Sample records for backflush thermal desorption

  1. Backflushing system rapidly cleans fluid filters

    NASA Technical Reports Server (NTRS)

    Descamp, V. A.; Boex, M. W.; Hussey, M. W.; Larson, T. P.

    1973-01-01

    Self contained unit can backflush filter elements in fraction of the time expended by presently used equipment. This innovation may be of interest to manufacturers of hydraulic and pneumatic systems as well as to chemical, food, processing, and filter manufacturing industries.

  2. Results from the Water Flow Test of the Tank 37 Backflush Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowley, M.D.

    2002-11-01

    A flow test was conducted in the Thermal Fluids Lab with the Tank 37 Backflush Valve to determine the pressure drop of water flow through the material transfer port. The flow rate was varied from 0 to 100 gpm. The pressure drop through the Backflush Valve for flow rates of 20 and 70 gpm was determined to be 0.18 and 1.77 feet of H2O, respectively. An equivalent length of the Backflush Valve was derived from the flow test data. The equivalent length was used in a head loss calculation for the Tank 37 Gravity Drain Line. The calculation estimated themore » flow rate that would fill the line up to the Separator Tank, and the additional flow rate that would fill the Separator Tank. The viscosity of the fluid used in the calculation was 12 centipoise. Two specific gravities were investigated, 1.4 and 1.8. The Gravity Drain Line was assumed to be clean, unobstructed stainless steel pipe. The flow rate that would fill the line up to the Separator Tank was 73 and 75 gpm for the 1.4 or 1.8 specific gravity fluids, respectively. The flow rate that would fill the Separator Tank was 96 and 100 gpm for the 1.4 or 1.8 specific gravity fluids, respectively. These results indicate that concentrate will not back up into the Separator Tank during evaporator normal operation, 15-25 gpm, or pot liftout, 70 gpm. A noteworthy observation during the flow test was water pouring from the holes in the catheterization tube. Water poured from the holes at 25 gpm and above. Data from the water flow test indicates that at 25 gpm the pressure drop through the Backflush Valve is 0.26 ft of H2O. A concentrate with a specific gravity of 1.8 and a viscosity of 12 cp will produce the same pressure drop at 20 gpm. This implies that concentrate from the evaporator may spill out into the BFV riser during a transfer.« less

  3. Innovative site remediation technology: Thermal desorption. Volume 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.C.

    1993-11-01

    The monograph on thermal desorption is one of a series of eight on innovative site and waste remediation technologies that are the culmination of a multiorganization effort involving more than 100 experts over a two-year period. The thermal desorption processes addressed in this monograph use heat, either direct or indirect, ex situ, as the principal means to physically separate and transfer contaminants from soils, sediments, sludges, filter cakes, or other media. Thermal desorption is part of a treatment train; some pre- and postprocessing is necessary.

  4. APPLICATION OF THERMAL DESORPTION TECHNOLOGIES TO HAZARDOUS WASTE SITES

    EPA Science Inventory

    Thermal desorption is a separation process frequently used to remediate many Superfund sites. Thermal desorption technologies are recommended and used because of (1) the wide range of organic contaminants effectively treated, (2) availability and mobility of commercial systems, ...

  5. Desorption of isopropyl alcohol from adsorbent with non-thermal plasma.

    PubMed

    Shiau, Chen Han; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2017-09-01

    Effective desorption of isopropyl alcohol (IPA) from adsorbents with non-thermal plasma is developed. In this system, IPA is effectively adsorbed with activated carbon while dielectric barrier discharge is applied to replace the conventional thermal desorption process to achieve good desorption efficiency, making the treatment equipment smaller in size. Various adsorbents including molecular sieves and activated carbon are evaluated for IPA adsorption capacity. The results indicate that BAC has the highest IPA adsorption capacity (280.31 mg IPA/g) under the operating conditions of room temperature, IPA of 400 ppm, and residence time of 0.283 s among 5 adsorbents tested. For the plasma desorption process, the IPA selectivity of 89% is achieved with BAC as N 2 is used as desorbing gas. In addition, as air or O 2 is used as desorbing gas, the IPA desorption concentration is reduced, because air and O 2 plasmas generate active species to oxidize IPA to form acetone, CO 2 , and even CO. Furthermore, the results of the durability test indicate that the amount of IPA desorbed increases with increasing desorption times and plasma desorption process has a higher energy efficiency if compared with thermal desorption. Overall, this study indicates that non-thermal plasma is a viable process for removing VOCs to regenerate adsorbent.

  6. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  7. Thermal desorption study of physical forces at the PTFE surface

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1985-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possibile role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  8. Photon-Induced Thermal Desorption of CO from Small Metal-Carbonyl Clusters

    NASA Astrophysics Data System (ADS)

    Lüttgens, G.; Pontius, N.; Bechthold, P. S.; Neeb, M.; Eberhardt, W.

    2002-02-01

    Thermal CO desorption from photoexcited free metal-carbonyl clusters has been resolved in real time using two-color pump-probe photoelectron spectroscopy. Sequential energy dissipation steps between the initial photoexcitation and the final desorption event, e.g., electron relaxation and thermalization, have been resolved for Au2(CO)- and Pt2(CO)-5. The desorption rates for the two clusters differ considerably due to the different numbers of vibrational degrees of freedom. The unimolecular CO-desorption thresholds of Au2(CO)- and Pt2(CO)-5 have been approximated by means of a statistical Rice-Ramsperger-Kassel calculation using the experimentally derived desorption rate constants.

  9. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms themore » gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.« less

  10. In-injection port thermal desorption for explosives trace evidence analysis.

    PubMed

    Sigman, M E; Ma, C Y

    1999-10-01

    A gas chromatographic method utilizing thermal desorption of a dry surface wipe for the analysis of explosives trace chemical evidence has been developed and validated using electron capture and negative ion chemical ionization mass spectrometric detection. Thermal desorption was performed within a split/splitless injection port with minimal instrument modification. Surface-abraded Teflon tubing provided the solid support for sample collection and desorption. Performance was characterized by desorption efficiency, reproducibility, linearity of the calibration, and method detection and quantitation limits. Method validation was performed with a series of dinitrotoluenes, trinitrotoluene, two nitroester explosives, and one nitramine explosive. The method was applied to the sampling of a single piece of debris from an explosion containing trinitrotoluene.

  11. The study of 'microsurfaces' using thermal desorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Thomas, M. E.; Poppa, H.; Pound, G. M.

    1979-01-01

    The use of a newly combined ultrahigh vacuum technique for studying continuous and particulate evaporated thin films using thermal desorption spectroscopy (TDS), transmission electron microscopy (TEM), and transmission electron diffraction (TED) is discussed. It is shown that (1) CO thermal desorption energies of epitaxially deposited (111) Ni and (111) Pd surfaces agree perfectly with previously published data on bulk (111) single crystal, (2) contamination and surface structural differences can be detected using TDS as a surface probe and TEM as a complementary technique, and (3) CO desorption signals from deposited metal coverages of one-thousandth of a monolayer should be detectable. These results indicate that the chemisorption properties of supported 'microsurfaces' of metals can now be investigated with very high sensitivity. The combined use of TDS and TEM-TED experimental methods is a very powerful technique for fundamental studies in basic thin film physics and in catalysis.

  12. A Technique for Thermal Desorption Analyses Suitable for Thermally-Labile, Volatile Compounds.

    PubMed

    Alborn, Hans T

    2018-02-01

    Many plant and insect interactions are governed by odors released by the plants or insects and there exists a continual need for new or improved methods to collect and identify these odors. Our group has for some time studied below-ground, plant-produced volatile signals affecting nematode and insect behavior. The research requires repeated sampling of volatiles of intact plant/soil systems in the laboratory as well as the field with the help of probes to minimize unwanted effects on the systems we are studying. After evaluating solid adsorbent filters with solvent extraction or solid phase micro extraction fiber sample collection, we found dynamic sampling of small air volumes on Tenax TA filters followed by thermal desorption sample introduction to be the most suitable analytical technique for our applications. Here we present the development and evaluation of a low-cost and relatively simple thermal desorption technique where a cold trap cooled with liquid carbon dioxide is added as an integral part of a splitless injector. Temperature gradient-based focusing and low thermal mass minimizes aerosol formation and eliminates the need for flash heating, resulting in low sample degradation comparable to solvent-based on-column injections. Additionally, since the presence of the cold trap does not affect normal splitless injections, on-the-fly switching between splitless and thermal desorption modes can be used for external standard quantification.

  13. Adsorption and Desorption of Hydrogen by Gas-Phase Palladium Clusters Revealed by In Situ Thermal Desorption Spectroscopy.

    PubMed

    Takenouchi, Masato; Kudoh, Satoshi; Miyajima, Ken; Mafuné, Fumitaka

    2015-07-02

    Adsorption and desorption of hydrogen by gas-phase Pd clusters, Pdn(+), were investigated by thermal desorption spectroscopy (TDS) experiments and density functional theory (DFT) calculations. The desorption processes were examined by heating the clusters that had adsorbed hydrogen at room temperature. The clusters remaining after heating were monitored by mass spectrometry as a function of temperature up to 1000 K, and the temperature-programmed desorption (TPD) curve was obtained for each Pdn(+). It was found that hydrogen molecules were released from the clusters into the gas phase with increasing temperature until bare Pdn(+) was formed. The threshold energy for desorption, estimated from the TPD curve, was compared to the desorption energy calculated by using DFT, indicating that smaller Pdn(+) clusters (n ≤ 6) tended to have weakly adsorbed hydrogen molecules, whereas larger Pdn(+) clusters (n ≥ 7) had dissociatively adsorbed hydrogen atoms on the surface. Highly likely, the nonmetallic nature of the small Pd clusters prevents hydrogen molecule from adsorbing dissociatively on the surface.

  14. Rapid screening of pharmaceutical drugs using thermal desorption - SALDI mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grechnikov, A. A.; Kubasov, A. E.; Georgieva, V. B.; Borodkov, A. S.; Nikiforov, S. M.; Simanovsky, Ya O.; Alimpiev, S. S.

    2012-12-01

    A novel approach to the rapid screening of pharmaceutical drugs by surface assisted laser desorption-ionization (SALDI) mass spectrometry with the rotating ball interface coupled with temperature programmed thermal desorption has been developed. Analytes were thermally desorbed and deposited onto the surface of amorphous silicon substrate attached to the rotating ball. The ball was rotated and the deposited analytes were analyzed using SALDI. The effectiveness of coupling SALDI mass spectrometry with thermal desorption was evaluated by the direct and rapid analysis of tablets containing lidocaine, diphenhydramine and propranolol without any sample pretreatment. The overall duration of the screening procedure was 30÷40 sec. Real urine samples were studied for drug analysis. It is shown that with simple preparation steps, urine samples can be quantitatively analyzed using the proposed technique with the detection limits in the range of 0.2÷0.5 ng/ml.

  15. Non-thermal ion desorption from an acetonitrile (CH3CN) astrophysical ice analogue studied by electron stimulated ion desorption.

    PubMed

    Ribeiro, F de A; Almeida, G C; Garcia-Basabe, Y; Wolff, W; Boechat-Roberty, H M; Rocco, M L M

    2015-11-07

    The incidence of high-energy radiation onto icy surfaces constitutes an important route for leading new neutral or ionized molecular species back to the gas phase in interstellar and circumstellar environments, especially where thermal desorption is negligible. In order to simulate such processes, an acetonitrile ice (CH3CN) frozen at 120 K is bombarded by high energy electrons, and the desorbing positive ions are analyzed by time-of-flight mass spectrometry (TOF-MS). Several fragment and cluster ions were identified, including the Hn=1-3(+), CHn=0-3(+)/NHn=0-1(+); C2Hn=0-3(+)/CHn=0-3N(+), C2Hn=0-6N(+) ion series and the ion clusters (CH3CN)n=1-2(+) and (CH3CN)n=1-2H(+). The energy dependence on the positive ion desorption yield indicates that ion desorption is initiated by Coulomb explosion following Auger electronic decay. The results presented here suggest that non-thermal desorption processes, such as desorption induced by electronic transitions (DIET) may be responsible for delivering neutral and ionic fragments from simple nitrile-bearing ices to the gas-phase, contributing to the production of more complex molecules. The derived desorption yields per electron impact may contribute to chemical evolution models in different cold astrophysical objects, especially where the abundance of CH3CN is expected to be high.

  16. Thermal desorption behavior of helium in aged titanium tritide films

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.

    2015-11-01

    The desorption behavior of helium in TiT(1.5∼1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.

  17. Dynamic Monte Carlo description of thermal desorption processes

    NASA Astrophysics Data System (ADS)

    Weinketz, Sieghard

    1994-07-01

    The applicability of the dynamic Monte Carlo method of Fichthorn and Weinberg, in which the time evolution of a system is described in terms of the absolute number of different microscopic possible events and their associated transition rates, is discussed for the case of thermal desorption simulations. It is shown that the definition of the time increment at each successful event leads naturally to the macroscopic differential equation of desorption, in the case of simple first- and second-order processes in which the only possible events are desorption and diffusion. This equivalence is numerically demonstrated for a second-order case. In the sequence, the equivalence of this method with the Monte Carlo method of Sales and Zgrablich for more complex desorption processes, allowing for lateral interactions between adsorbates, is shown, even though the dynamic Monte Carlo method does not bear their limitation of a rapid surface diffusion condition, thus being able to describe a more complex ``kinetics'' of surface reactive processes, and therefore be applied to a wider class of phenomena, such as surface catalysis.

  18. Modelling deuterium release during thermal desorption of D +-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Poon, M.; Haasz, A. A.; Davis, J. W.

    2008-03-01

    Thermal desorption profiles were modelled based on SIMS measurements of implantation profiles and using the multi-trap diffusion code TMAP7 [G.R. Longhurst, TMAP7: Tritium Migration Analysis Program, User Manual, Idaho National Laboratory, INEEL/EXT-04-02352 (2004)]. The thermal desorption profiles were the result of 500 eV/D + irradiations on single crystal tungsten at 300 and 500 K to fluences of 10 22-10 24 D +/m 2. SIMS depth profiling was performed after irradiation to obtain the distribution of trapped D within the top 60 nm of the surface. Thermal desorption spectroscopy (TDS) was performed subsequently to obtain desorption profiles and to extract the total trapped D inventory. The SIMS profiles were calibrated to give D concentrations. To account for the total trapped D inventory measured by TDS, SIMS depth distributions were used in the near-surface (surface to 30 nm), NRA measurements [V.Kh. Alimov, J. Roth, M. Mayer, J. Nucl. Mater. 337-339 (2005) 619] were used in the range 1-7 μm, and a linear drop in the D distribution was assumed in the intermediate sub-surface region (˜30 nm to 1 μm). Traps were assumed to be saturated so that the D distribution also represented the trap distribution. Three trap energies, 1.07 ± 0.03, 1.34 ± 0.03 and 2.1 ± 0.05 eV were required to model the 520, 640 and 900 K desorption peaks, respectively. The 1.34 and 1.07 eV traps correspond to trapping of a first and second D atom at a vacancy, respectively, while the 2.1 eV trap corresponds to atomic D trapping at a void. A fourth trap energy of 0.65 eV was used to fit the 400 K desorption peak observed by Quastel et al. [A.D. Quastel, J.W. Davis, A.A. Haasz, R.G. Macaulay-Newcombe, J. Nucl. Mater. 359 (2006) 8].

  19. INITIAL SCREENING OF THERMAL DESORPTION FOR SOIL REMEDIATION

    EPA Science Inventory

    The purpose of the paper is to present procedures for collecting and evaluating key data that affect the potential application of thermal desorption for a specific site. These data are defined as 'criticalsuccess factors'. The screening prodcedure can be used to peerform an ini...

  20. DEMONSTRATION BULLETIN: THERMAL DESORPTION SYSTEM - CLEAN BERKSHIRES, INC.

    EPA Science Inventory

    A thermal desorption system (TDS) has been developed by Clean Berkshires, Inc. (CBI), Lanesboro, Massachusetts for ex-situ treatment of soils and other media contaminated with organic pollutants. The TDS uses heat as both a physical separation mechanism and as a means to destro...

  1. PCDD/F formation during thermal desorption of p,p'-DDT contaminated soil.

    PubMed

    Zhao, Zhonghua; Ni, Mingjiang; Li, Xiaodong; Buekens, Alfons; Yan, Jianhua

    2017-05-01

    Thermal treatment of polychlorinated biphenyls (PCB) contaminated soil was shown in earlier work to generate polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). In this study, the PCDD/F were studied arising during the remediation of p,p'-DDT contaminated soil by thermal desorption. Three kinds of soil (sandy, clayey and lateritic soil) were tested to investigate the effect of soil texture on PCDD/F formation. Those soils were artificially polluted with p,p'-DDT, obtaining a concentration level of 100 mg/kg. Thermal desorption experiments were conducted for 10 min at 300 °C in an air atmosphere. The total concentration of PCDD/F generated for three soils were 331, 803 and 865 ng/kg, respectively, and TeCDD and TeCDF were dominant among all PCDD/F congeners. After thermal desorption, the total amount of PCDD/F generated both in soil and in off-gas correlated positively with the amount of DDT added to soil. In addition, a possible pathway of the formation of PCDD/F was presented.

  2. Comparison of a disposable sorptive sampler with thermal desorption in a gas chromatographic inlet, or in a dedicated thermal desorber, to conventional stir bar sorptive extraction-thermal desorption for the determination of micropollutants in water.

    PubMed

    Wooding, Madelien; Rohwer, Egmont R; Naudé, Yvette

    2017-09-01

    The presence of micropollutants in the aquatic environment is a worldwide environmental concern. The diversity of micropollutants and the low concentration levels at which they may occur in the aquatic environment have greatly complicated the analysis and detection of these chemicals. Two sorptive extraction samplers and two thermal desorption methods for the detection of micropollutants in water were compared. A low-cost, disposable, in-house made sorptive extraction sampler was compared to SBSE using a commercial Twister sorptive sampler. Both samplers consisted of polydimethylsiloxane (PDMS) as a sorptive medium to concentrate micropollutants. Direct thermal desorption of the disposable samplers in the inlet of a GC was compared to conventional thermal desorption using a commercial thermal desorber system (TDS). Comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS) was used for compound separation and identification. Ten micropollutants, representing a range of heterogeneous compounds, were selected to evaluate the performance of the methods. The in-house constructed sampler, with its associated benefits of low-cost and disposability, gave results comparable to commercial SBSE. Direct thermal desorption of the disposable sampler in the inlet of a GC eliminated the need for expensive consumable cryogenics and total analysis time was greatly reduced as a lengthy desorption temperature programme was not required. Limits of detection for the methods ranged from 0.0010 ng L -1 to 0.19 ng L -1 . For most compounds, the mean (n = 3) recoveries ranged from 85% to 129% and the % relative standard deviation (% RSD) ranged from 1% to 58% with the majority of the analytes having a %RSD of less than 30%. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Williams, B. J.; Zhang, Y.; Zuo, X.; Martinez, R. E.; Walker, M. J.; Kreisberg, N. M.; Goldstein, A. H.; Docherty, K. S.; Jimenez, J. L.

