicate model results well are as important as completing a set of useful modeling computations and that greater sophistication in model and code development is not necessarily an advancement. If the goal is to understand how a particular geochemical system behaves, it is better to collect more field data than rely on computer codes.

  14. Electrical resisitivity of mechancially stablized earth wall backfill

    NASA Astrophysics Data System (ADS)

    Snapp, Michael; Tucker-Kulesza, Stacey; Koehn, Weston

    2017-06-01

    Mechanically stabilized earth (MSE) retaining walls utilized in transportation projects are typically backfilled with coarse aggregate. One of the current testing procedures to select backfill material for construction of MSE walls is the American Association of State Highway and Transportation Officials standard T 288: ;Standard Method of Test for Determining Minimum Laboratory Soil Resistivity.; T 288 is designed to test a soil sample's electrical resistivity which correlates to its corrosive potential. The test is run on soil material passing the No. 10 sieve and believed to be inappropriate for coarse aggregate. Therefore, researchers have proposed new methods to measure the electrical resistivity of coarse aggregate samples in the laboratory. There is a need to verify that the proposed methods yield results representative of the in situ conditions; however, no in situ measurement of the electrical resistivity of MSE wall backfill is established. Electrical resistivity tomography (ERT) provides a two-dimensional (2D) profile of the bulk resistivity of backfill material in situ. The objective of this study was to characterize bulk resistivity of in-place MSE wall backfill aggregate using ERT. Five MSE walls were tested via ERT to determine the bulk resistivity of the backfill. Three of the walls were reinforced with polymeric geogrid, one wall was reinforced with metallic strips, and one wall was a gravity retaining wall with no reinforcement. Variability of the measured resistivity distribution within the backfill may be a result of non-uniform particle sizes, thoroughness of compaction, and the presence of water. A quantitative post processing algorithm was developed to calculate mean bulk resistivity of in-situ backfill. Recommendations of the study were that the ERT data be used to verify proposed testing methods for coarse aggregate that are designed to yield data representative of in situ conditions. A preliminary analysis suggests that ERT may be utilized

  15. Jetting and flooding of granular backfill materials : [summary].

    DOT National Transportation Integrated Search

    2015-03-01

    Granular backfill materials on highway projects are often compacted by mechanical methods. : This requires the contractor to place backfill material into loose lifts of varying thickness : and use compaction equipment to reduce air voids and increase...

  16. Research of Cemented Paste Backfill in Offshore Environments

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Yang, Peng; Lyu, Wensheng; Lin, Zhixiang

    2018-01-01

    To promote comprehensive utilization of mine waste tailings and control ground pressure, filling mine stopes with cement paste backfill (CPB) is becoming the most widely used and applicable method in contemporary underground mining. However, many urgent new problems have arisen during the exploitation in offshore mines owing to the complex geohydrology conditions. A series of rheological, settling and mechanical tests were carried out to study the influences of bittern ions on CPB properties in offshore mining. The results showed that: (1) the bittern ion compositions and concentrations of backfill water sampled in mine filling station were similar to seawater. Backfill water mixed CPB slurry with its higher viscosity coefficient was adverse to pipeline gravity transporting; (2) Bleeding rate of backfill water mixed slurry was lower than that prepared with tap water at each cement-tailings ratio; (3) The UCS values of backfill water mixed samples were higher at early curing ages (3d, 7d) and then became lower after longer curing time at 14d and 28d. Therefore, for mine production practice, the offshore environments can have adverse effects on the pipeline gravity transporting and have positive effects on stope dewatering process and early-age strength growth.

  17. Prediction of unsaturated flow and water backfill during infiltration in layered soils

    NASA Astrophysics Data System (ADS)

    Cui, Guotao; Zhu, Jianting

    2018-02-01

    We develop a new analytical infiltration model to determine water flow dynamics around layer interfaces during infiltration process in layered soils. The model mainly involves the analytical solutions to quadratic equations to determine the flux rates around the interfaces. Active water content profile behind the wetting front is developed based on the solution of steady state flow to dynamically update active parameters in sharp wetting front infiltration equations and to predict unsaturated flow in coarse layers before the front reaches an impeding fine layer. The effect of water backfill to saturate the coarse layers after the wetting front encounters the impeding fine layer is analytically expressed based on the active water content profiles. Comparison to the numerical solutions of the Richards equation shows that the new model can well capture water dynamics in relation to the arrangement of soil layers. The steady state active water content profile can be used to predict the saturation state of all layers when the wetting front first passes through these layers during the unsteady infiltration process. Water backfill effect may occur when the unsaturated wetting front encounters a fine layer underlying a coarse layer. Sensitivity analysis shows that saturated hydraulic conductivity is the parameter dictating the occurrence of unsaturated flow and water backfill and can be used to represent the coarseness of soil layers. Water backfill effect occurs in coarse layers between upper and lower fine layers when the lower layer is not significantly coarser than the upper layer.

  18. Application of Paste Backfill in Underground Coal Fires

    NASA Astrophysics Data System (ADS)

    Masniyom, M.; Drebenstedt, C.

    2009-04-01

    Coal fires are known from different coalfields worldwide. China, India, USA, Australia, Indonesia and South Africa are the main countries affected by coal fires. The fires is thermally intensive and cause numerous sinkholes, large-scale subsidence, air pollution, global warming, loss of mining productivity and increasing safety risk. The Wuda Inner Mongolia coalfield has been selected as a possible test area for paste backfill. The traditional methods, executed by fire fighting teams, by covering the coalfire areas with soil, blasting burning coal outcrops and injecting water in the subsurface fire pockets are continuously improved and extended. Initiatives to introduce modern techniques, such as backfill placement at fracture and borehole, to cool down the burning coal and cut off the air supply. This study is to investigate backfill materials and techniques suited for underground coal fires. Laboratory tests were carried out on physical, chemical and mechanical properties of different backfill materials and mixtures thereof. Special attention was paid to materials generated as by-products and other cheaply available materials e.g. fly ash from power plants. There is a good chance that one of the different material mixtures investigated can be used as a technically and economically viable backfill for underground coal fires.

  19. Backfilling with guarantees granted upon job submission.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Vitus Joseph; Bunde, David P.; Lindsay, Alexander M.

    2011-01-01

    In this paper, we present scheduling algorithms that simultaneously support guaranteed starting times and favor jobs with system desired traits. To achieve the first of these goals, our algorithms keep a profile with potential starting times for every unfinished job and never move these starting times later, just as in Conservative Backfilling. To achieve the second, they exploit previously unrecognized flexibility in the handling of holes opened in this profile when jobs finish early. We find that, with one choice of job selection function, our algorithms can consistently yield a lower average waiting time than Conservative Backfilling while still providingmore » a guaranteed start time to each job as it arrives. In fact, in most cases, the algorithms give a lower average waiting time than the more aggressive EASY backfilling algorithm, which does not provide guaranteed start times. Alternately, with a different choice of job selection function, our algorithms can focus the benefit on the widest submitted jobs, the reason for the existence of parallel systems. In this case, these jobs experience significantly lower waiting time than Conservative Backfilling with minimal impact on other jobs.« less

  20. Study on HDPE Mixed with Sand as Backfilled Material on Retaining Structure

    NASA Astrophysics Data System (ADS)

    Talib, Z. A.

    2018-04-01

    The failure of the retaining wall is closely related to backfill material. Granular soils such as sand and gravel are most suitable backfill material because of its drainage properties. However two basic materials are quite heavy and contribute high amount of lateral loads. This study was to determine the effectiveness High Density Polyethylene (HDPE) as a backfill material. HDPE has a lighter weight compare to the sand. It makes HDPE has potential to be used as backfill material. The objective of this study is to identify the most effective percentage of HDPE to replace sand as a backfill material. The percentage of HDPE used in this study was 20%, 30%, 50%, 75% and also 100%. Testing involved in this study were sieve analysis test, constant head permeability test, direct shear test and relative density test. The result shows that the HDPE can be used as backfilled material and save the cost of backfill material

  1. 30 CFR 816.105 - Backfilling and grading: Thick overburden.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Backfilling and grading: Thick overburden. 816...-SURFACE MINING ACTIVITIES § 816.105 Backfilling and grading: Thick overburden. (a) Definition. Thick... surrounding terrain. (b) Performance standards. Where thick overburden occurs within the permit area, the...

  2. 30 CFR 819.19 - Auger mining: Backfilling and grading.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Auger mining: Backfilling and grading. 819.19 Section 819.19 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... MINING § 819.19 Auger mining: Backfilling and grading. (a) General. Auger mining shall be conducted in...

  3. 30 CFR 819.19 - Auger mining: Backfilling and grading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... safety factor for the stability of the backfill of at least 1.3. (2) All spoil generated by the auger... nonacid-, nontoxic-forming material and the backfill graded to a slope which is compatible with the approved postmining land use and which provides adequate drainage and long-term stability. (4) Any remnant...

  4. UNDERGROUNG PLACEMENT OF COAL PROCESSING WASTE AND COAL COMBUSTION BY-PRODUCTS BASED PASTE BACKFILL FOR ENHANCED MINING ECONOMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y.P. Chugh; D. Biswas; D. Deb

    2002-06-01

    This project has successfully demonstrated that the extraction ratio in a room-and-pillar panel at an Illinois mine can be increased from the current value of approximately 56% to about 64%, with backfilling done from the surface upon completion of all mining activities. This was achieved without significant ground control problems due to the increased extraction ratio. The mined-out areas were backfilled from the surface with gob, coal combustion by-products (CCBs), and fine coal processing waste (FCPW)-based paste backfill containing 65%-70% solids to minimize short-term and long-term surface deformations risk. This concept has the potential to increase mine productivity, reduce miningmore » costs, manage large volumes of CCBs beneficially, and improve the miner's health, safety, and environment. Two injection holes were drilled over the demonstration panel to inject the paste backfill. Backfilling was started on August 11, 1999 through the first borehole. About 9,293 tons of paste backfill were injected through this borehole with a maximum flow distance of 300-ft underground. On September 27, 2000, backfilling operation was resumed through the second borehole with a mixture of F ash and FBC ash. A high-speed auger mixer (new technology) was used to mix solids with water. About 6,000 tons of paste backfill were injected underground through this hole. Underground backfilling using the ''Groutnet'' flow model was simulated. Studies indicate that grout flow over 300-foot distance is possible. Approximately 13,000 tons of grout may be pumped through a single hole. The effect of backfilling on the stability of the mine workings was analyzed using SIUPANEL.3D computer program and further verified using finite element analysis techniques. Stiffness of the backfill mix is most critical for enhancing the stability of mine workings. Mine openings do not have to be completely backfilled to enhance their stability. Backfill height of about 50% of the seam height is

  5. Electrical resistivity measurement of mechanically stabilized Earth wall backfill : technical summary.

    DOT National Transportation Integrated Search

    2016-06-01

    In Kansas, mechanically stabilized earth (MSE) retaining walls are typically : backfilled with coarse aggregate. Current backfill material testing procedures used : by the Kansas Department of Transportation (KDOT) utilize on-site observations for : ...

  6. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    NASA Astrophysics Data System (ADS)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  7. Electrical resistivity measurement of mechanically stabilized Earth wall backfill : final report.

    DOT National Transportation Integrated Search

    2016-06-01

    In Kansas, mechanically stabilized earth (MSE) retaining walls are typically backfilled with coarse aggregate. : Current backfill material testing procedures used by the Kansas Department of Transportation (KDOT) utilize on-site : observations for co...

  8. Geochemical studies of backfill aggregates, lake sediment cores and the Hueco Bolson Aquifer

    NASA Astrophysics Data System (ADS)

    Thapalia, Anita

    This dissertation comprises of three different researches that focuses on the application of geochemistry from aggregates, lake sediment cores and Hueco Bolson Aquifer. Each study is independent and presented in the publication format. The first chapter is already published and the second chapter is in revision phase. Overall, three studies measure the large scale (field) as well as bench scale (lab) water-rock interactions influenced by the climatic and anthropogenic factors spans from the field of environmental geology to civil engineering. The first chapter of this dissertation addresses the chemical evaluation of coarse aggregates from six different quarries in Texas. The goal of this work is to find out the best geochemical methods for assessing the corrosion potential of coarse aggregates prior to their use in mechanically stabilized earth walls. Electrochemical parameters help to define the corrosion potential of aggregates following two different leaching protocols. Testing the coarse and fine aggregates demonstrate the chemical difference due to size-related kinetic leaching effects. Field fines also show different chemistry than the bulk rock indicating the weathering impact on carbonate rocks. The second chapter investigates zinc (Zn) isotopic signatures from eight lake sediment cores collected both from pristine lakes and those impacted by urban anthropogenic contamination. Zinc from the natural weathering of rocks and anthropogenic atmospheric pollutants are transported to these lakes and the signatures are recorded in the sediments. Isotopic analysis of core samples provides the signature of anthropogenic contamination sources. Dated sediment core and isotopic analysis can identify Zn inputs that are correlated to the landuse and population change of the watersheds. Comparison of isotopic data from both pristine and urban lake sediment core also serves as an analog in other lake sediment cores in the world. The third chapter studies on Hueco Bolson

  9. Deformation Monitoring of Waste-Rock-Backfilled Mining Gob for Ground Control

    PubMed Central

    Zhao, Tongbin; Zhang, Yubao; Zhang, Zhenyu; Li, Zhanhai; Ma, Shuqi

    2017-01-01

    Backfill mining is an effective option to mitigate ground subsidence, especially for mining under surface infrastructure, such as buildings, dams, rivers and railways. To evaluate its performance, continual long-term field monitoring of the deformation of backfilled gob is important to satisfy strict public scrutiny. Based on industrial Ethernet, a real-time monitoring system was established to monitor the deformation of waste-rock-backfilled gob at −700 m depth in the Tangshan coal mine, Hebei Province, China. The designed deformation sensors, based on a resistance transducer mechanism, were placed vertically between the roof and floor. Stress sensors were installed above square steel plates that were anchored to the floor strata. Meanwhile, data cables were protected by steel tubes in case of damage. The developed system continually harvested field data for three months. The results show that industrial Ethernet technology can be reliably used for long-term data transmission in complicated underground mining conditions. The monitoring reveals that the roof subsidence of the backfilled gob area can be categorized into four phases. The bearing load of the backfill developed gradually and simultaneously with the deformation of the roof strata, and started to be almost invariable when the mining face passed 97 m. PMID:28475168

  10. Deformation Monitoring of Waste-Rock-Backfilled Mining Gob for Ground Control.

    PubMed

    Zhao, Tongbin; Zhang, Yubao; Zhang, Zhenyu; Li, Zhanhai; Ma, Shuqi

    2017-05-05

    Backfill mining is an effective option to mitigate ground subsidence, especially for mining under surface infrastructure, such as buildings, dams, rivers and railways. To evaluate its performance, continual long-term field monitoring of the deformation of backfilled gob is important to satisfy strict public scrutiny. Based on industrial Ethernet, a real-time monitoring system was established to monitor the deformation of waste-rock-backfilled gob at -700 m depth in the Tangshan coal mine, Hebei Province, China. The designed deformation sensors, based on a resistance transducer mechanism, were placed vertically between the roof and floor. Stress sensors were installed above square steel plates that were anchored to the floor strata. Meanwhile, data cables were protected by steel tubes in case of damage. The developed system continually harvested field data for three months. The results show that industrial Ethernet technology can be reliably used for long-term data transmission in complicated underground mining conditions. The monitoring reveals that the roof subsidence of the backfilled gob area can be categorized into four phases. The bearing load of the backfill developed gradually and simultaneously with the deformation of the roof strata, and started to be almost invariable when the mining face passed 97 m.

  11. A modified procedure for mixture-model clustering of regional geochemical data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David B.; Horton, John D.

    2014-01-01

    A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The key modification is the robust principal component transformation of the isometric log-ratio transforms of the element concentrations. This principal component transformation and the associated dimension reduction are applied before the data are clustered. The principal advantage of this modification is that it significantly improves the stability of the clustering. The principal disadvantage is that it requires subjective selection of the number of clusters and the number of principal components. To evaluate the efficacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of element concentrations that are derived from the mixture model and from the field samples are similar, indicating that the mixture model is a suitable representation of the transformed geochemical data. Each cluster and the associated distributions of the element concentrations are related to specific geologic and anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional geochemical data.

  12. Geochemical Modeling of Carbon Sequestration, MMV, and EOR in the Illinois Basin

    USGS Publications Warehouse

    Berger, P.M.; Roy, W.R.; Mehnert, E.

    2009-01-01

    The Illinois State Geologic Survey is conducting several ongoing CO2 sequestration projects that require geochemical models to gain an understanding of the processes occurring in the subsurface. The ISGS has collected brine and freshwater samples associated with an enhanced oil recovery project in the Loudon oil field. Geochemical modeling allows us to understand reactions with carbonate and silicate minerals in the reservoir, and the effects they have had on brine composition. For the Illinois Basin Decatur project, geochemical models should allow predictions of the reactions that will take place before CO2 injection begins. ?? 2009 Elsevier Ltd. All rights reserved.

  13. Testing of candidate waste-package backfill and canister materials for basalt

    NASA Astrophysics Data System (ADS)

    Wood, M. I.; Anderson, W. J.; Aden, G. D.

    1982-09-01

    The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill.

  14. Backfilling behavior of a mixed aggregate based on construction waste and ultrafine tailings

    PubMed Central

    Zhang, Qinli; Xiao, Chongchun; Chen, Xin

    2017-01-01

    To study the possibility of utilizing mixed construction waste and ultrafine tailings (CW&UT) as a backfilling aggregate that can be placed underground in a mine, physicochemical evaluation, proportioning strength tests, and pumpability experiments were conducted. It was revealed that mixed CW&UT can be used as a backfilling aggregate due to the complementarities of their physicochemical properties. In addition, as the results of the proportioning strength tests show, the compressive strength of a cemented CW&UT backfilling specimen cured for 28 days, with a mass fraction of 72–74%, a cement-sand ratio of 1:12, and a CW proportion of 30%, is higher than 1.0 MPa, which meets the safety requirements and economic consideration of backfilling technology in many underground metal mines, and can also be enhanced with an increase in the cement-sand ratio. The results of the pumpability experiments show that cemented backfilling slurry based on CW&UT can be transported to the stope underground with a common filling pump, with a 16.6 MPa maximum pressure, with the condition that the time of emergency shut-down is less than approximately 20 min. All in all, the research to utilize mixed CW&UT as a backfilling aggregate can not only provide a way to dispose of CW&UT but also will bring large economic benefits and can provide constructive guidance for environmental protection. PMID:28662072

  15. Backfilling behavior of a mixed aggregate based on construction waste and ultrafine tailings.

    PubMed

    Chen, Qiusong; Zhang, Qinli; Xiao, Chongchun; Chen, Xin

    2017-01-01

    To study the possibility of utilizing mixed construction waste and ultrafine tailings (CW&UT) as a backfilling aggregate that can be placed underground in a mine, physicochemical evaluation, proportioning strength tests, and pumpability experiments were conducted. It was revealed that mixed CW&UT can be used as a backfilling aggregate due to the complementarities of their physicochemical properties. In addition, as the results of the proportioning strength tests show, the compressive strength of a cemented CW&UT backfilling specimen cured for 28 days, with a mass fraction of 72-74%, a cement-sand ratio of 1:12, and a CW proportion of 30%, is higher than 1.0 MPa, which meets the safety requirements and economic consideration of backfilling technology in many underground metal mines, and can also be enhanced with an increase in the cement-sand ratio. The results of the pumpability experiments show that cemented backfilling slurry based on CW&UT can be transported to the stope underground with a common filling pump, with a 16.6 MPa maximum pressure, with the condition that the time of emergency shut-down is less than approximately 20 min. All in all, the research to utilize mixed CW&UT as a backfilling aggregate can not only provide a way to dispose of CW&UT but also will bring large economic benefits and can provide constructive guidance for environmental protection.

  16. Experimental Study on the Coupling Mechanism of Early-strength Backfill and Rock

    NASA Astrophysics Data System (ADS)

    Wang, Mingxu

    2017-11-01

    In order to study the interaction mechanism between the ore rock and backfill at the early stage, paraffin is chosen as the cementing agent. Based on the damage mechanics and fractal theory, the interaction mechanism between the ore rock and backfill is characterized by the relevant tests on the complex of proportioned ore rock and backfill with resistance strain gauge, crack propagation, microscopic imaging and AE. The experimental results showed that: 1) Through the axial loading test, compared with the early strength of the cemented filling and paraffin mechanical deformation characteristics, the stress and strain curves of the two had a common linear deformation law, while in the early strength of the filling elastic capacity strong, with a certain degree of resilience. 2) The bearing capacity of the backfill was weak, but the deformation ability was strong. During the bearing process, the deformation of the upper load was mainly caused by the ore rock, which leaded to the damage of the rock. 3) The distribution of AE points during the co-carrying of the filling and the ore rock was monitored by the acoustic emission instrument. The damage occurred mainly in the contact zone between the backfill and the ore rock zone. The corresponding AE point distribution also validated the crack happening.

  17. Evaluating the methodology and performance of jetting and flooding of granular backfill materials.

    DOT National Transportation Integrated Search

    2014-11-01

    Compaction of backfill in confined spaces on highway projects is often performed with small vibratory plates, based : solely on the experience of the contractor, leading to inadequate compaction. As a result, the backfill is prone to : erosion and of...

  18. Hiereachical Bayesian Model for Combining Geochemical and Geophysical Data for Environmental Applications Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jinsong

    2013-05-01

    Development of a hierarchical Bayesian model to estimate the spatiotemporal distribution of aqueous geochemical parameters associated with in-situ bioremediation using surface spectral induced polarization (SIP) data and borehole geochemical measurements collected during a bioremediation experiment at a uranium-contaminated site near Rifle, Colorado. The SIP data are first inverted for Cole-Cole parameters including chargeability, time constant, resistivity at the DC frequency and dependence factor, at each pixel of two-dimensional grids using a previously developed stochastic method. Correlations between the inverted Cole-Cole parameters and the wellbore-based groundwater chemistry measurements indicative of key metabolic processes within the aquifer (e.g. ferrous iron, sulfate, uranium)more » were established and used as a basis for petrophysical model development. The developed Bayesian model consists of three levels of statistical sub-models: 1) data model, providing links between geochemical and geophysical attributes, 2) process model, describing the spatial and temporal variability of geochemical properties in the subsurface system, and 3) parameter model, describing prior distributions of various parameters and initial conditions. The unknown parameters are estimated using Markov chain Monte Carlo methods. By combining the temporally distributed geochemical data with the spatially distributed geophysical data, we obtain the spatio-temporal distribution of ferrous iron, sulfate and sulfide, and their associated uncertainity information. The obtained results can be used to assess the efficacy of the bioremediation treatment over space and time and to constrain reactive transport models.« less

  19. The Resource Usage Aware Backfilling

    NASA Astrophysics Data System (ADS)

    Guim, Francesc; Rodero, Ivan; Corbalan, Julita

    Job scheduling policies for HPC centers have been extensively studied in the last few years, especially backfilling based policies. Almost all of these studies have been done using simulation tools. All the existent simulators use the runtime (either estimated or real) provided in the workload as a basis of their simulations. In our previous work we analyzed the impact on system performance of considering the resource sharing (memory bandwidth) of running jobs including a new resource model in the Alvio simulator. Based on this studies we proposed the LessConsume and LessConsume Threshold resource selection policies. Both are oriented to reduce the saturation of the shared resources thus increasing the performance of the system. The results showed how both resource allocation policies shown how the performance of the system can be improved by considering where the jobs are finally allocated.

  20. Long-term geochemical evolution of the near field repository: Insights from reactive transport modelling and experimental evidences

    NASA Astrophysics Data System (ADS)

    Arcos, David; Grandia, Fidel; Domènech, Cristina; Fernández, Ana M.; Villar, María V.; Muurinen, Arto; Carlsson, Torbjörn; Sellin, Patrik; Hernán, Pedro

    2008-12-01

    The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept. In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral

  1. Long-term geochemical evolution of the near field repository: insights from reactive transport modelling and experimental evidences.

    PubMed

    Arcos, David; Grandia, Fidel; Domènech, Cristina; Fernández, Ana M; Villar, María V; Muurinen, Arto; Carlsson, Torbjörn; Sellin, Patrik; Hernán, Pedro

    2008-12-12

    The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept. In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral

  2. Resolving the Multi-scale Behavior of Geochemical Weathering in the Critical Zone Using High Resolution Hydro-geochemical Models

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Rajaram, H.

    2015-12-01

    This work investigates hydrologic and geochemical interactions in the Critical Zone (CZ) using high-resolution reactive transport modeling. Reactive transport models can be used to predict the response of geochemical weathering and solute fluxes in the CZ to changes in a dynamic environment, such as those pertaining to human activities and climate change in recent years. The scales of hydrology and geochemistry in the CZ range from days to eons in time and centimeters to kilometers in space. Here, we present results of a multi-dimensional, multi-scale hydro-geochemical model to investigate the role of subsurface heterogeneity on the formation of mineral weathering fronts in the CZ, which requires consideration of many of these spatio-temporal scales. The model is implemented using the reactive transport code PFLOTRAN, an open source subsurface flow and reactive transport code that utilizes parallelization over multiple processing nodes and provides a strong framework for simulating weathering in the CZ. The model is set up to simulate weathering dynamics in the mountainous catchments representative of the Colorado Front Range. Model parameters were constrained based on hydrologic, geochemical, and geophysical observations from the Boulder Creek Critical Zone Observatory (BcCZO). Simulations were performed in fractured rock systems and compared with systems of heterogeneous and homogeneous permeability fields. Tracer simulations revealed that the mean residence time of solutes was drastically accelerated as fracture density increased. In simulations that include mineral reactions, distinct signatures of transport limitations on weathering arose when discrete flow paths were included. This transport limitation was related to both advective and diffusive processes in the highly heterogeneous systems (i.e. fractured media and correlated random permeability fields with σlnk > 3). The well-known time-dependence of mineral weathering rates was found to be the most

  3. Native backfill materials for mechanically stabilized earth walls.

    DOT National Transportation Integrated Search

    2005-01-01

    Mechanically stabilized earth walls are an attractive alternative to conventional reinforced concrete retaining walls. The economy of these walls for non-critical applications might be improved by using alternative backfills consisting of on-site soi...

  4. Fat metaplasia and backfill are key intermediaries in the development of sacroiliac joint ankylosis in patients with ankylosing spondylitis.

    PubMed

    Maksymowych, Walter P; Wichuk, Stephanie; Chiowchanwisawakit, Praveena; Lambert, Robert G; Pedersen, Susanne J

    2014-11-01

    Fat metaplasia in bone marrow on T1-weighted magnetic resonance imaging (MRI) scans may develop after resolution of inflammation in patients with ankylosing spondylitis (AS) and may predict new bone formation in the spine. Similar tissue, termed backfill, may also fill areas of excavated bone in the sacroiliac (SI) joints and may reflect resolution of inflammation and tissue repair at sites of erosions. The purpose of this study was to test our hypothesis that SI joint ankylosis develops following repair of erosions and that tissue characterized by fat metaplasia is a key intermediary step in this pathway. We used the Spondyloarthritis Research Consortium of Canada (SPARCC) SI structural lesion score (SSS) method to assess fat metaplasia, erosions, backfill, and ankylosis on MRIs of the SI joints in 147 patients with AS monitored for 2 years. Univariate and multivariate regression analyses focused first on identifying significant MRI predictors of new backfill and fat metaplasia. We then assessed the role of backfill and fat metaplasia in the development of new ankylosis. All analyses were adjusted for demographic features, treatment, and baseline and 2-year change in SSS values for parameters of inflammation and MRI structural lesions. Resolution of inflammation and reduction of erosions were each independently associated with the development of new backfill and fat metaplasia at 2 years on multivariate analyses. Multivariate regression analysis that included demographic features, baseline and 2-year change in parameters of inflammation and MRI structural lesion showed that reduction in erosions (P = 0.0005) and increase in fat metaplasia (P = 0.002) at 2 years was each independently associated with the development of new ankylosis. Our data support a disease model whereby ankylosis develops following repair of erosions, and fat metaplasia and backfill are key intermediary steps in this pathway. Copyright © 2014 by the American College of Rheumatology.

  5. MODELING MONOMETHYLMERCURY AND TRIBUTYLTIN SPECIATION WITH EPA'S GEOCHEMICAL SPECIATION MODEL MINTEQA2

    EPA Science Inventory

    Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...

  6. GEOCHEMICAL MODELING OF ARSENIC SPECIATION AND MOBILIZATION: IMPLICATIONS FOR BIOREMEDIATION

    EPA Science Inventory

    Geochemical modeling techniques were used to examine the biogeochemical linkages between Fe, S, and As in shallow alluvial aquifers. We modeled: 1) the adsorption and desorption of As on the surface of hydrous ferric oxides (HFO’s) in stream beds under aerobic conditions; 2) red...

  7. A novel silica alumina-based backfill material composed of coal refuse and fly ash.

    PubMed

    Yao, Yuan; Sun, Henghu

    2012-04-30

    In this paper, a systematic study was conducted to investigate a novel silica alumina-based backfill material composed of coal refuse and fly ash. The coal refuse and fly ash had different properties under various thermal activation temperatures (20 °C, 150 °C, 350 °C, 550 °C, 750 °C and 950 °C). It is known that a thermal activation temperature ranging from 20 °C to 950 °C significantly increases the flowability and pozzolanic properties of the coal refuse; however, the flowability of fly ash decreases when the activation temperature is higher than 550 °C because of a severe agglomeration phenomenon on its surface. An optimal design for this backfill material was determined to include an activated portion composed of 5% coal refuse at 750 °C and 15% fly ash at 20 °C. This combination yields the best performance with excellent flowability, a high compressive strength and a low bleeding rate. The microanalysis results corresponded well with the performance tests at different activation conditions. In the coal refuse, kaolinite peaks began to decrease because of their transformation into metakaolin at 550 °C. Chlorite peaks disappeared at 750 °C. Muscovite peaks decreased at 750 °C and disappeared at 950 °C. During this process, muscovite 2M(1) gradually dehydroxylated to muscovite HT. Furthermore, this paper examined the environmental acceptance and economic feasibility of this technology and found that this silica alumina-based backfill material composed of coal refuse and fly ash not only meets EPA requirements but also has several advantages in industry feasibility when compared with hydraulic backfill, rock backfill and paste backfill. Published by Elsevier B.V.

  8. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes

    NASA Astrophysics Data System (ADS)

    Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan

    2016-07-01

    An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.

  9. Calculation of individual isotope equilibrium constants for implementation in geochemical models

    USGS Publications Warehouse

    Thorstenson, Donald C.; Parkhurst, David L.

    2002-01-01

    Theory is derived from the work of Urey to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by , where is n the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example and , and to include the effects of nonideality. The equilibrium constants of the isotope exchange reactions provide a basis for calculating the individual isotope equilibrium constants for the geochemical modeling reactions. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. Equilibrium constants are calculated for all species that can be formed from and selected species containing , in the molecules and the ion pairs with where the subscripts g, aq, l, and s refer to gas, aqueous, liquid, and solid, respectively. These equilibrium constants are used in the geochemical model PHREEQC to produce an equilibrium and reaction-transport model that includes these isotopic species. Methods are presented for calculation of the individual isotope equilibrium constants for the asymmetric bicarbonate ion. An example calculates the equilibrium of multiple isotopes among multiple species and phases.

  10. A new statistical model to find bedrock, a prequel to geochemical mass balance

    NASA Astrophysics Data System (ADS)

    Fisher, B.; Rendahl, A. K.; Aufdenkampe, A. K.; Yoo, K.

    2016-12-01

    We present a new statistical model to assess weathering trends in deep weathering profiles. The Weathering Trends (WT) model is presented as an extension of the geochemical mass balance model (Brimhall & Dietrich, 1987), and is available as an open-source R library on GitHub (https://github.com/AaronRendahl/WeatheringTrends). WT uses element concentration data to determine the depth to fresh bedrock by assessing the maximum extent of weathering for all elements and the model applies confidence intervals on the depth to bedrock. WT models near-surface features and the shape of the weathering profile using a log transformation of data to capture the magnitude of changes that are relevant to geochemical kinetics and thermodynamics. The WT model offers a new, enhanced opportunity to characterize and understand biogeochemical weathering in heterogeneous rock types. We apply the model to two 21-meter drill cores in the Laurels Schist bedrock in the Christina River Basin Critical Zone Observatory in the Pennsylvania Piedmont. The Laurels Schist had inconclusive weathering indicators prior to development and application of WT model. The model differentiated between rock variability and weathering to delineate the maximum extent of weathering at 12.3 (CI 95% [9.2, 21.3]) meters in Ridge Well 1 and 7.2 (CI 95% [4.3, 13.0]) meters in Interfluve Well 2. The modeled extent to weathering is decoupled from the water table at the ridge, but coincides with the water table at the interfluve. These depths were applied as the parent material for the geochemical mass balance for the Laurels Schist. We test statistical approaches to assess the variability and correlation of immobile elements to facilitate the selection of the best immobile element for use in both models. We apply the model to other published data where the geochemical mass balance was applied, to demonstrate how the WT model provides additional information about weathering depth and weathering trends.

  11. 30 CFR 816.106 - Backfilling and grading: Previously mined areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation shall be included within the permit area. (2) The backfill shall be graded to a slope which is compatible with the approved postmining land use and which provides adequate drainage and long-term stability...

  12. 30 CFR 817.106 - Backfilling and grading: Previously mined areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation shall be included within the permit area. (2) The backfill shall be graded to a slope which is compatible with the approved postmining land use and which provides adequate drainage and long-term stability...

  13. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.

  14. 30 CFR 819.19 - Auger mining: Backfilling and grading.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... health and safety or to the environment. ... of the highwall shall be stable and not pose a hazard to the public health and safety or to the... safety factor for the stability of the backfill of at least 1.3. (2) All spoil generated by the auger...

  15. 30 CFR 819.19 - Auger mining: Backfilling and grading.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... health and safety or to the environment. ... of the highwall shall be stable and not pose a hazard to the public health and safety or to the... safety factor for the stability of the backfill of at least 1.3. (2) All spoil generated by the auger...

  16. Understanding the Alteration of Bentonite Backfill Using Coupled THMC Modeling for a Long Term Heater Test at the Grimsel Underground Research Lab

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.; Zheng, L.; Xu, H.; Rutqvist, J.

    2017-12-01

    Compacted bentonite is commonly used as backfill material in emplacement tunnels of nuclear waste repositories because of its low permeability, high swelling pressure, and retardation capacity of radionuclide. To assess whether this backfill material can maintain these favorable features when undergoing heating from the waste package and hydration from the host rock, we need a thorough understanding of the thermal, hydrological, mechanical, and chemical evolution of bentonite under disposal conditions. Dedicated field tests integrated with THMC modeling provide an effective way to deepen such understanding. Here, we present coupled THMC models for an in situ heater test which was conducted at the Grimsel Test Site in Switzerland for 18 years. The comprehensive monitoring data obtained in the test provide a unique opportunity to evaluate bentonite integrity and test coupled THMC models. We developed a modeling strategy where conceptual model complexity is increased gradually by adding/testing processes such as Non-Darcian flow, enhanced vapor diffusion, thermal osmosis and different constitutive relationships for permeability/porosity changes due to swelling. The final THMC model explains well all the THM data and the concentration profiles of conservative chemical species. Over the course of modeling the in situ test, we learned that (1) including Non-Darcian flow into the model leads to a significant underestimation of hydration rate of bentonite, (2) chemical data provide an important additional piece of information for calibrating a THM model; (3) key processes needed to reproduce the data include vapor diffusion, as well as porosity and permeability changes due to swelling and thermal osmosis; (4) the concentration profiles of cations (calcium, potassium, magnesium and sodium) were largely shaped by transport processes despite their concentration levels being affected by mineral dissolution/precipitation and cation exchange. The concentration profiles of p

  17. The Study on Development of Light-Weight Foamed Mortar for Tunnel Backfill

    NASA Astrophysics Data System (ADS)

    Ma, Sang-Joon; Kang, Eun-Gu; Kim, Dong-Min

    This study was intended to develop the Light-Weight Foamed Mortar which is used for NATM Composite lining backfill. In the wake of the study, the mixing method which satisfies the requirements for compressive strength, permeability coefficient, fluidity, specific gravity and settlement was developed and moreover field applicability was verified through the model test. Thus the mixing of Light-Weight Foamed Mortar developed in this study is expected to be applicable to NATM Composite lining, thereby making commitment to improving the stability and drainage performance of lining.

  18. Selected Geochemical Data for Modeling Near-Surface Processes in Mineral Systems

    USGS Publications Warehouse

    Giles, Stuart A.; Granitto, Matthew; Eppinger, Robert G.

    2009-01-01

    The database herein was initiated, designed, and populated to collect and integrate geochemical, geologic, and mineral deposit data in an organized manner to facilitate geoenvironmental mineral deposit modeling. The Microsoft Access database contains data on a variety of mineral deposit types that have variable environmental effects when exposed at the ground surface by mining or natural processes. The data tables describe quantitative and qualitative geochemical analyses determined by 134 analytical laboratory and field methods for over 11,000 heavy-mineral concentrate, rock, sediment, soil, vegetation, and water samples. The database also provides geographic information on geology, climate, ecoregion, and site contamination levels for over 3,000 field sites in North America.

  19. Roadway backfill method to prevent geohazards induced by room and pillar mining: a case study in Changxing coal mine, China

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Li, Meng; Zhang, Jixiong; Gao, Rui

    2016-11-01

    Coal mines in the western areas of China experience low mining rates and induce many geohazards when using the room and pillar mining method. In this research, we proposed a roadway backfill method during longwall mining to target these problems. We tested the mechanical properties of the backfill materials to determine a reasonable ratio of backfill materials for the driving roadway during longwall mining. We also introduced the roadway layout and the backfill mining technique required for this method. Based on the effects of the abutment stress from a single roadway driving task, we designed the distance between roadways and a driving and filling sequence for multiple-roadway driving. By doing so, we found the movement characteristics of the strata with quadratic stabilization for backfill mining during roadway driving. Based on this research, the driving and filling sequence of the 3101 working face in Changxing coal mine was optimized to avoid the superimposed influence of mining-induced stress. According to the analysis of the surface monitoring data, the accumulated maximum subsidence is 15 mm and the maximum horizontal deformation is 0.8 mm m-1, which indicated that the ground basically had no obvious deformation after the implementation of the roadway backfill method at 3101 working face.

  20. Backfill composition for secondary barriers in nuclear waste repositories

    DOEpatents

    Beall, Gary W.; Allard, Bert M.

    1982-01-01

    A backfill composition for sorbing and retaining hazardous elements of nuclear wastes comprises 50-70% by weight of quartz, 10-30% by weight of montmorillonite, 1-10% by weight of phosphate mineral, 1-10% by weight of ferrous mineral, 1-10% by weight of sulfate mineral and 1-10% by weight of attapulgite.

  1. A Geochemical Reaction Model for Titration of Contaminated Soil and Groundwater at the Oak Ridge Reservation

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.

    2007-12-01

    This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.

  2. Evacuate and backfill apparatus and method

    DOEpatents

    Oakley, David J.; Groves, Oliver J.

    1985-01-01

    An apparatus and method for treatment of hollow articles by evacuating existing gas or gases therefrom and purging or backfilling the articles with a second gas such as helium. The apparatus includes a sealed enclosure having an article storage drum mounted therein. A multiplicity of such articles are fed singly into the enclosure and loaded into radial slots formed in the drum. The enclosure is successively evacuated and purged with helium to replace the existing gas in the articles with helium. The purged articles are then discharged singly from the drum and transported out of the enclosure.

  3. Evacuate and backfill apparatus and method

    DOEpatents

    Oakley, D.J.; Groves, O.J.

    1984-06-27

    An apparatus and method as described for treatment of hollow articles by evacuating existing gas or gases therefrom and purging or backfilling the articles with a second gas such as helium. The apparatus includes a sealed enclosure having an article storage drum mounted therein. A multiplicity of such articles are fed singly into the enclosure and loaded into radial slots formed in the drum. The enclosure is successively evacuated and purged with helium to replace the existing gas in the articles with helium. The purged articles are then discharged singly from the drum and transported out of the enclosure.

  4. Backfill composition for secondary barriers in nuclear waste repositories

    DOEpatents

    Beall, G.W.; Allard, B.M.

    1980-05-30

    A backfill composition for sorbing and retaining hazardous elements of nuclear wastes comprises 50 to 70% by weight of quartz, 10 to 30% by weight of montmorillonite, 1 to 10% by weight of phosphate mineral, 1 to 10% by weight of ferrous mineral, 1 to 10% by weight of sulfate mineral and 1 to 10% by weight of attapulgite.

  5. Numerical analysis of dense narrow backfills for increasing lateral passive resistance.

    DOT National Transportation Integrated Search

    2010-08-01

    Previously, full-scale lateral load tests conducted on pile caps with different aspect ratios showed that placement : of a narrow, dense backfill zone against the cap could substantially increase the passive resistance. The objective : of this study ...

  6. Geochemical Constraints for Mercury's PCA-Derived Geochemical Terranes

    NASA Astrophysics Data System (ADS)

    Stockstill-Cahill, K. R.; Peplowski, P. N.

    2018-05-01

    PCA-derived geochemical terranes provide a robust, analytical means of defining these terranes using strictly geochemical inputs. Using the end members derived in this way, we are able to assess the geochemical implications for Mercury.

  7. Radon emanation from backfilled mill tailings in underground uranium mine.

    PubMed

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekananda; Patnaik, R Lokeswara; Sethy, Narendra Kumar

    2014-04-01

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as (226)Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12-7.03 Bq m(-2) s(-1) with geometric mean of 1.01 Bq m(-2) s(-1) and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08-0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between (222)Rn emanation rate and (226)Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 30 CFR 717.14 - Backfilling and grading of road cuts, mine entry area cuts, and other surface work areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Backfilling and grading of road cuts, mine entry area cuts, and other surface work areas. 717.14 Section 717.14 Mineral Resources OFFICE OF SURFACE... MINING GENERAL PERFORMANCE STANDARDS § 717.14 Backfilling and grading of road cuts, mine entry area cuts...

  9. Assessment of (222)Rn emanation from ore body and backfill tailings in low-grade underground uranium mine.

    PubMed

    Mishra, Devi Prasad; Sahu, Patitapaban; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2014-02-01

    This paper presents a comparative study of (222)Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity, (226)Ra and moisture contents on (222)Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01 × 10(-3) and 1.03 Bq m(-2) s(-1), respectively. Significant positive linear correlations between (222)Rn emanation rate and the (226)Ra content of ore and tailings were observed. For normalised (226)Ra content, the (222)Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the (226)Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere.

  10. Probabilistic, sediment-geochemical parameterisation of the groundwater compartment of the Netherlands for spatially distributed, reactive transport modelling

    NASA Astrophysics Data System (ADS)

    Janssen, Gijs; Gunnink, Jan; van Vliet, Marielle; Goldberg, Tanya; Griffioen, Jasper

    2017-04-01

    Pollution of groundwater aquifers with contaminants as nitrate is a common problem. Reactive transport models are useful to predict the fate of such contaminants and to characterise the efficiency of mitigating or preventive measures. Parameterisation of a groundwater transport model on reaction capacity is a necessary step during building the model. Two Dutch, national programs are combined to establish a methodology for building a probabilistic model on reaction capacity of the groundwater compartment at the national scale: the Geological Survey program and the NHI Netherlands Hydrological Instrument program. Reaction capacity is considered as a series of geochemical characteristics that control acid/base condition, redox condition and sorption capacity. Five primary reaction capacity variables are characterised: 1. pyrite, 2. non-pyrite, reactive iron (oxides, siderite and glauconite), 3. clay fraction, 4. organic matter and 5. Ca-carbonate. Important reaction capacity variables that are determined by more than one solid compound are also deduced: 1. potential reduction capacity (PRC) by pyrite and organic matter, 2. cation-exchange capacity (CEC) by organic matter and clay content, 3. carbonate buffering upon pyrite oxidation (CPBO) by carbonate and pyrite. Statistical properties of these variables are established based on c. 16,000 sediment geochemical analyses. The first tens of meters are characterised based on 25 regions using combinations of lithological class and geological formation as strata. Because of both less data and more geochemical uniformity, the deeper subsurface is characterised in a similar way based on 3 regions. The statistical data is used as input in an algoritm that probabilistically calculates the reaction capacity per grid cell. First, the cumulative frequency distribution (cfd) functions are calculated from the statistical data for the geochemical strata. Second, all voxel cells are classified into the geochemical strata. Third, the

  11. Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis

    NASA Astrophysics Data System (ADS)

    Afzal, Peyman; Mirzaei, Misagh; Yousefi, Mahyar; Adib, Ahmad; Khalajmasoumi, Masoumeh; Zarifi, Afshar Zia; Foster, Patrick; Yasrebi, Amir Bijan

    2016-07-01

    Recognition of significant geochemical signatures and separation of geochemical anomalies from background are critical issues in interpretation of stream sediment data to define exploration targets. In this paper, we used staged factor analysis in conjunction with the concentration-number (C-N) fractal model to generate exploration targets for prospecting Cr and Fe mineralization in Balvard area, SE Iran. The results show coexistence of derived multi-element geochemical signatures of the deposit-type sought and ultramafic-mafic rocks in the NE and northern parts of the study area indicating significant chromite and iron ore prospects. In this regard, application of staged factor analysis and fractal modeling resulted in recognition of significant multi-element signatures that have a high spatial association with host lithological units of the deposit-type sought, and therefore, the generated targets are reliable for further prospecting of the deposit in the study area.

  12. 30 CFR 816.101 - Backfilling and grading: Time and distance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provided in paragraph (b) of this section, rough backfilling and grading for surface mining activities... not more than four spoil ridges behind the pit being worked, the spoil from the active pit constituting the first ridge; or (3) Other surface mining methods. In accordance with the schedule established...

  13. 30 CFR 816.101 - Backfilling and grading: Time and distance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provided in paragraph (b) of this section, rough backfilling and grading for surface mining activities... not more than four spoil ridges behind the pit being worked, the spoil from the active pit constituting the first ridge; or (3) Other surface mining methods. In accordance with the schedule established...

  14. Retardation of uranium and thorium by a cementitious backfill developed for radioactive waste disposal.

    PubMed

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Preedy, O; Read, D

    2017-07-01

    The solubility of uranium and thorium has been measured under the conditions anticipated in a cementitious, geological disposal facility for low and intermediate level radioactive waste. Similar solubilities were obtained for thorium in all media, comprising NaOH, Ca(OH) 2 and water equilibrated with a cement designed as repository backfill (NRVB, Nirex Reference Vault Backfill). In contrast, the solubility of U(VI) was one order of magnitude higher in NaOH than in the remaining solutions. The presence of cellulose degradation products (CDP) results in a comparable solubility increase for both elements. Extended X-ray Absorption Fine Structure (EXAFS) data suggest that the solubility-limiting phase for uranium corresponds to a becquerelite-type solid whereas thermodynamic modelling predicts a poorly crystalline, hydrated calcium uranate phase. The solubility-limiting phase for thorium was ThO 2 of intermediate crystallinity. No breakthrough of either uranium or thorium was observed in diffusion experiments involving NRVB after three years. Nevertheless, backscattering electron microscopy and microfocus X-ray fluorescence confirmed that uranium had penetrated about 40 μm into the cement, implying active diffusion governed by slow dissolution-precipitation kinetics. Precise identification of the uranium solid proved difficult, displaying characteristics of both calcium uranate and becquerelite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Use of fly-ash slurry in backfill grouting in coal mines.

    PubMed

    Jiang, Ning; Zhao, Jinhai; Sun, Xizhen; Bai, Liyang; Wang, Changxiang

    2017-11-01

    Cave backfill grouting implies grouting of the caving rock mass prior to it being compacted. The filling materials strengthen the caving rock and support the overlying strata to achieve the purpose of slowing down the surface subsidence. The broken roof will fail and collapse during mining operations performed without appropriate supporting measures being taken. It is difficult to perform continuous backfill mining on the working face of such roofs using the existing mining technology. In order to solve the above problems, fly ash and mine water are considered as filling materials, and flow characteristics of fly-ash slurry are investigated through laboratory experiments and theoretical analyses. Laws governing the diffusion of fly-ash slurry in the void of caving rock masses and in the void between a caving rock mass and a basic roof are obtained and verified. Based on the results obtained from the above analyses and actual conditions at the Zhaoguan coal mine, Shandong Province, China, a cave backfill grouting system of the hauling pipeline is developed and successfully tested at the 1703 working face in the Zhaoguan coal mine. The results demonstrate that a filling rate of 43.46% is achieved, and the surface subsidence coefficient of the grouting process is found to be 0.475. Compared to the total caving method, the proposed system is found to achieve a reduction rate of 40.63%. This effectively helps in lowering the value of the surface subsidence coefficient. Fly ash and mine water, considered as primary materials in this study, also play a significant role in improving the air quality and water environment.

  16. Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer

    NASA Astrophysics Data System (ADS)

    Brown, C. J.; Schoonen, M. A. A.; Candela, J. L.

    2000-11-01

    Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O 2 and SO 42- in the aerobic zone, and to the reduction of SO 42- in the anaerobic zone; estimated rates of CO 2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO 2 production calculated from dissolved inorganic carbon mass transfer (2.55×10 -4 to 48.6×10 -4 mmol l -1 yr-1) generally were comparable to the calculated rates of CO 2 production by the combined reduction of O 2, Fe(III) and SO 42- (1.31×10 -4 to 15×10 -4 mmol l -1 yr-1). The overall increase in SO 42- concentrations along the flow path, together with the results of mass-balance calculations, and variations in δ34S values along the flow path indicate that SO 42- loss through microbial reduction is exceeded by SO 42- gain through diffusion from sediments and through the oxidation of FeS 2. Geochemical and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO 42--rich zones have been depleted by microbial reduction and resulted in localized SO 42--reducing zones in which the formation of iron disulfides decreases dissolved iron concentrations. These localized zones of SO 42- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling.

  17. Modules based on the geochemical model PHREEQC for use in scripting and programming languages

    USGS Publications Warehouse

    Charlton, Scott R.; Parkhurst, David L.

    2011-01-01

    The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server—for example, Excel®, Visual Basic®, Python, or MATLAB". PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations.

  18. Modules based on the geochemical model PHREEQC for use in scripting and programming languages

    USGS Publications Warehouse

    Charlton, S.R.; Parkhurst, D.L.

    2011-01-01

    The geochemical model PHREEQC is capable of simulating a wide range of equilibrium reactions between water and minerals, ion exchangers, surface complexes, solid solutions, and gases. It also has a general kinetic formulation that allows modeling of nonequilibrium mineral dissolution and precipitation, microbial reactions, decomposition of organic compounds, and other kinetic reactions. To facilitate use of these reaction capabilities in scripting languages and other models, PHREEQC has been implemented in modules that easily interface with other software. A Microsoft COM (component object model) has been implemented, which allows PHREEQC to be used by any software that can interface with a COM server-for example, Excel??, Visual Basic??, Python, or MATLAB??. PHREEQC has been converted to a C++ class, which can be included in programs written in C++. The class also has been compiled in libraries for Linux and Windows that allow PHREEQC to be called from C++, C, and Fortran. A limited set of methods implements the full reaction capabilities of PHREEQC for each module. Input methods use strings or files to define reaction calculations in exactly the same formats used by PHREEQC. Output methods provide a table of user-selected model results, such as concentrations, activities, saturation indices, and densities. The PHREEQC module can add geochemical reaction capabilities to surface-water, groundwater, and watershed transport models. It is possible to store and manipulate solution compositions and reaction information for many cells within the module. In addition, the object-oriented nature of the PHREEQC modules simplifies implementation of parallel processing for reactive-transport models. The PHREEQC COM module may be used in scripting languages to fit parameters; to plot PHREEQC results for field, laboratory, or theoretical investigations; or to develop new models that include simple or complex geochemical calculations. ?? 2011.

  19. Investigation of Flash Fill{reg_sign} as a thermal backfill material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, P.H.; Charlton, C.B.; Frishette, C.W.

    1995-09-01

    Flash Fill{reg_sign} was created as a fast-setting, flowable backfill material made entirely from coal combustion by-products and water. Its quick-setting, self-leveling, self-compacting characteristics makes trench road repairs faster, easier, and more economical. Other uses include building foundations, fill around pipes, gas lines, and manholes, and replacement of weak subgrade beneath rooters. Flash Fill can be hand-excavated without the use of power assisted tools or machinery. To enhance thermal resistivity, the original Flash Fill mix was modified to include concrete sand. This resulted in a new Flash Fill, designated FSAND, with all of the aforementioned desirable characteristics of Flash Fill andmore » a thermal resistivity of approximately 50{degree} C-cm/watt. Thermal resistivity tests using conventional laboratory thermal probes, high-current thermal tests, and moisture migration tests have been performed to determine the properties of FSAND. As a result of these tests, FSAND has been approved for use as power cable thermal backfill on all AEP System distribution projects.« less

  20. The Geochemical Earth Reference Model (GERM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staudigel, H.; Albarede, F.; Shaw, H.

    The Geochemical Earth Reference Model (GERM) initiative is a grass- roots effort with the goal of establishing a community consensus on a chemical characterization of the Earth, its major reservoirs, and the fluxes between them. Long term goal of GERM is a chemical reservoir characterization analogous to the geophysical effort of the Preliminary Reference Earth Model (PREM). Chemical fluxes between reservoirs are included into GERM to illuminate the long-term chemical evolution of the Earth and to characterize the Earth as a dynamic chemical system. In turn, these fluxes control geological processes and influence hydrosphere-atmosphere-climate dynamics. While these long-term goals aremore » clearly the focus of GERM, the process of establishing GERM itself is just as important as its ultimate goal. The GERM initiative is developed in an open community discussion on the World Wide Web (GERM home page is at http://www-ep.es.llnl. gov/germ/germ-home.html) that is mediated by a series of editors with responsibilities for distinct reservoirs and fluxes. Beginning with the original workshop in Lyons (March 1996) GERM is continued to be developed on the Internet, punctuated by workshops and special sessions at professional meetings. It is planned to complete the first model by mid-1997, followed by a call for papers for a February 1998 GERM conference in La Jolla, California.« less

  1. A Quantitative Geochemical Target for Modeling the Formation of the Earth and Moon

    NASA Technical Reports Server (NTRS)

    Boyce, Jeremy W.; Barnes, Jessica J.; McCubbin, Francis M.

    2017-01-01

    The past decade has been one of geochemical, isotopic, and computational advances that are bringing the laboratory measurements and computational modeling neighborhoods of the Earth-Moon community to ever closer proximity. We are now however in the position to become even better neighbors: modelers can generate testable hypthotheses for geochemists; and geochemists can provide quantitive targets for modelers. Here we present a robust example of the latter based on Cl isotope measurements of mare basalts.

  2. The effect of various backfilling techniques on the fracture resistance of simulated immature teeth performed apical plug with Biodentine.

    PubMed

    Topçuoğlu, Hüseyin Sinan; Kesim, Bertan; Düzgün, Salih; Tuncay, Öznur; Demirbuga, Sezer; Topçuoğlu, Gamze

    2015-07-01

    To evaluate the fracture resistance of simulated immature teeth that had been backfilled using different materials after using Biodentine as the apical plug material. Seventy-five single-rooted teeth were divided into five groups (n = 15). The 15 teeth in group 1 served as a negative control group and received no treatment. The remaining 60 teeth were instrumented to a #6 Peeso reamer to obtain a standard internal diameter of 1.5 mm. The apical 4 mm of 60 teeth was filled with Biodentine. The backfilling was then performed on each group as follows: group 2--no backfilling (positive control), group 3--gutta-percha, group 4--fiber post, and group 5--Biodentine. Specimens were then subjected to fracture testing. The force required to fracture each specimen was recorded, and the data were statistically analyzed. The mean fracture values of groups 1 and 4 were significantly higher than groups 2, 3, and 5 (P < 0.05). The values of groups 3 and 5 were significantly higher than group 2 (P < 0.05). The backfilling with fiber post after an apical Biodentine plug provided the highest fracture resistance among all experimental groups. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Using multifractal modeling as a standard tool in geochemical exploration for predicting mineralized areas

    NASA Astrophysics Data System (ADS)

    Gonçalves, Mario A.

    2015-04-01

    It has been 20 years since the pioneering work of Cheng et al (1994) first proposed a quantitative relationship for the areas enclosing concentration values of an element above given thresholds and their distribution in the field, known as concentration-area (CA) method, which is based in multifractal theory. The method allows the definition of geochemical anomalies in wide set of geological backgrounds but it took nearly 15 years before it became a widely used methodology for mineral exploration. The method was also extended to 1D and 3D data sets. It is worth noting the variety of methods that spanned from the theory of fractals. Building on previous models, including multiplicative cascades and size-grade relationships, increasing evidence points to the powerful tools of fractal theory to describe and model ore deposit distribution and formation. However, while much of these approaches become complex and not easy to use, the CA method is remarkable for its utter simplicity and disarming results obtained when confronted with the geological reality in the field. This is most valued by companies and professionals undertaking geochemical exploration surveys for the characterization or refining of potential ore targets or known mineralized areas. Several approaches have combined the CA method with geostatistic modeling and simulation and other established statistical techniques in order to enhance anomalous threshold identification. Examples are not restricted to geochemical exploration alone, other applications being studies on environmental change. Some of these examples will be addressed as they have been applied to different regions in the world, but particular emphasis will be put on geochemical exploration surveys in different geotectonic units of the Variscan basement in the Iberian Peninsula. These include quartz-vein gold mineralization in Northern Portugal and several surveys for base metals over two wide areas, which served to re-evaluate much of the

  4. Application of mine water leaching protocol on coal fly ash to assess leaching characteristics for suitability as a mine backfill material.

    PubMed

    Madzivire, Godfrey; Ramasenya, Koena; Tlowana, Supi; Coetzee, Henk; Vadapalli, Viswanath R K

    2018-04-16

    Over the years, coal mining in the Mpumalanga Province of South Africa has negatively affected the environment by causing pollution of water resources, land subsidence and spontaneous coal combustion. Previous studies show that in-situ treatment of acid mine drainage (AMD) using coal fly ash (CFA) from local power stations was possible and sludge recovered out of such treatment can be used to backfill mines. In this article, the authors have attempted to understand the leaching characteristics of CFA when placed underground as a backfill material using the mine water leaching protocol (MWLP). The results show that the migration of contaminants between the coal fly ash and the AMD in the mine voids depends on the pH and quality of the mine water. While backfilling mine voids with CFA can neutralize and scavenge between 50% and 95% of certain environmentally sensitive elements from AMD such as Fe, Al, Zn, Cu, Ni, Co and Mn. At this moment, it is also important to point out that certain scavenged/removed contaminants from the AMD during initial phases of backfilling can be remobilized by the influx of acidic water into the mine voids. It has therefore been concluded that, while CFA can be used to backfill mine voids, the influx of fresh acidic mine water should be avoided to minimize the remobilization of trapped contaminants such as Fe, Al, Mn and As. However, the pozzolanic material resulting from the CFA-AMD interaction could prevent such influx.

  5. Multicomponent Nanomaterials with Complex Networked Architectures from Orthogonal Degradation and Binary Metal Backfilling in ABC Triblock Terpolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowman, Christina D.; Padgett, Elliot; Tan, Kwan Wee

    2015-05-13

    Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etchingmore » and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.« less

  6. Multicomponent nanomaterials with complex networked architectures from orthogonal degradation and binary metal backfilling in ABC triblock terpolymers

    DOE PAGES

    Cowman, Christina D.; Padgett, Elliot; Tan, Kwan Wee; ...

    2015-04-02

    Selective degradation of block copolymer templates and backfilling the open mesopores is an effective strategy for the synthesis of nanostructured hybrid and inorganic materials. Incorporation of more than one type of inorganic material in orthogonal ways enables the synthesis of multicomponent nanomaterials with complex yet well-controlled architectures; however, developments in this field have been limited by the availability of appropriate orthogonally degradable block copolymers for use as templates. We report the synthesis and self-assembly into cocontinuous network structures of polyisoprene-block-polystyrene-block-poly(propylene carbonate) where the polyisoprene and poly(propylene carbonate) blocks can be orthogonally removed from the polymer film. Through sequential block etchingmore » and backfilling the resulting mesopores with different metals, we demonstrate first steps toward the preparation of three-component polymer–inorganic hybrid materials with two distinct metal networks. Lastly, multiblock copolymers in which two blocks can be degraded and backfilled independently of each other, without interference from the other, may be used in a wide range of applications requiring periodically ordered complex multicomponent nanoarchitectures.« less

  7. Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer

    USGS Publications Warehouse

    Brown, C.J.; Schoonen, M.A.A.; Candela, J.L.

    2000-01-01

    Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron-related geochemical processes and redox zonation along a flow path. The observed increase in dissolved inorganic carbon is consistent with the oxidation of sedimentary organic matter coupled to the reduction of O2 and SO4/2- in the aerobic zone, and to the reduction of SO4/2- in the anaerobic zone; estimated rates of CO2 production through reduction of Fe(III) were relatively minor by comparison. The rates of CO2 production calculated from dissolved inorganic carbon mass transfer (2.55 x 10-4 to 48.6 x 10-4 mmol 1-1 yr-1) generally were comparable to the calculated rates of CO2 production by the combined reduction of O2, Fe(III) and SO4/2- (1.31 x 10-4 to 15 x 10-4 mmol 1-1 yr-1). The overall increase in SO4/2- concentrations along the flow path, together with the results of mass-balance calculations, and variations in ??34S values along the flow path indicate that SO4/2- loss through microbial reduction is exceeded by SO4/2- gain through diffusion from sediments and through the oxidation of FeS2. Geochemichal and microbial data on cores indicate that Fe(III) oxyhydroxide coatings on sediment grains in local, organic carbon- and SO4/2- -rich zones have localized SO4/2- -reducing zones in which the formation of iron disulfides been depleted by microbial reduction and resulted in decreases dissolved iron concentrations. These localized zones of SO4/2- reduction, which are important for assessing zones of low dissolved iron for water-supply development, could be overlooked by aquifer studies that rely only on groundwater data from well-water samples for geochemical modeling. (C) 2000 Elsevier Science B.V.Fe(III) reduction in the Magothy aquifer of Long Island, NY, results in high dissolved-iron concentrations that degrade water quality. Geochemical modeling was used to constrain iron

  8. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE PAGES

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  9. Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsac, Kara E.; Burnley, Pamela C.; Adcock, Christopher T.

    Here, this study compares high-resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (Nationalmore » Uranium Resource Evaluation) aerial gamma-ray survey. The study area near Cameron, Arizona, is located in an arid region with minimal vegetation and, due to the presence of abandoned uranium mines, was the subject of a previous high resolution gamma-ray survey. We found that, in general, geologic map units form a good basis for predicting the geographic distribution of the gamma-ray background. Predictions of background gamma-radiation levels based on bedrock geochemical analyses were not as successful as those based on the NURE aerial survey data sorted by geologic unit. The less successful result of the bedrock geochemical model is most likely due to a number of factors including the need to take into account the evolution of soil geochemistry during chemical weathering and the influence of aeolian addition. Refinements to the forward models were made using ASTER visualizations to create subunits of similar exposure rate within the Chinle Formation, which contains multiple lithologies and by grouping alluvial units by drainage basin rather than age.« less

  10. Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona

    DOE PAGES

    Marsac, Kara E.; Burnley, Pamela C.; Adcock, Christopher T.; ...

    2016-09-16

    Here, this study compares high-resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (Nationalmore » Uranium Resource Evaluation) aerial gamma-ray survey. The study area near Cameron, Arizona, is located in an arid region with minimal vegetation and, due to the presence of abandoned uranium mines, was the subject of a previous high resolution gamma-ray survey. We found that, in general, geologic map units form a good basis for predicting the geographic distribution of the gamma-ray background. Predictions of background gamma-radiation levels based on bedrock geochemical analyses were not as successful as those based on the NURE aerial survey data sorted by geologic unit. The less successful result of the bedrock geochemical model is most likely due to a number of factors including the need to take into account the evolution of soil geochemistry during chemical weathering and the influence of aeolian addition. Refinements to the forward models were made using ASTER visualizations to create subunits of similar exposure rate within the Chinle Formation, which contains multiple lithologies and by grouping alluvial units by drainage basin rather than age.« less

  11. PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC

    USGS Publications Warehouse

    Parkhurst, David L.; Wissmeier, Laurin

    2015-01-01

    PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst–Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants.PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.

  12. Chemical mixing model studies of lunar orbital geochemical data - Apollo 16 and 17 highlands compositions

    NASA Technical Reports Server (NTRS)

    Spudis, P. D.; Hawke, B. R.

    1982-01-01

    Chemical mixing model studies of lunar geochemical data for the central and Taurus-Littrow lunar highlands were performed utilizing pristine highland rock types as end member compositions. The central highlands show considerable diversity in composition; anorthosite is the principal rock type in the Apollo 16/Descartes region, while norite predominates in the highlands west of the landing site. This change in crustal composition is coincident with a major color boundary seen in earth-based multispectral data and probably represents the presence of distinct geochemical provinces within the central highlands. The Taurus-Littrow highlands are dominated by norite; anorthosite is far less abundant than in the central highlands. This suggests that the impact target for the Serenitatis basin was different than that of the Nectaris basin and further strengthens the hypothesis that the lunar highlands are petrologically heterogeneous on a regional basis. It is suggested that the lunar highlands should be viewed in terms of geochemical provinces that have undergone distinct and complex igneous and impact histories.

  13. Interactive Visual Analytics Approch for Exploration of Geochemical Model Simulations with Different Parameter Sets

    NASA Astrophysics Data System (ADS)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2015-04-01

    Many geoscience applications can benefit from testing many combinations of input parameters for geochemical simulation models. It is, however, a challenge to screen the input and output data from the model to identify the significant relationships between input parameters and output variables. For addressing this problem we propose a Visual Analytics approach that has been developed in an ongoing collaboration between computer science and geoscience researchers. Our Visual Analytics approach uses visualization methods of hierarchical horizontal axis, multi-factor stacked bar charts and interactive semi-automated filtering for input and output data together with automatic sensitivity analysis. This guides the users towards significant relationships. We implement our approach as an interactive data exploration tool. It is designed with flexibility in mind, so that a diverse set of tasks such as inverse modeling, sensitivity analysis and model parameter refinement can be supported. Here we demonstrate the capabilities of our approach by two examples for gas storage applications. For the first example our Visual Analytics approach enabled the analyst to observe how the element concentrations change around previously established baselines in response to thousands of different combinations of mineral phases. This supported combinatorial inverse modeling for interpreting observations about the chemical composition of the formation fluids at the Ketzin pilot site for CO2 storage. The results indicate that, within the experimental error range, the formation fluid cannot be considered at local thermodynamical equilibrium with the mineral assemblage of the reservoir rock. This is a valuable insight from the predictive geochemical modeling for the Ketzin site. For the second example our approach supports sensitivity analysis for a reaction involving the reductive dissolution of pyrite with formation of pyrrothite in presence of gaseous hydrogen. We determine that this reaction

  14. A Spatially Constrained Multi-autoencoder Approach for Multivariate Geochemical Anomaly Recognition

    NASA Astrophysics Data System (ADS)

    Lirong, C.; Qingfeng, G.; Renguang, Z.; Yihui, X.

    2017-12-01

    Separating and recognizing geochemical anomalies from the geochemical background is one of the key tasks in geochemical exploration. Many methods have been developed, such as calculating the mean ±2 standard deviation, and fractal/multifractal models. In recent years, deep autoencoder, a deep learning approach, have been used for multivariate geochemical anomaly recognition. While being able to deal with the non-normal distributions of geochemical concentrations and the non-linear relationships among them, this self-supervised learning method does not take into account the spatial heterogeneity of geochemical background and the uncertainty induced by the randomly initialized weights of neurons, leading to ineffective recognition of weak anomalies. In this paper, we introduce a spatially constrained multi-autoencoder (SCMA) approach for multivariate geochemical anomaly recognition, which includes two steps: spatial partitioning and anomaly score computation. The first step divides the study area into multiple sub-regions to segregate the geochemical background, by grouping the geochemical samples through K-means clustering, spatial filtering, and spatial constraining rules. In the second step, for each sub-region, a group of autoencoder neural networks are constructed with an identical structure but different initial weights on neurons. Each autoencoder is trained using the geochemical samples within the corresponding sub-region to learn the sub-regional geochemical background. The best autoencoder of a group is chosen as the final model for the corresponding sub-region. The anomaly score at each location can then be calculated as the euclidean distance between the observed concentrations and reconstructed concentrations of geochemical elements.The experiments using the geochemical data and Fe deposits in the southwestern Fujian province of China showed that our SCMA approach greatly improved the recognition of weak anomalies, achieving the AUC of 0.89, compared

  15. Modeling background radiation using geochemical data: A case study in and around Cameron, Arizona.

    PubMed

    Marsac, Kara E; Burnley, Pamela C; Adcock, Christopher T; Haber, Daniel A; Malchow, Russell L; Hausrath, Elisabeth M

    2016-12-01

    This study compares high resolution forward models of natural gamma-ray background with that measured by high resolution aerial gamma-ray surveys. The ability to predict variations in natural background radiation levels should prove useful for those engaged in measuring anthropogenic contributions to background radiation for the purpose of emergency response and homeland security operations. The forward models are based on geologic maps and remote sensing multi-spectral imagery combined with two different sources of data: 1) bedrock geochemical data (uranium, potassium and thorium concentrations) collected from national databases, the scientific literature and private companies, and 2) the low spatial resolution NURE (National Uranium Resource Evaluation) aerial gamma-ray survey. The study area near Cameron, Arizona, is located in an arid region with minimal vegetation and, due to the presence of abandoned uranium mines, was the subject of a previous high resolution gamma-ray survey. We found that, in general, geologic map units form a good basis for predicting the geographic distribution of the gamma-ray background. Predictions of background gamma-radiation levels based on bedrock geochemical analyses were not as successful as those based on the NURE aerial survey data sorted by geologic unit. The less successful result of the bedrock geochemical model is most likely due to a number of factors including the need to take into account the evolution of soil geochemistry during chemical weathering and the influence of aeolian addition. Refinements to the forward models were made using ASTER visualizations to create subunits of similar exposure rate within the Chinle Formation, which contains multiple lithologies and by grouping alluvial units by drainage basin rather than age. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Recycled Asphalt Pavement and Crushed Concrete Backfill: State-of-the-Art Review and Material Characterization

    DOT National Transportation Integrated Search

    2001-10-01

    This report describes research results from the first year of a three-year study focused on the use of recycled asphalt pavement (RAP) and crushed concrete (CC) as backfill for mechanically stabilized earth (MSE) walls.