    2015-12-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality, and often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a GC column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer (MS). Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG

  4. Thermal Programmed Desorption of C32 H 66

    NASA Astrophysics Data System (ADS)

    Cisternas, M.; Del Campo, V.; Cabrera, A. L.; Volkmann, U. G.; Hansen, F. Y.; Taub, H.

    2011-03-01

    Alkanes are of interest as prototypes for more complex molecules and membranes. In this work we study the desorption kinetics of dotriacontane C32 adsorbed on Si O2 /Si substrate. We combine in our instrument High Resolution Ellipsometry (HRE) and Thermal Programmed Desorption (TPD). C32 monolayers were deposited in high vacuum from a Knudsen cell on the substrate, monitorizing sample thickness in situ with HRE. Film thickness was in the range of up to 100 AA, forming a parallel bilayer and perpendicular C32 layer. The Mass Spectrometer (RGA) of the TPD section was detecting the shift of the desorption peaks at different heating rates applied to the sample. The mass registered with the RGA was AMU 57 for parallel and perpendicular layers, due to the abundance of this mass value in the disintegration process of C32 in the mass spectrometers ionizer. Moreover, the AMU 57 signal does not interfere with other signals coming from residual gases in the vacuum chamber. The desorption energies obtained were ΔEdes = 11,9 kJ/mol for the perpendicular bilayer and ΔEdes = 23 ,5 kJ/mol for the parallel bilayer.

  5. Changes induced on the surfaces of small Pd clusters by the thermal desorption of CO

    NASA Technical Reports Server (NTRS)

    Doering, D. L.; Poppa, H.; Dickinson, J. T.

    1980-01-01

    The stability and adsorption/desorption properties of supported Pd crystallites less than 5 nm in size were studied by Auger electron spectroscopy and repeated flash thermal desorption of CO. The Pd particles were grown epitaxially on heat-treated, UHV-cleaved mica at a substrate temperature of 300 C and a Pd impingement flux of 10 to the 13th atoms/sq cm s. Auger analysis allowed in situ measurement of relative particle dispersion and contamination, while FTD monitored the CO desorption properties. The results show that significant changes in the adsorption properties can be detected. Changes in the Pd Auger signal and the desorption spectrum during the first few thermal cycles are due to particle coalescence and facetting and the rate of this change is dependent on the temperature and duration of the desorption. Significant reductions in the amplitude of the desorptions peak occur during successive CO desorptions which are attributed to increases of surface carbon, induced by the desorption of CO. The contamination process could be reversed by heat treatment in oxygen or hydrogen

  6. A kinetic Monte Carlo approach to diffusion-controlled thermal desorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Schablitzki, T.; Rogal, J.; Drautz, R.

    2017-06-01

    Atomistic simulations of thermal desorption spectra for effusion from bulk materials to characterize binding or trapping sites are a challenging task as large system sizes as well as extended time scales are required. Here, we introduce an approach where we combine kinetic Monte Carlo with an analytic approximation of the superbasins within the framework of absorbing Markov chains. We apply our approach to the effusion of hydrogen from BCC iron, where the diffusion within bulk grains is coarse grained using absorbing Markov chains, which provide an exact solution of the dynamics within a superbasin. Our analytic approximation to the superbasin is transferable with respect to grain size and elliptical shapes and can be applied in simulations with constant temperature as well as constant heating rate. The resulting thermal desorption spectra are in close agreement with direct kinetic Monte Carlo simulations, but the calculations are computationally much more efficient. Our approach is thus applicable to much larger system sizes and provides a first step towards an atomistic understanding of the influence of structural features on the position and shape of peaks in thermal desorption spectra. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  7. SITE TECHNOLOGY CAPSULE: CLEAN BERKSHIRES, INC. THERMAL DESORPTION SYSTEM

    EPA Science Inventory

    The thermal desorption process devised by Clean Berkshires, Inc., works by vaporizing the organic contaminants from the soil with heat, isolating the contaminant! in a gas stream, and then destroying them in a high efficiency afterburner. The processed solids are either replaced ...

  8. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA

  9. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    DOE PAGES

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; ...

    2016-04-11

    Here, atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completionmore » of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO + ( m/z 30), NO 2 + ( m/z 46), SO + ( m/z 48), and SO 2 + ( m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO 2 + ( m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to

  10. Thermal desorption of PCB-contaminated soil with sodium hydroxide.

    PubMed

    Liu, Jie; Qi, Zhifu; Zhao, Zhonghua; Li, Xiaodong; Buekens, Alfons; Yan, Jianhua; Ni, Mingjiang

    2015-12-01

    The thermal desorption was combined with sodium hydroxide to remediate polychlorinated biphenyl (PCB)-contaminated soil. The experiments were conducted at different temperatures ranging from 300 to 600 °C with three NaOH contents of 0.1, 0.5, and 1 %. The results showed that thermal desorption was effective for PCB removal, destruction, and detoxication, and the presence of NaOH enhanced the process by significant dechlorination. After treatment with 0.1 % NaOH, the removal efficiency (RE) increased from 84.8 % at 300 °C to 98.0 % at 600 °C, corresponding to 72.7 and 91.7 % of destruction efficiency (DE). With 1 % NaOH content treated at 600 °C, the RE and DE were 99.0 and 93.6 %, respectively. The effect of NaOH content on PCB removal was significant, especially at lower temperature, yet it weakened under higher temperature. The interaction between NaOH content and temperature influenced the PCB composition. The higher temperature with the help of NaOH effectively increased the RE and DE of 12 dioxin-like PCBs (based on WHO-TEQ).

  11. The influence of dislocation and hydrogen on thermal helium desorption behavior in Fe9Cr alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Te; Jin, Shuoxue; Gong, Yihao; Lu, Eryang; Song, Ligang; Xu, Qiu; Guo, Liping; Cao, Xingzhong; Wang, Baoyi

    2017-11-01

    Transmutation helium may causes serious embrittlement which is considered to be due to helium from clustering as a bubble in materials. Suppression of transmutation helium can be achieved by introducing trapping sites such as dislocations and impurities in materials. Here, effects of intentionally-induced dislocations and hydrogen on helium migrate and release behaviors were investigated using thermal desorption spectrometry (TDS) technique applied to well-annealed and cold-worked Fe9Cr alloys irradiated by energetic helium/hydrogen ions. Synchronous desorption of helium and hydrogen was observed, and the microstructure states during helium release at different temperatures were analyzed. High thermally stable HenD type complexes formed in cold-worked specimens, resulting in the retardation of helium migration and release. The existence of hydrogen will strongly affect the thermal helium desorption which could be reflected in the TDS spectrum. It was confirmed that hydrogen retained in the specimens can result in obvious delay of helium desorption.

  12. Revisited reaction-diffusion model of thermal desorption spectroscopy experiments on hydrogen retention in material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guterl, Jerome, E-mail: jguterl@ucsd.edu; Smirnov, R. D.; Krasheninnikov, S. I.

    Desorption phase of thermal desorption spectroscopy (TDS) experiments performed on tungsten samples exposed to flux of hydrogen isotopes in fusion relevant conditions is analyzed using a reaction-diffusion model describing hydrogen retention in material bulk. Two regimes of hydrogen desorption are identified depending on whether hydrogen trapping rate is faster than hydrogen diffusion rate in material during TDS experiments. In both regimes, a majority of hydrogen released from material defects is immediately outgassed instead of diffusing deeply in material bulk when the evolution of hydrogen concentration in material is quasi-static, which is the case during TDS experiments performed with tungsten samplesmore » exposed to flux of hydrogen isotopes in fusion related conditions. In this context, analytical expressions of the hydrogen outgassing flux as a function of the material temperature are obtained with sufficient accuracy to describe main features of thermal desorption spectra (TDSP). These expressions are then used to highlight how characteristic temperatures of TDSP depend on hydrogen retention parameters, such as trap concentration or activation energy of detrapping processes. The use of Arrhenius plots to characterize retention processes is then revisited when hydrogen trapping takes place during TDS experiments. Retention processes are also characterized using the shape of desorption peaks in TDSP, and it is shown that diffusion of hydrogen in material during TDS experiment can induce long desorption tails visible aside desorption peaks at high temperature in TDSP. These desorption tails can be used to estimate activation energy of diffusion of hydrogen in material.« less

  13. A soil-column gas chromatography (SCGC) approach to explore the thermal desorption behavior of hydrocarbons from soils.

    PubMed

    Yu, Ying; Liu, Liang; Shao, Ziying; Ju, Tianyu; Sun, Bing; Benadda, Belkacem

    2016-01-01

    A soil-column gas chromatography approach was developed to simulate the mass transfer process of hydrocarbons between gas and soil during thermally enhanced soil vapor extraction (T-SVE). Four kinds of hydrocarbons-methylbenzene, n-hexane, n-decane, and n-tetradecane-were flowed by nitrogen gas. The retention factor k' and the tailing factor T f were calculated to reflect the desorption velocities of fast and slow desorption fractions, respectively. The results clearly indicated two different mechanisms on the thermal desorption behaviors of fast and slow desorption fractions. The desorption velocity of fast desorption fraction was an exponential function of the reciprocal of soil absolute temperature and inversely correlated with hydrocarbon's boiling point, whereas the desorption velocity of slow desorption fraction was an inverse proportional function of soil absolute temperature, and inversely proportional to the log K OW value of the hydrocarbons. The higher activation energy of adsorption was found on loamy soil with higher organic content. The increase of carrier gas flow rate led to a reduction in the apparent activation energy of adsorption of slow desorption fraction, and thus desorption efficiency was significantly enhanced. The obtained results are of practical interest for the design of high-efficiency T-SVE system and may be used to predict the remediation time.

  14. A thermal desorption spectroscopy study of hydrogen trapping in polycrystalline α-uranium

    DOE PAGES

    Lillard, R. S.; Forsyth, R. T.

    2015-03-14

    The kinetics of hydrogen desorption from polycrystalline α-uranium (α-U) was examined using thermal desorption spectroscopy (TDS). The goal was to identify the major trap sites for hydrogen and their associated trap energies. In polycrystalline α-U six TDS adsorption peaks were observed at temperatures of 521 K, 556 K, 607 K, 681 K, 793 K and 905 K. In addition, the desorption was determined to be second order based on peak shape. The position of the first three peaks was consistent with desorption from UH3. To identify the trap site corresponding to the high temperature peaks the data were compared tomore » a plastically deformed sample and a high purity single crystal sample. The plastically deformed sample allowed the identification of trapping at dislocations while the single crystal sample allow for the identification of high angle boundaries and impurities. Thus, with respect to the desorption energy associated with each peak, values between 12.9 and 26.5 kJ/mole were measured.« less

  15. Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: helium trapping and desorption correlated with morphology

    NASA Astrophysics Data System (ADS)

    El-Atwani, O.; Taylor, C. N.; Frishkoff, J.; Harlow, W.; Esquivel, E.; Maloy, S. A.; Taheri, M. L.

    2018-01-01

    Microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed helium was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.

  16. Thermal desorption spectroscopy of high fluence irradiated ultrafine and nanocrystalline tungsten: helium trapping and desorption correlated with morphology

    DOE PAGES

    El-Atwani, Osman; Taylor, Chase N.; Frishkoff, James; ...

    2017-11-09

    Here, microstructural changes due to displacement damage and helium desorption are two phenomena that occur in tungsten plasma facing materials in fusion reactors. Nanocrystalline metals are being investigated as radiation tolerant materials that can mitigate these microstructural changes and better trap helium along their grain boundaries. Here, we investigate the performance of three tungsten grades (nanocrystalline, ultrafine and ITER grade tungsten), exposed to a high fluence of 4 keV helium at both RT and 773 K, during a thermal desorption spectroscopy (TDS) experiment. An investigation of the microstructure in pre-and post-TDS sample sets was performed. The amount of desorbed heliummore » was shown to be highest in the ITER grade tungsten and lowest in the nanocrystalline tungsten. Correlating the desorption spectra and the microstructure (grain boundaries decorated with nanopores and crack formation) and comparing with previous literature on coarse grained tungsten samples at similar irradiation and TDS conditions, revealed the importance of grain boundaries in trapping helium and limiting helium desorption up to a high temperature of 1350 K in agreement with transmission electron microscopy studies on helium irradiated tungsten which showed preferential and large facetted bubble formation along the grain boundaries in the nanocrystalline tungsten grade.« less

  17. Multivariate analysis of progressive thermal desorption coupled gas chromatography-mass spectrometry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel

    Thermal decomposition of poly dimethyl siloxane compounds, Sylgard{reg_sign} 184 and 186, were examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a method of producing multiway data using a stepped thermal desorption. The technique involves sequentially heating a sample of the material of interest with subsequent analysis in a commercial GC/MS system. The decomposition chromatograms were analyzed using multivariate analysis tools including principal component analysis (PCA), factor rotation employing the varimax criterion, and multivariate curve resolution. The results of the analysis show seven components related to offgassing of various fractions of siloxanes that varymore » as a function of temperature. Thermal desorption coupled with gas chromatography-mass spectrometry (TD/GC-MS) is a powerful analytical technique for analyzing chemical mixtures. It has great potential in numerous analytic areas including materials analysis, sports medicine, in the detection of designer drugs; and biological research for metabolomics. Data analysis is complicated, far from automated and can result in high false positive or false negative rates. We have demonstrated a step-wise TD/GC-MS technique that removes more volatile compounds from a sample before extracting the less volatile compounds. This creates an additional dimension of separation before the GC column, while simultaneously generating three-way data. Sandia's proven multivariate analysis methods, when applied to these data, have several advantages over current commercial options. It also has demonstrated potential for success in finding and enabling identification of trace compounds. Several challenges remain, however, including understanding the sources of noise in the data, outlier detection, improving the data pretreatment and analysis methods, developing a software tool for ease of use by the chemist, and demonstrating our

  18. Determination of residual solvents in pharmaceuticals by thermal desorption-GC/MS.

    PubMed

    Hashimoto, K; Urakami, K; Fujiwara, Y; Terada, S; Watanabe, C

    2001-05-01

    A novel method for the determination of residual solvents in pharmaceuticals by thermal desorption (TD)-GC/MS has been established. A programmed temperature pyrolyzer (double shot pyrolyzer) is applied for the TD. This method does not require any sample pretreatment and allows very small amounts of the sample. Directly desorbed solvents from intact pharmaceuticals (ca. 1 mg) in the desorption cup (5 mm x 3.8 mm i.d.) were cryofocused at the head of a capillary column prior to a GC/MS analysis. The desorption temperature was set at a point about 20 degrees C higher than the melting point of each sample individually, and held for 3 min. The analytical results using 7 different pharmaceuticals were in agreement with those obtained by direct injection (DI) of the solution, followed by USP XXIII. This proposed TD-GC/MS method was demonstrated to be very useful for the identification and quantification of residual solvents. Furthermore, this method was simple, allowed rapid analysis and gave good repeatability.

  19. Broad spectrum infrared thermal desorption of wipe-based explosive and narcotic samples for trace mass spectrometric detection.

    PubMed

    Forbes, Thomas P; Staymates, Matthew; Sisco, Edward

    2017-08-07

    Wipe collected analytes were thermally desorbed using broad spectrum near infrared heating for mass spectrometric detection. Employing a twin tube filament-based infrared emitter, rapid and efficiently powered thermal desorption and detection of nanogram levels of explosives and narcotics was demonstrated. The infrared thermal desorption (IRTD) platform developed here used multi-mode heating (direct radiation and secondary conduction from substrate and subsequent convection from air) and a temperature ramp to efficiently desorb analytes with vapor pressures across eight orders of magnitude. The wipe substrate experienced heating rates up to (85 ± 2) °C s -1 with a time constant of (3.9 ± 0.2) s for 100% power emission. The detection of trace analytes was also demonstrated from complex mixtures, including plastic-bonded explosives and exogenous narcotics, explosives, and metabolites from collected artificial latent fingerprints. Manipulation of the emission power and duration directly controlled the heating rate and maximum temperature, enabling differential thermal desorption and a level of upstream separation for enhanced specificity. Transitioning from 100% power and 5 s emission duration to 25% power and 30 s emission enabled an order of magnitude increase in the temporal separation (single seconds to tens of seconds) of the desorption of volatile and semi-volatile species within a collected fingerprint. This mode of operation reduced local gas-phase concentrations, reducing matrix effects experienced with high concentration mixtures. IRTD provides a unique platform for the desorption of trace analytes from wipe collections, an area of importance to the security sector, transportation agencies, and customs and border protection.

  20. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    PubMed

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  1. Comparison between Thermal Desorption Tubes and Stainless Steel Canisters Used for Measuring Volatile Organic Compounds in Petrochemical Factories

    PubMed Central

    Chang, Cheng-Ping; Lin, Tser-Cheng; Lin, Yu-Wen; Hua, Yi-Chun; Chu, Wei-Ming; Lin, Tzu-Yu; Lin, Yi-Wen; Wu, Jyun-De

    2016-01-01

    Objective: The purpose of this study was to compare thermal desorption tubes and stainless steel canisters for measuring volatile organic compounds (VOCs) emitted from petrochemical factories. Methods: Twelve petrochemical factories in the Mailiao Industrial Complex were recruited for conducting the measurements of VOCs. Thermal desorption tubes and 6-l specially prepared stainless steel canisters were used to simultaneously perform active sampling of environmental air samples. The sampling time of the environmental air samples was set up on 6h close to a full work shift of the workers. A total of 94 pairwise air samples were collected by using the thermal adsorption tubes and stainless steel canisters in these 12 factories in the petrochemical industrial complex. To maximize the number of comparative data points, all the measurements from all the factories in different sampling times were lumped together to perform a linear regression analysis for each selected VOC. Pearson product–moment correlation coefficient was used to examine the correlation between the pairwise measurements of these two sampling methods. A paired t-test was also performed to examine whether the difference in the concentrations of each selected VOC measured by the two methods was statistically significant. Results: The correlation coefficients of seven compounds, including acetone, n-hexane, benzene, toluene, 1,2-dichloroethane, 1,3-butadiene, and styrene were >0.80 indicating the two sampling methods for these VOCs’ measurements had high consistency. The paired t-tests for the measurements of n-hexane, benzene, m/p-xylene, o-xylene, 1,2-dichloroethane, and 1,3-butadiene showed statistically significant difference (P-value < 0.05). This indicated that the two sampling methods had various degrees of systematic errors. Looking at the results of six chemicals and these systematic errors probably resulted from the differences of the detection limits in the two sampling methods for these VOCs

  2. Comparison between Thermal Desorption Tubes and Stainless Steel Canisters Used for Measuring Volatile Organic Compounds in Petrochemical Factories.