  17. A geochemical examination of humidity cell tests

    USGS Publications Warehouse

    Maest, Ann; Nordstrom, D. Kirk

    2017-01-01

    Humidity cell tests (HCTs) are long-term (20 to >300 weeks) leach tests that are considered by some to be the among the most reliable geochemical characterization methods for estimating the leachate quality of mined materials. A number of modifications have been added to the original HCT method, but the interpretation of test results varies widely. We suggest that the HCTs represent an underutilized source of geochemical data, with a year-long test generating approximately 2500 individual chemical data points. The HCT concentration peaks and valleys can be thought of as a “chromatogram” of reactions that may occur in the field, whereby peaks in concentrations are associated with different geochemical processes, including sulfate salt dissolution, sulfide oxidation, and dissolution of rock-forming minerals, some of which can neutralize acid. Some of these reactions occur simultaneously, some do not, and geochemical modeling can be used to help distinguish the dominant processes. Our detailed examination, including speciation and inverse modeling, of HCTs from three projects with different geology and mineralization shows that rapid sulfide oxidation dominates over a limited period of time that starts between 40 and 200 weeks of testing. The applicability of laboratory tests results to predicting field leachate concentrations, loads, or rates of reaction has not been adequately demonstrated, although early flush releases and rapid sulfide oxidation rates in HCTs should have some relevance to field conditions. Knowledge of possible maximum solute concentrations is needed to design effective treatment and mitigation approaches. Early flush and maximum sulfide oxidation results from HCTs should be retained and used in environmental models. Factors that complicate the use of HCTs include: sample representation, time for microbial oxidizers to grow, sample storage before testing, geochemical reactions that add or remove constituents, and the HCT results chosen for use

  18. Modeling Background Radiation in our Environment Using Geochemical Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malchow, Russell L.; Marsac, Kara; Burnley, Pamela

    2015-02-01

    Radiation occurs naturally in bedrock and soil. Gamma rays are released from the decay of the radioactive isotopes K, U, and Th. Gamma rays observed at the surface come from the first 30 cm of rock and soil. The energy of gamma rays is specific to each isotope, allowing identification. For this research, data was collected from national databases, private companies, scientific literature, and field work. Data points were then evaluated for self-consistency. A model was created by converting concentrations of U, K, and Th for each rock and soil unit into a ground exposure rate using the following equation:more » D=1.32 K+ 0.548 U+ 0.272 Th. The first objective of this research was to compare the original Aerial Measurement System gamma ray survey to results produced by the model. The second objective was to improve the method and learn the constraints of the model. Future work will include sample data analysis from field work with a goal of improving the geochemical model.« less

  19. Hydro-geochemical modeling of the spatial and the temporal geochemical variations of the granitic Strengbach catchment springs (Vosges massif, France)

    NASA Astrophysics Data System (ADS)

    Ackerer, Julien; Chabaux, François; Lucas, Yann; Pierret, Marie Claire; Viville, Daniel; Fritz, Bertrand; Clement, Alain; Beaulieu, Emilie; Negrel, Philippe

    2017-04-01

    Regular analysis of the major element concentrations in waters from springs emerging on the Strengbach catchment is made for more than 20 years (OHGE, Observatoire Hydro-Géochimique de l'Environnement). These data confirm the spatial variability of geochemical characteristics of the Strengbach springs linked, at least partly, to the lithological variability of the substratum (Pierret et al., 2014). The data also indicate that at the first order, the geochemical fluxes exported from each spring are mainly linked to the spring discharges, without significant variations of the relationships linking these two parameters between 1990 and 2010. There is also no observation of significant variations for the dissolved silica and for most of the cationic concentrations with time. Only a significant decrease of the Ca concentrations is observed for the Strengbach springs from 1990 to 2010. Numerical simulations, performed with the KIRMAT hydro-geochemical code, show that such a decrease can be considered as the response in the "bedrock" of the water-rock interactions to the variations of the soil solution chemical compositions recorded over the last 20 years, marked by a significant increase of pH and decrease of Ca concentrations. In particular, the modeling results show that the Ca concentration decrease is controlled by the couple apatite/clays, and that significant modifications of the apatite dissolution rate and clay compositions occurred between 1990 and 2010. This study shows that the temporal evolution of the Strengbach spring chemistry cannot be explained by the only variations of the clay mineral compositions, i.e. a modification of the chemical composition of the precipitated clays or a modification of the ionic exchange capacity of the clay minerals, but that it is definitely the interrelations between the apatite and the clay minerals that are involved.

  20. Solid phase studies and geochemical modelling of low-cost permeable reactive barriers.

    PubMed

    Bartzas, Georgios; Komnitsas, Kostas

    2010-11-15

    A continuous column experiment was carried out under dynamic flow conditions in order to study the efficiency of low-cost permeable reactive barriers (PRBs) to remove several inorganic contaminants from acidic solutions. A 50:50 w/w waste iron/sand mixture was used as candidate reactive media in order to activate precipitation and promote sorption and reduction-oxidation mechanisms. Solid phase studies of the exhausted reactive products after column shutdown, using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), confirmed that the principal Fe corrosion products identified in the reactive zone are amorphous iron (hydr)oxides (maghemite/magnetite and goethite), intermediate products (sulfate green rust), and amorphous metal sulfides such as amFeS and/or mackinawite. Geochemical modelling of the metal removal processes, including interactions between reactive media, heavy metal ions and sulfates, and interpretation of the ionic profiles was also carried out by using the speciation/mass transfer computer code PHREEQC-2 and the WATEQ4F database. Mineralogical characterization studies as well as geochemical modelling calculations also indicate that the effect of sulfate and silica sand on the efficiency of the reactive zone should be considered carefully during design and operation of low-cost field PRBs. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Modeling Anaerobic Soil Organic Carbon Decomposition in Arctic Polygon Tundra: Insights into Soil Geochemical Influences on Carbon Mineralization: Modeling Archive

    DOE Data Explorer

    Zheng, Jianqiu; Thornton, Peter; Painter, Scott; Gu, Baohua; Wullschleger, Stan; Graham, David

    2018-06-13

    This anaerobic carbon decomposition model is developed with explicit representation of fermentation, methanogenesis and iron reduction by combining three well-known modeling approaches developed in different disciplines. A pool-based model to represent upstream carbon transformations and replenishment of DOC pool, a thermodynamically-based model to calculate rate kinetics and biomass growth for methanogenesis and Fe(III) reduction, and a humic ion-binding model for aqueous phase speciation and pH calculation are implemented into the open source geochemical model PHREEQC (V3.0). Installation of PHREEQC is required to run this model.

  2. Geochemical modeling of subsurface fluid generation in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Schmidt, Christopher; Hensen, Christian; Wallmann, Klaus

    2016-04-01

    During RV METEOR cruise M86/5 in 2012 a number of deep-sea mud volcanoes were discovered at about 4500 m water depth west of the deformation front of the accretionary wedge in the Gulf of Cadiz (NE Atlantic). Fluid flow at these locations is mediated by an active strike-slip fault marking the transcurrent plate boundary between Africa and Eurasia. Geochemical signals of emanating fluids have been interpreted as being a mixture of various deep-sourced processes such as the alteration of oceanic crust, clay-mineral dehydration, and recrystallization of carbonaceous, Upper Jurassic sediments (Hensen et al. 2015). In the current study we present results of a geochemical reactive-transport model that was designed to simulate major fluid-affecting processes, such as the smectite to illite transformation or recrystallization of carbonates in order to provide a proof of concept. Preliminary results show that the model is able to reproduce pore water signatures (e.g. for chloride, strontium, 87Sr/86Sr) in subsurface sediments that are similar to those of MV fluids. Hensen, C., Scholz, F., Nuzzo, M., Valadares, V., Gràcia, E., Terrinha, P., Liebetrau, V., Kaul, N., Silva, S., Martínez-Loriente, S., Bartolome, R., Piñero, E., Magalhães, V.H., Schmidt, M., Weise, S.M., Cunha, M., Hilario, A., Perea, H., Rovelli, L. and Lackschewitz, K. (2015) Strike-slip faults mediate the rise of crustal-derived fluids and mud volcanism in the deep sea. Geology 43, 339-342.

  3. A review of the hydrogeologic-geochemical model for Cerro Prieto

    USGS Publications Warehouse

    Lippmann, M.J.; Truesdell, A.H.; Halfman-Dooley, S. E.; Mañónm, A.

    1991-01-01

    With continued exploitation of the Cerro Prieto, Mexico, geothermal field, there is increasing evidence that the hydrogeologic model developed by Halfman and co-workers presents the basic features controlling the movement of geothermal fluids in the system. In mid-1987 the total installed capacity at Cerro Prieto reached 620 MWc, requiring a large rate of fluid production (more than 10,500 tonnes/hr of a brine-steam mixture; August 1988). This significant mass extraction has led to changes in reservoir thermodynamic conditions and in the chemistry of the produced fluids. Pressure drawdown has caused an increase in cold water recharge in the southern and western edges of the field, and local and general reservoir boiling in parts of the geothermal system. After reviewing the hydrogeologic and geochemical models of Cerro Prieto, the exploitation-induced cold water recharge and reservoir boiling (and plugging) observed in different areas of the field, are discussed and interpreted on the basis of these models and schematic flow models that describe the hydrogeology. ?? 1991.

  4. Geochemical Characterization Using Geophysical Data and Markov Chain Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hubbard, S.; Rubin, Y.; Murray, C.; Roden, E.; Majer, E.

    2002-12-01

    Although the spatial distribution of geochemical parameters is extremely important for many subsurface remediation approaches, traditional characterization of those parameters is invasive and laborious, and thus is rarely performed sufficiently to describe natural hydrogeological variability at the field-scale. This study is an effort to jointly use multiple sources of information, including noninvasive geophysical data, for geochemical characterization of the saturated and anaerobic portion of the DOE South Oyster Bacterial Transport Site in Virginia. Our data set includes hydrogeological and geochemical measurements from five boreholes and ground-penetrating radar (GPR) and seismic tomographic data along two profiles that traverse the boreholes. The primary geochemical parameters are the concentrations of extractable ferrous iron Fe(II) and ferric iron Fe(III). Since iron-reducing bacteria can reduce Fe(III) to Fe(II) under certain conditions, information about the spatial distributions of Fe(II) and Fe(III) may indicate both where microbial iron reduction has occurred and in which zone it is likely to occur in the future. In addition, as geochemical heterogeneity influences bacterial transport and activity, estimates of the geochemical parameters provide important input to numerical flow and contaminant transport models geared toward bioremediation. Motivated by our previous research, which demonstrated that crosshole geophysical data could be very useful for estimating hydrogeological parameters, we hypothesize in this study that geochemical and geophysical parameters may be linked through their mutual dependence on hydrogeological parameters such as lithofacies. We attempt to estimate geochemical parameters using both hydrogeological and geophysical measurements in a Bayesian framework. Within the two-dimensional study domain (12m x 6m vertical cross section divided into 0.25m x 0.25m pixels), geochemical and hydrogeological parameters were considered as data

  5. Preparation of fly ash-granulated blast furnace slag-carbide slag binder and application in total tailings paste backfill

    NASA Astrophysics Data System (ADS)

    Li, Chao; Hao, Ya-fei; Zhao, Feng-qing

    2018-03-01

    Based on activation and synergistic effect among various materials, a low-cost mine backfill cementing material, FGC binder, was prepared by using fly ash, granulated blast-furnace slag (GBFS), carbide slag and composite activator. The proper proportioning of FGC binder is obtained by response surface experiment optimization method: fly ash 62 %, GBFS 20 %, carbide slag 8 % and compound activators 10 %. Adjusting the material ratio obtains different cementing material which could satisfy requirements of different mined-out areas. With the mass ratio of cementing material and tailings 1:4∼1:8, the concentration of total solid 70 %, the compressive strength values of total tailings filling body at 28 d reaches 1.64∼4.14 MPa, and the backfilling cost is 20 % lower than using OPC cement.

  6. Fluid-rock geochemical interaction for modelling calibration in geothermal exploration in Indonesia

    NASA Astrophysics Data System (ADS)

    Deon, Fiorenza; Barnhoorn, Auke; Lievens, Caroline; Ryannugroho, Riskiray; Imaro, Tulus; Bruhn, David; van der Meer, Freek; Hutami, Rizki; Sibarani, Besteba; Sule, Rachmat; Saptadij, Nenny; Hecker, Christoph; Appelt, Oona; Wilke, Franziska

    2017-04-01

    Indonesia with its large, but partially unexplored geothermal potential is one of the most interesting and suitable places in the world to conduct geothermal exploration research. This study focuses on geothermal exploration based on fluid-rock geochemistry/geomechanics and aims to compile an overview on geochemical data-rock properties from important geothermal fields in Indonesia. The research carried out in the field and in the laboratory is performed in the framework of the GEOCAP cooperation (Geothermal Capacity Building program Indonesia- the Netherlands). The application of petrology and geochemistry accounts to a better understanding of areas where operating power plants exist but also helps in the initial exploration stage of green areas. Because of their relevance and geological setting geothermal fields in Java, Sulawesi and the sedimentary basin of central Sumatra have been chosen as focus areas of this study. Operators, universities and governmental agencies will benefit from this approach as it will be applied also to new green-field terrains. By comparing the characteristic of the fluids, the alteration petrology and the rock geochemistry we also aim to contribute to compile an overview of the geochemistry of the important geothermal fields in Indonesia. At the same time the rock petrology and fluid geochemistry will be used as input data to model the reservoir fluid composition along with T-P parameters with the geochemical workbench PHREEQC. The field and laboratory data are mandatory for both the implementation and validation of the model results.

  7. Dedicated heterogeneous node scheduling including backfill scheduling

    DOEpatents

    Wood, Robert R [Livermore, CA; Eckert, Philip D [Livermore, CA; Hommes, Gregg [Pleasanton, CA

    2006-07-25

    A method and system for job backfill scheduling dedicated heterogeneous nodes in a multi-node computing environment. Heterogeneous nodes are grouped into homogeneous node sub-pools. For each sub-pool, a free node schedule (FNS) is created so that the number of to chart the free nodes over time. For each prioritized job, using the FNS of sub-pools having nodes useable by a particular job, to determine the earliest time range (ETR) capable of running the job. Once determined for a particular job, scheduling the job to run in that ETR. If the ETR determined for a lower priority job (LPJ) has a start time earlier than a higher priority job (HPJ), then the LPJ is scheduled in that ETR if it would not disturb the anticipated start times of any HPJ previously scheduled for a future time. Thus, efficient utilization and throughput of such computing environments may be increased by utilizing resources otherwise remaining idle.

  8. Methods for geochemical analysis

    USGS Publications Warehouse

    Baedecker, Philip A.

    1987-01-01

    The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.

  9. Geochemical mole-balance modeling with uncertain data

    USGS Publications Warehouse

    Parkhurst, David L.

    1997-01-01

    Geochemical mole-balance models are sets of chemical reactions that quantitatively account for changes in the chemical and isotopic composition of water along a flow path. A revised mole-balance formulation that includes an uncertainty term for each chemical and isotopic datum is derived. The revised formulation is comprised of mole-balance equations for each element or element redox state, alkalinity, electrons, solvent water, and each isotope; a charge-balance equation and an equation that relates the uncertainty terms for pH, alkalinity, and total dissolved inorganic carbon for each aqueous solution; inequality constraints on the size of the uncertainty terms; and inequality constraints on the sign of the mole transfer of reactants. The equations and inequality constraints are solved by a modification of the simplex algorithm combined with an exhaustive search for unique combinations of aqueous solutions and reactants for which the equations and inequality constraints can be solved and the uncertainty terms minimized. Additional algorithms find only the simplest mole-balance models and determine the ranges of mixing fractions for each solution and mole transfers for each reactant that are consistent with specified limits on the uncertainty terms. The revised formulation produces simpler and more robust mole-balance models and allows the significance of mixing fractions and mole transfers to be evaluated. In an example from the central Oklahoma aquifer, inclusion of up to 5% uncertainty in the chemical data can reduce the number of reactants in mole-balance models from seven or more to as few as three, these being cation exchange, dolomite dissolution, and silica precipitation. In another example from the Madison aquifer, inclusion of the charge-balance constraint requires significant increases in the mole transfers of calcite, dolomite, and organic matter, which reduce the estimated maximum carbon 14 age of the sample by about 10,000 years, from 22,700 years to

  10. Comparison of U-spatial statistics and C-A fractal models for delineating anomaly patterns of porphyry-type Cu geochemical signatures in the Varzaghan district, NW Iran

    NASA Astrophysics Data System (ADS)

    Ghezelbash, Reza; Maghsoudi, Abbas

    2018-05-01

    The delineation of populations of stream sediment geochemical data is a crucial task in regional exploration surveys. In this contribution, uni-element stream sediment geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-background separation methods, namely, the concentration-area (C-A) fractal and the U-spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu mineralization in northwest Iran. The quantitative comparison of the delineated geochemical populations using the modified success-rate curves revealed the superiority of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of investigated elements revealed strongly positive correlations between strong anomalies and Oligocene-Miocene intrusions in the study area. Therefore, follow-up exploration programs should focus on these areas.

  11. A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling

    USGS Publications Warehouse

    Palandri, James L.; Kharaka, Yousif K.

    2004-01-01

    Geochemical reaction path modeling is useful for rapidly assessing the extent of water-aqueous-gas interactions both in natural systems and in industrial processes. Modeling of some systems, such as those at low temperature with relatively high hydrologic flow rates, or those perturbed by the subsurface injection of industrial waste such as CO2 or H2S, must account for the relatively slow kinetics of mineral-gas-water interactions. We have therefore compiled parameters conforming to a general Arrhenius-type rate equation, for over 70 minerals, including phases from all the major classes of silicates, most carbonates, and many other non-silicates. The compiled dissolution rate constants range from -0.21 log moles m-2 s-1 for halite, to -17.44 log moles m-2 s-1 for kyanite, for conditions far from equilibrium, at 25 ?C, and pH near neutral. These data have been added to a computer code that simulates an infinitely well-stirred batch reactor, allowing computation of mass transfer as a function of time. Actual equilibration rates are expected to be much slower than those predicted by the selected computer code, primarily because actual geochemical processes commonly involve flow through porous or fractured media, wherein the development of concentration gradients in the aqueous phase near mineral surfaces, which results in decreased absolute chemical affinity and slower reaction rates. Further differences between observed and computed reaction rates may occur because of variables beyond the scope of most geochemical simulators, such as variation in grain size, aquifer heterogeneity, preferred fluid flow paths, primary and secondary mineral coatings, and secondary minerals that may lead to decreased porosity and clogged pore throats.

  12. Evaluation of Computational Method of High Reynolds Number Slurry Flow for Caverns Backfilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettin, Giorgia

    2015-05-01

    The abandonment of salt caverns used for brining or product storage poses a significant environmental and economic risk. Risk mitigation can in part be address ed by the process of backfilling which can improve the cavern geomechanical stability and reduce the risk o f fluid loss to the environment. This study evaluate s a currently available computational tool , Barracuda, to simulate such process es as slurry flow at high Reynolds number with high particle loading . Using Barracuda software, a parametric sequence of simu lations evaluated slurry flow at Re ynolds number up to 15000 and loading up tomore » 25%. Li mitations come into the long time required to run these simulation s due in particular to the mesh size requirement at the jet nozzle. This study has found that slurry - jet width and centerline velocities are functions of Re ynold s number and volume fractio n The solid phase was found to spread less than the water - phase with a spreading rate smaller than 1 , dependent on the volume fraction. Particle size distribution does seem to have a large influence on the jet flow development. This study constitutes a first step to understand the behavior of highly loaded slurries and their ultimate application to cavern backfilling.« less

  13. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    USGS Publications Warehouse

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons

  14. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattson, Earl; Smith, Robert; Fujita, Yoshiko

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoirmore » temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.« less

  15. Mineral dissolution and precipitation during CO 2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis

    DOE PAGES

    Ilgen, A. G.; Cygan, R. T.

    2015-12-07

    During the Frio-I Brine Pilot CO 2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO 2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation “C”. Particularly, we evaluate whether dissolution of pyrite andmore » oligoclase (anorthite component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation “C” sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.« less

  16. A combined geodynamical-geochemical modelling approach to investigating the Lu-Hf isotopic evolution of the terrestrial mantle and crust

    NASA Astrophysics Data System (ADS)

    Jones, R.; Van Keken, P. E.; Hauri, E.; Vervoort, J. D.; Ballentine, C. J.

    2017-12-01

    The chemical and isotopic evolution of the Earth's mantle is largely influenced by the formation of oceanic and continental crust at spreading ridges and through arc volcanism, and the subsequent recycling of this crust back into the mantle via subduction. In this study we use a combined geodynamical-geochemical modelling approach to investigate the Lu-Hf isotopic evolution of the terrestrial mantle and crust. We utilise the geodynamic mantle convection model developed by Brandenburg et al., 2008. This model satisfies the geophysical constraints of oceanic heat flow and average plate velocities, as well as geochemical observations such as 40Ar in the atmosphere. It has also been shown to reproduce the observed geochemical distributions in multiple isotope systems (U-Th-Pb, Rb-Sr, Sm-Nd, and Re-Os) that define the DMM, HIMU and EM1 mantle endmembers. We go on to extend this application to investigate the Lu-Hf isotope system, specifically in combination with Sm-Nd. The model has been updated to include a self-consistent reorganisation of the plates with regions of up-/down-wellings. The model is initiated at 4.55 Ga, assumes continental crust is produced from 4 Ga and that a transition from `dry' to `wet' subduction occurs at 3 Ga. The results of the geodynamic model suggest that the ƐHf composition and evolution of the upper mantle can be generated through the extraction and recycling of oceanic crust, which creates an enriched and radiogenic reservoir at the core-mantle boundary. The formation of continental crust, which is extracted at each time-step from the oceanic crust to imitate subduction zone processes, and the recycling of this continental crust as sediments, plays a lesser role. Depending on the selected partition coefficients DMM, FOZO and HIMU mantle endmember compositions are also produced via the simple extraction and recycling of oceanic crust. The formation of continental crust produces spread in the ƐNd vs. ƐHf array and extends the model

  17. TAPIR--Finnish national geochemical baseline database.

    PubMed

    Jarva, Jaana; Tarvainen, Timo; Reinikainen, Jussi; Eklund, Mikael

    2010-09-15

    In Finland, a Government Decree on the Assessment of Soil Contamination and Remediation Needs has generated a need for reliable and readily accessible data on geochemical baseline concentrations in Finnish soils. According to the Decree, baseline concentrations, referring both to the natural geological background concentrations and the diffuse anthropogenic input of substances, shall be taken into account in the soil contamination assessment process. This baseline information is provided in a national geochemical baseline database, TAPIR, that is publicly available via the Internet. Geochemical provinces with elevated baseline concentrations were delineated to provide regional geochemical baseline values. The nationwide geochemical datasets were used to divide Finland into geochemical provinces. Several metals (Co, Cr, Cu, Ni, V, and Zn) showed anomalous concentrations in seven regions that were defined as metal provinces. Arsenic did not follow a similar distribution to any other elements, and four arsenic provinces were separately determined. Nationwide geochemical datasets were not available for some other important elements such as Cd and Pb. Although these elements are included in the TAPIR system, their distribution does not necessarily follow the ones pre-defined for metal and arsenic provinces. Regional geochemical baseline values, presented as upper limit of geochemical variation within the region, can be used as trigger values to assess potential soil contamination. Baseline values have also been used to determine upper and lower guideline values that must be taken into account as a tool in basic risk assessment. If regional geochemical baseline values are available, the national guideline values prescribed in the Decree based on ecological risks can be modified accordingly. The national geochemical baseline database provides scientifically sound, easily accessible and generally accepted information on the baseline values, and it can be used in various

  18. Equilibrium geochemical modeling of a seasonal thermal energy storage aquifer field test

    NASA Technical Reports Server (NTRS)

    Stottlemyre, J. S.

    1980-01-01

    A geochemical mathematical modeling study designed to investigate the well plugging problems encountered at the Auburn University experimental field tests is summarized. The results, primarily of qualitative interest, include: (1) loss of injectivity was probably due to a combination of native particulate plugging and clay swelling and dispersion; (2) fluid-fluid incompatibilities, hydrothermal reactions, and oxidation reactions were of insignificant magnitude or too slow to have contributed markedly to the plugging; and (3) the potential for and contributions from temperature-induced dissolved gas solubility reductions, capillary boundary layer viscosity increases, and microstructural deformation cannot be deconvolved from the available data.

  19. Evaluation and analysis of current compaction methods for FDOT pipe trench backfills in areas of high water tables

    DOT National Transportation Integrated Search

    1999-01-01

    This research project was undertaken to examine the practicality and adequacy of the FDOT specifications regarding compaction methods for pipe trench backfills under high water table. Given the difficulty to determine density and to attain desired de...

  20. A conceptual geochemical model of the geothermal system at Surprise Valley, CA

    NASA Astrophysics Data System (ADS)

    Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick

    2018-03-01

    Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and

  1. INEEL Subregional Conceptual Model Report Volume 2: Summary of Existing Knowledge of Geochemical Influences on the Fate and Transport of Contaminants in the Subsurface at the INEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul L. Wichlacz; Robert C. Starr; Brennon Orr

    2003-09-01

    This document summarizes previous descriptions of geochemical system conceptual models for the vadose zone and groundwater zone (aquifer) beneath the Idaho National Engineering and Environmental Laboratory (INEEL). The primary focus is on groundwater because contaminants derived from wastes disposed at INEEL are present in groundwater, groundwater provides a pathway for potential migration to receptors, and because geochemical characteristics in and processes in the aquifer can substantially affect the movement, attenuation, and toxicity of contaminants. The secondary emphasis is perched water bodies in the vadose zone. Perched water eventually reaches the regional groundwater system, and thus processes that affect contaminants inmore » the perched water bodies are important relative to the migration of contaminants into groundwater. Similarly, processes that affect solutes during transport from nearsurface disposal facilities downward through the vadose zone to the aquifer are relevant. Sediments in the vadose zone can affect both water and solute transport by restricting the downward migration of water sufficiently that a perched water body forms, and by retarding solute migration via ion exchange. Geochemical conceptual models have been prepared by a variety of researchers for different purposes. They have been published in documents prepared by INEEL contractors, the United States Geological Survey (USGS), academic researchers, and others. The documents themselves are INEEL and USGS reports, and articles in technical journals. The documents reviewed were selected from citation lists generated by searching the INEEL Technical Library, the INEEL Environmental Restoration Optical Imaging System, and the ISI Web of Science databases. The citation lists were generated using the keywords ground water, groundwater, chemistry, geochemistry, contaminant, INEL, INEEL, and Idaho. In addition, a list of USGS documents that pertain to the INEEL was obtained and manually

  2. Mercury Slovenian soils: High, medium and low sample density geochemical maps

    NASA Astrophysics Data System (ADS)

    Gosar, Mateja; Šajn, Robert; Teršič, Tamara

    2017-04-01

    Regional geochemical survey was conducted in whole territory of Slovenia (20273 km2). High, medium and low sample density surveys were compared. High sample density represented the regional geochemical data set supplemented by local high-density sampling data (irregular grid, n=2835). Medium-density soil sampling was performed in a 5 x 5 km grid (n=817) and low-density geochemical survey was conducted in a sampling grid 25 x 25 km (n=54). Mercury distribution in Slovenian soils was determined with models of mercury distribution in soil using all three data sets. A distinct Hg anomaly in western part of Slovenia is evident on all three models. It is a consequence of 500-years of mining and ore processing in the second largest mercury mine in the world, the Idrija mine. The determined mercury concentrations revealed an important difference between the western and the eastern parts of the country. For the medium scale geochemical mapping is the median value (0.151 mg /kg) for western Slovenia almost 2-fold higher than the median value (0.083 mg/kg) in eastern Slovenia. Besides the Hg median for the western part of Slovenia exceeds the Hg median for European soil by a factor of 4 (Gosar et al., 2016). Comparing these sample density surveys, it was shown that high sampling density allows the identification and characterization of anthropogenic influences on a local scale, while medium- and low-density sampling reveal general trends in the mercury spatial distribution, but are not appropriate for identifying local contamination in industrial regions and urban areas. The resolution of the pattern generated is the best when the high-density survey on a regional scale is supplemented with the geochemical data of the high-density surveys on a local scale. References: Gosar, M, Šajn, R, Teršič, T. Distribution pattern of mercury in the Slovenian soil: geochemical mapping based on multiple geochemical datasets. Journal of geochemical exploration, 2016, 167/38-48.

  3. Geomechanical/Geochemical Modeling Studies Conducted within theInternational DECOVALEX Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkholzer, J.T.; Rutqvist, J.; Sonnenthal, E.L.

    2005-10-19

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less

  4. Geomechanical/ Geochemical Modeling Studies onducted Within the International DECOVALEX Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.T. Birkholzer; J. Rutqvist; E.L. Sonnenthal

    2006-02-01

    The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less

  5. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

    NASA Astrophysics Data System (ADS)

    Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

    2017-12-01

    Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

  6. Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic sediments.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-11-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.

  7. Predictions of hydrothermal alteration within near-ridge oceanic crust from coordinated geochemical and fluid flow models

    USGS Publications Warehouse

    Wetzel, L.R.; Raffensperger, Jeff P.; Shock, E.L.

    2001-01-01

    Coordinated geochemical and hydrological calculations guide our understanding of the composition, fluid flow patterns, and thermal structure of near-ridge oceanic crust. The case study presented here illustrates geochemical and thermal changes taking place as oceanic crust ages from 0.2 to 1.0 Myr. Using a finite element code, we model fluid flow and heat transport through the upper few hundred meters of an abyssal hill created at an intermediate spreading rate. We use a reaction path model with a customized database to calculate equilibrium fluid compositions and mineral assemblages of basalt and seawater at 500 bars and temperatures ranging from 150 to 400??C. In one scenario, reaction path calculations suggest that volume increases on the order of 10% may occur within portions of the basaltic basement. If this change in volume occurred, it would be sufficient to fill all primary porosity in some locations, effectively sealing off portions of the oceanic crust. Thermal profiles resulting from fluid flow simulations indicate that volume changes along this possible reaction path occur primarily within the first 0.4 Myr of crustal aging. ?? 2001 Elsevier Science B.V. All rights reserved.

  8. Spectroscopy as a tool for geochemical modeling

    NASA Astrophysics Data System (ADS)

    Kopacková, Veronika; Chevrel, Stephane; Bourguignon, Anna

    2011-11-01

    This study focused on testing the feasibility of up-scaling ground-spectra-derived parameters to HyMap spectral and spatial resolution and whether they could be further used for a quantitative determination of the following geochemical parameters: As, pH and Clignite content. The study was carried on the Sokolov lignite mine as it represents a site with extreme material heterogeneity and high heavy-metal gradients. A new segmentation method based on the unique spectral properties of acid materials was developed and applied to the multi-line HyMap image data corrected for BRDF and atmospheric effects. The quantitative parameters were calculated for multiple absorption features identified within the VIS/VNIR/SWIR regions (simple band ratios, absorption band depth and quantitative spectral feature parameters calculated dynamically for each spectral measurement (centre of the absorption band (λ), depth of the absorption band (D), width of the absorption band (Width), and asymmetry of the absorption band (S)). The degree of spectral similarity between the ground and image spectra was assessed. The linear models for pH, As and the Clignite content of the whole and segmented images were cross-validated on the selected homogenous areas defined in the HS images using ground truth. For the segmented images, reliable results were achieved as follows: As: R2=0.84, Clignite: R2=0.88 and R2 pH: R2= 0.57.

  9. Micromechanical Tests and Geochemical Modeling to Evaluate Evolution of Rock Alteration by CO2-Water Mixtures

    NASA Astrophysics Data System (ADS)

    Aman, M.; Sun, Y.; Ilgen, A.; Espinoza, N.

    2015-12-01

    Injection of large volumes of CO2 into geologic formations can help reduce the atmospheric CO2 concentration and lower the impact of burning fossil fuels. However, the injection of CO2 into the subsurface shifts the chemical equilibrium between the mineral assemblage and the pore fluid. This shift will situationally facilitate dissolution and reprecipitation of mineral phases, in particular intergranular cements, and can potentially affect the long term mechanical stability of the host formation. The study of these coupled chemical-mechanical reservoir rock responses can help identify and control unexpected emergent behavior associated with geological CO2 storage.Experiments show that micro-mechanical methods are useful in capturing a variety of mechanical parameters, including Young's modulus, hardness and fracture toughness. In particular, micro-mechanical measurements are well-suited for examining thin altered layers on the surfaces of rock specimens, as well as capturing variability on the scale of lithofacies. We performed indentation and scratching tests on sandstone and siltstone rocks altered in natural CO2-brine environments, as well as on analogous samples altered under high pressure, temperature, and dissolved CO2 conditions in a controlled laboratory experiment. We performed geochemical modeling to support the experimental observations, in particular to gain the insight into mineral dissolution/precipitation as a result of the rock-water-CO2reactions. The comparison of scratch measurements performed on specimens both unaltered and altered by CO2 over geologic time scales results in statistically different values for fracture toughness and scratch hardness, indicating that long term exposure to CO2 caused mechanical degradation of the reservoir rock. Geochemical modeling indicates that major geochemical change caused by CO2 invasion of Entrada sandstone is dissolution of hematite cement, and its replacement with siderite and dolomite during the

  10. Integration of Geophysical and Geochemical Data

    NASA Astrophysics Data System (ADS)

    Yamagishi, Y.; Suzuki, K.; Tamura, H.; Nagao, H.; Yanaka, H.; Tsuboi, S.

    2006-12-01

    Integration of geochemical and geophysical data would give us a new insight to the nature of the Earth. It should advance our understanding for the dynamics of the Earth's interior and surface processes. Today various geochemical and geophysical data are available on Internet. These data are stored in various database systems. Each system is isolated and provides own format data. The goal of this study is to display both the geochemical and geophysical data obtained from such databases together visually. We adopt Google Earth as the presentation tool. Google Earth is virtual globe software and is provided free of charge by Google, Inc. Google Earth displays the Earth's surface using satellite images with mean resolution of ~15m. We display any graphical features on Google Earth by KML format file. We have developed softwares to convert geochemical and geophysical data to KML file. First of all, we tried to overlay data from Georoc and PetDB and seismic tomography data on Google Earth. Georoc and PetDB are both online database systems for geochemical data. The data format of Georoc is CSV and that of PetDB is Microsoft Excel. The format of tomography data we used is plain text. The conversion software can process these different file formats. The geochemical data (e. g. compositional abundance) is displayed as a three-dimensional column on the Earth's surface. The shape and color of the column mean the element type. The size and color tone vary according to the abundance of the element. The tomography data can be converted into a KML file for each depth. This overlay plot of geochemical data and tomography data should help us to correlate internal temperature anomalies to geochemical anomalies, which are observed at the surface of the Earth. Our tool can convert any geophysical and geochemical data to a KML as long as the data is associated with longitude and latitude. We are going to support more geophysical data formats. In addition, we are currently trying to

  11. Backfilling-Free Strategy for Biopatterning on Intrinsically Dual-Functionalized Poly[2-Aminoethyl Methacrylate-co-Oligo(Ethylene Glycol) Methacrylate] Films.

    PubMed

    Lee, Bong Soo; Lee, Juno; Han, Gyeongyeop; Ha, EunRae; Choi, Insung S; Lee, Jungkyu K

    2016-07-20

    We demonstrated protein and cellular patterning with a soft lithography technique using poly[2-aminoethyl methacrylate-co-oligo(ethylene glycol) methacrylate] films on gold surfaces without employing a backfilling process. The backfilling process plays an important role in successfully generating biopatterns; however, it has potential disadvantages in several interesting research and technical applications. To overcome the issue, a copolymer system having highly reactive functional groups and bioinert properties was introduced through a surface-initiated controlled radical polymerization with 2-aminoethyl methacrylate hydrochloride (AMA) and oligo(ethylene glycol) methacrylate (OEGMA). The prepared poly(AMA-co-OEGMA) film was fully characterized, and among the films having different thicknesses, the 35 nm-thick biotinylated, poly(AMA-co-OEGMA) film exhibited an optimum performance, such as the lowest nonspecific adsorption and the highest specific binding capability toward proteins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Use of cemented paste backfill in arsenic-rich tailings

    NASA Astrophysics Data System (ADS)

    Hamberg, Roger; Maurice, Christian; Alakangas, Lena

    2015-04-01

    Gold is extracted by cyanide leaching from inclusions in arsenopyrite from a mine in the north of Sweden. The major ore mineral assemblage consists of pyrrhotite and arsenopyrite-loellingite. Effluents from the gold extraction were treated with Fe2(SO4)3, with the aim to form stable As-bearing Fe-precipitates (FEP). The use of the method called cemented paste backfill (CPB) is sometimes suggested for the management of tailings. In CPB, tailings are commonly mixed with low proportions (3 - 7 %) of cement and backfilled into underground excavated area. To reduce costs, amendments such as granulated blast furnace slag (GBFS), biofuel fly ash (BFA) and cement kiln dust (CKD) are used for partial replacement of cement in CPB due to their pozzolanic and alkaline properties. The objective for this study was to evaluate the leaching behaviour of As in CPB-mixtures with low proportions (1 - 3 %) of BFA and ordinary cement and unmodified tailings. The selection of CPB-recipies was made based on technical and economical criterias to adress the demands deriving from the mining operations. Speciation of the As in ore and tailings samples revealed that mining processes have dissolved the majority of the arsenopyrite in the ore, causing secondary As phases to co-precipitate with newly formed FEP:s. Tank leaching tests (TLT) and weathering cells (WCT) were used to compare leaching behaviour in a monolithic mass contra a crushed material. Quantification of the presumed benefit of CPB was made by calculation of the cumulative leaching of As. Results from the leaching tests (TLT and WCT) showed that the inclusion of As-rich tailings into a cementitious matrix increased leaching of As. This behaviour could partially be explained by an increase of pH. The addition of alkaline binder materials to tailings increased As leaching due to the relocation of desorbed As from FEPs into less acid-tolerant species such as Ca-arsenates and cementitious As-phases. Unmodified tailings generated an

  13. Geochemical Modeling of Reactions and Partitioning of Trace Metals and Radionuclides during Titration of Contaminated Acidic Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Parker, Jack C.; Luo, Wensui

    2008-01-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cationmore » exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO{sub 4}{sup 2-} for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions.« less

  14. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, Daniel I.

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculationsmore » and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, k s value, and the cementitious leachate impact factor.« less

  15. Geochemical modeling of leaching of Ca, Mg, Al, and Pb from cementitious waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martens, E., E-mail: evelien.martens@csiro.a; Jacques, D.; Van Gerven, T.

    2010-08-15

    Results from extraction tests on cement-waste samples were simulated with a thermodynamic equilibrium model using a consistent database, to which lead data were added. Subsequent diffusion tests were modeled by means of a 3D diffusive transport model combined with the geochemical model derived from the extraction tests. Modeling results of the leached major element concentrations for both uncarbonated and (partially) carbonated samples agreed well with the extraction test using the set of pure minerals and solid solutions present in the database. The observed decrease in Ca leaching with increasing carbonation level was qualitatively predicted. Simulations also revealed that Pb leachingmore » is not controlled by dissolution/precipitation only. The addition of the calcite-cerrusite solid solution and adsorption reactions on amorphous Fe- and Al-oxides improved the predictions and are considered to control the Pb leaching during the extractions tests. The dynamic diffusive leaching tests were appropriately modeled for Na, K, Ca and Pb.« less

  16. 10 CFR 963.17 - Postclosure suitability criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...

  17. 10 CFR 963.17 - Postclosure suitability criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...

  18. 10 CFR 963.17 - Postclosure suitability criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...

  19. 10 CFR 963.17 - Postclosure suitability criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...

  20. 10 CFR 963.17 - Postclosure suitability criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Near field geochemical environment—for example, the chemical reactions and products resulting from... probability and potential consequences of a self-sustaining nuclear reaction as a result of chemical or..., drip shields, backfill, coatings, or chemical modifications, and (ii) Waste package degradation—for...

  1. Detecting and Quantifying Paleoseasonality in Stalagmites using Geochemical and Modelling Approaches

    NASA Astrophysics Data System (ADS)

    Baldini, J. U. L.

    2017-12-01

    Stalagmites are now well established sources of terrestrial paleoclimate information, providing insights into climate change on a variety of timescales. One of the most exciting aspects of stalagmites as climate archives is their ability to provide information regarding seasonality, a notoriously difficult component of climate change to characterise. However, stalagmite geochemistry may reflect not only the most apparent seasonal signal in external climate parameters, but also cave-specific signals such as seasonal changes in cave air carbon dioxide concentrations, sudden shifts in ventilation, and stochastic hydrological processes. Additionally, analytical bias may dampen or completely obfuscate any paleoseasonality, highlighting the need for appropriate quantification of this issue using simple models. Evidence from stalagmites now suggests that a seasonal signal is extractable from many samples, and that this signal can provide an important extra dimension to paleoclimate interpretations. Additionally, lower resolution annual- to decadal-scale isotope ratio records may also reflect shifts in seasonality, but identifying these is often challenging. Integrating geochemical datasets with models and cave monitoring data can greatly increase the accuracy of climate reconstructions, and yield the most robust records.

  2. Biological reduction of chlorinated solvents: Batch-scale geochemical modeling

    NASA Astrophysics Data System (ADS)

    Kouznetsova, Irina; Mao, Xiaomin; Robinson, Clare; Barry, D. A.; Gerhard, Jason I.; McCarty, Perry L.

    2010-09-01

    Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is

  3. Porosity Development in a Coastal Setting: A Reactive Transport Model to Assess the Influence of Heterogeneity of Hydrological, Geochemical and Lithological Conditions

    NASA Astrophysics Data System (ADS)

    Maqueda, A.; Renard, P.; Cornaton, F. J.

    2014-12-01

    Coastal karst networks are formed by mineral dissolution, mainly calcite, in the freshwater-saltwater mixing zone. The problem has been approached first by studying the kinetics of calcite dissolution and then coupling ion-pairing software with flow and mass transport models. Porosity development models require high computational power. A workaround to reduce computational complexity is to assume the calcite dissolution reaction is relatively fast, thus equilibrium chemistry can be used to model it (Sanford & Konikow, 1989). Later developments allowed the full coupling of kinetics and transport in a model. However kinetics effects of calcite dissolution were found negligible under the single set of assumed hydrological and geochemical boundary conditions. A model is implemented with the coupling of FeFlow software as the flow & transport module and PHREEQC4FEFLOW (Wissmeier, 2013) ion-pairing module. The model is used to assess the influence of heterogeneities in hydrological, geochemical and lithological boundary conditions on porosity evolution. The hydrologic conditions present in the karst aquifer of Quintana Roo coast in Mexico are used as a guide for generating inputs for simulations.

  4. A Comparison of Methods for Modeling Geochemical Variability in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Kellogg, J. B.; Tackley, P. J.

    2004-12-01

    Numerial models of isotopic and chemical heterogeneity of the Earth's mantle fall into three categories, in decreasing order of computational demand. First, several authors have used chemical tracers within a full thermo-chemical convection calculation (e.g., Christensen and Hofmann, 1994, van Keken and Ballentine, 1999; Xie and Tackley, 2004). Second, Kellogg et al. (2002) proposed an extension of the traditional geochemical box model calculations in which numerous subreservoirs were tracked within the bulk depleted mantle reservoir. Third, Allègre and Lewin (1995) described a framework in which the variance in chemical and isotopic ratios were treated as quantities intrinsic to the bulk reservoirs, complete with sources and sinks. Results from these three methods vary, particularly with respect to conclusions drawn about the meaning of the Pb-Pb pseudo-isochron. We revisit these methods in an attempt to arrive at a common understanding. By considering all three we better identify the strengths and weaknesses of each approach and allow each to inform the other. Finally, we present results from a new hybrid model that combines the complexity and regional-scale variability of the thermochemical convection models with the short length-scale sensitivity of the Kellogg et al. approach.

  5. Community-Based Development of Standards for Geochemical and Geochronological Data

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Walker, D.; Vinay, S.; Djapic, B.; Ash, J.; Falk, B.

    2007-12-01

    The Geoinformatics for Geochemistry (GfG) Program (www.geoinfogeochem.org) and the EarthChem project (www.earthchem.org) aim to maximize the application of geochemical data in Geoscience research and education by building a new advanced data infrastructure for geochemistry that facilitates the compilation, communication, serving, and visualization of geochemical data and their integration with the broad Geoscience data set. Building this new data infrastructure poses substantial challenges that are primarily cultural in nature, and require broad community involvement in the development and implementation of standards for data reporting (e.g., metadata for analytical procedures, data quality, and analyzed samples), data publication, and data citation to achieve broad acceptance and use. Working closely with the science community, with professional societies, and with editors and publishers, recommendations for standards for the reporting of geochemical and geochronological data in publications and to data repositories have been established, which are now under consideration for adoption in journal and agency policies. The recommended standards are aligned with the GfG and EarthChem data models as well as the EarthChem XML schema for geochemical data. Through partnerships with other national and international data management efforts in geochemistry and in the broader marine and terrestrial geosciences, GfG and EarthChem seek to integrate their development of geochemical metadata standards, data format, and semantics with relevant existing and emerging standards and ensure compatibility and compliance.

  6. Hydrologic and geochemical data assimilation at the Hanford 300 Area

    NASA Astrophysics Data System (ADS)

    Chen, X.; Hammond, G. E.; Murray, C. J.; Zachara, J. M.

    2012-12-01

    In modeling the uranium migration within the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area, uncertainties arise from both hydrologic and geochemical sources. The hydrologic uncertainty includes the transient flow boundary conditions induced by dynamic variations in Columbia River stage and the underlying heterogeneous hydraulic conductivity field, while the geochemical uncertainty is a result of limited knowledge of the geochemical reaction processes and parameters, as well as heterogeneity in uranium source terms. In this work, multiple types of data, including the results from constant-injection tests, borehole flowmeter profiling, and conservative tracer tests, are sequentially assimilated across scales within a Bayesian framework to reduce the hydrologic uncertainty. The hydrologic data assimilation is then followed by geochemical data assimilation, where the goal is to infer the heterogeneous distribution of uranium sources using uranium breakthrough curves from a desorption test that took place at high spring water table. We demonstrate in our study that Ensemble-based data assimilation techniques (Ensemble Kalman filter and smoother) are efficient in integrating multiple types of data sequentially for uncertainty reduction. The computational demand is managed by using the multi-realization capability within the parallel PFLOTRAN simulator.

  7. SilMush: A procedure for modeling of the geochemical evolution of silicic magmas and granitic rocks

    NASA Astrophysics Data System (ADS)

    Hertogen, Jan; Mareels, Joyce

    2016-07-01

    A boundary layer crystallization modeling program is presented that specifically addresses the chemical fractionation in silicic magma systems and the solidification of plutonic bodies. The model is a Langmuir (1989) type approach and does not invoke crystal settling in high-viscosity silicic melts. The primary aim is to model a granitic rock as a congealed crystal-liquid mush, and to integrate major element and trace element modeling. The procedure allows for some exploratory investigation of the exsolution of H2O-fluids and of the fluid/melt partitioning of trace elements. The procedure is implemented as a collection of subroutines for the MS Excel spreadsheet environment and is coded in the Visual Basic for Applications (VBA) language. To increase the flexibility of the modeling, the procedure is based on discrete numeric process simulation rather than on solution of continuous differential equations. The program is applied to a study of the geochemical variation within and among three granitic units (Senones, Natzwiller, Kagenfels) from the Variscan Northern Vosges Massif, France. The three units cover the compositional range from monzogranite, over syenogranite to alkali-feldspar granite. An extensive set of new major element and trace element data is presented. Special attention is paid to the essential role of accessory minerals in the fractionation of the Rare Earth Elements. The crystallization model is able to reproduce the essential major and trace element variation trends in the data sets of the three separate granitic plutons. The Kagenfels alkali-feldspar leucogranite couples very limited variation in major element composition to a considerable and complex variation of trace elements. The modeling results can serve as a guide for the reconstruction of the emplacement sequence of petrographically distinct units. Although the modeling procedure essentially deals with geochemical fractionation within a single pluton, the modeling results bring up a

  8. Magma transport and metasomatism in the mantle: a critical review of current geochemical models

    USGS Publications Warehouse

    Nielson, J.E.; Wilshire, H.G.

    1993-01-01

    Conflicting geochemical models of metasomatic interactions between mantle peridotite and melt all assume that mantle reactions reflect chromatographic processes. Examination of field, petrological, and compositional data suggests that the hypothesis of chromatographic fractionation based on the supposition of large-scale percolative processes needs review and revision. Well-constrained rock and mineral data from xenoliths indicate that many elements that behave incompatibly in equilibrium crystallization processes are absorbed immediately when melts emerge from conduits into depleted peridotite. After reacting to equilibrium with the peridotite, melt that percolates away from the conduit is largely depleted of incompatible elements. Continued addition of melts extends the zone of equilibrium farther from the conduit. Such a process resembles ion-exchange chromatography for H2O purification, rather than the model of chromatographic species separation. -from Authors

  9. Performance of a Zerovalent Iron Reactive Barrier for the Treatment of Arsenic in Groundwater: Part 2. Geochemical Modeling and Solid Phase Studies

    EPA Science Inventory

    Arsenic uptake processes were evaluated in a zerovalent iron reactive barrier installed at a lead smelting facility using geochemical modeling, solid-phase analysis, and X-ray absorption spectroscopy techniques. Aqueous speciation of arsenic plays a key role in directing arsenic...

  10. Long-term climate change and the geochemical cycle of carbon

    NASA Technical Reports Server (NTRS)

    Marshall, Hal G.; Walker, James C. G.; Kuhn, William R.

    1988-01-01

    The response of the coupled climate-geochemical system to changes in paleography is examined in terms of the biogeochemical carbon cycle. The simple, zonally averaged energy balance climate model combined with a geochemical carbon cycle model, which was developed to study climate changes, is described. The effects of latitudinal distributions of the continents on the carbon cycle are investigated, and the global silicate weathering rate as a function of latitude is measured. It is observed that a concentration of land area at high altitudes results in a high CO2 partial pressure and a high global average temperature, and for land at low latitudes a cold globe and ice are detected. It is noted that the CO2 greenhouse feedback effect is potentially strong and has a stabilizing effect on the climate system.

  11. Geochemical Constraints on the Size of the Moon-Forming Giant Impact

    NASA Astrophysics Data System (ADS)

    Piet, Hélène; Badro, James; Gillet, Philippe

    2017-12-01

    Recent models involving the Moon-forming giant impact hypothesis have managed to reproduce the striking isotopic similarity between the two bodies, albeit using two extreme models: one involves a high-energy small impactor that makes the Moon out of Earth's proto-mantle; the other supposes a gigantic collision between two half-Earths creating the Earth-Moon system from both bodies. Here we modeled the geochemical influence of the giant impact on Earth's mantle and found that impactors larger than 15% of Earth mass result in mantles always violating the present-day concentrations of four refractory moderately siderophile trace elements (Ni, Co, Cr, and V). In the aftermath of the impact, our models cannot further discriminate between a fully and a partially molten bulk silicate Earth. Then, the preservation of primordial geochemical reservoirs predating the Moon remains the sole argument against a fully molten mantle after the Moon-forming impact.

  12. Produced water re-injection in a non-fresh water aquifer with geochemical reaction, hydrodynamic molecular dispersion and adsorption kinetics controlling: model development and numerical simulation

    NASA Astrophysics Data System (ADS)

    Obe, Ibidapo; Fashanu, T. A.; Idialu, Peter O.; Akintola, Tope O.; Abhulimen, Kingsley E.

    2017-06-01

    An improved produced water reinjection (PWRI) model that incorporates filtration, geochemical reaction, molecular transport, and mass adsorption kinetics was developed to predict cake deposition and injectivity performance in hydrocarbon aquifers in Nigeria oil fields. Thus, the improved PWRI model considered contributions of geochemical reaction, adsorption kinetics, and hydrodynamic molecular dispersion mechanism to alter the injectivity and deposition of suspended solids on aquifer wall resulting in cake formation in pores during PWRI and transport of active constituents in hydrocarbon reservoirs. The injectivity decline and cake deposition for specific case studies of hydrocarbon aquifers in Nigeria oil fields were characterized with respect to its well geometry, lithology, and calibrations data and simulated in COMSOL multiphysics software environment. The PWRI model was validated by comparisons to assessments of previous field studies based on data and results supplied by operator and regulator. The results of simulation showed that PWRI performance was altered because of temporal variations and declinations of permeability, injectivity, and cake precipitation, which were observed to be dependent on active adsorption and geochemical reaction kinetics coupled with filtration scheme and molecular dispersion. From the observed results and findings, transition time t r to cake nucleation and growth were dependent on aquifer constituents, well capacity, filtration coefficients, particle-to-grain size ratio, water quality, and more importantly, particle-to-grain adsorption kinetics. Thus, the results showed that injectivity decline and permeability damage were direct contributions of geochemical reaction, hydrodynamic molecular diffusion, and adsorption kinetics to the internal filtration mechanism, which are largely dependent on the initial conditions of concentration of active constituents of produced water and aquifer capacity.

  13. Geochemical modeling of magma mixing and magma reservoir volumes during early episodes of Kīlauea Volcano's Pu`u `Ō`ō eruption

    NASA Astrophysics Data System (ADS)

    Shamberger, Patrick J.; Garcia, Michael O.

    2007-02-01

    Geochemical modeling of magma mixing allows for evaluation of volumes of magma storage reservoirs and magma plumbing configurations. A new analytical expression is derived for a simple two-component box-mixing model describing the proportions of mixing components in erupted lavas as a function of time. Four versions of this model are applied to a mixing trend spanning episodes 3 31 of Kilauea Volcano’s Puu Oo eruption, each testing different constraints on magma reservoir input and output fluxes. Unknown parameters (e.g., magma reservoir influx rate, initial reservoir volume) are optimized for each model using a non-linear least squares technique to fit model trends to geochemical time-series data. The modeled mixing trend closely reproduces the observed compositional trend. The two models that match measured lava effusion rates have constant magma input and output fluxes and suggest a large pre-mixing magma reservoir (46±2 and 49±1 million m3), with little or no volume change over time. This volume is much larger than a previous estimate for the shallow, dike-shaped magma reservoir under the Puu Oo vent, which grew from ˜3 to ˜10 12 million m3. These volumetric differences are interpreted as indicating that mixing occurred first in a larger, deeper reservoir before the magma was injected into the overlying smaller reservoir.

  14. Use of partial dissolution techniques in geochemical exploration

    USGS Publications Warehouse

    Chao, T.T.

    1984-01-01

    Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.

  15. Use of sediment-trace element geochemical models for the identification of local fluvial baseline concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Demas, C.R.; Demcheck, D.K.

    1991-01-01

    Studies have demonstrated the utility of fluvial bed sediment chemical data in assesing local water-quality conditions. However, establishing local background trace element levels can be difficult. Reference to published average concentrations or the use of dated cores are often of little use in small areas of diverse local petrology, geology, land use, or hydrology. An alternative approach entails the construction of a series of sediment-trace element predictive models based on data from environmentally diverse but unaffected areas. Predicted values could provide a measure of local background concentrations and comparison with actual measured concentrations could identify elevated trace elements and affected sites. Such a model set was developed from surface bed sediments collected nationwide in the United States. Tests of the models in a small Louisiana basin indicated that they could be used to establish local trace element background levels, but required recalibration to account for local geochemical conditions outside the range of samples used to generate the nationwide models.

  16. VIRUS TRANSPORT IN PHYSICALLY AND GEOCHEMICALLY HETEROGENEOUS SUBSURFACE POROUS MEDIA. (R826179)

    EPA Science Inventory

    A two-dimensional model for virus transport in physically and geochemically heterogeneous subsurface porous media is presented. The model involves solution of the advection–dispersion equation, which additionally considers virus inactivation in the solution, as well as ...

  17. Reactive Transport of Petroleum Hydrocarbon Constituents in a Shallow Aquifer: Modeling Geochemical Interactions Between Organic and Inorganic Species

    NASA Astrophysics Data System (ADS)

    McNab, W. W.; Narasimhan, T. N.

    1995-08-01

    Dissolved organic contaminants such as petroleum hydrocarbon constituents are often observed to degrade in groundwater environments through biologically mediated transformation reactions into carbon dioxide, methane, or intermediate organic compounds. Such transformations are closely tied to local geochemical conditions. Favorable degradation pathways depend upon local redox conditions through thermodynamic constraints and the availability of appropriate mediating microbial populations. Conversely, the progress of the degradation reactions may affect the chemical composition of groundwater through changes in electron donor/acceptor speciation and pH, possibly inducing mineral precipitation/dissolution reactions. Transport of reactive organic and inorganic aqueous species through open systems may enhance the reaction process by mixing unlike waters and producing a state of general thermodynamic disequilibrium. In this study, field data from an aquifer contaminated by petroleum hydrocarbons have been analyzed using a mathematical model which dynamically couples equilibrium geochemistry of inorganic constituents, kinetically dominated sequential degradation of organic compounds, and advective-dispersive chemical transport. Simulation results indicate that coupled geochemical processes inferred from field data, such as organic biodegradation, iron reduction and dissolution, and methanogenesis, can be successfully modeled using a partial-redox-disequilibrium approach. The results of this study also suggest how the modeling approach can be used to study system sensitivity to various physical and chemical parameters, such as the effect of dispersion on the position of chemical fronts and the impact of alternative buffering mineral phases (e.g., goethite versus amorphous Fe(OH)3) on water chemistry.

  18. PHREEQCI; a graphical user interface for the geochemical computer program PHREEQC

    USGS Publications Warehouse

    Charlton, Scott R.; Macklin, Clifford L.; Parkhurst, David L.

    1997-01-01

    PhreeqcI is a Windows-based graphical user interface for the geochemical computer program PHREEQC. PhreeqcI provides the capability to generate and edit input data files, run simulations, and view text files containing simulation results, all within the framework of a single interface. PHREEQC is a multipurpose geochemical program that can perform speciation, inverse, reaction-path, and 1D advective reaction-transport modeling. Interactive access to all of the capabilities of PHREEQC is available with PhreeqcI. The interface is written in Visual Basic and will run on personal computers under the Windows(3.1), Windows95, and WindowsNT operating systems.

  19. The evolution of the magmatic arc of Southern Peru (200-60 Ma), Arequipa area: insight from geochemical modeling

    NASA Astrophysics Data System (ADS)

    Demouy, S.; Benoit, M.; De Saint Blanquat, M.; Brunet, P.

    2012-12-01

    Cordilleran-type batholiths are built by prolonged arc activity along continental margins and may provide detailed magmatic records of the subduction system evolution. The magmas produced in subduction context involve both mantellic and crustal end members and are subject to various petrological processes. The MASH zones (Hildreth and Moorbath, 1988), at the basis of the continental crust, are the best places for the genesis of such hybrid magmas. The various geochemical signatures observed in the plutonic rocks, may also be attributed to source heterogeneities or generated by subsequent petrological processes. This study has focused in the Arequipa section of the Coastal Batholith of Southern Peru (200-60 Ma), in an area extending over 80x40 km. Major and trace elements as well as Sr and Nd isotopic analyses were performed in a set of 100 samples ranging from gabbro to granite. The obtained data highlight the wide heterogeneity of the geochemical signatures that is not related to the classification of the rocks. In first step, Rb/Sr systematic was used to isolate a set of samples plotting along a Paleocene isochron and defining a cogenetic suite. This suite appears to have evolved by simple fractional crystallization. By using reverse modeling, the parameters controlling the fractional crystallization process were defined, as partition coefficients, initial concentrations and amount of fractional crystallization. The other magmatic suites display a wide range of isotopic and geochemical signatures. To explain this heterogeneity, a model involving competition between fractional crystallization and magma mixing into MASH zones was proposed. A large range of hybrid magma types is potentially generated during the maturation of the system, but this range tends to disappear as fractionation and mixing occurs. Finally the model predicts the genesis of a homogeneous reservoir created at depth, from which magmas may evolve only by fractional crystallization. Therefore

  20. A geochemical model of the Platanares geothermal system, Honduras

    USGS Publications Warehouse

    Janik, C.J.; Truesdell, A.H.; Goff, F.; Shevenell, L.; Stallard, M.L.; Trujillo, P.E.; Counce, D.

    1991-01-01

    Results of exploration drilling combined with results of geologic, geophysical, and hydrogeochemical investigations have been used to construct a geochemical model of the Platanares geothermal system, Honduras. Three coreholes were drilled, two of which produced fluids from fractured Miocene andesite and altered Cretaceous to Eocene conglomerate at 450 to 680 m depth. Large volume artesian flows of 160-165??C, predominantly bicarbonate water are chemically similar to, but slightly less saline than widespread boiling hot-spring waters. The chemistry of the produced fluid is dominated by equilibrium reactions in sedimentary rocks at greater depths and higher temperatures than those measured in the wells. Chemical, isotope, and gas geothermometers indicate a deep fluid temperature of 200-245??C and reflect a relatively short residence time in the fractures feeding the wells. Chloride-enthalpy relations as well as isotopic and chemical compositions of well discharges, thermal springs, and local cold waters support a conceptual model of ascending high-temperature (minimum 225??C) parent fluid that has cooled conductively to form the 160-165??C shallow (to 680 m) fluid encountered by the wells. The hot-spring waters are formed by boiling and steam loss from more or less conductively cooled parent fluid. The more dilute boiling spring waters (Cl = ???32 mg/kg) have cooled from > 225??C to about 160??C by conduction and from 160??C to 98??C by boiling. The most concentrated boiling spring waters (Cl = 37 mg/kg) have cooled from > 225??C to about 200??C by conduction and from 200??C to 98??C by boiling. Intermediate concentrations reflect mixed cooling paths. ?? 1991.

  1. Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abitz, R.J.

    1996-12-31

    Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are addedmore » and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.« less

  2. The IUGS/IAGC Task Group on Global Geochemical Baselines

    USGS Publications Warehouse

    Smith, David B.; Wang, Xueqiu; Reeder, Shaun; Demetriades, Alecos

    2012-01-01

    The Task Group on Global Geochemical Baselines, operating under the auspices of both the International Union of Geological Sciences (IUGS) and the International Association of Geochemistry (IAGC), has the long-term goal of establishing a global geochemical database to document the concentration and distribution of chemical elements in the Earth’s surface or near-surface environment. The database and accompanying element distribution maps represent a geochemical baseline against which future human-induced or natural changes to the chemistry of the land surface may be recognized and quantified. In order to accomplish this long-term goal, the activities of the Task Group include: (1) developing partnerships with countries conducting broad-scale geochemical mapping studies; (2) providing consultation and training in the form of workshops and short courses; (3) organizing periodic international symposia to foster communication among the geochemical mapping community; (4) developing criteria for certifying those projects whose data are acceptable in a global geochemical database; (5) acting as a repository for data collected by those projects meeting the criteria for standardization; (6) preparing complete metadata for the certified projects; and (7) preparing, ultimately, a global geochemical database. This paper summarizes the history and accomplishments of the Task Group since its first predecessor project was established in 1988.

  3. Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming

    2016-02-01

    Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based multiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we demonstrated that the wavelet approximation operator provides a generalization of box-counting method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as the generalized density-value in density-area fractal modeling of singular geochemical distributions. Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which extends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies associated with mineralization in covered area.

  4. A hybrid model of the CO2 geochemical cycle and its application to large impact events

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Pollack, J. B.; Toon, O. B.; Richardson, S. M.

    1986-01-01

    The effects of a large asteriod or comet impact on modern and ancient marine biospheres are analyzed. A hybrid model of the carbonate-silicate geochemical cycle, which is capable of calculating the concentrations of carbon dioxide in the atmosphere, ocean, and sedimentary rocks, is described. The differences between the Keir and Berger (1983) model and the hybrid model are discussed. Equilibrium solutions are derived for the preindustrial atmosphere/ocean system and for a system similar to that of the late Cretaceous Period. The model data reveal that globl darkening caused by a stratospheric dust veil could destroy the existing phytoplankton within a period of several weeks or months, nd the dissolution of atmospheric NO(x) compounds would lower the pH of ocean surface waters and release CO2 into the atmosphere. It is noted that the surface temperatures could be increased by several degrees and surface oceans would be uninhabitable for calcaerous organisms for approximately 20 years.

  5. Concerning evaluation of eco-geochemical background in remediation strategy

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2015-04-01

    The geochemical concept of biosphere developed by V.I. Vernadsky states the geological role of the living organisms in the course of their active chemical interaction with the inert matter (Vernadsky, 1926, 1960). Basing on this theory it is reasonable to suggest that coevolution of living organisms and their environment led to development of the dynamically stable biogeocenoses precisely adequate to their geochemical environment. Soil cover was treated by V.I. Vernadsky as a balanced bio-inert matter resulting from this interaction. Appearance of human mind and then a civilization led to global expansion of human beings, first able to survive in unfavorable geochemical conditions and then starting chemical transformation of the environment to satisfy the growing demands of mankind in food and energy. The residence in unfavorable environment and local contamination was followed by appearance of endemic diseases of plants, animals and man. Therefore zonal, regional and local chemical composition of the soil cover formed in natural conditions may be used for estimation of the optimum geochemical background, most adequate for the corresponding zonal biogeocenoses and species. Moreover, the natural geochemical background and technogenic fields have unequal spatial structure and this facilitates their identification that may be relatively easy realized in remediation strategy. On the assumption of the foregoing, the adequate methodical approach to remediation of technogenically affected areas should account of the interaction of the existing natural and the newly formed technogenic geochemical fields and include the following steps: 1) the study and mapping of geochemical structure of the natural geochemical background basing on soil maps; 2) the study of contaminants and mapping spatial distribution of technogenic releases; 3) construction of risk maps for the target risk groups with due regard to natural ecological threshold concentration in context of risk degree for

  6. An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 2.0

    USGS Publications Warehouse

    Plummer, Niel; Prestemon, Eric C.; Parkhurst, David L.

    1994-01-01

    NETPATH is an interactive Fortran 77 computer program used to interpret net geochemical mass-balance reactions between an initial and final water along a hydrologic flow path. Alternatively, NETPATH computes the mixing proportions of two to five initial waters and net geochemical reactions that can account for the observed composition of a final water. The program utilizes previously defined chemical and isotopic data for waters from a hydrochemical system. For a set of mineral and (or) gas phases hypothesized to be the reactive phases in the system, NETPATH calculates the mass transfers in every possible combination of the selected phases that accounts for the observed changes in the selected chemical and (or) isotopic compositions observed along the flow path. The calculations are of use in interpreting geochemical reactions, mixing proportions, evaporation and (or) dilution of waters, and mineral mass transfer in the chemical and isotopic evolution of natural and environmental waters. Rayleigh distillation calculations are applied to each mass-balance model that satisfies the constraints to predict carbon, sulfur, nitrogen, and strontium isotopic compositions at the end point, including radiocarbon dating. DB is an interactive Fortran 77 computer program used to enter analytical data into NETPATH, and calculate the distribution of species in aqueous solution. This report describes the types of problems that can be solved, the methods used to solve problems, and the features available in the program to facilitate these solutions. Examples are presented to demonstrate most of the applications and features of NETPATH. The codes DB and NETPATH can be executed in the UNIX or DOS1 environment. This report replaces U.S. Geological Survey Water-Resources Investigations Report 91-4078, by Plummer and others, which described the original release of NETPATH, version 1.0 (dated December, 1991), and documents revisions and enhancements that are included in version 2.0. 1 The

  7. The geochemical evolution of riparian ground water in a forested piedmont catchment

    USGS Publications Warehouse

    Burns, Douglas A.; Plummer, Niel; McDonnell, Jeffrey J.; Busenberg, Eurybiades; Casile, Gerolamo C.; Kendall, Carol; Hooper, Richard P.; Freer, James E.; Peters, Norman E.; Beven, Keith; Schlosser, Peter

    2003-01-01

    The principal weathering reactions and their rates in riparian ground water were determined at the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia. Concentrations of major solutes were measured in ground water samples from 19 shallow wells completed in the riparian (saprolite) aquifer and in one borehole completed in granite, and the apparent age of each sample was calculated from chloroflourocarbons and tritium/helium-3 data. Concentrations of SiO2, Na+, and Ca2+ generally increased downvalley and were highest in the borehole near the watershed outlet. Strong positive correlations were found between the concentrations of these solutes and the apparent age of ground water that was modern (zero to one year) in the headwaters, six to seven years midway down the valley, and 26 to 27 years in the borehole, located ∼500 m downstream from the headwaters. Mass-balance modeling of chemical evolution showed that the downstream changes in ground water chemistry could be largely explained by weathering of plagioclase to kaolinite, with possible contributions from weathering of K-feldspar, biotite, hornblende, and calcite. The in situ rates of weathering reactions were estimated by combining the ground water age dates with geochemical mass-balance modeling results. The weathering rate was highest for plagioclase (∼6.4 μmol/L/year), but could not be easily compared with most other published results for feldspar weathering at PMRW and elsewhere because the mineral-surface area to which ground water was exposed during geochemical evolution could not be estimated. However, a preliminary estimate of the mineral-surface area that would have contacted the ground water to provide the observed solute concentrations suggests that the plagioclase weathering rate calculated in this study is similar to the rate calculated in a previous study at PMRW, and three to four orders of magnitude slower than those published in previous laboratory studies of feldspar weathering

  8. Inverse modeling of geochemical and mechanical compaction in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto

    2015-04-01

    We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model

  9. An array processing system for lunar geochemical and geophysical data

    NASA Technical Reports Server (NTRS)

    Eliason, E. M.; Soderblom, L. A.

    1977-01-01

    A computerized array processing system has been developed to reduce, analyze, display, and correlate a large number of orbital and earth-based geochemical, geophysical, and geological measurements of the moon on a global scale. The system supports the activities of a consortium of about 30 lunar scientists involved in data synthesis studies. The system was modeled after standard digital image-processing techniques but differs in that processing is performed with floating point precision rather than integer precision. Because of flexibility in floating-point image processing, a series of techniques that are impossible or cumbersome in conventional integer processing were developed to perform optimum interpolation and smoothing of data. Recently color maps of about 25 lunar geophysical and geochemical variables have been generated.

  10. Hydro-geochemical modeling of subalpine urbanized area: geochemical characterization of the shallow and deep aquifers of the urban district of Como (first results).

    NASA Astrophysics Data System (ADS)

    Terrana, Silvia; Brunamonte, Fabio; Frascoli, Francesca; Ferrario, Maria Francesca; Michetti, Alessandro Maria; Pozzi, Andrea; Gambillara, Roberto; Binda, Gilberto

    2016-04-01

    One of the greatest environmental and social-economics threats is climate change. This topic, in the next few years, will have a significant impact on the availability of water resources of many regions. This is compounded by the strong anthropization of water systems that shows an intensification of conflicts for water resource exploitation. Therefore, it is necessary a sustainable manage of natural resources thorough knowledge of the hosting territories. The development of investigation and data processing methods are essential to reduce costs for the suitable use and protection of resources. Identify a sample area for testing the best approach is crucial. This research aims to find a valid methodology for the characterization, modeling and management of subalpine urban aquifers, and the urban district of Como appears perfect. The city of Como is located at the southern end of the western sector of Lake Como (N Italy). It is a coastal town, placed on a small alluvial plain, therefore in close communication with the lake. The plain is drained by two streams, which are presently artificially buried, and have an underground flow path in the urban section till the mouth. This city area, so, is suitable for this project as it is intensely urbanized, its dimensions is not too extensive and it is characterized by two aquifers very important and little known. These are a shallow aquifer and a deep aquifer, which are important not only for any water supply, but also for the stability of the ground subsidence in the city. This research is also the opportunity to work in a particular well-known area with high scientific significance; however, there is complete absence of information regarding the deep aquifer. Great importance has also the chosen and used of the more powerful open source software for this type of area, such as PHREEQC, EnvironInsite, PHREEQE etc., used for geological and geochemical data processing. The main goal of this preliminary work is the

  11. Technical Approach for Determining Key Parameters Needed for Modeling the Performance of Cast Stone for the Integrated Disposal Facility Performance Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yabusaki, Steven B.; Serne, R. Jeffrey; Rockhold, Mark L.

    2015-03-30

    provides the critical link between the short-term understanding from laboratory and field tests, and the prediction of repository performance over repository time frames and scales. One common recommendation is that experiments be designed to permit the appropriate scaling in the models. There is a large contrast in the physical and chemical properties between the Cast Stone waste package and the IDF backfill and surrounding sediments. Cast Stone exhibits low permeability, high tortuosity, low carbonate, high pH, and low Eh whereas the backfill and native sediments have high permeability, low tortuosity, high carbonate, circumneutral pH, and high Eh. These contrasts have important implications for flow, transport, and reactions across the Cast Stone – backfill interface. Over time with transport across the interface and subsequent reactions, the sharp geochemical contrast will blur and there will be a range of spatially-distributed conditions. In general, COC mobility and transport will be sensitive to these geochemical variations, which also include physical changes in porosity and permeability from mineral reactions. Therefore, PA modeling must address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Section 2 of this document reviews past Hanford PAs and SRS Saltstone PAs, which to date have mostly relied on the lumped parameter COC release conceptual models for TSPA predictions, and provides some details on the chosen values for the lumped parameters. Section 3 provides more details on the hierarchical modeling strategy and processes and mechanisms that control COC release. Section 4 summarizes and lists the key parameters for which numerical values are needed to perform PAs. Section 5 provides brief summaries of the methods used to measure the needed parameters and references to get more details.« less

  12. Geochemical Interactions and Viral-Prokaryote Relationships in Freshwater Environments

    NASA Astrophysics Data System (ADS)

    Kyle, J. E.; Ferris, G.