    PubMed

    Chang, Cheng-Ping; Lin, Tser-Cheng; Lin, Yu-Wen; Hua, Yi-Chun; Chu, Wei-Ming; Lin, Tzu-Yu; Lin, Yi-Wen; Wu, Jyun-De

    2016-04-01

    The purpose of this study was to compare thermal desorption tubes and stainless steel canisters for measuring volatile organic compounds (VOCs) emitted from petrochemical factories. Twelve petrochemical factories in the Mailiao Industrial Complex were recruited for conducting the measurements of VOCs. Thermal desorption tubes and 6-l specially prepared stainless steel canisters were used to simultaneously perform active sampling of environmental air samples. The sampling time of the environmental air samples was set up on 6 h close to a full work shift of the workers. A total of 94 pairwise air samples were collected by using the thermal adsorption tubes and stainless steel canisters in these 12 factories in the petrochemical industrial complex. To maximize the number of comparative data points, all the measurements from all the factories in different sampling times were lumped together to perform a linear regression analysis for each selected VOC. Pearson product-moment correlation coefficient was used to examine the correlation between the pairwise measurements of these two sampling methods. A paired t-test was also performed to examine whether the difference in the concentrations of each selected VOC measured by the two methods was statistically significant. The correlation coefficients of seven compounds, including acetone, n-hexane, benzene, toluene, 1,2-dichloroethane, 1,3-butadiene, and styrene were >0.80 indicating the two sampling methods for these VOCs' measurements had high consistency. The paired t-tests for the measurements of n-hexane, benzene, m/p-xylene, o-xylene, 1,2-dichloroethane, and 1,3-butadiene showed statistically significant difference (P-value < 0.05). This indicated that the two sampling methods had various degrees of systematic errors. Looking at the results of six chemicals and these systematic errors probably resulted from the differences of the detection limits in the two sampling methods for these VOCs. The comparison between the

  3. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masashi Shimada; M. Hara; T. Otsuka

    2014-05-01

    Accurately estimating tritium retention in plasma facing components (PFCs) and minimizing its uncertainty are key safety issues for licensing future fusion power reactors. D-T fusion reactions produce 14.1 MeV neutrons that activate PFCs and create radiation defects throughout the bulk of the material of these components. Recent studies show that tritium migrates and is trapped in bulk (>> 10 µm) tungsten beyond the detection range of nuclear reaction analysis technique [1-2], and thermal desorption spectroscopy (TDS) technique becomes the only established diagnostic that can reveal hydrogen isotope behavior in in bulk (>> 10 µm) tungsten. Radiation damage and its recoverymore » mechanisms in neutron-irradiated tungsten are still poorly understood, and neutron-irradiation data of tungsten is very limited. In this paper, systematic investigations with repeated plasma exposures and thermal desorption are performed to study defect annealing and thermal desorption of deuterium in low dose neutron-irradiated tungsten. Three tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to high flux (ion flux of (0.5-1.0)x1022 m-2s-1 and ion fluence of 1x1026 m-2) deuterium plasma at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy (TDS) was performed with a ramp rate of 10 °C/min up to 900 °C, and the samples were annealed at 900 °C for 0.5 hour. These procedures were repeated three (for 100 and 200 °C samples) and four (for 500 °C sample) times to uncover damage recovery mechanisms and its effects on deuterium behavior. The results show that deuterium retention decreases approximately 90, 75, and 66 % for 100, 200, and 500 °C, respectively after each annealing. When subjected to the same TDS recipe, the desorption temperature shifts from 800 °C to 600 °C after 1st

  4. DEMONSTRATION BULLETIN: X*TRAX MODEL 200 THERMAL DESORPTION SYSTEMS - CHEMICAL WASTE MANAGEMENT, INC.

    EPA Science Inventory

    The X*TRAX™ Mode! 200 Thermal Desorption System developed by Chemical Waste Management, Inc. (CWM), is a low-temperature process designed to separate organic contaminants from soils, sludges, and other solid media. The X*TRAX™ Model 200 is fully transportable and consists of thre...

  5. Low-temperature thermal reduction of graphene oxide: In situ correlative structural, thermal desorption, and electrical transport measurements

    NASA Astrophysics Data System (ADS)

    Lipatov, Alexey; Guinel, Maxime J.-F.; Muratov, Dmitry S.; Vanyushin, Vladislav O.; Wilson, Peter M.; Kolmakov, Andrei; Sinitskii, Alexander

    2018-01-01

    Elucidation of the structural transformations in graphene oxide (GO) upon reduction remains an active and important area of research. We report the results of in situ heating experiments, during which electrical, mass spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) measurements were carried out correlatively. The simultaneous electrical and temperature programmed desorption measurements allowed us to correlate the onset of the increase in the electrical conductivity of GO by five orders of magnitude at about 150 °C with the maxima of the rates of desorption of H2O, CO, and CO2. Interestingly, this large conductivity change happens at an intermediate level of the reduction of GO, which likely corresponds to the point when the graphitic domains become large enough to enable percolative electronic transport. We demonstrate that the gas desorption is intimately related to (i) the changes in the chemical structure of GO detected by XPS and Raman spectroscopy and (ii) the formation of nanoscopic holes in GO sheets revealed by TEM. These in situ observations provide a better understanding of the mechanism of the GO thermal reduction.

  6. ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS - THE THERMAL DESORPTION UNIT - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    ELI ECO Logic International, Inc.'s Thermal Desorption Unit (TDU) is specifically designed for use with Eco Logic's Gas Phase Chemical Reduction Process. The technology uses an externally heated bath of molten tin in a hydrogen atmosphere to desorb hazardous organic compounds fro...

  7. Distribution and removal of organochlorine pesticides in waste clay bricks from an abandoned manufacturing plant using low-temperature thermal desorption technology.

    PubMed

    Cong, Xin; Li, Fasheng; Kelly, Ryan M; Xue, Nandong

    2018-04-01

    The distribution of pollutants in waste clay bricks from an organochlorine pesticide-contaminated site was investigated, and removal of the pollutants using a thermal desorption technology was studied. The results showed that the contents of HCHs in both the surface and the inner layer of the bricks were slightly higher than those of DDTs. The total pore volume of the bricks was 37.7 to 41.6% with an increase from external to internal surfaces. The removal efficiency by thermal treatment was within 62 to 83% for HCHs and DDTs in bricks when the temperature was raised from 200 to 250 °C after 1 h. HCHs were more easily removed than DDTs with a higher temperature. Either intraparticle or surface diffusion controls the desorption processes of pollutants in bricks. It was feasible to use the polluted bricks after removal of the pollutants by low-temperature thermal desorption technology.

  8. Desorption in Mass Spectrometry.

    PubMed

    Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi

    2017-01-01

    In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e. , ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed.

  9. Desorption in Mass Spectrometry

    PubMed Central

    Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi

    2017-01-01

    In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e., ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed. PMID:28337398

  10. Photon-induced Processing of Interstellar Ices in the Laboratory. Focus on Their Non-thermal Desorption.

    NASA Astrophysics Data System (ADS)

    Martin-Domenech, Rafael; Munoz Caro, Guillermo; Cruz-Diaz, Gustavo A.; Oberg, Karin I.

    2018-06-01

    Some of the processes that take place in the interstellar medium (ISM)can be simulated in laboratories on Earth under astrophysically relevant conditions. For example, the energetic processing of the ice mantles that accrete on top of dust grains in the coldest regions of the ISM, leading to the production of new species and their desorption to the gas phase. In particular, observation of complex organic molecules (COMs) in cold interstellar environments stress the need for not only a solid state formation but also for non-thermal desorption mechanisms that can account for the observed abundances in regions where thermal desorption is inhibited. Laboratory Astrophysics can be used to test different non-thermal desorption processes and extract yields than can be extrapolated to the astrophysical scenario with theoretical models. 0th generation COMs like CH3OH and H2CO can be formed at very low temperatures. In this talk, we present laboratory simulations of the UV photoprocessing of a binary ice mixture composed by water (the main component of astrophysical ices) and methane. Formation of CO, CO2, CH3OH and H2CO was confirmed by IR spectroscopy and subsequent TPD. At the same time, photodesorption of CO and H2CO was detected by means of a Quadrupole Mass Spectrometer, with yields on the order of 10-4 and 10-5 molecules per incident photon, respectively. In general, photodesorption can take place through a direct mechanism, where the absorbing molecule (or its photofragments) are desorbed; or through an indirect mechanism where the absorbed energy is transferred to a surface molecule which is the one finally desorbing. In the case of photoproducts, the evolution of the photodesorption yield gives information on the photodesorption mechanism: a constant photodesorption yield is observed when the photoproducts are desorbed right after their formation; while an increasing yield is measured when the photoproducts are desorbed later after energy transfer from another

  11. Thermal desorption of formamide and methylamine from graphite and amorphous water ice surfaces

    NASA Astrophysics Data System (ADS)

    Chaabouni, H.; Diana, S.; Nguyen, T.; Dulieu, F.

    2018-04-01

    Context. Formamide (NH2CHO) and methylamine (CH3NH2) are known to be the most abundant amine-containing molecules in many astrophysical environments. The presence of these molecules in the gas phase may result from thermal desorption of interstellar ices. Aims: The aim of this work is to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces and to understand their interaction with water ice. Methods: Temperature programmed desorption (TPD) experiments of formamide and methylamine ices were performed in the sub-monolayer and monolayer regimes on graphite (HOPG) and non-porous amorphous solid water (np-ASW) ice surfaces at temperatures 40-240 K. The desorption energy distributions of these two molecules were calculated from TPD measurements using a set of independent Polanyi-Wigner equations. Results: The maximum of the desorption of formamide from both graphite and ASW ice surfaces occurs at 176 K after the desorption of H2O molecules, whereas the desorption profile of methylamine depends strongly on the substrate. Solid methylamine starts to desorb below 100 K from the graphite surface. Its desorption from the water ice surface occurs after 120 K and stops during the water ice sublimation around 150 K. It continues to desorb from the graphite surface at temperatures higher than160 K. Conclusions: More than 95% of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate and is released into the gas phase with a desorption energy distribution Edes = 7460-9380 K, which is measured with the best-fit pre-exponential factor A = 1018 s-1. However, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes = 3850-8420 K) is measured with the best-fit pre-exponential factor A = 1012 s-1. A fraction of solid methylamine monolayer of roughly 0.15 diffuses through the water ice surface towards the HOPG substrate. This small amount of methylamine

  12. Rapid Analysis of Trace Drugs and Metabolites Using a Thermal Desorption DART-MS Configuration.

    PubMed

    Sisco, Edward; Forbes, Thomas P; Staymates, Matthew E; Gillen, Greg

    2016-01-01

    The need to analyze trace narcotic samples rapidly for screening or confirmatory purposes is of increasing interest to the forensic, homeland security, and criminal justice sectors. This work presents a novel method for the detection and quantification of trace drugs and metabolites off of a swipe material using a thermal desorption direct analysis in real time mass spectrometry (TD-DART-MS) configuration. A variation on traditional DART, this configuration allows for desorption of the sample into a confined tube, completely independent of the DART source, allowing for more efficient and thermally precise analysis of material present on a swipe. Over thirty trace samples of narcotics, metabolites, and cutting agents deposited onto swipes were rapidly differentiated using this methodology. The non-optimized method led to sensitivities ranging from single nanograms to hundreds of picograms. Direct comparison to traditional DART with a subset of the samples highlighted an improvement in sensitivity by a factor of twenty to thirty and an increase in reproducibility sample to sample from approximately 45 % RSD to less than 15 % RSD. Rapid extraction-less quantification was also possible.

  13. Desorption kinetics of {H}/{Mo(211) }

    NASA Astrophysics Data System (ADS)

    Lopinski, G. P.; Prybyla, J. A.; Estrup, P. J.

    1994-08-01

    The desorption kinetics of the {H}/{Mo(211) } chemisorption system were studied by thermal desorption and measurement of adsorption isobars. Analysis of the steady-state measurements permits the independent determination of the desorption energy ( Ed) and prefactor ( v). These quantities are found to depend strongly on coverage, with ( Ed) varying continuously from 145 {kJ}/{mol} at low coverage to 65 {kJ}/{mol} near saturation. Three regions of hydrogen adsorption are clearly indicated by the isobars as well as the thermal desorption traces. These regions can be correlated with structural changes observed previously with HREELS and LEED. The coverage dependence of the kinetic parameters is attributed to hydrogen-induced local distortions of the substrate structure. By relating the desorption energy to the isosteric heat the partial molar entropy is also extracted from the data and indicates localized adsorption as well as significant adsorbate-induced changes in the substrate degrees of freedom.

  14. Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikova, Olga S; Nikiforov, Maxim; Bradshaw, James A

    2011-01-01

    Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2more » array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.« less

  15. Thermal Desorption/GCMS Analysis of Astrobiologically Relevant Organic Materials

    NASA Technical Reports Server (NTRS)

    McDonald, Gene D.

    2001-01-01

    Several macromolecular organic materials, both biologically-derived (type II kerogen and humic acid) and abiotic in origin (Murchison insoluble organic material, cyanide polymer, and Titan tholin) were subjected to thermal desorption using a Chromatoprobe attachment on a Varian Saturn 2000 GCMS system. Each sample was heated sequentially at 100, 200, and 300 C to release volatile components. The evolved compounds were then separated on a Supelco EC-1 dimethylsilica GC column and detected by the Saturn 2000 ion trap mass spectrometer. The various types of macromolecular organic material subjected to thermal desorption produced distinctly different GCMS chromatograms at each temperature, containing fractions of both low and high chromatographic mobility. The relative amounts of detectable volatiles released at each temperature also differed, with type II kerogen and cyanide polymer containing the highest percentage of low-temperature components. In all the samples, the highest yield of released compounds occurred at 300 C. Only cyanide polymer evolved a homologous hydrocarbon series, suggesting that it is the only material among those examined that contains a truly polymeric structure. Pyrolysis/gas chromatography/mass spectrometry has been used extensively for analysis of terrestrial organic macromolecular materials, and was also part of the instrument package on the Viking landers. Thorough analysis by pyrolysis usually employs temperatures of 500 C or higher, which for in situ analyses can be problematic given spacecraft power and materials constraints. This study demonstrates that heating of organic materials of astrobiological relevance to temperatures as low as 200-300 C for short periods releases volatile components that can be analyzed by gas chromatography and mass spectrometry. Even in the absence of full pyrolysis, useful chemical information on samples can be obtained, and materials from different biological and abiological sources can be distinguished

  16. Application of thermal desorption for the identification of mercury species in solids derived from coal utilization.

    PubMed

    Rumayor, M; Diaz-Somoano, M; Lopez-Anton, M A; Martinez-Tarazona, M R

    2015-01-01

    The speciation of mercury is currently attracting widespread interest because the emission, transport, deposition and behaviour of toxic mercury species depend on its chemical form. The identification of these species in low concentrations is no easy task and it is even more complex in coal combustion products due to the fact that these products contain organic and mineral matter that give rise to broad peaks and make it difficult to carry out qualitative and quantitative analysis. In this work, a solution to this problem is proposed using a method based on thermal desorption. A sequential extraction procedure was employed for the comparison and validation of the method developed. Samples of fly ashes and soils were analyzed by both of these methods, and thermal desorption was found to be an appropriate technique for mercury speciation. Even in the case of low mercury contents, recovery percentages were close to 100%. The main mercury species identified in the samples studied were HgS and, to a lesser extent, HgO and HgSO4. In addition, although the presence of mercury complexes cannot be demonstrated, the desorption behaviour and sequential extraction results suggest that this element might be associated with the mineral matrix or with carbon particles in some of the solids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The analysis of clingfilms by infrared spectroscopy and thermal desorption capillary gas chromatography.

    PubMed

    Gilburt, J; Ingram, J M; Scott, M P; Underhill, M

    1991-01-01

    An automated thermal desorption gas chromatography technique has been adapted to analyse traces of volatile compounds in proprietary food-wrapping films. Fourteen brands of polyvinylchloride film, seven brands of polyethylene film and one polyvinylidene chloride film were discriminated. Prior infrared analysis was used to identify the polymer type. The chromatograms showed minor changes in volatiles along the length of a roll of film and major changes in films exposed to daylight or in contact with cannabis resin.

  18. Analysis of airborne pesticides from different chemical classes adsorbed on Radiello® Tenax® passive tubes by thermal-desorption-GC/MS.

    PubMed

    Raeppel, Caroline; Fabritius, Marie; Nief, Marie; Appenzeller, Brice M R; Briand, Olivier; Tuduri, Ludovic; Millet, Maurice

    2015-02-01

    An analytical methodology using automatic thermal desorption (ATD) and GC/MS was developed for the determination of 28 pesticides of different chemical classes (dichlobenil, carbofuran, trifluralin, clopyralid, carbaryl, flazasulfuron, mecoprop-P, dicamba, 2,4-MCPA, dichlorprop, 2,4-D, triclopyr, cyprodinil, bromoxynil, fluroxypyr, oxadiazon, myclobutanil, buprofezin, picloram, trinexapac-p-ethyl, ioxynil, diflufenican, tebuconazole, bifenthrin, isoxaben, alphacypermethrin, fenoxaprop and tau-fluvalinate) commonly used in nonagricultural areas in atmospheric samples. This methodology was developed to evaluate the indoor and outdoor atmospheric contamination by nonagricultural pesticides. Pesticides were sampled passive sampling tubes containing Tenax® adsorbent. Since most of these pesticides are polar (clopyralid, mecoprop-P, dicamba, 2,4-MCPA, dichlorprop, 2,4-D, triclopyr, bromoxynil, fluroxypyr, picloram, trinexapac-p-ethyl and ioxynil), a derivatisation step is required. For this purpose, a silylation step using N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MtBSTFA) was added before thermal desorption. This agent was chosen since it delivers very specific ions on electronic impact (m/z = M-57). This method was established with special consideration for optimal thermal desorption conditions (desorption temperature, desorb flow and duration; trap heating duration and flow; outlet split), linear ranges, limits of quantification and detection which varied from 0.005 to 10 ng and from 0.001 to 2.5 ng, respectively, for an uncertainty varied from 8 to 30 %. The method was applied in situ to the analysis of passive tubes exposed during herbicide application to an industrial site in east of France.

  19. Development of a short path thermal desorption-gas chromatography/mass spectrometry method for the determination of polycyclic aromatic hydrocarbons in indoor air.

    PubMed

    Li, Yingjie; Xian, Qiming; Li, Li

    2017-05-12

    Polycyclic aromatic hydrocarbons (PAHs) are present in petroleum based products and are combustion by-products of organic matters. Determination of levels of PAHs in the indoor environment is important for assessing human exposure to these chemicals. A new short path thermal desorption (SPTD) gas chromatography/mass spectrometry (GC/MS) method for determining levels of PAHs in indoor air was developed. Thermal desorption (TD) tubes packed with glass beads, Carbopack C, and Carbopack B in sequence, were used for sample collection. Indoor air was sampled using a small portable pump over 7 days at 100ml/min. Target PAHs were thermally released and introduced into the GC/MS for analysis through the SPTD unit. During tube desorption, PAHs were cold trapped (-20°C) at the front end of the GC column. Thermal desorption efficiencies were 100% for PAHs with 2 and 3 rings, and 99-97% for PAHs with 4-6 rings. Relative standard deviation (RSD) values among replicate samples spiked at three different levels were around 10-20%. The detection limit of this method was at or below 0.1μg/m 3 except for naphthalene (0.61μg/m 3 ), fluorene (0.28μg/m 3 ) and phenanthrene (0.35μg/m 3 ). This method was applied to measure PAHs in indoor air in nine residential homes. The levels of PAHs in indoor air found in these nine homes are similar to indoor air values reported by others. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Analysis of the volatile organic matter of engine piston deposits by direct sample introduction thermal desorption gas chromatography/mass spectrometry.