    2009-05-01

    Viral and prokaryotic abundances were surveyed throughout southern Ontario aquatic habitats to determine relationships with geochemical parameters in the natural environment. Surface water samples were collected from acid mine drainage in summer of 2007 and 2008 and from circum-neutral pH environments in October to November 2008. Site determination was based on collecting samples from various aquatic habitats (acid mine drainage, lakes, rivers, tributaries, wetlands) with differing bedrock geology (limestone and shale dominated vs granitic Canadian Shield) to obtain a range of geochemical conditions. At each site, measurements of temperature, pH, and Eh were conducted. Samples collected for microbial counts and electron imaging were preserved to a final concentration of 2.5 % (v/v) glutaraldehyde. Additional sample were filtered into 60 mL nalgene bottles and amber EPA certified 40 mL glass vials to determine chemical constituents and dissolved organic carbon (DOC), respectively. Water was also collected to determine additional physiochemical parameters (dissolved total iron, ferric iron, nitrate, sulfate, phosphate, alkalinity, and turbidity). All samples were stored at 4 °C until analysis. Viral and prokaryotic abundance was determined by staining samples with SYBR Green I and examining with a epifluorescence microscope under blue excitation. Multiple regression analysis using stepwise backwards regression and general linear models revealed that viral abundance was the most influential predictor of prokaryotic abundance. Additional predictors include pH, sulfate, phosphate, and magnesium. The strength of the model was very strong with 90 % of the variability explained (R2 = 0.90, p < 0.007). This is the first report, to our knowledge, of viruses exhibiting such strong controls over prokaryotic abundance in the natural environment. All relationships are positively correlated with the exception of Mg, which is negatively correlated. Iron was also noted as a

  13. The survival of geochemical mantle heterogeneities

    NASA Astrophysics Data System (ADS)

    Albarede, F.

    2004-12-01

    The last decade witnessed major changes in our perception of the geochemical dynamics of the mantle. Data bases such as PETDB and GEOROC now provide highly constrained estimates of the geochemical properties of dominant rock types and of their statistics, while the new generation of ICP mass spectrometers triggered a quantum leap in the production of high-precision isotopic and elemental data. Such new advances offer a fresh view of mantle heterogeneities and their survival through convective mixing. A vivid example is provided by the new high-density coverage of the Mid-Atlantic ridge by nearly 500 Pb, Nd, and Hf isotopic data. This new data set demonstrates a rich harmonic structure which illustrates the continuing stretching and refolding of subducted plates by mantle convection. Just as for oceanic chemical variability, the survival of mantle geochemical heterogeneities though mantle circulation can be seen as a competition between stirring and renewal. The modern residence (renewal) times of the incompatible lithophile elements in the mantle calculated using data bases vary within a rather narrow range (4-9 Gy). The mantle is therefore not currently at geochemical steady-state and the effect of its primordial layering on modern mantle geochemistry is still strong. Up to 50 percent of incompatible lithophile elements may never have been extracted into the oceanic crust, which generalizes a conclusion reached previously for 40Ar. A balance between the buoyancy flux and viscous dissipation provides frame-independent estimates of the rates of mixing by mantle convection: primordial geochemical anomalies with initial length scales comparable to mantle depths of plate lengths are only marginally visible at the scale of mantle melting underneath mid-ocean ridges (≈~50~km). They may show up, however, in hot spot basalts and even more in melt inclusions. Up to 50 percent primordial material may be present in the mantle, but scattered throughout as small (<~10~km

  14. Establishing nursery estuary otolith geochemical tags for Sea Bass (Dicentrarchus labrax): Is temporal stability estuary dependent?

    NASA Astrophysics Data System (ADS)

    Ryan, Diarmuid; Wögerbauer, Ciara; Roche, William

    2016-12-01

    The ability to determine connectivity between juveniles in nursery estuaries and adult populations is an important tool for fisheries management. Otoliths of juvenile fish contain geochemical tags, which reflect the variation in estuarine elemental chemistry, and allow discrimination of their natal and/or nursery estuaries. These tags can be used to investigate connectivity patterns between juveniles and adults. However, inter-annual variability of geochemical tags may limit the accuracy of nursery origin determinations. Otolith elemental composition was used to assign a single cohort of 0-group sea bass Dicentrarchus labrax to their nursery estuary thus establishing an initial baseline for stocks in waters around Ireland. Using a standard LDFA model, high classification accuracies to nursery sites (80-88%) were obtained. Temporal stability of otolith geochemical tags was also investigated to assess if annual sampling is required for connectivity studies. Geochemical tag stability was found to be strongly estuary dependent.

  15. Geochemical evolution of groundwater in the Mud Lake area, eastern Idaho, USA

    USGS Publications Warehouse

    Rattray, Gordon W.

    2015-01-01

    Groundwater with elevated dissolved-solids concentrations—containing large concentrations of chloride, sodium, sulfate, and calcium—is present in the Mud Lake area of Eastern Idaho. The source of these solutes is unknown; however, an understanding of the geochemical sources and processes controlling their presence in groundwater in the Mud Lake area is needed to better understand the geochemical sources and processes controlling the water quality of groundwater at the Idaho National Laboratory. The geochemical sources and processes controlling the water quality of groundwater in the Mud Lake area were determined by investigating the geology, hydrology, land use, and groundwater geochemistry in the Mud Lake area, proposing sources for solutes, and testing the proposed sources through geochemical modeling with PHREEQC. Modeling indicated that sources of water to the eastern Snake River Plain aquifer were groundwater from the Beaverhead Mountains and the Camas Creek drainage basin; surface water from Medicine Lodge and Camas Creeks, Mud Lake, and irrigation water; and upward flow of geothermal water from beneath the aquifer. Mixing of groundwater with surface water or other groundwater occurred throughout the aquifer. Carbonate reactions, silicate weathering, and dissolution of evaporite minerals and fertilizer explain most of the changes in chemistry in the aquifer. Redox reactions, cation exchange, and evaporation were locally important. The source of large concentrations of chloride, sodium, sulfate, and calcium was evaporite deposits in the unsaturated zone associated with Pleistocene Lake Terreton. Large amounts of chloride, sodium, sulfate, and calcium are added to groundwater from irrigation water infiltrating through lake bed sediments containing evaporite deposits and the resultant dissolution of gypsum, halite, sylvite, and bischofite.

  16. Adjustment of geochemical background by robust multivariate statistics

    USGS Publications Warehouse

    Zhou, D.

    1985-01-01

    Conventional analyses of exploration geochemical data assume that the background is a constant or slowly changing value, equivalent to a plane or a smoothly curved surface. However, it is better to regard the geochemical background as a rugged surface, varying with changes in geology and environment. This rugged surface can be estimated from observed geological, geochemical and environmental properties by using multivariate statistics. A method of background adjustment was developed and applied to groundwater and stream sediment reconnaissance data collected from the Hot Springs Quadrangle, South Dakota, as part of the National Uranium Resource Evaluation (NURE) program. Source-rock lithology appears to be a dominant factor controlling the chemical composition of groundwater or stream sediments. The most efficacious adjustment procedure is to regress uranium concentration on selected geochemical and environmental variables for each lithologic unit, and then to delineate anomalies by a common threshold set as a multiple of the standard deviation of the combined residuals. Robust versions of regression and RQ-mode principal components analysis techniques were used rather than ordinary techniques to guard against distortion caused by outliers Anomalies delineated by this background adjustment procedure correspond with uranium prospects much better than do anomalies delineated by conventional procedures. The procedure should be applicable to geochemical exploration at different scales for other metals. ?? 1985.

  17. Constraints on Lunar Structure from Combined Geochemical, Mineralogical, and Geophysical modeling

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Fuqua, H.; Mallik, A.; Diamond, M. R.; Lock, S. J.; Panovska, S.; Nishikawa, Y.; Jiménez-Pérez, H.; Shahar, A.; Panero, W. R.; Lognonne, P. H.; Faul, U.

    2016-12-01

    The internal physical and geochemical structure of the Moon is still poorly constrained. Here, we take a multidisciplinary approach to attempt to constrain key parameters of the lunar structure. We use an ensemble of 1-D lunar compositional models with chemically and mineralogically distinct layers, and forward calculated physical parameters, in order to constrain the internal structure. We consider both a chemically well-mixed model with uniform bulk composition, and a chemically stratified model that includes a mantle with preserved mineralogical stratigraphy from magma ocean crystallization. Additionally, we use four different lunar temperature profiles that span the range of proposed selenotherms, giving eight separate sets of lunar models. In each set, we employed a grid search and a differential evolution genetic search algorithm to extensively explore model space, where the thickness of individual compositional layers was varied. In total, we forward calculated over one hundred thousand lunar models. It has been proposed that a dense, partially molten layer exists at the CMB to explain the lack of observed far-side deep moonquakes, the observation of reflected seismic phases from deep moonquakes, and enhanced tidal dissipation. However, subsequent models have proposed that these observables can be explained in other ways. In this study, using a variety of modeling techniques, we find that such a layer may have been formed by overturn of an ilmenite-rich layer, formed after the crystallization of a magma ocean. We therefore include a denser layer (modeled as an ilmenite-rich layer) at both the top and bottom of the lunar mantle in our models. For each set of models, we find models that explain the observed lunar mass and moment of inertia. We find that only a narrow range of core radii are consistent with the mass and moment of inertia constraints. Furthermore, in the chemically well-mixed models, we find that a dense layer is required in the upper mantle to

  18. Laboratory determination of migration of Eu(III) in compacted bentonite-sand mixtures as buffer/backfill material for high-level waste disposal.

    PubMed

    Zhou, Lang; Zhang, Huyuan; Yan, Ming; Chen, Hang; Zhang, Ming

    2013-12-01

    For the safety assessment of geological disposal of high-level radioactive waste (HLW), the migration of Eu(III) through compacted bentonite-sand mixtures was measured under expected repository conditions. Under the evaluated conditions, advection and dispersion is the dominant migration mechanism. The role of sorption on the retardation of migration was also evaluated. The hydraulic conductivities of compacted bentonite-sand mixtures were K=2.07×10(-10)-5.23×10(-10)cm/s, The sorption and diffusion of Eu(III) were examined using a flexible wall permeameter for a solute concentration of 2.0×10(-5)mol/l. The effective diffusion coefficients and apparent diffusion coefficients of Eu(III) in compacted bentonite-sand mixtures were in the range of 1.62×10(-12)-4.87×10(-12)m(2)/s, 1.44×10(-14)-9.41×10(-14)m(2)/s, respectively, which has a very important significance to forecast the relationship between migration length of Eu(III) in buffer/backfill material and time and provide a reference for the design of buffer/backfill material for HLW disposal in China. © 2013 Elsevier Ltd. All rights reserved.

  19. Thermal Properties of Consolidated Granular Salt as a Backfill Material

    NASA Astrophysics Data System (ADS)

    Paneru, Laxmi P.; Bauer, Stephen J.; Stormont, John C.

    2018-03-01

    Granular salt has been proposed as backfill material in drifts and shafts of a nuclear waste disposal facility where it will serve to conduct heat away from the waste to the host rock. Creep closure of excavations in rock salt will consolidate (reduce the porosity of) the granular salt. This study involved measuring the thermal conductivity and specific heat of granular salt as a function of porosity and temperature to aid in understanding how thermal properties will change during granular salt consolidation accomplished at pressures and temperatures consistent with a nuclear waste disposal facility. Thermal properties of samples from laboratory-consolidated granular salt and in situ consolidated granular salt were measured using a transient plane source method at temperatures ranging from 50 to 250 °C. Additional measurements were taken on a single crystal of halite and dilated polycrystalline rock salt. Thermal conductivity of granular salt decreased with increases in temperature and porosity. Specific heat of granular salt at lower temperatures decreased with increasing porosity. At higher temperatures, porosity dependence was not apparent. The thermal conductivity and specific heat data were fit to empirical models and compared with results presented in the literature. At comparable densities, the thermal conductivities of granular salt samples consolidated hydrostatically in this study were greater than those measured previously on samples formed by quasi-static pressing. Petrographic studies of the consolidated salt indicate that the consolidation method influenced the nature of the porosity; these observations are used to explain the variation of measured thermal conductivities between the two consolidation methods. Thermal conductivity of dilated polycrystalline salt was lower than consolidated salt at comparable porosities. The pervasive crack network along grain boundaries in dilated salt impedes heat flow and results in a lower thermal conductivity

  20. Geochemical baseline studies of soil in Finland

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni

    2017-04-01

    The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).

  1. Lead Isotopes in Olivine-Phyric Shergottite Tissint: Implications for the Geochemical Evolution of the Shergottite Source Mantle

    NASA Technical Reports Server (NTRS)

    Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.

    2015-01-01

    Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean

  2. Assessment of hydration process and mechanical properties of cemented paste backfill by electrical resistivity measurement

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin; Tian, Xichun; Cao, Peiwang

    2018-04-01

    Cemented paste backfill (CPB) is an emerging mine backfill technique that allows environmentally hazardous tailings to return to the underground openings or stopes, thereby maximising the safety, efficiency and productivity of operation. Uniaxial compressive strength (UCS) is one of the most commonly used parameters for evaluating the mechanical performance of CPB; the prediction of the UCS of CPB structures from early to advanced ages is of great practical importance. This study aims to investigate the predictability of the UCS of CPB during the hydration process based on electrical resistivity (ER) measurement. For this purpose, the samples prepared at different cement-to-tailing ratios and solid contents were subjected to the ER test during the whole hydration process and UCS tests at 3, 7, 28 days of curing periods. The effect of cement-to-tailing ratio and solid content on the ER and UCS of CPB samples was obtained; the UCS values were correlated with the corresponding ER data. Microstructural analysis was also performed on CPB samples to understand the effect of microstructure on the ER data. The result shows that the ER of CPB decreases first and then increases with the speed which is faster in the previous part than the latter. The ER and UCS of CPB samples increased with increasing cement-to-tailing ratio and solid content and curing periods. A logarithmic relationship is established for each mixture in order to predict the UCS of CPB based on ER. Scanning electron microscope analyses have revealed that the microstructure of the CPB changes with the age from the initial floc to honeycomb, and eventually to the compact clumps. The ER properties of CPB samples were highly associated with their respective microstructural properties. The major output of this study is that ER test is effectively capable for a preliminary prediction of the UCS of CPB.

  3. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings.

    PubMed

    Yılmaz, Tekin; Ercikdi, Bayram; Deveci, Hacı

    2018-09-15

    This study presents the utilisation of finely ground construction and demolition waste (CDW) as partial replacement (5-15 wt.%) to sulphide tailings on the short- and long-term strength, durability (i.e. no loss of strength) and microstructural properties of cemented paste backfill (CPB) over a curing period of 360 days. The CPB samples containing CDW were prepared at binder dosages of 7.5 and 8.5 wt.%, while control samples (full tailings) were only produced at 8.5 wt.% binder dosage. A total of 108 CPB samples were subjected to the unconfined compressive strength (UCS), acid/sulphate (pH, SO 4 2- ) and microstructure (MIP, XRD etc.) tests. Despite its limited contribution to the resistance of CPB to acid and sulphate attack, the use of CDW as partial replacement (5-15 wt.%) to sulphide tailings enhanced the strength properties of CPB samples by decreasing the total and macro porosity. The UCSs and pH values of CPB samples increased with increasing the CDW content in CPB mixtures, while the generation of sulphate ions (SO4 2- ) decreased irrespective of the binder dosages. Compared with control samples prepared at 8.5 wt.% binder dosage, 5.3-19.5% higher UCS values were obtained for the CPB samples containing 15 wt.% CDW prepared even at 7.5 wt.% binder dosage. Mercury intrusion porosimetry (MIP) analyses proved the beneficial effect of the use of CDW on the microstructural properties (i.e. total porosity) of CPB. These findings suggest that CDW materials can be suitably used as backfill material in the mining industry to fill underground voids created during the ore production. This offers safe disposal and hence environmentally sound management of CDW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A geochemical atlas of South Carolina--an example using data from the National Geochemical Survey

    USGS Publications Warehouse

    Sutphin, David M.

    2005-01-01

    National Geochemical Survey data from stream-sediment and soil samples, which have been analyzed using consistent methods, were used to create maps, graphs, and tables that were assembled in a consistent atlas format that characterizes the distribution of major and trace chemical elements in South Carolina. Distribution patterns of the elements in South Carolina may assist mineral exploration, agriculture, waste-disposal-siting issues, health, environmental, and other studies. This atlas is an example of how data from the National Geochemical Survey may be used to identify general or regional patterns of elemental occurrences and to provide a snapshot of element concentration in smaller areas.

  5. Geochemical Constraints on the Size of the Moon — Forming Giant Impact

    NASA Astrophysics Data System (ADS)

    Piet, H.; Badro, J.; Gillet, P.

    2018-05-01

    We use the partitioning of siderophile trace elements to model the geochemical influence of the Moon-forming giant impact on Earth’s mantle during core formation. We find the size of the impactor to be 15% of Earth mass or smaller.

  6. Uranium plume persistence impacted by hydrologic and geochemical heterogeneity in the groundwater and river water interaction zone of Hanford site

    NASA Astrophysics Data System (ADS)

    Chen, X.; Zachara, J. M.; Vermeul, V. R.; Freshley, M.; Hammond, G. E.

    2015-12-01

    The behavior of a persistent uranium plume in an extended groundwater- river water (GW-SW) interaction zone at the DOE Hanford site is dominantly controlled by river stage fluctuations in the adjacent Columbia River. The plume behavior is further complicated by substantial heterogeneity in physical and geochemical properties of the host aquifer sediments. Multi-scale field and laboratory experiments and reactive transport modeling were integrated to understand the complex plume behavior influenced by highly variable hydrologic and geochemical conditions in time and space. In this presentation we (1) describe multiple data sets from field-scale uranium adsorption and desorption experiments performed at our experimental well-field, (2) develop a reactive transport model that incorporates hydrologic and geochemical heterogeneities characterized from multi-scale and multi-type datasets and a surface complexation reaction network based on laboratory studies, and (3) compare the modeling and observation results to provide insights on how to refine the conceptual model and reduce prediction uncertainties. The experimental results revealed significant spatial variability in uranium adsorption/desorption behavior, while modeling demonstrated that ambient hydrologic and geochemical conditions and heterogeneities in sediment physical and chemical properties both contributed to complex plume behavior and its persistence. Our analysis provides important insights into the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water and groundwater interactions.

  7. A geochemical and geophysical reappraisal to the significance of the recent unrest at Campi Flegrei caldera (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Moretti, Roberto; De Natale, Giuseppe; Troise, Claudia

    2017-04-01

    Volcanic unrest at calderas involve complex interaction between magma, hydrothermal fluids and crustal stress and strain. Campi Flegrei caldera (CFc), located in the Naples (Italy) area and characterised by the highest volcanic risk on Earth for the extreme urbanisation, undergoes unrest phenomena involving several meters of uplift and intense shallow micro-seismicity since several decades. Despite unrest episodes display in the last decade only moderate ground deformation and seismicity, current interpretations of geochemical data point to a highly pressurized hydrothermal system. We show that at CFc, the usual assumption of vapour-liquid coexistence in the fumarole plumes leads to largely overestimated hydrothermal pressures and, accordingly, interpretations of elevated unrest. By relaxing unconstrained geochemical assumptions, we infer an alternative model yielding better agreement between geophysical and geochemical observations. The model reconciles discrepancies between what observed 1) for two decades since the 1982-84 large unrest, when shallow magma was supplying heat and fluids to the hydrothermal system, and 2) in the last decade. Compared to the 1980's unrest, the post-2005 phenomena are characterized by much lower aquifers overpressure and magmatic involvement, as indicated by geophysical data and despite large changes in geochemical indicators. Our interpretation points out a model in which shallow sills, intruded during 1969-1984, have completely cooled, so that fumarole emissions are affected now by deeper, CO2-richer, magmatic gases producing a relatively modest heating and overpressure of the hydrothermal system. Our results do have important implications on the short-term eruption hazard assessment and on the best strategies for monitoring and interpreting geochemical data.

  8. The oceanic islands - Azores. [geological, geophysical and geochemical features

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.; Watkins, N. D.; Macfarlane, D. J.

    1974-01-01

    A presentation is made of the known geological, geophysical, and geochemical data on the Azores. The regional setting of the islands is described; under the geological heading, surface geology and petrochemistry are discussed; and paleomagnetism, marine magnetic surveys, gravity, seismology, and heat flow are treated in the geophysics category. A model for the origin of the Azores is constructed on the basis of these observations.

  9. Mercury's Geochemical Terranes Revisited

    NASA Astrophysics Data System (ADS)

    Peplowski, P. N.; Stockstill-Cahill, K. R.

    2018-05-01

    We applied analytical tools to redefine Mercury's major geochemical terranes. The composition and petrology of each terrane will be discussed, along with analyses of gamma-ray data aimed at deriving absolute abundances of Si and Mg in each terrane.

  10. Integrating Hydrogeological, Microbiological, and Geochemical Data Using a Multi-Component Reactive Transport Model: Quantifying the Biogeochemical Evolution of Redox Zones in a Contaminated Aquifer

    NASA Astrophysics Data System (ADS)

    McGuire, J. T.; Phanikumar, M. S.; Long, D. T.; Hyndman, D. W.

    2003-12-01

    Hydrogeological, microbiological, and geochemical processes operating in a shallow sandy aquifer contaminated by waste fuels and chlorinated solvents were integrated using high-resolution mechanistic models. A 3-D, transient, reactive transport model was developed to quantitatively describe coupled processes via thermodynamic and kinetic arguments. The model was created by linking the hydrodynamic model MODFLOW (McDonald and Harbaugh, 1988), with advection, dispersion and user defined kinetic reactions based on RT3D 2.0, (Clement and Jones, 1998) and geochemical model PHREEQC (Parkhurst and Appelo, 1999). This model, BGTK3D 2.0, describes 1) the biodegradation of organic matter based on the influence of transport processes on microbial growth, 2) the complex suite of biogeochemical reactions operating in the aquifer, and 3) sharp chemical gradients. Some key features of this model are an ability to incorporate realistic solid phases to test hypotheses regarding mineral-water interactions, and an ability to accurately describe small-scale biogeochemical cycling (cm variability) observed in the field without oscillations or excessive numerical damping. BGTK3D was used to test hypotheses regarding the evolution of redox chemistry in a contaminated aquifer. The conceptual model that terminal electron accepting processes (TEAPs) distribute themselves sequentially into redox zones down flow path in aqueous systems is often used to interpret how and at what rates organic compounds will be degraded in the environment. Geochemical and microbiological data collected from a mixed contaminant plume at the former Wurtsmith AFB in Oscoda, Michigan suggests that under steady-state, mature plume conditions, traditional redox zonation may not be a realistic model of the distribution of TEAPs and therefore may not be the best model to evaluate the potential degradation of organic compounds. Based on these data, a conceptual model of TEAP evolution in contaminated systems was

  11. WATEQ4F - a personal computer Fortran translation of the geochemical model WATEQ2 with revised data base

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D. Kirk; Zachmann, D.W.

    1987-01-01

    A FORTRAN 77 version of the PL/1 computer program for the geochemical model WATEQ2, which computes major and trace element speciation and mineral saturation for natural waters has been developed. The code (WATEQ4F) has been adapted to execute on an IBM PC or compatible microcomputer. Two versions of the code are available, one operating with IBM Professional FORTRAN and an 8087 or 89287 numeric coprocessor, and one which operates without a numeric coprocessor using Microsoft FORTRAN 77. The calculation procedure is identical to WATEQ2, which has been installed on many mainframes and minicomputers. Limited data base revisions include the addition of the following ions: AlHS04(++), BaS04, CaHS04(++), FeHS04(++), NaF, SrC03, and SrHCO3(+). This report provides the reactions and references for the data base revisions, instructions for program operation, and an explanation of the input and output files. Attachments contain sample output from three water analyses used as test cases and the complete FORTRAN source listing. U.S. Geological Survey geochemical simulation program PHREEQE and mass balance program BALANCE also have been adapted to execute on an IBM PC or compatible microcomputer with a numeric coprocessor and the IBM Professional FORTRAN compiler. (Author 's abstract)

  12. Geochemical modeling of trivalent chromium migration in saline-sodic soil during Lasagna process: impact on soil physicochemical properties.

    PubMed

    Lukman, Salihu; Bukhari, Alaadin; Al-Malack, Muhammad H; Mu'azu, Nuhu D; Essa, Mohammed H

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75%.

  13. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    PubMed Central

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  14. Geochemical study of groundwater at Sandia National Laboratories/New Mexico and Kirtland Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) and its contractor, Rust Geotech, support the Kirtland Area Office by assisting Sandia National Laboratories/New Mexico (Sandia/NM) with remedial action, remedial design, and technical support of its Environmental Restoration Program. To aid in determining groundwater origins and flow paths, the GJPO was tasked to provide interpretation of groundwater geochemical data. The purpose of this investigation was to describe and analyze the groundwater geochemistry of the Sandia/NM Kirtland Air Force Base (KAFB). Interpretations of groundwater origins are made by using these data and the results of {open_quotes}mass balance{close_quotes} and {open_quotes}reactionmore » path{close_quote} modeling. Additional maps and plots were compiled to more fully comprehend the geochemical distributions. A more complete set of these data representations are provided in the appendices. Previous interpretations of groundwater-flow paths that were based on well-head, geologic, and geochemical data are presented in various reports and were used as the basis for developing the models presented in this investigation.« less

  15. Carbon sequestration via reaction with basaltic rocks: geochemical modeling and experimental results

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt; Bischoff, James L.; Palandri, James

    2012-01-01

    Basaltic rocks are potential repositories for sequestering carbon dioxide (CO2) because of their capacity for trapping CO2 in carbonate minerals. We carried out a series of thermodynamic equilibrium models and high pressure experiments, reacting basalt with CO2-charged fluids over a range of conditions from 50 to 200 °C at 300 bar. Results indicate basalt has a high reactivity to CO2 acidified brine. Carbon dioxide is taken up from solution at all temperatures from 50 to 200 °C, 300 bar, but the maximum extent and rate of reaction occurs at 100 °C, 300 bar. Reaction path simulations utilizing the geochemical modeling program CHILLER predicted an equilibrium carbonate alteration assemblage of calcite, magnesite, and siderite, but the only secondary carbonate identified in the experiments was a ferroan magnesite. The amount of uptake at 100 °C, 300 bar ranged from 8% by weight for a typical tholeite to 26% for a picrite. The actual amount of CO2 uptake and extent of rock alteration coincides directly with the magnesium content of the rock suggesting that overall reaction extent is controlled by bulk basalt Mg content. In terms of sequestering CO2, an average basaltic MgO content of 8% is equivalent to 2.6 × 108 metric ton CO2/km3 basalt.

  16. Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: A reactive transport modeling study

    USGS Publications Warehouse

    Molins, S.; Mayer, K.U.

    2007-01-01

    The two‐way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate‐rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.

  17. Geobiochemistry: Placing Biochemistry in Its Geochemical Context

    NASA Astrophysics Data System (ADS)

    Shock, E.; Boyer, G. M.; Canovas, P. A., III; Prasad, A.; Dick, J. M.

    2014-12-01

    Goals of geobiochemistry include simultaneously evaluating the relative stabilities of microbial cells and minerals, and predicting how the composition of biomolecules can change in response to the progress of geochemical reactions. Recent developments in theoretical geochemistry make it possible to predict standard thermodynamic properties of proteins, nucleotides, lipids, and many metabolites including the constituents of the citric acid cycle, at all temperatures and pressures where life is known to occur, and beyond. Combining these predictions with constraints from geochemical data makes it possible to assess the relative stabilities of biomolecules. Resulting independent predictions of the environmental occurrence of homologous proteins and lipid side-chains can be compared with observations from metagenomic and metalipidomic data to quantify geochemical driving forces that shape the composition of biomolecules. In addition, the energetic costs of generating biomolecules from within a diverse range of habitable environments can be evaluated in terms of prevailing geochemical variables. Comparisons of geochemical bioenergetic calculations across habitats leads to the generalization that the availability of H2 determines the cost of autotrophic biosynthesis relative to the aquatic environment external to microbial cells, and that pH, temperature, pressure, and availability of C, N, P, and S are typically secondary. Increasingly reduced conditions, which are determined by reactions of water with mineral surfaces and mineral assemblages, allow many biosynthetic reactions to shift from costing energy to releasing energy. Protein and lipid synthesis, as well as the reverse citric acid cycle, become energy-releasing processes under these conditions. The resulting energy balances that determine habitability contrast dramatically with assumptions derived from oxic surface conditions, such as those where human biochemistry operates.

  18. Development of a Model of Geophysical and Geochemical Controls on Abiotic Carbon Cycling on Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Neveu, M.; Felton, R.; Domagal-Goldman, S. D.; Desch, S. J.; Arney, G. N.

    2017-12-01

    About 20 Earth-sized planets (0.6-1.6 Earth masses and radii) have now been discovered beyond our solar system [1]. Although such planets are prime targets in the upcoming search for atmospheric biosignatures, their composition, geology, and climate are essentially unconstrained. Yet, developing an understanding of how these factors influence planetary evolution through time and space is essential to establishing abiotic backgrounds against which any deviations can provide evidence for biological activity. To this end, we are building coupled geophysical-geochemical models of abiotic carbon cycling on such planets. Our models are controlled by atmospheric factors such as temperature and composition, and compute interior inputs to atmospheric species. They account for crustal weathering, ocean-atmosphere equilibria, and exchange with the deep interior as a function of planet composition and size (and, eventually, age).Planets in other solar systems differ from the Earth not only in their bulk physical properties, but also likely in their bulk chemical composition [2], which influences key parameters such as the vigor of mantle convection and the near-surface redox state. Therefore, simulating how variations in such parameters affect carbon cycling requires us to simulate the above processes from first principles, rather than by using arbitrary parameterizations derived from observations as is often done with models of carbon cycling on Earth [3] or extrapolations thereof [4]. As a first step, we have developed a kinetic model of crustal weathering using the PHREEQC code [5] and kinetic data from [6]. We will present the ability of such a model to replicate Earth's carbon cycle using, for the time being, parameterizations for surface-interior-atmosphere exchange processes such as volcanism (e.g., [7]).[1] exoplanet.eu, 7/28/2017.[2] Young et al. (2014) Astrobiology 14, 603-626.[3] Lerman & Wu (2008) Kinetics of Global Geochemical Cycles. In Kinetics of Water

  19. Multivariate analysis of ATR-FTIR spectra for assessment of oil shale organic geochemical properties

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    In this study, attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FTIR) was coupled with partial least squares regression (PLSR) analysis to relate spectral data to parameters from total organic carbon (TOC) analysis and programmed pyrolysis to assess the feasibility of developing predictive models to estimate important organic geochemical parameters. The advantage of ATR-FTIR over traditional analytical methods is that source rocks can be analyzed in the laboratory or field in seconds, facilitating more rapid and thorough screening than would be possible using other tools. ATR-FTIR spectra, TOC concentrations and Rock–Eval parameters were measured for a set of oil shales from deposits around the world and several pyrolyzed oil shale samples. PLSR models were developed to predict the measured geochemical parameters from infrared spectra. Application of the resulting models to a set of test spectra excluded from the training set generated accurate predictions of TOC and most Rock–Eval parameters. The critical region of the infrared spectrum for assessing S1, S2, Hydrogen Index and TOC consisted of aliphatic organic moieties (2800–3000 cm−1) and the models generated a better correlation with measured values of TOC and S2 than did integrated aliphatic peak areas. The results suggest that combining ATR-FTIR with PLSR is a reliable approach for estimating useful geochemical parameters of oil shales that is faster and requires less sample preparation than current screening methods.

  20. Kriging - a challenge in geochemical mapping

    NASA Astrophysics Data System (ADS)

    Stojdl, Jiri; Matys Grygar, Tomas; Elznicova, Jitka; Popelka, Jan; Vachova, Tatina; Hosek, Michal

    2017-04-01

    Geochemists can easily provide datasets for contamination mapping thanks to recent advances in geographical information systems (GIS) and portable chemical-analytical instrumentation. Kriging is commonly used to visualise the results of such mapping. It is understandable, as kriging is a well-established method of spatial interpolation. It was created in 1950's for geochemical data processing to estimate the most likely distribution of gold based on samples from a few boreholes. However, kriging is based on the assumption of continuous spatial distribution of numeric data that is not realistic in environmental geochemistry. The use of kriging is correct when the data density is sufficient with respect to heterogeneity of the spatial distribution of the geochemical parameters. However, if anomalous geochemical values are focused in hotspots of which boundaries are insufficiently densely sampled, kriging could provide misleading maps with the real contours of hotspots blurred by data smoothing and levelling out individual (isolated) but relevant anomalous values. The data smoothing can thus it results in underestimation of geochemical extremes, which may in fact be of the greatest importance in mapping projects. In our study we characterised hotspots of contamination by uranium and zinc in the floodplain of the Ploučnice River. The first objective of our study was to compare three methods of sampling: random (based on stochastic generation of sampling points), systematic (square grid) and judgemental sampling (based on judgement stemming from principles of fluvial deposition) as the basis for pollution maps. The first detected problem in production of the maps was the reduction of the smoothing effect of kriging using appropriate function of empirical semivariogram and setting the variation of at microscales smaller than the sampling distances to minimum (the "nugget" parameter of semivariogram). Exact interpolators such as Inverse Distance Weighting (IDW) or Radial

  1. Geochemical Interpretation of Collision Volcanism

    NASA Astrophysics Data System (ADS)

    Pearce, Julian

    2014-05-01

    Collision volcanism can be defined as volcanism that takes place during an orogeny from the moment that continental subduction starts to the end of orogenic collapse. Its importance in the Geological Record is greatly underestimated as collision volcanics are easily misinterpreted as being of volcanic arc, extensional or mantle plume origin. There are many types of collision volcanic province: continent-island arc collision (e.g. Banda arc); continent-active margin collision (e.g. Tibet, Turkey-Iran); continent-rear-arc collision (e.g. Bolivia); continent-continent collision (e.g. Tuscany); and island arc-island arc collision (e.g. Taiwan). Superimposed on this variability is the fact that every orogeny is different in detail. Nonetheless, there is a general theme of cyclicity on different time scales. This starts with syn-collision volcanism resulting from the subduction of an ocean-continent transition and continental lithosphere, and continues through post-collision volcanism. The latter can be subdivided into orogenic volcanism, which is related to thickened crust, and post-orogenic, which is related to orogenic collapse. Typically, but not always, collision volcanism is preceded by normal arc volcanism and followed by normal intraplate volcanism. Identification and interpretation of collision volcanism in the Geologic Record is greatly facilitated if a dated stratigraphic sequence is present so that the petrogenic evolution can be traced. In any case, the basis of fingerprinting collision terranes is to use geochemical proxies for mantle and subduction fluxes, slab temperatures, and depths and degrees of melting. For example, syn-collision volcanism is characterized by a high subduction flux relative to mantle flux because of the high input flux of fusible sediment and crust coupled with limited mantle flow, and because of high slab temperatures resulting from the decrease in subduction rate. The resulting geochemical patterns are similar regardless of

  2. Geochemical modeling of fluid-fluid and fluid-mineral interactions during geological CO2 storage

    NASA Astrophysics Data System (ADS)

    Zhu, C.; Ji, X.; Lu, P.

    2013-12-01

    The long time required for effective CO2 storage makes geochemical modeling an indispensable tool for CCUS. One area of geochemical modeling research that is in urgent need is impurities in CO2 streams. Permitting impurities, such as H2S, in CO2 streams can lead to potential capital and energy savings. However, predicting the consequences of co-injection of CO2 and impurities into geological formations requires the understanding of the phase equilibrium and fluid-fluid interactions. To meet this need, we developed a statistical associating fluid theory (SAFT)-based equation of state (EOS) for the H2S-CO2-H2O-NaCl system at 373.15 modeling of fluid-mineral interactions must confront unresolved uncertainties of silicate dissolution - precipitation reaction kinetics. Most prominent among these uncertainties is the well-known lab-field apparent discrepancy in dissolution rates. Although reactive transport models that simulate the interactions between reservoir rocks and brine, and their attendant effects on porosity and permeability changes, have proliferated, whether these results have acceptable uncertainties are unknown. We have conducted a series of batch experiments at elevated temperatures and numerical simulations of coupled dissolution and precipitation reactions. The results show that taking into account

  3. A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating

    USGS Publications Warehouse

    Han, Liang-Feng; Plummer, Niel; Aggarwal, Pradeep

    2012-01-01

    A graphical method is described for identifying geochemical reactions needed in the interpretation of radiocarbon age in groundwater systems. Graphs are constructed by plotting the measured 14C, δ13C, and concentration of dissolved inorganic carbon and are interpreted according to specific criteria to recognize water samples that are consistent with a wide range of processes, including geochemical reactions, carbon isotopic exchange, 14C decay, and mixing of waters. The graphs are used to provide a qualitative estimate of radiocarbon age, to deduce the hydrochemical complexity of a groundwater system, and to compare samples from different groundwater systems. Graphs of chemical and isotopic data from a series of previously-published groundwater studies are used to demonstrate the utility of the approach. Ultimately, the information derived from the graphs is used to improve geochemical models for adjustment of radiocarbon ages in groundwater systems.

  4. Hydrologic and geochemical approaches for determining ground-water flow components

    USGS Publications Warehouse

    Hjalmarson, H.W.; Robertson, F.N.

    1991-01-01

    Lyman Lake is an irrigation-storage reservoir on the Little Colorado River near St. Johns, Arizona. The main sources of water for the lake are streamflow in the Little Colorado River and ground-water inflow from the underlying Coconino aquifer. Two approaches, a hydrologic analysis and a geochemical analysis, were used to compute the quantity of ground-water flow to and from Lyman Lake. Hydrologic data used to calculate a water budget were precipitation on the lake, evaporation from the lake, transpiration from dense vegetation, seepage through the dam, streamflow in and out of the lake, and changes in lake storage. Geochemical data used to calculate the ground-water flow components were major ions, trace elements, and the stable isotopes of hydrogen and oxygen. During the study, the potentiometric level of the Coconino aquifer was above the lake level at the upstream end of the lake and below the lake level at the downstream end. Hydrologic and geochemical data indicate that about 10 percent and 8 percent, respectively, of the water in the lake is ground-water inflow and that about 35 percent of the water in the Little Colorado River 6 miles downgradient from the lake near Salado Springs is ground water. These independent estimates of ground-water flow derived from each approach are in agreement and support a conceptual model of the water budget.

  5. Mineral and Geochemical Classification From Spectroscopy/Diffraction Through Neural Networks

    NASA Astrophysics Data System (ADS)

    Ferralis, N.; Grossman, J.; Summons, R. E.

    2017-12-01

    Spectroscopy and diffraction techniques are essential for understanding structural, chemical and functional properties of geological materials for Earth and Planetary Sciences. Beyond data collection, quantitative insight relies on experimentally assembled, or computationally derived spectra. Inference on the geochemical or geophysical properties (such as crystallographic order, chemical functionality, elemental composition, etc.) of a particular geological material (mineral, organic matter, etc.) is based on fitting unknown spectra and comparing the fit with consolidated databases. The complexity of fitting highly convoluted spectra, often limits the ability to infer geochemical characteristics, and limits the throughput for extensive datasets. With the emergence of heuristic approaches to pattern recognitions though machine learning, in this work we investigate the possibility and potential of using supervised neural networks trained on available public spectroscopic database to directly infer geochemical parameters from unknown spectra. Using Raman, infrared spectroscopy and powder x-ray diffraction from the publicly available RRUFF database, we train neural network models to classify mineral and organic compounds (pure or mixtures) based on crystallographic structure from diffraction, chemical functionality, elemental composition and bonding from spectroscopy. As expected, the accuracy of the inference is strongly dependent on the quality and extent of the training data. We will identify a series of requirements and guidelines for the training dataset needed to achieve consistent high accuracy inference, along with methods to compensate for limited of data.

  6. Geochemical Exploration Techniques Applicable in the Search for Copper Deposits

    USGS Publications Warehouse

    Chaffee, Maurice A.

    1975-01-01

    Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful

  7. Subsurface Reactive Transport Modelling of the Lateritic Ni mineralization in New Caledonia: A coupled Thermo-Hydro-Geochemical Approach

    NASA Astrophysics Data System (ADS)

    Myagkiy, Andrey; Golfier, Fabrice; Truche, Laurent; Cathelineau, Michel

    2017-04-01

    This research proposes a subsurface reactive geochemical transport modelling of the development of a nickel laterite profile in New Caledonia over the past few million years. Such a regolith formation from ultramafic bedrock was not yet modelled and gives new profound insights into the Ni vertical mobility, its retention processes in a soil profile and relative enrichment, that are still poorly studied. The downward progression of the lateritization front is allowed by the leaching of the soluble elements (Si, Mg and Ni) through drainage system, represented by porous column of peridotite. Particular emphasis is placed on the detailed understanding of Ni redistribution as a function of time and depth triggered by Ni-bearing silicate precipitation (i.e. garnierite) and by sorption or recrystallization process with goethite. Current work consists of the following models: i) 1-D calculations that are done at 25oC with the code PHREEQC associated with the llnl thermodynamic database and ii) 2-D model that handles coupled thermo-hydro-chemical processes and is calculated on the interface Comsol-Phreeqc (iCP, Nardi et al., 2014). The impact of i) fluid flow in fractures and ii) recharge rate along with iii) hydraulic and iv) geothermal gradients are considered here. While the first model gives profound insights into the vertical mobility of metals upon the formation of laterite (Myagkiy et al, submitted), the latter one additionally allows to describe heterogeneities of mineralizing distributions due to the influence of preferential pathways (fractures), convective flows and lateral transfers. Our long-term 1-D simulations (10 Ma) clearly demonstrate that the Ni enrichment and thickening of iron-rich zone are governed by the vertical progression of the pH front. At the same time 2-D modelling shows reactivation of Ni from oxide zone and it subsequent redistribution and concentration in saprolite. Such a model appears to be of importance in attempt of explanation Ni

  8. A Watched Ocean World Never Boils: Inspecting the Geochemical Impact on Ocean Worlds from Their Thermal Evolution

    NASA Astrophysics Data System (ADS)

    Spiers, E. M.; Schmidt, B. E.

    2018-05-01

    I aim to acquire better understanding of coupled thermal evolution and geochemical fluxes of an ocean world through a box model. A box model divides the system into plainer elements with realistically-solvable, dynamic equations.

  9. The stabilization of the rock mass of the wieliczka salt mine through the backfilling of the witos chamber with the use of injection methods / Stabilizacji górotworu kopalni soli "wieliczka" poprzez likwidację komór "witos" z zastosowaniem metod iniekcji

    NASA Astrophysics Data System (ADS)

    D'Obyrn, Kajetan

    2012-10-01

    The Wieliczka Salt Mine is the most famous and the most visited mining industry monument in the world and it requires modern methods to ensure rock mass stability and tourists' security. Both for conservation and tourism organization reasons, the group of Warszawa-Wisla-Budryk-Lebzeltern-Upper Witos Chambers (Photo. 1, 2. 3) located the Kazanów mid-level at a depth of 117 m underground is extremely important. Discontinuous deformation occurring in this Chamber complex was eliminated by comprehensive securing work with anchor housing, but their final securing and stability is conditioned by further backfilling and sealing the Witos Chambers situated directly beneath. In the 1940s and 1950s, the Witos Chamber was backfilled with slag from the mine boilerhouse. However, slags with 80% compressibility are not backfilling material which would ensure the stability of the rock mass. The chambers were exploited in the early nineteenth century in the Spizit salts of the central part of the layered deposit. The condition of the Upper Witos, Wisla, Warszawa, Budryk, and Lebzeltern Chambers is generally good. The western part if the Lebzeltern Chamber (Fig. 1), which was threatened with collapse, was backfilled with sand. In all the chambers of the Witos complex, local deformation of ceiling rock of varying intensity is observed as well as significant destruction of the side walls of pillars between chambers. No hydrogeological phenomena are observed in the chambers. It has been attempted to solve the problem of stability of the rock mass in this region of the mine by extracting the slag and backfilling with sand, erecting concrete supporting pillars, backfilling the voids with sand, anchoring the ceiling and the side walls, the use of the pillar housing. The methods have either not been applied or have been proved insufficient to properly protect the excavation situated above. In order to select the optimal securing method, a geomechanical analysis was conducted in order to

  10. TrigDB back-filling method in EEW for the regional earthquake for reducing false location of the deep focus earthquake event by considering neighborhood triggers and forced association.

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Chi, H. C.; Lim, I. S.; Seong, Y. J.; Pak, J.

    2017-12-01

    During the first phase of EEW(Earthquake Early Warning) service to the public by KMA (Korea Meteorological Administration) from 2015 in Korea, KIGAM(Korea Institute of Geoscience and Mineral Resources) has adopted ElarmS2 of UC Berkeley BSL and modified local magnitude relation, travel time curves and association procedures so called TrigDB back-filling method. The TrigDB back-filling method uses a database of sorted lists of stations based on epicentral distances of the pre-defined events located on the grids for 1,401 × 1,601 = 2,243,001 events around the Korean Peninsula at a grid spacing of 0.05 degrees. When the version of an event is updated, the TrigDB back-filling method is invoked. First, the grid closest to the epicenter of an event is chosen from the database and candidate stations, which are stations corresponding to the chosen grid and also adjacent to the already-associated stations, are selected. Second, the directions from the chosen grid to the associated stations are averaged to represent the direction of wave propagation, which is used as a reference for computing apparent travel times. The apparent travel times for the associated stations are computed using a P wave velocity of 5.5 km/s from the grid to the projected points in the reference direction. The travel times for the triggered candidate stations are also computed and used to obtain the difference between the apparent travel times of the associated stations and the triggered candidates. Finally, if the difference in the apparent travel times is less than that of the arrival times, the method forces the triggered candidate station to be associated with the event and updates the event location. This method is useful to reduce false locations of events which could be generated from the deep (> 500 km) and regional distance earthquakes happening on the subduction pacific plate boundaries. In comparison of the case study between TrigDB back-filling applied system and the others, we could get

  11. Numerical simulation of in-situ chemical oxidation (ISCO) and biodegradation of petroleum hydrocarbons using a coupled model for bio-geochemical reactive transport

    NASA Astrophysics Data System (ADS)

    Marin, I. S.; Molson, J. W.

    2013-05-01

    Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.

  12. Assessment of groundwater quality: a fusion of geochemical and geophysical information via Bayesian neural networks.

    PubMed

    Maiti, Saumen; Erram, V C; Gupta, Gautam; Tiwari, Ram Krishna; Kulkarni, U D; Sangpal, R R

    2013-04-01

    Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb's diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: "Very good", "Good", and "Unsuitable". The BNN model-based results suggest that groundwater quality falls mostly in the range of "Good" to "Very good" except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality.

  13. Evaluation of geochemical and hydrogeological processes by geochemical modeling in an area affected by evaporite karstification

    NASA Astrophysics Data System (ADS)

    Acero, P.; Auqué, L. F.; Galve, J. P.; Gutiérrez, F.; Carbonel, D.; Gimeno, M. J.; Yechieli, Y.; Asta, M. P.; Gómez, J. B.

    2015-10-01

    The Ebro Valley in the outskirts of Zaragoza (NE Spain) is severely affected by evaporite karstification, leading to multiple problems related to subsidence and sinkhole formation. In this work, a combination of inverse (mixing + mass-balance) and forward (reaction-path) geochemical calculations is applied for the quantification of the main karstification processes and seasonal variations in this area. The obtained results prove the suitability of the applied methodology for the characterization of similar problems in other areas with scarce geological and hydrogeological information. The hydrogeology and hydrochemistry of the system can be mainly attributed to the mixing of variable proportions of concentrated groundwater from the evaporitic aquifer and more dilute water from the overlying alluvial aquifer. The existence of a good connection between these aquifers is supported by: (1) the fast changes in the hydrochemistry of the karst aquifer related to recharge by irrigation, and (2) the deduced input of evaporitic groundwater in the alluvial materials. The evolution in some parts of the alluvial/evaporitic aquifer system is clearly dominated by the seasonal variations in the recharge by dilute irrigation waters (up to 95% of water volume in some sinkhole ponds), whereas other points seem to be clearly determined by the hydrochemistry of the concentrated evaporitic aquifer groundwater (up to 50% of the water volume in some springs). The following reactions, previous or superimposed to mixing processes, explain the observed hydrochemistry in the studied area: dissolution of halite (NaCl), gypsum (CaSO4ṡ2H2O)/anhydrite (CaSO4) and dolomite (CaMg(CO3)2), CO2(g) input and degassing and calcite (CaCO3) dissolution/precipitation. The modeling results suggest the existence of a large spatial variability in the composition of the evaporitic groundwater, mainly caused by large differences in the availability of halite in contact with the groundwater. Active subsidence

  14. Biokinetics of yttrium and comparison with its geochemical twin holmium

    DOE PAGES

    Leggett, Rich

    2017-06-01

    The transition metal yttrium (Y, atomic number 39) is chemically similar to elements in the lanthanide family (atomic numbers 57-71, lanthanum through lutetium) and is always present with the lanthanides in rare earth ores. Yttrium and the lanthanide holmium are particularly close chemical and physical analogues and are referred to as geochemical twins because they typically show little fractionation in geological material. Extensive measurements on rocks, soils, and meteorites indicate that the Y/Ho mass concentration ratio rarely falls far from the “chondritic” or “solar system” ratio of ~26. Our paper presents a new biokinetic model for yttrium in adult humansmore » and examines whether yttrium and holmium may be biological as well as geochemical twins. Collected data on yttrium and holmium in plants and human tissues do not allow precise derivations of Y/Ho concentration ratios but with occasional exceptions yield ratios that are reasonably consistent with chondritic values. Predictions of the time-dependent behavior of yttrium in adult humans based on the yttrium model presented here closely approximate predictions of the behavior of holmium based on a previously developed model for holmium. We know that yttrium and holmium are close biological analogues, but the available comparative data are too limited and imprecise to reveal whether there are any significant differences in their biological behavior.« less

  15. Mineral Precipitation in Fractures: Multiscale Imaging and Geochemical Modeling

    NASA Astrophysics Data System (ADS)

    Hajirezaie, S.; Peters, C. A.; Swift, A.; Sheets, J. M.; Cole, D. R.; Crandall, D.; Cheshire, M.; Stack, A. G.; Anovitz, L. M.

    2017-12-01

    For subsurface energy technologies such as geologic carbon sequestration, fractures are potential pathways for fluid migration from target formations. Highly permeable fractures may become sealed by mineral precipitation. In this study, we examined shale specimens with existing cemented fractures as natural analogues, using an array of imaging methods to characterize mineralogy and porosity at several spatial scales. In addition, we used reactive transport modeling to investigate geochemical conditions that can lead to extensive mineral precipitation and to simulate the impacts on fracture hydraulic properties. The naturally-cemented fractured rock specimens were from the Upper Wolfcamp formation in Texas, at 10,000 ft depth. The specimens were scanned using x-ray computed tomography (xCT) at resolution of 13 microns. The xCT images revealed an original fracture aperture of 1.9 mm filled with several distinct mineral phases and vuggy void regions, and the mineral phase volumes and surface areas were quantified and mapped in 3D. Specimens were thin-sectioned and examined at micron- and submicron-scales using petrographic microscopy (PM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and small angle X-ray scattering (SAXS). Collectively these methods revealed crystals of dolomite as large as 900 microns in length overlain with a heterogeneous mixture of carbonate minerals including calcite, dolomite, and Fe-rich dolomite, interspersed at spatial scales as small as 5 microns. In addition, secondary precipitation of SiO2 was found to fill some of the void space. This multiscale imaging was used to inform the reactive transport modeling employed to examine the conditions that can cause the observed mineral precipitation in fractures at a larger scale. Two brines containing solutions that when mixed would lead to precipitation of various carbonate minerals were simulated as injectants into a fracture domain. In particular, the competing

  16. Geochemical and mineralogical methods of prospecting for mineral deposits

    USGS Publications Warehouse

    Fersman, A. Ye; Borovik, S. A.; Gorshkov, G.V.; Popov, S.D.; Sosedko, A.F.; Hartsock, Lydia; Pierce, A.P.

    1952-01-01

    Fersman's book "Geochemical and mineralogical methods of prospecting for mineral deposits" (Geokhimicheskiye i mineralogicheskiye metody poiskov poleznykh iskopayemykh) covers all petrographic, mineralogical, and geochemical techniques that are used either directly or indirectly in mineral exploration. Chapter IV is of particular interest because it describes certain geochemical methods and principles that have not been widely applied outside of the Soviet Union. The original contained a number of photographs that have been omitted; the titles of the photographs are given in the body of the text. Wherever possible, bibliographic references have been checked, and the full titles given. References given in footnotes in the original have been collected and added at the end of each section as a bibliography.

  17. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA)

    USGS Publications Warehouse

    Sharif, M.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Kresse, T.M.; Fazio, J.A.

    2008-01-01

    Inverse geochemical modeling (PHREEQC) was used to identify the evolution of groundwater with emphasis on arsenic (As) release under reducing conditions in the shallow (25-30 m) Mississippi River Valley Alluvial aquifer, Arkansas, USA. The modeling was based on flow paths defined by high-precision (??2 cm) water level contour map; X-ray diffraction (XRD), scanning electron microscopic (SEM), and chemical analysis of boring-sediments for minerals; and detailed chemical analysis of groundwater along the flow paths. Potential phases were constrained using general trends in chemical analyses data of groundwater and sediments, and saturation indices data (MINTEQA2) of minerals in groundwater. Modeling results show that calcite, halite, fluorite, Fe oxyhydroxide, organic matter, H2S (gas) were dissolving with mole transfers of 1.40E - 03, 2.13E - 04, 4.15E - 06, 1.25E + 01, 3.11, and 9.34, respectively along the dominant flow line. Along the same flow line, FeS, siderite, and vivianite were precipitating with mole transfers of 9.34, 3.11, and 2.64E - 07, respectively. Cation exchange reactions of Ca2+ (4.93E - 04 mol) for Na+ (2.51E - 04 mol) on exchange sites occurred along the dominant flow line. Gypsum dissolution reactions were dominant over calcite dissolution in some of the flow lines due to the common ion effect. The concentration of As in groundwater ranged from <0.5 to 77 ??g/L. Twenty percent total As was complexed with Fe and Mn oxyhydroxides. The redox environment, chemical data of sediments and groundwater, and the results of inverse geochemical modeling indicate that reductive dissolution of Fe oxyhydroxide is the dominant process of As release in the groundwater. The relative rate of reduction of Fe oxyhydroxide over SO42 - with co-precipitation of As into sulfide is the limiting factor controlling dissolved As in groundwater. ?? 2007 Elsevier B.V. All rights reserved.

  18. Geochemical heterogeneity in a small, stratigraphically complex moraine aquifer system (Ontario, Canada): Interpretation of flow and recharge using multiple geochemical parameters

    USGS Publications Warehouse

    Stotler, R.L.; Frape, S.K.; El Mugammar, H.T.; Johnston, C.; Judd-Henrey, I.; Harvey, F.E.; Drimmie, R.; Jones, J.P.

    2011-01-01

    The Waterloo Moraine is a stratigraphically complex system and is the major water supply to the cities of Kitchener and Waterloo in Ontario, Canada. Despite over 30 years of investigation, no attempt has been made to unify existing geochemical data into a single database. A composite view of the moraine geochemistry has been created using the available geochemical information, and a framework created for geochemical data synthesis of other similar flow systems. Regionally, fluid chemistry is highly heterogeneous, with large variations in both water type and total dissolved solids content. Locally, upper aquifer units are affected by nitrate and chloride from fertilizer and road salt. Typical upper-aquifer fluid chemistry is dominated by calcium, magnesium, and bicarbonate, a result of calcite and dolomite dissolution. Evidence also suggests that ion exchange and diffusion from tills and bedrock units accounts for some elevated sodium concentrations. Locally, hydraulic "windows" cross connect upper and lower aquifer units, which are typically separated by a clay till. Lower aquifer units are also affected by dedolomitization, mixing with bedrock water, and locally, upward diffusion of solutes from the bedrock aquifers. A map of areas where aquifer units are geochemically similar was constructed to highlight areas with potential hydraulic windows. ?? 2010 Springer-Verlag.

  19. ASSESSING THE GEOCHEMICAL FATE OF DEEP-WELL-INJECTED HAZARDOUS WASTE: A REFERENCE GUIDE

    EPA Science Inventory

    The geochemical fate of deep-well-injected wastes must be thoroughly understood to avoid problems when incompatibility between the injected wastes and the injection-zone formation is a possibility. An understanding of geochemical fate will be useful when a geochemical no-migratio...

  20. Principles of landscape-geochemical studies in the zones contaminated by technogenical radionuclides for ecological and geochemical mapping

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2013-04-01

    Efficiency of landscape-geochemical approach was proved to be helpful in spatial and temporal evaluation of the Chernobyl radionuclide distribution in the environment. The peculiarity of such approach is in hierarchical consideration of factors responsible for radionuclide redistribution and behavior in a system of inter-incorporated landscape-geochemical structures of the local and regional scales with due regard to the density of the initial fallout and patterns of radionuclide migration in soil-water-plant systems. The approach has been applied in the studies of distribution of Cs-137, Sr-90 and some other radionuclides in soils and vegetation cover and in evaluation of contribution of the stable iodine supply in soils to spatial variation of risk of thyroid cancer in areas subjected to radioiodine contamination after the Chernobyl accident. The main feature of the proposed approach is simultaneous consideration of two types of spatial heterogeneities: firstly, the inhomogeneity of external radiation exposure due to a complex structure of the contamination field, and, secondly, the landscape geochemical heterogeneity of the affected area, so that the resultant effect of radionuclide impact could significantly vary in space. The main idea of risk assessment in this respect was to reproduce as accurately as possible the result of interference of two surfaces in the form of risk map. The approach, although it demands to overcome a number of methodological difficulties, allows to solve the problems associated with spatially adequate protection of the affected population and optimization of the use of contaminated areas. In general it can serve the basis for development of the idea of the two-level structure of modern radiobiogeochemical provinces formed by superposition of the natural geochemical structures and the fields of technogenic contamination accompanied by the corresponding peculiar and integral biological reactions.

  1. Linking the climatic and geochemical controls on global soil carbon cycling

    NASA Astrophysics Data System (ADS)

    Doetterl, Sebastian; Stevens, Antoine; Six, Johan; Merckx, Roel; Van Oost, Kristof; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Boudin, Mathieu; Zagal Venegas, Erick; Boeckx, Pascal

    2015-04-01

    Climatic and geochemical parameters are regarded as the primary controls for soil organic carbon (SOC) storage and turnover. However, due to the difference in scale between climate and geochemical-related soil research, the interaction of these key factors for SOC dynamics have rarely been assessed. Across a large geochemical and climatic transect in similar biomes in Chile and the Antarctic Peninsula we show how abiotic geochemical soil features describing soil mineralogy and weathering pose a direct control on SOC stocks, concentration and turnover and are central to explaining soil C dynamics at larger scales. Precipitation and temperature had an only indirect control by regulating geochemistry. Soils with high SOC content have low specific potential CO2 respiration rates, but a large fraction of SOC that is stabilized via organo-mineral interactions. The opposite was observed for soils with low SOC content. The observed differences for topsoil SOC stocks along this transect of similar biomes but differing geo-climatic site conditions are of the same magnitude as differences observed for topsoil SOC stocks across all major global biomes. Using precipitation and a set of abiotic geochemical parameters describing soil mineralogy and weathering status led to predictions of high accuracy (R2 0.53-0.94) for different C response variables. Partial correlation analyses revealed that the strength of the correlation between climatic predictors and SOC response variables decreased by 51 - 83% when controlling for geochemical predictors. In contrast, controlling for climatic variables did not result in a strong decrease in the strength of the correlations of between most geochemical variables and SOC response variables. In summary, geochemical parameters describing soil mineralogy and weathering were found to be essential for accurate predictions of SOC stocks and potential CO2 respiration, while climatic factors were of minor importance as a direct control, but are

  2. Geochemical response to hydrologic change along land-sea interfaces

    NASA Astrophysics Data System (ADS)

    Michael, H. A.; Yu, X.; LeMonte, J. J.; Sparks, D. L.; Kim, K. H.; Heiss, J.; Ullman, W. J.; Guimond, J. A.; Seyfferth, A.

    2016-12-01

    Coastal groundwater-surface water interfaces are hotspots of geochemical activity, where reactants contributed by different sources come in contact. Reactions that occur along these land-sea boundaries have important effects on fluxes and cycling of carbon, nutrients, and contaminants. Hydrologic perturbations can alter interactions by promoting mixing, changing redox state, and altering subsurface residence times during which reactions may occur. We present examples from field and modeling investigations along the Delaware coastline that illustrate the impacts of hydrologic fluctuations on geochemical conditions and fluxes in different coastal environments. Along the highly populated Wilmington coastline, soils are contaminated with heavy metals from legacy industrial practices. We show with continuous redox monitoring and sampling over tidal to seasonal timescales that arsenic is mobilized and immobilized in response to hydrologic change. Along a beach, modeling and long-term monitoring show the influence of tidal to seasonal changes in the mixing zone between discharging fresh groundwater and seawater in the intertidal beach aquifer and associated impacts on biogeochemical reactivity and denitrification. In a saltmarsh, hydrologic changes alter carbon dynamics, with implications for the discharge of dissolved organic carbon to the ocean and export of carbon dioxide and methane to the atmosphere. Understanding the impacts of hydrologic changes on both long and short timescales is essential for improving our ability to predict the global biogeochemical impacts of a changing climate.

  3. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill.

    PubMed

    Ercikdi, Bayram; Baki, Hakan; İzki, Muhammet

    2013-01-30

    This paper presents the effect of desliming on the short- and long-term strength, stability and rheological properties of cemented paste backfill (CPB) produced from two different mill tailings. A 28-day unconfined compressive strength (UCS) of ≥1.0 MPa and the maintenance of stability over 224 days of curing were selected as the design criteria for the evaluation of paste backfill performance. Desliming induced some changes in the physical, chemical, mineralogical and rheological properties of the tailings. CPB mixture of the deslimed tailings achieved the required consistency at a lower water to cement ratio. The short-term UCSs of CPB samples of the deslimed tailings were found to be 30-100% higher than those samples of the reference tailings at all the binder dosages and curing times. CPB samples of the deslimed tailings achieved the long-term stability at relatively low binder dosages (e.g. 5 wt% c.f. ≥6.1% for the reference tailings). It was also estimated that desliming could allow a 13.4-23.1% reduction in the binder consumption depending apparently on the inherent characteristics of the tailings. Over the curing period, generation of sulphate and acid by the oxidation of pyrite present in the tailings was also monitored to correlate with the strength losses observed in the long term. Scanning electron microscope (SEM) and Mercury Intrusion Porosimetry (MIP) analyses provided an insight into the microstructure of CPB and the formation of secondary mineral phases (i.e. gypsum) confirming the beneficial effect of desliming. These findings suggest that desliming can be suitably exploited for CPB of sulphide-rich mill tailings to improve the strength and stability particularly in the long term and to reduce binder consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. InSAR Surface Deformation and Source Modelling at Semisopochnoi Island During the 2014 and 2015 Seismic Swarms with Constraints from Geochemical and Seismic Analysis

    NASA Astrophysics Data System (ADS)

    DeGrandpre, K.; Pesicek, J. D.; Lu, Z.

    2017-12-01

    During the summer of 2014 and the early spring of 2015 two notable increases in seismic activity at Semisopochnoi Island in the western Aleutian islands were recorded on AVO seismometers on Semisopochnoi and neighboring islands. These seismic swarms did not lead to an eruption. This study employs interferometric synthetic aperture radar (InSAR) techniques using TerraSAR-X images in conjunction with more accurately relocating the recorded seismic events through simultaneous inversion of event travel times and a three-dimensional velocity model using tomoDD. The InSAR images exhibit surprising coherence and an island wide spatial distribution of inflation that is then used in Mogi, Okada, spheroid, and ellipsoid source models in order to define the three-dimensional location and volume change required for a source at the volcano to produce the observed surface deformation. The tomoDD relocations provide a more accurate and realistic three-dimensional velocity model as well as a tighter clustering of events for both swarms that clearly outline a linear seismic void within the larger group of shallow (<10 km) seismicity. The source models are fit to this void and pressure estimates from geochemical analysis are used to verify the storage depth of magmas at Semisopochnoi. Comparisons of calculated source cavity, magma injection, and surface deformation volumes are made in order to assess the reality behind the various modelling estimates. Incorporating geochemical and seismic data to provide constraints on surface deformation source inversions provides an interdisciplinary approach that can be used to make more accurate interpretations of dynamic observations.

  5. Estimation of the geochemical threshold and its statistical significance

    USGS Publications Warehouse

    Miesch, A.T.

    1981-01-01

    A statistic is proposed for estimating the geochemical threshold and its statistical significance, or it may be used to identify a group of extreme values that can be tested for significance by other means. The statistic is the maximum gap between adjacent values in an ordered array after each gap has been adjusted for the expected frequency. The values in the ordered array are geochemical values transformed by either ln(?? - ??) or ln(?? - ??) and then standardized so that the mean is zero and the variance is unity. The expected frequency is taken from a fitted normal curve with unit area. The midpoint of an adjusted gap that exceeds the corresponding critical value may be taken as an estimate of the geochemical threshold, and the associated probability indicates the likelihood that the threshold separates two geochemical populations. The adjusted gap test may fail to identify threshold values if the variation tends to be continuous from background values to the higher values that reflect mineralized ground. However, the test will serve to identify other anomalies that may be too subtle to have been noted by other means. ?? 1981.

  6. Geochemical investigation of UMTRAP designated site at Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report is the result of a geochemical investigation of the former uranium mill and tailings site at Durango, Colorado. This is one in a series of site specific geochemical investigations performed on the inactive uranium mill tailings included in the UMTRA Project. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results will be used to model contaminant migration and to develop criteria for long-term containment media such as a cover systemmore » which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples are water extracted remove easily soluble salts and acids extracted to remove cabonates and hydroxides. The water extracts and solid samples were analyzed for the major and trace elements. A limited number of samples were analyzed for radiological components. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Three major conclusions are: (1) carbonate salts and low TDS characterize the tailings; (2) the adjacent area and raffinate ponds contain contaminants deposited by a single event of fluid permeation of the soils; and (3) the Animas River adjacent to the site has elevated gross alpha activity attributed to /sup 226/Ra in the sediments derived from the tailings or milling activities.« less

  7. Geochemical and Sm-Nd isotope-geochemical patterns of metavolcanic rocks, diabase, and metagabbroids on the northeastern flank of the South Mongolian-Khingan orogenic belt

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu. V.; Sorokin, A. A.

    2017-05-01

    The first results of geochemical and Sm-Nd isotope-geochemical studies of metavolcanic rocks, metagabbroids, and diabase of the Nora-Sukhotino terrane, the least studied part of the South Mongolian-Khingan orogenic belt in the system of the Central Asian orogenic belt are reported. It is established that the basic rocks composing this terrane include varieties comparable with E-MORB, tholeiitic, and calc-alkaline basalt of island arc, calc-alkaline gabbro-diabase, and gabbroids of island arcs. Most likely, these formations should be correlated with metabasalt and associated Late Ordovician gabbro-amphibolite of the Sukdulkin "block" of the South Mongolian-Khingan orogenic belt, which are similar to tholeiite of intraplate island arcs by their geochemical characteristics.

  8. Leveling data in geochemical mapping: scope of application, pros and cons of existing methods

    NASA Astrophysics Data System (ADS)

    Pereira, Benoît; Vandeuren, Aubry; Sonnet, Philippe

    2017-04-01

    Geochemical mapping successfully met a range of needs from mineral exploration to environmental management. In Europe and around the world numerous geochemical datasets already exist. These datasets may originate from geochemical mapping projects or from the collection of sample analyses requested by environmental protection regulatory bodies. Combining datasets can be highly beneficial for establishing geochemical maps with increased resolution and/or coverage area. However this practice requires assessing the equivalence between datasets and, if needed, applying data leveling to remove possible biases between datasets. In the literature, several procedures for assessing dataset equivalence and leveling data are proposed. Daneshfar & Cameron (1998) proposed a method for the leveling of two adjacent datasets while Pereira et al. (2016) proposed two methods for the leveling of datasets that contain records located within the same geographical area. Each discussed method requires its own set of assumptions (underlying populations of data, spatial distribution of data, etc.). Here we propose to discuss the scope of application, pros, cons and practical recommendations for each method. This work is illustrated with several case studies in Wallonia (Southern Belgium) and in Europe involving trace element geochemical datasets. References: Daneshfar, B. & Cameron, E. (1998), Leveling geochemical data between map sheets, Journal of Geochemical Exploration 63(3), 189-201. Pereira, B.; Vandeuren, A.; Govaerts, B. B. & Sonnet, P. (2016), Assessing dataset equivalence and leveling data in geochemical mapping, Journal of Geochemical Exploration 168, 36-48.

  9. Baseline and premining geochemical characterization of mined sites

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    2015-01-01

    A rational goal for environmental restoration of new, active, or inactive mine sites would be ‘natural background’ or the environmental conditions that existed before any mining activities or other related anthropogenic activities. In a strictly technical sense, there is no such thing as natural background (or entirely non-anthropogenic) existing today because there is no part of the planet earth that has not had at least some chemical disturbance from anthropogenic activities. Hence, the terms ‘baseline’ and ‘pre-mining’ are preferred to describe these conditions. Baseline conditions are those that existed at the time of the characterization which could be pre-mining, during mining, or post-mining. Protocols for geochemically characterizing pre-mining conditions are not well-documented for sites already mined but there are two approaches that seem most direct and least ambiguous. One is characterization of analog sites along with judicious application of geochemical modeling. The other is reactive-transport modeling (based on careful synoptic sampling with tracer-injection) and subtracting inputs from known mining and mineral processing. Several examples of acidic drainage are described from around the world documenting the range of water compositions produced from pyrite oxidation in the absence of mining. These analog sites provide insight to the processes forming mineralized waters in areas untouched by mining. Natural analog water-chemistry data is compared with the higher metal concentrations, metal fluxes, and weathering rates found in mined areas in the few places where comparisons are possible. The differences are generally 1–3 orders of magnitude higher for acid mine drainage.

  10. Reply to 'Comments on upscaling geochemical reaction rates usingpore-scale network modeling' by Peter C. Lichtner and Qinjun Kang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Li; Peters, Catherine A.; Celia, Michael A.

    2006-05-03

    Our paper "Upscaling geochemical reaction rates usingpore-scale network modeling" presents a novel application of pore-scalenetwork modeling to upscale mineral dissolution and precipitationreaction rates from the pore scale to the continuum scale, anddemonstrates the methodology by analyzing the scaling behavior ofanorthite and kaolinite reaction kinetics under conditions related to CO2sequestration. We conclude that under highly acidic conditions relevantto CO2 sequestration, the traditional continuum-based methodology may notcapture the spatial variation in concentrations from pore to pore, andscaling tools may be important in correctly modeling reactive transportprocesses in such systems. This work addresses the important butdifficult question of scaling mineral dissolution and precipitationreactionmore » kinetics, which is often ignored in fields such as geochemistry,water resources, and contaminant hydrology. Although scaling of physicalprocesses has been studied for almost three decades, very few studieshave examined the scaling issues related to chemical processes, despitetheir importance in governing the transport and fate of contaminants insubsurface systems.« less

  11. Geochemical evaluation of Niger Delta sedimentary organic rocks: a new insight

    NASA Astrophysics Data System (ADS)

    Akinlua, Akinsehinwa; Torto, Nelson

    2011-09-01

    A geochemical evaluation of Niger Delta organic matter was carried out using supercritical fluid extraction (SFE) sample preparation procedure. Comparison of geochemical significance of gas chromatographic data of rock extracts of SFE with those of Soxhlet extraction method from previous studies was made in order to establish the usefulness of SFE in geochemical exploration. The assessment of geochemical character of the rock samples from the comparison and interpretation of other geochemical parameters were used to give more insights into understanding the source rocks characteristics of onshore and shelf portions of the Niger Delta Basin. The results of the gas chromatographic (GC) analysis of the rock extracts across the lithostratigraphic units show that Pr/Ph, Pr/nC17, Pr/nC18, CPI and odd/even preference ranged from 0.07 to 12.39, 0.04 to 6.66, 0.05 to 13.80, 0.12 to 8.4 and 0.06 to 8.12, respectively. The Rock-Eval pyrolysis data and geochemical ratios and parameters calculated from the GC data showed that most of the samples are mature and have strong terrestrial provenance while a few samples have strong marine provenance. The few marine source rocks are located in the deeper depth horizon. Pr/Ph and standard geochemical plots indicate that most of samples were derived from organic matter deposited in less reducing conditions, i.e. more of oxidizing conditions while a few samples have predominantly influence of reducing conditions. The results of trace metal analysis of older samples from Agbada Formation also indicate marine and mixed organic matter input deposited in less reducing conditions. The results obtained in this study are comparable with those obtained from previous studies when Soxhlet extraction method was used and also indicated the presence of more than one petroleum systems in the Niger Delta.

  12. Merging Hydrologic, Geochemical, and Geophysical Approaches to Understand the Regolith Architecture of a Deeply Weathered Piedmont Critical Zone

    NASA Astrophysics Data System (ADS)

    Cosans, C.; Moore, J.; Harman, C. J.

    2017-12-01

    Located in the deeply weathered Piedmont in Maryland, Pond Branch has a rich legacy of hydrological and geochemical research dating back to the first geochemical mass balance study published in 1970. More recently, geophysical investigations including seismic and electrical resistivity tomography have characterized the subsurface at Pond Branch and contributed to new hypotheses about critical zone evolution. Heterogeneity in electrical resistivity in the shallow subsurface may suggest disparate flow paths for recharge, with some regions with low hydraulic conductivity generating perched flow, while other hillslope sections recharge to the much deeper regolith boundary. These shallow and deep flow paths are hypothesized to be somewhat hydrologically and chemically connected, with the spatially and temporally discontinuous connections resulting in different hydraulic responses to recharge and different concentrations of weathering solutes. To test this hypothesis, we combined modeling and field approaches. We modeled weathering solutes along the hypothesized flow paths using PFLOTRAN. We measured hydrologic gradients in the hillslopes and riparian zone using piezometer water levels. We collected geochemical data including major ions and silica. Weathering solute concentrations were measured directly in the precipitation, hillslope springs, and the riparian zone for comparison to modeled concentration values. End member mixing methods were used to determine contributions of precipitation, hillslopes, and riparian zone to the stream. Combining geophysical, geochemical, and hydrological methods may offer insights into the source of stream water and controls on chemical weathering. Previous hypotheses that Piedmont critical zone architecture results from a balance of erosion, soil, and weathering front advance rates cannot account for the inverted regolith structure observed through seismic investigations at Pond Branch. Recent alternative hypotheses including weathering

  13. Alaska Geochemical Database - Mineral Exploration Tool for the 21st Century - PDF of presentation

    USGS Publications Warehouse

    Granitto, Matthew; Schmidt, Jeanine M.; Labay, Keith A.; Shew, Nora B.; Gamble, Bruce M.

    2012-01-01

    The U.S. Geological Survey has created a geochemical database of geologic material samples collected in Alaska. This database is readily accessible to anyone with access to the Internet. Designed as a tool for mineral or environmental assessment, land management, or mineral exploration, the initial version of the Alaska Geochemical Database - U.S. Geological Survey Data Series 637 - contains geochemical, geologic, and geospatial data for 264,158 samples collected from 1962-2009: 108,909 rock samples; 92,701 sediment samples; 48,209 heavy-mineral-concentrate samples; 6,869 soil samples; and 7,470 mineral samples. In addition, the Alaska Geochemical Database contains mineralogic data for 18,138 nonmagnetic-fraction heavy mineral concentrates, making it the first U.S. Geological Survey database of this scope that contains both geochemical and mineralogic data. Examples from the Alaska Range will illustrate potential uses of the Alaska Geochemical Database in mineral exploration. Data from the Alaska Geochemical Database have been extensively checked for accuracy of sample media description, sample site location, and analytical method using U.S. Geological Survey sample-submittal archives and U.S. Geological Survey publications (plus field notebooks and sample site compilation base maps from the Alaska Technical Data Unit in Anchorage, Alaska). The database is also the repository for nearly all previously released U.S. Geological Survey Alaska geochemical datasets. Although the Alaska Geochemical Database is a fully relational database in Microsoft® Access 2003 and 2010 formats, these same data are also provided as a series of spreadsheet files in Microsoft® Excel 2003 and 2010 formats, and as ASCII text files. A DVD version of the Alaska Geochemical Database was released in October 2011, as U.S. Geological Survey Data Series 637, and data downloads are available at http://pubs.usgs.gov/ds/637/. Also, all Alaska Geochemical Database data have been incorporated into

  14. Hydrothermal gases in a shallow aquifer at Mt. Amiata, Italy: insights from stable isotopes and geochemical modelling.

    PubMed

    Pierotti, Lisa; Cortecci, Gianni; Gherardi, Fabrizio

    2016-01-01

    We investigate the interaction between hydrothermal gases and groundwater in a major aquifer exploited for potable supply in the geothermal-volcanic area of Mt. Amiata, Central Italy. Two springs and two wells located on different sides of the volcanic edifice have been repeatedly sampled over the last 11 years. More than 160 chemical analyses and 10 isotopic analyses of total dissolved carbon (δ(13)C - total dissolved inorganic carbon (TDIC) = -15.9 to -7.8 ‰ vs. V-PDB) and sulphate (δ(34)S-SO4 = -6.9 to 5.1 ‰ vs. V-CDT) have been processed with geochemical modelling techniques. Best-fitting conditions between analytical data and model outputs have been achieved by numerical optimization, allowing for a quantitative description of gas-water-rock interactions occurring in this aquifer. Numerical calculations support a conceptual model that considers water-rock interactions to occur in the volcanic aquifer after inflow of deep-seated gases (CO2(g) and H2S(g)), and total conversion of H2S(g) to SO4, in the absence of mixing with geothermal waters from reservoirs currently exploited for electricity generation.

  15. Generic Procedure for Coupling the PHREEQC Geochemical Modeling Framework with Flow and Solute Transport Simulators

    NASA Astrophysics Data System (ADS)

    Wissmeier, L. C.; Barry, D. A.

    2009-12-01

    Computer simulations of water availability and quality play an important role in state-of-the-art water resources management. However, many of the most utilized software programs focus either on physical flow and transport phenomena (e.g., MODFLOW, MT3DMS, FEFLOW, HYDRUS) or on geochemical reactions (e.g., MINTEQ, PHREEQC, CHESS, ORCHESTRA). In recent years, several couplings between both genres of programs evolved in order to consider interactions between flow and biogeochemical reactivity (e.g., HP1, PHWAT). Software coupling procedures can be categorized as ‘close couplings’, where programs pass information via the memory stack at runtime, and ‘remote couplings’, where the information is exchanged at each time step via input/output files. The former generally involves modifications of software codes and therefore expert programming skills are required. We present a generic recipe for remotely coupling the PHREEQC geochemical modeling framework and flow and solute transport (FST) simulators. The iterative scheme relies on operator splitting with continuous re-initialization of PHREEQC and the FST of choice at each time step. Since PHREEQC calculates the geochemistry of aqueous solutions in contact with soil minerals, the procedure is primarily designed for couplings to FST’s for liquid phase flow in natural environments. It requires the accessibility of initial conditions and numerical parameters such as time and space discretization in the input text file for the FST and control of the FST via commands to the operating system (batch on Windows; bash/shell on Unix/Linux). The coupling procedure is based on PHREEQC’s capability to save the state of a simulation with all solid, liquid and gaseous species as a PHREEQC input file by making use of the dump file option in the TRANSPORT keyword. The output from one reaction calculation step is therefore reused as input for the following reaction step where changes in element amounts due to advection

  16. Hydrogeological modeling constraints provided by geophysical and geochemical mapping of a chlorinated ethenes plume in northern France

    NASA Astrophysics Data System (ADS)

    Razafindratsima, Stephen; Guérin, Roger; Bendjoudi, Hocine; de Marsily, Ghislain

    2014-09-01

    A methodological approach is described which combines geophysical and geochemical data to delineate the extent of a chlorinated ethenes plume in northern France; the methodology was used to calibrate a hydrogeological model of the contaminants' migration and degradation. The existence of strong reducing conditions in some parts of the aquifer is first determined by measuring in situ the redox potential and dissolved oxygen, dissolved ferrous iron and chloride concentrations. Electrical resistivity imaging and electromagnetic mapping, using the Slingram method, are then used to determine the shape of the pollutant plume. A decreasing empirical exponential relation between measured chloride concentrations in the water and aquifer electrical resistivity is observed; the resistivity formation factor calculated at a few points also shows a major contribution of chloride concentration in the resistivity of the saturated porous medium. MODFLOW software and MT3D99 first-order parent-daughter chain reaction and the RT3D aerobic-anaerobic model for tetrachloroethene (PCE)/trichloroethene (TCE) dechlorination are finally used for a first attempt at modeling the degradation of the chlorinated ethenes. After calibration, the distribution of the chlorinated ethenes and their degradation products simulated with the model approximately reflects the mean measured values in the observation wells, confirming the data-derived image of the plume.

  17. The geochemical transformation of soils by agriculture and its dependence on soil erosion: An application of the geochemical mass balance approach.

    PubMed

    Yoo, Kyungsoo; Fisher, Beth; Ji, Junling; Aufdenkampe, Anthony; Klaminder, Jonatan

    2015-07-15

    Agricultural activities alter elemental budgets of soils and thus their long-term geochemical development and suitability for food production. This study examined the utility of a geochemical mass balance approach that has been frequently used for understanding geochemical aspect of soil formation, but has not previously been applied to agricultural settings. Protected forest served as a reference to quantify the cumulative fluxes of Ca, P, K, and Pb at a nearby tilled crop land. This comparison was made at two sites with contrasting erosional environments: relatively flat Coastal Plain in Delaware vs. hilly Piedmont in Pennsylvania. Mass balance calculations suggested that liming not only replenished the Ca lost prior to agricultural practice but also added substantial surplus at both sites. At the relatively slowly eroding Coastal Plain site, the agricultural soil exhibited enrichment of P and less depletion of K, while both elements were depleted in the forest soil. At the rapidly eroding Piedmont site, erosion inhibited P enrichment. In similar, agricultural Pb contamination appeared to have resulted in Pb enrichment in the relatively slowly eroding Coastal Plain agricultural soil, while not in the rapidly eroding Piedmont soils. We conclude that agricultural practices transform soils into a new geochemical state where current levels of Ca, P, and Pb exceed those provided by the local soil minerals, but such impacts are significantly offset by soil erosion. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Geochemical Characterization of the Upper and Middle Floridan Aquifer System, South Florida

    NASA Astrophysics Data System (ADS)

    Mirecki, J.; Richardson, E.; Bennett, M.; Hendel, J.

    2008-05-01

    Our study focus is to characterize the water quality and geochemical environment of the Floridan Aquifer System (FAS) throughout the regional flowpath. A synoptic survey of 21 wells (n=15, upper FAS; n=6 middle FAS) was supplemented by additional samples (n=11) obtained during exploratory well development at 4 aquifer storage recovery (ASR) pilot sites. Synoptic survey samples were analyzed intensively, yielding a dataset that consists of major and trace dissolved constituents (including metals), stable isotopes (δ18O, δ13C, δD, δ34S in sulfate and sulfide), carbon species (carbonate alkalinity and organic carbon), uranium-series radionuclides, nutrients, and selected microbes and pathogens. The objectives of this study are three-fold: 1) to provide baseline water-quality and geochemical information prior to initiation of ASR activities that are part of the Comprehensive Everglades Restoration Plan; 2) to quantify the major controls on geochemical evolution along upper and middle FAS flowpaths using geochemical modeling methods; and 3) to identify areas where water- quality may limit the feasibility of ASR methods in the FAS. Preliminary interpretations water quality changes along the regional FAS flowpath can be summarized as follows. Concentrations of dissolved constituents increase from north to south along the flow path; generally, the upper FAS has lower total dissolved solids than the middle FAS at locations where well pairs were analyzed. The redox environment changes from oxic to strongly anoxic, very close to the recharge area. Redox measurements, dissolved iron, sulfide, and sulfur isotope data are consistent with sulfate-reducing conditions. Uranium-series isotope concentrations and activities generally are below regulatory criteria, with few exceptions in both the upper and middle FAS. Areas with greater radionuclide activity occur primarily at distal flowpath locations or at the coast.

  19. Geochemical effects on the behavior of LLW radionuclides in soil/groundwater environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupka, K.M.; Sterne, R.J.

    1995-12-31

    Assessing the migration potential of radionuclides leached from low-level radioactive waste (LLW) and decommissioning sites necessitates information on the effects of sorption and precipitation on the concentrations of dissolved radionuclides. Such an assessment requires that the geochemical processes of aqueous speciation, complexation, oxidation/reduction, and ion exchange be taken into account. The Pacific Northwest National Laboratory (PNNL) is providing technical support to the U.S. Nuclear Regulatory Commission (NRC) for defining the solubility and sorption behavior of radionuclides in soil/ground-water environments associated with engineered cementitious LLW disposal systems and decommissioning sites. Geochemical modeling is being used to predict solubility limits for radionuclidesmore » under geochemical conditions associated with these environments. The solubility limits are being used as maximum concentration limits in performance assessment calculations describing the release of contaminants from waste sources. Available data were compiled regarding the sorption potential of radionuclides onto {open_quotes}fresh{close_quotes} cement/concrete where the expected pH of the cement pore waters will equal to or exceed 10. Based on information gleaned from the literature, a list of preferred minimum distribution coefficients (Kd`s) was developed for these radionuclides. The K{sub d} values are specific to the chemical environments associated with the evolution of the compositions of cement/concrete pore waters.« less

  20. Preliminary Reactive Geochemical Transport Modeling Study on Changes in Water Chemistry Induced by CO2 Injection at Frio Pilot Test Site

    NASA Astrophysics Data System (ADS)

    Xu, T.; Kharaka, Y.; Benson, S.

    2006-12-01

    A total of 1600 tons of CO2 were injected into the Frio ~{!0~}C~{!1~} sandstone layer at a depth of 1500 m over a period of 10 days. The pilot, located near Dayton, Texas, employed one injection well and one observation well, separated laterally by about 30 m. Each well was perforated over 6 m in the upper portion of the 23-m thick sandstone. Fluid samples were taken from both wells before, during, and after the injection. Following CO2 breakthrough, observations indicate drops in pH (6.5 to 5.7), pronounced increases in concentrations of HCO3- (100 to 3000 mg/L), in Fe (30 to 1100), and dissolved organic carbon. Numerical modeling was used in this study to understand changes of aqueous HCO3- and Fe caused by CO2 injection. The general multiphase reactive geochemical transport simulator TOUGHREACT was used, which includes new fluid property module ECO2N with an accurate description of the thermophysical properties of mixtures of water, brine, and CO2 at conditions of interest for CO2 storage. A calibrated 1-D radial well flow model was employed for the present reactive geochemical transport simulations. Mineral composition used was taken from literatures relevant to Frio sandstone. Increases in HCO3- concentration were well reproduced by an initial simulation. Several scenarios were used to capture increases in Fe concentration including (1) dissolution of carbonate minerals, (2) dissolution of iron oxyhydroxides, (3) de-sorption of previously coated Fe. Future modeling, laboratory and field investigations are proposed to better understand the CO2-brine-mineral interactions at the Frio site. Results from this study could have broad implication for subsurface storage of CO2 and potential water quality impacts.

  1. Modelling of the petroleum formation in the Mahakam sediments (Indonesia): Organic geochemical controls of the results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosse, E.; Burris, J.; Ouidin, J.L.

    1990-06-01

    Since the Miocene, the delta of the Mahakam River has accumulated thousands of meters of sediments in the eastern part of the Kutei Basin (Kalimantan, Indonesia). Source-rock candidates are the coals of the deltaic plain and several types of shales, mainly the delta front/prodelta area. Organic matter basically derives from higher plants, but each source facies presents important intrinsic variations of petroleum potential. These variations are overprinted by subsequent maturation trends. Geochemical and petrographical data are integrated on the general framework provided by a new synthetic interpretation of the sedimentary sequences, relying upon the concepts of seismic stratigraphy. From coremore » samples at a given level of maturation, the variations of several organic parameters are discussed in relation to the depositional paleoenvironment and to the possible precursors. 1D and 2D numerical routines are used to reconstruct the maturation history of source rocks. These tools are based upon a kinetic modeling of kerogen cracking. Model outputs are compared with observed maturation trends. The understanding of the initial organic facies distribution provides precise constraints in the selection of a homogenous samples set for this comparison purpose.« less

  2. Model-Based Analysis of the Role of Biological, Hydrological and Geochemical Factors Affecting Uranium Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2011-01-24

    Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitancemore » of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive

  3. Geochemical sampling in arid environments by the U.S. Geological Survey

    USGS Publications Warehouse

    Hinkle, Margaret E.

    1988-01-01

    The U.S. Geological Survey (USGS) is responsible for the geochemical evaluations used for mineral resource assessments of large tracts of public lands in the Western United States. Many of these lands are administered by the Bureau of Land Management (BLM) and are studied to determine their suitability or nonsuitability for wilderness designation. Much of the Western United States is arid or semiarid. This report discusses various geochemical sample media that have been used for evaluating areas in arid environments and describes case histories in BLM wilderness study areas in which stream-sediment and heavy-mineral-concentrate sample media were compared. As a result of these case history studies, the nonmagnetic fraction of panned heavy-mineral concentrates was selected as the most effective medium for reconnaissance geochemical sampling for resources other than gold, in arid areas. Nonmagnetic heavy-mineral-concentrate samples provide the primary analytical information currently used in geochemical interpretations of mineral resource potential assessment of BLM lands.

  4. A geochemical and geophysical reappraisal to the significance of the recent unrest at Campi Flegrei caldera (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Moretti, Roberto; De Natale, Giuseppe; Troise, Claudia