    PubMed

    Diaby, M; Kinani, S; Genty, C; Bouchonnet, S; Sablier, M; Le Negrate, A; El Fassi, M

    2009-12-01

    This article establishes an alternative method for the characterization of volatiles organic matter (VOM) contained in deposits of the piston first ring grooves of diesel engines using a ChromatoProbe direct sample introduction (DSI) device coupled to gas chromatography/mass spectrometry (GC/MS) analysis. The addition of an organic solvent during thermal desorption leads to an efficient extraction and a good chromatographic separation of extracted products. The method was optimized investigating the effects of several solvents, the volume added to the solid sample, and temperature programming of the ChromatoProbe DSI device. The best results for thermal desorption were found using toluene as an extraction solvent and heating the programmable temperature injector from room temperature to 300 degrees C with a temperature step of 105 degrees C. With the use of the optimized thermal desorption conditions, several components have been positively identified in the volatile fraction of the deposits: aromatics, antioxidants, and antioxidant degradation products. Moreover, this work highlighted the presence of diesel fuel in the VOM of the piston deposits and gave new facts on the absence of the role of diesel fuel in the deposit formation process. Most importantly, it opens the possibility of quickly performing the analysis of deposits with small amounts of samples while having a good separation of the volatiles.

  1. Thermal desorption of metals from tungsten single crystal surfaces

    NASA Technical Reports Server (NTRS)

    Bauer, E.; Bonczek, F.; Poppa, H.; Todd, G.

    1975-01-01

    After a short review of experimental methods used to determine desorption energies and frequencies the assumptions underlying the theoretical analysis of experimental data are discussed. Recent experimental results on the flash desorption of Cu, Ag, and Au from clean, well characterized W (110) and (100) surfaces are presented and analyzed in detail with respect to the coverage dependence. The results obtained clearly reveal the limitations of previous analytical methods and of the experimental technique per se (such as structure and phase changes below and in the temperature region in which desorption occurs).

  2. Atmospheric Pressure-Thermal Desorption (AP-TD)/Electrospray Ionization-Mass Spectrometry for the Rapid Analysis of Bacillus Spores

    USDA-ARS?s Scientific Manuscript database

    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry are coupled and used for the rapid analysis of Bacillus spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile co...

  3. Evaluation of Water Repellency in Petroleum Drilling Cuttings Treated by Thermal Desorption: Implications for Use in Construction and Agriculture

    NASA Astrophysics Data System (ADS)

    Domínguez-Rodríguez, Verónica I.; Guzmán-Osorio, Francisco J.; Adams Schroeder, Randy H.; Bautista-Margulis, Raúl G.

    2010-05-01

    Thermal desorption is one of many methods used for the remediation of hydrocarbon contaminated soils and similar materials. It has several advantages over competing technologies, especially with respect to treatment times. While the biological treatment of contaminated soils may take several months depending principally on the type of hydrocarbons and starting concentration, thermal desorption typically takes less than one month, depending on the treatment capacities of the equipment involved, and the volume of material requiring treatment. In the petroleum producing region of southeastern Mexico, this has been one of the principal methods used for the treatment of drilling cuttings, due mostly to the short time required. As with most remediation projects, as well as in the treatment of exploration and production (E&P) wastes, the criteria used to consider the remediation finalized is the concentration of hydrocarbons in the treated material. This is based on the supposition that at some (relatively low) hydrocarbon concentration, the toxicological affects are reduced to acceptable levels. However, little attention has been paid to the physical-chemical properties of supposedly treated material, which may suffer from water repellency, especially in thermal treatment methods. This could greatly reduce the options for final use of treated materials, especially to support plant growth. Conversely, there may be some construction uses of treated material in which some water repellence could be beneficial (caps for land fills, for example). Considering the relevance of the physical-chemical impacts of petroleum on soil and similar materials, we felt it was important to evaluate the efficiency of the principal method used to treat E&P wastes in Mexico (thermal desporption) based on these factors. In this study different operating conditions (temperature and residence time) of a sub-pilot scale thermal desorption unit were evaluated with respect not only to reduction in

  4. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  5. Determination of residual solvents in bulk pharmaceuticals by thermal desorption/gas chromatography/mass spectrometry.

    PubMed

    Urakami, K; Saito, Y; Fujiwara, Y; Watanabe, C; Umemoto, K; Godo, M; Hashimoto, K

    2000-12-01

    Thermal desorption (TD) techniques followed by capillary GC/MS were applied for the analysis of residual solvents in bulk pharmaceuticals. Solvents desorbed from samples by heating were cryofocused at the head of a capillary column prior to GC/MS analysis. This method requires a very small amount of sample and no sample pretreatment. Desorption temperature was set at the point about 20 degrees C higher than the melting point of each sample individually. The relative standard deviations of this method tested by performing six consecutive analyses of 8 different samples were 1.1 to 3.1%, and analytical results of residual solvents were in agreement with those obtained by direct injection of N,N-dimethylformamide solution of the samples into the GC. This novel TD/GC/MS method was demonstrated to be very useful for the identification and quantification of residual solvents in bulk pharmaceuticals.

  6. Formation of a knudsen layer in electronically induced desorption

    NASA Astrophysics Data System (ADS)

    Sibold, D.; Urbassek, H. M.

    1992-10-01

    For intense desorption fluxes, particles desorbed by electronic transitions (DIET) from a surface into a vacuum may thermalize in the gas cloud forming above the surface. In immediate vicinity to the surface, however, a non-equilibrium layer (the Knudsen layer) exists which separates the recently desorbed, non-thermal particles from the thermalized gas cloud. We investigate by Monte Carlo computer simulation the time it takes to form a Knudsen layer, and its properties. It is found that a Knudsen layer, and thus also a thermalized gas cloud, is formed after around 200 mean free flight times of the desorbing particles, corresponding to a desorption of 20 monolayers. At the end of the Knudsen layer, the gas density will be higher, and the flow velocity and temperature smaller, than literature values indicate for thermal desorption. These data are of fundamental interest for the modeling of gas-kinetic and gas-dynamic effects in DIET.

  7. SUPERFUND TREATABILITY CLEARINGHOUSE: TECHNOLOGY DEMONSTRATION OF A THERMAL DESORPTION/UV PHOTOLYSIS PROCESS FOR DECONTAMINATING SOILS CONTAINING HERBICIDE ORANGE

    EPA Science Inventory

    This treatability study report presents the results of laboratory and field tests on the effectiveness of a new decontamination process for soils containing 2,4-D/2,4,5-T and traces of dioxin. The process employs three operations, thermal desorption, condensation and absorp...

  8. DEMONSTRATION BULLETIN: THE ECO LOGIC THERMAL DESORPTION UNIT - MIDDLEGROUND LANDFILL - BAY CITY, MI - ELI ECO LOGIC INTERNATIONAL, INC.

    EPA Science Inventory

    ECO Logic has developed a thermal desorption unit 0"DU) for the treatment of soils contaminated with hazardous organic contaminants. This TDU has been designed to be used in conjunction with Eco Logic's patented gas-phase chemical reduction reactor. The Eco Logic reactor is the s...

  9. An assessment of the environmental fate of mercury species in highly polluted brownfields by means of thermal desorption.

    PubMed

    Rumayor, M; Gallego, J R; Rodríguez-Valdés, E; Díaz-Somoano, M

    2017-03-05

    High contents of mercury (Hg) have been found in old mining-metallurgy sites occurring a widespread contamination and degradation of the land. The ability to identify the Hg species present in these areas is essential to clarify fate of Hg and its bioavailability and additionally, to be able to parameterize remediation techniques based on thermal desorption in order to carry out a full-scale decontamination of the land. This study has proven the usefulness of a thermal programmed desorption procedure (Hg-TPD) for identifying Hg species in contaminated samples related to mining-metallurgy activities. Hg bound to organic matter (Hg-OM) and to pyrite (Hg-FeS 2 ), HgS red, HgCl 2 , Hg 0 and HgO were identified in most of waste samples. The absence of mobile Hg species in soils and sediments showed both its re-emission to the atmosphere (Hg 0 ) or of its oxidation and lixiviation (HgO and HgCl 2 ) over the years. The results have demonstrated that most of these polluted solids can be remediated by thermal treatment at temperatures ranging between 150 and 600°C. The study evidence that Hg-TPD is useful either for parameterizing a thermal remediation or for identifying the evolution pathways of Hg species in different environmental compartments and in general, for any environmental remediation treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Measurement of toxic volatile organic compounds in indoor air of semiconductor foundries using multisorbent adsorption/thermal desorption coupled with gas chromatography-mass spectrometry.

    PubMed

    Wu, Chien-Hou; Lin, Ming-Nan; Feng, Chien-Tai; Yang, Kuang-Ling; Lo, Yu-Shiu; Lo, Jiunn-Guang

    2003-05-09

    A method for the qualitative and quantitative analysis of volatile organic compounds (VOCs) in the air of class-100 clean rooms at semiconductor fabrication facilities was developed. Air samples from two semiconductor factories were collected each hour on multisorbent tubes (including Carbopack B, Carbopack C, and Carbosieve SIII) with a 24-h automatic active sampling system and analyzed using adsorption/thermal desorption coupled with gas chromatography-mass spectrometry. Experimental parameters, including thermal desorption temperature, desorption time, and cryofocusing temperature, were optimized. The average recoveries and the method detection limits for the target compounds were in the range 94-101% and 0.31-0.89 ppb, respectively, under the conditions of a 1 L sampling volume and 80% relative humidity. VOCs such as acetone, isopropyl alcohol, 2-heptanone, and toluene, which are commonly used in the semiconductor and electronics industries, were detected and accurately quantified with the established method. Temporal variations of the analyte concentrations observed were attributed to the improper use of organic solvents during operation.

  11. Ion-to-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Lu, I.-Chung; Chu, Kuan Yu; Lin, Chih-Yuan; Wu, Shang-Yun; Dyakov, Yuri A.; Chen, Jien-Lian; Gray-Weale, Angus; Lee, Yuan-Tseh; Ni, Chi-Kung

    2015-07-01

    The ion-to-neutral ratios of four commonly used solid matrices, α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (2,5-DHB), sinapinic acid (SA), and ferulic acid (FA) in matrix-assisted laser desorption/ionization (MALDI) at 355 nm are reported. Ions are measured using a time-of-flight mass spectrometer combined with a time-sliced ion imaging detector. Neutrals are measured using a rotatable quadrupole mass spectrometer. The ion-to-neutral ratios of CHCA are three orders of magnitude larger than those of the other matrices at the same laser fluence. The ion-to-neutral ratios predicted using the thermal proton transfer model are similar to the experimental measurements, indicating that thermal proton transfer reactions play a major role in generating ions in ultraviolet-MALDI.

  12. Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere.

    PubMed

    Yakshinskiy, B V; Madey, T E

    1999-08-12

    Mercury and the Moon both have tenuous atmospheres that contain atomic sodium and potassium. These chemicals must be continuously resupplied, as neither body can retain the atoms for more than a few hours. The mechanisms proposed to explain the resupply include sputtering of the surface by the solar wind, micrometeorite impacts, thermal desorption and photon-stimulated desorption. But there are few data and no general agreement about which processes dominate. Here we report laboratory studies of photon-stimulated desorption of sodium from surfaces that simulate lunar silicates. We find that bombardment of such surfaces at temperatures of approximately 250 K by ultraviolet photons (wavelength lambda < 300 nm) causes very efficient desorption of sodium atoms, induced by electronic excitations rather than by thermal processes or momentum transfer. The flux at the lunar surface of ultraviolet photons from the Sun is sufficient to ensure that photon-stimulated desorption of sodium contributes substantially to the Moon's atmosphere. On Mercury, solar heating of the surface implies that thermal desorption will also be an important source of atmospheric sodium.

  13. Thermal desorption of dimethyl methylphosphonate from MoO 3

    DOE PAGES

    Head, Ashley R.; Tang, Xin; Hicks, Zachary; ...

    2017-03-03

    Organophosphonates are used as chemical warfare agents, pesticides, and corrosion inhibitors. New materials for the sorption, detection, and decomposition of these compounds are urgently needed. To facilitate materials and application innovation, a better understanding of the interactions between organophosphonates and surfaces is required. To this end, we have used diffuse reflectance infrared Fourier transform spectroscopy to investigate the adsorption geometry of dimethyl methylphosphonate (DMMP) on MoO 3, a material used in chemical warfare agent filtration devices. We further applied ambient pressure X-ray photoelectron spectroscopy and temperature programmed desorption to study the adsorption and desorption of DMMP. While DMMP adsorbs intactmore » on MoO 3, desorption depends on coverage and partial pressure. At low coverages under UHV conditions, the intact adsorption is reversible. Decomposition occurs with higher coverages, as evidenced by PCH x and PO x decomposition products on the MoO 3 surface. Heating under mTorr partial pressures of DMMP results in product accumulation.« less

  14. An infrared measurement of chemical desorption from interstellar ice analogues

    NASA Astrophysics Data System (ADS)

    Oba, Y.; Tomaru, T.; Lamberts, T.; Kouchi, A.; Watanabe, N.

    2018-03-01

    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4-6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

  15. Thermal decomposition in thermal desorption instruments: importance of thermogram measurements for analysis of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Stark, H.; Yatavelli, R. L. N.; Thompson, S.; Kang, H.; Krechmer, J. E.; Kimmel, J.; Palm, B. B.; Hu, W.; Hayes, P.; Day, D. A.; Campuzano Jost, P.; Ye, P.; Canagaratna, M. R.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2017-12-01

    Understanding the chemical composition of secondary organic aerosol (SOA) is crucial for explaining sources and fate of this important aerosol class in tropospheric chemistry. Further, determining SOA volatility is key in predicting its atmospheric lifetime and fate, due to partitioning from and to the gas phase. We present three analysis approaches to determine SOA volatility distributions from two field campaigns in areas with strong biogenic emissions, a Ponderosa pine forest in Colorado, USA, from the BEACHON-RoMBAS campaign, and a mixed forest in Alabama, USA, from the SOAS campaign. We used a high-resolution-time-of-flight chemical ionization mass spectrometer (CIMS) for both campaigns, equipped with a micro-orifice volatilization impactor (MOVI) inlet for BEACHON and a filter inlet for gases and aerosols (FIGAERO) for SOAS. These inlets allow near simultaneous analysis of particle and gas-phase species by the CIMS. While gas-phase species are directly measured without heating, particles undergo thermal desorption prior to analysis. Volatility distributions can be estimated in three ways: (1) analysis of the thermograms (signal vs. temperature); (2) via partitioning theory using the gas- and particle-phase measurements; (3) from measured chemical formulas via a group contribution model. Comparison of the SOA volatility distributions from the three methods shows large discrepancies for both campaigns. Results from the thermogram method are the most consistent of the methods when compared with independent AMS-thermal denuder measurements. The volatility distributions estimated from partitioning measurements are very narrow, likely due to signal-to-noise limits in the measurements. The discrepancy between the formula and the thermogram methods indicates large-scale thermal decomposition of the SOA species. We will also show results of citric acid thermal decomposition, where, in addition to the mass spectra, measurements of CO, CO2 and H2O were made, showing

  16. Operable Unit 7-13/14 in situ thermal desorption treatability study work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, P.; Nickelson, D.; Hyde, R.

    1999-05-01

    This Work Plan provides technical details for conducting a treatability study that will evaluate the application of in situ thermal desorption (ISTD) to landfill waste at the Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). ISTD is a form of thermally enhanced vapor vacuum extraction that heats contaminated soil and waste underground to raise its temperature and thereby vaporize and destroy most organics. An aboveground vapor vacuum collection and treatment system then destroys or absorbs the remaining organics and vents carbon dioxide and water to the atmosphere. The technology is a byproduct of an advancedmore » oil-well thermal extraction program. The purpose of the ISTD treatability study is to fill performance-based data gaps relative to off-gas system performance, administrative feasibility, effects of the treatment on radioactive contaminants, worker safety during mobilization and demobilization, and effects of landfill type waste on the process (time to remediate, subsidence potential, underground fires, etc.). By performing this treatability study, uncertainties associated with ISTD as a selected remedy will be reduced, providing a better foundation of remedial recommendations and ultimate selection of remedial actions for the SDA.« less

  17. Characterisation of Dissolved Organic Carbon by Thermal Desorption - Proton Transfer Reaction - Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Materić, Dušan; Peacock, Mike; Kent, Matthew; Cook, Sarah; Gauci, Vincent; Röckmann, Thomas; Holzinger, Rupert

    2017-04-01

    Dissolved organic carbon (DOC) is an integral component of the global carbon cycle. DOC represents an important terrestrial carbon loss as it is broken down both biologically and photochemically, resulting in the release of carbon dioxide (CO2) to the atmosphere. The magnitude of this carbon loss can be affected by land management (e.g. drainage). Furthermore, DOC affects autotrophic and heterotrophic processes in aquatic ecosystems, and, when chlorinated during water treatment, can lead to the release of harmful trihalomethanes. Numerous methods have been used to characterise DOC. The most accessible of these use absorbance and fluorescence properties to make inferences about chemical composition, whilst high-performance size exclusion chromatography can be used to determine apparent molecular weight. XAD fractionation has been extensively used to separate out hydrophilic and hydrophobic components. Thermochemolysis or pyrolysis Gas Chromatography - Mass Spectrometry (GC-MS) give information on molecular properties of DOC, and 13C NMR spectroscopy can provide an insight into the degree of aromaticity. Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. So far, PTR-MS has been used in various environmental applications such as real-time monitoring of volatile organic compounds (VOCs) emitted from natural and anthropogenic sources, chemical composition measurements of aerosols etc. However, as the method is not compatible with water, it has not been used for analysis of organic traces present in natural water samples. The aim of this work was to develop a method based on thermal desorption PTR-MS to analyse water samples in order to characterise chemical composition of dissolved organic carbon. We developed a clean low-pressure evaporation/sublimation system to remove water from samples and thermal desorption system to introduce

  18. Thermal desorption of CO and H2 from degassed 304 and 347 stainless steel

    NASA Technical Reports Server (NTRS)

    Rezaie-Serej, S.; Outlaw, R. A.