    2017-03-01

    Volcanic unrest at calderas involves complex interaction between magma, hydrothermal fluids, and crustal stress and strain. Campi Flegrei caldera (CFc), located in the Naples (Italy) area and characterized by the highest volcanic risk on Earth for the extreme urbanization, undergoes unrest phenomena involving several meters of uplift and intense shallow microseismicity since several decades. Despite unrest episodes display in the last decade only moderate ground deformation and seismicity, current interpretations of geochemical data point to a highly pressurized hydrothermal system. We show that at CFc, the usual assumption of vapor-liquid coexistence in the fumarole plumes leads to largely overestimated hydrothermal pressures and, accordingly, interpretations of elevated unrest. By relaxing unconstrained geochemical assumptions, we infer an alternative model yielding better agreement between geophysical and geochemical observations. The model reconciles discrepancies between what observed (1) for two decades since the 1982-1984 large unrest, when shallow magma was supplying heat and fluids to the hydrothermal system, and (2) in the last decade. Compared to the 1980's unrest, the post-2005 phenomena are characterized by much lower aquifers overpressure and magmatic involvement, as indicated by geophysical data and despite large changes in geochemical indicators. Our interpretation points out a model in which shallow sills, intruded during 1969-1984, have completely cooled, so that fumarole emissions are affected now by deeper, CO2-richer, magmatic gases producing the modest heating and overpressure of the hydrothermal system. Our results have important implications on the short-term eruption hazard assessment and on the best strategies for monitoring and interpreting geochemical data.Plain Language SummaryCampi Flegrei is one of the most dangerous volcanoes on Earth. Last eruption occurred in 1538 but since decades it</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040089135&hterms=bicarbonate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbicarbonate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040089135&hterms=bicarbonate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbicarbonate"><span>Comments on the BLAG <span class="hlt">model</span>: the carbonate-silicate <span class="hlt">geochemical</span> cycle and its effect on atmospheric carbon dioxide over the past 100 million years</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kasting, J. F.</p> <p>1984-01-01</p> <p>A self-consistent method of determining initial conditions for the <span class="hlt">model</span> presented by Berner, Lasaga, and Garrels (1983) (henceforth, the BLAG <span class="hlt">model</span>) is derived, based on the assumption that the CO2 <span class="hlt">geochemical</span> cycle was in steady state at t = -100 my (million years). This initialization procedure leads to a dissolved magnesium concentration higher than that calculated by Berner, Lasaga, and Garrels and to a low ratio of dissolved calcium to bicarbonate prior to 60 my ago. The latter prediction conflicts with the geologic record of evaporite deposits, which requires that this ratio remain greater than 0.5. The contradiction is probably caused by oversimplifications in the BLAG <span class="hlt">model</span>, such as the neglect of the cycles of organic carbon and sulfur.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850045852&hterms=bicarbonate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbicarbonate','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850045852&hterms=bicarbonate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbicarbonate"><span>Comments on the BLAG <span class="hlt">model</span> - The carbonate-silicate <span class="hlt">geochemical</span> cycle and its effect on atmospheric carbon dioxide over the past 100 million years</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kasting, J. F.</p> <p>1984-01-01</p> <p>A self-consistent method of determining initial conditions for the <span class="hlt">model</span> presented by Berner, Lasaga, and Garrels (1983) (henceforth, the BLAG <span class="hlt">model</span>) is derived, based on the assumption that the CO2 <span class="hlt">geochemical</span> cycle was in steady state at t = -100 m.y. (million years). This initialization procedure leads to a dissolved magnesium concentration higher than that calculated by Berner, Lasaga, and Garrels and to a low ratio of dissolved calcium to bicarbonate prior to 60 m.y. ago. The latter prediction conflicts with the geologic record of evaporite deposits, which requires that this ratio remain greater than 0.5. The contradiction is probably caused by oversimplifications in the BLAG <span class="hlt">model</span>, such as the neglect of the cycles of organic carbon and sulfur.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1400022-evaluation-co-fluid-rock-interaction-enhanced-geothermal-systems-field-scale-geochemical-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1400022-evaluation-co-fluid-rock-interaction-enhanced-geothermal-systems-field-scale-geochemical-simulations"><span>Evaluation of CO 2 -Fluid-Rock Interaction in Enhanced Geothermal Systems: Field-Scale <span class="hlt">Geochemical</span> Simulations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pan, Feng; McPherson, Brian J.; Kaszuba, John</p> <p></p> <p>Recent studies suggest that using supercritical CO 2 (scCO 2 ) instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS) may improve energy extraction. While CO 2 -fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. <span class="hlt">Geochemical</span> impacts of CO 2 as a working fluid (“CO 2 -EGS”) compared to those for water as a working fluid (H 2 O-EGS) are needed. The primary objectives of this study are (1) constraining <span class="hlt">geochemical</span> processes associated with CO 2 -fluid-rock interactions undermore » the high pressures and temperatures of a typical CO 2 -EGS site and (2) comparing <span class="hlt">geochemical</span> impacts of CO 2 -EGS to <span class="hlt">geochemical</span> impacts of H 2 O-EGS. The St. John’s Dome CO 2 -EGS research site in Arizona was adopted as a case study. A 3D <span class="hlt">model</span> of the site was developed. Net heat extraction and mass flow production rates for CO 2 -EGS were larger compared to H 2 O-EGS, suggesting that using scCO 2 as a working fluid may enhance EGS heat extraction. More aqueous CO 2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO 2 as a working fluid. It indicates that <span class="hlt">geochemical</span> processes of scCO 2 -rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1400022-evaluation-co-fluid-rock-interaction-enhanced-geothermal-systems-field-scale-geochemical-simulations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1400022-evaluation-co-fluid-rock-interaction-enhanced-geothermal-systems-field-scale-geochemical-simulations"><span>Evaluation of CO 2 -Fluid-Rock Interaction in Enhanced Geothermal Systems: Field-Scale <span class="hlt">Geochemical</span> Simulations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Pan, Feng; McPherson, Brian J.; Kaszuba, John</p> <p>2017-01-01</p> <p>Recent studies suggest that using supercritical CO 2 (scCO 2 ) instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS) may improve energy extraction. While CO 2 -fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. <span class="hlt">Geochemical</span> impacts of CO 2 as a working fluid (“CO 2 -EGS”) compared to those for water as a working fluid (H 2 O-EGS) are needed. The primary objectives of this study are (1) constraining <span class="hlt">geochemical</span> processes associated with CO 2 -fluid-rock interactions undermore » the high pressures and temperatures of a typical CO 2 -EGS site and (2) comparing <span class="hlt">geochemical</span> impacts of CO 2 -EGS to <span class="hlt">geochemical</span> impacts of H 2 O-EGS. The St. John’s Dome CO 2 -EGS research site in Arizona was adopted as a case study. A 3D <span class="hlt">model</span> of the site was developed. Net heat extraction and mass flow production rates for CO 2 -EGS were larger compared to H 2 O-EGS, suggesting that using scCO 2 as a working fluid may enhance EGS heat extraction. More aqueous CO 2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO 2 as a working fluid. It indicates that <span class="hlt">geochemical</span> processes of scCO 2 -rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1412910','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1412910"><span>Experimental insights into <span class="hlt">geochemical</span> changes in hydraulically fractured Marcellus Shale</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.</p> <p></p> <p>Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24-48 h) fluid enrichment of certainmore » elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. <span class="hlt">Geochemical</span> <span class="hlt">modeling</span> of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on <span class="hlt">geochemical</span> reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding <span class="hlt">geochemical</span> processes that control the composition of produced water from unconventional shales.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1412910-experimental-insights-geochemical-changes-hydraulically-fractured-marcellus-shale','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1412910-experimental-insights-geochemical-changes-hydraulically-fractured-marcellus-shale"><span>Experimental insights into <span class="hlt">geochemical</span> changes in hydraulically fractured Marcellus Shale</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Marcon, Virginia; Joseph, Craig; Carter, Kimberly E.; ...</p> <p>2016-11-09</p> <p>Hydraulic fracturing applied to organic-rich shales has significantly increased the recoverable volume of methane available for U.S. energy consumption. Fluid-shale reactions in the reservoir may affect long-term reservoir productivity and waste management needs through changes to fracture mineral composition and produced fluid chemical composition. We performed laboratory experiments with Marcellus Shale and lab-generated hydraulic fracturing fluid at elevated pressures and temperatures to evaluate mineral reactions and the release of trace elements into solution. Results from the experiment containing fracturing chemicals show evidence for clay and carbonate dissolution, secondary clay and anhydrite precipitation, and early-stage (24-48 h) fluid enrichment of certainmore » elements followed by depletion in later stages (i.e. Al, Cd, Co, Cr, Cu, Ni, Sc, Zn). Other elements such as As, Fe, Mn, Sr, and Y increased in concentration and remained elevated throughout the duration of the experiment with fracturing fluid. <span class="hlt">Geochemical</span> <span class="hlt">modeling</span> of experimental fluid data indicates primary clay dissolution, and secondary formation of smectites and barite, after reaction with fracturing fluid. Changes in aqueous organic composition were observed, indicating organic additives may be chemically transformed or sequestered by the formation after hydraulic fracturing. The NaCl concentrations in our fluids are similar to measured concentrations in Marcellus Shale produced waters, showing that these experiments are representative of reservoir fluid chemistries and can provide insight on <span class="hlt">geochemical</span> reactions that occur in the field. These results can be applied towards evaluating the evolution of hydraulically-fractured reservoirs, and towards understanding <span class="hlt">geochemical</span> processes that control the composition of produced water from unconventional shales.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/59942','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/59942"><span><span class="hlt">Geochemical</span> survey of the Blood Mountain Roadless Area, Union and Lumpkin counties, Georgia</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Koeppen, Robert P.; Nelson, Arthur E.</p> <p>1989-01-01</p> <p>The U.S. Geological Survey (USGS) made a reconnaissance <span class="hlt">geochemical</span> survey of the Blood Mountain Roadless Area to search for unexposed mineral deposits which might be recognized by a <span class="hlt">geochemical</span> signature in the abundance of distribution patterns of trace elements. Forty five fine-grained stream-sediment samples and 45 panned-concentrate samples were collected in the Blood Mountain study area (fig. 1). A.E. Nelson, in conjunction with detailed geologic mapping, collected 13 rock-chip samples for <span class="hlt">geochemical</span> analysis, in addition to a large number of hand specimins for thin-section study. Nelson's geologic study (1983), combined with this <span class="hlt">geochemical</span> survey, provide the basis for our mineral-resource assessment of the Blood Mountain Roadless Area (Koeppen and others, 1983).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H41C1042C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H41C1042C"><span>Integrating <span class="hlt">Geochemical</span> Reactions with a Particle-Tracking Approach to Simulate Nitrogen Transport and Transformation in Aquifers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cui, Z.; Welty, C.; Maxwell, R. M.</p> <p>2011-12-01</p> <p>Lagrangian, particle-tracking <span class="hlt">models</span> are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking <span class="hlt">models</span> are capable of simulating <span class="hlt">geochemical</span> reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order <span class="hlt">geochemical</span> reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is <span class="hlt">modeled</span> by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are <span class="hlt">modeled</span> by coupling multiple Monod equations with other <span class="hlt">geochemical</span> reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical <span class="hlt">models</span> will be presented in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/981748','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/981748"><span>Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by <span class="hlt">modeling</span> of hydrologic and <span class="hlt">geochemical</span> fluxes</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dontsova, K.; Steefel, C.I.; Desilets, S.</p> <p>2009-07-15</p> <p>A reactive transport <span class="hlt">geochemical</span> <span class="hlt">modeling</span> study was conducted to help predict the mineral transformations occurring over a ten year time-scale that are expected to impact soil hydraulic properties in the Biosphere 2 (B2) synthetic hillslope experiment. The <span class="hlt">modeling</span> sought to predict the rate and extent of weathering of a granular basalt (selected for hillslope construction) as a function of climatic drivers, and to assess the feedback effects of such weathering processes on the hydraulic properties of the hillslope. Flow vectors were imported from HYDRUS into a reactive transport code, CrunchFlow2007, which was then used to <span class="hlt">model</span> mineral weathering coupled tomore » reactive solute transport. Associated particle size evolution was translated into changes in saturated hydraulic conductivity using Rosetta software. We found that flow characteristics, including velocity and saturation, strongly influenced the predicted extent of incongruent mineral weathering and neo-phase precipitation on the hillslope. Results were also highly sensitive to specific surface areas of the soil media, consistent with surface reaction controls on dissolution. Effects of fluid flow on weathering resulted in significant differences in the prediction of soil particle size distributions, which should feedback to alter hillslope hydraulic conductivities.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SGeo...33..211M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SGeo...33..211M"><span>Targeting of Gold Deposits in Amazonian Exploration Frontiers using Knowledge- and Data-Driven Spatial <span class="hlt">Modeling</span> of Geophysical, <span class="hlt">Geochemical</span>, and Geological Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magalhães, Lucíola Alves; Souza Filho, Carlos Roberto</p> <p>2012-03-01</p> <p>This paper reports the application of weights-of-evidence, artificial neural networks, and fuzzy logic spatial <span class="hlt">modeling</span> techniques to generate prospectivity maps for gold mineralization in the neighborhood of the Amapari Au mine, Brazil. The study area comprises one of the last Brazilian mineral exploration frontiers. The Amapari mine is located in the Maroni-Itaicaiúnas Province, which regionally hosts important gold, iron, manganese, chromite, diamond, bauxite, kaolinite, and cassiterite deposits. The Amapari Au mine is characterized as of the orogenic gold deposit type. The highest gold grades are associated with highly deformed rocks and are concentrated in sulfide-rich veins mainly composed of pyrrhotite. The data used for the generation of gold prospectivity <span class="hlt">models</span> include aerogeophysical and geological maps as well as the gold content of stream sediment samples. The prospectivity maps provided by these three methods showed that the Amapari mine stands out as an area of high potential for gold mineralization. The prospectivity maps also highlight new targets for gold exploration. These new targets were validated by means of detailed maps of gold <span class="hlt">geochemical</span> anomalies in soil and by fieldwork. The identified target areas exhibit good spatial coincidence with the main soil <span class="hlt">geochemical</span> anomalies and prospects, thus demonstrating that the delineation of exploration targets by analysis and integration of indirect datasets in a geographic information system (GIS) is consistent with direct prospecting. Considering that work of this nature has never been developed in the Amazonian region, this is an important example of the applicability and functionality of geophysical data and prospectivity analysis in regions where geologic and metallogenetic information is scarce.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=61163&keyword=hotel&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=61163&keyword=hotel&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>IRON PRECIPITATION AND ARSENIC ATTENUATION - ASSESSMENT OF ARSENIC NATURAL ATTENUATION OF THE SUBSURFACE USING A <span class="hlt">GEOCHEMICAL</span> <span class="hlt">MODEL</span> (PHREEQC)</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Laboratory experiments show that amorphous and poorly crystallized ferric iron hydroxides have much greater capacity to attenuate arsenic compared to clays and other aluminosilicate minerals. Studies (e.g., Lin and Qvarfort, 1996) showed that a sudden change in <span class="hlt">geochemical</span> condit...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/59943','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/59943"><span><span class="hlt">Geochemical</span> survey of the Chattahoochee Roadless Area, Towns, Union, and White counties, Georgia</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Koeppen, Robert P.; Nelson, Arthur E.</p> <p>1989-01-01</p> <p>Th U.S. Geological Survey made a reconnaissance <span class="hlt">geochemical</span> survey of the Chattahoochee Roadless Area (fig. 1) to search for unexposed mineral deposits which might be recognized by a <span class="hlt">geochemical</span> signature in the abundance or distribution patterns of trace elements. As part of a regional <span class="hlt">geochemical</span> reconnaissance, M/ Hurst (University of Georgia) collected 51 fine-grained stream-sediment samples and 45 planned-concentrate samples  of alluvial gravels in the Chattahoochee study area (see figure 1). A.E. Nelson, in conjunction with detailed geologic mapping (Nelso, 1983), collected 10 rock-chip samples for <span class="hlt">geochemical</span> analysis in addition to a large number of hand specimens for thin-section study. In order to evaluate isolated anomalies indicated by the earlier sampling, R.P. Koeppen, D.M. Sutphin, and P.D. Schruben collected several additional panned-concentrate, stream-sediment, and rock samples from the area in 1986. Both the geologic study by Nelson (1983) and this <span class="hlt">geochemical</span> survey provide the basis for our mineral-resource assessment of the Chattahoochee Roadless Area (Nelson and others, 1983). </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1982/0791/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1982/0791/report.pdf"><span><span class="hlt">Geochemical</span> orientation for mineral exploration in the Hashemite Kingdom of Jordan</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Overstreet, W.C.; Grimes, D.J.; Seitz, J.F.</p> <p>1982-01-01</p> <p>This report is a supplement to previous accounts of <span class="hlt">geochemical</span> exploration conducted in the Hashemite Kingdom of Jordan by the Natural Resources Authority of the Royal Government of Jordan and the U.S. Geological Survey. The field work on which this report is based was sponsored by the U.S. Agency for International Development, U.S. Department of State. Procedures used in collecting various kinds of rocks, ores, slags, eluvial and alluvial sediments, heavy-mineral concentrates, and organic materials for use as <span class="hlt">geochemical</span> sample media are summarized, as are the laboratory procedures followed for the analysis of these sample materials by semiquantitative spectrographic, atomic absorption, fluorometric, and X-ray diffraction methods. <span class="hlt">Geochemical</span> evaluations of the possibilities for economic mineral deposits in certain areas are presented. The results of these preliminary investigations open concepts for further use in <span class="hlt">geochemical</span> exploration in the search for metallic mineral deposits in Jordan. Perhaps the most desirable new activity would be hydrogeochemical exploration for uranium and base metals, accompanied by interpretation of such remote-sensing data as results of airborne radiometric surveys and computer-enhanced LANDSAT imagery. For more conventional approaches to <span class="hlt">geochemical</span> exploration, however, several fundamental problems regarding proper choice of <span class="hlt">geochemical</span> sample media for different geologic and geographic parts of the Country must be solved before effective surveys can be made. The present results also show that such common <span class="hlt">geochemical</span> exploration techniques as the determination of the trace-element contents of soils, plant ash, and slags have direct application also toward the resolution of several archaeological problems in Jordan. These include the relation of trace-elements chemistry of local soils to the composition of botanic remains, the trace-elements composition of slags to the technological development of the extractive metallurgy of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26999082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26999082"><span>Experimental Investigation and Simplistic <span class="hlt">Geochemical</span> <span class="hlt">Modeling</span> of CO₂ Mineral Carbonation Using the Mount Tawai Peridotite.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rahmani, Omeid; Highfield, James; Junin, Radzuan; Tyrer, Mark; Pour, Amin Beiranvand</p> <p>2016-03-16</p> <p>In this work, the potential of CO₂ mineral carbonation of brucite (Mg(OH)2) derived from the Mount Tawai peridotite (forsterite based (Mg)₂SiO4) to produce thermodynamically stable magnesium carbonate (MgCO3) was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor) were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO₃ is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically <span class="hlt">modeled</span> the process by which CO₂ gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and <span class="hlt">geochemical</span> <span class="hlt">modeling</span>, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year) with the bulk of the carbon partitioning into magnesite and that very little remains in solution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1209504-geochemical-monitoring-considerations-futuregen-project','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1209504-geochemical-monitoring-considerations-futuregen-project"><span><span class="hlt">Geochemical</span> Monitoring Considerations for the FutureGen 2.0 Project</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Amonette, James E.; Johnson, Timothy A.; Spencer, Clayton F.; ...</p> <p>2014-12-31</p> <p><span class="hlt">Geochemical</span> monitoring is an essential component of a suite of monitoring technologies designed to evaluate CO2 mass balance and detect possible loss of containment at the FutureGen 2.0 geologic sequestration site near Jacksonville, IL. This presentation gives an overview of the potential <span class="hlt">geochemical</span> approaches and tracer technologies that were considered, and describes the evaluation process by which the most cost-effective and robust of these were selected for implementation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V43D0551B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V43D0551B"><span>From mantle peridotites to hybrid troctolites: Textural, structural and <span class="hlt">geochemical</span> evolution during multi-stage melt-rock interaction history</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Basch, V.; Rampone, E.; Crispini, L.; Ferrando, C.; Ildefonse, B.; Godard, M.</p> <p>2017-12-01</p> <p>Recent studies investigate the replacive formation of hybrid troctolites from mantle peridotites after multiple stages of melt-rock reactions. However, none of these studies are conducted in a field-controlled geological setting displaying the clear evolution from peridotite to dunite to troctolite. We investigated the Mt.Maggiore and Erro Tobbio ophiolitic peridotites. They both preserve structural and chemical records of two distinct melt-rock interaction stages, from a reactive melt percolation at spinel facies to plagioclase-bearing melt impregnation at shallower lithospheric depths. We performed EBSD and in situ <span class="hlt">geochemical</span> analyses to document the textural, structural and <span class="hlt">geochemical</span> variations of the olivine matrix during melt-rock interactions and the associated evolution from peridotite to dunite to troctolite. The olivine-saturated reactive melt percolation leads to the dissolution of mantle pyroxenes in peridotite, and to the formation of replacive dunite. At shallower level, melt impregnation leads to the crystallization of plagioclase in the dunite, and to the formation of hybrid troctolite. The latter is characterized by textural, structural and <span class="hlt">geochemical</span> features acquired during dunitization and impregnation processes. We documented a textural evolution of the olivine matrix (decrease in grain area, tortuosity and aspect ratio) during impregnation, with a progressive corrosion of mantle olivines by a reactive melt. As a result, olivine in the hybrid troctolites occurs both as coarse deformed relicts and disrupted undeformed grains. During melt-rock interactions, the variation in olivine Crystallographic Preferred Orientation is related to the local melt/rock ratio involved in the percolation process. At high melt/rock ratio, a change from axial-[100] to axial-[010] is observed, with the disaggregation of the solid matrix. REE-enriched compositions are observed in olivine of dunites and troctolites. A <span class="hlt">geochemical</span> <span class="hlt">modeling</span> of melt-rock interactions</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21392427-detecting-planetary-geochemical-cycles-exoplanets-atmospheric-signatures-case-so-sub','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21392427-detecting-planetary-geochemical-cycles-exoplanets-atmospheric-signatures-case-so-sub"><span>DETECTING PLANETARY <span class="hlt">GEOCHEMICAL</span> CYCLES ON EXOPLANETS: ATMOSPHERIC SIGNATURES AND THE CASE OF SO{sub 2}</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kaltenegger, L.; Sasselov, D., E-mail: lkaltene@cfa.harvard.ed</p> <p>2010-01-10</p> <p>We study the spectrum of a planetary atmosphere to derive detectable features in low resolution of different global <span class="hlt">geochemical</span> cycles on exoplanets-using the sulfur cycle as our example. We derive low-resolution detectable features for first generation space- and ground-based telescopes as a first step in comparative planetology. We assume that the surfaces and atmospheres of terrestrial exoplanets (Earth-like and super-Earths) will most often be dominated by a specific <span class="hlt">geochemical</span> cycle. Here we concentrate on the sulfur cycle driven by outgassing of SO{sub 2} and H{sub 2}S followed by their transformation to other sulfur-bearing species, which is clearly distinguishable from themore » carbon cycle, which is driven by outgassing of CO{sub 2}. Due to increased volcanism, the sulfur cycle is potentially the dominant global <span class="hlt">geochemical</span> cycle on dry super-Earths with active tectonics. We calculate planetary emission, reflection, and transmission spectrum from 0.4 mum to 40 mum with high and low resolution to assess detectable features using current and Archean Earth <span class="hlt">models</span> with varying SO{sub 2} and H{sub 2}S concentrations to explore reducing and oxidizing habitable environments on rocky planets. We find specific spectral signatures that are observable with low resolution in a planetary atmosphere with high SO{sub 2} and H{sub 2}S concentration. Therefore, first generation space- and ground-based telescopes can test our understanding of <span class="hlt">geochemical</span> cycles on rocky planets and potentially distinguish planetary environments dominated by the carbon and sulfur cycles.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15...22B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15...22B"><span><span class="hlt">Geochemical</span> Origin of Biological Molecules</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bassez, Marie-Paule</p> <p>2013-04-01</p> <p>A <span class="hlt">model</span> for the <span class="hlt">geochemical</span> origin of biological molecules is presented. Rocks such as peridotites and basalts, which contain ferromagnesian minerals, evolve in the presence of water. Their hydrolysis is an exothermic reaction which generates heat and a release of H2 and of minerals with modified structures. The hydrogen reacts with the CO2 embedded inside the rock or with the CO2 of the environment to form CO in an hydrothermal process. With the N2 of the environment, and with an activation source arising from cosmic radiation, ferromagnesian rocks might evolve towards the abiotic formation of biological molecules, such as peptide like macromolecules which produce amino acids after acid hydrolysis. The reactions concerned are described. The production of hydrothermal CO is discussed in geological sites containing ferromagnesian silicate minerals and the low intensity of the Earth's magnetic field during Paleoarchaean Era is also discussed. It is concluded that excitation sources arising from cosmic radiation were much more abundant during Paleoarchaean Era and that macromolecular structures of biological relevance might consequently form during Archaean Eon, as a product of the chemical evolution of the rocks and of their mineral contents. This synthesis of abiotically formed biological molecules is consecutively discussed for meteorites and other planets such as Mars. This <span class="hlt">model</span> for the <span class="hlt">geochemical</span> origin of biological molecules has first been proposed in 2008 in the context of reactions involving catalysers such as kaolinite [Bassez 2008a] and then presented in conferences and articles [Bassez 2008b, 2009, 2012; Bassez et al. 2009a to 2012b]. BASSEZ M.P. 2008a Synthèse prébiotique dans les conditions hydrothermales, CNRIUT'08, Lyon 29-30/05/2008, Conf. and open access article:http://liris.cnrs.fr/~cnriut08/actes/ 29 mai 11h-12h40. BASSEZ M.P. 2008b Prebiotic synthesis under hydrothermal conditions, ISSOL'08, P2-6, Firenze-Italy, 24-29/08/2008. Poster at the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983csac.work...92T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983csac.work...92T"><span>Archean crust-mantle <span class="hlt">geochemical</span> differentiation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tilton, G. R.</p> <p></p> <p>Isotope measurements on carbonatite complexes and komatiites can provide information on the <span class="hlt">geochemical</span> character and <span class="hlt">geochemical</span> evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840012898','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840012898"><span>Archean crust-mantle <span class="hlt">geochemical</span> differentiation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tilton, G. R.</p> <p>1983-01-01</p> <p>Isotope measurements on carbonatite complexes and komatiites can provide information on the <span class="hlt">geochemical</span> character and <span class="hlt">geochemical</span> evolution of the mantle, including the sub-continental mantle. Measurements on young samples establish the validity of the method. These are based on Sr, Nd and Pb data from the Tertiary-Mesozoic Gorgona komatiite and Sr and Pb data from the Cretaceous Oka carbonatite complex. In both cases the data describe a LIL element-depleted source similar to that observed presently in MORB. Carbonatite data have been used to study the mantle beneath the Superior Province of the Canadian Shield one billion years (1 AE) ago. The framework for this investigation was established by Bell et al., who showed that large areas of the province appear to be underlain by LIL element-depleted mantle (Sr-85/Sr-86=0.7028) at 1 AE ago. Additionally Bell et al. found four complexes to have higher initial Sr ratios (Sr-87/Sr-86=0.7038), which they correlated with less depleted (bulk earth?) mantle sources, or possibly crustal contamination. Pb isotope relationships in four of the complexes have been studied by Bell et al.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeCoA.159..312K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeCoA.159..312K"><span>Acceptance of the 2014 <span class="hlt">Geochemical</span> Society Distinguished Service Award by Carla Koretsky</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koretsky, Carla</p> <p>2015-06-01</p> <p>I am deeply touched to have received the <span class="hlt">Geochemical</span> Society Distinguished Service Award. It was a great surprise when I received the notice that I had been chosen for the award. It has been a tremendous pleasure to work on behalf of student members of the <span class="hlt">Geochemical</span> Society, Japanese <span class="hlt">Geochemical</span> Society and the European Association of Geochemists to organize the student travel grants over the past few years. Certainly, this is not an effort that I undertook on my own. Many, many members of the GS, the JGS and the EAG generously donated their time and expertise to serve as reviewers for the many travel grant applicants we receive each year. Seth Davis, the GS Chief Operating Officer, spent countless hours helping to organize applications, the website, distribution of funds and many other aspects of the competition. Without Seth and the many expert reviewers, we could not run the travel grant program each year and provide this important financial support to allow more students to experience the Goldschmidt Conference. I also enjoyed my time as <span class="hlt">Geochemical</span> News co-editor, and I should point out that GN during those years was ably co-edited by Johnson Haas. It has been a pleasure to see Elements take off, and GN evolve into a timely source of important announcements and information about cutting-edge science since I stepped down as co-editor. I feel very fortunate to work with so many outstanding colleagues in the global <span class="hlt">geochemical</span> community, and I am a little embarrassed, and also very grateful, to have been selected for the <span class="hlt">Geochemical</span> Society Distinguished Service Award. Thank you!</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT....54..483R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT....54..483R"><span>Numerical <span class="hlt">modelling</span> of effective thermal conductivity for modified geomaterial using lattice element method</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rizvi, Zarghaam Haider; Shrestha, Dinesh; Sattari, Amir S.; Wuttke, Frank</p> <p>2018-02-01</p> <p>Macroscopic parameters such as effective thermal conductivity (ETC) is an important parameter which is affected by micro and meso level behaviour of particulate materials, and has been extensively examined in the past decades. In this paper, a new lattice based numerical <span class="hlt">model</span> is developed to predict the ETC of sand and modified high thermal <span class="hlt">backfill</span> material for energy transportation used for underground power cables. 2D and 3D simulations are performed to analyse and detect differences resulting from <span class="hlt">model</span> simplification. The thermal conductivity of the granular mixture is determined numerically considering the volume and the shape of the each constituting portion. The new numerical method is validated with transient needle measurements and the existing theoretical and semi empirical <span class="hlt">models</span> for thermal conductivity prediction sand and the modified <span class="hlt">backfill</span> material for dry condition. The numerical prediction and the measured values are in agreement to a large extent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890035508&hterms=rock+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drock%2Bcycle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890035508&hterms=rock+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drock%2Bcycle"><span><span class="hlt">Geochemical</span> cycles of atmospheric gases</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walker, J. C. G.; Drever, J. I.</p> <p>1988-01-01</p> <p>The processes that control the atmosphere and atmospheric changes are reviewed. The <span class="hlt">geochemical</span> cycles of water vapor, nitrogen, carbon dioxide, oxygen, and minor atmospheric constituents are examined. Changes in atmospheric chemistry with time are discussed using evidence from the rock record and analysis of the present atmosphere. The role of biological evolution in the history of the atmosphere and projected changes in the future atmosphere are considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2016/1028/ofr20161028.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2016/1028/ofr20161028.pdf"><span>Geologic and <span class="hlt">geochemical</span> results from boreholes drilled in Yellowstone National Park, Wyoming, 2007 and 2008</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jaworowski, Cheryl; Susong, David; Heasler, Henry; Mencin, David; Johnson, Wade; Conrey, Rick; Von Stauffenberg, Jennipher</p> <p>2016-06-01</p> <p>After drilling the seven PBO boreholes, cuttings were examined and selected for preparation of grain mounts, thin sections, and <span class="hlt">geochemical</span> analysis. Major ions and trace elements (including rare earth elements) of selected cuttings were determined by x-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS); the ICP-MS provided more precise trace-element analysis than XRF. A preliminary interpretation of the results of <span class="hlt">geochemical</span> analyses generally shows a correlation between borehole cuttings and previously mapped geology. The <span class="hlt">geochemical</span> data and borehole stratigraphy presented in this report provide a foundation for future petrologic, <span class="hlt">geochemical</span>, and geophysical studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910568K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910568K"><span><span class="hlt">Geochemical</span> simulation of fluid rock interactions to predict flowback water compostions during hydraulic fracturing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kühn, Michael; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.</p> <p>2017-04-01</p> <p>Black shales are a heterogeneous mixture of minerals, organic matter and formation water and little is actually known about the fluid-rock interactions during hydraulic fracturing and their effects on composition of flowback and produced water. <span class="hlt">Geochemical</span> simulations have been performed based on the analyses of "real" flowback water samples and artificial stimulation fluids from lab experiments with the aim to set up a chemical process <span class="hlt">model</span> for shale gas reservoirs. Prediction of flowback water compositions for potential or already chosen sites requires validated and parameterized <span class="hlt">geochemical</span> <span class="hlt">models</span>. For the software "Geochemist's Workbench" (GWB) data bases are adapted and amended based on a literature review. Evaluation of the system has been performed in comparison with the results from laboratory experiments. Parameterization was done in regard to field data provided. Finally, reaction path <span class="hlt">models</span> are applied for quantitative information about the mobility of compounds in specific settings. Our work leads to quantitative estimates of reservoir compounds in the flowback based on calibrations by laboratory experiments. Such information is crucial for the assessment of environmental impacts as well as to estimate human- and ecotoxicological effects of the flowback waters from a variety of natural gas shales. With a comprehensive knowledge about potential composition and mobility of flowback water, selection of water treatment techniques will become easier.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....7207F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....7207F"><span><span class="hlt">Geochemical</span> signals of progressive continental rupture in the Main Ethiopian Rift</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furman, T.; Bryce, J.; Yirgu, G.; Ayalew, D.; Cooper, L.</p> <p>2003-04-01</p> <p>Mafic volcanics of the Main Ethiopian Rift record the development of magmatic rift segments during continental extension. The Ethiopian Rift is one arm of a triple junction that formed above a Paleogene mantle plume, concurrent with eruption of flood basalts ca. 30 Ma across northern Ethiopian and Yemen. The geochemistry of Ethiopian Rift lavas thus provides insight into processes associated with the shift from mechanical (lithospheric) to magmatic (asthenospheric) segmentation in the transitional phase of continental rifting. Quaternary basalts from five volcanic centers representing three magmatic segments display along-axis <span class="hlt">geochemical</span> variations that likely reflect the degree of rifting and magma supply, which increase abruptly with proximity to the highly-extended Afar region. To first order, the <span class="hlt">geochemical</span> data indicate a decreasing degree of shallow-level fractionation and greater involvement of depleted or plume-like mantle source materials in basalts sampled closer to the Afar. These spatially controlled <span class="hlt">geochemical</span> signatures observed in contemporaneous basalts are similar to temporal variations documented in southern Ethiopia, where Quaternary lavas indicate a greater degree of crustal extension than those erupted at the onset of plume activity. Primitive Ethiopian Rift basalts have <span class="hlt">geochemical</span> signatures (e.g., Ce/Pb, La/Nb, Ba/Nb, Ba/Rb, U/Th) that overlap ocean island basalt compositions, suggesting involvement of sub-lithospheric source materials. The estimated depth of melting (65-75 km) is shallower than values obtained for young primitive mafic lavas from the Western Rift and southern Kenya as well as Oligocene Ethiopian flood basalts from the onset of plume-driven activity. Basalts from the Turkana region (N. Kenya) and Erta 'Ale (Danakil depression) reflect melting at shallower levels, corresponding to the greater degree of crustal extension in these provinces. Preliminary Sr and Nd isotopic data trend towards primitive earth values, consistent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DokES.477.1291K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DokES.477.1291K"><span><span class="hlt">Geochemical</span> typification of kimberlite and related rocks of the North Anabar region, Yakutia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kargin, A. V.; Golubeva, Yu. Yu.</p> <p>2017-11-01</p> <p>The results of <span class="hlt">geochemical</span> typification of kimberlites and related rocks (alneites and carbonatites) of the North Anabar region are presented with consideration of the <span class="hlt">geochemical</span> specification of their source and estimation of their potential for diamonds. The content of representative trace elements indicates the predominant contribution of an asthenospheric component (kimberlites and carbonatites) in their source, with a subordinate contribution of vein metasomatic formations containing Cr-diopside and ilmenite. A significant contribution of water-bearing potassium metasomatic parageneses is not recognized. According to the complex of <span class="hlt">geochemical</span> data, the studied rocks are not industrially diamondiferous.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.9719D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.9719D"><span>Coupling R and PHREEQC: an interactive and extensible environment for efficient programming of <span class="hlt">geochemical</span> <span class="hlt">models</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Lucia, Marco; Kühn, Michael</p> <p>2013-04-01</p> <p> manipulations and visualization in a powerful high level language, and benefiting from an enormous amount of third-party open source R extensions. The possibility to rapidly prototype complex algorithms involving <span class="hlt">geochemical</span> <span class="hlt">modelling</span> is in our opinion a huge advantage. A demonstration is given by the successful evaluation of a strategy to reduce the CPU-time needed to perform reactive transport simulations in a sequential coupling scheme. The idea is the "reduction" of the number of actual chemical simulations to perform at every time step, by searching for "duplicates" of each chemical simulations in the grid: such comparison involves typically a huge number of elements (one chemical simulation for grid element for time step) and a quite large number of variables (concentrations and mineral abundances). However, through the straightforward implementation of the prototype algorithm through the R/PHREEQC interface, we found out that the scan is extremely cost-effective in terms of CPU-time and typically allows a relevant speedup for simulations starting from a homogeneous or zone-homogeneous state. This speedup can even greatily exceed that of parallelization in some favorable but not unfrequent case. This feature should therefore be implemented in reactive transport simulators. References [1] Parkhurst D, Appelo C (1999) Users guide to PHREEQC (version 2). Tech. rep, U.S. Geological Survey. [2] Beyer C, Li D, De Lucia M, Kühn M, Bauer S (2012): <span class="hlt">Modelling</span> CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environ. Earth Sci., 67, 2, 573-588. [3] R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. [4] Kühn M, Münch U (2012) CLEAN: CO2 Large-Scale Enhanced Gas Recovery. GEOTECHNOLOGIEN Science Report No. 19. Series: Advanced. Technologies in Earth Sciences, 199 p, ISBN 978-3-642-31676-0.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024558','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024558"><span>A conceptual <span class="hlt">model</span> of the Mount Spurr magmatic system from seismic and <span class="hlt">geochemical</span> observations of the 1992 Crater Peak eruption sequence</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Power, J.; Jolly, A.; Nye, C.; Harbin, M.</p> <p>2002-01-01</p> <p>A conceptual <span class="hlt">model</span> of the geometry and dynamics of the Mount Spurr magmatic system is developed using seismic, <span class="hlt">geochemical</span>, and visual observations of the 1992 Crater Peak eruption sequence. The basis for this <span class="hlt">model</span> is a new classification of all located seismic events and results from prior studies of seismology, geology, geochemistry, and geophysics of the Mount Spurr area. Significant seismic features of the 1992 eruption sequence include (1) a distinct swarm of volcano-tectonic (VT) earthquakes in August 1991 directly beneath the Crater Peak vent, (2) a caldera-wide increase in VT earthquakes, lasting 7 months, which preceded the 27 June eruption, (3) two shallow swarms of VT earthquakes that occured on 5 June and 27 June, the latter immediately preceding the 27 June eruption, (4) a mix of VT, long-period (LP), and hybrid events at depths of 20-40 km, which began coincident with the onset of seismic unrest and reached a peak after eruptive activity ended, (5) a strong swarm of VT earthquakes that began as the 16-17 September eruption was ending, (6) a prominent swarm of VT earthquakes on 9-10 November at depths of 1 to 4 km beneath Crater Peak, and (7) a smaller swarm of VT earthquakes in late December 1992, which were located between 7 and 10 km depth. These seismic observations, combined with geological, <span class="hlt">geochemical</span>, and geophysical data and observations, suggest a deep magmatic source zone for Crater Peak andesites at depths of 20-40 km, a smaller mid-crustal storage zone at about 10 km depth, and a conduit that extends to the surface. We infer that the magmas erupted in 1992 were generated at depths of 20-40 km and rose to the mid-crustal storage zone that fed all three 1992 eruptions. The 1992 eruption sequence may have terminated when additional magma solidified at shallow depths.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037239','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037239"><span>Combining particle-tracking and <span class="hlt">geochemical</span> data to assess public supply well vulnerability to arsenic and uranium</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hinkle, S.R.; Kauffman, L.J.; Thomas, M.A.; Brown, C.J.; McCarthy, K.A.; Eberts, S.M.; Rosen, Michael R.; Katz, B.G.</p> <p>2009-01-01</p> <p>Flow-<span class="hlt">model</span> particle-tracking results and <span class="hlt">geochemical</span> data from seven study areas across the United States were analyzed using three statistical methods to test the hypothesis that these variables can successfully be used to assess public supply well vulnerability to arsenic and uranium. Principal components analysis indicated that arsenic and uranium concentrations were associated with particle-tracking variables that simulate time of travel and water fluxes through aquifer systems and also through specific redox and pH zones within aquifers. Time-of-travel variables are important because many <span class="hlt">geochemical</span> reactions are kinetically limited, and <span class="hlt">geochemical</span> zonation can account for different modes of mobilization and fate. Spearman correlation analysis established statistical significance for correlations of arsenic and uranium concentrations with variables derived using the particle-tracking routines. Correlations between uranium concentrations and particle-tracking variables were generally strongest for variables computed for distinct redox zones. Classification tree analysis on arsenic concentrations yielded a quantitative categorical <span class="hlt">model</span> using time-of-travel variables and solid-phase-arsenic concentrations. The classification tree <span class="hlt">model</span> accuracy on the learning data subset was 70%, and on the testing data subset, 79%, demonstrating one application in which particle-tracking variables can be used predictively in a quantitative screening-level assessment of public supply well vulnerability. Ground-water management actions that are based on avoidance of young ground water, reflecting the premise that young ground water is more vulnerable to anthropogenic contaminants than is old ground water, may inadvertently lead to increased vulnerability to natural contaminants due to the tendency for concentrations of many natural contaminants to increase with increasing ground-water residence time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMPP51C1138O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMPP51C1138O"><span>Cerium and Neodymium Isotope Fractionation in <span class="hlt">Geochemical</span> Samples</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohno, T.; Ishibashi, T.</p> <p>2014-12-01</p> <p>The study of naturally occurring isotopic variations of rare earth elements (REE) has a potentially significant influence in <span class="hlt">geochemical</span> research fields with other traditional studies of REE. One of the key features of REE are their chemical similarities and gradual changes of ionic radius, which may make the isotopic variation of REE a potential tool to understand the mechanisms of isotopic fractionation in nature. Among the REE, <span class="hlt">geochemical</span> and physicochemical features of Ce could be anomalous, because Ce could be present as the tetravalent (+IV) state as well as the common trivalent (+III) state of other REE. Since the oxidation state of Ce can change by reflecting the redox conditions of the environment, the measured differences in the degree of isotopic fractionation between Ce and other REE can provide unique information about the redox conditions. In this study, we developed a new analytical method to determine the mass-dependent isotopic fractionations of Ce and Nd in <span class="hlt">geochemical</span> samples. The reproducibility of the isotopic ratio measurements on 142Ce/140Ce, 146Nd/144Nd and 148Nd/144Nd were 0.08‰ (2SD, n=25), 0.06‰ (2SD, n=39) and 0.12‰ (2SD, n=39), respectively. The present technique was applied to determine the variations of the Ce and Nd isotopic ratios for five <span class="hlt">geochemical</span> reference materials (igneous rocks, JB-1a and JA-2; sedimentary rocks, JMn-1, JCh-1 and JDo-1). The resulting ratios for two igneous rocks (JB-1a and JA-2) and two sedimentary rocks (JMn-1 and JCh-1) did not vary significantly among the samples, whereas the Ce and Nd isotope ratios for the carbonate samples (JDo-1) were significantly higher than those for igneous and sedimentary rock samples. The 1:1 simple correlation between δ142Ce and δ146Nd indicates that there were no significant difference in the degree of isotopic fractionation between the Ce and Nd. This suggests that the isotopic fractionation for Ce found in the JDo-1 could be induced by physicochemical processes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017615','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017615"><span><span class="hlt">Geochemical</span> soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wenrich, K.J.; Aumente-Modreski, R. M.</p> <p>1994-01-01</p> <p>Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft). Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of <span class="hlt">geochemical</span> tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300-360 m (1000-1200 ft) below the plateau surface. Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate <span class="hlt">geochemical</span> survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes. Soil <span class="hlt">geochemical</span> surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent <span class="hlt">geochemical</span> survey. <span class="hlt">Geochemical</span> data from each collapse feature were plotted on single-element <span class="hlt">geochemical</span> maps and processed by multivariate factor analysis. To contrast the results between <span class="hlt">geochemical</span> surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DokES.479..408S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DokES.479..408S"><span>Isotope-<span class="hlt">Geochemical</span> Evidence for the Nature of Protolite Eclogite of the Kokchetav Massif (Kazakhstan)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shatsky, V. S.; Skuzovatov, S. Yu.; Ragozin, A. L.; Dril, S. I.</p> <p>2018-03-01</p> <p>In the present paper, the results of our isotope-<span class="hlt">geochemical</span> studies on eclogites of the ultrahighpressure metamorphic complex of the Kokchetav massif are reported. The fact that the distribution of nonmobile elements in most of the samples was close to that of E-type MORB basalts is shown by using <span class="hlt">geochemical</span> multielement diagrams normalized to N-MORB. Six samples were found to have a negative anomaly over niobium that may have resulted from contamination with crustal material. For eclogites of the Kokchetav massif, the 147Sm/144Nd ratio was found to range widely from 0.143 to 0.367. The ɛNd-values calculated for the age of the highly barometric stage of metamorphism (530 million years) varied from-10.3 to +8.1. Eclogites show a dispersion of <span class="hlt">model</span> ages from 1.95 billion years to 670 million years. On the graphs in the ɛNd( T)-87Sr/86Sr and ɛNd( T)- T coordinates, eclogites were shown to form trends that can be interpreted as a result of contamination of the eclogite protolith by the host rocks. Based on the data obtained, it is proposed that the basalts of rift zones that may have <span class="hlt">geochemical</span> characteristics of N-MORB basalts and at the same time may be contaminated by the continental crust may have served as proxies for eclogite protoliths of the Kokchetav massif.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/240887','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/240887"><span>Evolution in performance assessment <span class="hlt">modeling</span> as a result of regulatory review</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rowat, J.H.; Dolinar, G.M.; Stephens, M.E.</p> <p>1995-12-31</p> <p>AECL is planning to build the IRUS (Intrusion Resistant Underground Structure) facility for near-surface disposal of LLRW. The PSAR (preliminary safety assessment report) was subject to an initial regulatory review during mid-1992. The regulatory authority provided comments on many aspects of the safety assessment documentation including a number of questions on specific PA (Performance Assessment) <span class="hlt">modelling</span> assumptions. As a result of these comments as well as a separate detailed review of the IRUS disposal concept, changes were made to the conceptual and mathematical <span class="hlt">models</span>. The original disposal concept included a non-sorbing vault <span class="hlt">backfill</span>, with a strong reliance on the wasteformmore » as a barrier. This concept was altered to decrease reliance on the wasteform by replacing the original <span class="hlt">backfill</span> with a sand/clinoptilolite mix, which is a better sorber of metal cations. This change lead to changes in the PA <span class="hlt">models</span> which in turn altered the safety case for the facility. This, and other changes that impacted performance assessment <span class="hlt">modelling</span> are the subject of this paper.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018370','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018370"><span>A <span class="hlt">geochemical</span> atlas of North Carolina, USA</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Reid, J.C.</p> <p>1993-01-01</p> <p>A <span class="hlt">geochemical</span> atlas of North Carolina, U.S.A., was prepared using National Uranium Resource Evaluation (NURE) stream-sediment data. Before termination of the NURE program, sampling of nearly the entire state (48,666 square miles of land area) was completed and <span class="hlt">geochemical</span> analyses were obtained. The NURE data are applicable to mineral exploration, agriculture, waste disposal siting issues, health, and environmental studies. Applications in state government include resource surveys to assist mineral exploration by identifying <span class="hlt">geochemical</span> anomalies and areas of mineralization. Agriculture seeks to identify areas with favorable (or unfavorable) conditions for plant growth, disease, and crop productivity. Trace elements such as cobalt, copper, chromium, iron, manganese, zinc, and molybdenum must be present within narrow ranges in soils for optimum growth and productivity. Trace elements as a contributing factor to disease are of concern to health professionals. Industry can use pH and conductivity data for water samples to site facilities which require specific water quality. The North Carolina NURE database consists of stream-sediment samples, groundwater samples, and stream-water analyses. The statewide database consists of 6,744 stream-sediment sites, 5,778 groundwater sample sites, and 295 stream-water sites. Neutron activation analyses were provided for U, Br, Cl, F, Mn, Na, Al, V, Dy in groundwater and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in stream sediments. Supplemental analyses by other techniques were reported on U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn for 4,619 stream-sediment samples. A small subset of 334 stream samples was analyzed for gold. The goal of the atlas was to make available the statewide NURE data with minimal interpretation to enable prospective users to modify and manipulate the data for their end use. The atlas provides only</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/509/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/509/"><span>Central Colorado Assessment Project (CCAP)-<span class="hlt">Geochemical</span> data for rock, sediment, soil, and concentrate sample media</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.</p> <p>2010-01-01</p> <p>This database was initiated, designed, and populated to collect and integrate <span class="hlt">geochemical</span> data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of <span class="hlt">geochemical</span> baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a <span class="hlt">geochemical</span> data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative <span class="hlt">geochemical</span> analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, <span class="hlt">geochemical</span> data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived <span class="hlt">geochemical</span> data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National <span class="hlt">Geochemical</span> Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS <span class="hlt">geochemical</span> databases, or were once excluded for programmatic reasons</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.4434H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.4434H"><span><span class="hlt">Modelling</span> of Pesticide Transport During An Injection Experiment In A Physical and <span class="hlt">Geochemical</span> Heterogeneous Aquifer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hojberg, A. L.; Engesgaard, P.; Bjerg, P. L.</p> <p></p> <p>The fate of selected pesticides under natural groundwater conditions was studied by natural gradient short and long term injection experiments in a shallow uncon- fined aerobic aquifer. Bentazone, DNOC, MCPP, dichlorprop, isoproturon, and BAM (dichlobenil metabolite) were injected in aqueous solution with bromide as a nonre- active tracer. The Bromide and pesticide plumes were sampled during the initial 25 m of migration in a dense monitoring net of multilevel samplers. The aquifer was physical and <span class="hlt">geochemical</span> heterogeneous, which affected transport of several of the pesticides. A 3D reactive transport code was developed including one- and two-site linear/nonlinear equilibrium/nonequilibrium sorption and first-order as well as single Monod degradation kinetic coupled to microbial growth. <span class="hlt">Model</span> simulations demon- strated that microbial growth was likely supported by the phenoxy acids MCPP and dichlorprop, while degradation of DNOC was adequately described by first-order degradation with no initial lag time. An observed vertical increase in pH was observed at the site and implemented in the transport code. The numerical analysis indicated that degradation of the three degradable pesticides may have been affected by vertical pH variations. Spatial variability in observed DNOC sorption was similarly suspected to be an effect of varying pH. pH dependency on DNOC sorption was confirmed by the <span class="hlt">model</span> recognized by a match to observed breakthrough at the individual sampling points, when pH variation was included in the simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1061419','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1061419"><span>Updated Conceptual <span class="hlt">Model</span> for the 300 Area Uranium Groundwater Plume</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zachara, John M.; Freshley, Mark D.; Last, George V.</p> <p>2012-11-01</p> <p>The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and <span class="hlt">backfilled</span> to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactionsmore » between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual <span class="hlt">model</span> was developed that integrates knowledge of the hydrogeologic and <span class="hlt">geochemical</span> properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual <span class="hlt">model</span> and provide an assessment of key factors controlling plume persistence.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730040658&hterms=pesticide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dpesticide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730040658&hterms=pesticide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dpesticide"><span>Laboratory simulation of organic <span class="hlt">geochemical</span> processes.</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eglinton, G.</p> <p>1972-01-01</p> <p>Discussion of laboratory simulations that are important to organic geochemistry in that they provide direct evidence relating to <span class="hlt">geochemical</span> cycles involving carbon. Reviewed processes and experiments include reactions occurring in the geosphere, particularly, short-term diagenesis of biolipids and organochlorine pesticides in estuarine muds, as well as maturation of organic matter in ancient sediments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1213426K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1213426K"><span>Landscape and bio- <span class="hlt">geochemical</span> strategy for monitoring transformation and reclamation of the soil mining sites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korobova, Elena</p> <p>2010-05-01</p> <p>Sites of active or abandoned mining represent areas of considerable technogenic impact and need scientifically ground organization of their monitoring and reclamation. The strategy of monitoring and reclamation depends on the scale and character of the physical, chemical and biological consequences of the disturbances. The <span class="hlt">geochemical</span> studies for monitoring and rehabilitation of the career-dump complexes should methodically account of formation of the particular new landforms and the changes in circulation of the remobilized elements of the soil cover. However, the general strategy should account of both the initial and transformed landscape <span class="hlt">geochemical</span> structure of the area with due regard to the natural and new content of chemical elements in the environmental components. For example the tailings and waste rocks present new <span class="hlt">geochemical</span> fields with specifically different concentration of chemical elements that cause formation of new <span class="hlt">geochemical</span> barriers and landscapes. The way of colonization of the newly formed landscapes depends upon the new <span class="hlt">geochemical</span> features of the technogenic environment and the adaptive ability of local and intrusive flora. The newly formed biogeochemical anomalies need organization of permanent monitoring not only within the anomaly itself but also of its impact zones. Spatial landscape <span class="hlt">geochemical</span> monitoring combined with bio-<span class="hlt">geochemical</span> criteria of threshold concentrations seems to be a helpful tool for decision making on reclamation and operation of the soil mining sites to provide a long-term ecologically sustainable development of the impact zone as a whole.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29264817','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29264817"><span>Compositional data analysis and <span class="hlt">geochemical</span> <span class="hlt">modeling</span> of CO2-water-rock interactions in three provinces of Korea.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Seong Hee; Choi, Byoung-Young; Lee, Gyemin; Yun, Seong-Taek; Kim, Soon-Oh</p> <p>2017-12-20</p> <p>The CO 2 -rich spring water (CSW) occurring naturally in three provinces, Kangwon (KW), Chungbuk (CB), and Gyeongbuk (GB) of South Korea was classified based on its hydrochemical properties using compositional data analysis. Additionally, the <span class="hlt">geochemical</span> evolution pathways of various CSW were simulated via equilibrium phase <span class="hlt">modeling</span> (EPM) incorporated in the PHREEQC code. Most of the CSW in the study areas grouped into the Ca-HCO 3 water type, but some samples from the KW area were classified as Na-HCO 3 water. Interaction with anorthite is likely to be more important than interaction with carbonate minerals for the hydrochemical properties of the CSW in the three areas, indicating that the CSW originated from interactions among magmatic CO 2 , deep groundwater, and bedrock-forming minerals. Based on the simulation results of PHREEQC EPM, the formation temperatures of the CSW within each area were estimated as 77.8 and 150 °C for the Ca-HCO 3 and Na-HCO 3 types of CSW, respectively, in the KW area; 138.9 °C for the CB CSW; and 93.0 °C for the GB CSW. Additionally, the mixing ratios between simulated carbonate water and shallow groundwater were adjusted to 1:9-9:1 for the CSW of the GB area and the Ca-HCO 3 -type CSW of the KW area, indicating that these CSWs were more affected by carbonate water than by shallow groundwater. On the other hand, mixing ratios of 1:9-5:5 and 1:9-3:7 were found for the Na-HCO 3 -type CSW of the KW area and for the CSW of the CB area, respectively, suggesting a relatively small contribution of carbonate water to these CSWs. This study proposes a systematic, but relatively simple, methodology to simulate the formation of carbonate water in deep environments and the <span class="hlt">geochemical</span> evolution of CSW. Moreover, the proposed methodology could be applied to predict the behavior of CO 2 after its geological storage and to estimate the stability and security of geologically stored CO 2 .</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020269','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020269"><span>The <span class="hlt">geochemical</span> record in rock glaciers</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Steig, E.J.; Fitzpatrick, J.J.; Potter, N.; Clark, D.H.</p> <p>1998-01-01</p> <p>A 9.5 m ice core was extracted from beneath the surficial debris cover of a rock glacier at Galena Creek, northwestern Wyoming. The core contains clean, bubble-rich ice with silty debris layers spaced at roughly 20 cm intervals. The debris layers are similar in appearance to those in typical alpine glaciers, reflecting concentration of debris by melting at the surface during the summer ablation season. Profiles of stable isotope concentrations and electrical conductivity measurements provide independent evidence for melting in association with debris layers. These observations are consistent with a glacial origin for the ice, substantiating the glacigenic <span class="hlt">model</span> for rock glacier formation. The deuterium excess profile in the ice indicates that the total depth of meltwater infiltration is less than the thickness of one annual layer, suggesting that isotope values and other <span class="hlt">geochemical</span> signatures are preserved at annual resolution. This finding demonstrates the potential for obtaining useful paleoclimate information from rock glacier ice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613887Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613887Y"><span>Determination of <span class="hlt">geochemical</span> and natural radioactivity characteristics in Bilecik Marble, Turkey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yerel Kandemir, Suheyla; Ozbay, Nurgul</p> <p>2014-05-01</p> <p>Natural stones are one of the oldest known building materials. There are more than 400 natural stone in Turkey. Recently, the demand for the natural stone types in markets has been increasing rapidly. For this reason, the <span class="hlt">geochemical</span> and natural radioactivity characteristics of natural stone are very important. Bilecik province is located at the northwest part of Turkey and it is surrounded by Sakarya, Bursa, Eskisehir and Kutahya city. Bilecik is one of the important marble industry regions of Turkey. Thus, the <span class="hlt">geochemical</span> and natural radioactivity characteristics of Bilecik marble are very important. In this study, Bilecik marble was collected to determine the geochemistry and natural radioactivity. Then, analyses of <span class="hlt">geochemical</span> and natural radioactivity in the marble samples are interpreted. ACKNOWLEDGMENT This study is supported by Bilecik Seyh Edebali University scientific project (Project Number =2011-02-BIL.03-04).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017094','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017094"><span>The role of atomic absorption spectrometry in <span class="hlt">geochemical</span> exploration</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Viets, J.G.; O'Leary, R. M.</p> <p>1992-01-01</p> <p>In this paper we briefly describe the principles of atomic absorption spectrometry (AAS) and the basic hardware components necessary to make measurements of analyte concentrations. Then we discuss a variety of methods that have been developed for the introduction of analyte atoms into the light path of the spectrophotometer. This section deals with sample digestion, elimination of interferences, and optimum production of ground-state atoms, all critical considerations when choosing an AAS method. Other critical considerations are cost, speed, simplicity, precision, and applicability of the method to the wide range of materials sampled in <span class="hlt">geochemical</span> exploration. We cannot attempt to review all of the AAS methods developed for geological materials but instead will restrict our discussion to some of those appropriate for <span class="hlt">geochemical</span> exploration. Our background and familiarity are reflected in the methods we discuss, and we have no doubt overlooked many good methods. Our discussion should therefore be considered a starting point in finding the right method for the problem, rather than the end of the search. Finally, we discuss the future of AAS relative to other instrumental techniques and the promising new directions for AAS in <span class="hlt">geochemical</span> exploration. ?? 1992.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811156M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811156M"><span>Use of <span class="hlt">Geochemical</span> Indices in Environmental Assessment of Soil; the Predictable and the Predictably Unpredictable</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mikkonen, Hannah; Clarke, Bradley; van de Graaff, Robert; Reichman, Suzie</p> <p>2016-04-01</p> <p><span class="hlt">Geochemical</span> correlations between common contaminants (Pb, Ni, As, Cr, Co and Zn) and earth metals, Fe and Mn, have been recommended as empirical tools to estimate "background" concentrations of metals in soil. A limited number of studies indicate that <span class="hlt">geochemical</span> ratios between Pb, Ni, As, Cr, Co, V and Zn with scavenger metals Fe or Mn, are consistent between soils collected from different regions (Hamon et al. 2004, Myers and Thorbjornsen 2004). These studies have resulted in the incorporation of <span class="hlt">geochemical</span> indices into Australian guidance, for derivation of ecological investigation levels for Ni, Cr, Cu and Zn. However, little research has been undertaken to assess the variation of <span class="hlt">geochemical</span> patterns between soils derived from different parent materials or different weathering environments. A survey of background soils derived from four different parent materials, across Victoria, Australia, was undertaken, comprising collection of samples (n=640) from the surface (0 to 0.1 m) and sub-surface (0.3 to 0.6 m). Soil samples were collected from urban and rural areas of low disturbance, away from point sources of contamination. Samples were analysed for metals/metalloids and soil physical and chemical properties. Statistical review of results included regression and multivariate analysis. The results of the soil survey were compared against <span class="hlt">geochemical</span> relationships reported within Australia and internationally. Compilation of results from this study and international data sets, indicates that <span class="hlt">geochemical</span> relationships for metals Cr and V (in the format of log[Cr] = alog[Fe] +c) are predictable, not only between soils derived from different parent materials, but also between soils of different continents. Conversely, relationships between Zn and Fe, Pb and Fe, Cu and Fe, Co and Mn are variable, particularly within soils derived from alluvial sediments, which may have undergone periods of reducing conditions, resulting in dissociation from metal oxides. Broad</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800015466','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800015466"><span>Global <span class="hlt">geochemical</span> problems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Harriss, R. C.</p> <p>1980-01-01</p> <p>Application of remote sensing techniques to the solution of <span class="hlt">geochemical</span> problems is considered with emphasis on the 'carbon-cycle'. The problem of carbon dioxide sinks and the areal extent of coral reefs are treated. In order to assess the problems cited it is suggested that remote sensing techniques be utilized to: (1)monitor globally the carbonate and bicarbonate concentrations in surface waters of the world ocean; (2)monitor the freshwater and oceanic biomass and associated dissolved organic carbon; (3) inventory the coral reef areas and types and the associated oceanographic climatic conditions; and (4)measure the heavy metal fluxes from forested and vegetated areas, from volcanos, from different types of crustal rocks, from soils, and from sea surfaces.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/tm/11c05/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/tm/11c05/"><span>Analyzing legacy U.S. Geological Survey <span class="hlt">geochemical</span> databases using GIS: applications for a national mineral resource assessment</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yager, Douglas B.; Hofstra, Albert H.; Granitto, Matthew</p> <p>2012-01-01</p> <p>This report emphasizes geographic information system analysis and the display of data stored in the legacy U.S. Geological Survey National <span class="hlt">Geochemical</span> Database for use in mineral resource investigations. <span class="hlt">Geochemical</span> analyses of soils, stream sediments, and rocks that are archived in the National <span class="hlt">Geochemical</span> Database provide an extensive data source for investigating <span class="hlt">geochemical</span> anomalies. A study area in the Egan Range of east-central Nevada was used to develop a geographic information system analysis methodology for two different <span class="hlt">geochemical</span> datasets involving detailed (Bureau of Land Management Wilderness) and reconnaissance-scale (National Uranium Resource Evaluation) investigations. ArcGIS was used to analyze and thematically map <span class="hlt">geochemical</span> information at point locations. Watershed-boundary datasets served as a geographic reference to relate potentially anomalous sample sites with hydrologic unit codes at varying scales. The National Hydrography Dataset was analyzed with Hydrography Event Management and ArcGIS Utility Network Analyst tools to delineate potential sediment-sample provenance along a stream network. These tools can be used to track potential upstream-sediment-contributing areas to a sample site. This methodology identifies <span class="hlt">geochemically</span> anomalous sample sites, watersheds, and streams that could help focus mineral resource investigations in the field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1648/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1648/report.pdf"><span><span class="hlt">Geochemical</span> landscapes of the conterminous United States; new map presentations for 22 elements</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gustavsson, N.; Bolviken, B.; Smith, D.B.; Severson, R.C.</p> <p>2001-01-01</p> <p><span class="hlt">Geochemical</span> maps of the conterminous United States have been prepared for seven major elements (Al, Ca, Fe, K, Mg, Na, and Ti) and 15 trace elements (As, Ba, Cr, Cu, Hg, Li, Mn, Ni, Pb, Se, Sr, V, Y, Zn, and Zr). The maps are based on an ultra low-density <span class="hlt">geochemical</span> survey consisting of 1,323 samples of soils and other surficial materials collected from approximately 1960-1975. The data were published by Boerngen and Shacklette (1981) and black-and-white point-symbol <span class="hlt">geochemical</span> maps were published by Shacklette and Boerngen (1984). The data have been reprocessed using weighted-median and Bootstrap procedures for interpolation and smoothing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4154K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4154K"><span>Concerning initial and secondary character of radionuclide distribution in elementary landscape <span class="hlt">geochemical</span> systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korobova, Elena; Romanov, Sergey</p> <p>2017-04-01</p> <p>Specificity of radionuclide distribution in elementary landscape <span class="hlt">geochemical</span> systems (ELGS) treated as local system of <span class="hlt">geochemically</span> linked elementary terrestrial units (in toposequence: watershed-slope-closing depression), belongs to one of the less investigated but practically significant problems of current geochemistry. First measurements after the Chernobyl accident showed a considerable variation of Cs-137 distribution in all examined ELGS (Shcheglov et al, 2001; Romanov, 1989; Korobova, Korovaykov, 1990; Linnik, 2008). The results may be interpreted in frames of two alternative hypotheses: 1) irregularity of the initial contamination; 2) secondary redistribution of the initially regular level of fallout. But herewith only a disproof of the first hypothesis automatically justifies the second one. Factors responsible for initial irregularity of surface contamination included: 1) the presence of the so-called "hot" particles in the initial fallout; 2) interception of radionuclides by forest canopy; 3) irregular aerial particles deposition; 4) uneven initial precipitation. Basing on monitoring Cs-137 spatial distribution that has been performed since 2005, we demonstrate that the observed spatial irregularity in distribution of Cs-137 in ELGS reflects a purely secondary distribution of initial reserves of radionuclides in fallout matter due to its migration with water in local <span class="hlt">geochemical</span> systems. This statement has some significant consequences. 1. Mechanism of migration of matter in ELGS is complicated and could not be reduced solely to a primitive moving from watershed to closing depression. 2. The control of migration of "labeled atoms" (Cs-137) permits to understand common mechanism of migration of water in all systems on the level of ELGS. 3. Understanding formation of the structure of contamination zones in ELGS permits to use mathematical <span class="hlt">model</span> to solve the inverse problem of restoration of the initially equable level of their contamination. Performed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JAfES..29..735A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JAfES..29..735A"><span><span class="hlt">Geochemical</span> characteristics of Cretaceous carbonatites from Angola</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alberti, A.; Castorina, F.; Censi, P.; Comin-Chiaramonti, P.; Gomes, C. B.</p> <p>1999-12-01</p> <p>The Early Cretaceous (138-130 Ma) carbonatites and associated alkaline rocks of Angola belong to the Paraná-Angola-Etendeka Province and occur as ring complexes and other central-type intrusions along northeast trending tectonic lineaments, parallel to the trend of coeval Namibian alkaline complexes. Most of the Angolan carbonatite-alkaline bodies are located along the apical part of the Moçamedes Arch, a structure representing the African counterpart of the Ponta Grossa Arch in southern Brazil, where several alkaline-carbonatite complexes were also emplaced in the Early Cretaceous. <span class="hlt">Geochemical</span> and isotopic (C, 0, Sr and Nd) characteristics determined for five carbonatitic occurrences indicate that: (1) the overall <span class="hlt">geochemical</span> composition, including the OC isotopes, is within the range of the Early and Late Cretaceous Brazilian occurrences from the Paraná Basin; (2) the La versus {La}/{Yb} relationships are consistent with the exsolution of CO i2-rich melts from trachyphonolitic magmas; and (3) the {143Nd}/{144Nd} and {87Sr}/{86Sr} initial ratios are similar to the initial isotopic ratios (129 Ma) of alkaline complexes in northwest Namibia. In contrast, the Lupongola carbonatites have a distinctly different {143Nd}/{144Nd} initial ratio, suggesting a different source. The Angolan carbonatites have SrNd isotopic compositions ranging from bulk earth to time-integrated depleted sources. Since those from eastern Paraguay (at the western fringe of the Paraná-Angola-Etendeka Province) and Brazil appear to be related to mantle-derived melts with time-integrated enriched or B.E. isotopic characteristics, it is concluded that the carbonatites of the Paraná-Angola-Etendeka Province have compositionally distinct mantle sources. Such mantle heterogeneity is attributed to 'metasomatic processes', which would have occurred at ca 0.6-0.7 Ga (Angola, northwest Namibia and Brazil) and ca 1.8 Ga (eastern Paraguay), as suggested by Nd-<span class="hlt">model</span> ages.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026610','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026610"><span>Calculation of individual isotope equilibrium constants for <span class="hlt">geochemical</span> reactions</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thorstenson, D.C.; Parkhurst, D.L.</p> <p>2004-01-01</p> <p>Theory is derived from the work of Urey (Urey H. C. [1947] The thermodynamic properties of isotopic substances. J. Chem. Soc. 562-581) to calculate equilibrium constants commonly used in <span class="hlt">geochemical</span> equilibrium and reaction-transport <span class="hlt">models</span> for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by ?? = (Kex)1/n, where n is the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example 13C16O18O and 1H2H18O. The equilibrium constants of the isotope exchange reactions can be expressed as ratios of individual isotope equilibrium constants for <span class="hlt">geochemical</span> reactions. Knowledge of the equilibrium constant for the dominant isotopic species can then be used to calculate the individual isotope equilibrium constants. Individual isotope equilibrium constants are calculated for the reaction CO2g = CO2aq for all species that can be formed from 12C, 13C, 16O, and 18O; for the reaction between 12C18 O2aq and 1H218Ol; and among the various 1H, 2H, 16O, and 18O species of H2O. This is a subset of a larger number of equilibrium constants calculated elsewhere (Thorstenson D. C. and Parkhurst D. L. [2002] Calculation of individual isotope equilibrium constants for implementation in <span class="hlt">geochemical</span> <span class="hlt">models</span>. Water-Resources Investigation Report 02-4172. U.S. Geological Survey). Activity coefficients, activity-concentration conventions for the isotopic variants of H2O in the solvent 1H216Ol, and salt effects on isotope fractionation have been included in the derivations. The effects of nonideality are small because of the chemical similarity of different isotopic species of the same molecule or ion. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/425676-complete-suite-geochemical-values-computed-using-wireline-logs','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/425676-complete-suite-geochemical-values-computed-using-wireline-logs"><span>Complete suite of <span class="hlt">geochemical</span> values computed using wireline logs</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lancaster, J.R.; Atkinson, A.</p> <p>1996-12-31</p> <p><span class="hlt">Geochemical</span> values of {open_quotes}black shale{close_quotes} source rocks can be computed from a complete suite of wireline log data. The computed values are: Total Organic Carbon (Wt%). S1, S2, S3, Hydrogen Index, Oxygen Index, Atomic H/C and O/C ratios, Genetic Potential (S1+S2), S2/S3, and Transfomation Ratio (S1/(S1+S2)). The results are most reliable when calibrated to laboratory analyses of samples in the study area. However, in the absence of samples, reasonable estimates can be made using calibration data from analogous depositional and thermal environments and/or professional judgement and experience. The evaluations provide answers to critical <span class="hlt">geochemical</span> questions relative to: (1) Organic Mattermore » Quantity; T.O.C. (Wt%), S1, and S2. (2) Kerogen Types; I, II, and III, based on T.O.C. vs S2 cross plot and the van Krevelen diagram of Atomic O/C vs Atomic H/C ratios. (3) Thermal Maturation levels; Transfomation Ratio can be converted to Level of Organic Metamorphism (LOM), pyrolysis Tmax (degC), Vitrinite Reflectance (Ro), Time Temperature Index (TTI) and others. Various analog plots and cross plots can be prepared for interpretation. Case history examples are shown and discussed. Lowstand fan deposits on Barbados were studied in outcrop to construct a conceptual reservoir <span class="hlt">model</span> for prediction of facies assemblages.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6592045-complete-suite-geochemical-values-computed-using-wireline-logs','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6592045-complete-suite-geochemical-values-computed-using-wireline-logs"><span>Complete suite of <span class="hlt">geochemical</span> values computed using wireline logs</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lancaster, J.R.; Atkinson, A.</p> <p>1996-01-01</p> <p><span class="hlt">Geochemical</span> values of [open quotes]black shale[close quotes] source rocks can be computed from a complete suite of wireline log data. The computed values are: Total Organic Carbon (Wt%). S1, S2, S3, Hydrogen Index, Oxygen Index, Atomic H/C and O/C ratios, Genetic Potential (S1+S2), S2/S3, and Transfomation Ratio (S1/(S1+S2)). The results are most reliable when calibrated to laboratory analyses of samples in the study area. However, in the absence of samples, reasonable estimates can be made using calibration data from analogous depositional and thermal environments and/or professional judgement and experience. The evaluations provide answers to critical <span class="hlt">geochemical</span> questions relative to: (1)more » Organic Matter Quantity; T.O.C. (Wt%), S1, and S2. (2) Kerogen Types; I, II, and III, based on T.O.C. vs S2 cross plot and the van Krevelen diagram of Atomic O/C vs Atomic H/C ratios. (3) Thermal Maturation levels; Transfomation Ratio can be converted to Level of Organic Metamorphism (LOM), pyrolysis Tmax (degC), Vitrinite Reflectance (Ro), Time Temperature Index (TTI) and others. Various analog plots and cross plots can be prepared for interpretation. Case history examples are shown and discussed. Lowstand fan deposits on Barbados were studied in outcrop to construct a conceptual reservoir <span class="hlt">model</span> for prediction of facies assemblages.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18026847','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18026847"><span><span class="hlt">Geochemical</span> and radionuclide profile of Tuzla geothermal field, Turkey.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baba, Alper; Deniz, Ozan; Ozcan, Hasan; Erees, Serap F; Cetiner, S Ziya</p> <p>2008-10-01</p> <p>Tuzla geothermal basin is situated in north-western Turkey on the Biga Peninsula, which is located at the west end of the Northern Anatolian Fault system. Soil and water samples were collected between August 2003 and June 2004 to initiate development of a <span class="hlt">geochemical</span> profile of surface and subsurface waters in the geothermal basin and radionuclide concentrations in soils. All water samples were found to fall within Turkish Water Quality Class 4, meaning they were remarkably contaminated for any water consumption sector (industrial, human use or agricultural) based on sodium and chloride ions. Such waters could be used only after appropriate water treatment. The water samples are of the chloride type in terms of <span class="hlt">geochemical</span> evaluation. Preliminary <span class="hlt">geochemical</span> evidence shows that the N-S flowing part of the Tuzla River acts as a natural barrier within the basin. Heavy metal concentrations in the soil samples show slight elevations, especially those obtained from the east part of the basin where thermal springs are dominant. <span class="hlt">Geochemical</span> calculations were carried out with PHREEQC software to determine equilibrium concentration of chemical species and saturation indices, by which it is suggested that chloride is the most important ligand to mobilize the heavy metals in the studied system. In addition, the activity concentration and gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides were determined in the soil using gamma-ray spectrometry. The soil activity ranged from 42.77 to 988.66 Bq kg(-1) (averaging 138 Bq kg(-1)) for ( 238 )U, 13.27 to 106.31 Bq kg(-1) (averaging 32.42 Bq kg(-1)) for ( 232 )Th, and 99.28 to 935.36 Bq kg(-1) (averaging 515.44 Bq kg(-1)) for ( 40 )K. The highest value of ( 238 )U was found in the soil samples obtained from an area close to the hot spring.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995CoMP..119..263G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995CoMP..119..263G"><span><span class="hlt">Geochemical</span> reversals within the lower 100 m of the Palisades sill, New Jersey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gorring, Matthew L.; Naslund, H. R.</p> <p>1995-03-01</p> <p>Transects through the lower part of the Palisades sill were made at Fort Lee and Alpine, New Jersey in order to characterize the petrologic signature of previously proposed “reversals” in the normal, tholeiitic differentiation trend. Petrographic and <span class="hlt">geochemical</span> data include: (1) modal and grain size analyses, (2) bulk rock major and trace element concentrations by DCP-AES, and (3) augite, orthopyroxene, magnetite, and olivine compositions by electron microprobe analysis. Anomalous horizons, defined by increased bulk rock Mg?, Cr, Ni, and Co concentrations and abrupt modal and grain-size changes, occur at 10 m (the well known olivine zone), 27 m, 45 m, and 95 m above the basal contact. Thermal <span class="hlt">models</span> coupled with estimates of the emplacement rate and total magma volume indicate that the olivine zone (OZ) is an early-stage feature, related to the emplacement of initial magma into the Palisades chamber. Stoke’s Law calculations indicate that the settling velocity of average-sized olivine crystals in a high-titanium, quartz-normative (HTQ) magma is too slow for significant gravity settling to have occurred prior to the solidification of the basal 20 m of the sill. It is suggested that the OZ resulted from the emplacement of a heterogeneous initial magma from a compositionally stratified, sub-Palisades storage chamber located within the upper crust; however, heterogeneity may have been derived directly from the mantle or during rapid ascent. <span class="hlt">Geochemical</span> <span class="hlt">models</span> indicate that the OZ contains accumulated olivine that is not in cotectic (or constant) proportions with the other cumulus phases, suggesting a mechanical sorting process. Magma chamber recharge is proposed to have occurred at the 27 m and 45 m levels, when a slightly more-primitive HTQ magma was injected into the Palisades sill cha- mber. Zones of elevated Mg? and Cr, 6 to 10 m thick, at these two horizons may indicate the thickness of the hybrid magma formed by the mixing of these two compositions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040141651&hterms=Leading+Change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DLeading%2BChange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040141651&hterms=Leading+Change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DLeading%2BChange"><span>Paleoproterozoic snowball earth: extreme climatic and <span class="hlt">geochemical</span> global change and its biological consequences</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kirschvink, J. L.; Gaidos, E. J.; Bertani, L. E.; Beukes, N. J.; Gutzmer, J.; Maepa, L. N.; Steinberger, R. E.</p> <p>2000-01-01</p> <p>Geological, geophysical, and <span class="hlt">geochemical</span> data support a theory that Earth experienced several intervals of intense, global glaciation ("snowball Earth" conditions) during Precambrian time. This snowball <span class="hlt">model</span> predicts that postglacial, greenhouse-induced warming would lead to the deposition of banded iron formations and cap carbonates. Although global glaciation would have drastically curtailed biological productivity, melting of the oceanic ice would also have induced a cyanobacterial bloom, leading to an oxygen spike in the euphotic zone and to the oxidative precipitation of iron and manganese. A Paleoproterozoic snowball Earth at 2.4 Giga-annum before present (Ga) immediately precedes the Kalahari Manganese Field in southern Africa, suggesting that this rapid and massive change in global climate was responsible for its deposition. As large quantities of O(2) are needed to precipitate this Mn, photosystem II and oxygen radical protection mechanisms must have evolved before 2.4 Ga. This <span class="hlt">geochemical</span> event may have triggered a compensatory evolutionary branching in the Fe/Mn superoxide dismutase enzyme, providing a Paleoproterozoic calibration point for studies of molecular evolution.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H34B..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H34B..07C"><span><span class="hlt">Geochemical</span> and Isotopic (Sr, U) Tracing of Weathering Processes Controlling the Recent <span class="hlt">Geochemical</span> Evolution of Soil Solutions in the Strengbach Catchment (Vosges, France)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chabaux, F. J.; Prunier, J.; Pierret, M.; Stille, P.</p> <p>2012-12-01</p> <p>The characterization of the present-day weathering processes controlling the chemical composition of waters and soils in natural ecosystems is an important issue to predict and to <span class="hlt">model</span> the response of ecosystems to recent environmental changes. It is proposed here to highlight the interest of a multi-tracer <span class="hlt">geochemical</span> approach combining measurement of major and trace element concentrations along with U and Sr isotopic ratios to progress in this topic. This approach has been applied to the small granitic Strengbah Catchment, located in the Vosges Mountain (France), used and equipped as a hydro-<span class="hlt">geochemical</span> observatory since 1986 (Observatoire Hydro-Géochimique de l'Environnement; http://ohge.u-strasbg.fr). This study includes the analysis of major and trace element concentrations and (U-Sr) isotope ratios in soil solutions collected within two soil profiles located on two experimental plots of this watershed, as well as the analysis of soil samples and vegetation samples from these two plots The depth variation of elemental concentration of soil solutions confirms the important influence of the vegetation cycling on the budget of Ca, K, Rb and Sr, whereas Mg and Si budget in soil solutions are quasi exclusively controlled by weathering processes. Variation of Sr, and U isotopic ratios with depth also demonstrates that the sources and biogeochemical processes controlling the Sr budget of soil solutions is different in the uppermost soil horizons and in the deeper ones, and clearly influence by the vegetation cycling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.V22B..08R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.V22B..08R"><span>Risk evaluation of uranium mining: A <span class="hlt">geochemical</span> inverse <span class="hlt">modelling</span> approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rillard, J.; Zuddas, P.; Scislewski, A.</p> <p>2011-12-01</p> <p>It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a <span class="hlt">geochemical</span> inverse <span class="hlt">modelling</span> approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/pp1767/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/pp1767/"><span>Brine Migration from a Flooded Salt Mine in the Genesee Valley, Livingston County, New York: <span class="hlt">Geochemical</span> <span class="hlt">Modeling</span> and Simulation of Variable-Density Flow</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yager, Richard M.; Misut, Paul E.; Langevin, Christian D.; Parkhurst, David L.</p> <p>2009-01-01</p> <p>The Retsof salt mine in upstate New York was flooded from 1994 to 1996 after two roof collapses created rubble chimneys in overlying bedrock that intersected a confined aquifer in glacial sediments. The mine now contains about 60 billion liters of saturated halite brine that is slowly being displaced as the weight of overlying sediments causes the mine cavity to close, a process that could last several hundred years. Saline water was detected in the confined aquifer in 2002, and a brine-mitigation project that includes pumping followed by onsite desalination was implemented in 2006 to prevent further migration of saline water from the collapse area. A study was conducted by the U.S. Geological Survey using <span class="hlt">geochemical</span> and variable-density flow <span class="hlt">modeling</span> to determine sources of salinity in the confined aquifer and to assess (1) processes that control movement and mixing of waters in the collapse area, (2) the effect of pumping on salinity, and (3) the potential for anhydrite dissolution and subsequent land subsidence resulting from mixing of waters induced by pumping. The primary source of salinity in the collapse area is halite brine that was displaced from the flooded mine and transported upward by advection and dispersion through the rubble chimneys and surrounding deformation zone. <span class="hlt">Geochemical</span> and variable-density <span class="hlt">modeling</span> indicate that salinity in the upper part of the collapse area is partly derived from inflow of saline water from bedrock fracture zones during water-level recovery (January 1996 through August 2006). The lateral diversion of brine into bedrock fracture zones promoted the upward migration of mine water through mixing with lower density waters. The relative contributions of mine water, bedrock water, and aquifer water to the observed salinity profile within the collapse area are controlled by the rates of flow to and from bedrock fracture zones. Variable-density simulations of water-level recovery indicate that saline water has probably not</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014474','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014474"><span>Estimation of Supraglacial Dust and Debris <span class="hlt">Geochemical</span> Composition via Satellite Reflectance and Emissivity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Casey, Kimberly Ann; Kaab, Andreas</p> <p>2012-01-01</p> <p>We demonstrate spectral estimation of supraglacial dust, debris, ash and tephra <span class="hlt">geochemical</span> composition from glaciers and ice fields in Iceland, Nepal, New Zealand and Switzerland. Surface glacier material was collected and analyzed via X-ray fluorescence spectroscopy (XRF) and X-ray diffraction (XRD) for <span class="hlt">geochemical</span> composition and mineralogy. In situ data was used as ground truth for comparison with satellite derived <span class="hlt">geochemical</span> results. Supraglacial debris spectral response patterns and emissivity-derived silica weight percent are presented. Qualitative spectral response patterns agreed well with XRF elemental abundances. Quantitative emissivity estimates of supraglacial SiO2 in continental areas were 67% (Switzerland) and 68% (Nepal), while volcanic supraglacial SiO2 averages were 58% (Iceland) and 56% (New Zealand), yielding general agreement. Ablation season supraglacial temperature variation due to differing dust and debris type and coverage was also investigated, with surface debris temperatures ranging from 5.9 to 26.6 C in the study regions. Applications of the supraglacial <span class="hlt">geochemical</span> reflective and emissive characterization methods include glacier areal extent mapping, debris source identification, glacier kinematics and glacier energy balance considerations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...48a2019M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...48a2019M"><span><span class="hlt">Geochemical</span> characteristics of peat from two raised bogs of Germany</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mezhibor, A. M.</p> <p>2016-11-01</p> <p>Peat has a wide range of applications in different spheres of human activity, and this is a reason for a comprehensive study. This research represents the results of an ICP-MS study of moss and peat samples from two raised bogs of Germany. Because of the wide use of sphagnum moss and peat, determining their <span class="hlt">geochemical</span> characteristics is an important issue. According to the results obtained, we can resume that the moss samples from Germany are rich in Cu, As, Y, Zr, Nb, and REE. The <span class="hlt">geochemical</span> composition of the bogs reflects the regional environmental features and anthropogenic influence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188824','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188824"><span><span class="hlt">Geochemical</span> reanalysis of historical U.S. Geological Survey sediment samples from the Tonsina area, Valdez Quadrangle, Alaska</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.</p> <p>2015-01-01</p> <p>The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and <span class="hlt">geochemical</span> data. As part of the SCM Assessment, thousands of historical <span class="hlt">geochemical</span> samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, <span class="hlt">geochemical</span>-analytical methods. The objective is to update the statewide <span class="hlt">geochemical</span> database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 128 historical USGS sediment samples from the statewide Alaska <span class="hlt">Geochemical</span> Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Tonsina area in the Chugach Mountains, Valdez quadrangle, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National <span class="hlt">Geochemical</span> Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the <span class="hlt">geochemical</span> analyses obtained through the USGS contract lab. The new <span class="hlt">geochemical</span> data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide <span class="hlt">geochemical</span> databases of both agencies</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/4327416-some-geochemical-methods-uranium-exploration','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4327416-some-geochemical-methods-uranium-exploration"><span>SOME <span class="hlt">GEOCHEMICAL</span> METHODS OF URANIUM EXPLORATION</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Illsley, C.T.; Bills, C.W.; Pollock, J.W.