    1994-01-01

    Thermal desorption spectroscopy (TDS), along with Auger electron spectroscopy, was used to study the desorption of H2 and CO from baked 304 and 347 stainless-steel samples exposed only to residual gases. Both 347 and 304 samples gave identical TDS spectra. The spectra for CO contained a sharp leading peak centered in the temperature range 410-440C and an exponentially increasing part for temperatures higher than 500C, with a small peak around 600C appearing as a shoulder. The leading peak followed a second-order desorption behavior with an activation energy of 28+/-2 kcal/mol, suggesting that the rate-limiting step for this peak is most likely a surface reaction that produces the CO molecules in the surface layer. The amount of desorbed CO corresponding to this peak was approximately 0.5X10(exp 14) molecules/cm(exp 2) . The exponentially rising part of the CO spectrum appeared to originate from a bulk diffusion process. The TDS spectrum for H2 consisted of a main peak centered also in the temperature range 410-440C, with two small peaks appearing as shoulders at approximately 500 and 650C. The main peak in this case also displayed a second-order behavior with an activation energy of 14+/-2 kcal/mol. The amount of desorbed H2, approximately 1.9X 10(exp 15) molecules/cm(exp 2) , appeared to be independent of the concentration of hydrogen in the bulk, indicating that the majority of the desorbed H2 originated from the surface layer.

  19. Leidenfrost Phenomenon-assisted Thermal Desorption (LPTD) and Its Application to Open Ion Sources at Atmospheric Pressure Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2013-03-01

    This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution `Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10-9 M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.

  20. Leidenfrost phenomenon-assisted thermal desorption (LPTD) and its application to open ion sources at atmospheric pressure mass spectrometry.

    PubMed

    Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2013-03-01

    This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution 'Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10(-9) M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.

  1. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators.

    PubMed

    Cébron, Aurélie; Cortet, Jérôme; Criquet, Stéven; Biaz, Asmaa; Calvert, Virgile; Caupert, Cécile; Pernin, Céline; Leyval, Corinne

    2011-11-01

    A large number of soil bioindicators were used to assess biological diversity and activity in soil polluted with polycyclic aromatic hydrocarbons (PAHs) and the same soil after thermal desorption (TD) treatment. Abundance and biodiversity of bacteria, fungi, protozoa, nematodes and microarthropods, as well as functional parameters such as enzymatic activities and soil respiration, were assessed during a two year period of in situ monitoring. We investigated the influence of vegetation (spontaneous vegetation and Medicago sativa) and TD treatment on biological functioning. Multivariate analysis was performed to analyze the whole data set. A principal response curve (PRC) technique was used to evaluate the different treatments (various vegetation and contaminated vs. TD soil) contrasted with control (bare) soil over time. Our results indicated the value of using a number of complementary bioindicators, describing both diversity and functions, to assess the influence of vegetation on soil and discriminate polluted from thermal desorption (TD)-treated soil. Plants had an influence on the abundance and activity of all organisms examined in our study, favoring the whole trophic chain development. However, although TD-treated soil had a high abundance and diversity of microorganisms and fauna, enzymatic activities were weak because of the strong physical and chemical modifications of this soil. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Desorption from interstellar grains

    NASA Technical Reports Server (NTRS)

    Leger, A.; Jura, M.; Omont, A.

    1985-01-01

    Different desorption mechanisms from interstellar grains are considered to resolve the conflict between the observed presence of gaseous species in molecular clouds and their expected depletion onto grains. The physics of desorption is discussed with particular reference to the process of grain heating and the specific heat of the dust material. Impulsive heating by X-rays and cosmic rays is addressed. Spot heating of the grains by cosmic rays and how this can lead to desorption of mantles from very large grains is considered. It is concluded that CO depletion on grains will be small in regions with A(V) less than five from the cloud surface and n(H) less than 10,000, in agreement with observations and in contrast to expectations from pure thermal equilibrium. Even in very dense and obscured regions and in the absence of internal ultraviolet sources, the classical evaporation of CO or N2 and O2-rich mantles by cosmic rays is important.

  3. Thermal Desorption Analysis of Effective Specific Soil Surface Area

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Bashina, A. S.; Klyueva, V. V.; Kubareva, A. V.

    2017-12-01

    A new method of assessing the effective specific surface area based on the successive thermal desorption of water vapor at different temperature stages of sample drying is analyzed in comparison with the conventional static adsorption method using a representative set of soil samples of different genesis and degree of dispersion. The theory of the method uses the fundamental relationship between the thermodynamic water potential (Ψ) and the absolute temperature of drying ( T): Ψ = Q - aT, where Q is the specific heat of vaporization, and a is the physically based parameter related to the initial temperature and relative humidity of the air in the external thermodynamic reservoir (laboratory). From gravimetric data on the mass fraction of water ( W) and the Ψ value, Polyanyi potential curves ( W(Ψ)) for the studied samples are plotted. Water sorption isotherms are then calculated, from which the capacity of monolayer and the target effective specific surface area are determined using the BET theory. Comparative analysis shows that the new method well agrees with the conventional estimation of the degree of dispersion by the BET and Kutilek methods in a wide range of specific surface area values between 10 and 250 m2/g.

  4. Initial stages of organic film growth characterized by thermal desorption spectroscopy

    PubMed Central

    Winkler, Adolf

    2015-01-01

    In the wake of the increasing importance of organic electronics, a more in-depth understanding of the early stages of organic film growth is indispensable. In this review a survey of several rod-like and plate-like organic molecules (p-quaterphenyl, p-sexiphenyl, hexaazatriphenylene-hexacarbonitrile (HATCN), rubicene, indigo) deposited on various application relevant substrates (gold, silver, mica, silicon dioxide) is given. The focus is particularly put on the application of thermal desorption spectroscopy to shed light on the kinetics and energetics of the molecule-substrate interaction. While each adsorption system reveals a manifold of features that are specific for the individual system, one can draw some general statements on the early stages of organic film formation from the available datasets. Among the important issues in this context is the formation of wetting layers and the dewetting as a function of the substrate surface conditions, organic film thickness and temperature. PMID:26778860

  5. POLYCYCLIC AROMATIC HYDROCARBON (PAH) SIZE DISTRIBUTIONS IN AEROSOLS FROM APPLIANCES OF RESIDENTIAL WOOD COMBUSTION AS DETERMINED BY DIRECT THERMAL DESORPTION - GC/MS

    EPA Science Inventory

    The paper describesd a direct thermal desorption (TDS) approach to determine the PAH composition (MW = 202-302 amu) in size-segregated aerosols from residential wood combustion (RWC). Six combustion tests are performed with two highly available wood fuel varieties, Douglas-fir (P...

  6. In situ ionic liquid dispersive liquid-liquid microextraction and direct microvial insert thermal desorption for gas chromatographic determination of bisphenol compounds.

    PubMed

    Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel

    2016-01-01

    A new procedure based on direct insert microvial thermal desorption injection allows the direct analysis of ionic liquid extracts by gas chromatography and mass spectrometry (GC-MS). For this purpose, an in situ ionic liquid dispersive liquid-liquid microextraction (in situ IL DLLME) has been developed for the quantification of bisphenol A (BPA), bisphenol Z (BPZ) and bisphenol F (BPF). Different parameters affecting the extraction efficiency of the microextraction technique and the thermal desorption step were studied. The optimized procedure, determining the analytes as acetyl derivatives, provided detection limits of 26, 18 and 19 ng L(-1) for BPA, BPZ and BPF, respectively. The release of the three analytes from plastic containers was monitored using this newly developed analytical method. Analysis of the migration test solutions for 15 different plastic containers in daily use identified the presence of the analytes at concentrations ranging between 0.07 and 37 μg L(-1) in six of the samples studied, BPA being the most commonly found and at higher concentrations than the other analytes.

  7. Laser desorption of explosives as a way to create an effective non-contact sampling device

    NASA Astrophysics Data System (ADS)

    Akmalov, Artem E.; Chistyakov, Alexander A.; Kotkovskii, Gennadii E.

    2015-10-01

    Comparison of desorption effectiveness of Nd3+:YAG nanosecond laser sources (λ=266, 354, 532 nm) has been carried out to investigate a possibility of creating a non-contact sampling device for detectors of explosives based on principles of ion mobility spectrometry (IMS) and field asymmetric ion mobility spectrometry (FAIMS). The results of mass spectrometric study of laser desorption of nitroamine, nitrate ester and nitroaromatic compounds from a quartz substrate are presented. It is shown that irradiation of adsorbed layers of studied samples by a single pulse of non-resonant laser radiation (λ=532 nm) leads to efficient desorption at laser intensity 107 W/cm2 and above. Excitation of the first singlet state of nitro compounds by resonant radiation (λ=354 nm) provides heating of adsorbed layers and thermal desorption. A strongly non-equilibrium (non-thermal) dissociation process is developed when the second singlet state of nitroaromatic molecules is excited by radiation at λ=266 nm, along with thermal desorption. It is shown that Nd3+: YAG laser with wavelength λ=266 nm, pulse duration 5-10 ns, intensity 107-109 W/cm2 is the most effective source for creation a non-contact sampling device based on desorption of explosives from surfaces.

  8. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    NASA Astrophysics Data System (ADS)

    Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.

    2018-05-01

    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.

  9. Thermal desorption of hydrogen from Mg2Ni hydrogen storage materials.

    PubMed

    Hur, Tae Hong; Han, Jeong Seb; Kim, Jin Ho; Kim, Byung Kwan

    2011-07-01

    In order to investigate the influence of HCS on the hydrogen occupation site of Mg2Ni alloy, the thermal desorption technique has been applied to Mg2Ni hydride made by hydriding combustion synthesis (HCS). Mg2Ni was made under low temperature in a short time by the HCS compared to conventional melting process. At various initial hydride wt% from 0.91 to 3.52, the sample was heated to 623 K at a rate of 1.0 K/min. The starting temperature of the evolution of hydrogen goes higher as the initial hydride wt% increases. Only one peak is shown in the case of the small initial hydride wt%. But two peaks appeared with increasing initial hydride wt%. The activation energies obtained by the first and second peaks are 113.0 and 99.5 kJ/mol respectively. The two site occupation model by Darriet et al. was proved. The influence of HCS on the hydrogen occupation site of Mg2Ni alloy is nonexistent.

  10. Application of an automatic thermal desorption-gas chromatography-mass spectrometry system for the analysis of polycyclic aromatic hydrocarbons in airborne particulate matter.

    PubMed

    Gil-Moltó, J; Varea, M; Galindo, N; Crespo, J

    2009-02-27

    The application of the thermal desorption (TD) method coupled with gas chromatography-mass spectrometry (GC-MS) to the analysis of aerosol organics has been the focus of many studies in recent years. This technique overcomes the main drawbacks of the solvent extraction approach such as the use of large amounts of toxic organic solvents and long and laborious extraction processes. In this work, the application of an automatic TD-GC-MS instrument for the determination of particle-bound polycyclic aromatic hydrocarbons (PAHs) is evaluated. This device offers the advantage of allowing the analysis of either gaseous or particulate organics without any modification. Once the thermal desorption conditions for PAH extraction were optimised, the method was verified on NIST standard reference material (SRM) 1649a urban dust, showing good linearity, reproducibility and accuracy for all target PAHs. The method has been applied to PM10 and PM2.5 samples collected on quartz fibre filters with low volume samplers, demonstrating its capability to quantify PAHs when only a small amount of sample is available.

  11. Contribution of thermal energy to initial ion production in matrix-assisted laser desorption/ionization observed with 2,4,6-trihydroxyacetophenone.

    PubMed

    Lai, Yin-Hung; Chen, Bo-Gaun; Lee, Yuan Tseh; Wang, Yi-Sheng; Lin, Sheng Hsien

    2014-08-15

    Although several reaction models have been proposed in the literature to explain matrix-assisted laser desorption/ionization (MALDI), further study is still necessary to explore the important ionization pathways that occur under the high-temperature environment of MALDI. 2,4,6-Trihydroxyacetophenone (THAP) is an ideal compound for evaluating the contribution of thermal energy to an initial reaction with minimum side reactions. Desorbed neutral THAP and ions were measured using a crossed-molecular beam machine and commercial MALDI-TOF instrument, respectively. A quantitative model incorporating an Arrhenius-type desorption rate derived from transition state theory was proposed. Reaction enthalpy was calculated using GAUSSIAN 03 software with dielectric effect. Additional evidence of thermal-induced proton disproportionation was given by the indirect ionization of THAP embedded in excess fullerene molecules excited by a 450 nm laser. The quantitative model predicted that proton disproportionation of THAP would be achieved by thermal energy converted from a commonly used single UV laser photon. The dielectric effect reduced the reaction Gibbs free energy considerably even when the dielectric constant was reduced under high-temperature MALDI conditions. With minimum fitting parameters, observations of pure THAP and THAP mixed with fullerene both agreed with predictions. Proton disproportionation of solid THAP was energetically favorable with a single UV laser photon. The quantitative model revealed an important initial ionization pathway induced by the abrupt heating of matrix crystals. In the matrix crystals, the dielectric effect reduced reaction Gibbs free energy under typical MALDI conditions. The result suggested that thermal energy plays an important role in the initial ionization reaction of THAP. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Contour temperature programmed desorption for monitoring multiple chemical reaction products

    NASA Astrophysics Data System (ADS)

    Chusuei, C. C.; de la Peña, J. V.; Schreifels, J. A.

    1999-09-01

    A simple method for obtaining a comprehensive overview of major compounds desorbing from the surface during temperature programmed desorption (TPD) experiments is outlined. Standard commercially available equipment is used to perform the experiment. The method is particularly valuable when high molecular mass compounds are being studied. The acquisition of contour temperature programmed desorption (CTPD) spectra, sampling 50-dalton mass ranges at a time in the thermal desorption experiments, is described and demonstrated for the interaction of benzotriazole adsorbed on a Ni(111) surface. Conventional two-dimensional TPD spectra can be extracted from the CTPD by taking vertical slices of the contour.

  13. Analysis of volatiles in fire debris by combination of activated charcoal strips (ACS) and automated thermal desorption-gas chromatography-mass spectrometry (ATD/GC-MS).

    PubMed

    Martin Fabritius, Marie; Broillet, Alain; König, Stefan; Weinmann, Wolfgang

    2018-06-04

    Adsorption of volatiles in gaseous phase to activated charcoal strip (ACS) is one possibility for the extraction and concentration of ignitable liquid residues (ILRs) from fire debris in arson investigations. Besides liquid extraction using carbon dioxide or hexane, automated thermo-desorption can be used to transfer adsorbed residues to direct analysis by gas chromatography-mass spectrometry (GC-MS). We present a fire debris analysis work-flow with headspace adsorption of volatiles onto ACS and subsequent automated thermo-desorption (ATD) GC-MS analysis. Only a small portion of the ACS is inserted in the ATD tube for thermal desorption coupled to GC-MS, allowing for subsequent confirmation analysis with another portion of the same ACS. This approach is a promising alternative to the routinely used ACS method with solvent extraction of retained volatiles, and the application to fire debris analysis is demonstrated. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F.

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorptionmore » (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C

  15. Effect of metal surfaces on matrix-assisted laser desorption/ionization analyte peak intensities.

    PubMed

    Kancharla, Vidhyullatha; Bashir, Sajid; Liu, Jingbo L; Ramirez, Oscar M; Derrick, Peter J; Beran, Kyle A

    2017-10-01

    Different metal surfaces in the form of transmission electron microscope grids were examined as support surfaces in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a view towards enhancement of peptide signal intensity. The observed enhancement between 5-fold and 20-fold relative to the normal stainless steel slide was investigated by applying the thermal desorption model for matrix-assisted laser desorption/ionization. A simple model evaluates the impact that the thermal properties of the metals have on the ion yield of the analyte. It was observed that there was not a direct, or strong, correlation between the thermal properties of the metals and the corresponding ion yield of the peptides. The effects of both fixed and variable laser irradiances versus ion yield were also examined for the respective metals studied. In all cases the use of transmission electron microscope grids required much lower laser irradiances in order to generate similar peak intensities as those observed with a stainless steel surface.

  16. Determination of off-flavor compounds, 2-methylisoborneol and geosmin, in salmon fillets using stir bar sorptive extraction–thermal desorption coupled with gas chromatography–mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    A sensitive and solvent-less method for the determination of musty and earthy off-flavor compounds, 2-methylisoborneol (MIB) and geosmin (GSM), in salmon tissue was developed using stir bar sorptive extraction -thermal desorption coupled with gas chromatography -mass spectrometry (SBSE -TD -GCMS). M...

  17. Sustainable remediation of mercury contaminated soils by thermal desorption.

    PubMed

    Sierra, María J; Millán, Rocio; López, Félix A; Alguacil, Francisco J; Cañadas, Inmaculada

    2016-03-01

    Mercury soil contamination is an important environmental problem that needs the development of sustainable and efficient decontamination strategies. This work is focused on the application of a remediation technique that maintains soil ecological and environmental services to the extent possible as well as search for alternative sustainable land uses. Controlled thermal desorption using a solar furnace at pilot scale was applied to different types of soils, stablishing the temperature necessary to assure the functionality of these soils and avoid the Hg exchange to the other environmental compartments. Soil mercury content evolution (total, soluble, and exchangeable) as temperature increases and induced changes in selected soil quality indicators are studied and assessed. On total Hg, the temperature at which it is reduced until acceptable levels depends on the intended soil use and on how restrictive are the regulations. For commercial, residential, or industrial uses, soil samples should be heated to temperatures higher than 280 °C, at which more than 80 % of the total Hg is released, reaching the established legal total Hg level and avoiding eventual risks derived from high available Hg concentrations. For agricultural use or soil natural preservation, conversely, maintenance of acceptable levels of soil quality limit heating temperatures, and additional treatments must be considered to reduce available Hg. Besides total Hg concentration in soils, available Hg should be considered to make final decisions on remediation treatments and potential future uses. Graphical Abstract Solar energy use for remediation of soils affected by mercury.

  18. 24-HOUR DIFFUSIVE SAMPLING OF 1,3-BUTADIENE IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - FEASIBILITY STUDY

    EPA Science Inventory

    Diffusive sampling of 1,3-butadiene for 24 hr onto the graphitic adsorbent Carbopack X packed in a stainless steel tube badge (6.3 mm o.d., 5 mm i.d., and 90 mm in length) with analysis by thermal desorption/gas chromatography (GC)/mass spectrometry (MS) has been evaluated in con...

  19. Effects of alloying elements on thermal desorption of helium in Ni alloys

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Cao, X. Z.; Sato, K.; Yoshiie, T.

    2012-12-01

    It is well known that the minor elements Si and Sn can suppress the formation of voids in Ni alloys. In the present study, to investigate the effects of Si and Sn on the retention of helium in Ni alloys, Ni, Ni-Si, and Ni-Sn alloys were irradiated by 5 keV He ions at 723 K. Thermal desorption spectroscopy (TDS) was performed at up to 1520 K, and microstructural observations were carried out to identify the helium trapping sites during the TDS analysis. Two peaks, at 1350 and 1457 K, appeared in the TDS spectrum of Ni. On the basis of the microstructural observations, the former peak was attributed to the release of trapped helium from small cavities and the latter to its release from large cavities. Small-cavity helium trapping sites were also found in the Ni-Si and Ni-Sn alloys, but no large cavities were observed in these alloys. In addition, it was found that the oversized element Sn could trap He atoms in the Ni-Sn alloy.