</p> <p></p> <p><span class="hlt">Geochemical</span> research and development projects were carried on to provide basic information which may be applied to exploration or general studies of uranium geology. The applications and limitations of various aspects of geochemistry to uranium geological problems are considerd. Modifications of existing analytical techniques were made and tested in the laboratory and in the field. These include rapid quantitative determination of unranium in water, soil and peat, and of trace amounts of sulfate and phosphate in water. <span class="hlt">Geochemical</span> anomaly'' has been defined as a significant departure from the average abundance background of an element where the distribution has not beenmore » disturbed by mineralization. The detection and significance of geocthemical anomalies are directly related to the mobility of the element being sought in the zone of weathering. Mobility of uranium is governed by complex physical, chemical, and biological factors. For uranium anomalies in surface materils, the chemicaly factors affecting mobility are the most sigificant. The effects of pH, solubility, coprecipitution, adsorption complexion, or compound formation are discussed in relation to anomalies detected in water, soil, and stream sediments. (auth)« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16..944P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16..944P"><span>How to build stable <span class="hlt">geochemical</span> reservoirs on Mars?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plesa, Ana-Catalina; Tosi, Nicola; Breuer, Doris</p> <p>2014-05-01</p> <p>To explain the complex thermo-chemical processes needed for the formation of distinct and stable <span class="hlt">geochemical</span> reservoirs early in the thermo-chemical evolution of Mars, most <span class="hlt">geochemical</span> studies argue that fractional crystallization of a global magma ocean may reproduce the isotopic characteristic of the SNCs [1, 2]. However, geodynamical <span class="hlt">models</span> show that such scenario is difficult to reconcile with other observations like late volcanic activity and crustal density values as obtained from gravity and topography <span class="hlt">modelling</span> [3, 4]. The stable density gradient, which establishes after the mantle overturn has completed, inhibits thermal convection. Albeit capable to provide stable reservoirs, this scenario suggests a conductive mantle after the overturn which on the one hand fails to sample deep regions of the mantle and on the other hand is clearly at odds with the volcanic history of Mars. This is best explained by assuming a convective mantle and partial melting as the principal agents responsible for the generation and evolution of Martian volcanism. Therefore, in this work an alternative scenario for the formation of early stable <span class="hlt">geochemical</span> reservoirs is presented similar to the <span class="hlt">model</span> of [5]. We investigate the influence of partial melting on mantle dynamics, crustal formation, and volcanic outgassing of a one-plate planet using a 2D mantle convection code. When melt is extracted to form crust, the mantle material left behind is more buoyant than its parent material and depleted in radioactive heat sources. The extracted heat-producing elements are then enriched in the crust, which also has an insulating effect due to its lower thermal conductivity compared to the mantle. In addition, partial melting can influence the mantle rheology through the dehydration (water depletion) of the mantle material by volcanic outgassing. As a consequence, the viscosity of water-depleted regions increases more than two orders of magnitude compared to water-saturated rocks resulting</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=318250&Lab=NHEERL&keyword=erickson&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=318250&Lab=NHEERL&keyword=erickson&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Toxicity of major <span class="hlt">geochemical</span> ions to freshwater species</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Extensive testing regarding the toxicity of major <span class="hlt">geochemical</span> ions to Ceriodaphnia dubia, Hyalella azteca, and Pimephales promelas will be presented. For C. dubia, tests of single salts and binary mixtures in various dilution waters demonstrated multiple mechanisms of toxicity an...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..722P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..722P"><span>Hydrogeochemical processes and <span class="hlt">geochemical</span> <span class="hlt">modeling</span> in a coastal aquifer: Case study of the Marathon coastal plain, Greece</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papazotos, Panagiotis; Koumantakis, Ioannis; Kallioras, Andreas; Vasileiou, Eleni; Perraki, Maria</p> <p>2017-04-01</p> <p>Determining the hydrogeochemical processes has always been a challenge for scientists. The aim of this work is the study of the principal hydrogeochemical processes controlling groundwater quality in the Marathon coastal plain, Greece, with emphasis on the origin of the solutes. Various physicochemical parameters and major ions of twenty-five groundwater samples were analyzed. The hydrogeochemical data of groundwater were studied in order to determine the major factors controlling the chemical composition and hydrogeochemical evolution. In the Marathon coastal plain, three different zones of the alluvial granular aquifer system have been detected, considering the <span class="hlt">geochemical</span> processes and recharge, which affect its hydrochemical characteristics. The alluvial granular aquifer system is divided eastwards into three zones: a) the natural recharge zone, b) the reverse ion exchange zone and c) the diffusion sea water zone. Cl-is the dominant anion and Na+and Ca2+ are the dominant cations, as determined by plotting the analyses on the respective Piper diagram. Near the coastline high concentrations of Na+ and Cl- were observed indicating a zone of seawater intrusion. On the other hand, westward there is increasing concentration of HCO3- with simultaneous decrease of Na+is indication of a recharge zone from karstic aquifers of the study area. Between the aforementioned zones there is an intermediate one, where reverse ion exchange takes place due to high concentrations of dissolved Na+ and Ca2+ adsorption. The saturation indices (SI) were calculated using the <span class="hlt">geochemical</span> <span class="hlt">modeling</span> software PHREEQC. Mineral phases of halite, sylvite, gypsum and anhydrite were estimated to be undersaturated in the water samples, suggesting these phases are minor or absent in the host rock. On the other hand, calcite, aragonite and dolomite are close to equilibrium; these minerals are present in the host rocks or in the unsaturated zone, possibly increasing the Ca2+, Mg2+ and HCO3</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS23E..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS23E..02F"><span>Assessing the Role of Seafloor Weathering in Global <span class="hlt">Geochemical</span> Cycling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farahat, N. X.; Abbot, D. S.; Archer, D. E.</p> <p>2015-12-01</p> <p>Low-temperature alteration of the basaltic upper oceanic crust, known as seafloor weathering, has been proposed as a mechanism for long-term climate regulation similar to the continental climate-weathering negative feedback. Despite this potentially far-reaching impact of seafloor weathering on habitable planet evolution, existing <span class="hlt">modeling</span> frameworks do not include the full scope of alteration reactions or recent findings of convective flow dynamics. We present a coupled fluid dynamic and <span class="hlt">geochemical</span> numerical <span class="hlt">model</span> of low-temperature, off-axis hydrothermal activity. This <span class="hlt">model</span> is designed to explore the the seafloor weathering flux of carbon to the oceanic crust and its responsiveness to climate fluctuations. The <span class="hlt">model</span>'s ability to reproduce the seafloor weathering environment is evaluated by constructing numerical simulations for comparison with two low-temperature hydrothermal systems: A transect east of the Juan de Fuca Ridge and the southern Costa Rica Rift flank. We explore the sensitivity of carbon uptake by seafloor weathering on climate and geology by varying deep ocean temperature, seawater dissolved inorganic carbon, continental weathering inputs, and basaltic host rock in a suite of numerical experiments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B41J0180T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B41J0180T"><span><span class="hlt">Geochemical</span> Controls on the Partitioning and Hydrological Transport of Metals in a Human Impacted, Non-Acidic, River System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thorslund, J.; Jarsjo, J.; Wällstedt, T.; Morth, C. M.; Lychagin, M.; Chalov, S.</p> <p>2014-12-01</p> <p>The knowledge of coupled processes controlling the spreading and fate of metals in non-acidic river systems is currently much more limited than the knowledge of metal behavior under acidic conditions (e.g., in acid mine drainage systems). Critical <span class="hlt">geochemical</span> controls governing metal speciation may thus differ substantially between acidic and non-acidic hydrological systems. We here aim at expanding the knowledge of metals in non-acidic river systems, by considering a high pH river, influenced by mining by the largest gold mining area in the Mongolian part of the transboundary Lake Baikal drainage basin. The combined impact of <span class="hlt">geochemical</span> and hydrological processes is investigated, to be able to understand the solubility of various heavy metals, their partitioning between particulate and dissolved phase and its impact on overall transport. We show, through site specific measurements and a <span class="hlt">geochemical</span> <span class="hlt">modelling</span> approach, that the combined effects of precipitation of ferrihydrite and gibbsite and associated sorption complexes of several metals can explain the high impact of suspended transport relative to total transport often seen under non-acidic conditions. Our results also identifies the phosphate mineral Hydroxyapatite as a potential key sorption site for many metals, which has both site specific and general relevance for metal partitioning under non-acidic conditions. However, an adsorption database, which is currently unavailable for hydroxyapatite, needs to be developed for appropriate sorption quantification. Furthermore, Cd, Fe, Pb and Zn were particularly sensitive to increasing DOC concentrations, which increased the solubility of these metals due to metal-organic complexation. <span class="hlt">Modeling</span> the sensitivity to changes in <span class="hlt">geochemical</span> parameters showed that decreasing pH and increasing DOC concentrations in downstream regions would increase the dissolution and hence the toxicity and bioavailability of many pollutants of concern in the downstream ecosystem. In</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017227','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017227"><span><span class="hlt">Geochemical</span> exploration for copper-nickel deposits in the cool-humid climate of northeastern Minnesota</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Miller, W.R.; Ficklin, W.H.; McHugh, J.B.</p> <p>1992-01-01</p> <p>Water was used as a medium for <span class="hlt">geochemical</span> exploration to detect copper-nickel mineralization along the basal zone of the Duluth Complex. Ni2+ is the most important pathfinder for the detection of the mineralized rocks, followed by Cu2+ and SO42- and to a lesser extent Mg2+ and SiO2. A normalized sum plot using these species defines the mineralization more consistently than a single-element plot, mainly because the absence of one variable does not significantly influence the normalized sum value. A hydrogeochemical survey was conducted in an area of known copper-nickel mineralization in the cool-humid climate of northeastern Minnesota. The area is covered with glacial drift, and wetlands are abundant. <span class="hlt">Modeling</span> of the chemistry of waters indicates that the waters are oxidizing and have a pH of 7 or less. The most important pathfinder species in the waters, Cu2+, Ni2+, and SO42-, are derived from the simple weathering of sulfide minerals and are mobile in the waters in this environment. Plots of Cu and Ni concentrations in soils show that Cu followed by Ni are the most useful indicator elements for delineating copper-nickel mineralization. The ability of soils and water to delineate the mineralization supports the use of both media for <span class="hlt">geochemical</span> exploration in this cool-humid environment. In the wetlands, abundant water is available and soils are scarce or absent; where soils are abundant, waters are generally scarce or absent. The use of both media is recommended for <span class="hlt">geochemical</span> exploration in this environment. ?? 1992.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T13E..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T13E..08B"><span>Long-Term <span class="hlt">Modeling</span> of Coupled Processes in a Generic Salt Repository for Heat-Generating Nuclear Waste: Analysis of the Impacts of Halite Solubility Constraints</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanco Martin, L.; Rutqvist, J.; Battistelli, A.; Birkholzer, J. T.</p> <p>2015-12-01</p> <p>Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, such as its ability to creep and heal fractures and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste and we consider a generic salt repository with in-drift emplacement of waste packages and crushed salt <span class="hlt">backfill</span>. As the natural salt creeps, the crushed salt <span class="hlt">backfill</span> gets progressively compacted and an engineered barrier system is subsequently created [1]. The safety requirements for such a repository impose that long time scales be considered, during which the integrity of the natural and engineered barriers have to be demonstrated. In order to evaluate this long-term integrity, we perform numerical <span class="hlt">modeling</span> based on state-of-the-art knowledge. Here, we analyze the impacts of halite dissolution and precipitation within the <span class="hlt">backfill</span> and the host rock. For this purpose, we use an enhanced equation-of-state module of TOUGH2 that properly includes temperature-dependent solubility constraints [2]. We perform coupled thermal-hydraulic-mechanical <span class="hlt">modeling</span> and we investigate the influence of the mentioned impacts. The TOUGH-FLAC simulator, adapted for large strains and creep, is used [3]. In order to quantify the importance of salt dissolution and precipitation on the effective porosity, permeability, pore pressure, temperature and stress field, we compare numerical results that include or disregard fluids of variable salinity. The sensitivity of the results to some parameters, such as the initial saturation within the <span class="hlt">backfill</span>, is also addressed. References: [1] Bechthold, W. et al. <span class="hlt">Backfilling</span> and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS II Project). Report EUR20621 EN: European Atomic Energy Community, 2004. [2] Battistelli A. Improving the treatment of saline brines in EWASG for the simulation of hydrothermal systems. Proceedings, TOUGH Symposium 2012</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/520/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/520/"><span><span class="hlt">Geochemical</span> data for Colorado soils-Results from the 2006 state-scale <span class="hlt">geochemical</span> survey</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, David B.; Ellefsen, Karl J.; Kilburn, James E.</p> <p>2010-01-01</p> <p>In 2006, soil samples were collected at 960 sites (1 site per 280 square kilometers) throughout the state of Colorado. These samples were collected from a depth of 0-15 centimeters and, following a near-total multi-acid digestion, were analyzed for a suite of more than 40 major and trace elements. The resulting data set provides a baseline for the natural variation in soil geochemistry for Colorado and forms the basis for detecting changes in soil composition that might result from natural processes or anthropogenic activities. This report describes the sampling and analytical protocols used and makes available all the soil <span class="hlt">geochemical</span> data generated in the study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1378024-analysis-complex-faulted-co2-reservoir-using-three-dimensional-hydro-geochemical-mechanical-approach','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1378024-analysis-complex-faulted-co2-reservoir-using-three-dimensional-hydro-geochemical-mechanical-approach"><span>Analysis of a Complex Faulted CO 2 Reservoir Using a Three-dimensional Hydro-<span class="hlt">geochemical</span>-Mechanical Approach</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.; ...</p> <p>2017-08-18</p> <p>This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport <span class="hlt">modeling</span> to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-<span class="hlt">geochemical</span>-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this <span class="hlt">model</span> in combination with a detailed description of the faults helps assess the coupled hydro-<span class="hlt">geochemical</span>-mechanical effect.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1378024','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1378024"><span>Analysis of a Complex Faulted CO 2 Reservoir Using a Three-dimensional Hydro-<span class="hlt">geochemical</span>-Mechanical Approach</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.</p> <p></p> <p>This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport <span class="hlt">modeling</span> to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-<span class="hlt">geochemical</span>-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this <span class="hlt">model</span> in combination with a detailed description of the faults helps assess the coupled hydro-<span class="hlt">geochemical</span>-mechanical effect.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1209533-geochemical-impacts-carbon-dioxide-brine-trace-metal-organic-leakage-unconfined-oxidizing-limestone-aquifer','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1209533-geochemical-impacts-carbon-dioxide-brine-trace-metal-organic-leakage-unconfined-oxidizing-limestone-aquifer"><span><span class="hlt">Geochemical</span> Impacts of Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bacon, Diana H.; Dai, Zhenxue; Zheng, Liange</p> <p>2014-12-31</p> <p>An important risk at CO2 storage sites is the potential for groundwater quality impacts. As part of a system to assess the potential for these impacts a <span class="hlt">geochemical</span> scaling function has been developed, based on a detailed reactive transport <span class="hlt">model</span> of CO2 and brine leakage into an unconfined, oxidizing carbonate aquifer. Stochastic simulations varying a number of <span class="hlt">geochemical</span> parameters were used to generate a response surface predicting the volume of aquifer that would be impacted with respect to regulated contaminants. The brine was assumed to contain several trace metals and organic contaminants. Aquifer pH and TDS were influenced by CO2more » leakage, while trace metal concentrations were most influenced by the brine concentrations rather than adsorption or desorption on calcite. Organic plume sizes were found to be strongly influenced by biodegradation.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22043929-soil-iodine-determination-deccan-syneclise-india-implications-near-surface-geochemical-hydrocarbon-prospecting','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22043929-soil-iodine-determination-deccan-syneclise-india-implications-near-surface-geochemical-hydrocarbon-prospecting"><span>Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface <span class="hlt">Geochemical</span> Hydrocarbon Prospecting</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mani, Devleena, E-mail: devleenatiwari@ngri.res.in; Kumar, T. Satish; Rasheed, M. A.</p> <p>2011-03-15</p> <p>The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a <span class="hlt">geochemical</span> exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a <span class="hlt">geochemical</span> indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana-Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospectivemore » for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r{sup 2} < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface <span class="hlt">geochemical</span> indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of <span class="hlt">geochemical</span> observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and <span class="hlt">geochemical</span> data suggests its efficacy as one of the potential tool in surface <span class="hlt">geochemical</span> exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1164892','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1164892"><span><span class="hlt">Geochemical</span> and isotopic water results, Barrow, Alaska, 2012-2013</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Heikoop, Jeff; Wilson, Cathy; Newman, Brent</p> <p>2012-07-18</p> <p>Data include a large suite of analytes (<span class="hlt">geochemical</span> and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185464','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185464"><span>A <span class="hlt">geochemical</span> transport <span class="hlt">model</span> for redox-controlled movement of mineral fronts in groundwater flow systems: A case of nitrate removal by oxidation of pyrite</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Engesgaard, Peter; Kipp, Kenneth L.</p> <p>1992-01-01</p> <p>A one-dimensional prototype <span class="hlt">geochemical</span> transport <span class="hlt">model</span> was developed in order to handle simultaneous precipitation-dissolution and oxidation-reduction reactions governed by chemical equilibria. Total aqueous component concentrations are the primary dependent variables, and a sequential iterative approach is used for the calculation. The <span class="hlt">model</span> was verified by analytical and numerical comparisons and is able to simulate sharp mineral fronts. At a site in Denmark, denitrification has been observed by oxidation of pyrite. Simulation of nitrate movement at this site showed a redox front movement rate of 0.58 m yr−1, which agreed with calculations of others. It appears that the sequential iterative approach is the most practical for extension to multidimensional simulation and for handling large numbers of components and reactions. However, slow convergence may limit the size of redox systems that can be handled.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.7598C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.7598C"><span><span class="hlt">Geochemical</span> signatures of tsunami deposits - what do they tell us?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chague-Goff, Catherine; Goff, James R.</p> <p>2010-05-01</p> <p>In the last two and half decades, but even more since the 2004 Indian Ocean Tsunami (IOT), there has been a significant increase in the amount of literature dealing with recent, historical and palaeotsunamis. Much has been written and debated about the diagnostic criteria of historical and palaeotsunami deposits. Most of the diagnostic criteria or proxies used reflect the expertise of the researchers involved and thus tend to be biased towards sedimentology, stratigraphy and micropalaeontology, with some reference to geomorphology, archaeology, anthropology and palynology. It should however be noted that all criteria have never been reported from one site, and neither are they all found in one single deposit. Thus, the lack of one or more proxies should not be taken as unique evidence to refute the tsunamigenic origin of a specific deposit. Although <span class="hlt">geochemical</span> signatures have long been used as indicators for palaeosalinity in sedimentary sequences, there appears to have been some reluctance to use them to help in the identification of historical and palaeotsunami deposits. Like other proxies, geochemistry alone may not provide a definite answer to the origin of a deposit. Furthermore, poor preservation due to environmental conditions or as a result of post-diagenetic processes, might complicate the interpretation of <span class="hlt">geochemical</span> signatures left by tsunami inundation. Similar taphonomic problems are also faced for microfossil proxies. However, geochemistry provides another piece to the puzzle, and together with other proxies, it can help identify palaeotsunami deposits. <span class="hlt">Geochemical</span> signatures can also provide clues about the landward limit of runup of a tsunami, beyond the area of sediment deposition. This was recently documented following the 2004 IOT and the 2009 South Pacific tsunami. A summary of examples of <span class="hlt">geochemical</span> signatures recorded in interstitial water and sediment of recent, historical and palaeotsunami deposits is presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014MinDe..49.1013H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014MinDe..49.1013H"><span><span class="hlt">Geochemical</span> prospecting for rare earth elements using termite mound materials</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horiuchi, Yu; Ohno, Tetsuji; Hoshino, Mihoko; Shin, Ki-Cheol; Murakami, Hiroyasu; Tsunematsu, Maiko; Watanabe, Yasushi</p> <p>2014-12-01</p> <p>The Blockspruit fluorite prospect, located in North West State of the Republic of South Africa, occurs within an actinolite rock zone that was emplaced into the Kenkelbos-type granite of Proterozoic age. There are a large number of termite mounds in the prospect. For <span class="hlt">geochemical</span> prospecting for rare earth elements (REEs), in total, 200 samples of termite mound material were collected from actinolite rock and granite zones in the prospect. <span class="hlt">Geochemical</span> analyses of these termite mound materials were conducted by two methods: portable X-ray fluorescence (XRF) spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). Comparison of the two methods broadly indicates positive correlations of REEs (La, Ce, Pr, Nd, and Y), in particular Y and La having a strong correlation. As the result of modal abundance analyses, the actinolite rock at surface mainly consists of ferro-actinolite (89.89 wt%) and includes xenotime (0.26 wt%) and monazite (0.21 wt%) grains as REE minerals. Termite mound materials from actinolite rock also contain xenotime (0.27 wt%) and monazite (0.41 wt%) grains. In addition, termite mound materials from the actinolite rock zone have high hematite and Fe silicate contents compared to those from granite zone. These relationships suggest that REE minerals in termite mound materials originate form actinolite rock. <span class="hlt">Geochemical</span> anomaly maps of Y, La, and Fe concentrations drawn based on the result of the portable XRF analyses show that high concentrations of these elements trend from SW to NE which broadly correspond to occurrences of actinolite body. These results indicate that termite mounds are an effective tool for REE <span class="hlt">geochemical</span> prospection in the study area for both light REEs and Y, but a more detailed survey is required to establish the distribution of the actinolite rock body.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAfES.100..278M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAfES.100..278M"><span><span class="hlt">Geochemical</span> prospecting for Cu mineralization in an arid terrain-central Iran</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mokhtari, Ahmad Reza; Roshani Rodsari, Parisa; Fatehi, Moslem; Shahrestani, Shahed; Pournik, Peyman</p> <p>2014-12-01</p> <p><span class="hlt">Geochemical</span> sampling and data processing were implemented for prospecting Cu mineralization through catchment basin approach in central Iran, Yazd province, over drainage systems in order to determine areas of interest for the detailed exploration program. The target zone, inside an area called Kalout-e-Ashrafa in Yazd province-Iran, was characterized by the collection of 107 stream sediment samples. Catchment basin <span class="hlt">modeling</span> was conducted based on digital elevation <span class="hlt">model</span> (DEM) and geological map of the study area. Samples were studied by univariate and multivariate statistical techniques of exploratory data analysis, classical statistical analysis and cluster analysis. The results showed that only Cu had anomalous behavior and it did not exhibit a considerable correlation with other elements. <span class="hlt">Geochemical</span> maps were prepared for Cu and anomalous zones and separated for potential copper mineralization. It was concluded that due to especial geomorphological and geographical characteristics (smooth topography, negligible annual precipitation and insufficient thickness of silicified Cu-bearing outcrops of the area), low concentrations of Cu would be expected for the delineation of promising zones in similar trains. Using cluster analysis showed that there was a strong correlation between Ag, Sr and S. Calcium and Pb present moderate correlation with Cu. Additionally, there was a strong correlation between Zn and Li, thereby indicating a meaningful correlation with Fe, P, Ti and Mg. Aluminum, Sc and V had a correlation with Be and K. Applying threshold value according to MAD (median absolute deviation) helped us to distinguish anomalous catchments more properly. Finally, there was a significant kind of conformity among anomalous catchment basins and silicified veins and veinlets (as validating index) at the central part of the area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JESS..123..905V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JESS..123..905V"><span>Identification and characterization of tsunami deposits off southeast coast of India from the 2004 Indian Ocean tsunami: Rock magnetic and <span class="hlt">geochemical</span> approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Veerasingam, S.; Venkatachalapathy, R.; Basavaiah, N.; Ramkumar, T.; Venkatramanan, S.; Deenadayalan, K.</p> <p>2014-06-01</p> <p>The December 2004 Indian Ocean Tsunami (IOT) had a major impact on the geomorphology and sedimentology of the east coast of India. Estimation of the magnitude of the tsunami from its deposits is a challenging topic to be developed in studies on tsunami hazard assessment. Two core sediments (C1 and C2) from Nagapattinam, southeast coast of India were subjected to textural, mineral, <span class="hlt">geochemical</span> and rock-magnetic measurements. In both cores, three zones (zone I, II and III) have been distinguished based on mineralogical, <span class="hlt">geochemical</span> and magnetic data. Zone II is featured by peculiar rock-magnetic, textural, mineralogical and <span class="hlt">geochemical</span> signatures in both sediment cores that we interpret to correspond to the 2004 IOT deposit. Textural, mineralogical, <span class="hlt">geochemical</span> and rock-magnetic investigations showed that the tsunami deposit is featured by relative enrichment in sand, quartz, feldspar, carbonate, SiO 2, TiO 2, K 2O and CaO and by a depletion in clay and iron oxides. These results point to a dilution of reworked ferromagnetic particles into a huge volume of paramagnetic materials, similar to what has been described in other nearshore tsunami deposits (Font et al. 2010). Correlation analysis elucidated the relationships among the textural, mineral, <span class="hlt">geochemical</span> and magnetic parameters, and suggests that most of the quartz-rich coarse sediments have been transported offshore by the tsunami wave. These results agreed well with the previously published numerical <span class="hlt">model</span> of tsunami induced sediment transport off southeast coast of India and can be used for future comparative studies on tsunami deposits.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/tm/06A35/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/tm/06A35/"><span>PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent <span class="hlt">Geochemical</span> Reactions</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.</p> <p>2010-01-01</p> <p>The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to <span class="hlt">model</span> a wide range of equilibrium and kinetic <span class="hlt">geochemical</span> reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The <span class="hlt">geochemical</span> reactions are simulated with the <span class="hlt">geochemical</span> <span class="hlt">model</span> PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific <span class="hlt">model</span> grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the <span class="hlt">model</span> grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic <span class="hlt">model</span>; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26965642','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26965642"><span>Uptake Mechanisms of Eu(III) on Hydroxyapatite: A Potential Permeable Reactive Barrier <span class="hlt">Backfill</span> Material for Trapping Trivalent Minor Actinides.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Lin; Zheng, Tao; Yang, Shitong; Zhang, Linjuan; Wang, Jianqiang; Liu, Wei; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao</p> <p>2016-04-05</p> <p>The permeable reactive barrier (PRB) technique has attracted an increasing level of attention for the in situ remediation of contaminated groundwater. In this study, the macroscopic uptake behaviors and microscopic speciation of Eu(III) on hydroxyapatite (HAP) were investigated by a combination of theoretical <span class="hlt">modeling</span>, batch experiments, powder X-ray diffraction (PXRD) fitting, and X-ray absorption spectroscopy (XAS). The underlying removal mechanisms were identified to further assess the application potential of HAP as an effective PRB <span class="hlt">backfill</span> material. The macroscopic analysis revealed that nearly all dissolved Eu(III) in solution was removed at pH 6.5 within an extremely short reaction time of 5 min. In addition, the thermodynamic calculations, desorption experiments, and PXRD and XAS analyses definitely confirmed the formation of the EuPO4·H2O(s) phase during the process of uptake of dissolved Eu(III) by HAP via the dissolution-precipitation mechanism. A detailed comparison of the present experimental findings and related HAP-metal systems suggests that the relative contribution of precipitation to the total Eu(III) removal increases as the P:Eu ratio decreases. The dosage of HAP-based PRB for the remediation of groundwater polluted by Eu(III) and analogous trivalent actinides [e.g., Am(III) and Cm(III)] should be strictly controlled depending on the dissolved Eu(III) concentration to obtain an optimal P:M (M represents Eu, Am, or Cm) ratio and treatment efficiency.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H13C1221D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H13C1221D"><span>Inverse <span class="hlt">Geochemical</span> Reaction Path <span class="hlt">Modelling</span> and the Impact of Climate Change on Hydrologic Structure in Snowmelt-Dominated Catchments in the Southwestern USA</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Driscoll, J. M.; Meixner, T.; Molotch, N. P.; Sickman, J. O.; Williams, M. W.; McIntosh, J. C.; Brooks, P. D.</p> <p>2011-12-01</p> <p>Snowmelt from alpine catchments provides 70-80% of the American Southwest's water resources. Climate change threatens to alter the timing and duration of snowmelt in high elevation catchments, which may also impact the quantity and the quality of these water resources. <span class="hlt">Modelling</span> of these systems provides a robust theoretical framework to process the information extracted from the sparse physical measurement available in these sites due to their remote locations. Mass-balance inverse <span class="hlt">geochemical</span> <span class="hlt">models</span> (via PHREEQC, developed by the USGS) were applied to two snowmelt-dominated catchments; Green Lake 4 (GL4) in the Rockies and Emerald Lake (EMD) in the Sierra Nevada. Both catchments primarily consist of granite and granodiorite with a similar bulk geochemistry. The inputs for the <span class="hlt">models</span> were the initial (snowpack) and final (catchment output) hydrochemistry and a catchment-specific suite of mineral weathering reactions. <span class="hlt">Models</span> were run for wet and dry snow years, for early and late time periods (defined hydrologically as 1/2 of the total volume for the year). Multiple <span class="hlt">model</span> solutions were reduced to a representative suite of reactions by choosing the <span class="hlt">model</span> solution with the fewest phases and least overall phase change. The dominant weathering reactions (those which contributed the most solutes) were plagioclase for GL4 and albite for EMD. Results for GL4 show overall more plagioclase weathering during the dry year (214.2g) than wet year (89.9g). Both wet and dry years show more weathering in the early time periods (63% and 56%, respectively). These results show that the snowpack and outlet are chemically more similar during wet years than dry years. A possible hypothesis to explain this difference is a change in contribution from subsurface storage; during the wet year the saturated catchment reduces contact with surface materials that would result in mineral weathering reactions by some combination of reduced infiltration and decreased subsurface transit time. By</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5373566','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5373566"><span>Evaluation of the Single Dilute (0.43 M) Nitric Acid Extraction to Determine <span class="hlt">Geochemically</span> Reactive Elements in Soil</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>Recently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of <span class="hlt">geochemically</span> reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic <span class="hlt">geochemical</span> <span class="hlt">modeling</span>. <span class="hlt">Model</span> predictions indicate that the extraction recovers the reactive concentration quantitatively (>90%). However, at low ratios of element to reactive surfaces the extraction underestimates reactive Cu, Cr, As, and Mo, that is, elements with a particularly high affinity for organic matter or oxides. The 0.43 M HNO3 together with more dilute and concentrated acid extractions were evaluated by comparing <span class="hlt">model</span>-predicted and measured dissolved concentrations in CaCl2 soil extracts, using the different extractions as alternative <span class="hlt">model</span>-input. Mean errors of the predictions based on 0.43 M HNO3 are generally within a factor three, while Mo is underestimated and Co, Ni and Zn in soils with pH > 6 are overestimated, for which possible causes are discussed. <span class="hlt">Model</span> predictions using 0.43 M HNO3 are superior to those using 0.1 M HNO3 or Aqua Regia that under- and overestimate the reactive element contents, respectively. Low concentrations of oxyanions in our data set and structural underestimation of their reactive concentrations warrant further investigation. PMID:28164700</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4642505','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4642505"><span><span class="hlt">Geochemical</span> influences and mercury methylation of a dental wastewater microbiome</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rani, Asha; Rockne, Karl J.; Drummond, James; Al-Hinai, Muntasar; Ranjan, Ravi</p> <p>2015-01-01</p> <p>The microbiome of dental clinic wastewater and its impact on mercury methylation remains largely unknown. Waste generated during dental procedures enters the sewer system and contributes a significant fraction of the total mercury (tHg) and methyl mercury (MeHg) load to wastewater treatment facilities. Investigating the influence of <span class="hlt">geochemical</span> factors and microbiome structure is a critical step linking the methylating microorganisms in dental wastewater (DWW) ecosystems. DWW samples from a dental clinic were collected over eight weeks and analyzed for <span class="hlt">geochemical</span> parameters, tHg, MeHg and bacterio-toxic heavy metals. We employed bacterial fingerprinting and pyrosequencing for microbiome analysis. High concentrations of tHg, MeHg and heavy metals were detected in DWW. The microbiome was dominated by Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and many unclassified bacteria. Significant correlations were found between the bacterial community, Hg levels and <span class="hlt">geochemical</span> factors including pH and the predicted total amount (not fraction) of neutral Hg-sulfide species. The most prevalent known methylators included Desulfobulbus propionicus, Desulfovibrio desulfuricans, Desulfovibrio magneticus and Geobacter sulfurreducens. This study is the first to investigate the impact of high loads of Hg, MeHg and other heavy metals on the dental clinic wastewater microbiome, and illuminates the role of many known and unknown sulfate-reducing bacteria in Hg methylation. PMID:26271452</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2015/1025/pdf/ofr2015-1025.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2015/1025/pdf/ofr2015-1025.pdf"><span><span class="hlt">Geochemical</span> maps of stream sediments in central Colorado, from New Mexico to Wyoming</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.</p> <p>2015-01-01</p> <p>The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment <span class="hlt">geochemical</span> maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape <span class="hlt">geochemical</span> maps serve as a <span class="hlt">geochemical</span> baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031856','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031856"><span>Composition and origin of the Dewar <span class="hlt">geochemical</span> anomaly</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lawrence, S.J.; Hawke, B.R.; Gillis-Davis, J. J.; Taylor, G.J.; Lawrence, D.J.; Cahill, J.T.; Hagerty, J.J.; Lucey, P.G.; Smith, G.A.; Keil, Klaus</p> <p>2008-01-01</p> <p>Dewar crater is a 50-km diameter impact structure located in the highlands northwest of the South Pole–Aitken basin on the lunar farside. A low-albedo area with enhanced Th and Sm values is centered east-northeast of Dewar crater. This area also exhibits elevated FeO abundances (9.0–16.6 wt %) and TiO2 values (0.6–2 wt %). The range of FeO and TiO2 abundances determined for the darkest portions of the <span class="hlt">geochemical</span> anomaly overlap the range of FeO and TiO2 values determined for nearside mare basalt deposits. Analysis of Clementine spectra obtained from the darkest portions of the Dewar <span class="hlt">geochemical</span> anomaly indicates that the low-albedo materials contain large amounts of high-Ca clinopyroxene consistent with the presence of major amounts of mare basalt. Cryptomare deposits have played an important role in the formation of the Dewar <span class="hlt">geochemical</span> anomaly. The evidence indicates that buried basalt, or cryptomare, was excavated from depth during impact events that formed dark-haloed craters in the region. We show that an early Imbrian- or Nectarian-age, low-TiO2 mare basalt deposit with enhanced Th concentrations (6–7 μg/g) exists in the Dewar region. This ancient mare unit was buried by ejecta from Dewar crater, creating a cryptomare. Although most mare units on the central farside of the Moon exhibit low Th abundances, the enhanced Th values associated with the Dewar cryptomare deposit indicate that at least some portions of the underlying lunar interior (mantle and crust) on the farside of the Moon were not Th poor.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012137','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012137"><span><span class="hlt">Geochemical</span> evidence for a brooks range mineral belt, Alaska</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Marsh, S.P.; Cathrall, J.B.</p> <p>1981-01-01</p> <p><span class="hlt">Geochemical</span> studies in the central Brooks Range, Alaska, delineate a regional, structurally controlled mineral belt in east-west-trending metamorphic rocks and adjacent metasedimentary rocks. The mineral belt extends eastward from the Ambler River quadrangle to the Chandalar and Philip Smith quadrangles, Alaska, from 147?? to 156??W. longitude, a distance of more than 375 km, and spans a width from 67?? to 69??N. latitude, a distance of more than 222 km. Within this belt are several occurrences of copper and molybdenum mineralization associated with meta-igneous, metasedimentary, and metavolcanic rocks; the <span class="hlt">geochemical</span> study delineates target areas for additional occurrences. A total of 4677 stream-sediment and 2286 panned-concentrate samples were collected in the central Brooks Range, Alaska, from 1975 to 1979. The -80 mesh ( 2.86) nonmagnetic fraction of the panned concentrates from stream sediment were analyzed by semiquantitative spectrographic methods. Two <span class="hlt">geochemical</span> suites were recognized in this investigation; a base-metal suite of copper-lead-zinc and a molybdenum suite of molybdenum-tin-tungsten. These suites suggest several types of mineralization within the metamorphic belt. Anomalies in molybdenum with associated Cu and W suggest a potential porphyry molybdenum system associated with meta-igneous rocks. This regional study indicates that areas of metaigneous rocks in the central metamorphic belt are target areas for potential mineralized porphyry systems and that areas of metavolcanic rocks are target areas for potential massive sulfide mineralization. ?? 1981.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..544..538G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..544..538G"><span>Hydrological and <span class="hlt">geochemical</span> processes constraining groundwater salinity in wetland areas related to evaporitic (karst) systems. A case study from Southern Spain</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gil-Márquez, J. M.; Barberá, J. A.; Andreo, B.; Mudarra, M.</p> <p>2017-01-01</p> <p>Chemical and isotopic evolution of groundwater in an evaporite karst plateau (including wetland areas and saline to hyper-saline springs) located at S Spain was studied. Physicochemical parameters, major ions and stable isotopes were analyzed in rain, brine spring, wetland and leakage water samples, from which the most common mineral saturation indexes were computed and <span class="hlt">geochemical</span> and isotopic <span class="hlt">modelling</span> were performed. Results show an apparent relationship between the elevation of brine springs and their water mineralization, indicating that drainage at higher altitude may be associated to gravity-driven flows, since brackish groundwater is isotopically fractionated due to evaporation. On the other hand, the lower altitude springs could drain deeper flows with longer residence time, resulting in highly mineralized and warmer (briny) groundwater. The dissolution of halite and gypsum has proved to be the main <span class="hlt">geochemical</span> processes, which are favored by the great ionic strength of groundwater. Calcite precipitation occurs in brackish waters draining wetlands, being boosted by common ion effect (when CaSO4 waters are present) and solute concentration caused by evaporation. <span class="hlt">Modelling</span> results strongly support the hypothesis that most of the selected springs <span class="hlt">geochemically</span> evolve in a common (S-N) flowpath. The methods used in this research contribute to a better understanding of the hydrogeological processes occurring in the studied evaporitic system, but also in equivalent hydrological environments worldwide.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193232','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193232"><span>Statistical analysis of soil <span class="hlt">geochemical</span> data to identify pathfinders associated with mineral deposits: An example from the Coles Hill uranium deposit, Virginia, USA</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Levitan, Denise M.; Zipper, Carl E.; Donovan, Patricia; Schreiber, Madeline E.; Seal, Robert; Engle, Mark A.; Chermak, John A.; Bodnar, Robert J.; Johnson, Daniel K.; Aylor, Joseph G.</p> <p>2015-01-01</p> <p>Soil <span class="hlt">geochemical</span> anomalies can be used to identify pathfinders in exploration for ore deposits. In this study, compositional data analysis is used with multivariate statistical methods to analyse soil <span class="hlt">geochemical</span> data collected from the Coles Hill uranium deposit, Virginia, USA, to identify pathfinders associated with this deposit. Elemental compositions and relationships were compared between the collected Coles Hill soil and reference soil samples extracted from a regional subset of a national-scale <span class="hlt">geochemical</span> survey. Results show that pathfinders for the Coles Hill deposit include light rare earth elements (La and Ce), which, when normalised by their Al content, are correlated with U/Al, and elevated Th/Al values, which are not correlated with U/Al, supporting decoupling of U from Th during soil generation. These results can be used in genetic and weathering <span class="hlt">models</span> of the Coles Hill deposit, and can also be applied to future prospecting for similar U deposits in the eastern United States, and in regions with similar geological/climatic conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24345245','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24345245"><span>Multivariate analysis of the heterogeneous <span class="hlt">geochemical</span> processes controlling arsenic enrichment in a shallow groundwater system.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Shuangbing; Liu, Changrong; Wang, Yanxin; Zhan, Hongbin</p> <p>2014-01-01</p> <p>The effects of various <span class="hlt">geochemical</span> processes on arsenic enrichment in a high-arsenic aquifer at Jianghan Plain in Central China were investigated using multivariate <span class="hlt">models</span> developed from combined adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR). The results indicated that the optimum variable group for the AFNIS <span class="hlt">model</span> consisted of bicarbonate, ammonium, phosphorus, iron, manganese, fluorescence index, pH, and siderite saturation. These data suggest that reductive dissolution of iron/manganese oxides, phosphate-competitive adsorption, pH-dependent desorption, and siderite precipitation could integrally affect arsenic concentration. Analysis of the MLR <span class="hlt">models</span> indicated that reductive dissolution of iron(III) was primarily responsible for arsenic mobilization in groundwaters with low arsenic concentration. By contrast, for groundwaters with high arsenic concentration (i.e., > 170 μg/L), reductive dissolution of iron oxides approached a dynamic equilibrium. The desorption effects from phosphate-competitive adsorption and the increase in pH exhibited arsenic enrichment superior to that caused by iron(III) reductive dissolution as the groundwater chemistry evolved. The inhibition effect of siderite precipitation on arsenic mobilization was expected to exist in groundwater that was highly saturated with siderite. The results suggest an evolutionary dominance of specific <span class="hlt">geochemical</span> process over other factors controlling arsenic concentration, which presented a heterogeneous distribution in aquifers. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://dggs.alaska.gov/webpubs/dggs/rdf/text/rdf2015_009.pdf','USGSPUBS'); return false;" href="http://dggs.alaska.gov/webpubs/dggs/rdf/text/rdf2015_009.pdf"><span><span class="hlt">Geochemical</span> reanalysis of historical U.S. Geological Survey sediment samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.</p> <p>2015-01-01</p> <p>The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and <span class="hlt">geochemical</span> data. As part of the SCM Assessment, thousands of historical <span class="hlt">geochemical</span> samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, <span class="hlt">geochemical</span>-analytical methods. The objective is to update the statewide <span class="hlt">geochemical</span> database to more clearly identify areas in Alaska with SCM potential.The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska.For this report, DGGS funded reanalysis of 105 historical USGS sediment samples from the statewide Alaska <span class="hlt">Geochemical</span> Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Zane Hills area in the Hughes and Shungnak quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National <span class="hlt">Geochemical</span> Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the <span class="hlt">geochemical</span> analyses obtained through the USGS contract lab. The new <span class="hlt">geochemical</span> data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide <span class="hlt">geochemical</span> databases of both agencies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51G1363G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51G1363G"><span><span class="hlt">Geochemical</span> processes during managed aquifer recharge with desalinated seawater</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.</p> <p>2017-12-01</p> <p>In this work we study the <span class="hlt">geochemical</span> processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW) to an infiltration pond at the Menashe site, located above the Israeli coastal aquifer. The DSW is post-treated by calcite dissolution (remineralization) in order to meet the Israeli desalinated water quality criteria. Suction cups and monitoring wells inside the pond were used to monitor water quality during two MAR events on 2015 and 2016. Results show that cation exchange is dominant, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the composition of the shallow groundwater is similar to the recharged DSW, but with enrichment of Mg2+, Na+, Ca2+ and HCO3-. A calibrated variably-saturated reactive transport <span class="hlt">model</span> was used to predict the <span class="hlt">geochemical</span> evolution during 50 years of MAR with two water quality scenarios: post-treated DSW and soft DSW (without post-treatment). The latter scenario was aimed to test soil-aquifer-treatment as an alternative post-treatment technique. In terms of water quality, the results of the two scenarios were found within the range of the desalinated water criteria. Mg2+ enrichment was stable ( 2.5 mg L-1), higher than the zero concentration found in the Israeli DSW. Calcite content reduction was low (<1%) along the variably-saturated profile, after 50 years of MAR. This suggests that using soil-aquifer-treatment as a remineralization technique for DSW is potentially a sustainable practice, which is limited only by the current hydraulic capacity of the Menashe MAR site.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRR....54..978G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRR....54..978G"><span><span class="hlt">Geochemical</span> Processes During Managed Aquifer Recharge With Desalinated Seawater</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ganot, Y.; Holtzman, R.; Weisbrod, N.; Russak, A.; Katz, Y.; Kurtzman, D.</p> <p>2018-02-01</p> <p>We study <span class="hlt">geochemical</span> processes along the variably-saturated zone during managed aquifer recharge (MAR) with reverse-osmosis desalinated seawater (DSW). The DSW, post-treated at the desalination plant by calcite dissolution (remineralization) to meet the Israeli water quality standards, is recharged into the Israeli Coastal Aquifer through an infiltration pond. Water quality monitoring during two MAR events using suction cups and wells inside the pond indicates that cation exchange is the dominant subsurface reaction, driven by the high Ca2+ concentration in the post-treated DSW. Stable isotope analysis shows that the shallow groundwater composition is similar to the recharged DSW, except for enrichment of Mg2+, Na+, Ca2+, and HCO3-. A calibrated variably-saturated reactive transport <span class="hlt">model</span> is used to predict the <span class="hlt">geochemical</span> evolution during 50 years of MAR for two water quality scenarios: (i) post-treated DSW (current practice) and (ii) soft DSW (lacking the remineralization post-treatment process). The latter scenario was aimed to test soil-aquifer-treatment (SAT) as an alternative post-treatment technique. Both scenarios provide an enrichment of ˜2.5 mg L-1 in Mg2+ due to cation exchange, compared to practically zero Mg2+ currently found in the Israeli DSW. Simulations of the alternative SAT scenario provide Ca2+ and HCO3- remineralization due to calcite dissolution at levels that meet the Israeli standard for DSW. The simulated calcite content reduction in the sediments below the infiltration pond after 50 years of MAR was low (<1%). Our findings suggest that remineralization using SAT for DSW is a potentially sustainable practice at MAR sites overlying calcareous sandy aquifers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5267869-infertility-growth-suppression-beef-cattle-associated-abnormalities-geochemical-environment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5267869-infertility-growth-suppression-beef-cattle-associated-abnormalities-geochemical-environment"><span>Infertility and growth suppression in beef cattle associated with abnormalities in their <span class="hlt">geochemical</span> environment</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Case, A.A.; Selby, L.A.; Hutcheson, D.P.</p> <p>1973-01-01</p> <p>Infertility and growth suppression were reported in two beef-cattle herds located in a small valley in central Missouri. Clinical, epidemiological, and toxicological evaluation of the herds and ranches by personnel from the Environmental Health Surveillance Center suggested that the problem was related to the local <span class="hlt">geochemical</span> environment. US Geological Survey personnel, engaged in a <span class="hlt">geochemical</span> survey of the natural environment of Missouri, were asked to evaluate the site <span class="hlt">geochemically</span>. <span class="hlt">Geochemical</span> studies of waters, alluvial deposits, and vegetation revealed that aluminum, beryllium, cobalt, copper, molybdenum, and nickel occur in anomalous concentrations in these materials. The principal source of these elements ismore » believed to be clay, shale, limestone, coal, and pyrite that were exposed at the head of the valley when the clay was mined. Young beef cattle from two ranches which were pastured on the flood plain below the claypile experienced a severe growth suppression from an imbalance of minerals or other nutrients in their feed or water, or both. Metabolic disturbances in these cattle resembled chronic molybdenosis. Imbalances of copper and molybdenum, in addition to those of cobalt and other substances, may have contributed to this syndrome. 17 references.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890011988','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890011988"><span>Mineralogical and <span class="hlt">geochemical</span> anomalous data of the K-T boundary samples</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Miura, Y.; Shibya, G.; Imai, M.; Takaoka, N.; Saito, S.</p> <p>1988-01-01</p> <p>Cretaceous-Tertiary boundary problem has been discussed previously from the geological research, mainly by fossil changes. Although <span class="hlt">geochemical</span> bulk data of Ir anomaly suggest the extraterrestrial origin of the K-T boundary, the exact formation process discussed mainly by mineralogical and <span class="hlt">geochemical</span> study has been started recently, together with noble gas contents. The K-T boundary sample at Kawaruppu River, Hokkaido was collected, in order to compare with the typical K-T boundary samples of Bubbio, Italy, Stevns Klint, Denmark, and El Kef, Tunisia. The experimental data of the silicas and calcites in these K-T boundary samples were obtained from the X-ray unit-cell dimension (i.e., density), ESR signal and total linear absorption coefficient, as well as He and Ne contents. The K-T boundary samples are usually complex mixture of the terrestrial activities after the K-T boundary event. The mineralogical and <span class="hlt">geochemical</span> anomalous data indicate special terrestrial atmosphere at the K-T boundary formation probably induced by asteroid impact, followed the many various terrestrial activities (especially the strong role of sea-water mixture, compared with terrestrial highland impact and impact craters in the other earth-type planetary bodies).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034509','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034509"><span>In Situ Rates of Sulfate Reduction in Response to <span class="hlt">Geochemical</span> Perturbations</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kneeshaw, T.A.; McGuire, J.T.; Cozzarelli, I.M.; Smith, E.W.</p> <p>2011-01-01</p> <p>Rates of in situ microbial sulfate reduction in response to <span class="hlt">geochemical</span> perturbations were determined using Native Organism <span class="hlt">Geochemical</span> Experimentation Enclosures (NOGEEs), a new in situ technique developed to facilitate evaluation of controls on microbial reaction rates. NOGEEs function by first trapping a native microbial community in situ and then subjecting it to <span class="hlt">geochemical</span> perturbations through the introduction of various test solutions. On three occasions, NOGEEs were used at the Norman Landfill research site in Norman, Oklahoma, to evaluate sulfate-reduction rates in wetland sediments impacted by landfill leachate. The initial experiment, in May 2007, consisted of five introductions of a sulfate test solution over 11 d. Each test stimulated sulfate reduction with rates increasing until an apparent maximum was achieved. Two subsequent experiments, conducted in October 2007 and February 2008, evaluated the effects of concentration on sulfate-reduction rates. Results from these experiments showed that faster sulfate-reduction rates were associated with increased sulfate concentrations. Understanding variability in sulfate-reduction rates in response to perturbations may be an important factor in predicting rates of natural attenuation and bioremediation of contaminants in systems not at biogeochemical equilibrium. Copyright ?? 2011 The Author(s). Journal compilation ?? 2011 National Ground Water Association.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6363516-eastern-devonian-shales-organic-geochemical-studies','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6363516-eastern-devonian-shales-organic-geochemical-studies"><span>Eastern Devonian shales: Organic <span class="hlt">geochemical</span> studies</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Berger, I.A.; Hatchner, P.G.; Miknis, F.P.</p> <p></p> <p>The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Illinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of themore » fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic <span class="hlt">geochemical</span> aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic <span class="hlt">geochemical</span> studies on Eastern Devonian shales are reviewed. Recent solid state /sup 13/C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a ''coaly'' nature and hence more prone to producing natural gas.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1953/0031/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1953/0031/report.pdf"><span>A preliminary report of <span class="hlt">geochemical</span> investigations in the Blackbird District</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Canney, F.C.; Hawkes, H.E.; Richmond, G.M.; Vhay, J. S.</p> <p>1953-01-01</p> <p>This paper reviews an experimental <span class="hlt">geochemical</span> prospecting survey in the Blackbird cobalt-copper mining district. The district is in east-central Idaho, about 20 miles west-southwest of Salmon. The area is one of deeply weathered nearly flat-topped upland surfaces cut by steep-walled valleys which are tributary to the canyon of Panther Creek. Most of the area has a relatively heavy vegetative cover, and outcrops are scarce except on the sides of the steeper valleys* Because of the importance of the surficial deposits and soils and the physiographic history of the region on the interpretation of the <span class="hlt">geochemical</span> data, a separate chapter on this subject by Gerald H. Richmond follows the following brief description of the geology of the district.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/tm/2005/tm6A8/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/tm/2005/tm6A8/"><span>PHAST--a program for simulating ground-water flow, solute transport, and multicomponent <span class="hlt">geochemical</span> reactions</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.</p> <p>2004-01-01</p> <p>The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to <span class="hlt">model</span> a wide range of equilibrium and kinetic <span class="hlt">geochemical</span> reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The <span class="hlt">geochemical</span> reactions are simulated with the <span class="hlt">geochemical</span> <span class="hlt">model</span> PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic <span class="hlt">model</span>; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous <span class="hlt">model</span> (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28435882','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28435882"><span><span class="hlt">Geochemical</span> evidence for mélange melting in global arcs.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nielsen, Sune G; Marschall, Horst R</p> <p>2017-04-01</p> <p>In subduction zones, sediments and hydrothermally altered oceanic crust, which together form part of the subducting slab, contribute to the chemical composition of lavas erupted at the surface to form volcanic arcs. Transport of this material from the slab to the overlying mantle wedge is thought to involve discreet melts and fluids that are released from various portions of the slab. We use a meta-analysis of <span class="hlt">geochemical</span> data from eight globally representative arcs to show that melts and fluids from individual slab components cannot be responsible for the formation of arc lavas. Instead, the data are compatible with <span class="hlt">models</span> that first invoke physical mixing of slab components and the mantle wedge, widely referred to as high-pressure mélange, before arc magmas are generated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H33A1520J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H33A1520J"><span>Assessment of CO2-Induced <span class="hlt">Geochemical</span> Changes in Soil/Mineral-Water Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeong, H. Y.; Choi, H. J.</p> <p>2016-12-01</p> <p>Although the storage of CO2 in deep geological formations is considered the most promising sequestration path, there is still a risk that it may leak into the atmosphere. To ensure the secure operation of CO2 storage sites, thus, it is necessary to implement CO2 leakage monitoring systems. Furthermore, the leakage may alter <span class="hlt">geochemical</span> properties of overlying geological units to have adverse environmental consequences. By elucidating <span class="hlt">geochemical</span> changes due to CO2 leakage, it is possible to develop effective CO2 monitoring techniques and predict the influence of CO2 leakage. A series of batch experiments were conducted to simulate CO2-induced <span class="hlt">geochemical</span> changes in soil/mineral-water systems. Soil samples, obtained from Eumseong basin in Eumseong-gun, Chungcheongbuk-do, were dried for 6 hours at 60° and then divided into two size fractions: < 106 and 106-212 mm. Minerals including mica/illite, vermiculite, and feldspar were purchased and purified if necessary. Prior to batch experiments, soils and minerals were characterized for surface area, mineralogy, elemental composition, carbon and nitrogen contents, pH buffering capacity, and metal extractability. Batch experiments were initiated by reacting 100% CO2 atmosphere with aqueous suspensions of 120 g soils or 50 g minerals in 3,000 mL of 10 mM CsClO4 at room temperature. In parallel, the batches having the same soil/mineral compositions were run under the ambient air as controls. To prevent microbial activities, all batches were sterilized with 0.03% HCHO. To track <span class="hlt">geochemical</span> changes, pH and electrical conductivity were monitored. Also, while solutions were regularly sampled and analyzed for trace metals as well as main cations and anions, solid phases were sampled to observe changes in mineralogical compositions. <span class="hlt">Geochemical</span> changes in both solution and solid phases during the initial 6 month reaction will be presented. Acknowledgement: The "R&D Project on Environmental Management of Geologic CO2 Storage" from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000090589&hterms=magma&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmagma','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000090589&hterms=magma&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmagma"><span><span class="hlt">Geochemical</span> Evidence for a Terrestrial Magma Ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Agee, Carl B.</p> <p>1999-01-01</p> <p>The aftermath of phase separation and crystal-liquid fractionation in a magma ocean should leave a planet <span class="hlt">geochemically</span> differentiated. Subsequent convective and other mixing processes may operate over time to obscure <span class="hlt">geochemical</span> evidence of magma ocean differentiation. On the other hand, core formation is probably the most permanent, irreversible part of planetary differentiation. Hence the <span class="hlt">geochemical</span> traces of core separation should be the most distinct remnants left behind in the mantle and crust, In the case of the Earth, core formation apparently coincided with a magma ocean that extended to a depth of approximately 1000 km. Evidence for this is found in high pressure element partitioning behavior of Ni and Co between liquid silicate and liquid iron alloy, and with the Ni-Co ratio and the abundance of Ni and Co in the Earth's upper mantle. A terrestrial magma ocean with a depth of 1000 km will solidify from the bottom up and first crystallize in the perovskite stability field. The largest effect of perovskite fractionation on major element distribution is to decrease the Si-Mg ratio in the silicate liquid and increase the Si-Mg ratio in the crystalline cumulate. Therefore, if a magma ocean with perovskite fractionation existed, then one could expect to observe an upper mantle with a lower than chondritic Si-Mg ratio. This is indeed observed in modern upper mantle peridotites. Although more experimental work is needed to fully understand the high-pressure behavior of trace element partitioning, it is likely that Hf is more compatible than Lu in perovskite-silicate liquid pairs. Thus, perovskite fractionation produces a molten mantle with a higher than chondritic Lu-Hf ratio. Arndt and Blichert-Toft measured Hf isotope compositions of Barberton komatiites that seem to require a source region with a long-lived, high Lu-Hf ratio. It is plausible that that these Barberton komatiites were generated within the majorite stability field by remelting a perovskite</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185997','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185997"><span>The curved 14C vs. δ13C relationship in dissolved inorganic carbon: A useful tool for groundwater age- and <span class="hlt">geochemical</span> interpretations</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Han, Liang-Feng; Plummer, Niel; Aggarwal, Pradeep</p> <p>2014-01-01</p> <p>Determination of the 14C content of dissolved inorganic carbon (DIC) is useful for dating of groundwater. However, in addition to radioactive decay, the 14C content in DIC (14CDIC) can be affected by many <span class="hlt">geochemical</span> and physical processes and numerous <span class="hlt">models</span> have been proposed to refine radiocarbon ages of DIC in groundwater systems. Changes in the δ13C content of DIC (δ13CDIC) often can be used to deduce the processes that affect the carbon isotopic composition of DIC and the 14C value during the chemical evolution of groundwater. This paper shows that a curved relationship of 14CDIC vs. δ13CDIC will be observed for groundwater systems if (1) the change in δ13C value in DIC is caused by a first-order or pseudo-first-order process, e.g. isotopic exchange between DIC and solid carbonate, (2) the reaction/process progresses with the ageing of the groundwater, i.e. with decay of 14C in DIC, and (3) the magnitude of the rate of change in δ13C of DIC is comparable with that of 14C decay. In this paper, we use a lumped parameter method to derive a <span class="hlt">model</span> based on the curved relationship between 14CDICand δ13CDIC. The derived <span class="hlt">model</span>, if used for isotopic exchange between DIC and solid carbonate, is identical to that derived by Gonfiantini and Zuppi (2003). The curved relationship of 14CDIC vs. δ13CDIC can be applied to interpret the age of the DIC in groundwater. Results of age calculations using the method discussed in this paper are compared with those obtained by using other methods that calculate the age of DIC based on adjusted initial radiocarbon values for individual samples. This paper shows that in addition to groundwater age interpretation, the lumped parameter method presented here also provides a useful tool for <span class="hlt">geochemical</span> interpretations, e.g. estimation of apparent rates of <span class="hlt">geochemical</span> reactions and revealing the complexity of the <span class="hlt">geochemical</span> environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31J..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31J..08S"><span>An integrated geophysical and <span class="hlt">geochemical</span> exploration of critical zone weathering on opposing montane hillslope</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singha, K.; Navarre-Sitchler, A.; Bandler, A.; Pommer, R. E.; Novitsky, C. G.; Holbrook, S.; Moore, J.</p> <p>2017-12-01</p> <p>Quantifying coupled <span class="hlt">geochemical</span> and hydrological properties and processes that operate in the critical zone is key to predicting rock weathering and subsequent transmission and storage of water in the shallow subsurface. Geophysical data have the potential to elucidate <span class="hlt">geochemical</span> and hydrologic processes across landscapes over large spatial scales that are difficult to achieve with point measurements alone. Here, we explore the connections between weathering and fracturing, as measured from integrated <span class="hlt">geochemical</span> and geophysical borehole data and seismic velocities on north- and south-facing aspects within one watershed in the Boulder Creek Critical Zone Observatory. We drilled eight boreholes up to 13 m deep on north- and south-facing aspects within Upper Gordon Gulch, and surface seismic refraction data were collected near these wells to explore depths of regolith and bedrock, as well as anisotropic characteristics of the subsurface material due to fracturing. Optical televiewer data were collected in these wells to infer the dominant direction of fracturing and fracture density in the near surface to corroborate with the seismic data. <span class="hlt">Geochemical</span> samples were collected from four of these wells and a series of shallow soil pits for bulk chemistry, clay fraction, and exchangeable cation concentrations to identify depths of chemically altered saprolite. Seismic data show that depth to unweathered bedrock, as defined by p-wave seismic velocity, is slightly thicker on the north-facing slopes. <span class="hlt">Geochemical</span> data suggest that the depth to the base of saprolite ranges from 3-5 m, consistent with a p-wave velocity value of 1200 m/s. Based on magnitude and anisotropy of p-wave velocities together with optical televiewer data, regolith on north-facing slopes is thought to be more fractured than south-facing slopes, while <span class="hlt">geochemical</span> data indicate that position on the landscape is another important characteristic in determining depths of weathering. We explore the importance</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6111435-small-scale-geochemical-cycles-distribution-uranium-central-north-florida-organic-deposits','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6111435-small-scale-geochemical-cycles-distribution-uranium-central-north-florida-organic-deposits"><span>Small-scale <span class="hlt">geochemical</span> cycles and the distribution of uranium in central and north Florida organic deposits</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bond, P.A.</p> <p>1993-03-01</p> <p>The global <span class="hlt">geochemical</span> cycle for an element tracks its path from its various sources to its sinks via processes of weathering and transportation. The cycle may then be quantified in a necessarily approximate manner. The <span class="hlt">geochemical</span> cycle (thus quantified) reveals constraints (known and unknown) on an element's behavior imposed by the various processes which act on it. In the context of a global <span class="hlt">geochemical</span> cycle, a continent becomes essentially a source term. If, however, an element's behavior is examined in a local or regional context, sources and their related sinks may be identified. This suggests that small-scale <span class="hlt">geochemical</span> cycles maymore » be superimposed on global <span class="hlt">geochemical</span> cycles. Definition of such sub-cycles may clarify the distribution of an element in the earth's near-surface environment. In Florida, phosphate minerals of the Hawthorn Group act as a widely distributed source of uranium. Uranium is transported by surface- and ground-waters. Florida is the site of extensive wetlands and peatlands. The organic matter associated with these deposits adsorbs uranium and may act as a local sink depending on its hydrogeologic setting. This work examines the role of organic matter in the distribution of uranium in the surface and shallow subsurface environments of central and north Florida.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H23G1359S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H23G1359S"><span><span class="hlt">Geochemical</span> and isotopic characterization of groundwater origins in a Mediterranean karst system (southern France)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seidel, J. L.; Ladouche, B.; Batiot-Guilhe, C.</p> <p>2013-12-01</p> <p><span class="hlt">Geochemical</span> and isotopic ratio (11B/10B and 87Sr/86Sr) results are reported for better determining the groundwater origins in the Lez Karst system (southern France). The Lez spring is the main perennial outlet of the system and supplies with drinking water the metropolitan area of Montpellier. According to the hydrodynamic conditions, five water-types discharge at the Lez spring with important mineralization fluctuations (Caetano Bicalho et al., 2012). This <span class="hlt">geochemical</span> response suggests that hydrodynamics targets groundwater circulation, resulting from different water end-member solicitation and mixing. Previous studies using conventional natural tracers do not succeed to identify all the water compartments supporting the flow during the hydrologic cycle (Marjolet & Salado, 1977; Joseph et al., 1988) and to explain the mineralization variation of the Lez spring. The present study combines a basic <span class="hlt">geochemical</span> survey data with boron and strontium isotope ratio data for a better characterization of the Lez spring <span class="hlt">geochemical</span> functioning. Groundwater samples were collected at the Lez spring and surrounding springs and wells under different hydrologic conditions from 2009 to 2011. Major, trace and rare earth elements were determined at AETE analytical platform (OREME, Univ. Montpellier 2) by ionic chromatography and Q-ICP-MS respectively. d11B and 87Sr/86Sr were determined at BRGM/MMA Orleans by TIMS. The <span class="hlt">geochemical</span> survey has been extended at a larger scale by sampling the main <span class="hlt">geochemical</span> end- members already identified to replace the Lez spring waters in the regional <span class="hlt">geochemical</span> context. From this <span class="hlt">geochemical</span> study, valuable informations have been provided on the reservoir types and water origins flowing in high and low stage periods. For the highly mineralized waters occurring in the fall first rainy events or severe low stages, a deep contribution is highlighted but B and Sr isotopic data do not ascertain the two Triassic end-members (halite or gypsum) as possible</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003CG.....29..265V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003CG.....29..265V"><span>Module-oriented <span class="hlt">modeling</span> of reactive transport with HYTEC</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der Lee, Jan; De Windt, Laurent; Lagneau, Vincent; Goblet, Patrick</p> <p>2003-04-01</p> <p>The paper introduces HYTEC, a coupled reactive transport code currently used for groundwater pollution studies, safety assessment of nuclear waste disposals, <span class="hlt">geochemical</span> studies and interpretation of laboratory column experiments. Based on a known permeability field, HYTEC evaluates the groundwater flow paths, and simulates the migration of mobile matter (ions, organics, colloids) subject to <span class="hlt">geochemical</span> reactions. The code forms part of a module-oriented structure which facilitates maintenance and improves coding flexibility. In particular, using the <span class="hlt">geochemical</span> module CHESS as a common denominator for several reactive transport <span class="hlt">models</span> significantly facilitates the development of new <span class="hlt">geochemical</span> features which become automatically available to all <span class="hlt">models</span>. A first example shows how the <span class="hlt">model</span> can be used to assess migration of uranium from a sub-surface source under the effect of an oxidation front. The <span class="hlt">model</span> also accounts for alteration of hydrodynamic parameters (local porosity, permeability) due to precipitation and dissolution of mineral phases, which potentially modifies the migration properties in general. The second example illustrates this feature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70159670','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70159670"><span>Reactive transport <span class="hlt">modeling</span> of <span class="hlt">geochemical</span> controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ng, Gene-Hua Crystal.; Bekins, Barbara A.; Cozzarelli, Isabelle M.; Baedecker, Mary Jo; Bennett, Philip C.; Amos, Richard T.; Herkelrath, William N.</p> <p>2015-01-01</p> <p>Anaerobic biodegradation of organic amendments and contaminants in aquifers can trigger secondary water quality impacts that impair groundwater resources. Reactive transport <span class="hlt">models</span> help elucidate how diverse <span class="hlt">geochemical</span> reactions control the spatiotemporal evolution of these impacts. Using extensive monitoring data from a crude oil spill site near Bemidji, Minnesota (USA), we implemented a comprehensive <span class="hlt">model</span> that simulates secondary plumes of depleted dissolved O2 and elevated concentrations of Mn2+, Fe2+, CH4, and Ca2+ over a two-dimensional cross section for 30 years following the spill. The <span class="hlt">model</span> produces observed changes by representing multiple oil constituents and coupled carbonate and hydroxide chemistry. The <span class="hlt">model</span> includes reactions with carbonates and Fe and Mn mineral phases, outgassing of CH4 and CO2 gas phases, and sorption of Fe, Mn, and H+. <span class="hlt">Model</span> results demonstrate that most of the carbon loss from the oil (70%) occurs through direct outgassing from the oil source zone, greatly limiting the amount of CH4 cycled down-gradient. The vast majority of reduced Fe is strongly attenuated on sediments, with most (91%) in the sorbed form in the <span class="hlt">model</span>. Ferrous carbonates constitute a small fraction of the reduced Fe in simulations, but may be important for furthering the reduction of ferric oxides. The combined effect of concomitant redox reactions, sorption, and dissolved CO2 inputs from source-zone degradation successfully reproduced observed pH. The <span class="hlt">model</span> demonstrates that secondary water quality impacts may depend strongly on organic carbon properties, and impacts may decrease due to sorption and direct outgassing from the source zone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1115849-microscale-geochemical-gradients-hanford-area-sediment-biofilms-influence-uranium','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1115849-microscale-geochemical-gradients-hanford-area-sediment-biofilms-influence-uranium"><span>Microscale <span class="hlt">geochemical</span> gradients in Hanford 300 Area sediment biofilms and influence of uranium</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nguyen, Hung D.; Cao, Bin; Mishra, Bhoopesh</p> <p>2012-01-01</p> <p>The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous <span class="hlt">geochemical</span> studies. However, no direct quantitative characterization of the <span class="hlt">geochemical</span> microenvironments had been reported. We quantitatively characterized microscale <span class="hlt">geochemical</span> gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in <span class="hlt">geochemical</span> parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000more » μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.V13B1470T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.V13B1470T"><span><span class="hlt">Geochemical</span> Evolution of Pre-caldera Magmas at Caviahue Caldera, Neuquen Province, Argentina</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Todd, E.; Ort, M.</p> <p>2004-12-01</p> <p>Caldera subsidence and glacial erosion at Caviahue, an upper Miocene to Pliocene volcanic center located in the Andean Southern Volcanic Zone (SVZ) at 37°50'S, has exposed a detailed cross-section of pre-caldera volcanic activity from the upper Miocene to the Pliocene. Caldera walls expose 500 to 800 m of ignimbrites, cinder cones, volcanic breccias, and lava flows, which range from 1 to nearly 100 m in thickness. Lavas erupted from the monogenetic pre-caldera volcanic field have compositions ranging from evolved basaltic andesites (4% MgO, 10% FeO) to trachytes. Strong Ni-depletion signatures and high Fe/Mg ratios indicate extensive <span class="hlt">geochemical</span> modification of Caviahue lavas. Petrologic and <span class="hlt">geochemical</span> analyses of major and trace element abundances in Caviahue lavas indicate cyclic fractionation and recharge in an upper-crustal magma chamber during pre-caldera volcanism. Compatible and incompatible element abundances (especially Ni, MgO, K, and Zr), plotted in stratigraphic succession, show at least six distinct fractionation trends occurred between emplacement of the oldest exposed lava flows and the eruption of the ignimbrite associated with caldera formation. Each fractionation trend is punctuated by the infusion of a volume of new, more primitive magma. <span class="hlt">Modeling</span> of recharge events indicates that these introduced from less than half to several times the volume of the existing magma body of new, more primitive (but still evolved) magma to the chamber. <span class="hlt">Geochemical</span> analyses of lavas deposited between intermittent periods of magma residence and volcanic eruptions show strong patterns of plagioclase, olivine, clinopyroxene, and oxide fractionation. Deposits recognized on the caldera floor thought to be associated with caldera collapse are correlated with extra-caldera trachytic ignimbrite deposits dated at 2.02 Ma, providing a late Pliocene age for caldera collapse. Post-caldera volcanism has been active until present, but has shifted to smaller polygenetic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1139/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1139/"><span>Leachate <span class="hlt">Geochemical</span> Results for Ash and Burned Soil Samples from the October 2007 Southern California Wildfires</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hageman, Philip L.; Plumlee, Geoffrey S.; Martin, Deborah A.; Hoefen, Todd M.; Meeker, Gregory P.; Adams, Monique; Lamothe, Paul J.; Anthony, Michael W.</p> <p>2008-01-01</p> <p>This report is the second release of leachate <span class="hlt">geochemical</span> data included as part of a multidisciplinary study of ash and burned soil samples from the October 2007 wildfires in southern California. <span class="hlt">Geochemical</span> data for the first set of samples were released in an Open-File Report (Plumlee and others, 2007). This study is a continuation of that work. The objectives of this leaching study are to aid in understanding the interactions of ash and burned soil with rainfall. For this study, 12 samples collected in early November 2007 were leached using the U.S. Geological Survey (USGS) Field Leach Test (FLT). Following leaching, sub-samples of the leachate were analyzed for pH and specific conductance. The leachate was then filtered, and aliquots were preserved for <span class="hlt">geochemical</span> analysis. This report presents leachate <span class="hlt">geochemical</span> data for pH, specific conductance, alkalinity, anions using ion chromatography (I.C.), cations using inductively coupled plasma?atomic mass spectrometry (ICP-MS), and mercury by continuous flow injection?cold vapor?atomic fluorescence (CVAFS).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMEP51A0583L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMEP51A0583L"><span>The relation between <span class="hlt">geochemical</span> characteristics and landslide in Hungtsaiping area, Nantou, Taiwan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, P.; Tsai, L.</p> <p>2009-12-01</p> <p>Hungtsaiping is located at the south bank of the Yonglu stream, Chungliao Village of Nantou County, central Taiwan. Hungtsaiping landslide was triggered by the Chi-Chi earthquake (Mw=7.6) occurring on September 20, 1999 UTC near the town of Chi-Chi in Nantou County, central Taiwan. Coping with the geological and geomorphologic investigations, this study makes an attempt to find the relation between <span class="hlt">geochemical</span> characteristics and landslide in Hungtsaiping area. Water samples were collected from spring waters, creeks, ponds, groundwater and the Yonglu stream once every month from May 2008 to May 2009. Oxygen and hydrogen stable isotopic, ionic concentrations, as well as electrical conductivity and pH value were analyzed. The results indicate that calcium and magnesium bicarbonate-rich water was found on the top and the middle part of the slope. On the other hand, sodium bicarbonate-rich water as well as exceptionally high sulfate concentration was found on the foot of the slope, the sulfate content decreased with increasing elevations until the middle part of slope. A conceptual <span class="hlt">model</span> of flow process and water origin in Hungtsaiping landslide was established by summarizing the features of hydrogeochemical analyses and the profiles in this study. Keywords: landslide, <span class="hlt">geochemical</span> characteristics, isotope, hydrochemistry. Fig. 1 The sampling locations of Hungtsaiping landslide. Fig. 2 Isogram: the concentration of sulfate in May 2008 in Hungtsaiping area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMED31B0883L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMED31B0883L"><span>Analysis of the <span class="hlt">geochemical</span> gradient created by surface-groundwater interactions within riverbanks of the East River in Crested Butte, Colorado</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lunzer, J.; Williams, K. H.; Malenda, H. F.; Nararne-Sitchler, A.</p> <p>2016-12-01</p> <p>An improved understanding of the <span class="hlt">geochemical</span> gradient created by the mixing of surface and groundwater of a river system will have considerable impact on our understanding of microorganisms, organic cycling and biogeochemical processes within these zones. In this study, the <span class="hlt">geochemical</span> gradient in the hyporheic zone is described using a variety of <span class="hlt">geochemical</span> properties. A system of shallow groundwater wells were installed in a series of transects along a stream bank. Each transect consists of several wells that progress away from the river bank in a perpendicular fashion. From these wells, temperature, conductivity and pH of water samples were obtained via hand pumping or bailing. These data show a clear <span class="hlt">geochemical</span> gradient that displays a distinct zone in the subsurface where the <span class="hlt">geochemical</span> conditions change from surface water dominated to groundwater dominated. For this study, the East River near Crested Butte, Colorado has been selected as the river of interest due the river being a relatively undisturbed floodplain. Additionally, the specific section chosen on the East River displays relatively high sinuosity meaning that these meandering sections will produce hyporheic zones that are more laterally expansive than what would be expected on a river of lower sinuosity. This increase in lateral extension of the hyporheic zone will make depicting the subtle changes in the <span class="hlt">geochemical</span> gradient much easier than that of a river system in which the hyporheic zone is not as laterally extensive. Data has been and will be continued to be collected at different river discharges to evaluate the <span class="hlt">geochemical</span> gradient at differing rates. Overall, this characterization of the <span class="hlt">geochemical</span> gradient along stream banks will produce results that will aid in the further use of <span class="hlt">geochemical</span> methods to classify and understand hyporheic exchange zones and the potential expansion of these techniques to river systems of differing geologic and geographic conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/146990','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/146990"><span>Natural <span class="hlt">geochemical</span> analogues of the near field of high-level nuclear waste repositories</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Apps, J.A.</p> <p>1995-09-01</p> <p>United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive <span class="hlt">modeling</span> required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinementmore » of the thermodynamic databases used in <span class="hlt">geochemical</span> <span class="hlt">modeling</span> of near-field natural analogues and the extent to which present <span class="hlt">models</span> can predict conditions in geothermal fields.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.V31D2005K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.V31D2005K"><span>Role of Mineral Deposits in Global <span class="hlt">Geochemical</span> Cycles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kesler, S.; Wilkinson, B.</p> <p>2009-12-01</p> <p>Mineral deposits represent the most extreme degree of natural concentration for most elements and their formation and destruction are important parts of global <span class="hlt">geochemical</span> cycles. Quantitative estimates of the role that mineral deposits play in these <span class="hlt">geochemical</span> cycles has been limited, however, by the lack of information on actual amounts of elements that are concentrated in these deposits, and their rates of formation and destruction at geologic time scales. Recent use of a “tectonic diffusion” <span class="hlt">model</span> for porphyry copper deposits, the most important source of world copper, in conjunction with estimates of their copper content (Kesler and Wilkinson, 2008), allows an assessment of the role of copper deposits in Earth’s global copper cycles. These results indicate that ~4.5*10^8 Gg of Cu have been concentrated in porphyry copper deposits through Phanerozoic time, that deposits containing ~2.8*10^8 Gg of Cu have been removed by uplift and erosion over the same time period, and that deposits containing ~1.7*10^8 Gg remain in Earth’s crust. If styles of formation and destruction of other copper-bearing mineral deposits are similar, then all crustal deposits contain ~3*10^8 Gg of copper. This constitutes about 0.03% of the copper that resides in crustal rocks and provides a first-ever estimate of the rate at which natural <span class="hlt">geochemical</span> cycles produce the extreme concentrations that constitute mineral deposits. Another ~8*10^8 Gg of copper have been destroyed during the uplift and erosion of mineral deposits over Phanerozoic time, a flux amounting to an annual contribution of about 1.5 Gg of copper to the near-surface environment. This amount is similar in magnitude to copper released by volcanic outgassing, but only ~2.5% of the 56 Gg of copper estimated to be released annually by weathering of average crustal rocks (Rauch and Graedel, 2007). The amount of copper removed from mineral deposits by mining, 1.1*10^4 Gg/year, is much larger than any natural</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23584766','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23584766"><span>Bacterial communities associated with subsurface <span class="hlt">geochemical</span> processes in continental serpentinite springs.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brazelton, William J; Morrill, Penny L; Szponar, Natalie; Schrenk, Matthew O</p> <p>2013-07-01</p> <p>Reactions associated with the <span class="hlt">geochemical</span> process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with <span class="hlt">geochemical</span> measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with <span class="hlt">geochemical</span> factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3697581','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3697581"><span>Bacterial Communities Associated with Subsurface <span class="hlt">Geochemical</span> Processes in Continental Serpentinite Springs</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Morrill, Penny L.; Szponar, Natalie; Schrenk, Matthew O.</p> <p>2013-01-01</p> <p>Reactions associated with the <span class="hlt">geochemical</span> process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with <span class="hlt">geochemical</span> measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with <span class="hlt">geochemical</span> factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats. PMID:23584766</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19633826','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19633826"><span>The Nasca and Palpa geoglyphs: geophysical and <span class="hlt">geochemical</span> data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hartsch, Kerstin; Weller, Andreas; Rosas, Silvia; Reppchen, Gunter</p> <p>2009-10-01</p> <p>The Nasca geoglyphs in the stone desert in southern Peru are part of our world cultural heritage. These remarkable drawings have roused the interest of scientists from different disciplines. Here we report the results of integrated geophysical, petrophysical, mineralogical, and <span class="hlt">geochemical</span> investigations of the geoglyphs at six test sites in the stone desert around Nasca and Palpa. The geomagnetic measurements revealed clear indications of subsurface structures that differ from the visible surface geoglyphs. The high-resolution geoelectrical images show unexpected resistivity anomalies underneath the geoglyphs down to a depth of about 2 m. Remarkable structures were revealed in both vertical and lateral directions. No evidence was found of <span class="hlt">geochemical</span> or mineralogical alterations of the natural geogenic materials (desert pavement environment versus geoglyphs). Neither salts nor other mineral materials were used by the Nasca people to alter or prepare the surfaces of geoglyphs. This supports the hypothesis that the Nasca people simply removed stone material down to the natural hard pan horizon to create the geoglyphs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5384804','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5384804"><span><span class="hlt">Geochemical</span> evidence for mélange melting in global arcs</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nielsen, Sune G.; Marschall, Horst R.</p> <p>2017-01-01</p> <p>In subduction zones, sediments and hydrothermally altered oceanic crust, which together form part of the subducting slab, contribute to the chemical composition of lavas erupted at the surface to form volcanic arcs. Transport of this material from the slab to the overlying mantle wedge is thought to involve discreet melts and fluids that are released from various portions of the slab. We use a meta-analysis of <span class="hlt">geochemical</span> data from eight globally representative arcs to show that melts and fluids from individual slab components cannot be responsible for the formation of arc lavas. Instead, the data are compatible with <span class="hlt">models</span> that first invoke physical mixing of slab components and the mantle wedge, widely referred to as high-pressure mélange, before arc magmas are generated. PMID:28435882</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1149726','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1149726"><span>Argonne Geothermal <span class="hlt">Geochemical</span> Database v2.0</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Harto, Christopher</p> <p>2013-05-22</p> <p>A database of <span class="hlt">geochemical</span> data from potential geothermal sources aggregated from multiple sources as of March 2010. The database contains fields for the location, depth, temperature, pH, total dissolved solids concentration, chemical composition, and date of sampling. A separate tab contains data on non-condensible gas compositions. The database contains records for over 50,000 wells, although many entries are incomplete. Current versions of source documentation are listed in the dataset.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22078229','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22078229"><span>Microscale <span class="hlt">geochemical</span> gradients in Hanford 300 Area sediment biofilms and influence of uranium.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nguyen, Hung Duc; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I; Kemner, Kenneth M; Fredrickson, Jim K; Beyenal, Haluk</p> <p>2012-01-01</p> <p>The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous <span class="hlt">geochemical</span> studies. However, no direct quantitative characterization of the <span class="hlt">geochemical</span> microenvironments had been reported. We quantitatively characterized microscale <span class="hlt">geochemical</span> gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in <span class="hlt">geochemical</span> parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000 μm). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1034343','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1034343"><span>DNA-based methods of <span class="hlt">geochemical</span> prospecting</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ashby, Matthew [Mill Valley, CA</p> <p>2011-12-06</p> <p>The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of <span class="hlt">geochemical</span> exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/mf/1994-A/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/mf/1994-A/report.pdf"><span>Summary <span class="hlt">geochemical</span> maps of the Harrison 1° x 2° quadrangle, Arkansas and Missouri</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Erickson, R.L.; Chazin, Barbara; Erickson, M.S.</p> <p>1989-01-01</p> <p><span class="hlt">Geochemical</span> studies of the Harrison lo x 2° quadrangle, Arkansas and Missouri, are part of a joint multidisciplinary study by the U.S. Geological Survey; the Division of Geology and Land Survey, Missouri Department of Natural Resources; and the Arkansas Geological Commission. The objective of the joint study is to assess the mineral-resource potential of the area by integrated geologic, <span class="hlt">geochemical</span>, and geophysical investigations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMED23B0771E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMED23B0771E"><span>Assessment of diagenetic alteration of dinosaur eggshells through petrography and <span class="hlt">geochemical</span> analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Enriquez, M. V.; Eagle, R.; Eiler, J. M.; Tripati, A. K.; Ramirez, P. C.; Loyd, S. J.; Chiappe, L.; Montanari, S.; Norell, M.; Tuetken, T.</p> <p>2012-12-01</p> <p>Carbonate clumped isotope analysis of fossil eggshells has the potential to constrain both the physiology of extinct animals and, potentially, paleoenvironmental conditions, especially when coupled with isotopic measurements of co-occurring soil carbonates. Eggshell samples from both modern vertebrates and Cretaceous Hadrosaurid, Oviraptorid, Titanosaur, Hypselosaurus, Faveoolithus, dinosaur fossils have been collected from Auca Mahuevo, Argentina and Rousett, France, amongst other locations, for <span class="hlt">geochemical</span> analysis to determine if isotopic signatures could be used to indicate warm- or cold-bloodedness. In some locations soil carbonates were also analyzed to constrain environmental temperatures. In order to test the validity of the <span class="hlt">geochemical</span> results, an extensive study was undertaken to establish degree of diagenetic alteration. Petrographic and cathodoluminescence characterization of the eggshells were used to assess diagenetic alteration. An empirical 1-5 point scale was used to assign each sample an alteration level, and the observations were then compared with the <span class="hlt">geochemical</span> results. Specimens displayed a wide range of alteration states. Some of which were well preserved and others highly altered. Another group seemed to be structural intact and only under cathodoluminescence was alteration clearly observed. In the majority of samples, alteration level was found to be predictably related to <span class="hlt">geochemical</span> results. From specimens with little evidence for diagenesis, carbonate clumped isotope signatures support high (37-40°C) body temperature for Titanosaurid dinosaurs, but potentially lower body temperatures for other taxa. If these data do, in fact, represent original eggshell growth temperatures, these results support variability in body temperature amongst Cretaceous dinosaurs and potentially are consistent with variations between adult body temperature and size — a characteristic of 'gigantothermy'.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25072773','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25072773"><span><span class="hlt">Geochemical</span> barriers for environment protection and recovery of nonferrous metals.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chanturiya, Valentine; Masloboev, Vladimir; Makarov, Dmitriy; Nesterov, Dmitriy; Bajurova, Julia; Svetlov, Anton; Men'shikov, Yuriy</p> <p>2014-01-01</p> <p>A study of natural minerals, ore tailings and their products as materials for artificial <span class="hlt">geochemical</span> barriers is presented. In particular, it focuses on interaction between calcite and dolomite and sulfate solutions containing nickel, copper and iron under static conditions. Calcite of -0.1 mm fraction has been shown to perform well as a barrier when added to water phases of tailing dumps and natural reservoirs. Experiments under dynamic conditions have revealed a high potential of thermally activated copper-nickel tailings as barriers. After a 500-day precipitating period on a <span class="hlt">geochemical</span> barrier, the contents of nickel and copper in ore dressing tailings were found to increase 12- and 28-fold, respectively. An effective sorbent of copper, iron and nickel ions is a brucite-based product of hydrochloric acid treatment of vermiculite ore tailings. Its sorption capacity can be essentially increased through thermal activation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/60011','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/60011"><span><span class="hlt">Geochemical</span> maps of the Cornplanter Roadless Area, Warren County, Pennsylvania</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lesure, Frank G.; Day, Gordon W.</p> <p>1984-01-01</p> <p>The U.S. Geological Survey (USGS) made a reconnaissance <span class="hlt">geochemical</span> survey of the Cornplanter Roadless Area (fig. 1) to test for indistinct or unexposed mineral deposits that might be recognized by their <span class="hlt">geochemical</span> halos or patterns formed by the distribution of trace elements. Lesure, assisted by Andrew E. Grosz, collected 22 stream-sediment, 63 soil, and 23 rock samples from within and dear the study area during October 1980. All samples were analyzed for 31 elements using semi-quantitative spectrographic methods by Day in USGS laboratories, Denver, Colo. (table 1). In addition, the samples were also analyzed for zinc by means of an atomic absorption method by B.F. Arbogast and W.C. Martin, USGS laboratories, Denver Colo. J.T. Hanley and P.G. Schruben formatted the analytical data by computer methods for table 1. </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016361','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016361"><span>A <span class="hlt">geochemical</span> sampling technique for use in areas of active alpine glaciation: an application from the central Alaska Range</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stephens, G.C.; Evenson, E.B.; Detra, D.E.</p> <p>1990-01-01</p> <p>In mountainous regions containing extensive glacier systems there is a lack of suitable material for conventional <span class="hlt">geochemical</span> sampling. As a result, in most <span class="hlt">geochemical</span> sampling programs a few stream-sediment samples collected at, or near, the terminus of valley glaciers are used to evaluate the mineral potential of the glaciated area. We have developed and tested a technique which utilizes the medial moraines of valley glaciers for systematic <span class="hlt">geochemical</span> exploration of the glacial catchment area. Moraine sampling provides <span class="hlt">geochemical</span> information that is site-specific in that <span class="hlt">geochemical</span> anomalies can be traced directly up-ice to bedrock sources. Traverses were made across the Trident and Susitna glaciers in the central Alaska Range where fine-grained (clay to sand size) samples were collected from each medial moraine. These samples were prepared and chemically analyzed to determine the concentration of specific elements. Fifty pebbles were collected at each moraine for archival purposes and for subsequent lithologic identification. Additionally, fifty cobbles and fifty boulders were examined and described at each sample site to determine the nature and abundance of lithologies present in the catchment area, the extent and nature of visible mineralization, the presence and intensity of hydrothermal alteration and the existence of veins, dikes and other minor structural features. Results from the central Alaska Range have delineated four distinct multi-element anomalies which are a response to potential mineralization up-ice from the medial moraine traverse. By integrating the lithologic, mineralogical and <span class="hlt">geochemical</span> data the probable geological setting of the <span class="hlt">geochemical</span> anomalies is determined. ?? 1990.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016M%26PS...51..443S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016M%26PS...51..443S"><span>Petrographic and <span class="hlt">geochemical</span> characterization of the granitic rocks of the Araguainha impact crater, Brazil</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silva, Dailto; Lana, Cristiano; Souza Filho, Carlos Roberto</p> <p>2016-03-01</p> <p>Petrographic and <span class="hlt">geochemical</span> data obtained on the Araguainha impact crater (Goiás/Mato Grosso States, Brazil) indicate the existence of several molten products that originated during impact-induced congruent melting of an alkali-granite exposed in the inner part of the central uplift of the structure. Although previous studies have described these melts to some extent, there is no detailed discussion on the petrographic and <span class="hlt">geochemical</span> variability in the granite and its impactogenic derivatives, and therefore, little is known about the <span class="hlt">geochemical</span> behavior and mobility of trace elements during its fusion in the central part of the Araguainha crater. This paper demonstrates that the preserved granitoid exposed in the core of the structure is a magnesium-rich granite, similar to postcollisional, A-type granites, also found in terrains outside the Araguainha crater, in the Brasília orogenic belt. The molten products are texturally distinct and different from the original rock, but have very similar <span class="hlt">geochemical</span> composition, making it difficult to separate these lithotypes based on concentrations of major and minor elements. This also applies for trace and rare earth elements (REE), thus indicating a high degree of homogenization during impact-induced congruent melting under high pressure and postshock temperature conditions. Petrographic observations, along with <span class="hlt">geochemical</span> data, indicate that melting occurs selectively, where some of the elements are transported with the melt. Simultaneously, there is an effective dissolution of the rock (granite), which leads to entrainment of the most resistant solid phases (intact or partially molten minerals) into the melt. Minerals more resistant to melting, such as quartz and oxides, contribute substantially to a chemical balance between the preserved granite and the fusion products generated during the meteoritic impact.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714740A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714740A"><span><span class="hlt">Geochemical</span> baseline distribution of harmful elements in the surface soils of Campania region.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albanese, Stefano; Lima, Annamaria; Qu, Chengkai; Cicchella, Domenico; Buccianti, Antonella; De Vivo, Benedetto</p> <p>2015-04-01</p> <p>Environmental <span class="hlt">geochemical</span> mapping has assumed an increasing relevance and the separation of values to discriminate between anthropogenic pollution and natural (geogenic) sources has become crucial to address environmental problems affecting the quality of life of human beings. In the last decade, a number of <span class="hlt">geochemical</span> prospecting projects, mostly focused on surface soils (topsoils), were carried out at different scales (from regional to local) across the whole Campania region (Italy) to characterize the distribution of both harmful elements and persistent organic pollutants (POP) in the environment and to generating a valuable database to serve as reference in developing geomedical studies. During the 2014, a database reporting the distribution of 53 chemical elements in 3536 topsoil samples, collected across the whole region, was completed. The <span class="hlt">geochemical</span> data, after necessary quality controls, were georeferenced and processed in a geochemistry dedicated GIS software named GEODAS. For each considered element a complete set of maps was generated to depict both the discrete and the spatially continuous (interpolated) distribution of elemental concentrations across the region. The interpolated maps were generated using the Multifractal Inverse Distance eighted (MIDW) algorithm. Subsequently, the S-A method, also implemented in GEODAS, was applied to MIDW maps to eliminate spatially limited anomalies from the original grid and to generate the distribution patterns of <span class="hlt">geochemical</span> baselines for each element. For a selected group of elements <span class="hlt">geochemical</span> data were also treated by means of a Compositional Data Analysis (CoDA) aiming at investigating the regionalised structure of the data by considering the joint behaviour of several elements constituting for each sample its whole composition. A regional environmental risk assessment was run on the basis of the regional distribution of heavy metals in soil, land use types and population. The risk assessment produced a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/764/DS764_pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/764/DS764_pamphlet.pdf"><span>Petrographic and <span class="hlt">geochemical</span> data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>du Bray, Edward A.; John, David A.; Box, Stephen E.; Vikre, Peter G.; Fleck, Robert J.; Cousens, Brian L.</p> <p>2013-04-23</p> <p>Petrographic and <span class="hlt">geochemical</span> data for Cenozoic volcanic rocks of the Bodie Hills, California and Nevada // // This report presents petrographic and <span class="hlt">geochemical</span> data for samples collected during investigations of Tertiary volcanism in the Bodie Hills of California and Nevada. Igneous rocks in the area are principally 15–6 Ma subduction-related volcanic rocks of the Bodie Hills volcanic field but also include 3.9–0.1 Ma rocks of the bimodal, post-subduction Aurora volcanic field. Limited petrographic results for local basement rocks, including Mesozoic granitoid rocks and their metamorphic host rocks, are also included in the compilation. The petrographic data include visual estimates of phenocryst abundances as well as other diagnostic petrographic criteria. The <span class="hlt">geochemical</span> data include whole-rock major oxide and trace element data, as well as limited whole-rock isotopic data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015624','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015624"><span>Review of <span class="hlt">geochemical</span> reference sample programs since G-1 and W-1: progress to date and remaining challenges</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kane, J.S.</p> <p>1991-01-01</p> <p>A brief history of programs to develop <span class="hlt">geochemical</span> reference samples and certified reference samples for use in <span class="hlt">geochemical</span> analysis is presented. While progress has been made since G-1 and W-1 were issued, many challenges remain. ?? 1991.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188821','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188821"><span><span class="hlt">Geochemical</span> reanalysis of historical U.S. Geological Survey sediment samples from the Kougarok area, Bendeleben and Teller quadrangles, Seward Peninsula, Alaska</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.</p> <p>2015-01-01</p> <p>The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and <span class="hlt">geochemical</span> data. As part of the SCM Assessment, thousands of historical <span class="hlt">geochemical</span> samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, <span class="hlt">geochemical</span>-analytical methods. The objective is to update the statewide <span class="hlt">geochemical</span> database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 302 historical USGS sediment samples from the statewide Alaska <span class="hlt">Geochemical</span> Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Kougarok River drainage as well as smaller adjacent drainages in the Bendeleben and Teller quadrangles, Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National <span class="hlt">Geochemical</span> Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the <span class="hlt">geochemical</span> analyses obtained through the USGS contract lab. The new <span class="hlt">geochemical</span> data are published in this report as a coauthored DGGS report, and will be incorporated</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188822','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188822"><span><span class="hlt">Geochemical</span> reanalysis of historical U.S. Geological Survey sediment samples from the Haines area, Juneau and Skagway quadrangles, southeast Alaska</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.</p> <p>2015-01-01</p> <p>The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and <span class="hlt">geochemical</span> data. As part of the SCM Assessment, thousands of historical <span class="hlt">geochemical</span> samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, <span class="hlt">geochemical</span>-analytical methods. The objective is to update the statewide <span class="hlt">geochemical</span> database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 212 historical USGS sediment samples from the statewide Alaska <span class="hlt">Geochemical</span> Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Chilkat, Klehini, Tsirku, and Takhin river drainages, as well as smaller drainages flowing into Chilkat and Chilkoot Inlets near Haines, Skagway Quadrangle, Southeast Alaska. Additionally some samples were also chosen from the Juneau gold belt, Juneau Quadrangle, Southeast Alaska (fig. 1). The USGS was responsible for sample retrieval from the National <span class="hlt">Geochemical</span> Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the <span class="hlt">geochemical</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.489..145Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.489..145Z"><span><span class="hlt">Geochemical</span> nature of sub-ridge mantle and opening dynamics of the South China Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Guo-Liang; Luo, Qing; Zhao, Jian; Jackson, Matthew G.; Guo, Li-Shuang; Zhong, Li-Feng</p> <p>2018-05-01</p> <p>The Indian-type mantle (i.e., above the north hemisphere reference line on the plot of 208Pb/204Pb vs. 206Pb/204Pb) has been considered as a "Southern Hemisphere" <span class="hlt">geochemical</span> signature, whose origin remains enigmatic. The South China Sea is an extensional basin formed after rifting of the Euro-Asia continent in the Northern Hemisphere, however, the <span class="hlt">geochemical</span> nature of the igneous crust remains unexplored. For the first time, IODP Expedition 349 has recovered seafloor basalts covered by the thick sediments in the Southwest sub-basin (Sites U1433 and U1434) and the East sub-basin (Site U1431). The Southwest sub-basin consists of enriched (E)-MORB type basalts, and the East sub-basin consists of both normal (N)-MORB-type and E-MORB-type basalts based on trace element compositions. The basalts of the two sub-basins are Indian-type MORBs based on Sr-Nd-Pb-Hf isotope compositions, and the Southwest sub-basin basalts show isotopic compositions (i.e., 206Pb/204Pb of 17.59-17.89) distinctly different from the East sub-basin (i.e., 206Pb/204Pb of 18.38-18.57), suggesting a sub-basin scale mantle compositional heterogeneity and different histories of mantle compositional evolution. Two different enriched mantle end-members (EM1 and EM2) are responsible for the genesis of the Indian-type mantle in the South China Sea. We have <span class="hlt">modeled</span> the influences of Hainan mantle plume and lower continental crust based on Sr-Nd-Pb-Hf isotope compositions. The results indicate that the influence of Hainan plume can explain the elevated 206Pb/204Pb of the East sub-basin basalts, and the recycling of lower continental crust can explain the low 206Pb/204Pb of the Southwest sub-basin basalts. Based on the strong <span class="hlt">geochemical</span> imprints of Hainan plume in the ridge magmatism, we propose that the Hainan plume might have promoted the opening of the South China Sea, during which the Hainan plume contributed enriched component to the sub-ridge mantle and caused thermal erosion and return of lower</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/985334','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/985334"><span>A coupled THMC <span class="hlt">model</span> of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zheng, L.; Samper, J.; Montenegro, L.</p> <p>2010-05-01</p> <p>Unsaturated compacted bentonite is foreseen by several countries as a <span class="hlt">backfill</span> and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC <span class="hlt">models</span>. Validation of such THMC <span class="hlt">models</span> is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport <span class="hlt">model</span> for a deformable medium of a heating and hydration experiment performed onmore » a sample of compacted FEBEX bentonite. Besides standard solute transport and <span class="hlt">geochemical</span> processes, the <span class="hlt">model</span> accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM <span class="hlt">model</span> is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport <span class="hlt">model</span> is calibrated with porewater chemical data derived from aqueous extract data. <span class="hlt">Model</span> results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the <span class="hlt">model</span> from inferred</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1394777-aquifer-recharge-depletion-connectivity-inferences-from-grace-land-surface-models-geochemical-geophysical-data','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1394777-aquifer-recharge-depletion-connectivity-inferences-from-grace-land-surface-models-geochemical-geophysical-data"><span>Aquifer recharge, depletion, and connectivity: Inferences from GRACE, land surface <span class="hlt">models</span>, and <span class="hlt">geochemical</span> and geophysical data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Mohamed, Ahmed; Sultan, Mohamed; Ahmed, Mohamed; ...</p> <p>2016-12-22</p> <p>We used data from the Gravity Recovery and Climate Experiment (GRACE) and outputs of the CLM4.5 <span class="hlt">model</span> to estimate recharge and depletion rates for large aquifers, investigate the connectivity of an aquifer's subbasins, and identify barriers and preferred pathways for groundwater flow within an aquifer system. The Nubian Sandstone Aquifer System and its subbasins (Dakhla, Northern Sudan Platform, and Kufra) in northeast Africa were used for demonstration purposes, and findings were tested and verified against geological, geophysical, remote sensing, geochronologic, and <span class="hlt">geochemical</span> data. There are four major findings. (1) The average annual precipitation data over recharge areas in the southernmore » Kufra section and the Northern Sudan Platform subbasin were estimated at 54.8 km 3, and 32.8 km 3, respectively, and knowing the annual extraction rates over these two areas (similar to 0.40 ± 0.20 km 3), recharge rates were estimated at 0.78 ± 0.49 km 3/yr and 1.44 ± 0.42 km 3/yr, respectively. (2) GRACEderived groundwater depletion rates over the Dakhla subbasin and the Northern Kufra section were estimated at 4.44 ± 0.42 km 3/yr and 0.48 ± 0.32 km 3/yr, respectively. (3) The observed depletion in the southern parts of the Dakhla subbasin is apparently caused by the presence of the east- west- trending Uweinat-Aswan basement uplift, which impedes the south-to-north groundwater flow and hence reduces replenishment from recharge areas in the south. (4) A major northeast- southwest- trending shear zone (Pelusium shear system) is apparently providing a preferred groundwater flow pathway from the Kufra to the Dakhla subbasin. Thus, inte-grated approach provides a replicable and cost-effective <span class="hlt">model</span> for better understanding of the hydrogeologic setting of large aquifers worldwide and for optimum management of these groundwater resources.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1394777','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1394777"><span>Aquifer recharge, depletion, and connectivity: Inferences from GRACE, land surface <span class="hlt">models</span>, and <span class="hlt">geochemical</span> and geophysical data</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mohamed, Ahmed; Sultan, Mohamed; Ahmed, Mohamed</p> <p></p> <p>We used data from the Gravity Recovery and Climate Experiment (GRACE) and outputs of the CLM4.5 <span class="hlt">model</span> to estimate recharge and depletion rates for large aquifers, investigate the connectivity of an aquifer's subbasins, and identify barriers and preferred pathways for groundwater flow within an aquifer system. The Nubian Sandstone Aquifer System and its subbasins (Dakhla, Northern Sudan Platform, and Kufra) in northeast Africa were used for demonstration purposes, and findings were tested and verified against geological, geophysical, remote sensing, geochronologic, and <span class="hlt">geochemical</span> data. There are four major findings. (1) The average annual precipitation data over recharge areas in the southernmore » Kufra section and the Northern Sudan Platform subbasin were estimated at 54.8 km 3, and 32.8 km 3, respectively, and knowing the annual extraction rates over these two areas (similar to 0.40 ± 0.20 km 3), recharge rates were estimated at 0.78 ± 0.49 km 3/yr and 1.44 ± 0.42 km 3/yr, respectively. (2) GRACEderived groundwater depletion rates over the Dakhla subbasin and the Northern Kufra section were estimated at 4.44 ± 0.42 km 3/yr and 0.48 ± 0.32 km 3/yr, respectively. (3) The observed depletion in the southern parts of the Dakhla subbasin is apparently caused by the presence of the east- west- trending Uweinat-Aswan basement uplift, which impedes the south-to-north groundwater flow and hence reduces replenishment from recharge areas in the south. (4) A major northeast- southwest- trending shear zone (Pelusium shear system) is apparently providing a preferred groundwater flow pathway from the Kufra to the Dakhla subbasin. Thus, inte-grated approach provides a replicable and cost-effective <span class="hlt">model</span> for better understanding of the hydrogeologic setting of large aquifers worldwide and for optimum management of these groundwater resources.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016688','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016688"><span>The effect of scale on the interpretation of <span class="hlt">geochemical</span> anomalies</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Theobald, P.K.; Eppinger, R.G.; Turner, R.L.; Shiquan, S.</p> <p>1991-01-01</p> <p>The purpose of <span class="hlt">geochemical</span> surveys changes with scale. Regional surveys identify areas where mineral deposits are most likely to occur, whereas intermediate surveys identify and prioritize specific targets. At detailed scales specific deposit <span class="hlt">models</span> may be applied and deposits delineated. The interpretation of regional <span class="hlt">geochemical</span> surveys must take into account scale-dependent difference in the nature and objectives of this type of survey. Overinterpretation of regional data should be resisted, as should recommendations to restrict intermediate or detailed follow-up surveys to the search for specific deposit types or to a too limited suite of elements. Regional surveys identify metallogenic provinces within which a variety of deposit types and metals are most likely to be found. At intermediate scale, these regional provinces often dissipate into discrete clusters of anomalous areas. At detailed scale, individual anomalous areas reflect local conditions of mineralization and may seem unrelated to each other. Four examples from arid environments illustrate the dramatic change in patterns of anomalies between regional and more detailed surveys. On the Arabian Shield, a broad regional anomaly reflects the distribution of highly differentiated anorogenic granites. A particularly prominent part of the regional anomaly includes, in addition to the usual elements related to the granites, the assemblage of Mo, W and Sn. Initial interpretation suggested potential for granite-related, stockwork Mo deposits. Detailed work identified three separate sources for the anomaly: a metal-rich granite, a silicified and stockwork-veined area with scheelite and molybdenite, and scheelite/powellite concentrations in skarn deposits adjacent to a ring-dike complex. Regional <span class="hlt">geochemical</span>, geophysical and remote-sensing data in the Sonoran Desert, Mexico, define a series of linear features interpreted to reflect fundamental, northeast-trending fractures in the crust that served as the prime</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B33B0593U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B33B0593U"><span>A Centimeter-Scale Investigation of <span class="hlt">Geochemical</span> Hotspots in a Soil Lysimeter</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Umanzor, M.; Wang, Y.; Dontsova, K.; Chorover, J.; Troch, P. A. A.</p> <p>2016-12-01</p> <p>Studying the co-evolution of hydrological and biogeochemical processes in the subsurface of natural landscapes can enhance the understanding of coupled Earth-system processes. Such knowledge is imperative for improving predictions of hydro-biogeochemical cycles, especially under climate change scenarios. Hotspots may form in porous media that is undergoing biogeochemical weathering at locations where reactants accumulate to threshold values along hydrologic flow paths. This is expected to occur in weatherable silicate media, like granular basalt. To examine such processes during incipient soil formation, we constructed a sloping weighing lysimeter 2-m in length, 0.5-m in width and 1-m in depth. Mini-LEO was filled with crushed granular basalt rock with a known initial chemical composition. After 18 months of irrigation and intensive hydrological study, the <span class="hlt">model</span> "landscape" was divided into a 3D matrix of 324 voxels and excavated. Collected samples were subjected to detailed hydro-bio-<span class="hlt">geochemical</span> analysis to assess the formation of <span class="hlt">geochemical</span> heterogeneity. A five-step sequential extraction was employed to characterize incongruent mineral weathering, and its relation to the spatial distribution of microbial composition (in a related study). The changes in Fe and Mn concentration and speciation along the lysimeter length and depth (as measured by each step of the sequential extraction) was quantified to characterize spatial distribution of weathering processes. Results are being used to assist in understanding not only spatial and temporal distribution of basalt weathering on the slope, but also, connections between hydrological and biogeochemical cycles that lead to formation of hotspots.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019040','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019040"><span>Adjusting stream-sediment <span class="hlt">geochemical</span> maps in the Austrian Bohemian Massif by analysis of variance</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Davis, J.C.; Hausberger, G.; Schermann, O.; Bohling, G.</p> <p>1995-01-01</p> <p>The Austrian portion of the Bohemian Massif is a Precambrian terrane composed mostly of highly metamorphosed rocks intruded by a series of granitoids that are petrographically similar. Rocks are exposed poorly and the subtle variations in rock type are difficult to map in the field. A detailed <span class="hlt">geochemical</span> survey of stream sediments in this region has been conducted and included as part of the Geochemischer Atlas der Republik O??sterreich, and the variations in stream sediment composition may help refine the geological interpretation. In an earlier study, multivariate analysis of variance (MANOVA) was applied to the stream-sediment data in order to minimize unwanted sampling variation and emphasize relationships between stream sediments and rock types in sample catchment areas. The estimated coefficients were used successfully to correct for the sampling effects throughout most of the region, but also introduced an overcorrection in some areas that seems to result from consistent but subtle differences in composition of specific rock types. By expanding the <span class="hlt">model</span> to include an additional factor reflecting the presence of a major tectonic unit, the Rohrbach block, the overcorrection is removed. This iterative process simultaneously refines both the <span class="hlt">geochemical</span> map by removing extraneous variation and the geological map by suggesting a more detailed classification of rock types. ?? 1995 International Association for Mathematical Geology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1044149','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1044149"><span>Remote Raman - laser induced breakdown spectroscopy (LIBS) <span class="hlt">geochemical</span> investigation under Venus atmospheric conditions</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Clegg, Sanuel M; Barefield, James E; Humphries, Seth D</p> <p>2010-12-13</p> <p>The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus <span class="hlt">geochemical</span> observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the <span class="hlt">geochemical</span> science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focusmore » of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and <span class="hlt">geochemical</span> composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to <span class="hlt">geochemical</span> data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) <span class="hlt">model</span> with a subset of the rock powder</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70074470','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70074470"><span><span class="hlt">Geochemical</span> fingerprinting of Wilson Creek formation tephra layers (Mono Basin, California) using titanomagnetite compositions</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Marcaida, Mae; Mangan, Margaret T.; Vazquez, Jorge A.; Bursik, Marcus; Lidzbarski, Marsha I.</p> <p>2014-01-01</p> <p>Nineteen tephra layers within the Wilson Creek formation near Mono Lake provide a record of late Pleistocene to early Holocene volcanic activity from the nearby Mono Craters and are important chronostratigraphic markers for paleomagnetic, paleoclimatic, and paleoecologic studies. These stratigraphically important tephra deposits can be <span class="hlt">geochemically</span> identified using compositions of their titanomagnetite phenocrysts. Titanomagnetite compositions display a broad range (XUsp 0.26–0.39), which allow the tephra layers to be distinguished despite the indistinguishable major-element glass compositions (76–77 wt% SiO2) of their hosts. The concentrations of Ti and Fe in titanomagnetite display <span class="hlt">geochemical</span> and stratigraphic groupings that allow clear discrimination between older (> 57 ka) and younger (2O3 contents. In addition, a few tephra layers can be correlated to their source vents by their titanomagnetite compositions. The unique <span class="hlt">geochemical</span> fingerprint of the Mono Craters-sourced titanomagnetites also allows the discrimination of two tephra layers apparently sourced from nearby Mammoth Mountain volcano in Long Valley.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B51D0590H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B51D0590H"><span><span class="hlt">Geochemical</span> and physical drivers of microbial community structure in hot spring ecosystems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Havig, J. R.; Hamilton, T. L.; Boyd, E. S.; Meyer-Dombard, D. R.; Shock, E.</p> <p>2012-12-01</p> <p> the hot spring environments that spanned ranges of pH values (2.2 to 9.0) and <span class="hlt">geochemical</span> compositions. We characterized the abundance, composition, and phylogenetic diversity of bacterial and archaeal 16S rRNA gene assemblages in sediment/biofilm samples collected from each site. 16S data can be used as proxy for metabolic dissimilarity. We predict that temporally fluctuating environments should provide additional complexity to the system (additional niche space) capable of supporting additional taxa, which should lead to greater 16S rRNA gene diversity. However, systems with too much variability should collapse the diversity. Thus, one would expect an optimal system for variability, with respect to 16S phylogenetic diversity. Community ecology tools were then applied to <span class="hlt">model</span> the relative influence of physical and chemical characteristics (including temperature dynamics) on the local biodiversity. The results reveal unique insight into the role of temporal environmental variation in the development of biodiverse communities and provide a platform for predicting the response of an ecosystem to temperature perturbation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NIMPA.895...62P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NIMPA.895...62P"><span>Lorandite from Allchar as <span class="hlt">geochemical</span> detector for pp-solar neutrinos</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pavićević, Miodrag K.; Amthauer, Georg; Cvetković, Vladica; Boev, Blazo; Pejović, Vladan; Henning, Walter F.; Bosch, Fritz; Litvinov, Yuri A.; Wagner, Reinhard</p> <p>2018-07-01</p> <p>LOREX (LORandite EXperiment) is a <span class="hlt">geochemical</span> project addressing the solar proton-proton neutrino flux for the period of 4.31(2) Ma from the reaction 205Tl + νe → 205Pb + e- with a very low threshold (52 keV) for solar pp-neutrino capture. A decisive step for this purpose is to obtain the precise, background-corrected ratio of 205Pb/205Tl in the mineral lorandite (TlAsS2) as <span class="hlt">geochemical</span> detector occurring in the ore deposit of Allchar in Macedonia. This study presents a report on the excavation of lorandite bearing ore from adit P-21 of the ore body Crven Dol as well as on the separation of pure lorandite from the raw ore. A detailed mineralogical and chemical investigation of the separated lorandite is performed with special regard to the question of its use as detector for solar pp-neutrinos.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/759/contents/DS759_pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/759/contents/DS759_pamphlet.pdf"><span>Alaska <span class="hlt">Geochemical</span> Database, Version 2.0 (AGDB2)--including “best value” data compilations for rock, sediment, soil, mineral, and concentrate sample media</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Granitto, Matthew; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.</p> <p>2013-01-01</p> <p>The Alaska <span class="hlt">Geochemical</span> Database Version 2.0 (AGDB2) contains new <span class="hlt">geochemical</span> data compilations in which each geologic material sample has one “best value” determination for each analyzed species, greatly improving speed and efficiency of use. Like the Alaska <span class="hlt">Geochemical</span> Database (AGDB, http://pubs.usgs.gov/ds/637/) before it, the AGDB2 was created and designed to compile and integrate <span class="hlt">geochemical</span> data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of <span class="hlt">geochemical</span> baseline values and statistics, environmental impact assessments, and studies in medical geology. This relational database, created from the Alaska <span class="hlt">Geochemical</span> Database (AGDB) that was released in 2011, serves as a data archive in support of present and future Alaskan geologic and <span class="hlt">geochemical</span> projects, and contains data tables in several different formats describing historical and new quantitative and qualitative <span class="hlt">geochemical</span> analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey personnel and analyzed in U.S. Geological Survey laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various U.S. Geological Survey programs and projects from 1962 through 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy-mineral concentrate samples are included in this database. The AGDB2 includes historical <span class="hlt">geochemical</span> data originally archived in the U.S. Geological Survey Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the U.S. Geological Survey PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the National <span class="hlt">Geochemical</span> Database (NGDB). Retrievals from the NGDB were used to generate</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011767','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011767"><span>Regional <span class="hlt">geochemical</span> studies in the Patagonia Mountains, Santa Cruz County, Arizona</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chaffee, M.A.; Hill, R.H.; Sutley, S.J.; Watterson, J.R.</p> <p>1981-01-01</p> <p>The Patagonia Mountains in southern Arizona contain the deeply buried porphyry copper system at Red Mountain as well as a number of other base- and precious-metal mines and prospects. The range contains complex Basin and Range geology with units ranging in age from Precambrian to Holocene. Rock types present include igneous intrusive and extrusive units as well as sedimentary and metamorphic units, most of which have been tectonically disturbed. A total of 264 stream-sediment samples were collected and analyzed for 32 elements. <span class="hlt">Geochemical</span> maps for Sb, Ag, Pb, Te, B, Mn, Au, Zn, Cu (total), Cu (cold-extractable), and Mo, as well as for Cu (cold-extractable)/Cu (total) and Fe/Mn, are presented. Anomaly patterns for these elements generally occur over the Red Mountain deposit and (or) along a north-northwest trend parallel to the major Harshaw Creek Fault. Much of the entire area sampled contains widespread anomalies for Pb, Te, and Cu; the other elements are only locally anomalous. Various plots of ratios of Cu (cold-extractable) to Cu (total) did not produce any new information not readily apparent on either one of the two copper maps. A plot of ratios of Fe to Mn delineated many areas of pyrite mineralization. Several of these areas may represent the pyritic halos around deeply buried porphyry copper systems. The best ore guide for the Red Mountain porphyry system is the coincidence of positive anomalies of Mo, Pb, and Te and a negative anomaly of Mn. Other areas with anomalies of the same suite of elements are present within the Patagonia Mountains. It is concluded that <span class="hlt">geochemical</span> sampling, even in a highly contaminated area, can be useful in delineating major geologic features, such as porphyry copper belts and major faults. Multielement <span class="hlt">geochemical</span> surveys on a regional scale can effectively locate large, deeply buried, zoned mineral systems such as that at Red Mountain. Plots of element ratios, where adequately understood, can provide <span class="hlt">geochemical</span> information</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2090A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2090A"><span>Granitoids of different geodynamic settings of Baikal region (Russia) their <span class="hlt">geochemical</span> evolution and origin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Antipin, Viktor; Sheptyakova, Natalia</p> <p>2016-04-01</p> <p>In the southern folded framing of the Siberian craton the granitoid magmatism of different ages involves batholiths, small low-depth intrusions and intrusion-dyke belts with diverse mineral and <span class="hlt">geochemical</span> characteristics of rocks. Granitoid formation could be related to the Early Paleozoic collision stage and intra-plate magmatism of the Late Paleozoic age of the geologic development of Baikal area. The Early Paleozoic granitoids of Khamar-Daban Ridge and Olkhon region revealed their closeness in age and composition. They were referred to syncollision S-type formations derived from gneiss-schistose substratum of metamorphic sequences. The magmatic rocks were classified into various <span class="hlt">geochemical</span> types comprising formations of normal Na-alkalinity (migmatites and plagiogranites), calc-alkaline and subalkaline (K-Na granitoids, granosyenites and quartz syenites) series. It is significant, that plagiomigmatites and plagiogranites in all elements repeat the shape of the chart of normalized contents marked for trend of K-Na granitoids, but at considerably lower level of concentrations of all elements. This general pattern of element distribution might indicate similar anatectic origin of both granitoid types, but from crustal substrata distinguished by composition and <span class="hlt">geochemical</span> features. Comparative <span class="hlt">geochemical</span> analysis pointed out that the source of melts of the Early Paleozoic granitoids of the Olkhon (505-477 Ma) and Khamar-Daban (516-490 Ma) complexes of the Baikal region could be the crustal substratum, which is obviously the criterion for their formation in the collisional geodynamic setting. Using the Late Paleozoic subalkaline magmatism proceeding at the Khamar-Daban Range (Khonzurtay pluton, 331 Ma) as an example, it was found that the formation of monzodiorite-syenite-leucogranite series was considerably contributed by the processes of hybridism and assimilation through mixing of the upper mantle basaltoid magma derived melts of granitic composition. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5703077-data-geochemical-investigation-umtrap-designated-site-durango-colorado','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5703077-data-geochemical-investigation-umtrap-designated-site-durango-colorado"><span>Data for the <span class="hlt">geochemical</span> investigation of UMTRAP designated site at Durango, Colorado</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Markos, G.; Bush, K.J.</p> <p>1983-09-01</p> <p>This report contains the methods of collection and the data used in the <span class="hlt">geochemical</span> investigation of the former tailings and raffinate pond sites at Durango, Colorado. The methods of data interpretation and results of the investigation are described in the report, ''<span class="hlt">Geochemical</span> Investigation of UMTRAP Designated Site at Durango, Colorado''. Data are from a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples are water extracted to remove easily soluble salts and acid extracted to remove carbonates and hydroxides. The waters, extracts, and solid samples were analyzedmore » for selected major and trace elements. A few samples were analyzed for radioisotopes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1995/4097/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1995/4097/report.pdf"><span><span class="hlt">Geochemical</span> processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clark, D.W.</p> <p>1995-01-01</p> <p>A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which <span class="hlt">geochemical</span> processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. <span class="hlt">Geochemical</span> <span class="hlt">models</span> were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous <span class="hlt">geochemical</span> characteristics. <span class="hlt">Geochemical</span> processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P41B2068C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P41B2068C"><span>Remote <span class="hlt">Geochemical</span> and Mineralogical Analyses under Venus Atmospheric Conditions by Raman - Laser Induced Breakdown Spectroscopy (LIBS)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clegg, S. M.; Wiens, R. C.; Newell, R. T.; DeCroix, D. S.; Sharma, S. K.; Misra, A. K.; Dyar, M. D.; Anderson, R. B.; Angel, S. M.; Martinez, R.; McInroy, R.</p> <p>2016-12-01</p> <p>The extreme Venus surface temperature ( 740 K) and atmospheric pressure ( 93 atm) create a challenging environment for surface <span class="hlt">geochemical</span> and mineralogical investigations. Such investigations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS spectrometer (RLS) is capable of accomplishing the <span class="hlt">geochemical</span> science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. [1], Sharma et al. [2] and Clegg et al. [3] demonstrated that both analytical techniques can be integrated into a single instrument similar to the SuperCam instrument selected for the Mars 2020 rover. The focus of this paper is to explore the capability to probe geologic samples by Raman and LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of determining both the mineralogical and <span class="hlt">geochemical</span> composition of Venus surface samples. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to <span class="hlt">geochemical</span> data from the Venera and VEGA landers [4]. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, samples were chosen to constitute a Venus-analog suite for this study. LIBS data reduction involved generating a partial least squares (PLS) <span class="hlt">model</span> with a subset of the rock powder standards to quantitatively determine the major elemental abundance of the remaining samples. The Raman experiments have been conducted under supercritical CO2 involving single-mineral and mixed-mineral samples containing talc, olivine, pyroxenes, feldspars, anhydrite, barite, and siderite. These experiments involve a new RLS prototype similar to the SuperCam instrument as well a new 2 m long pressure chamber capable of simulating the Venus surface temperature and pressure. Results</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160003471','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160003471"><span>Mineralogical and <span class="hlt">Geochemical</span> Trends in a Fluviolacustrine Sequence in Gale Crater, Mars</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rampe, E.; Ming, D.; Morris, R.; Blake, D.; Vaniman, D.; Bristow, T.; Chipera, S.; Yen, A.; Grotzinger, J.; DesMarais, D.</p> <p>2016-01-01</p> <p>The Mars Science Laboratory rover, Curiosity, landed at Gale crater in August 2012 and has been investigating a sequence of dominantly fluviolacustrine sediments deposited 3.6-3.2 billion years ago. Curiosity collects quantitative mineralogical data with the CheMin XRD/XRF instrument and quantitative chemical data with the APXS and ChemCam instruments. These datasets show stratigraphic mineralogical and <span class="hlt">geochemical</span> variability that suggest a complex aqueous history. The Murray Formation, primarily composed of fine-laminated mudstone, has been studied in detail since the arrival at the Pahrump Hills in September 2014. CheMin data from four samples show variable amounts of iron oxides, phyllosilicates, sulfates, amorphous and crystalline silica, and mafic silicate minerals. <span class="hlt">Geochemical</span> data throughout the section show that there is significant variability in Zn, Ni, and Mn concentrations. Mineralogical and <span class="hlt">geochemical</span> trends with stratigraphy suggest one of possibly several aqueous episodes involved alteration in an open system under acidic pH, though other working hypotheses may explain these and other trends. Data from the Murray Formation contrast with those collected from the Sheepbed mudstone located approximately 60 meters below the base of the Murray Formation, which showed evidence for diagenesis in a closed system at circumneutral pH. Ca-sulfates filled late-stage veins in both mudstones.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GGG....16.1348G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GGG....16.1348G"><span>Magnetic and <span class="hlt">geochemical</span> characterization of Andosols developed on basalts in the Massif Central, France</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grison, Hana; Petrovsky, Eduard; Stejskalova, Sarka; Kapicka, Ales</p> <p>2015-05-01</p> <p>Identification of Andosols is primarily based upon the content of their colloidal constituents—clay and metal-humus complexes—and on the determining of andic properties. This needs time and cost-consuming <span class="hlt">geochemical</span> analyses. Our primary aim of this study is to describe the magnetic and <span class="hlt">geochemical</span> properties of soils rich in iron oxides derived from strongly magnetic volcanic basement (in this case Andosols). Secondary aim is to explore links between magnetic and chemical parameters of andic soils with respect to genesis factors: parent material age, precipitation, and thickness of the soil profile. Six pedons of andic properties, developed on basaltic lavas, were analyzed down to parent rock by a set of magnetic and <span class="hlt">geochemical</span> methods. Magnetic data of soil and rock samples reflect the type, concentration, and particle-size distribution of ferrimagnetic minerals. <span class="hlt">Geochemical</span> data include soil reaction (pH in H2O), cation exchange capacity, organic carbon, and different forms of extractable iron and aluminum content. Our results suggest the following: (1) magnetic measurements of low-field mass-specific magnetic susceptibility can be a reliable indicator for estimating andic properties, and in combination with thermomagnetic curves may be suitable for discriminating between alu-andic and sil-andic subtypes. (2) In the studied Andosols, strong relationships were found between (a) magnetic grain-size parameters, precipitation, and exchangeable bases; (b) concentration of ferrimagnetic particles and degree of crystallization of free iron; and (c) parameters reflecting changes in magneto-mineralogy and soil genesis (parent material age + soil depth).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870064685&hterms=merkel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmerkel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870064685&hterms=merkel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmerkel"><span>Mutual interactions of redox couples via electron exchange in silicate melts - <span class="hlt">Models</span> for <span class="hlt">geochemical</span> melt systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schreiber, Henry D.; Merkel, Robert C., Jr.; Schreiber, V. Lea; Balazs, G. Bryan</p> <p>1987-01-01</p> <p>The mutual interactions via electron exchange of redox couples in glass-forming melts were investigated both theoretically and experimentally. A thermodynamic approach for considering the mutual interactions leads to conclusion that the degree of mutual interaction in the melt should be proportional in part to the difference in relative reduction potentials of the interacting redox couples. Experimental studies verify this conclusion for numerous redox couples in several composition/temperature/oxygen fugacity regimes. <span class="hlt">Geochemical</span> systems simultaneously possess many potentially multivalent elements; the stabilized redox states in the resulting magmas can be explained in part by mutual interactions and by redox buffering through the central Fe(III)- Fe(II) couples in the melts. The significance of these results for basaltic magmas of the earth, moon, and meteorites is addressed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V43D0558C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V43D0558C"><span>Aqueous <span class="hlt">Geochemical</span> Dynamics at the Coast Range Ophiolite Microbial Observatory and The Case for Subsurface Mixing of Regional Groundwaters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cardace, D.; Schrenk, M. O.; McCollom, T. M.; Hoehler, T. M.</p> <p>2017-12-01</p> <p>Serpentinization is the aqueous alteration (or hydration) of olivine and pyroxene minerals in ultramafic rocks, occurring in the seabed and ultramafic units on continents, such as at the Coast Range Ophiolite (CRO) in northern California, USA. Mineral products of serpentinization include serpentine, magnetite, brucite, talc, oxyhydroxides, carbonates, and diverse clay minerals. Such mineral transformations generate extremely high pH solutions with characteristic cation and dissolved metal loads, transmitting CH4, H2, and CO gas mixtures from depth; deep life in ultramafic terrains is thought to be fueled by chemical energy derived from these <span class="hlt">geochemical</span> reactions. The installation of 8 groundwater monitoring wells in the CRO has allowed frequent monitoring since 2011. Influx of deeply sourced, serpentinization-influenced waters is evidenced by related <span class="hlt">geochemical</span> shifts (e.g., pH, oxidation-reduction potential), but is apparently mixing with other, regionally important groundwater types. Evaluation salinity loads in concert with other parameters, we <span class="hlt">model</span> the mixing scenario of this site of ongoing scientific study and experimentation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JCHyd..35...31K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JCHyd..35...31K"><span>Experimental study on neptunium migration under in situ <span class="hlt">geochemical</span> conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumata, M.; Vandergraaf, T. T.</p> <p>1998-12-01</p> <p>Results are reported for migration experiments performed with Np under in situ <span class="hlt">geochemical</span> conditions over a range of groundwater flow rates in columns of crushed rock in a specially designed facility at the 240-level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. This laboratory is situated in an intrusive granitic rock formation, the Lac du Bonnet batholith. Highly altered granitic rock and groundwater were obtained from a major subhorizontal fracture zone at a depth of 250 m in the URL. The granite was wet-crushed and wet-sieved with groundwater from this fracture zone. The 180-850-μm size fraction was selected and packed in 20-cm long, 2.54-cm in diameter Teflon™-lined stainless steel columns. Approximately 30-ml vols of groundwater containing 3HHO and 237Np were injected into the columns at flow rates of 0.3, 1, and 3 ml/h, followed by elution with groundwater, obtained from the subhorizontal fracture, at the same flow rates, for a period of 95 days. Elution profiles for 3HHO were obtained, but no 237Np was detected in the eluted groundwater. After terminating the migration experiments, the columns were frozen, the column material was removed and cut into twenty 1-cm thick sections and each section was analyzed by gamma spectrometry. Profiles of 237Np were obtained for the three columns. A one-dimensional transport <span class="hlt">model</span> was fitted to the 3HHO breakthrough curves to obtain flow parameters for this experiment. These flow parameters were in turn applied to the 237Np concentration profiles in the columns to produce sorption and dispersion coefficients for Np. The results show a strong dependence of retardation factors ( Rf) on flow rate. The decrease in the retarded velocity of the neptunium ( Vn) varied over one order of magnitude under the <span class="hlt">geochemical</span> conditions for these experiments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044948','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044948"><span>History and evaluation of national-scale <span class="hlt">geochemical</span> data sets for the United States</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, David B.; Smith, Steven M.; Horton, John D.</p> <p>2013-01-01</p> <p>Six national-scale, or near national-scale, <span class="hlt">geochemical</span> data sets for soils or stream sediments exist for the United States. The earliest of these, here termed the ‘Shacklette’ data set, was generated by a U.S. Geological Survey (USGS) project conducted from 1961 to 1975. This project used soil collected from a depth of about 20 cm as the sampling medium at 1323 sites throughout the conterminous U.S. The National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance (NURE-HSSR) Program of the U.S. Department of Energy was conducted from 1975 to 1984 and collected either stream sediments, lake sediments, or soils at more than 378,000 sites in both the conterminous U.S. and Alaska. The sampled area represented about 65% of the nation. The Natural Resources Conservation Service (NRCS), from 1978 to 1982, collected samples from multiple soil horizons at sites within the major crop-growing regions of the conterminous U.S. This data set contains analyses of more than 3000 samples. The National <span class="hlt">Geochemical</span> Survey, a USGS project conducted from 1997 to 2009, used a subset of the NURE-HSSR archival samples as its starting point and then collected primarily stream sediments, with occasional soils, in the parts of the U.S. not covered by the NURE-HSSR Program. This data set contains chemical analyses for more than 70,000 samples. The USGS, in collaboration with the Mexican Geological Survey and the Geological Survey of Canada, initiated soil sampling for the North American Soil <span class="hlt">Geochemical</span> Landscapes Project in 2007. Sampling of three horizons or depths at more than 4800 sites in the U.S. was completed in 2010, and chemical analyses are currently ongoing. The NRCS initiated a project in the 1990s to analyze the various soil horizons from selected pedons throughout the U.S. This data set currently contains data from more than 1400 sites. This paper (1) discusses each data set in terms of its purpose, sample collection protocols, and analytical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001DSRII..48.3737K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001DSRII..48.3737K"><span>A <span class="hlt">geochemical</span> <span class="hlt">model</span> of the Peru Basin deep-sea floor—and the response of the system to technical impacts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>König, Iris; Haeckel, Matthias; Lougear, André; Suess, Erwin; Trautwein, Alfred X.</p> <p></p> <p>A <span class="hlt">geochemical</span> <span class="hlt">model</span> of the Peru Basin deep-sea floor, based on an extensive set of field data as well as on numerical simulations, is presented. The <span class="hlt">model</span> takes into account the vertical oscillations of the redox zonation that occur in response to both long-term (glacial/interglacial) and short-term (El Niño Southern Oscillation (ENSO) time scale) variations in the depositional flux of organic matter. Field evidence of reaction between the pore water NO 3- and an oxidizable fraction of the structural Fe(II) in the clay mineral content of the deep-sea sediments is provided. The conditions of formation and destruction of reactive clay Fe(II) layers in the sea floor are defined, whereby a new paleo-redox proxy is established. Transitional NO 3- profile shapes are explained by periodic contractions and expansions of the oxic zone (ocean bottom respiration) on the ENSO time scale. The near-surface oscillations of the oxic-suboxic boundary constitute a redox pump mechanism of major importance with respect to diagenetic trace metal enrichments and manganese nodule formation, which may account for the particularly high nodule growth rates in this ocean basin. These conditions are due to the similar depth ranges of both the O 2 penetration in the sea floor and the bioturbated high reactivity surface layer (HRSL), all against the background of ENSO-related large variations in depositional C org flux. Removal of the HRSL in the course of deep-sea mining would result in a massive expansion of the oxic surface layer and, thus, the shut down of the near-surface redox pump for centuries, which is demonstrated by numerical <span class="hlt">modeling</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1064444','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1064444"><span>Up-Scaling <span class="hlt">Geochemical</span> Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Peters, Catherine A</p> <p>2013-02-28</p> <p><span class="hlt">Geochemical</span> reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for <span class="hlt">modeling</span> reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevantmore » in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we <span class="hlt">modeled</span> reactive transport in pore-network systems to investigate scaling effects in <span class="hlt">geochemical</span> reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical <span class="hlt">modeling</span> to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25262295','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25262295"><span><span class="hlt">Geochemical</span> processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J</p> <p>2015-01-01</p> <p>Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and <span class="hlt">geochemical</span> <span class="hlt">modeling</span>. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in <span class="hlt">geochemical</span> <span class="hlt">models</span> in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.U42A..08V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.U42A..08V"><span>Generation of mantle heterogeneity by oceanic crust recycling: how well can we match <span class="hlt">geochemical</span> and geophysical observations? (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Keken, P. E.; Brandenburg, J. P.; Hauri, E. H.; Ballentine, C. J.</p> <p>2009-12-01</p> <p>The heterogeneity of the Earth's mantle is expressed in complementary <span class="hlt">geochemical</span> and geophysical signatures, where the geochemistry provides a time-integrated signal and the geophysics tends to see a recent snapshot of the Earth's interior. While the geophysical evidence tends to support a form of whole mantle convection that is moderated by rheological and phase changes below the transition zone, the <span class="hlt">geochemical</span> observations have been generally used to support the presence of long-lived and isolated reservoirs. Recent dynamical <span class="hlt">modeling</span> (Brandenburg et al., EPSL, 2008) employed high resolution finite <span class="hlt">modeling</span> of mantle convection using an energetically consistent simulation of tectonic plates. A suite of <span class="hlt">models</span> was developed with a dynamic vigor similar to that of the present day earth. The recycling of oceanic crust combined with a two-stage formation of the continental crust leads to a satisfactory match to the observed spread between HIMU-DMM-EM1 in multiple isotope systems without invoking recycling of continental crust. Due to the rheological contrast between upper and lower mantle there is a natural occurrence of a well-mixed upper mantle overlaying a chemically more heterogeneous lower mantle. The pooling of dense oceanic crust provides the formation of dense piles at the base of the mantle. Together with the occurrence of slabs that thicken and/or stagnate at the 670 discontinuity we find reasonable correspondance with the present day tomographic signatures. At present the <span class="hlt">models</span> fail to explain noble gas systematics, even when taking the suggested high compatibility of helium into account.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..153f2074G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..153f2074G"><span>Study on Influence Factors and Governance Countermeasures of Movable Gel Prepared with <span class="hlt">Backfilling</span> Waste Water</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Shanshan; Zhang, Jianzhong; Zhang, Tiantian; Cui, Yanjie; Wang, Zhiqiang; Sun, Xinrui; Li, Jing; Zhang, Lianchao</p> <p>2018-05-01</p> <p>Movable gel as profile control and flooding is one of the main measures in tertiary oil recovery in Huabei Oilfield. Many blocks have tight fresh water supplies, but produced waste water can not be discharged. Therefore, preparing movable gel with <span class="hlt">backfilling</span> waste water has become an inevitable development trend of profile control and flooding. Three different quality of sewage water named SW, YW and ZW were used to prepare gel and then compared with gel prepared clean water. The results showed that the gel viscosity prepared with clean water was 1.5-5.6 times of sewage water at the same formula concentration. For this reason, the effect of Na+, Ca2+, Fe2+ on the gel performance were analyzed. The above ions lead to a decrease in the gel viscosity and poor stability, which can not even be crosslinked. According to the sewage water characteristics, corresponding treatment measures were developed respectively. The best treatment of SW and ZW was increasing polymer concentration followed by the addition of thiourea. The best treatment of YW was also increasing polymer concentration followed by stirring and aeration. The gel viscosity reached to 1800-2500mPaṡs and maintained at 800-1200mPaṡs after 90 days at formation temperature. It showed that the treatment can effectively improve the gel viscosity and stability prepared with sewage water. The results provide valuable experiences for the preparation of movable gel with different quality waste water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SedG..298....1W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SedG..298....1W"><span>Stratigraphic architecture of <span class="hlt">back-filled</span> incised-valley systems: Pennsylvanian-Permian lower Cutler beds, Utah, USA</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wakefield, Oliver J. W.; Mountney, Nigel P.</p> <p>2013-12-01</p> <p>The Pennsylvanian to Permian lower Cutler beds collectively form the lowermost stratigraphic unit of the Cutler Group in the Paradox Basin, southeast Utah. The lower Cutler beds represent a tripartite succession comprising lithofacies assemblages of aeolian, fluvial and shallow-marine origin, in near equal proportion. The succession results from a series of transgressive-regressive cycles, driven by repeated episodes of climatic variation and linked changes in relative sea-level. Relative sea-level changes created a number of incised-valleys, each forming through fluvial incision during lowered base-level. Aeolian dominance during periods of relative sea-level lowstand aids incised-valley identification as the erosive bounding surface juxtaposes incised-valley infill against stacked aeolian faces. Relative sea-level rises resulted in back-flooding of the incised-valleys and their infill via shallow-marine and estuarine processes. Back-flooded valleys generated marine embayments within which additional local accommodation was exploited. <span class="hlt">Back-filling</span> is characterised by a distinctive suite of lithofacies arranged into a lowermost, basal fill of fluvial channel and floodplain architectural elements, passing upwards into barform elements with indicators of tidal influence, including inclined heterolithic strata and reactivation surfaces. The incised-valley fills are capped by laterally extensive and continuous marine limestone elements that record the drowning of the valleys and, ultimately, flooding and accumulation across surrounding interfluves (transgressive surface). Limestone elements are characterised by an open-marine fauna and represent the preserved expression of maximum transgression.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1440029','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1440029"><span>Synthesis of soil <span class="hlt">geochemical</span> characteristics and organic carbon degradation in Arctic polygon tundra, Barrow, Alaska</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zheng, Jianqiu; RoyChowdhury, Taniya; Herndon, Elizabeth</p> <p></p> <p>This is a synthesis data product that reports (1) the results of soil <span class="hlt">geochemical</span> characterization and (2) organic carbon degradation in low temperature soil incubations on cores collected on the NGEE Arctic Study Area near Utqiaġvik (Barrow), Alaska. The study area consists of thaw lakes, drained thaw lake basins and interstitial tundra with a polygonal landscape of microtopographic features created by ice wedges. Integrated <span class="hlt">geochemical</span> and organic carbon degradation data from 9 individual soil cores are included in the synthesis product.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1235820-geochemical-drivers-organic-matter-decomposition-arctic-tundra-soils','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1235820-geochemical-drivers-organic-matter-decomposition-arctic-tundra-soils"><span><span class="hlt">Geochemical</span> drivers of organic matter decomposition in Arctic tundra soils</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; ...</p> <p>2015-12-07</p> <p>Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate <span class="hlt">geochemical</span> factors that influence anaerobic production of carbon dioxide (CO 2) and methane (CH 4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonalmore » patterns of dissolved gases in relation to the <span class="hlt">geochemical</span> properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH 4 increased relative to dissolved CO 2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that <span class="hlt">geochemical</span> differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/59619','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/59619"><span>Map showing <span class="hlt">geochemical</span> data for panned stream sediments from the Bread Loaf Further Planning Area, Addison and Washington counties, Vermont</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grosz, A.E.; Schruben, P.G.; Atelsek, P.J.</p> <p>1987-01-01</p> <p>A <span class="hlt">geochemical</span> survey of bedrock samples in the Bread Loaf Roadless Area (index map; fig. 1) was conducted by the U.S. Geological Survey (USGS) during October, 1981 in order to outline areas that may contain undiscovered mineral deposits. This report describes the results of a <span class="hlt">geochemical</span> analysis of panned concentrates collected from stream sediments, and complements other geologic and <span class="hlt">geochemical</span> investigations of the area (Slack and Bitar, 1983). The present study has offered us a chance to identify sampling media and a technique most appropriate for the enhancement of certain metallic elements in samples of panned concentrate. This study is important to the resource evaluation of the Bread Loaf Roadless Area because it reveals that <span class="hlt">geochemical</span> anomalies produced by this technique are not evident in the standard magnetic and nonmagnetic fractions of panned concentrates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890064680&hterms=old+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dold%2Bearth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890064680&hterms=old+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dold%2Bearth"><span>Geological and <span class="hlt">geochemical</span> record of 3400-million-year-old terrestrial meteorite impacts</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lowe, Donald R.; Byerly, Gary R.; Asaro, Frank; Kyte, Frank T.</p> <p>1989-01-01</p> <p>Beds of sand-sized spherules in the 3400-million-year-old Fig Tree Group, Barberton Greenstone belt, South Africa, formed by the fall of quenched liquid silicate droplets into a range of shallow- to deep-water depositional environments. The regional extent of the layers, their compositional complexity, and lack of included volcanic debris suggest that they are not products of volcanic activity. The layers are greatly enriched in iridium and other platinum group elements in roughly chondritic proportions. <span class="hlt">Geochemical</span> <span class="hlt">modeling</span> based on immobile element abundances suggests that the original average spherule composition can be approximated by a mixture of fractionated tholeiitic basalt, komatiite, and CI carbonaceous chondrite. The spherules are thought to be the products of large meteorite impacts on the Archean earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024950','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024950"><span>Effect of Hydrologic and <span class="hlt">Geochemical</span> Conditions on Oxygen-Enhanced Bioremediation in a Gasoline-Contaminated Aquifer</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Landmeyer, J.E.; Bradley, P.M.</p> <p>2003-01-01</p> <p>The effect of pre-existing factors, e.g., hydrologic, <span class="hlt">geochemical</span>, and microbiological properties, on the results of oxygen addition to a reformulated gasoline-contaminated groundwater system was studied. Oxygen addition with an oxygen-release compound (a proprietary form of magnesium peroxide produced different results with respect to dissolved oxygen (DO) generation and contaminant decrease in the two locations. Oxygen-release compound injected at the former UST source area did not significantly change measured concentrations of DO, benzene, toluene, or MTBE. Conversely, oxygen-release compound injected 200 m downgradient of the former UST source area rapidly increased DO levels, and benzene, toluene, and MTBE concentrations decreased substantially. The different results could be related to differences in hydrologic and <span class="hlt">geochemical</span> conditions that characterized the two locations prior to oxygen addition. The lack of recharge to ground water in the paved UST source area led to a much larger <span class="hlt">geochemical</span> sink for DO compared to ground water in the unpaved area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030747','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030747"><span>A stream sediment <span class="hlt">geochemical</span> survey of the Ganga River headwaters in the Garhwal Himalaya</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mukherjee, P.K.; Purohit, K.K.; Saini, N.K.; Khanna, P.P.; Rathi, M.S.; Grosz, A.E.</p> <p>2007-01-01</p> <p>This study <span class="hlt">models</span> <span class="hlt">geochemical</span> and adjunct geologic data to define provinces that are favorable for radioactive-mineral exploration. A multi-element bed-sediment <span class="hlt">geochemical</span> survey of streams was carried out in the headwaters region of the Ganga River in northern India. Overall median values for uranium and thorium (3.6 and 13.8 ppm; maxima of 4.8 and 19.0 ppm and minima of 3.1 and 12.3 ppm respectively) exceed average upper crustal abundances (2.8 and 10.7 ppm) for these radioactive elements. Anomalously high values reach up to 8.3 and 30.1 ppm in thrust zone rocks, and 11.4 and 22.5 ppm in porphyroids. At their maxima, these abundances are nearly four- and three-fold (respectively) enriched in comparison to average crustal abundances for these rock types. Deformed, metamorphosed and sheared rocks are characteristic of the main central thrust zone (MCTZ). These intensively mylonitized rocks override and juxtapose porphyritic (PH) and proterozoic metasedimentary rock sequences (PMS) to the south. Granitoid rocks, the major protoliths for mylonites, as well as metamorphosed rocks in the MCT zone are naturally enriched in radioelements; high values associated with sheared and mylonitized zones are coincident with reports of radioelement mineralization and with anomalous radon concentrations in soils. The radioelement abundance as well as REE abundance shows a northward enrichment trend consistent with increasing grade of metamorphism indicating deformation-induced remobilization of these elements. U and Th illustrate good correlation with REEs but not with Zr. This implies that zircon is not a principal carrier of U and Th within the granitoid-dominant thrust zone and that other radioelement-rich secondary minerals are present in considerable amounts. Thus, the relatively flat, less fractionated, HREE trend is also not entirely controlled by zircon. The spatial correlation of geologic boundary zones (faults, sheared zones) with <span class="hlt">geochemical</span> and with geophysical (Rn</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188823','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188823"><span><span class="hlt">Geochemical</span> reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Range, Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.</p> <p>2015-01-01</p> <p>The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and <span class="hlt">geochemical</span> data. As part of the SCM Assessment, thousands of historical <span class="hlt">geochemical</span> samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, <span class="hlt">geochemical</span>-analytical methods. The objective is to update the statewide <span class="hlt">geochemical</span> database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 670 historical USGS sediment samples from the statewide Alaska <span class="hlt">Geochemical</span> Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the northeastern Alaska Range, in the Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National <span class="hlt">Geochemical</span> Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the <span class="hlt">geochemical</span> analyses obtained through the USGS contract lab. The new <span class="hlt">geochemical</span> data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide <span class="hlt">geochemical</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/p1596/p1596.html','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/p1596/p1596.html"><span><span class="hlt">Geochemical</span> studies of rare earth elements in the Portuguese pyrite belt, and geologic and <span class="hlt">geochemical</span> controls on gold distribution</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grimes, David J.; Earhart, Robert L.; de Carvalho, Delfim; Oliveira, Vitor; Oliveira, Jose T.; Castro, Paulo</p> <p>1998-01-01</p> <p>This report describes <span class="hlt">geochemical</span> and geological studies which were conducted by the U.S. Geological Survey (USGS) and the Servicos Geologicos de Portugal (SPG) in the Portuguese pyrite belt (PPB) in southern Portugal. The studies included rare earth element (REE) distributions and geological and <span class="hlt">geochemical</span> controls on the distribution of gold. Rare earth element distributions were determined in representative samples of the volcanic rocks from five west-trending sub-belts of the PPB in order to test the usefulness of REE as a tool for the correlation of volcanic events, and to determine their mobility and application as hydrothermal tracers. REE distributions in felsic volcanic rocks show increases in the relative abundances of heavy REE and a decrease in La/Yb ratios from north to south in the Portuguese pyrite belt. Anomalous amounts of gold are distributed in and near massive and disseminated sulfide deposits in the PPB. Gold is closely associated with copper in the middle and lower parts of the deposits. Weakly anomalous concentrations of gold were noted in exhalative sedimentary rocks that are stratigraphically above massive sulfide deposits in a distal manganiferous facies, whereas anomalously low concentrations were detected in the barite-rich, proximal-facies exhalites. Altered and pyritic felsic volcanic rocks locally contain highly anomalous concentrations of gold, suggesting that disseminated sulfide deposits and the non-ore parts of massive sulfide deposits should be evaluated for their gold potential.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CG....109..281J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CG....109..281J"><span>TReacLab: An object-oriented implementation of non-intrusive splitting methods to couple independent transport and <span class="hlt">geochemical</span> software</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jara, Daniel; de Dreuzy, Jean-Raynald; Cochepin, Benoit</p> <p>2017-12-01</p> <p>Reactive transport <span class="hlt">modeling</span> contributes to understand geophysical and <span class="hlt">geochemical</span> processes in subsurface environments. Operator splitting methods have been proposed as non-intrusive coupling techniques that optimize the use of existing chemistry and transport codes. In this spirit, we propose a coupler relying on external <span class="hlt">geochemical</span> and transport codes with appropriate operator segmentation that enables possible developments of additional splitting methods. We provide an object-oriented implementation in TReacLab developed in the MATLAB environment in a free open source frame with an accessible repository. TReacLab contains classical coupling methods, template interfaces and calling functions for two classical transport and reactive software (PHREEQC and COMSOL). It is tested on four classical benchmarks with homogeneous and heterogeneous reactions at equilibrium or kinetically-controlled. We show that full decoupling to the implementation level has a cost in terms of accuracy compared to more integrated and optimized codes. Use of non-intrusive implementations like TReacLab are still justified for coupling independent transport and chemical software at a minimal development effort but should be systematically and carefully assessed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1811K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1811K"><span>The two-layer <span class="hlt">geochemical</span> structure of modern biogeochemical provinces and its significance for spatially adequate ecological evaluations and decisions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korobova, Elena; Romanov, Sergey</p> <p>2014-05-01</p> <p> regard to secondary redistribution of chemical elements; 3) selection of areas adequate for the short- and long-term ecogeochemical monitoring; 4) selection of areas as global and regional biogeochemical standards. The approach was used to evaluate contribution of stable iodine deficiency and radioactive iodine fallout to distribution of thyroid diseases among population of the Bryansk region [1], to evaluate natural transformation of the initially uniform spatial structure of N, P, K in agricultural fields [2] and radiocesium in forest and flood plain landscapes [3]. The work has been partly supported by the Russian Foundation for Basic Research (grants 07-05-00912; 10-05-01148; 13-05-00823). References Korobova E.M., S.L. Romanov, A.I. Kuvylin, E.I. Chesalova, V.Yu. Beriozkin, I.V. Kurnosova. Modern natural and technogenic iodine biogeochemical provinces: spatial structure and health effects. Goldschmidt 2011, Prague, August 14-19, 2011. Mineralogical Magazine, 75, 3, June 2011, Goldschmidt abstracts 2011, www.minersoc.org, 1224. Romanov S.L. Patterns of the structure of nitrogen, phosphorous and potassium fields in landscape systems of Belorussia. Thesis. Moscow, Moscow State University, 1991, 20 p. Korobova E.M., Romanov S.L., 2009. A Chernobyl 137Cs contamination study as an example for the spatial structure of <span class="hlt">geochemical</span> fields and <span class="hlt">modeling</span> of the <span class="hlt">geochemical</span> field structure. Chemometrics and Intelligent Laboratory Systems 99, 1-8.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1178504-geochemical-geomechanical-effects-wellbore-cement-fractures','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1178504-geochemical-geomechanical-effects-wellbore-cement-fractures"><span><span class="hlt">Geochemical</span> and Geomechanical Effects on Wellbore Cement Fractures</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; ...</p> <p>2014-12-31</p> <p>Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with <span class="hlt">geochemical</span> and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the <span class="hlt">geochemical</span> and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPP11E..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPP11E..08G"><span>Simulating the Incorporation of <span class="hlt">Geochemical</span> Proxies into Scleractinian Coral Skeletons: Effects of Different Environmental and Biological Factors and Implications for Paleo-reconstruction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, W.</p> <p>2017-12-01</p> <p>Chemical and isotopic compositions of scleractinian coral skeletons reflect the physicochemical condition of the seawater in which corals grow. This makes coral skeleton one of the best archives of ocean climate and biogeochemical changes. A number of coral-based <span class="hlt">geochemical</span> proxies have been developed and applied to reconstruct past seawater conditions, such as temperature, pH, carbonate chemistry and nutrient concentrations. Detailed laboratory and field-based studies of these proxies, however, indicate interpretation of the geochemistry of coral skeletons is not straightforward, due to the presence of `vital effects' and the variations of empirical proxy calibrations among and within different species. This poses challenges for the broad application of many <span class="hlt">geochemical</span> proxies in corals, and highlights the need to better understand the fundamental processes governing the incorporation of different proxies. Here I present a numerical <span class="hlt">model</span> that simulates the incorporation of a suite of <span class="hlt">geochemical</span> proxies into coral skeletons, including δ11B, Mg/Ca, Sr/Ca, U/Ca, B/Ca and Ba/Ca. This <span class="hlt">model</span>, building on previous theoretical studies of coral calcification, combines our current understanding of coral calcification mechanism with experimental constraints on the isotope and element partition during carbonate precipitation. It enables quantitative evaluation of the effects of different environmental and biological factors on each proxy. Specifically, this <span class="hlt">model</span> shows that (1) the incorporation of every proxy is affected by multiple seawater parameters (e.g. temperature, pH, DIC) as opposed to one single parameter, and (2) biological factors, particularly the interplay between enzymatic alkalinity pumping and the exchange of coral calcifying fluid with external seawater, also exert significant controls. Based on these findings, I propose an inverse method for simultaneously reconstructing multiple seawater physicochemical parameters, and compare the performance of this</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title43-vol2/pdf/CFR-2011-title43-vol2-sec3836-13.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title43-vol2/pdf/CFR-2011-title43-vol2-sec3836-13.pdf"><span>43 CFR 3836.13 - What are geological, <span class="hlt">geochemical</span>, or geophysical surveys?</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>..., <span class="hlt">geochemical</span>, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title43-vol2/pdf/CFR-2012-title43-vol2-sec3836-13.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title43-vol2/pdf/CFR-2012-title43-vol2-sec3836-13.pdf"><span>43 CFR 3836.13 - What are geological, <span class="hlt">geochemical</span>, or geophysical surveys?</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>..., <span class="hlt">geochemical</span>, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title43-vol2/pdf/CFR-2014-title43-vol2-sec3836-13.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title43-vol2/pdf/CFR-2014-title43-vol2-sec3836-13.pdf"><span>43 CFR 3836.13 - What are geological, <span class="hlt">geochemical</span>, or geophysical surveys?</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>..., <span class="hlt">geochemical</span>, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title43-vol2/pdf/CFR-2013-title43-vol2-sec3836-13.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title43-vol2/pdf/CFR-2013-title43-vol2-sec3836-13.pdf"><span>43 CFR 3836.13 - What are geological, <span class="hlt">geochemical</span>, or geophysical surveys?</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>..., <span class="hlt">geochemical</span>, or geophysical surveys? (a) Geological surveys are surveys of the geology of mineral deposits. These are done by, among other things, taking mineral samples, mapping rock units, mapping structures... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ANNUAL...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2017/1124/ofr20171124.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2017/1124/ofr20171124.pdf"><span>Tracking riverborne sediment and contaminants in Commencement Bay, Washington, using <span class="hlt">geochemical</span> signatures</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Takesue, Renee K.; Conn, Kathleen E.; Dinicola, Richard S.</p> <p>2017-09-29</p> <p>Large rivers carry terrestrial sediment, contaminants, and other materials to the coastal zone where they can affect marine biogeochemical cycles and ecosystems. This U.S. Geological Survey study combined river and marine sediment geochemistry and organic contaminant analyses to identify riverborne sediment and associated contaminants at shoreline sites in Commencement Bay, Puget Sound, Washington, that could be used by adult forage fish and other marine organisms. <span class="hlt">Geochemical</span> signatures distinguished the fine fraction (<0.063 millimeter, mm) of Puyallup River sediment—which originates from Mount Rainier, a Cascade volcano—from glacial fine sediment in lowland bluffs that supply sediment to beaches. In combination with activities of beryllium-7 (7Be), a short-lived radionuclide, <span class="hlt">geochemical</span> signatures showed that winter 2013–14 sediment runoff from the Puyallup River was transported to and deposited along the north shore of Commencement Bay, then mixed downward into the sediment column. The three Commencement Bay sites at which organic contaminants were measured in surface sediment did not have measurable 7Be activities in that layer, so their contaminant assemblages were attributed to sources from previous years. Concentrations of organic contaminants (the most common of which were polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and fecal sterols) were higher in the <0.063-mm fraction compared to the <2-mm fraction, in winter compared to summer, in river suspended sediment compared to river bar and bank sediment, and in marine sediment compared to river sediment. The <span class="hlt">geochemical</span> property barium/aluminum (Ba/Al) showed that the median percentage of Puyallup River derived fine surface sediment along the shoreline of Commencement Bay was 77 percent. This finding, in combination with higher concentrations of organic contaminants in marine rather than river sediment, indicates that riverborne sediment-bound contaminants are retained in shallow</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSD...470159T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSD...470159T"><span>A compendium of <span class="hlt">geochemical</span> information from the Saanich Inlet water column</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres-Beltrán, Mónica; Hawley, Alyse K.; Capelle, David; Zaikova, Elena; Walsh, David A.; Mueller, Andreas; Scofield, Melanie; Payne, Chris; Pakhomova, Larysa; Kheirandish, Sam; Finke, Jan; Bhatia, Maya; Shevchuk, Olena; Gies, Esther A.; Fairley, Diane; Michiels, Céline; Suttle, Curtis A.; Whitney, Frank; Crowe, Sean A.; Tortell, Philippe D.; Hallam, Steven J.</p> <p>2017-10-01</p> <p>Extensive and expanding oxygen minimum zones (OMZs) exist at variable depths in coastal and open ocean waters. As oxygen levels decline, nutrients and energy are increasingly diverted away from higher trophic levels into microbial community metabolism, resulting in fixed nitrogen loss and production of climate active trace gases including nitrous oxide and methane. While ocean deoxygenation has been reported on a global scale, our understanding of OMZ biology and geochemistry is limited by a lack of time-resolved data sets. Here, we present a historical dataset of oxygen concentrations spanning fifty years and nine years of monthly <span class="hlt">geochemical</span> time series observations in Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia, Canada that undergoes recurring changes in water column oxygenation status. This compendium provides a unique <span class="hlt">geochemical</span> framework for evaluating long-term trends in biogeochemical cycling in OMZ waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983AdSpR...3..175H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983AdSpR...3..175H"><span>Approaches to detection of <span class="hlt">geochemical</span> stress in vegetation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Horler, D. N. H.; Barber, J.; Darch, J. P.; Ferns, D. C.; Barringer, A. R.</p> <p></p> <p>Work has been carried out to elucidate fundamental relationships between spectral properties of plants and <span class="hlt">geochemical</span> stress, and a programme of field and laboratory work is in progress. The most significant results and conclusions at this stage are described and attention is focused on the new concepts for stress detection which have been generated. The applications of the research are relevant to the understanding of current remotely sensed data as well as relating to ideas for new instrumentation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830056931&hterms=stress+relationship&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dstress%2Brelationship','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830056931&hterms=stress+relationship&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dstress%2Brelationship"><span>Approaches to detection of <span class="hlt">geochemical</span> stress in vegetation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Horler, D. N. H.; Barber, J.; Darch, J. P.; Ferns, D. C.; Barringer, A. R.</p> <p>1983-01-01</p> <p>Work has been carried out to elucidate fundamental relationships between spectral properties of plants and <span class="hlt">geochemical</span> stress, and a programme of field and laboratory work is in progress. The most significant results and conclusions at this stage are described and attention is focused on the new concepts for stress detection which have been generated. The applications of the research are relevant to the understanding of current remotely sensed data as well as relating to ideas for new instrumentation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://pubs.usgs.gov/of/2014/1082/pdf/ofr2014-1082.pdf','USGSPUBS'); return false;" href="http://pubs.usgs.gov/of/2014/1082/pdf/ofr2014-1082.pdf"><span><span class="hlt">Geochemical</span> and mineralogical maps for soils of the conterminous United States</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Solano, Federico; Ellefsen, Karl J.</p> <p>2014-01-01</p> <p>The U.S. Geological Survey began sampling in 2007 for a low-density (1 site per 1,600 square kilometers, 4,857 sites) <span class="hlt">geochemical</span> and mineralogical survey of soils in the conterminous United States as part of the North American Soil <span class="hlt">Geochemical</span> Landscapes Project. The sampling protocol for the national-scale survey included, at each site, a sample from a depth of 0 to 5 centimeters, a composite of the soil A horizon, and a deeper sample from the soil C horizon or, if the top of the C horizon was at a depth greater than 1 meter, a sample from a depth of approximately 80–100 centimeters. The <2-millimeter fraction of each sample was analyzed for a suite of 45 major and trace elements by methods that yield the total or near-total elemental content. The major mineralogical components in the samples from the soil A and C horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling in the conterminous United States was completed in 2010, with chemical and mineralogical analyses completed in May 2013. The resulting data set provides an estimate of the abundance and spatial distribution of chemical elements and minerals in soils of the conterminous United States and represents a baseline for soil geochemistry and mineralogy against which future changes may be recognized and quantified. This report releases <span class="hlt">geochemical</span> and mineralogical maps along with a histogram, boxplot, and empirical cumulative distribution function plot for each element or mineral.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29177776','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29177776"><span>Strength and microstructure characteristics of the recycled rubber tire-sand mixtures as lightweight <span class="hlt">backfill</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Tao; Cai, Guojun; Duan, Weihong</p> <p>2018-02-01</p> <p>The disposal of scrap rubber tires has induced critical environmental issue worldwide due to the rapid increase in the number of vehicles. Recycled scrap tires as a construction material in civil engineering have significant environmental benefits from a waste management perspective. A systematic study that deals with strength and microstructure characteristics of the rubber-sand mixtures is initiated, and mechanical response of the mixtures is discussed in this investigation. Experiments were conducted to evaluate the effects of rubber fraction on the basic properties including mass density (ρ), stress-strain characteristics, shear strength, and unconfined compression strength (q u ) of the rubber-sand mixtures. Additionally, scanning electron microscopy (SEM) was carried out to reveal the microstructure characteristics of the mixtures with various rubber fractions. A discussion on the micromechanics of the mixtures also was conducted. This study demonstrates that the ρ, friction angle, and q u decrease linearly with an increase in rubber fraction, whereas shear strain at peak increases. The stress-strain characteristics of the rubber-sand mixtures shift from brittle to ductile as the rubber fraction increase. These changes are attributed to remarkably lower stiffness and higher compressibility of the rubber particle compared with those of the conventional mineral aggregates. With an increase in the rubber fraction, the mechanical response of rubber-sand mixtures exhibits two types: sand-like material and rubber-like material. Rubber particle possesses the capacity to prevent the contacted sand particles from sliding at lower rubber fraction, whereas it transmits the applied loadings as the rubber fraction increased. This outcome reinforces the practicability of using recycled rubber tire-sand mixtures as a lightweight <span class="hlt">backfill</span> in subbase/base applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=125936&keyword=product+AND+mix&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=125936&keyword=product+AND+mix&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>IDENTIFICATION OF SOURCES OF GROUND-WATER SALINIZA- TION USING <span class="hlt">GEOCHEMICAL</span> TECHNIQUES</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This report deals with salt-water sources that commonly mix and deteriorate fresh ground water. It reviews characteristics of salt-water sources and <span class="hlt">geochemical</span> techniques that can be used to identify these sources after mixing has occurred. The report is designed to assist inves...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613538M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613538M"><span>Application of the superfine fraction analysis method in ore gold <span class="hlt">geochemical</span> prospecting in the Shamanikha-Stolbovsky Area (Magadan Region)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Makarova, Yuliya; Sokolov, Sergey; Glukhov, Anton</p> <p>2014-05-01</p> <p>The Shamanikha-Stolbovsky gold cluster is located in the North-East of Russia, in the basin of the Kolyma River. In 1933, gold placers were discovered there, but the search for significant gold targets for more than 50 years did not give positive results. In 2009-2011, <span class="hlt">geochemical</span> and geophysical studies, mining and drilling were conducted within this cluster. <span class="hlt">Geochemical</span> exploration was carried out in a modification based on superimposed secondary sorption-salt haloes (sampling density of 250x250 m, 250x50 m, 250x20 m) using the superfine fraction analysis method (SFAM) because of complicated landscape conditions (thick Quaternary sediments, widespread permafrost). The method consists in the extraction of superfine fraction (<10 microns) from unconsolidated sediment samples followed by transfer to a solution of sorption-salt forms of elements and analysis using quantitative methods. The method worked well in areal <span class="hlt">geochemical</span> studies of various scales in the Karelian-Kola region and in the Far East. Main results of the work in the Shamanikha-Stolbovsky area: 1. <span class="hlt">Geochemical</span> exploration using the hyperfine fractions analysis method with sampling density of 250x250 m allowed the identification of zonal anomalous <span class="hlt">geochemical</span> fields (AGCF) classified as an ore deposit promising for the discovery of gold mineralization (Nadezhda, Timsha, and Temny prospects). These AGCF are characterized by following three-zonal structure (from the center to the periphery): nucleus zone - area of centripetal elements concentration (Au, Ag, Sb, As, Cu, Hg, Bi, Pb, Mo); exchange zone - area of centrifugal elements concentration (Mn, Zn, V, Ti, Co, Cr, Ni); flank concentration zone - area of elevated contents of centripetal elements with subbackground centrifugal elements. 2. Detailed AGCF studies with sampling density of 250x50 m (250x20 m) in the Nadezhda, Timsha, and Temny prospects made it possible to refine the composition and structure of anomalous <span class="hlt">geochemical</span> fields, identify</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017428','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017428"><span>Alteration and <span class="hlt">geochemical</span> zoning in Bodie Bluff, Bodie mining district, eastern California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Herrera, P.A.; Closs, L.G.; Silberman, M.L.</p> <p>1993-01-01</p> <p>Banded, epithermal quartz-adularia veins have produced about 1.5 million ounces of gold and 7 million ounces of silver from the Bodie mining district, eastern California. The veins cut dacitic lava flows, pyroclastic rocks and intrusions. Sinter boulders occur in a graben structure at the top of Bodie Bluff and fragments of sinter and mineralized quartz veins occur in hydrothermal breccias nearby. Explosive venting evidently was part of the evolution of the ore-forming geothermal systems which, at one time, must had reached the paleosurface. Previous reconnaissance studies at Bodie Bluff suggested that the geometry of alteration mineral assemblages and distribution of some of the major and trace elements throughout the system correspond to those predicted by <span class="hlt">models</span> of hot-spring, volcanic rock hosted precious metal deposits (Silberman, 1982; Silberman and Berger, 1985). The current study was undertaken to evaluate these sugestions further. About 500 samples of quartz veins and altered rocks, including sinter, collected over a vertical extent of 200 meters within Bodie Bluff were petrographically examined and chemically analyzed for trace elements by emission spectrographic and atomic absorption methods. Sixty-five samples were analyzed for major elements by X-ray fluorescence methods. The results of these analyses showed that, in general, alteration mineral assemblage and vertical <span class="hlt">geochemical</span> zoning patterns follow those predicted for hot-spring deposits, but that <span class="hlt">geochemical</span> zoning patterns for sinter and quartz veins (siliceous deposits), and altered wall rocks are not always similar. The predicted depth-concentration patterns for some elements, notably Au, Ag, Hg, and Tl in quartz veins, and Hg, As and Ag in wall rocks were not as expected, or were perturbed by the main ore producing zone. For both quartz veins and altered wall rocks, the main ore zone had elevated metal contents. Increased concentration of many of these elements could indicate proximity to this</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS43B2051M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS43B2051M"><span><span class="hlt">Geochemical</span> Evidence for Calcification from the Drake Passage Time-series</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Munro, D. R.; Lovenduski, N. S.; Takahashi, T.; Stephens, B. B.; Newberger, T.; Dierssen, H. M.; Randolph, K. L.; Freeman, N. M.; Bushinsky, S. M.; Key, R. M.; Sarmiento, J. L.; Sweeney, C.</p> <p>2016-12-01</p> <p>Satellite imagery suggests high particulate inorganic carbon within a circumpolar region north of the Antarctic Polar Front (APF), but in situ evidence for calcification in this region is sparse. Given the <span class="hlt">geochemical</span> relationship between calcification and total alkalinity (TA), seasonal changes in surface concentrations of potential alkalinity (PA), which accounts for changes in TA due to variability in salinity and nitrate, can be used as a means to evaluate satellite-based calcification algorithms. Here, we use surface carbonate system measurements collected from 2002 to 2016 for the Drake Passage Time-series (DPT) to quantify rates of calcification across the Antarctic Circumpolar Current. We also use vertical PA profiles collected during two cruises across the Drake Passage in March 2006 and September 2009 to estimate the calcium carbonate to organic carbon export ratio. We find <span class="hlt">geochemical</span> evidence for calcification both north and south of the APF with the highest rates observed north of the APF. Calcification estimates from the DPT are compared to satellite-based estimates and estimates based on hydrographic data from other regions around the Southern Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008LPI....39.1636W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008LPI....39.1636W"><span>Vertical <span class="hlt">Geochemical</span> Profiling Across a 3.33 Ga Microbial Mat from Barberton</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Westall, F.; Lemelle, L.; Simionovici, A.; Southam, G.; Maclean, L.; Salomé, M.; Wirick, S.; Toporski, J.; Jauss, A.</p> <p>2008-03-01</p> <p>The Josefdal Chert (3.33 Ga), Barberton, contains a superbly preserved microbial mat. High resolution <span class="hlt">geochemical</span> profiling across the mat documents textures and compositions indicative of a mixed microbial community of anoxygenic photosynthesisers and probably SRBs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23732192','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23732192"><span><span class="hlt">Geochemical</span> baseline level and function and contamination of phosphorus in Liao River Watershed sediments of China.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Shaoqing; Wang, Jing; Lin, Chunye; He, Mengchang; Liu, Xitao</p> <p>2013-10-15</p> <p>The quantitative assessment of P contamination in sediments is a challenge due to sediment heterogeneity and the lacking of <span class="hlt">geochemical</span> background or baseline levels. In this study, a procedure was proposed to determine the average P background level and P <span class="hlt">geochemical</span> baseline level (GBL) and develop P <span class="hlt">geochemical</span> baseline functions (GBF) for riverbed sediments of the Liao River Watershed (LRW). The LRW has two river systems - the Liao River System (LRS) and the Daliao River System (DRS). Eighty-eight samples were collected and analyzed for P, Al, Fe, Ca, organic matter, pH, and texture. The results show that Fe can be used as a better particle-size proxy to construct the GBF of P (P (mg/kg) = 39.98 + 166.19 × Fe (%), R(2) = 0.835, n = 66). The GBL of P was 675 mg/kg, while the average background level of P was 355 mg/kg. Noting that many large cities are located in the DRS watershed, most of the contaminated sites were located within the DRS and the riverbed sediments were more contaminated by P in the DRS watershed than in the LRS watershed. The <span class="hlt">geochemical</span> background and baseline information of P are of great importance in managing P levels within the LRW. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CG.....90..189X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CG.....90..189X"><span>A batch sliding window method for local singularity mapping and its application for <span class="hlt">geochemical</span> anomaly identification</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Fan; Chen, Zhijun; Chen, Jianguo; Zhou, Yongzhang</p> <p>2016-05-01</p> <p>In this study, a novel batch sliding window (BSW) based singularity mapping approach was proposed. Compared to the traditional sliding window (SW) technique with disadvantages of the empirical predetermination of a fixed maximum window size and outliers sensitivity of least-squares (LS) linear regression method, the BSW based singularity mapping approach can automatically determine the optimal size of the largest window for each estimated position, and utilizes robust linear regression (RLR) which is insensitive to outlier values. In the case study, tin <span class="hlt">geochemical</span> data in Gejiu, Yunnan, have been processed by BSW based singularity mapping approach. The results show that the BSW approach can improve the accuracy of the calculation of singularity exponent values due to the determination of the optimal maximum window size. The utilization of RLR method in the BSW approach can smoothen the distribution of singularity index values with few or even without much high fluctuate values looking like noise points that usually make a singularity map much roughly and discontinuously. Furthermore, the student's t-statistic diagram indicates a strong spatial correlation between high <span class="hlt">geochemical</span> anomaly and known tin polymetallic deposits. The target areas within high tin <span class="hlt">geochemical</span> anomaly could probably have much higher potential for the exploration of new tin polymetallic deposits than other areas, particularly for the areas that show strong tin <span class="hlt">geochemical</span> anomalies whereas no tin polymetallic deposits have been found in them.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5950793-geochemical-provenance-florida-basement-components','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5950793-geochemical-provenance-florida-basement-components"><span><span class="hlt">Geochemical</span> provenance of Florida basement components</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Heatherington, A.L.; Mueller, P.A.; Dallmeyer, R.D.