  20. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1984-01-01

    A method of enhancing the thermal desorption of a first isotope of a diatomic gas from a metal comprises the steps of (a) establishing a partial pressure of a second isotope of the diatomic gas in vicinity of the metal; heating the metal to a temperature such that the first isotope is desorbed from the metal; and reducing the partial pressure of the desorbed first isotope while maintaining the partial pressure of the second isotope substantially constant. The method is especially useful for enhancing the desorption of tritium from the Zr-Al getter in a plasma confinement device.

  1. Near-equilibrium desorption of helium films

    NASA Astrophysics Data System (ADS)

    Weimer, M.; Housley, R. M.; Goodstein, D. L.

    1987-10-01

    The thermal desorption of helium films in the presence of their equilibrium vapor is studied experimentally for small but rapid departures from ambient temperature. The results are analyzed within the framework of a quasithermodynamic phenomenological model based on detailed balance. Under the usual experimental conditions, isothermal desorption at the temperature of the substrate is a general prediction of the model which seems to be substantiated. For realistic adsorption isotherms the time evolution of the net desorption flux nevertheless appears to be governed by a highly nonlinear equation. In such circumstances, a number of characteristic relaxation times may be identified. These time scales are distinct from, and in general unrelated to, the coverage-dependent mean lifetime of an atom on the surface. To characterize the overall nonlinear evolution towards steady state, a global time scale, defined in terms of both initial- and steady-state properties, is introduced to summarize the experimental data. Internal evidence suggests a criterion for judging when collisions among desorbed atoms are unimportant. When this condition is satisfied, data for near-equilibrium desorption agree well with the predictions of the model. Combining our results with earlier data at higher substrate temperatures and different ambient conditions, the overall picture is consistent with scaling properties implied by the theory. We show that the values of the parameters deduced from a Frenkel-Arrhenius parametrization of the global relaxation times, as well as a variety of other aspects of desorption kinetics, are actually consequences of the shape of the equilibrium adsorption isotherm.

  2. Defect annealing and thermal desorption of deuterium in low dose HFIR neutron-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Hara, Masanori; Otsuka, Teppei; Oya, Yasuhisa; Hatano, Yuji

    2015-08-01

    Three tungsten samples irradiated at High Flux Isotope Reactor at Oak Ridge National Laboratory were exposed to deuterium plasma (ion fluence of 1 × 1026 m-2) at three different temperatures (100, 200, and 500 °C) in Tritium Plasma Experiment at Idaho National Laboratory. Subsequently, thermal desorption spectroscopy was performed with a ramp rate of 10 °C min-1 up to 900 °C, and the samples were annealed at 900 °C for 0.5 h. These procedures were repeated three times to uncover defect-annealing effects on deuterium retention. The results show that deuterium retention decreases approximately 70% for at 500 °C after each annealing, and radiation damages were not annealed out completely even after the 3rd annealing. TMAP modeling revealed the trap concentration decreases approximately 80% after each annealing at 900 °C for 0.5 h.

  3. Thermally annealed gold nanoparticles for surface-assisted laser desorption ionisation-mass spectrometry of low molecular weight analytes.

    PubMed

    Pilolli, Rosa; Ditaranto, Nicoletta; Di Franco, Cinzia; Palmisano, Francesco; Cioffi, Nicola

    2012-10-01

    Metal nanomaterials have an emerging role in surface-assisted laser desorption ionisation-mass spectrometry (SALDI-MS) providing a useful tool to overcome some limitations intrinsically related to the use of conventional organic matrices in matrix-assisted LDI-MS. In this contribution, the possibility to use a stainless-steel-supported gold nanoparticle (AuNP) film as a versatile platform for SALDI-MS was assessed. A sacrificial anode electrosynthetic route was chosen in order to obtain morphologically controlled core-shell AuNPs; the colloidal AuNPs were, thereafter, drop cast onto a stainless-steel sample plate and the resulting AuNP film was thermally annealed in order to improve its effectiveness as LDI-MS promoter. Spectroscopic characterization of the nanostructured film by X-ray photoelectron spectroscopy was crucial for understanding how annealing induced changes in the surface chemistry and influenced the performance of AuNPs as desorption/ionisation promoter. In particular, it was demonstrated that the post-deposition treatments were essential to enhance the AuNP core/analyte interaction, thus resulting in SALDI-MS spectra of significantly improved quality. The AuNP films were applied to the detection of three different classes of low molecular weight (LMW) analytes, i.e. amino acids, peptides and LMW polymers, in order to demonstrate the versatility of this nanostructured material.

  4. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes.

    PubMed

    Lobo, Rui F M; Santos, Diogo M F; Sequeira, Cesar A C; Ribeiro, Jorge H F

    2012-02-06

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi 3.6 Co 0.85 Al 0.3 Mn 0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam-thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  5. DOUBLE DCO{sup +} RINGS REVEAL CO ICE DESORPTION IN THE OUTER DISK AROUND IM LUP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öberg, Karin I.; Loomis, Ryan; Andrews, Sean M.

    2015-09-10

    In a protoplanetary disk, a combination of thermal and non-thermal desorption processes regulate where volatiles are liberated from icy grain mantles into the gas phase. Non-thermal desorption should result in volatile-enriched gas in disk-regions where complete freeze-out is otherwise expected. We present Atacama Large Millimeter/Submillimeter Array observations of the disk around the young star IM Lup in 1.4 mm continuum, C{sup 18}O 2–1, H{sup 13}CO{sup +} 3–2 and DCO{sup +} 3–2 emission at ∼0.″5 resolution. The images of these dust and gas tracers are clearly resolved. The DCO{sup +} line exhibits a striking pair of concentric rings of emission thatmore » peak at radii of ∼0.″6 and 2″ (∼90 and 300 AU, respectively). Based on disk chemistry model comparison, the inner DCO{sup +} ring is associated with the balance of CO freeze-out and thermal desorption due to a radial decrease in disk temperature. The outer DCO{sup +} ring is explained by non-thermal desorption of CO ice in the low-column-density outer disk, repopulating the disk midplane with cold CO gas. The CO gas then reacts with abundant H{sub 2}D{sup +} to form the observed DCO{sup +} outer ring. These observations demonstrate that spatially resolved DCO{sup +} emission can be used to trace otherwise hidden cold gas reservoirs in the outmost disk regions, opening a new window onto their chemistry and kinematics.« less

  6. THERMAL DESORPTION MASS SPECTROMETRIC ANALYSIS OF ORGANIC AEROSOL FORMED FROM REACTIONS OF 1-TETRADECENE AND O3 IN THE PRESENCE OF ALCOHOLS AND CARBOXYLIC ACIDS. (R826235)

    EPA Science Inventory

    The chemistry of secondary organic aerosol formation from reactions of
    1-tetradecene and O3 in dry air in the presence of excess alcohols
    and carboxylic acids was investigated in an environmental chamber using a
    thermal desorption particle beam mass spec...

  7. Kinetic compensation effect in the thermal desorption of a binary gas mixture

    NASA Astrophysics Data System (ADS)

    Zuniga-Hansen, Nayeli; Silbert, Leonardo E.; Calbi, M. Mercedes

    The kinetic compensation effect, observed in many different areas of science, is the systematic change in the magnitudes of the Arrhenius parameters Ea, the energy of activation and ν, the preexponential factor, as a response to external perturbing parameters. Its existence continues to be debated as it has not been explicitly demonstrated and its physical origins remain poorly understood. As part of a systematic study of different factors that alter the energy of activation during thermal desorption, we have performed numerical studies of the effects of adsorbate-adsorbate interactions on the Arrhenius parameters, as well as the effects of changes in surface morphology. Our results have consistently shown that there is a partial compensation effect between Ea and lnν and a tendency towards isokinetic equilibrium when the system transitions from an interacting to a non-interacting regime. In the present work we study the effects of the presence of two different chemical species. With our systematic study we expect to provide a deeper insight into the microscopic events that originate compensation effects, not only in our system, but also in other fields where these effects have been reported.

  8. Thermal desorption comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry for vapour phase mainstream tobacco smoke analysis.

    PubMed

    Savareear, Benjamin; Brokl, Michał; Wright, Chris; Focant, Jean-Francois

    2017-11-24

    A thermal desorption comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (TD-GC×GC-TOFMS) method has been developed for the analysis of mainstream tobacco smoke (MTS) vapour phase (VP). The selection process of the sample introduction approach involved comparing the results obtained from three different approaches: a) use of gas sampling bag followed by SPME (Tedlar ® -SPME), b) gas sampling bag followed by TD (Tedlar ® -TD), and c) sampling directly on TD sorbents (Direct-TD). Six different SPME fibers and six different TD sorbent beds were evaluated for the extraction capacities in terms of total number of peaks and related intensities or peak areas. The best results were obtained for the Direct-TD approach using Tenax TA/Carbograph1TD/Carboxen1003 sorbent tubes. The optimisation of TD tube desorption parameters was carried out using a face-centered central composite experimental design and resulted in the use of the Tenax TA/Carbograph 1TD/Carboxen 1003 sorbent with a 7.5min desorption time, a 60mL/min tube desorption flow, and a 250°C tube desorption temperature. The optimised method was applied to the separation of MTS-VP constituents, with 665 analytes detected. The method precision ranged from 1% to 15% for over 99% of identified peak areas and from 0% to 3% and 0% to 1% for both first ( 1 t R ) and second ( 2 t R ) dimension retention times, respectively. The method was applied to the analyses of two cigarette types differing in their filter construction. Principal component analysis (PCA) allowed a clear differentiation of the studied cigarette types (PC1 describing 94% of the explained variance). Supervised Fisher ratio analysis permitted the identification of compounds responsible for the chemical differences between the two sample types. A set of 91 most relevant compounds was selected by applying a Fisher ratio cut-off approach and most of them were selectively removed by one of the cigarette filter types

  9. Desorption of oxygen from alloyed Ag/Pt(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankowski, Maciej; Wormeester, Herbert, E-mail: h.wormeester@utwente.nl; Zandvliet, Harold J. W.

    2014-06-21

    We have investigated the interaction of oxygen with the Ag/Pt(111) surface alloy by thermal desorption spectroscopy (TDS). The surface alloy was formed during the deposition of sub-monolayer amounts of silver on Pt(111) at 800 K and subsequent cooling to 300 K. The low-temperature phase of the surface alloy is composed of nanometer-sized silver rich stripes, embedded within platinum-rich domains, which were characterized with spot profile analysis low energy electron diffraction. The TDS measurements show that oxygen adsorption is blocked on Ag sites: the saturation coverage of oxygen decreases with increasing Ag coverage. Also, the activation energy for desorption (E{sub des})more » decreases with Ag coverage. The analysis of the desorption spectra from clean Pt(111) shows a linear decay of E{sub des} with oxygen coverage, which indicates repulsive interactions between the adsorbed oxygen atoms. In contrast, adsorption on alloyed Ag/Pt(111) leads to an attractive interaction between adsorbed oxygen atoms.« less

  10. Evaluation of GeO desorption behavior in the metalGeO(2)Ge structure and its improvement of the electrical characteristics.

    PubMed

    Oniki, Yusuke; Koumo, Hideo; Iwazaki, Yoshitaka; Ueno, Tomo

    2010-06-15

    The relation between germanium monoxide (GeO) desorption and either improvement or deterioration in electrical characteristics of metalGeO(2)Ge capacitors fabricated by thermal oxidation has been investigated. In the metalGeO(2)Ge stack, two processes of GeO desorption at different sites and at different temperatures were observed by thermal desorption spectroscopy measurements. The electrical characteristics of as-oxidized metalGeO(2)Ge capacitors shows a large flat-band voltage shift and minority carrier generation due to the GeO desorption from the GeO(2)Ge interface during oxidation of Ge substrates. On the other hand, the electrical properties were drastically improved by a postmetallization annealing at low temperature resulting in a metal catalyzed GeO desorption from the top interface.

  11. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes

    PubMed Central

    Lobo, Rui F. M.; Santos, Diogo M. F.; Sequeira, Cesar A. C.; Ribeiro, Jorge H. F.

    2012-01-01

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam—thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption. PMID:28817043

  12. Improved spatial resolution for spot sampling in thermal desorption atomic force microscopy – mass spectrometry via rapid heating functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somnath, Suhas; Jesse, Stephen; Van Berkel, Gary J.

    The key to advancing materials is to understand and control their structure and chemistry. However, thorough chemical characterization is challenging since existing techniques characterize only a few properties of the specimen, thereby necessitating multiple measurement platforms to acquire the necessary information. The multimodal combination of atomic force microscopy (AFM) and mass spectrometry (MS) transcends existing analytical capabilities for nanometer scale spatially resolved correlation of the chemical and physical properties of a sample surface. One such hybrid system employs heated AFM cantilevers for thermal desorption (TD) sampling of molecules from a surface and subsequent gas phase ionization and detection of themore » liberated species by MS. Here in this paper, we report on the use of voltage pulse trains to tailor cantilever heating such that spot sampling size was reduced and mass spectral signal was improved compared to constant voltage, static heating of the cantilever. Desorption efficiency (DE), defined as the quotient of the mass spectral signal intensity and the volume of the desorption crater, was used to judge the effectiveness of a particular tailored heating function. To guide the development and optimization of the heating functions and aid in interpreting experimental results, a 1D finite element model was developed that predicted the cantilever response to different heating functions. Three tailored heating functions that used different combinations, magnitudes, and durations of rectangular voltage pulses, were used for surface spot sampling. The resultant sampling spot size and DE were compared to the same metrics obtained with the conventional method that uses a single voltage pulse. Using a model system composed of a thin film of ink containing pigment yellow 74 as a model system, desorption craters shrunk from 2 μm, using the conventional approach, to 310 nm using the optimum tailored heating function. This same pulsed heating

  13. Improved spatial resolution for spot sampling in thermal desorption atomic force microscopy – mass spectrometry via rapid heating functions

    DOE PAGES

    Somnath, Suhas; Jesse, Stephen; Van Berkel, Gary J.; ...

    2017-04-17

    The key to advancing materials is to understand and control their structure and chemistry. However, thorough chemical characterization is challenging since existing techniques characterize only a few properties of the specimen, thereby necessitating multiple measurement platforms to acquire the necessary information. The multimodal combination of atomic force microscopy (AFM) and mass spectrometry (MS) transcends existing analytical capabilities for nanometer scale spatially resolved correlation of the chemical and physical properties of a sample surface. One such hybrid system employs heated AFM cantilevers for thermal desorption (TD) sampling of molecules from a surface and subsequent gas phase ionization and detection of themore » liberated species by MS. Here in this paper, we report on the use of voltage pulse trains to tailor cantilever heating such that spot sampling size was reduced and mass spectral signal was improved compared to constant voltage, static heating of the cantilever. Desorption efficiency (DE), defined as the quotient of the mass spectral signal intensity and the volume of the desorption crater, was used to judge the effectiveness of a particular tailored heating function. To guide the development and optimization of the heating functions and aid in interpreting experimental results, a 1D finite element model was developed that predicted the cantilever response to different heating functions. Three tailored heating functions that used different combinations, magnitudes, and durations of rectangular voltage pulses, were used for surface spot sampling. The resultant sampling spot size and DE were compared to the same metrics obtained with the conventional method that uses a single voltage pulse. Using a model system composed of a thin film of ink containing pigment yellow 74 as a model system, desorption craters shrunk from 2 μm, using the conventional approach, to 310 nm using the optimum tailored heating function. This same pulsed heating

  14. Desorption dynamics of deuterium in CuCrZr alloy

    NASA Astrophysics Data System (ADS)

    Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong

    2017-12-01

    Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.

  15. Evaluation of GeO desorption behavior in the metal∕GeO2∕Ge structure and its improvement of the electrical characteristics

    PubMed Central

    Oniki, Yusuke; Koumo, Hideo; Iwazaki, Yoshitaka; Ueno, Tomo

    2010-01-01

    The relation between germanium monoxide (GeO) desorption and either improvement or deterioration in electrical characteristics of metal∕GeO2∕Ge capacitors fabricated by thermal oxidation has been investigated. In the metal∕GeO2∕Ge stack, two processes of GeO desorption at different sites and at different temperatures were observed by thermal desorption spectroscopy measurements. The electrical characteristics of as-oxidized metal∕GeO2∕Ge capacitors shows a large flat-band voltage shift and minority carrier generation due to the GeO desorption from the GeO2∕Ge interface during oxidation of Ge substrates. On the other hand, the electrical properties were drastically improved by a postmetallization annealing at low temperature resulting in a metal catalyzed GeO desorption from the top interface. PMID:20644659

  16. Trapping and desorption of complex organic molecules in water at 20 K

    NASA Astrophysics Data System (ADS)

    Burke, Daren J.; Puletti, Fabrizio; Woods, Paul M.; Viti, Serena; Slater, Ben; Brown, Wendy A.

    2015-10-01

    The formation, chemical, and thermal processing of complex organic molecules (COMs) is currently a topic of much interest in interstellar chemistry. The isomers glycolaldehyde, methyl formate, and acetic acid are particularly important because of their role as pre-biotic species. It is becoming increasingly clear that many COMs are formed within interstellar ices which are dominated by water. Hence, the interaction of these species with water ice is crucially important in dictating their behaviour. Here, we present the first detailed comparative study of the adsorption and thermal processing of glycolaldehyde, methyl formate, and acetic acid adsorbed on and in water ices at astrophysically relevant temperatures (20 K). We show that the functional group of the isomer dictates the strength of interaction with water ice, and hence the resulting desorption and trapping behaviour. Furthermore, the strength of this interaction directly affects the crystallization of water, which in turn affects the desorption behaviour. Our detailed coverage and composition dependent data allow us to categorize the desorption behaviour of the three isomers on the basis of the strength of intermolecular and intramolecular interactions, as well as the natural sublimation temperature of the molecule. This categorization is extended to other C, H, and O containing molecules in order to predict and describe the desorption behaviour of COMs from interstellar ices.

  17. Segregation of O2 and CO on the surface of dust grains determines the desorption energy of O2

    NASA Astrophysics Data System (ADS)

    Noble, J. A.; Diana, S.; Dulieu, F.

    2015-12-01

    Selective depletion towards pre-stellar cores is still not understood. The exchange between the solid and gas phases is central to this mystery. The aim of this paper is to show that the thermal desorption of O2 and CO from a submonolayer mixture is greatly affected by the composition of the initial surface population. We have performed thermally programmed desorption (TPD) experiments on various submonolayer mixtures of O2 and CO. Pure O2 and CO exhibit almost the same desorption behaviour, but their desorption differs strongly when mixed. Pure O2 is slightly less volatile than CO, while in mixtures, O2 desorbs earlier than CO. We analyse our data using a desorption law linking competition for binding sites with desorption, based on the assumption that the binding energy distribution of both molecules is the same. We apply Fermi-Dirac statistics in order to calculate the adsorption site population distribution, and derive the desorbing fluxes. Despite its simplicity, the model reproduces the observed desorption profiles, indicating that competition for adsorption sites is the reason for lower temperature O2 desorption. CO molecules push-out or `dislodge' O2 molecules from the most favourable binding sites, ultimately forcing their early desorption. It is crucial to consider the surface coverage of dust grains in any description of desorption. Competition for access to binding sites results in some important discrepancies between similar kinds of molecules, such as CO and O2. This is an important phenomenon to be investigated in order to develop a better understanding of the apparently selective depletion observed in dark molecular clouds.