</p> <p>1993-03-01</p> <p>The pre-Cretaceous basement of Florida is generally considered to be exotic with respect to Proterozoic Laurentia. Paleontologic and paleomagnetic evidence have suggested a Gondwanan provenance for the Floridan basement, as either a peri-Gondwanide terrane or as a rifted block of the West African craton. The report of generally similar lithologic sequences and a record of similar Ar-Ar cooling ages in some Floridan and West African lithologic units has led to very specific correlations between these units. U-Pb, Sm-Nd, and Rb-Sr geochronologic studies as well as isotopic and elemental abundance data have been used to evaluate the validity of these correlations.more » Results indicate: (1) <span class="hlt">geochemical</span> similarities between volcanic rocks of northeastern Florida and a Pan-African metavolcanic sequence (Niokola-Koba group) exposed in Senegal; (2) an absence of a Grenvillian-age (i.e., Laurentian) component in zircons separated from a Paleozoic Suwanee basin sandstone; and (3) whole-rock Sm-Nd and U-Pb zircon evidence for an Archean ([approximately]3.0 Ga) component in the neo-Proterozoic Osceola granitoid(s). Although silicic rocks from throughout Florida have Nd <span class="hlt">model</span> ages (T[sub DM]) that are predominantly Grenvillian (1.1--1.4 Ga), the absence of a Grenvillian component in zircons separated from granite and sandstone suggests that the <span class="hlt">model</span> ages represent a mixture of older and younger components. Overall, the evidence for Birimian ([approximately]2.1 Ga) and Liberian ([approximately]3.0 Ga) age components in the Florida basement are consistent with its origin as a rifted block of cratonic Gondwana. In addition to demonstrating a strong affinity between the Florida basement and cratonic West Africa/northern South America, these data provide a basis for comparison with other circum-Atlantic terranes traditionally described as Avalonian/Cadomian, etc.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920004393','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920004393"><span>Sources and <span class="hlt">geochemical</span> evolution of cyanide and formaldehyde</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arrhenius, G.</p> <p>1991-01-01</p> <p>The major source of cyanide has, in current paleoatmospheric <span class="hlt">models</span>, been assumed to be the reaction of photodissociated thermospheric nitrogen with a limiting supply of stratospheric methane. Formaldehyde may be produced with more ease from an atmosphere of carbon dioxide as the dominant carbon species, and from carbonate in solution or sorbed in double layer hydroxide minerals. Potentially more important sources for cyanide and other carbon containing molecules are the partially photoprotected northern and southern auroral ovals where continuous currents reaching several mega-amperes induce ion-molecule reactions, extending into the lower stratosphere. In simulated environments of this kind, the cyanide ion is known to be produced from oxidized carbon species potentially more abundant than methane. Rainout of cyanide and formaldehyde place them in two different <span class="hlt">geochemical</span> reaction reservoirs. In the anoxic Archean hydrosphere, about 1mM in Fe2(+), the cyanide ion would have been efficiently converted to the stable ferrocyanide complex Fe(CN) sub 6(4-), protecting it from the commonly considered fate of decomposition by hydrolysis, and eventually incorporating it in pyroaurite type minerals, most efficiently in green rust where it converts to insoluble ferriferrocyanide, prussian blue.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeCoA.159..307A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeCoA.159..307A"><span>Acceptance of the 2014 <span class="hlt">Geochemical</span> Journal Award by Hiroshi Amakawa</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amakawa, Hiroshi</p> <p>2015-06-01</p> <p>I thank Professor Hisayoshi Yurimoto for generous citation. I also would like to extend my gratitude to the people who supported me and to the members of editorial board of <span class="hlt">Geochemical</span> Journal for the nomination. I also would like to thank the organizing committee of the Goldschmidt Conference for giving an opportunity for this acceptance speech.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V14A..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V14A..02L"><span><span class="hlt">Geochemical</span> Sources of Energy for Chemolithoautotrophic Metabolisms in Global Hydrothermal Ecosystems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, G. S.; Amend, J.; LaRowe, D.</p> <p>2017-12-01</p> <p>Chemolithoautotrophic microorganisms are important primary producers in hydrothermal environments. The potential catabolic energy sources that thermophilic chemolithoautotrophs can take advantage of can be quantified by combining analytical <span class="hlt">geochemical</span> data and thermodynamic calculations. This approach explicitly considers how microbial communities are shaped by environmental conditions such as temperature, pressure, pH and the concentrations of electron donors and acceptors. In this study, we have calculated the Gibbs free energy available from 730 redox reactions in 30 terrestrial, shallow-sea, and deep-sea hydrothermal venting systems around the world (326 <span class="hlt">geochemical</span> data sets) to better determine the relationship between microbial physiology and environment. The reactions with NO2-, O2, MnO2 and NO3- as terminal electron acceptors yield 5-20 kJ/mol e- more energy in terrestrial and shallow-sea hydrothermal systems than in deep-sea hydrothermal settings. However, reactions in which As5+, S0, FeS2 and SO42- as electron acceptors are more favorable by 5-30 kJ/mol e- in deep-sea hydrothermal systems than in the other two types of hydrothermal systems. The most exergonic reactions were predominantly NO2-, O2, MnO2 and NO3- reduction or Fe2+, pyrite, CO and CH4 oxidation. In contrast, reduction of N2, CO, and CO2 or oxidation of N2, Mn2+, and NO2-, though still often exergonic, yielded significantly less energy. Our results provide a comprehensive view of the distribution of energy supplies from redox reactions in high-temperature ecosystems on a global scale. Furthermore, the bioenergetic <span class="hlt">modeling</span> carried out in this study can be used to test physiological predictions made from metagenomic and proteomic data sets, explore in situ biogeochemical interactions, predict possible but yet-to-be observed metabolisms and guide cultivation efforts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/59136','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/59136"><span>Summary <span class="hlt">geochemical</span> maps for samples of rock, stream sediment, and nonmagnetic heavy-mineral concentrate, Pyramid Roadless Area, El Dorado County, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chaffee, M.A.</p> <p>1986-01-01</p> <p><span class="hlt">Geochemical</span> sampling was conducted during 1982. This report summarizes the results of that investigation and provides details of the <span class="hlt">geochemical</span> evaluation used in producing the final mineral resource assessment of the study area (Armstrong and others, 1983).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2003/of03-259/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2003/of03-259/"><span>The <span class="hlt">geochemical</span> landscape of northwestern Wisconsin and adjacent parts of northern Michigan and Minnesota (<span class="hlt">geochemical</span> data files)</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cannon, William F.; Woodruff, Laurel G.</p> <p>2003-01-01</p> <p>This data set consists of nine files of <span class="hlt">geochemical</span> information on various types of surficial deposits in northwestern Wisconsin and immediately adjacent parts of Michigan and Minnesota. The files are presented in two formats: as dbase files in dbaseIV form and Microsoft Excel form. The data present multi-element chemical analyses of soils, stream sediments, and lake sediments. Latitude and longitude values are provided in each file so that the dbf files can be readily imported to GIS applications. Metadata files are provided in outline form, question and answer form and text form. The metadata includes information on procedures for sample collection, sample preparation, and chemical analyses including sensitivity and precision.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI43C..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI43C..03W"><span>The Fine <span class="hlt">Geochemical</span> Structure of the Hawaiian Mantle Plume: Relation to the Earth's Lowermost Mantle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weis, D.; Harrison, L.</p> <p>2017-12-01</p> <p>The Hawaiian mantle plume has been active for >80 Ma with the highest magmatic flux, also distinctly increasing with time. The identification of two clear <span class="hlt">geochemical</span> trends (Loa-Kea) among Hawaiian volcanoes in all isotope systems has implications for the dynamics and internal structure of the plume conduit and source in the deep mantle. A compilation of modern isotopic data on Hawaiian shield volcanoes and from the Northwest Hawaiian Ridge (NWHR), focusing specifically on high-precision Pb isotopes integrated with Sr, Nd and Hf isotopes, indicates the presence of source differences for Loa- and Kea-trend volcanoes that are maintained throughout the 1 Ma activity of each volcano. These differences extend back in time on all the Hawaiian Islands ( 5 Ma), and as far back as 47 Ma on the NWHR. In all isotope systems, the Loa-trend basalts are more heterogeneous by a factor of 1.5 than the Kea-trend basalts. The Hawaiian mantle plume overlies the boundary between ambient Pacific lower mantle on the Kea side and the Pacific LLSVP on the Loa side. <span class="hlt">Geochemical</span> differences between Kea and Loa trends reflect preferential sampling of these two distinct sources of deep mantle material, with additional contribution of ULVZ material sporadically on the Loa side. Plume movement up the gently sloping edge of the LLSVP resulted in entrainment of greater amounts of LLSVP-enriched material over time, and explains why the Hawaiian mantle plume dramatically strengthens over time, contrary to plume <span class="hlt">models</span>. Similar indications of preferential sampling at the edges of the African LLSVP are found in Kerguelen and Tristan da Cunha basalts in the Indian and Atlantic oceans, respectively. The anomalous low-velocity zones at the core-mantle boundary store <span class="hlt">geochemical</span> heterogeneities that are enriched in recycled material (EM-I type) with different compositions under the Pacific and under Africa, and that are sampled by strong mantle plumes such as Hawaii and Kerguelen.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..116U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..116U"><span>Unravelling the influence of antecryst settling on the composition of a lamprophyre sill: results from <span class="hlt">geochemical</span> <span class="hlt">modelling</span> and principal component analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ubide, T.; Arranz, E.; Lago, M.; Galé, C.; Larrea, P.; Tierz, P.</p> <p>2012-04-01</p> <p>Small igneous intrusions can be regarded as scale <span class="hlt">models</span> of the behaviour of large magma chambers. We have carried out a detailed petrological and <span class="hlt">geochemical</span> study across a thin (< 0.5 m) mafic sill located in the Catalonian Coastal Ranges, in the vicinity of Calella de Palafrugell (NE Spain). It is a late-Cretaceous sub-horizontal alkaline lamprophyre, classified as a camptonite. The sill is visibly zoned, showing well developed chilled margins, several levels of vesicles and accumulation of large mafic crystals towards the bottom. According to their composition, these crystals are inherited antecrysts. The whole-rock composition varies across the sill, indicating that the sill is compositionally zoned. However, the mineral compositions are constant, suggesting that the magma emplaced in a single pulse. The whole-rock compositional variations reveal that the chilled margins are more evolved than the centre of the sill; this is especially clear for the lower chilled margin, which defines a marginal reversal. Therefore, the compositional zoning of the sill does not correlate with a normal fractionation trend inwards. Instead, it agrees with the variable proportions of antecrysts across the sill: the higher the proportion of antecrysts, the more primitive the whole-rock composition. In order to verify that the presence of antecrysts controls the whole-rock variations, a trace element <span class="hlt">model</span> has been developed. Given that the sill displays a porphyritic texture defined by large antecrysts set in a fine-grained groundmass, the <span class="hlt">geochemical</span> <span class="hlt">model</span> quantifies the relative contributions of the antecrysts and the groundmass to the whole-rock compositions. Because the antecryst and whole-rock compositions were analysed for the different samples collected across the sill, the groundmass composition could be calculated for each sample. The obtained groundmass compositions are constant and more evolved than whole-rock compositions, supporting that the whole-rock variations are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4495215','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4495215"><span>Microbial Diversity in Engineered Haloalkaline Environments Shaped by Shared <span class="hlt">Geochemical</span> Drivers Observed in Natural Analogues</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Warren, Lesley A.; Kendra, Kathryn E.</p> <p>2015-01-01</p> <p>Microbial communities in engineered terrestrial haloalkaline environments have been poorly characterized relative to their natural counterparts and are geologically recent in formation, offering opportunities to explore microbial diversity and assembly in dynamic, <span class="hlt">geochemically</span> comparable contexts. In this study, the microbial community structure and <span class="hlt">geochemical</span> characteristics of three geographically dispersed bauxite residue environments along a remediation gradient were assessed and subsequently compared with other engineered and natural haloalkaline systems. In bauxite residues, bacterial communities were similar at the phylum level (dominated by Proteobacteria and Firmicutes) to those found in soda lakes, oil sands tailings, and nuclear wastes; however, they differed at lower taxonomic levels, with only 23% of operational taxonomic units (OTUs) shared with other haloalkaline environments. Although being less diverse than natural analogues, bauxite residue harbored substantial novel bacterial taxa, with 90% of OTUs nonmatchable to cultured representative sequences. Fungal communities were dominated by Ascomycota and Basidiomycota, consistent with previous studies of hypersaline environments, and also harbored substantial novel (73% of OTUs) taxa. In bauxite residues, community structure was clearly linked to <span class="hlt">geochemical</span> and physical environmental parameters, with 84% of variation in bacterial and 73% of variation in fungal community structures explained by environmental parameters. The major driver of bacterial community structure (salinity) was consistent across natural and engineered environments; however, drivers differed for fungal community structure between natural (pH) and engineered (total alkalinity) environments. This study demonstrates that both engineered and natural terrestrial haloalkaline environments host substantial repositories of microbial diversity, which are strongly shaped by <span class="hlt">geochemical</span> drivers. PMID:25979895</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.P43C1445T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.P43C1445T"><span>Constraining Habitable Environments on Mars by Quantifying Available <span class="hlt">Geochemical</span> Energy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tierney, L. L.; Jakosky, B. M.</p> <p>2009-12-01</p> <p>The search for life on Mars includes the availability of liquid water, access to biogenic elements and an energy source. In the past, when water was more abundant on Mars, a source of energy may have been the limiting factor for potential life. Energy, either from photosynthesis or chemosynthesis, is required in order to drive metabolism. Potential martian organisms most likely took advantage of chemosynthetic reactions at and below the surface. Terrestrial chemolithoautotrophs, for example, thrive off of chemical disequilibrium that exists in many environments and use inorganic redox (reduction-oxidation) reactions to drive metabolism and create cellular biomass. The chemical disequilibrium of six different martian environments were <span class="hlt">modeled</span> in this study and analyzed incorporating a range of water and rock compositions, water:rock mass ratios, atmospheric fugacities, pH, and temperatures. All of these <span class="hlt">models</span> can be applied to specific sites on Mars including environments similar to Meridiani Planum and Gusev Crater. Both a mass transfer <span class="hlt">geochemical</span> <span class="hlt">model</span> of groundwater-basalt interaction and a mixing <span class="hlt">model</span> of groundwater-hydrothermal fluid interaction were used to estimate hypothetical martian fluid compositions that results from mixing over the entire reaction path. By determining the overall Gibbs free energy yields for redox reactions in the H-O-C-S-Fe-Mn system, the amount of <span class="hlt">geochemical</span> energy that was available for potential chemolithoautotrophic microorganisms was quantified and the amount of biomass that could have been sustained was estimated. The quantity of biomass that can be formed and supported within a system depends on energy availability, thus sites that have higher levels and fluxes of energy have greater potential to support life. Results show that iron- and sulfur-oxidation reactions would have been the most favorable redox reactions in aqueous systems where groundwater and rock interacted at or near the surface. These types of reactions could</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012100','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012100"><span>Eastern Devonian shales: Organic <span class="hlt">geochemical</span> studies, past and present</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Breger, I.A.; Hatcher, P.G.; Romankiw, L.A.; Miknis, F.P.</p> <p>1983-01-01</p> <p>The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Ilinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of the fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic <span class="hlt">geochemical</span> aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic <span class="hlt">geochemical</span> studies on Eastern Devonian shales will be reviewed. Recent solid state 13C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a "coaly" nature and hence more prone to producing natural gas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2008/1306/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2008/1306/"><span>Major- and Trace-Element Concentrations in Soils from Northern California: Results from the <span class="hlt">Geochemical</span> Landscapes Project Pilot Study</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morrison, Jean M.; Goldhaber, Martin B.; Holloway, JoAnn M.; Smith, David B.</p> <p>2008-01-01</p> <p>In 2004, the U.S. Geological Survey (USGS), the Geological Survey of Canada (GSC), and the Mexican Geological Survey (Servicio Geologico Mexicano, or SGM) initiated pilot studies in preparation for a soil <span class="hlt">geochemical</span> survey of North America called the <span class="hlt">Geochemical</span> Landscapes Project. The purpose of this project is to provide a better understanding of the variability in chemical composition of soils in North America. The data produced by this survey will be used to construct baseline <span class="hlt">geochemical</span> maps for regions within the continent. Two initial pilot studies were conducted: (1) a continental-scale study involving a north-south and east-west transect across North America and (2) a regional-scale study. The pilot studies were intended to test and refine sample design, sampling protocols, and field logistics for the full continental soils <span class="hlt">geochemical</span> survey. Smith and others (2005) reported the results from the continental-scale pilot study. The regional-scale California study was designed to represent more detailed, higher resolution <span class="hlt">geochemical</span> investigations in a region of particular interest that was identified from the low-sample-density continental-scale survey. A 20,000-km2 area of northern California (fig. 1), representing a wide variety of topography, climate, and ecoregions, was chosen for the regional-scale pilot study. This study area also contains diverse geology and soil types and supports a wide range of land uses including agriculture in the Sacramento Valley, forested areas in portions of the Sierra Nevada, and urban/suburban centers such as Sacramento, Davis, and Stockton. Also of interest are potential effects on soil geochemistry from historical hard rock and placer gold mining in the foothills of the Sierra Nevada, historical mercury mining in the Coast Range, and mining of base-metal sulfide deposits in the Klamath Mountains to the north. This report presents the major- and trace-element concentrations from the regional-scale soil <span class="hlt">geochemical</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015617','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015617"><span><span class="hlt">Geochemical</span> exploration for mineralized breccia pipes in northern Arizona, U.S.A.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wenrich, K.J.</p> <p>1986-01-01</p> <p>Thousands of solution-collapse breccia pipe crop out in the canyons and on the plateaus of northern Arizona. Over 80 of these are known to contain U or Cu mineralized rock. The high-grade U ore associated with potentially economic concentrations of Ag, Pb, Zn, Cu, Co and Ni in some of these pipes has continued to stimulate mining and exploration activity in northern Arizona, despite periods of depressed U prices. Large expanses of northern Arizona are comprised of undissected high plateaus; recognition of pipes in these areas is particularly important because mining access to the plateaus is far better than to the canyons. The small size of the pipes, generally less than 600 ft (200 m) in diameter, and limited rock outcrop on the plateaus, compounds the recognition problem. Although the breccia pipes, which bottom in the Mississippian Redwall Limestone, are occasionally exposed on the plateaus as circular features, so are unmineralized near-surface collapse features that bottom in the Permian Kaibab and Toroweap Formations. The distinction between these two classes of circular features is critical during exploration for this unique type of U deposit. Various <span class="hlt">geochemical</span> and geophysical exploration methods have been tested over these classes of collapse features. Because of the small size of the deposits, and the low-level <span class="hlt">geochemical</span> signatures in the overlying rock that are rarely dispersed for distances in excess of several hundred feet, most reconnaissance <span class="hlt">geochemical</span> surveys, such as hydrogeochemistry or stream sediment, will not delineete mineralized pipes. Several types of detailed <span class="hlt">geochemical</span> surveys made over collapse features, located through examination of aerial photographs and later field mapping, have been successful at delineating collapse features from the surrounding host rock: (1) Rock geochemistry commonly shows low level Ag, As, Ba, Co, Cu, Ni, Pb, Se and Zn anomalies over mineralized breccia pipes; (2) Soil surveys appear to have the greatest</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JSR....65..141F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JSR....65..141F"><span>Connectivity clues from short-term variability in settlement and <span class="hlt">geochemical</span> tags of mytilid mussels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fodrie, F. Joel; Becker, Bonnie J.; Levin, Lisa A.; Gruenthal, Kristen; McMillan, Pat A.</p> <p>2011-01-01</p> <p>The use of <span class="hlt">geochemical</span> tags in calcified structures of fish and invertebrates is an exciting tool for investigating larval population connectivity. Tag evaluation over relatively short intervals (weeks) may detect environmental and ecological variability at a temporal scale highly relevant to larval transport and settlement. We collected newly settled mussels ( Mytilus californianus and M. galloprovincialis) weekly during winter/spring of 2002 along the coast of San Diego, CA, USA, at sites on the exposed coast (SIO) and in a protected coastal bay (HI), to investigate temporal patterns of <span class="hlt">geochemical</span> tags in mussel shells. Analyses of post-settlement shell via LA-ICP-MS revealed statistically significant temporal variability for all elements we examined (Mg, Mn, Cu, Sr, Cd, Ba, Pb and U). Despite this, our ability to distinguish multielemental signatures between sites was largely conserved. Throughout our 13-week study, SIO and HI mussels could be chemically distinguished from one another in 78-87% of all cases. Settlement varied between 2 and 27 settlers gram-byssus -1 week -1 at SIO and HI, and both sites were characterized by 2-3 weeks with "high" settlement. <span class="hlt">Geochemical</span> tags recorded in early larval shell of newly settled mussels differed between "high" and "low" settlement weeks at both sites (MANOVA), driven by Mg and Sr at SIO (p = 0.013) and Sr, Cd, Ba and Pb at HI (p < 0.001). These data imply that shifts in larval sources or transport corridors were responsible for observed settlement variation, rather than increased larval production. In particular, increased settlement at HI was observed concurrent with the appearance of <span class="hlt">geochemical</span> tags (e.g., elevated Cd), suggesting that those larvae were retained in upwelled water near the mouth of the bay. Such shifts may reflect short-term changes in connectivity among sites due to altered transport corridors, and influence the demography of local populations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/842960','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/842960"><span><span class="hlt">Modeling</span> biogechemical reactive transport in a fracture zone</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Molinero, Jorge; Samper, Javier; Yang, Chan Bing, and Zhang, Guoxiang</p> <p>2005-01-14</p> <p>A coupled <span class="hlt">model</span> of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the <span class="hlt">model</span> of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the <span class="hlt">geochemical</span> conditions prevailing in a fracture granite. It is found that a <span class="hlt">model</span> accounting for microbially-mediated <span class="hlt">geochemical</span> processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The <span class="hlt">model</span> is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of <span class="hlt">model</span> results to changes inmore » biochemical parameters.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.V51B0528P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.V51B0528P"><span>How Many Plumes In Africa ? The <span class="hlt">Geochemical</span> Point of View</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pik, R.; Marty, B.; Hilton, D.</p> <p>2004-12-01</p> <p>Since the Oligocene, volcanic activity in Africa was particularly important in the Horn of Africa where ~ 1 million km3 of continental flood basalts (the Ethiopian CFB) erupted 30 Ma ago in a time interval of 1-2 Ma or less. The Afar volcanic province which is still magmatically active is thought to represent the surface expression of a deep mantle plume, a view consistent with ultra-low velocity anomalies at the base of the mantle beneath the African superswell and the Ethiopia-Afar volcanic province. This plume origin is also supported by the occurrence of 3He/4He ratios up to 20 Ra (Ra is the 3He/4He ratio of atmospheric helium) much higher than those of mid-ocean ridge basalts (on average, 8,b1 Ra) and thought to characterize mantle material originating from below the 660 km discontinuity. However, a deep mantle origin for "high 3He" material is currently questioned by some <span class="hlt">models</span> which rather ascribe a lithospheric or shallow asthenospheric origin for such He component. The origin of this signal can be tested with the distribution of He isotopic signatures and other <span class="hlt">geochemical</span> tracers among different African volcanic provinces. All these other provinces exhibit 3He/4He ratios that are equal to, or lower than, the mean MORB ratio of 7-9 Ra (Cameroon line: 5-7 Ra; Hoggar: 8 Ra, this work; Darfur 5.4-7.5 Ra; West African rift: 5-8.5 Ra, this work; Comores, 6.5 Ra, this work). Although low 3He/4He ratios in intraplate volcanic provinces could result from crustal recycling in the mantle and remobilisation of recycled crust during plume uprise, the upper range of 3He/4He values within the field of MORB values points to the strong involvement of asthenospheric mantle and limited interactions of magmas with the aged African crust. Furthermore, these "low-3He" volcanic provinces are characterized by strongly alkaline to undersaturated volcanism indicative of low degrees of partial melting and a thermal regime of the asthenosphere cooler than the one that gave rise to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013M%26PS...48.2300T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013M%26PS...48.2300T"><span>Chondritic <span class="hlt">models</span> of 4 Vesta: Implications for <span class="hlt">geochemical</span> and geophysical properties</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toplis, M. J.; Mizzon, H.; Monnereau, M.; Forni, O.; McSween, H. Y.; Mittlefehldt, D. W.; McCoy, T. J.; Prettyman, T. H.; De Sanctis, M. C.; Raymond, C. A.; Russell, C. T.</p> <p>2013-11-01</p> <p>Simple mass-balance and thermodynamic constraints are used to illustrate the potential <span class="hlt">geochemical</span> and geophysical diversity of a fully differentiated Vesta-sized parent body with a eucrite crust (e.g., core size and density, crustal thickness). The results of this analysis are then combined with data from the howardite-eucrite-diogenite (HED) meteorites and the Dawn mission to constrain Vesta's bulk composition. Twelve chondritic compositions are considered, comprising seven carbonaceous, three ordinary, and two enstatite chondrite groups. Our analysis excludes CI and LL compositions as plausible Vesta analogs, as these are predicted to have a negative metal fraction. Second, the MELTS thermodynamic calculator is used to show that the enstatite chondrites, the CV, CK and L-groups cannot produce Juvinas-like liquids, and that even for the other groups, depletion in sodium is necessary to produce liquids of appropriate silica content. This conclusion is consistent with the documented volatile-poor nature of eucrites. Furthermore, carbonaceous chondrites are predicted to have a mantle too rich in olivine to produce typical howardites and to have Fe/Mn ratios generally well in excess of those of the HEDs. On the other hand, an Na-depleted H-chondrite bulk composition is capable of producing Juvinas-like liquids, has a mantle rich enough in pyroxene to produce abundant howardite/diogenite, and has a Fe/Mn ratio compatible with eucrites. In addition, its predicted bulk-silicate density is within 100 kg m-3 of solutions constrained by data of the Dawn mission. However, oxidation state and oxygen isotopes are not perfectly reproduced and it is deduced that bulk Vesta may contain approximately 25% of a CM-like component. Values for the bulk-silicate composition of Vesta and a preliminary phase diagram are proposed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29864659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29864659"><span><span class="hlt">Geochemical</span> <span class="hlt">modeling</span> of mercury speciation in surface water and implications on mercury cycling in the everglades wetland.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Ping; Liu, Guangliang; Cui, Wenbin; Cai, Yong</p> <p>2018-06-01</p> <p>The <span class="hlt">geochemical</span> <span class="hlt">model</span> PHREEQC, abbreviated from PH (pH), RE (redox), EQ (equilibrium), and C (program written in C), was employed on the datasets generated by the USEPA Everglades Regional Environmental Monitoring and Assessment Program (R-EMAP) to determine the speciation distribution of inorganic mercury (iHg) in Everglades water and to explore the implications of iHg speciation on mercury cycling. The results suggest that sulfide and DOM were the key factors that regulate inorganic Hg speciation in the Everglades. When sulfide was present at measurable concentrations (>0.02 mg/L), Hg-S complexes dominated iHg species, occurring in the forms of HgS 2 2- , HgHS 2 - , and Hg(HS) 2 that were affected by a variety of environmental factors. When sulfide was assumed nonexistent, Hg-DOM complexes occurred as the predominant Hg species, accounting for almost 100% of iHg species. However, when sulfide was presumably present at a very low, environmentally relevant concentration (3.2 × 10 -7  mg/L), both Hg-DOM and Hg-S complexes were present as the major iHg species. These Hg-S species and Hg-DOM complex could be related to methylmercury (MeHg) in environmental matrices such floc, periphyton, and soil, and the correlations are dependent upon different circumstances (e.g., sulfide concentrations). The implications of the distribution of iHg species on MeHg production and fate in the Everglades were discussed. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP13A3572G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP13A3572G"><span>Magnetic and <span class="hlt">Geochemical</span> Properties of Andic Soils from the Massif Central, France</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grison, H.; Petrovsky, E.; Dlouha, S.; Kapicka, A.</p> <p>2014-12-01</p> <p>Ferrimagnetic iron oxides are the key magnetic minerals responsible for enhancement of the magnetic susceptibility in soils. Soils with andic properties contain high amount of Fe-oxides, but only few attempts were made to characterize these soils using magnetic methods. Magnetic susceptibility is in particular suitable for its sensitivity and fast measurement; the presence of Fe-oxides can be easily identified directly in the field. The aim of our study is to describe main magnetic and <span class="hlt">geochemical</span> properties of soils rich in Fe oxides derived from strongly magnetic volcanic basement. The studied sites are located at the basalt parent rock formed during Pleistocene, Pliocene and Miocene. Investigated soils are exposed to the mountainous climate with the perudic soil moisture regime and cryic temperature soil regime. Seven basalt soil profiles with typical andic properties were analyzed down to parent rock by a set of magnetic and <span class="hlt">geochemical</span> methods. The magnetic susceptibility was measured in situ and in laboratory using the Bartington MS2D and AGICO MFK1. Its temperature dependence was measured in order to assess phase transformations of magnetic minerals using the KLY4. Magnetic data were completed by the hysteresis, IRM and DCD measurements using ADE EV9 VSM. <span class="hlt">Geochemical</span> data include soil reaction (pH), organic carbon, cations exchange capacity, and extractable iron and aluminium in the soil extracted by a dithionite-citrate, acid-ammonium oxalate and a pyrophosphate solution. Scanning electron microscopy was done for top/sub-soil and rock samples. <span class="hlt">Geochemical</span> soil properties reflecting iron oxide stability correlate well with mass-specific magnetic susceptibility. Well pronounced relationship was observed between magnetic grain size, precipitation and soil pH, second group is reflecting concentration of feri-magnetic particles and age of parent rock, and the third group reflects degree of weathering and the thermomagnetic indices expressing changes in magneto</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027905','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027905"><span>Impact of <span class="hlt">geochemical</span> stressors on shallow groundwater quality</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>An, Y.-J.; Kampbell, D.H.; Jeong, S.-W.; Jewell, K.P.; Masoner, J.R.</p> <p>2005-01-01</p> <p>Groundwater monitoring wells (about 70 wells) were extensively installed in 28 sites surrounding Lake Texoma, located on the border of Oklahoma and Texas, to assess the impact of <span class="hlt">geochemical</span> stressors to shallow groundwater quality. The monitoring wells were classified into three groups (residential area, agricultural area, and oil field area) depending on their land uses. During a 2-year period from 1999 to 2001 the monitoring wells were sampled every 3 months on a seasonal basis. Water quality assay consisted of 25 parameters including field parameters, nutrients, major ions, and trace elements. Occurrence and level of inorganics in groundwater samples were related to the land use and temporal change. Groundwater of the agricultural area showed lower levels of ferrous iron and nitrate than the residential area. The summer season data revealed more distinct differences in inorganic profiles of the two land use groundwater samples. There is a possible trend that nitrate concentrations in groundwater increased as the proportions of cultivated area increased. Water-soluble ferrous iron occurred primarily in water samples with a low dissolved oxygen concentration and/or a negative redox potential. The presence of brine waste in shallow groundwater was detected by chloride and conductivity in oil field area. Dissolved trace metals and volatile organic carbons were not in a form of concentration to be stressors. This study showed that the quality of shallow ground water could be related to regional <span class="hlt">geochemical</span> stressors surrounding the lake. ?? 2005 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=39437','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=39437"><span><span class="hlt">Geochemical</span> challenge to earthquake prediction.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wakita, H</p> <p>1996-01-01</p> <p>The current status of <span class="hlt">geochemical</span> and groundwater observations for earthquake prediction in Japan is described. The development of the observations is discussed in relation to the progress of the earthquake prediction program in Japan. Three major findings obtained from our recent studies are outlined. (i) Long-term radon observation data over 18 years at the SKE (Suikoen) well indicate that the anomalous radon change before the 1978 Izu-Oshima-kinkai earthquake can with high probability be attributed to precursory changes. (ii) It is proposed that certain sensitive wells exist which have the potential to detect precursory changes. (iii) The appearance and nonappearance of coseismic radon drops at the KSM (Kashima) well reflect changes in the regional stress state of an observation area. In addition, some preliminary results of chemical changes of groundwater prior to the 1995 Kobe (Hyogo-ken nanbu) earthquake are presented. PMID:11607665</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011154','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011154"><span>Determination of molybenum in soils and rocks: A <span class="hlt">geochemical</span> semimicro field method</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ward, F.N.</p> <p>1951-01-01</p> <p>Reconnaissance work in <span class="hlt">geochemical</span> prospecting requires a simple, rapid, and moderately accurate method for the determination of small amounts of molybdenum in soils and rocks. The useful range of the suggested procedure is from 1 to 32 p.p.m. of molybdenum, but the upper limit can be extended. Duplicate determinations on eight soil samples containing less than 10 p.p.m. of molybdenum agree within 1 p.p.m., and a comparison of field results with those obtained by a conventional laboratory procedure shows that the method is sufficiently accurate for use in <span class="hlt">geochemical</span> prospecting. The time required for analysis and the quantities of reagents needed have been decreased to provide essentially a "test tube" method for the determination of molybdenum in soils and rocks. With a minimum amount of skill, one analyst can make 30 molybdenum determinations in an 8-hour day.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://link.springer.com/chapter/10.1007/978-3-319-14212-8_8','USGSPUBS'); return false;" href="http://link.springer.com/chapter/10.1007/978-3-319-14212-8_8"><span>Instrumenting caves to collect hydrologic and <span class="hlt">geochemical</span> data: case study from James Cave, Virginia</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Schreiber, Madeline E.; Schwartz, Benjamin F.; Orndorff, William; Doctor, Daniel H.; Eagle, Sarah D.; Gerst, Jonathan D.</p> <p>2015-01-01</p> <p>Karst aquifers are productive groundwater systems, supplying approximately 25 % of the world’s drinking water. Sustainable use of this critical water supply requires information about rates of recharge to karst aquifers. The overall goal of this project is to collect long-term, high-resolution hydrologic and <span class="hlt">geochemical</span> datasets at James Cave, Virginia, to evaluate the quantity and quality of recharge to the karst system. To achieve this goal, the cave has been instrumented for continuous (10-min interval) measurement of the (1) temperature and rate of precipitation; (2) temperature, specific conductance, and rate of epikarst dripwater; (3) temperature of the cave air; and (4) temperature, conductivity, and discharge of the cave stream. Instrumentation has also been installed to collect both composite and grab samples of precipitation, soil water, the cave stream, and dripwater for <span class="hlt">geochemical</span> analysis. This chapter provides detailed information about the instrumentation, data processing, and data management; shows examples of collected datasets; and discusses recommendations for other researchers interested in hydrologic and <span class="hlt">geochemical</span> monitoring of cave systems. Results from the research, briefly described here and discussed in more detail in other publications, document a strong seasonality of the start of the recharge season, the extent of the recharge season, and the geochemistry of recharge.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614761D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614761D"><span>Is there a specific <span class="hlt">geochemical</span> signature of urban soils dedicated to stormwater infiltration?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delolme, Cécile; Poulenard, Jérôme; Dorioz, Jean-Marcel; Bedell, Jean-Philippe; Winiarski, Thierry</p> <p>2014-05-01</p> <p>Stormwater infiltration devices are widely used in urban areas to recharge aquifers. They consequently store and concentrate on small surfaces, suspended particles coming from the erosion of the urban watershed carried out by stormwater are deposited at the surface of the receiving soil. This leads to a sedimentary layer that could be considered as a technosol where pedogenesis is occurring in relation with the receiving underlying soil. The knowledge related to these specific soils comes from a very small number of urban catchment. Moreover, few data are available concerning their main agronomic characteristics and the presence of others contaminants related to urban, industrial or agricultural activities. Our objective was to see if there is a generic specific <span class="hlt">geochemical</span> signature that could characterize these technosols or if it is mostly explained by the catchment characteristics. For the first time, the surface soil of 19 infiltration basins situated in the East of Lyon were sampled in spring 2012 and chosen to represent a diversity of urban catchment typology. A mean representative surface layer sample was obtained with a mixture of 8 to 20 subsamples (depending on the basin surface) collected randomly on each basin. Numerous <span class="hlt">geochemical</span> parameters were measured : pH, Total Organic Matter, Total Organic Carbon, carbonate content, texture, visible and infra-red spectra, phosphorus speciation, total nitrogen, total Zn, Cu, Ni, Cd, Pb, Cr, 7 pesticides, 16 PAHs, sum of 17 Dioxines, sum of the 7 indicator PCB, alkylphenols. A first analysis of the results underlines the great variability of the different parameters due to the diversity of management and design of basins. Nevertheless a stable chemical "signature" can be precised in relation to the concomitant presence of componants in rather stable proportions. We confirm that these specific urban soils are highly organic (4 to 20% dry weight) with high total PAHs and heavy metals contents with a silty texture</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70189247','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70189247"><span>Levelling and merging of two discrete national-scale <span class="hlt">geochemical</span> databases: A case study showing the surficial expression of metalliferous black shales</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, Steven M.; Neilson, Ryan T.; Giles, Stuart A.</p> <p>2015-01-01</p> <p>Government-sponsored, national-scale, soil and sediment <span class="hlt">geochemical</span> databases are used to estimate regional and local background concentrations for environmental issues, identify possible anthropogenic contamination, estimate mineral endowment, explore for new mineral deposits, evaluate nutrient levels for agriculture, and establish concentration relationships with human or animal health. Because of these different uses, it is difficult for any single database to accommodate all the needs of each client. Smith et al. (2013, p. 168) reviewed six national-scale soil and sediment <span class="hlt">geochemical</span> databases for the United States (U.S.) and, for each, evaluated “its appropriateness as a national-scale <span class="hlt">geochemical</span> database and its usefulness for national-scale <span class="hlt">geochemical</span> mapping.” Each of the evaluated databases has strengths and weaknesses that were listed in that review.Two of these U.S. national-scale <span class="hlt">geochemical</span> databases are similar in their sample media and collection protocols but have different strengths—primarily sampling density and analytical consistency. This project was implemented to determine whether those databases could be merged to produce a combined dataset that could be used for mineral resource assessments. The utility of the merged database was tested to see whether mapped distributions could identify metalliferous black shales at a national scale.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMIN23C1462H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMIN23C1462H"><span>Maximizing data holdings and data documentation with a hierarchical system for sample-based <span class="hlt">geochemical</span> data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, L.; Lehnert, K. A.; Walker, J. D.; Chan, C.; Ash, J.; Johansson, A. K.; Rivera, T. A.</p> <p>2011-12-01</p> <p>Sample-based measurements in geochemistry are highly diverse, due to the large variety of sample types, measured properties, and idiosyncratic analytical procedures. In order to ensure the utility of sample-based data for re-use in research or education they must be associated with a high quality and quantity of descriptive, discipline-specific metadata. Without an adequate level of documentation, it is not possible to reproduce scientific results or have confidence in using the data for new research inquiries. The required detail in data documentation makes it challenging to aggregate large sets of data from different investigators and disciplines. One solution to this challenge is to build data systems with several tiers of intricacy, where the less detailed tiers are geared toward discovery and interoperability, and the more detailed tiers have higher value for data analysis. The Geoinformatics for Geochemistry (GfG) group, which is part of the Integrated Earth Data Applications facility (http://www.iedadata.org), has taken this approach to provide services for the discovery, access, and analysis of sample-based <span class="hlt">geochemical</span> data for a diverse user community, ranging from the highly informed geochemist to non-domain scientists and undergraduate students. GfG builds and maintains three tiers in the sample based data systems, from a simple data catalog (<span class="hlt">Geochemical</span> Resource Library), to a substantially richer data <span class="hlt">model</span> for the EarthChem Portal (EarthChem XML), and finally to detailed discipline-specific data <span class="hlt">models</span> for petrologic (PetDB), sedimentary (SedDB), hydrothermal spring (VentDB), and geochronological (GeoChron) samples. The data catalog, the lowest level in the hierarchy, contains the sample data values plus metadata only about the dataset itself (Dublin Core metadata such as dataset title and author), and therefore can accommodate the widest diversity of data holdings. The second level includes measured data values from the sample, basic information</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Litho.290...60U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Litho.290...60U"><span><span class="hlt">Geochemical</span> differentiation processes for arc magma of the Sengan volcanic cluster, Northeastern Japan, constrained from principal component analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ueki, Kenta; Iwamori, Hikaru</p> <p>2017-10-01</p> <p>In this study, with a view of understanding the structure of high-dimensional <span class="hlt">geochemical</span> data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the <span class="hlt">geochemical</span> variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the <span class="hlt">geochemical</span> variation of the arc magma. Our result indicated that crustal processes dominate the <span class="hlt">geochemical</span> variation of magma in the Sengan volcanic cluster.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMNS24A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMNS24A..06S"><span>An Integrated 3D Hydrogeological, Geophysical, and Microbiological Investigation of <span class="hlt">Geochemical</span> Gradients in a Pristine Aquifer Located in Laurentian Hills, ON, Canada</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shirokova, V.; Graves, L.; Stojanovic, S.; Enright, A. M.; Bank, C.; Ferris, F. G.</p> <p>2013-12-01</p> <p>A pristine glaciofluvial aquifer displaying naturally occurring <span class="hlt">geochemical</span> gradients was investigated using hydrogeological, geophysical, and microbiological methods. A network of 25 piezometers was used to collect samples for groundwater chemical analysis, including parameters such as total iron (Fe), ferrous iron (Fe2+), sulphate (SO42-), sulfur (S2-), ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), silica (SiO2), phosphate (PO43-), pH, and oxidation reduction potential (ORP). Ion concentration values between piezometers were interpolated using kriging and inverse distance weighting. Yearly analysis of the network shows spatially and temporally persistent plumes of iron and sulfur. A 3D <span class="hlt">model</span> of the aquifer was compiled to aid in the understanding of the nature and origin of the <span class="hlt">geochemical</span> gradients. The resulting maps showed zones with high concentrations of dissolved total iron (predominantly soluble ferric iron and complexed iron compounds), followed immediately downgradient by a high concentration of ferrous iron. Similarly, zones of high sulfide concentration were followed by areas of high sulfate concentration. There was some overlap between the iron and sulfur plumes, and ion concentrations were higher in years with a lower water table elevation. Metagenomic analysis revealed a diverse microbial community in the sediment, capable of the biogeochemical cycling of iron, sulfur, and nitrogen. The aquifer basin, as bounded by a till aquitard, was delineated using ground penetrating radar tomography from 45 lines. The plumes corresponded to an area where there is large, channel-like depression in the till boundary. Flow vectors from hydrogeological <span class="hlt">modelling</span> indicated increased velocity followed by a slowing and convergence of groundwater in this location. Resistivity values from 20 lines varied in general from high values (2000-6000 Ohm.m) above 1-2 m to lower values (less than 1000 Ohm.m) below 2 to a 5m depth. The resistivity surveys consistently showed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2002/0227/intro.html','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2002/0227/intro.html"><span>Multielement <span class="hlt">geochemical</span> dataset of surficial materials for the northern Great Basin</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Coombs, Mary Jane; Kotlyar, Boris B.; Ludington, Steve; Folger, Helen W.; Mossotti, Victor G.</p> <p>2002-01-01</p> <p>This report presents <span class="hlt">geochemical</span> data generated during mineral and environmental assessments for the Bureau of Land Management in northern Nevada, northeastern California, southeastern Oregon, and southwestern Idaho, along with metadata and map representations of selected elements. The dataset presented here is a compilation of chemical analyses of over 10,200 stream-sediment and soil samples originally collected during the National Uranium Resource Evaluation's (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program of the Department of Energy and its predecessors and reanalyzed to support a series of mineral-resource assessments by the U.S. Geological Survey (USGS). The dataset also includes the analyses of additional samples collected by the USGS in 1992. The sample sites are in southeastern Oregon, southwestern Idaho, northeastern California, and, primarily, in northern Nevada. These samples were collected from 1977 to 1983, before the development of most of the present-day large-scale mining infrastructure in northern Nevada. As such, these data may serve as an important baseline for current and future geoenvironmental studies. Largely because of the very diverse analytical methods used by the NURE HSSR program, the original NURE analyses in this area yielded little useful <span class="hlt">geochemical</span> information. The Humboldt, Malheur-Jordan-Andrews, and Winnemucca-Surprise studies were designed to provide useful <span class="hlt">geochemical</span> data via improved analytical methods (lower detection levels and higher precision) and, in the Malheur-Jordan-Andrews and Winnemucca Surprise areas, to collect additional stream-sediment samples to increase sampling coverage. The data are provided in *.xls (Microsoft Excel) and *.csv (comma-separated-value) format. We also present graphically 35 elements, interpolated ("gridded") in a geographic information system (GIS) and overlain by major geologic trends, so that users may view the variation in elemental concentrations over the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/801/pdf/ds801.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/801/pdf/ds801.pdf"><span><span class="hlt">Geochemical</span> and mineralogical data for soils of the conterminous United States</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, David B.; Cannon, William F.; Woodruff, Laurel G.; Solano, Federico; Kilburn, James E.; Fey, David L.</p> <p>2013-01-01</p> <p>In 2007, the U.S. Geological Survey initiated a low-density (1 site per 1,600 square kilometers, 4,857 sites) <span class="hlt">geochemical</span> and mineralogical survey of soils of the conterminous United States as part of the North American Soil <span class="hlt">Geochemical</span> Landscapes Project. Sampling and analytical protocols were developed at a workshop in 2003, and pilot studies were conducted from 2004 to 2007 to test and refine these recommended protocols. The final sampling protocol for the national-scale survey included, at each site, a sample from a depth of 0 to 5 centimeters, a composite of the soil A horizon, and a deeper sample from the soil C horizon or, if the top of the C horizon was at a depth greater than 1 meter, from a depth of approximately 80–100 centimeters. The <2-millimeter fraction of each sample was analyzed for a suite of 45 major and trace elements by methods that yield the total or near-total elemental content. The major mineralogical components in the samples from the soil A and C horizons were determined by a quantitative X-ray diffraction method using Rietveld refinement. Sampling in the conterminous United States was completed in 2010, with chemical and mineralogical analyses completed in May 2013. The resulting dataset provides an estimate of the abundance and spatial distribution of chemical elements and minerals in soils of the conterminous United States and represents a baseline for soil geochemistry and mineralogy against which future changes may be recognized and quantified. This report (1) describes the sampling, sample preparation, and analytical methods used; (2) gives details of the quality control protocols used to monitor the quality of chemical and mineralogical analyses over approximately six years; and (3) makes available the soil <span class="hlt">geochemical</span> and mineralogical data in downloadable tables.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18826919','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18826919"><span>New <span class="hlt">geochemical</span> insights into volcanic degassing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Edmonds, Marie</p> <p>2008-12-28</p> <p>Magma degassing plays a fundamental role in controlling the style of volcanic eruptions. Whether a volcanic eruption is explosive, or effusive, is of crucial importance to approximately 500 million people living in the shadow of hazardous volcanoes worldwide. Studies of how gases exsolve and separate from magma prior to and during eruptions have been given new impetus by the emergence of more accurate and automated methods to measure volatile species both as volcanic gases and dissolved in the glasses of erupted products. The composition of volcanic gases is dependent on a number of factors, the most important being magma composition and the depth of gas-melt segregation prior to eruption; this latter parameter has proved difficult to constrain in the past, yet is arguably the most critical for controlling eruptive style. Spectroscopic techniques operating in the infrared have proved to be of great value in measuring the composition of gases at high temporal resolution. Such methods, when used in tandem with microanalytical <span class="hlt">geochemical</span> investigations of erupted products, are leading to better constraints on the depth at which gases are generated and separated from magma. A number of recent studies have focused on transitions between explosive and effusive activity and have led to a better understanding of gas-melt segregation at basaltic volcanoes. Other studies have focused on degassing during intermediate and silicic eruptions. Important new results include the recognition of fluxing by deep-derived gases, which buffer the amount of dissolved volatiles in the melt at shallow depths, and the observation of gas flow up permeable conduit wall shear zones, which may be the primary mechanism for gas loss at the cusp of the most explosive and unpredictable volcanic eruptions. In this paper, I review current and future directions in the field of <span class="hlt">geochemical</span> studies of volcanic degassing processes and illustrate how the new insights are beginning to change the way in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/181881-use-lichens-detecting-environmental-risk-geochemical-prospecting','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/181881-use-lichens-detecting-environmental-risk-geochemical-prospecting"><span>Use of lichens in detecting environmental risk and in <span class="hlt">geochemical</span> prospecting</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dongarra, G.; Sabatino, G.; Triscari, M.</p> <p>1995-10-01</p> <p>This paper provides data on variations in the contents of As, Sb, Ni, V, Pb, Cu, Au, Zn, Sc, and Al, measured in the thalli of a saxicolous lichen species, X anthoria calcicola Ochsner s.l., collected in northeastern Sicily, near an industrial zone and along a belt crossing areas of known ores containing sulfides of heavy metals. A total of 91 lichen samples were collected on roof tiles (39) and on rocks (52). In the industrial zone, analysis of lichen thalli revealed high contents of nickel and vanadium, decreasing at increasing distances from the source of contamination. The results havemore » also revealed the versatility of Xanthoria calcicola in <span class="hlt">geochemical</span> prospecting for heavy metals such as Pb, Zn, As, Au, Sb, Ni, V, and Cu. The contents of these elements in the analyzed lichens highlight the same <span class="hlt">geochemical</span> associations observed in prospecting surveys on samples of river sediments and identify similar anomalies. Interpretation of data in terms of enrichment factors (EFs) turned out to be particularly useful. 31 refs., 7 figs., 2 tabs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1079744','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1079744"><span><span class="hlt">Geochemical</span> Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui</p> <p>2013-04-15</p> <p>Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent <span class="hlt">geochemical</span> processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one <span class="hlt">geochemical</span> outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education effortsmore » associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order <span class="hlt">models</span>. In addition, results will initially serve as input parameters during <span class="hlt">model</span> calibration runs and, ultimately, will be used to test <span class="hlt">model</span> predictive</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatAs...2..190B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatAs...2..190B"><span>Meeting <span class="hlt">models</span> and mineralogy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bridges, John C.</p> <p>2018-03-01</p> <p>A new <span class="hlt">geochemical</span> study shows that short-lived warm and wet episodes during a globally cold early Mars could have formed the clay deposits detected on the Martian surface. This <span class="hlt">model</span> can reconcile climate <span class="hlt">models</span> with mineralogical and geomorphological evidence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25220771','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25220771"><span>The flotation tailings of the former Pb-Zn mine of Touiref (NW Tunisia): mineralogy, mine drainage prediction, base-metal speciation assessment and <span class="hlt">geochemical</span> <span class="hlt">modeling</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Othmani, Mohamed Ali; Souissi, Fouad; Bouzahzah, Hassan; Bussière, Bruno; da Silva, Eduardo Ferreira; Benzaazoua, Mostafa</p> <p>2015-02-01</p> <p>The underground extraction of Pb-Zn mineralization in the Touiref area stopped in 1958. A large volume of flotation tailings (more than 500 Mt) containing sulfides were deposited in a tailings impoundment. The goals of this study are to evaluate the neutralization capacity of the unoxidized and oxidized tailings, to assess the speciation of metals between the different components of the tailings material, and to assess the mobility of metals and the secondary minerals' precipitation in pore waters using <span class="hlt">geochemical</span> <span class="hlt">modeling</span>. To accomplish these objectives, representative samples from both fresh and oxidized zones were collected along a vertical profile through the tailings pile. Physical, chemical (ICP-MS), and mineralogical characterization (X-ray diffraction (XRD), reflected light microscopy, scanning electron microscope (SEM)) of these samples was performed. Grain size analysis shows that the tailings are dominated by silt- to sand-sized fractions. The microscopic observation highlights the presence of pyrite, marcasite, galena, and sphalerite as primary minerals in a carbonated matrix. The study reveals also the presence of secondary minerals represented by cerussite, smithsonite, anglesite, and Fe oxi-hydroxides as important scavengers for trace elements. The static tests show that the presence of calcite in the tailing samples ensures acid-neutralizing capacity (ANC), which is significantly greater than the acidity potential (PA). The <span class="hlt">geochemical</span> characterization of the unoxidized samples shows higher Cd, Pb, and Zn concentrations than the oxidized samples containing the highest values for Fe and SO4. Sequential extraction tests show that significant percentages of metals are distributed between the acid-soluble fractions (Cd, Pb, and Zn) and the reducible one (Zn). Pore water analysis indicates that Ca is the dominant cation (8,170 and 6,200 mg L(-1), respectively), whereas sulfate is the principal anion (6,900 and 5,100 mg L(-1), respectively). Saturation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=209990&keyword=National+AND+Oil+AND+Companies&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=209990&keyword=National+AND+Oil+AND+Companies&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Understanding <span class="hlt">Geochemical</span> Impacts of Carbon Dioxide Leakage from Carbon Capture and Sequestration</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>US EPA held a technical <span class="hlt">Geochemical</span> Impact Workshop in Washington, DC on July 10 and 11, 2007 to discuss geological considerations and Area of Review (AoR) issues related to geologic sequestration (GS) of Carbon Dioxide (CO2). Seventy=one (71) representatives of the electric uti...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H31D1041J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H31D1041J"><span>Predictive Analysis of <span class="hlt">Geochemical</span> Controls in an Alpine Stream</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jochems, A. P.; Sherson, L. R.; Crossey, L. J.; Karlstrom, K. E.</p> <p>2010-12-01</p> <p>Alpine watersheds are increasingly relied upon for use in the American West, necessitating a more complete understanding of annual hydrologic patterns and geologic influences on water chemistry. The Jemez River is a fifth order stream in central New Mexico that flows from its source in the Jemez Mountains to its confluence with the Rio Grande north of the town of Bernalillo. Designated uses of the Jemez River include domestic water supply, recreation, and agriculture. Geothermal uses are currently being considered as well. The river recharges shallow aquifer waters used by several communities, including tribal lands of the Jemez Pueblo. The hydrogeology of the Jemez system is characterized by geothermal inputs from the Baca hydrothermal system associated with the 1.2Ma Valles caldera, as well as groundwater and surface water interactions. Freshwater input from the Rio Guadalupe and several ephemeral tributaries also influences the water chemistry of the Jemez system. Fifteen sites along a 35 km reach of the river were sampled between 2006 and 2010. Discharge of the Jemez River ranged from 10-876 cfs over the study period. The annual hydrograph is affected by annual snowmelt in the Jemez Mountains as well as surges due to monsoonal rains in July and August. <span class="hlt">Geochemical</span> data collected over this period include temperature, conductivity, pH, dissolved oxygen (D.O.), major ions, trace elements, and stable isotopes. Continuous records of temperature, conductivity, pH, D.O. and turbidity data were collected from a water quality sonde installed in March 2010. <span class="hlt">Geochemical</span> <span class="hlt">modeling</span> and time series analysis were performed using PHREEQC, Geochemist’s Workbench, and MATLAB. Empirical data collected during this study gave rise to several <span class="hlt">models</span> describing the hydrology and geochemistry of the Jemez system. Our data suggest that springs are the primary contributors to dissolved load, and that solute loading from geothermal inputs is intensified by low flows observed on</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29900355','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29900355"><span>Data for factor analysis of hydro-<span class="hlt">geochemical</span> characteristics of groundwater resources in Iranshahr.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Biglari, Hamed; Saeidi, Mehdi; Karimyan, Kamaleddin; Narooie, Mohammad Reza; Sharafi, Hooshmand</p> <p>2018-08-01</p> <p>Detection of Hydrogeological and Hydro-<span class="hlt">geochemical</span> changes affecting the quality of aquifer water is very important. The aim of this study was to determine the factor analysis of the hydro-<span class="hlt">geochemical</span> characteristics of Iranshahr underground water resources during the warm and cool seasons. In this study, 248 samples (two-time repetitions) of ground water resources were provided at first by cluster-random sampling method during 2017 in the villages of Iranshahr city. After transferring the samples to the laboratory, concentrations of 13 important chemical parameters in those samples were determined according to o water and wastewater standard methods. The results of this study indicated that 45.45% and 55.55% of the correlation between parameters has had a significant decrease and increase, respectively with the transition from warm seasons to cold seasons. According to the factor analysis method, three factors of land hydro-<span class="hlt">geochemical</span> processes, supplying resources by surface water and sewage as well as human activities have been identified as influential on the chemical composition of these resources.The highest growth rate of 0.37 was observed between phosphate and nitrate ions while the lowest trend of - 0.33 was seen between fluoride ion and calcium as well as chloride ions. Also, a significant increase in the correlation between magnesium ion and nitrate ion from warm seasons to cold seasons indicates the high seasonal impact of the relation between these two parameters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035670','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035670"><span>Microbial community structure of hydrothermal deposits from <span class="hlt">geochemically</span> different vent fields along the Mid-Atlantic Ridge</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Flores, Gilberto E.; Campbell, James H.; Kirshtein, Julie D.; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua I.; Seewald, Jeffrey S.; Tivey, Margaret Kingston; Voytek, Mary A.; Yang, Zamin K.; Reysenbach, Anna-Louise</p> <p>2011-01-01</p> <p>To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as <span class="hlt">geochemical</span> <span class="hlt">modelling</span> to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and <span class="hlt">geochemical</span> processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20039202','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20039202"><span><span class="hlt">Geochemical</span> patterns in soils in and around Siddipet, Medak District, Andhra Pradesh, India.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dantu, Sujatha</p> <p>2010-11-01</p> <p>This paper reports the first results of <span class="hlt">geochemical</span> survey carried out in and around Siddipet, taking soil (topsoil 0-25 cm and subsoil 70-95 cm) as the sampling media. The data were obtained in a consistent way from 61 sites. The samples were analyzed for 29 elements (As, Ba, Cd, Co, Cr, Cu, F, Mo, Ni, Pb, Rb, Se, Sr, Th, U, V, Y, Zn, Zr, Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, and P) by X-ray fluorescence spectrometer, and baseline levels for these elements are presented. Results reveal that the correlation between the <span class="hlt">geochemical</span> patterns in the soils developed on different litho-variants is not straight forward, but some general trends can be observed. Regional parent materials and pedogenesis are the primary factors influencing the concentrations of trace elements while anthropogenic activities have secondary influence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.3513E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.3513E"><span>Lagrangian simulation of mixing and reactions in complex <span class="hlt">geochemical</span> systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Engdahl, Nicholas B.; Benson, David A.; Bolster, Diogo</p> <p>2017-04-01</p> <p>Simulations of detailed <span class="hlt">geochemical</span> systems have traditionally been restricted to Eulerian reactive transport algorithms. This note introduces a Lagrangian method for <span class="hlt">modeling</span> multicomponent reaction systems. The approach uses standard random walk-based methods for the particle motion steps but allows the particles to interact with each other by exchanging mass of their various chemical species. The colocation density of each particle pair is used to calculate the mass transfer rate, which creates a local disequilibrium that is then relaxed back toward equilibrium using the reaction engine PhreeqcRM. The mass exchange is the only step where the particles interact and the remaining transport and reaction steps are entirely independent for each particle. Several validation examples are presented, which reproduce well-known analytical solutions. These are followed by two demonstration examples of a competitive decay chain and an acid-mine drainage system. The source code, entitled Complex Reaction on Particles (CRP), and files needed to run these examples are hosted openly on GitHub (https://github.com/nbengdahl/CRP), so as to enable interested readers to readily apply this approach with minimal modifications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194561','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194561"><span>Chemical elements in the environment: multi-element <span class="hlt">geochemical</span> datasets from continental to national scale surveys on four continents</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Caritat, Patrice de; Reimann, Clemens; Smith, David; Wang, Xueqiu</p> <p>2017-01-01</p> <p>During the last 10-20 years, Geological Surveys around the world have undertaken a major effort towards delivering fully harmonized and tightly quality-controlled low-density multi-element soil <span class="hlt">geochemical</span> maps and datasets of vast regions including up to whole continents. Concentrations of between 45 and 60 elements commonly have been determined in a variety of different regolith types (e.g., sediment, soil). The multi-element datasets are published as complete <span class="hlt">geochemical</span> atlases and made available to the general public. Several other <span class="hlt">geochemical</span> datasets covering smaller areas but generally at a higher spatial density are also available. These datasets may, however, not be found by superficial internet-based searches because the elements are not mentioned individually either in the title or in the keyword lists of the original references. This publication attempts to increase the visibility and discoverability of these fundamental background datasets covering large areas up to whole continents.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017988','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017988"><span>The effect of a confining unit on the <span class="hlt">geochemical</span> evolution of ground water in the Upper Floridan aquifer system</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wicks, C.M.; Herman, J.S.</p> <p>1994-01-01</p> <p>In west-central Florida, sections of the Upper Floridan aquifer system range in character from confined to leaky to unconfined. The confining unit is the Hawthorn Formation, a clay-rich sequence. The presence or absence of the Hawthorn Formation affects the <span class="hlt">geochemical</span> evolution of the ground water in the Upper Floridan aquifer system. Mass-balance and mass-transfer <span class="hlt">models</span> suggest that, in unconfined areas, the <span class="hlt">geochemical</span> reactions are dolomite dissolution, ion exchange (Mg for Na, K), sulfate reduction, calcite dissolution, and CO2 exchange. In the areas in which the Hawthorn Formation is leaky, the evolution of the ground water is accounted for by ion exchange, sulfate reduction, calcite dissolution, and CO2 exchange. In the confined areas, no ion exchange and only limited sulfate reduction occur, and the chemical character of the ground water is consistent with dolomite and gypsum dissolution, calcite precipitation, and CO2 ingassing. The Hawthorn Formation acts both as a physical barrier to the transport of CO2 and organic matter and as a source of ion-exchange sites, but the carbonate-mineral reactions are largely unaffected by the extent of confinement of the Upper Floridan aquifer. ?? 1994.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApWS....7.2463E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApWS....7.2463E"><span>Groundwater quality assessment using geoelectrical and <span class="hlt">geochemical</span> approaches: case study of Abi area, southeastern Nigeria</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ebong, Ebong D.; Akpan, Anthony E.; Emeka, Chimezie N.; Urang, Job G.</p> <p>2017-09-01</p> <p>The electrical resistivity technique which involved the Schlumberger depth sounding method and <span class="hlt">geochemical</span> analyses of water samples collected from boreholes was used to investigate the suitability of groundwater aquifers in Abi for drinking and irrigation purposes. Fifty randomly located electrical resistivity data were collected, <span class="hlt">modeled</span>, and interpreted after calibration with lithologic logs. Ten borehole water samples were collected and analysed to determine anion, cation concentrations and some physical and chemical parameters, such as water colour, temperature, total dissolved solids, and electrical conductivity. The results show that the lithostratigraphy of the study area is composed of sands, sandstones (fractured, consolidated and loosed), siltstones, shales (compacted and fractured) of the Asu River Group, Eze-Aku Formation which comprises the aquifer units, and the Nkporo Shale Formation. The aquifer conduits are known to be rich in silicate minerals, and the groundwater samples in some locations show a significant amount of Ca2+, Mg2+, and Na+. These cations balanced the consumption of H+ during the hydrolytic alteration of silicate minerals. The <span class="hlt">geochemical</span> analysis of groundwater samples revealed dominant calcium-magnesium-carbonate-bicarbonate water facies. Irrigation water quality parameters, such as sodium absorption ratio, percentage of sodium, and permeability index, were calculated based on the physico-chemical analyses. The groundwater quality was observed to be influenced by the interaction of some geologic processes but was classified to be good to excellent, indicating its suitability for domestic and irrigation purposes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016FrEaS...4...57D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016FrEaS...4...57D"><span>Snowmelt induced hydrologic perturbations drive dynamic microbiological and <span class="hlt">geochemical</span> behaviors across a shallow riparian aquifer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danczak, Robert; Yabusaki, Steven; Williams, Kenneth; Fang, Yilin; Hobson, Chad; Wilkins, Michael</p> <p>2016-05-01</p> <p>Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by <span class="hlt">geochemical</span> perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport <span class="hlt">modeling</span> of the <span class="hlt">geochemical</span> and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1425411','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1425411"><span>Snowmelt Induced Hydrologic Perturbations Drive Dynamic Microbiological and <span class="hlt">Geochemical</span> Behaviors across a Shallow Riparian Aquifer</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Danczak, Robert E.; Yabusaki, Steven B.; Williams, Kenneth H.</p> <p></p> <p>Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a 6-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species inmore » reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by <span class="hlt">geochemical</span> perturbations, while communities in shallower locations exhibited the greatest change. Thus, reactive transport <span class="hlt">modeling</span> of the <span class="hlt">geochemical</span> and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1425411-snowmelt-induced-hydrologic-perturbations-drive-dynamic-microbiological-geochemical-behaviors-across-shallow-riparian-aquifer','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1425411-snowmelt-induced-hydrologic-perturbations-drive-dynamic-microbiological-geochemical-behaviors-across-shallow-riparian-aquifer"><span>Snowmelt Induced Hydrologic Perturbations Drive Dynamic Microbiological and <span class="hlt">Geochemical</span> Behaviors across a Shallow Riparian Aquifer</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Danczak, Robert E.; Yabusaki, Steven B.; Williams, Kenneth H.; ...</p> <p>2016-05-11</p> <p>Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a 6-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species inmore » reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by <span class="hlt">geochemical</span> perturbations, while communities in shallower locations exhibited the greatest change. Thus, reactive transport <span class="hlt">modeling</span> of the <span class="hlt">geochemical</span> and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185413','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185413"><span><span class="hlt">Geochemical</span> interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe, Arizona</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stollenwerk, Kenneth G.</p> <p>1994-01-01</p> <p>Acidic water from a copper-mining area has contaminated an alluvial aquifer and stream near Globe, Arizona. The most contaminated groundwater has a pH of 3.3, and contains about 100 mmol/1 SO4, 50 mmol/1 Fe, 11 mmol/1 Al and 3 mmol/1 Cu. Reactions between alluvium and acidic groundwater were first evaluated in laboratory column experiments. A <span class="hlt">geochemical</span> <span class="hlt">model</span> was developed and used in the equilibrium speciation program, MINTEQA2, to simulate breakthrough curves for different constituents from the column. The <span class="hlt">geochemical</span> <span class="hlt">model</span> was then used to simulate the measured changes in concentration of aqueous constituents along a flow path in the aquifer.The pH was predominantly controlled by reaction with carbonate minerals. Where carbonates had been dissolved, adsorption of H+ by iron oxides was used to simulate pH. Acidic groundwater contained little or no dissolved oxygen, and most aqueous Fe was present as Fe(II). In the anoxic core of the plume, Fe(II) was oxidized by MnO2 to Fe(III), which then precipitated as Fe(OH)3. Attenuation of aqueous Cu, Co, Mn, Ni and Zn was a function of pH and could be quantitatively <span class="hlt">modeled</span> with the diffuse-layer, surface complexation <span class="hlt">model</span> in MINTEQA2. Aluminum precipitated as amorphous Al(OH)3 at pH < 4.7 and as AlOHSO4 at pH < 4.7. Aqueous Ca and SO4were close to equilibrium with gypsum.After the alluvium in the column had reached equilibrium with acidic groundwater, uncontaminated groundwater was eluted through the column to evaluate the effect of reactants on groundwater remediation. The concentration of Fe, Mn, Cu, Co, Ni and Zn rapidly decreased to the detection limits within a few pore volumes. All of the gypsum that had precipitated initially redissolved, resulting in elevated Ca and SO4concentrations for about 5 pore volumes. Aluminum and pH exhibited the most potential for continued adverse effects on groundwater quality. As H+ desorbed from Fe(OH)3, pH remained below 4.5 for more than 20 pore volumes, resulting in dissolution</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H13L1754H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H13L1754H"><span>Effects of Land-Use Change and Managed Aquifer Recharge on <span class="hlt">Geochemical</span> Reactions with Implications for Groundwater Quantity and Quality in Atoll Island Aquifers, Roi-Namur, Republic of the Marshall Islands</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hejazian, M.; Swarzenski, P. W.; Gurdak, J. J.; Odigie, K. O.; Storlazzi, C. D.</p> <p>2015-12-01</p> <p>This study compares the hydrogeochemistry of two contrasting atoll groundwater systems in Roi-Namur, Republic of the Marshall Islands. Roi-Namur houses a U.S. Department of Defense military installation and presents an ideal study location where a human impacted aquifer is co-located next to a natural aquifer as part of two artificially conjoined atoll islands. The hydrogeology and geochemistry of carbonate atoll aquifers has been well studied, particularly because of its small, well-defined hydrologic system that allows for relatively precise <span class="hlt">modeling</span>. However, it is unknown how changes in land-use/land cover and managed aquifer recharge (MAR) alters natural <span class="hlt">geochemical</span> processes in atoll aquifers. A better understanding of this has implications on groundwater quantity and quality, carbonate dissolution, and best aquifer management practices in the context of rising sea level and saltwater intrusion. Roi has been heavily modified to house military and civilian operations; here, lack of vegetation and managed recharge has increased the volume of potable groundwater and affected the <span class="hlt">geochemical</span> processes in the freshwater lens and saltwater transition zone. Namur is heavily vegetated and the hydrogeology is indicative of a natural atoll island. A suite of monitoring wells were sampled across both island settings for major ions, nutrients, trace elements, DOC/DIC, δ13C and δ18O/2H isotopes. By <span class="hlt">modeling</span> <span class="hlt">geochemical</span> reactions using a conservative mixing approach, we measure deviations from expected reactions and compare the two contrasting settings using derived <span class="hlt">geochemical</span> profiles through a wide salinity spectrum. Results indicate that groundwater on Namur is more heavily depleted in δ13C and has greater dissolved inorganic carbon, suggesting higher microbial oxidation and greater dissolution within the carbonate aquifer. This suggests MAR and reduction of vegetation makes the groundwater supply on atoll islands more resilient to sea level rise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1379597-use-dual-structure-constitutive-model-predicting-long-term-behavior-expansive-clay-buffer-nuclear-waste-repository','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1379597-use-dual-structure-constitutive-model-predicting-long-term-behavior-expansive-clay-buffer-nuclear-waste-repository"><span>Use of a Dual-Structure Constitutive <span class="hlt">Model</span> for Predicting the Long-Term Behavior of an Expansive Clay Buffer in a Nuclear Waste Repository</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura; ...</p> <p>2015-12-31</p> <p>Expansive soils are suitable as <span class="hlt">backfill</span> and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for <span class="hlt">backfill</span> or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive <span class="hlt">model</span> that includes two porosity levels is necessary. The authors present the formulation of a dual-structure <span class="hlt">model</span> and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic <span class="hlt">Model</span> (BBM), which is an elastoplastic constitutive <span class="hlt">model</span> for unsaturated soils, to <span class="hlt">model</span> the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure <span class="hlt">model</span> by <span class="hlt">modeling</span> and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors <span class="hlt">modeled</span>, for the first time using a dual-structure <span class="hlt">model</span>, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels <span class="hlt">backfilled</span> with expansive clay and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T11F..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T11F..03W"><span>Updated Reference <span class="hlt">Model</span> for Heat Generation in the Lithosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.</p> <p>2017-12-01</p> <p><span class="hlt">Models</span> integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and <span class="hlt">geochemical</span> evolution. Global lithospheric geophysical <span class="hlt">models</span> are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric <span class="hlt">geochemical</span> <span class="hlt">models</span> have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference <span class="hlt">model</span>. We are developing a global lithospheric reference <span class="hlt">model</span> based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-<span class="hlt">geochemical</span> relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These <span class="hlt">models</span> are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our <span class="hlt">model</span> and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) <span class="hlt">geochemical</span> and petrological <span class="hlt">models</span> (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28362082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28362082"><span>Pore-Scale <span class="hlt">Geochemical</span> Reactivity Associated with CO2 Storage: New Frontiers at the Fluid-Solid Interface.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Noiriel, Catherine; Daval, Damien</p> <p>2017-04-18</p> <p>The reactivity of carbonate and silicate minerals is at the heart of porosity and pore geometry changes in rocks injected with CO 2 , which ultimately control the evolution of flow and transport properties of fluids in porous and/or fractured geological reservoirs. <span class="hlt">Modeling</span> the dynamics of CO 2 -water-rock interactions is challenging because of the resulting large <span class="hlt">geochemical</span> disequilibrium, the reservoir heterogeneities, and the large space and time scales involved in the processes. In particular, there is a lack of information about how the macroscopic properties of a reservoir, e.g., the permeability, will evolve as a result of <span class="hlt">geochemical</span> reactions at the molecular scale. Addressing this point requires a fundamental understanding of how the microstructures influence the macroscopic properties of rocks. The pore scale, which ranges from a few nanometers to centimeters, has stood out as an essential scale of observation of <span class="hlt">geochemical</span> processes in rocks. Transport or surface reactivity limitations due to the pore space architecture, for instance, are best described at the pore scale itself. It can be also considered as a mesoscale for aggregating and increasing the gain of fundamental understanding of microscopic interfacial processes. Here we focus on the potential application of a combination of physicochemical measurements coupled with nanoscale and microscale imaging techniques during laboratory experiments to improve our understanding of the physicochemical mechanisms that occur at the fluid-solid interface and the dynamics of the coupling between the <span class="hlt">geochemical</span> reactions and flow and transport modifications at the pore scale. Imaging techniques such as atomic force microscopy, vertical scanning interferometry, focused ion beam transmission electron microscopy, and X-ray microtomography, are ideal for investigating the reactivity dynamics of these complex materials. Minerals and mineral assemblages, i.e., rocks, exhibit heterogeneous and anisotropic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1990/0421/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1990/0421/report.pdf"><span>An evaluation and <span class="hlt">geochemical</span> survey of the Farah Garan East Prospect, Southeast Asir, Kingdom of Saudi Arabia</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bookstrom, Arthur A.; El Komi, Mohamed; Christian, Ralph P.; Bazzari, Maher A.</p> <p>1990-01-01</p> <p>Ore minerals in outcrops, and <span class="hlt">geochemically</span> anomalous concentrations of gold, silver, copper, lead, zinc, arsenic, antimony, and tellurium are present in carbonate-rich rocks of the hot-spring assemblage. This indicates that the ore minerals and elements were deposited originally as constituents of the hot-spring assemblage. However, exposed ore-mineral occurrences are small and sparse, and <span class="hlt">geochemical</span> anomalies are small, irregularly distributed, and of subeconomic grade. Furthermore, weak electromagnetic anomalies do not indicate the presence of subsurface bodies of concentrated, conductive ore minerals. Therefore, no drilling is recommended.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750025562','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750025562"><span>The effect of sterilization on biological, organic <span class="hlt">geochemical</span> and morphological information in natural samples</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hochstein, L. I.; Kvenvolden, K. A.; Philpott, D. E.</p> <p>1974-01-01</p> <p>The loss of biological, organic <span class="hlt">geochemical</span>, and morphological science information that may occur should a Mars surface sample be sterilized prior to return to earth is examined. Results of experimental studies are summarized.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714905M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714905M"><span><span class="hlt">Geochemical</span> patterns and microbial contribution to iron plaque formation in the rice plant rhizosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maisch, Markus; Murata, Chihiro; Unger, Julia; Kappler, Andreas; Schmidt, Caroline</p> <p>2015-04-01</p> <p>Rice is the major food source for more than half of the world population and 80 percent of the worldwide rice cultivation is performed on water logged paddy soils. The establishment of reducing conditions in the soil and across the soil-water interface not only stimulates the microbial production and release of the greenhouse gas methane. These settings also create optimal conditions for microbial iron(III) reduction and therefore saturate the system with reduced ferrous iron. Through the reduction and dissolution of ferric minerals that are characterized by their high surface activity, sorbed nutrients and contaminants (e.g. arsenic) will be mobilized and are thus available for uptake by plants. Rice plants have evolved a strategy to release oxygen from their roots in order to prevent iron toxification in highly ferrous environments. The release of oxygen to the reduced paddy soil causes ferric iron plaque formation on the rice roots and finally increases the sorption capacity for toxic metals. To this date the <span class="hlt">geochemical</span> and microbiological processes that control the formation of iron plaque are not deciphered. It has been hypothesized that iron(II)-oxidizing bacteria play a potential role in the iron(III) mineral formation along the roots. However, not much is known about the actual processes, mineral products, and <span class="hlt">geochemical</span> gradients that establish within the rhizosphere. In the present study we have developed a growth set-up that allows the co-cultivation of rice plants and iron(II)-oxidizing bacteria, as well as the visual observation and in situ measurement of <span class="hlt">geochemical</span> parameters. Oxygen and dissolved iron(II) gradients have been measured using microelectrodes and show <span class="hlt">geochemical</span> hot spots that offer optimal growth conditions for microaerophilic iron(II) oxidizers. First mineral identification attempts of iron plaque have been performed using Mössbauer spectroscopy and microscopy. The obtained results on mineraology and crystallinity have been</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994GeCoA..58.3993B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994GeCoA..58.3993B"><span>The <span class="hlt">geochemical</span> cycling of trace elements in a biogenic meromictic lake</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara</p> <p>1994-10-01</p> <p>The <span class="hlt">geochemical</span> processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction <span class="hlt">model</span> indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main <span class="hlt">geochemical</span> processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017571','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017571"><span>The <span class="hlt">geochemical</span> cycling of trace elements in a biogenic meromictic lake</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Balistrieri, L.S.; Murray, J.W.; Paul, B.</p> <p>1994-01-01</p> <p>The <span class="hlt">geochemical</span> processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction <span class="hlt">model</span> indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main <span class="hlt">geochemical</span> processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1940b0033R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1940b0033R"><span>Petrographic and <span class="hlt">geochemical</span> characteristic of volcanic rocks from Tasik Kenyir and Kampung Awah, East Malaya block, Peninsular Malaysia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roselee, Muhammad Hatta; Umor, Mohd Rozi; Ghani, Azman Abdul; Badruldin, Muhamad Hafifi; Quek, Long Xiang</p> <p>2018-04-01</p> <p>Kampung Awah and Tasik Kenyir are geologically located in East Malaya Blocks. These block is also known as western margin of Indochina terrane. Apart from sedimentary formations, East Malaya Blocks is also dominated by plutonic and volcanic rocks of mafic to rhyolitic compositions. Petrography and <span class="hlt">geochemical</span> data suggest that Kampung Awah and Tasik Kenyir are one of locations which consists of volcanic rocks of generally basaltic to basaltic andesite compositions. Volcanic rocks from both area consists of plagioclcase, clinopyroxene, orthpyroxene as main mineral constituents with minor occurrences of hornblende. <span class="hlt">Geochemical</span> data also indicate that volcanic rocks from both area were formed during subduction of the Paleo-tethys oceanic underneath the East Malaya Block or Indochina terrane. Most of the samples are metaluminous which indicate the volcanics are derived from igneous origin. This paper will contribute new <span class="hlt">geochemical</span> data of mafic volcanics from Kampung Awah and Tasik Kenyir with the support of petrographic and field evidence to deduce the magma evolution and the tectonic setting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25919895','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25919895"><span>Investigating the <span class="hlt">Geochemical</span> <span class="hlt">Model</span> for Molybdenum Mineralization in the JEB Tailings Management Facility at McClean Lake, Saskatchewan: An X-ray Absorption Spectroscopy Study.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blanchard, Peter E R; Hayes, John R; Grosvenor, Andrew P; Rowson, John; Hughes, Kebbi; Brown, Caitlin</p> <p>2015-06-02</p> <p>The <span class="hlt">geochemical</span> <span class="hlt">model</span> for Mo mineralization in the JEB Tailings Management Facility (JEB TMF), operated by AREVA Resources Canada at McClean Lake, Saskatchewan, was investigated using X-ray Absorption Near-Edge Spectroscopy (XANES), an elemental-specific technique that is sensitive to low elemental concentrations. Twenty five samples collected during the 2013 sampling campaign from various locations and depths in the TMF were analyzed by XANES. Mo K-edge XANES analysis indicated that the tailings consisted primarily of Mo(6+) species: powellite (CaMoO4), ferrimolybdite (Fe2(MoO4)3·8H2O), and molybdate adsorbed on ferrihydrite (Fe(OH)3 - MoO4). A minor concentration of a Mo(4+) species in the form of molybdenite (MoS2) was also present. Changes in the Mo mineralization over time were inferred by comparing the relative amounts of the Mo species in the tailings to the independently measured aqueous Mo pore water concentration. It was found that ferrimolybdite and molybdate adsorbed on ferrihydrite initially dissolves in the TMF and precipitates as powellite.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711826P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711826P"><span>Cross-correlation analysis of 2012-2014 seismic events in Central-Northern Italy: insights from the <span class="hlt">geochemical</span> monitoring network of Tuscany</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio</p> <p>2015-04-01</p> <p>Since late 2002, a <span class="hlt">geochemical</span> monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify <span class="hlt">geochemical</span> anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and <span class="hlt">geochemical</span> background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. <span class="hlt">Geochemical</span> continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of <span class="hlt">geochemical</span> background values. <span class="hlt">Geochemical</span> values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMNH11A1105D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMNH11A1105D"><span>Reconstruction of paleostorm history using <span class="hlt">geochemical</span> proxies in sediment cores from Eastern Lake, Florida</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Das, O.; Wang, Y.; Donoghue, J. F.; Coor, J. L.; Kish, S.; Elsner, J.; Hu, X. B.; Niedoroda, A. W.; Ye, M.; Xu, Y.</p> <p>2009-12-01</p> <p>Analysis of <span class="hlt">geochemical</span> proxies of coastal lake sediments provides a useful tool for reconstructing paleostorm history. Such paleostorm records can help constrain <span class="hlt">models</span> that are used to predict future storm events. In this study, we collected two sediment cores (60 and 103 cm long, respectively) from the center of Eastern Lake located on the Gulf coast of NW Florida. These cores, which are mainly composed of organic-rich mud and organic-poor sand, were sub-sampled at 2-3mm intervals for analyses of their organic carbon and nitrogen concentrations as well as δ13C and δ15N isotopic signatures. Selected samples were submitted for radiocarbon dating in order to establish a chronological framework for the interpretation of the <span class="hlt">geochemical</span> data. There are significant variations in δ13C, δ15N, C%, N% and C/N with depth. The δ13C and δ15N values vary from -21.8‰ to -26.7‰ and 2.6‰ to 5‰, respectively. The stable isotopic signatures of carbon and nitrogen indicate that the sources of organic matter in sediments include terrestrial C3 type vegetation, marine input from Gulf of Mexico and biological productivity within the lake, such as phytoplankton and zooplankton growing in the lacustrine environment. The δ13C and δ15N values exhibit significant negative excursions by 2‰ in a 30 cm thick sand layer, bounded by a rapid return to the base value. A positive shift in the δ15N record observed in the upper part of the cores likely reflects increased anthropogenic input of N such as sewage or septic tank effluents associated with recent development of areas around the lake for human habitation. Similarly, organic C% and N% range from 5.8 to 0.4 and 0.4 to 0.1, respectively. A prominent negative shift by 2σ relative to the baseline in C% and N% has been observed at approx. 55 to 58 cm depth, consisting of an organic-poor sand layer. This shift in C% and N% can be correlated with the negative shift in the δ13C and δ15N values, indicating a major storm event</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T12A..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T12A..01M"><span>Rifting, Volcanism, and the <span class="hlt">Geochemical</span> Character of the Mantle Beneath the West Antarctic Rift System (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mukasa, S. B.; Aviado, K. B.; Rilling-Hall, S.; Bryce, J. G.; Cabato, J.</p> <p>2013-12-01</p> <p>The West Antarctic Rift System (WARS) is one of the largest extensional alkali volcanic provinces on Earth, but the mechanisms responsible for generating the massive amounts of its associated magmatism remain controversial. The failure of both passive and active decompression melting <span class="hlt">models</span> to adequately explain the observed lava volumes has prompted debate about the relative roles of thermal plume-related melting and ancient subduction-related flux melting. 40Ar/39Ar dating and <span class="hlt">geochemical</span> analyses of the lavas, as well as volatile and trace-element determinations of olivine-hosted melt inclusions shed light on the relationship between rifting and volcanism, and also improve our understanding of the <span class="hlt">geochemical</span> character of the mantle beneath the WARS. Results show that the magmatism post-dates the main phase of extension along the Terror Rift within the WARS, which supports a decompression-melting <span class="hlt">model</span> without the benefit of a significant thermal anomaly. However, the observed large magma volumes seem to require a volatile-fluxed mantle, a notion supported by a long history of subduction (>500 Myr) along the paleo-Pacific margin of Gondwana. In fact, the legacy of that subduction may manifest itself in the high H2O concentrations of olivine-hosted melt inclusions (up to 3 wt% in preliminary results from ion probe measurements). The major oxide compositions of lavas in the WARS are best matched to experimental melts of garnet pyroxenite and carbonated peridotite sources. The Pb and Nd isotopic systems are decoupled from each other, suggesting removal of fluid-mobile elements from the mantle source possibly during the long history of subduction along this Gondwana margin. Extremely unradiogenic 187Os/188Os ranging to as low as 0.1081 × 0.0001 hints at the involvement of lithospheric components in generation of magmas in the WARS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20036028','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20036028"><span>Effects of physical and <span class="hlt">geochemical</span> heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Li; Steefel, Carl I; Kowalsky, Michael B; Englert, Andreas; Hubbard, Susan S</p> <p>2010-03-01</p> <p>Electron donor amendment for bioremediation often results in precipitation of secondary minerals and the growth of biomass, both of which can potentially change flow paths and the efficacy of bioremediation. Quantitative estimation of precipitate and biomass distribution has remained challenging, partly due to the intrinsic heterogeneities of natural porous media and the scarcity of field data. In this work, we examine the effects of physical and <span class="hlt">geochemical</span> heterogeneities on the spatial distributions of mineral precipitates and biomass accumulated during a biostimulation field experiment near Rifle, Colorado. Field bromide breakthrough data were used to infer a heterogeneous distribution of hydraulic conductivity through inverse transport <span class="hlt">modeling</span>, while the solid phase Fe(III) content was determined by assuming a negative correlation with hydraulic conductivity. Validated by field aqueous <span class="hlt">geochemical</span> data, reactive transport <span class="hlt">modeling</span> was used to explicitly keep track of the growth of the biomass and to estimate the spatial distribution of precipitates and biomass. The results show that the maximum mineral precipitation and biomass accumulation occurs in the vicinity of the injection wells, occupying up to 5.4vol.% of the pore space, and is dominated by reaction products of sulfate reduction. Accumulation near the injection wells is not strongly affected by heterogeneities present in the system due to the ubiquitous presence of sulfate in the groundwater. However, accumulation in the down-gradient regions is dominated by the iron-reducing reaction products, whose spatial patterns are strongly controlled by both physical and <span class="hlt">geochemical</span> heterogeneities. Heterogeneities can lead to localized large accumulation of mineral precipitates and biomass, increasing the possibility of pore clogging. Although ignoring the heterogeneities of the system can lead to adequate prediction of the average behavior of sulfate-reducing related products, it can also lead to an</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>