  18. ε-Polylysine-based thermo-responsive adsorbents for immunoglobulin adsorption-desorption under mild conditions.

    PubMed

    Maruyama, Masashi; Shibuya, Keisuke

    2017-08-22

    Thermo-responsive adsorbents for immunoglobulin G (IgG) employing ε-polylysine (EPL) as a polymer backbone were developed. The introduction of mercaptoethylpyridine (MEP) as an IgG-binding ligand and hydrophobization of side chains afforded thermo-responsive IgG adsorbents, whose thermo-responsive IgG desorption ratio was up to 88% (EPL/MEP derivative 3m). The changes in surface densities of active MEP groups, which are caused by thermal conformational changes of the adsorbents, play key roles for IgG desorption. Although a trade-off of IgG adsorption capacity and IgG desorption ratio was observed, the present study offers a novel molecular design for thermo-responsive adsorbents with high synthetic accessibility and potentially low toxicity.

  19. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    PubMed

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Detection of gaseous compounds by needle trap sampling and direct thermal-desorption photoionization mass spectrometry: concept and demonstrative application to breath gas analysis.

    PubMed

    Kleeblatt, Juliane; Schubert, Jochen K; Zimmermann, Ralf

    2015-02-03

    A fast detection method to analyze gaseous organic compounds in complex gas mixtures was developed, using a needle trap device (NTD) in conjunction with thermal-desorption photoionization time-of-flight mass spectrometry (TD-PI-TOFMS). The mass spectrometer was coupled via a deactivated fused silica capillary to an injector of a gas chromatograph. In the hot injector, the analytes collected on the NTD were thermally desorbed and directly transferred to the PI-TOFMS ion source. The molecules are softly ionized either by single photon ionization (SPI, 118 nm) or by resonance enhanced multiphoton ionization (REMPI, 266 nm), and the molecular ion signals are detected in the TOF mass analyzer. Analyte desorption and the subsequent PI-TOFMS detection step only lasts ten seconds. The specific selectivity of REMPI (i.e., aromatic compounds) and universal ionization characteristics render PI-MS as a promising detection system. As a first demonstrative application, the alveolar phase breath gas of healthy, nonsmoking subjects was sampled on NTDs. While smaller organic compounds such as acetone, acetaldehyde, isoprene, or cysteamine can be detected in the breath gas with SPI, REMPI depicts the aromatic substances phenol and indole at 266 nm. In the breath gas of a healthy, smoking male subject, several xenobiotic substances such as benzene, toluene, styrene, and ethylbenzene can be found as well. Furthermore, the NTD-REMPI-TOFMS setup was tested for breath gas taken from a mechanically ventilated pig under continuous intravenous propofol (2,6-diisopropylphenol, narcotic drug) infusion.

  1. Hydrophilic magnetic ionic liquid for magnetic headspace single-drop microextraction of chlorobenzenes prior to thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Fernández, Elena; Vidal, Lorena; Canals, Antonio

    2017-11-23

    A new, fast, easy to handle, and environmentally friendly magnetic headspace single-drop microextraction (Mag-HS-SDME) based on a magnetic ionic liquid (MIL) as an extractant solvent is presented. A small drop of the MIL 1-ethyl-3-methylimidazolium tetraisothiocyanatocobaltate(II) ([Emim] 2 [Co(NCS) 4 ]) is located on one end of a small neodymium magnet to extract nine chlorobenzenes (1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,2,3,4-tetrachlorobenzene, 1,2,4,5-tetrachlorobenzene, and pentachlorobenzene) as model analytes from water samples prior to thermal desorption-gas chromatography-mass spectrometry determination. A multivariate optimization strategy was employed to optimize experimental parameters affecting Mag-HS-SDME. The method was evaluated under optimized extraction conditions (i.e., sample volume, 20 mL; MIL volume, 1 μL; extraction time, 10 min; stirring speed, 1500 rpm; and ionic strength, 15% NaCl (w/v)), obtaining a linear response from 0.05 to 5 μg L -1 for all analytes. The repeatability of the proposed method was evaluated at 0.7 and 3 μg L -1 spiking levels and coefficients of variation ranged between 3 and 18% (n = 3). Limits of detection were in the order of nanograms per liter ranging from 4 ng L -1 for 1,4-dichlorobenzene and 1,2,3,4-tetrachlorobenzene to 8 ng L -1 for 1,2,4,5-tetrachlorobenzene. Finally, tap water, pond water, and wastewater were selected as real water samples to assess the applicability of the method. Relative recoveries varied between 82 and 114% showing negligible matrix effects. Graphical abstract Magnetic headspace single-drop microextraction followed by thermal desorption-gas chromatography-mass spectrometry.

  2. Film growth, adsorption and desorption kinetics of indigo on SiO2.

    PubMed

    Scherwitzl, Boris; Resel, Roland; Winkler, Adolf

    2014-05-14

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

  3. Comparison between different adsorption-desorption kinetics schemes in two dimensional lattice gas

    NASA Astrophysics Data System (ADS)

    Huespe, V. J.; Belardinelli, R. E.; Pereyra, V. D.; Manzi, S. J.

    2017-12-01

    Monte Carlo simulation is used to study the adsorption-desorption kinetics in the framework of the kinetic lattice-gas model. Three schemes of the so-called hard dynamics and five schemes of the so called soft dynamics were used for this purpose. It is observed that for the hard dynamic schemes, the equilibrium and non-equilibrium observable, such as adsorption isotherms, sticking coefficients, and thermal desorption spectra, have a normal or physical sustainable behavior. While for the soft dynamics schemes, with the exception of the transition state theory, the equilibrium and non-equilibrium observables have several problems.

  4. Ink dating using thermal desorption and gas chromatography/mass spectrometry: comparison of results obtained in two laboratories.

    PubMed

    Koenig, Agnès; Bügler, Jürgen; Kirsch, Dieter; Köhler, Fritz; Weyermann, Céline

    2015-01-01

    An ink dating method based on solvent analysis was recently developed using thermal desorption followed by gas chromatography/mass spectrometry (GC/MS) and is currently implemented in several forensic laboratories. The main aims of this work were to implement this method in a new laboratory to evaluate whether results were comparable at three levels: (i) validation criteria, (ii) aging curves, and (iii) results interpretation. While the results were indeed comparable in terms of validation, the method proved to be very sensitive to maintenances. Moreover, the aging curves were influenced by ink composition, as well as storage conditions (particularly when the samples were not stored in "normal" room conditions). Finally, as current interpretation models showed limitations, an alternative model based on slope calculation was proposed. However, in the future, a probabilistic approach may represent a better solution to deal with ink sample inhomogeneity. © 2014 American Academy of Forensic Science.

  5. Chemometric studies for the characterization and differentiation of microorganisms using in situ derivatization and thermal desorption ion mobility spectrometry.

    PubMed

    Ochoa, Mariela L; Harrington, Peter B

    2005-02-01

    Whole-cell bacteria were characterized and differentiated by thermal desorption ion mobility spectrometry and chemometric modeling. Principal component analysis was used to evaluate the differences in the ion mobility spectra of whole-cell bacteria and the fatty acid methyl esters (FAMEs) generated in situ after derivatization of the bacterial lipids. Alternating least squares served to extract bacterial peaks from the complex ion mobility spectra of intact microorganisms and, therefore, facilitated the characterization of bacterial strains, species, and Gram type. In situ thermal hydrolysis/methylation with tetramethylammonium hydroxide was necessary for the differentiation of Escherichia coli strains, which otherwise could not be distinguished by spectra acquired with the ITEMISER ion mobility spectrometer. The addition of the methylating agent had no effect on Gram-positive bacteria, and therefore, they could not be differentiated by genera. The classification of E. coli strains was possible by analysis of the IMS spectra from the FAMEs generated in situ. By using the fuzzy multivariate rule-building expert system and cross-validation, a correct classification rate of 96% (22 out of 23 spectra) was obtained. Chemometric modeling on bacterial ion mobility spectra coupled to thermal hydrolysis/methylation proved a simple, rapid (2 min/sample), inexpensive, and sensitive technique to characterize and differentiate intact microorganisms. The ITEMISER ion mobility spectrometer could detect as few as 4 x 10(6) cells/sample.

  6. Solid-phase microextraction with temperature-programmed desorption for the analysis of iodination disinfection byproducts.

    PubMed

    Frazey, P A; Barkley, R M; Sievers, R E

    1998-02-01

    An analytical approach for the determination of chlorination and iodination disinfection byproducts based on solid-phase microextraction (SPME) was developed. Solid-phase microextraction presents a simple, rapid, sensitive, and solvent-free approach to sample preparation in which analytes in either air or water matrixes are extracted into the polymeric coating of an optical fiber. Analytes are subsequently thermally desorbed in the injection port of a gas chromatograph for separation, detection, and quantitation. Thermal degradation of iodoform was observed during desorption from a polyacrylate fiber in initial GC/MS and GC/ECD experiments. Experiments were designed to determine SPME conditions that would allow quantification without significant degradation of analytes. Isothermal and temperature-programmed thermal desorptions were evaluated for efficacy in transferring analytes with wide-ranging volatilities and thermal stabilities into chromatographic analysis columns. A temperature-programmed desorption (TPD) (120-200 degrees C at 5 degrees C/min with an on-column injection port or 150-200 degrees C at 25 degrees C/min with a split/splitless injection port) was able to efficiently remove analytes with wide-ranging volatilities without causing thermal degradation. The SPME-TPD method was linear over 2-3 orders of magnitude with an electron capture detector and detection limits were in the submicrogram per liter range. Precision and detection limits for selected trihalomethanes were comparable to those of EPA method 551. Extraction efficiencies were not affected by the presence of 10 mg/L soap, 15 mg/L sodium iodide, and 6000 mg/L sodium thiosulfate. The SPME-TPD technique was applied to the determination of iodination disinfection byproducts from individual precursor compounds using GC/MS and to the quantitation of iodoform at trace levels in a water recycle system using GC/ECD.

  7. A green strategy for desorption of trihalomethanes adsorbed by humin and reuse of the fixed bed column.

    PubMed

    Cunha, G C; Romão, L P C; Santos, M C; Costa, A S; Alexandre, M R

    2012-03-30

    The objective of the present work was to develop a thermal desorption method for the removal of trihalomethanes (THM) adsorbed by humin, followed by multiple recycling of the fixed bed column in order to avoid excessive consumption of materials and reduce operating costs. The results obtained for adsorption on a fixed bed column confirmed the effectiveness of humin as an adsorbent, extracting between 45.9% and 90.1% of the total THM (TTHM). In none of the tests was the column fully saturated after 10h. Experiments involving thermal desorption were used to evaluate the potential of the technique for column regeneration. The adsorptive capacity of the humin bed increased significantly (p<0.05) between the first and fifth desorption cycle, by 18.9%, 18.1%, 24.2%, 20.2% and 24.2% for CHBr(3), CHBr(2)Cl, CHBrCl(2), CHCl(3) and TTHM, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Film growth, adsorption and desorption kinetics of indigo on SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherwitzl, Boris, E-mail: b.scherwitzl@tugraz.at; Resel, Roland; Winkler, Adolf

    2014-05-14

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation ofmore » dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.« less

  9. Flash Desorption/Mass Spectrometry for the Analysis of Less- and Nonvolatile Samples Using a Linearly Driven Heated Metal Filament

    NASA Astrophysics Data System (ADS)

    Usmanov, Dilshadbek T.; Ninomiya, Satoshi; Hiraoka, Kenzo

    2013-11-01

    In this paper, the important issue of the desorption of less- and nonvolatile compounds with minimal sample decomposition in ambient mass spectrometry is approached using ambient flash desorption mass spectrometry. The preheated stainless steel filament was driven down and up along the vertical axis in 0.3 s. At the lowest position, it touched the surface of the sample with an invasion depth of 0.1 mm in 50 ms (flash heating) and was removed from the surface (fast cooling). The heating rate corresponds to ~104 °C/s at the filament temperature of 500 °C. The desorbed gaseous molecules were ionized by using a dielectric barrier discharge ion source, and the produced ions were detected by a time-of-flight (TOF) mass spectrometer. Less-volatile samples, such as pharmaceutical tablets, narcotics, explosives, and C60 gave molecular and protonated molecule ions as major ions with thermal decomposition minimally suppressed. For synthetic polymers (PMMA, PLA, and PS), the mass spectra reflected their backbone structures because of the suppression of the sequential thermal decompositions of the primary products. The present technique appears to be suitable for high-throughput qualitative analyses of many types of solid samples in the range from a few ng to 10 μg with minimal sample consumption. Some contribution from tribodesorption in addition to thermal desorption was suggested for the desorption processes. [Figure not available: see fulltext.

  10. Film growth, adsorption and desorption kinetics of indigo on SiO2

    PubMed Central

    Scherwitzl, Boris; Resel, Roland; Winkler, Adolf

    2015-01-01

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer des orption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption. PMID:24832297

  11. Thin-layer chromatography and mass spectrometry coupled using proximal probe thermal desorption with electrospray or atmospheric pressure chemical ionization.

    PubMed

    Ovchinnikova, Olga S; Van Berkel, Gary J

    2010-06-30

    An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high-performance thin-layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read-out resolution, detection limits, and surface type are discussed.

  12. CHARACTERISTICS OF MERCURY DESORPTION FROM SORBENTS AT ELEVATED TEMPERATURES. (R822721C697)

    EPA Science Inventory

    This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. ...

  13. CHARACTERISTICS OF MERCURY DESORPTION FROM SORBENTS AT ELEVATED TEMPERATURES. (R826694C697)

    EPA Science Inventory

    This study investigated the dynamic desorption characteristics of mercury during the thermal treatment of mercury-loaded sorbents at elevated temperatures under fixed-bed operations. Experiments were carried out in a 25.4 mm ID quartz bed enclosed in an electric furnace. ...

  14. DESORPTION OF PYRETHROIDS FROM SUSPENDED SOLIDS

    PubMed Central

    Fojut, Tessa L.; Young, Thomas M.

    2014-01-01

    Pyrethroid insecticides have been widely detected in sediments at concentrations that can cause toxicity to aquatic organisms. Desorption rates play an important role in determining the bioavailability of hydrophobic organic compounds, such as pyrethroids, because these compounds are more likely to be sorbed to solids in the environment and times to reach sorptive equilibrium can be long. In this study, sequential Tenax desorption experiments were performed with three sorbents, three aging times, and four pyrethroids. A biphasic rate model was fit to the desorption data with r2 > 0.99 and the rapid and slow compartment desorption rate constants and compartment fractions are reported. Suspended solids from irrigation runoff water collected from a field that had been sprayed with permethrin one day prior were used in the experiments to compare desorption rates for field-applied pyrethroids to those for laboratory-spiked materials. Suspended solids were used in desorption experiments because suspended solids can be a key source of hydrophobic compounds to surface waters. The rapid desorption rate parameters of field-applied permethrin were not statistically different than those of laboratory spiked permethrin, indicating that the desorption of the spiked pyrethroids is comparable to those added and aged in the field. Sorbent characteristics had the greatest effect on desorption rate parameters; as organic carbon content of the solids increased, the rapid desorption fractions and rapid desorption rate constants both decreased. The desorption rate constant of the slow compartment for sediment containing permethrin aged for 28 d was significantly different from those aged 1 d and 7 d, while desorption in the rapid and slow compartments did not differ between these treatments. PMID:21538493

  15. Chemical desorption and diffusive dust chemistry

    NASA Astrophysics Data System (ADS)

    Dulieu, Francois; Pirronello, Valerio; Minissale, Marco; Congiu, Emanuele; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Accolla, Mario; Cazaux, Stephanie; Manicò, Giulio

    In molecular clouds, gaseous species can accrete efficiently on the cold surfaces of dust grains. As for radical-radical reactions, the surface of the grains acts as a third body, and changes dramatically the efficiency of the reactions (i.e., H2 formation), or lowers considerably the barrier to formation (i.e., H2O synthesis) in comparison with gas phase reaction processes. These properties make dust grains efficient catalytic templates. However, the chemical role of dust grains depends on the diffusive properties of the reactive partners. Over the last years, we have developed experimental tools and methods to explore the chemistry occurring on cold (6-50K) surfaces. We have obtained some hints about the diffusivity of H on amorphous ice, and studied in detail the diffusion of O atoms. The latter species appears to have a hopping rate in the range 0.01-100 hops/sec. The diffusion rate of O atoms is dependent on the surface morphology and on the surface temperature. The diffusion law is compatible with a diffusion dominated by quantum tunnelling rather than classical thermal hopping. Using H, O, N atoms and, indirectly, OH and HCO radicals, we have begun to explore many chemical reactive networks. In this presentation, I will focus on the formation of H2O and CO2, and will propose many possible formation routes to obtain these chemical traps. The molecules formed on surfaces have a certain probability of desorbing upon their formation. This non-thermal desorption mechanism, or chemical desorption, has been proposed to explain why some molecules can be detected in the gas phase of those region where they were believed to be part of the icy mantles covering dust grains. We have shown that this process can be very efficient, but is very sensitive to the substrate and the surroundings of the reaction site, is dependent on the kind of molecule formed and its chemical pathway. In my presentation I will present how the surface coverage and the type of reaction can play a

  16. Distinguishing chinese star anise from Japanese star anise using thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Howes, Melanie-Jayne R; Kite, Geoffrey C; Simmonds, Monique S J

    2009-07-08

    The volatile compounds from the pericarps of Illicium anisatum L., Illicium brevistylum A.C.Sm., Illicium griffithii Hook.f. & Thomson, Illicium henryi Diels, Illicium lanceolatum A.C.Sm., Illicium majus Hook.f. & Thomson, Illicium micranthum Dunn, and Illicium verum Hook.f. were examined by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). The volatiles desorbed from the pericarps of I. verum (Chinese star anise), the species traded for culinary purposes, were generally characterized by a high proportion of (E)-anethole (57.6-77.1%) and the presence of foeniculin; the latter was otherwise only detected in the pericarps of I. lanceolatum. In the pericarps of all other species analyzed, the percentage composition of (E)-anethole was comparatively lower (

  17. Rapid Quantification of N-Methyl-2-pyrrolidone in Polymer Matrices by Thermal Desorption-GC/MS.

    PubMed

    Kim, Young-Min; Kim, Jae Woo; Moon, Hye Mi; Lee, Min-Jin; Hosaka, Akihiko; Watanabe, Atsushi; Teramae, Norio; Park, Young-Kwon; Myung, Seung-Woon

    2017-01-01

    Analysis of a residual solvent in polymeric materials has become an important issue due to the increased regulations and standards for its use. N-Methyl-2-pyrrolidone (NMP) is a solvent widely used in many industries and restricted as one of the chemicals under EU REACH regulations due to its potential harmful effects. In this study, thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) is applied for the quantitative analysis of NMP with the use of a polymer-coated sample cup. By using the polymer-coated sample cup, the vaporization of NMP was prevented during waiting time before TD-GC/MS analysis. The calibration curve for the TD method showed good linearity (correlation coefficient, r 2 = 0.9998) and precision values (below 5.3% RSD). NMP recovery rates in different polymer matrices (PS, PMMA and PVC) were in the range of 98.8 to 106.6% with RSD values below 5.0%. The quantification result (600 mg NMP/kg PVC) for the blind NMP carrying sample in a PVC matrix by TD-GC/MS was higher than that (532 mg NMP/kg PVC) by solvent extraction-GC/MS method.

  18. Highly hydrogen-sensitive thermal desorption spectroscopy system for quantitative analysis of low hydrogen concentration (˜1 × 1016 atoms/cm3) in thin-film samples

    NASA Astrophysics Data System (ADS)

    Hanna, Taku; Hiramatsu, Hidenori; Sakaguchi, Isao; Hosono, Hideo

    2017-05-01

    We developed a highly hydrogen-sensitive thermal desorption spectroscopy (HHS-TDS) system to detect and quantitatively analyze low hydrogen concentrations in thin films. The system was connected to an in situ sample-transfer chamber system, manipulators, and an rf magnetron sputtering thin-film deposition chamber under an ultra-high-vacuum (UHV) atmosphere of ˜10-8 Pa. The following key requirements were proposed in developing the HHS-TDS: (i) a low hydrogen residual partial pressure, (ii) a low hydrogen exhaust velocity, and (iii) minimization of hydrogen thermal desorption except from the bulk region of the thin films. To satisfy these requirements, appropriate materials and components were selected, and the system was constructed to extract the maximum performance from each component. Consequently, ˜2000 times higher sensitivity to hydrogen than that of a commercially available UHV-TDS system was achieved using H+-implanted Si samples. Quantitative analysis of an amorphous oxide semiconductor InGaZnO4 thin film (1 cm × 1 cm × 1 μm thickness, hydrogen concentration of 4.5 × 1017 atoms/cm3) was demonstrated using the HHS-TDS system. This concentration level cannot be detected using UHV-TDS or secondary ion mass spectroscopy (SIMS) systems. The hydrogen detection limit of the HHS-TDS system was estimated to be ˜1 × 1016 atoms/cm3, which implies ˜2 orders of magnitude higher sensitivity than that of SIMS and resonance nuclear reaction systems (˜1018 atoms/cm3).

  19. Increasing productivity for the analysis of trace contaminants in food by gas chromatography-mass spectrometry using automated liner exchange, backflushing and heart-cutting.

    PubMed

    David, Frank; Tienpont, Bart; Devos, Christophe; Lerch, Oliver; Sandra, Pat

    2013-10-25

    Laboratories focusing on residue analysis in food are continuously seeking to increase sample throughput by minimizing sample preparation. Generic sample extraction methods such as QuEChERS lack selectivity and consequently extracts are not free from non-volatile material that contaminates the analytical system. Co-extracted matrix constituents interfere with target analytes, even if highly sensitive and selective GC-MS/MS is used. A number of GC approaches are described that can be used to increase laboratory productivity. These techniques include automated inlet liner exchange and column backflushing for preservation of the performance of the analytical system and heart-cutting two-dimensional GC for increasing sensitivity and selectivity. The application of these tools is illustrated by the analysis of pesticides in vegetables and fruits, PCBs in milk powder and coplanar PCBs in fish. It is demonstrated that considerable increase in productivity can be achieved by decreasing instrument down-time, while analytical performance is equal or better compared to conventional trace contaminant analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Numerical comparison of hydrogen desorption behaviors of metal hydride beds based on uranium and on zirconium-cobalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoung, S.; Yoo, H.; Ju, H.

    2015-03-15

    In this paper, the hydrogen delivery capabilities of uranium (U) and zirconium-cobalt (ZrCo) are compared quantitatively in order to find the optimum getter materials for tritium storage. A three-dimensional hydrogen desorption model is applied to two identically designed cylindrical beds with the different materials, and hydrogen desorption simulations are then conducted. The simulation results show superior hydrogen delivery performance and easier thermal management capability for the U bed. This detailed analysis of the hydrogen desorption behaviors of beds with U and ZrCo will help to identify the optimal bed material, bed design, and operating conditions for the storage and deliverymore » system in ITER. (authors)« less

  1. Gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  2. The evolution of helium from aged Zr tritides: A thermal helium desorption spectrometry study

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Huang, G.; Chen, M.; Zhou, X. S.; Liu, J. H.; Peng, S. M.; Ding, W.; Wang, H. F.; Shi, L. Q.

    2018-02-01

    The evolution of He from Zr-tritides was investigated for aging times up to about 6.5 years using analytical thermal helium desorption spectrometry (THDS). Zr films were deposited onto Mo substrates and then converted into Zr-tritides (ZrT1.70∼1.95) inside a tritiding apparatus loaded with pure tritium gas. During aging, there are at least five forms of He in Zr-tritides, and more than 99% of He atoms are in the form of He bubbles. The isolated He bubbles in lattices begin to link with each other when the He/Zr atom ratio reaches about 0.21, and are connected to grain boundaries or dislocation networks at He concentration of He/Zr ≈ 0.26. An interconnected system of channels decorated by bubbles evolves from the network dislocations, dislocation loops and internal boundaries. These He filled networks are formed completely when the He/Zr atom ratio is about 0.38. Once the He/Zr reached about 0.45, the networks of He bubble penetrate to the film surface and He begins an "accelerated release". This critical ratio of He to Zr for He accelerated release is much greater than that found previously for Ti-tritides (0.23-0.30). The difference of He retention in Zr-tritides and Ti-tritides was also discussed in this paper.

  3. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes.

    PubMed

    Abdelhamid, Hani Nasser

    2018-03-01

    Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks. Graphical abstract An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.

  4. Direct Detection of Pharmaceuticals and Personal Care Products from Aqueous Samples with Thermally-Assisted Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Campbell, Ian S.; Ton, Alain T.; Mulligan, Christopher C.

    2011-07-01

    An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.

  5. Direct detection of pharmaceuticals and personal care products from aqueous samples with thermally-assisted desorption electrospray ionization mass spectrometry.

    PubMed

    Campbell, Ian S; Ton, Alain T; Mulligan, Christopher C

    2011-07-01

    An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.

  6. Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy; Parra, Amanda; Russell, Marion

    Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirredmore » tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.« less

  7. Modelling of discrete TDS-spectrum of hydrogen desorption

    NASA Astrophysics Data System (ADS)

    Rodchenkova, Natalia I.; Zaika, Yury V.

    2015-12-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.

  8. Mechanisms of Nanophase-Induced Desorption in LDI-MS. A Short Review

    PubMed Central

    Picca, Rosaria Anna; Calvano, Cosima Damiana; Cioffi, Nicola; Palmisano, Francesco

    2017-01-01

    Nanomaterials are frequently used in laser desorption ionization mass spectrometry (LDI-MS) as DI enhancers, providing excellent figures of merit for the analysis of low molecular weight organic molecules. In recent years, literature on this topic has benefited from several studies assessing the fundamental aspects of the ion desorption efficiency and the internal energy transfer, in the case of model analytes. Several different parameters have been investigated, including the intrinsic chemical and physical properties of the nanophase (chemical composition, thermal conductivity, photo-absorption efficiency, specific heat capacity, phase transition point, explosion threshold, etc.), along with morphological parameters such as the nanophase size, shape, and interparticle distance. Other aspects, such as the composition, roughness and defects of the substrate supporting the LDI-active nanophases, the nanophase binding affinity towards the target analyte, the role of water molecules, have been taken into account as well. Readers interested in nanoparticle based LDI-MS sub-techniques (SALDI-, SELDI-, NALDI- MS) will find here a concise overview of the recent findings in the specialized field of fundamental and mechanistic studies, shading light on the desorption ionization phenomena responsible of the outperforming MS data offered by these techniques. PMID:28368330

  9. Development of a miniaturized diffusive sampler for true breathing-zone sampling and thermal desorption gas chromatographic analysis.

    PubMed

    Lindahl, Roger; Levin, Jan-Olof; Sundgren, Margit

    2009-07-01

    Exposure measurements should be performed as close as possible to the nose and mouth for a more correct assessment of exposure. User-friendly sampling equipment, with a minimum of handling before, during and after measurement, should not affect ordinary work. In diffusive (passive) sampling, no extra equipment as sampling pumps is needed, making the measurements more acceptable to the user. The diffusive samplers are normally attached on a shoulder, on a breast-pocket or on the lapel. There are, however, difficulties if true breathing-zone sampling is to be performed, since available diffusive samplers normally cannot be arranged close to the nose/mouth. The purpose of this work was to study the performance of a miniaturized tube type diffusive sampler attached to a headset for true breathing-zone sampling. The basis for this miniaturization was the Perkin Elmer ATD tube. Both the size of the tube and the amount of adsorbent was decreased for the miniaturized sampler. A special tube holder to be used with a headset was designed for the mini tube. The mini tube is thermally desorbed inside a standard PE tube. The new sampler was evaluated for the determination of styrene, both in laboratory experiments and in field measurements. As reference method, diffusive sampling with standard Perkin Elmer tubes, thermal desorption and gas chromatographic (GC) analysis was used. The sampling rate was determined to 0.356 mL min(-1) (CV 9.6%) and was not significantly affected by concentration, sampling time or relative humidity.

  10. A mass spectrometric system for analyzing thermal desorption spectra of ion-implanted argon and cesium in tungsten. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wood, G. M., Jr.

    1974-01-01

    A mass spectrometric system for determining the characteristics of materials used in instrumental development and aerospace applications was developed. The desorption spectra of cesium that was ion-implanted into polycrystalline tungsten and the effects on the spectra of bombardment of the tungsten by low energy (70 eV) electrons were investigated. Work function changes were measured by the retarding potential diode method. Flash desorption characteristics were observed and gas-reaction mechanisms of the surface of heated metal filaments were studied. Desorption spectra were measured by linearly increasing the sample temperature at a selected rate, the temperature cycling being generated from a ramp-driven dc power supply, with the mass spectrometer tuned to a mass number of interest. Results of the study indicate an anomolous desorption mechanism following an electron bombardment of the sample surface. The enhanced spectra are a function of the post-bombardment time and energy and are suggestive of an increased concentration of cesium atoms, up to 10 or more angstroms below the surface.

  11. Analysis of a GC/MS thermal desorption system with simultaneous sniffing for determination of off-odor compounds and VOCs in fumes formed during extrusion coating of low-density polyethylene.

    PubMed

    Villberg, K; Veijanen, A

    2001-03-01

    A thermal desorption equipment introducing volatile organic compounds (VOCs) into the gas chromatographic/ mass spectrometric system (GC/MS) with simultaneous sniffing (SNIFF) is a suitable method for identifying the volatile organic off-odor compounds formed during the extrusion coating process of low-density polyethylene. Fumes emitted during the extrusion coating process of three different plastic materials were collected at two different temperatures (285 and 315 degrees C) from an outgoing pipe and near an extruder. The VOCs of fumes were analyzed by drawing a known volume of air through the adsorbent tube filled with a solid adsorbent (Tenax GR). The air samples were analyzed by using a special thermal desorption device and GC/MS determination. The simultaneous sniffing was carried out to detect off-odors and to assist in the identification of those compounds that contribute to tainting and smelling. The amounts of off-odor carbonyl compounds and the total content of the volatile organic compounds were determined. The most odorous compounds were identified as carboxylic acids while the majority of the volatile compounds were hydrocarbons. The detection and quantification of carboxylic acids were based on the characteristic ions of their mass spectra. The higher the extrusion temperature the more odors were detected. An important observation was that the total concentration of volatiles was dependent not only on the extrusion temperature but also on the plastic material.

  12. Water desorption from a confined biopolymer.

    PubMed

    Pradipkanti, L; Satapathy, Dillip K

    2018-03-14

    We study desorption of water from a confined biopolymer (chitosan thin films) by employing temperature dependent specular X-ray reflectivity and spectroscopic ellipsometry. The water desorption is found to occur via three distinct stages with significantly different desorption rates. The distinct rates of water desorption are attributed to the presence of different kinds of water with disparate mobilities inside the biopolymer film. We identify two characteristic temperatures (T c1 and T c2 ) at which the water desorption rate changes abruptly. Interestingly, the characteristic temperatures decrease with decreasing the film thickness. The thickness dependence of the characteristic temperature is interpreted in the context of a higher mobility of polymer chains at the free surface for polymers under one-dimensional confinement.

  13. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.

    PubMed

    Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji

    2014-09-16

    Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments.

  14. Organic solvent desorption from two tegafur polymorphs.

    PubMed

    Bobrovs, Raitis; Actiņš, Andris

    2013-11-30

    Desorption behavior of 8 different solvents from α and β tegafur (5-fluoro-1-(tetrahydro-2-furyl)uracil) has been studied in this work. Solvent desorption from samples stored at 95% and 50% relative solvent vapor pressure was studied in isothermal conditions at 30 °C. The results of this study demonstrated that: solvent desorption rate did not differ significantly for both phases; solvent desorption in all cases occurred faster from samples with the largest particle size; and solvent desorption in most cases occurred in two steps. Structure differences and their surface properties were not of great importance on the solvent desorption rates because the main factor affecting desorption rate was sample particle size and sample morphology. Inspection of the structure packing showed that solvent desorption rate and amount of solvent adsorbed were mainly affected by surface molecule arrangement and ability to form short contacts between solvent molecule electron donor groups and freely accessible tegafur tetrahydrofuran group hydrogens, as well as between solvents molecule proton donor groups and fluorouracil ring carbonyl and fluoro groups. Solvent desorption rates of acetone, acetonitrile, ethyl acetate and tetrahydrofuran multilayers from α and β tegafur were approximately 30 times higher than those of solvent monolayers. Scanning electron micrographs showed that sample storage in solvent vapor atmosphere promotes small tegafur particles recrystallization to larger particles. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Desorption kinetics of cesium from Fukushima soils.

    PubMed

    Murota, Kento; Saito, Takumi; Tanaka, Satoru

    2016-03-01

    Understanding the behaviors of Cs(+) in soils is crucial for evaluation of the impacts of disposal of soils contaminated by radiocesium, (137)Cs. The desorption rate of Cs(+) evaluated in relatively short periods of time may not be adequate for such a purpose. In this study, we investigated long-term desorption kinetics of (137)Cs and (133)Cs from soils collected in Fukushima Prefecture by batch desorption experiments in the presence of cation exchange resin as a sorbent. The sorbent can keep the concentration of Cs(+) in the aqueous phase low and prevent re-sorption of desorbed Cs(+). Up to 60% of (137)Cs was desorbed after 139 d in dilute KCl media, which was larger than the desorption by conventional short-term extraction with 1 M ammonium acetate. Desorption of (137)Cs continued even after this period. It was also found that high concentration of K(+) prevented desorption of Cs(+) in the initial stage of desorption, but the effect was alleviated with time. The desorbed fraction of stable Cs was smaller than that of (137)Cs. This indicated that (137)Cs may gradually move to more stable states in soils. The half-life of (137)Cs desorption from the slowest sorption site was estimated to be at least two years by a three-site desorption model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Simple system for measuring tritium Ad/absorption using a 2. pi. counter and thermal desorption spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, H.; Matsuyama, M.; Watanabe, K.

    1992-03-01

    In this paper, the authors develop a simple system using tritium tracer and thermal desorption techniques to measure the tritium adsorption and/or absorption on/in a material having typical surface conditions: namely, not cleaned surface. The tritium counting devices used were a 2{pi} counter and conventional proportional counter. With this system, the amounts of ad/absorption could be measured without exposing the samples to air after exposing them to tritium gas. The overall efficiency (F) of the 2{pi} counter was described at F = exp({minus}2.64h), where h is the distance from the sample to the detector. Ad/absorption measurements were carried out formore » several materials used for fabricating conventional vacuum systems. The results were, in the order of decreasing amounts of ad/absorption, as (fiber reinforced plastics(FRP)) {gt} (nickel(Ni), molybdenum disulfide(MoS{sub 2})) {gt} (stainless steel (SS304), iron(Fe), aluminum alloy(A2219)) {gt} (boron nitride(h-BN), silicon carbide (SiC), SS304 passivated by anodic oxidation layers(ASS) and that by boron nitride segregation layers (BSS)). The relative amounts were abut 100 for Ni and 0.1 for ASS and BSS, being normalized to Fe = 1.« less

  17. Laser-Induced Acoustic Desorption/Electron Ionization of Amino Acids and Small Peptides

    NASA Astrophysics Data System (ADS)

    Jarrell, Tiffany M.; Owen, Benjamin C.; Riedeman, James S.; Prentice, Boone M.; Pulliam, Chris J.; Max, Joann; Kenttämaa, Hilkka I.

    2017-06-01

    Laser-induced acoustic desorption (LIAD) allows for desorption of neutral nonvolatile compounds independent of their volatility or thermal stability. Many different ionization methods have been coupled with LIAD. Hence, this setup provides a better control over the types of ions formed than other mass spectrometry evaporation/ionization methods commonly used to characterize biomolecules, such as ESI or MALDI. In this study, the utility of LIAD coupled with electron ionization (EI) was tested for the analysis of common amino acids with no derivatization. The results compared favorably with previously reported EI mass spectra obtained using thermal desorption/EI. Further, LIAD/EI mass spectra collected for hydrochloride salts of two amino acids were found to be similar to those measured for the neutral amino acids with the exception of the appearance of an HCl+● ion. However, the hydrochloride salt of arginine showed a distinctly different LIAD/EI mass spectrum than the previously published literature EI mass spectrum, likely due to its highly basic side chain that makes a specific zwitterionic form particularly favorable. Finally, EI mass spectra were measured for seven small peptides, including di-, tri-, and tetrapeptides. These mass spectra show a variety of ion types. However, an type ions are prevalent. Also, electron-induced dissociation (EID) of protonated peptides has been reported to form primarily an type ions. In addition, the loss of small neutral molecules and side-chain cleavages were observed that are reminiscent of other high-energy fragmentation methods, such as EID. Finally, the isomeric dipeptides LG and IG were found to produce drastically different EI mass spectra, thus allowing differentiation of the leucine and isoleucine amino acids in these dipeptides. [Figure not available: see fulltext.

  18. Desorption kinetics of organic chemicals from albumin.

    PubMed

    Krause, Sophia; Ulrich, Nadin; Goss, Kai-Uwe

    2018-03-01

    When present in blood, most chemicals tend to bind to the plasma protein albumin. For distribution into surrounding tissues, desorption from albumin is necessary, because only the unbound form of a chemical is assumed to be able to cross cell membranes. For metabolism of chemicals, the liver is a particularly important organ. One potentially limiting step for hepatic uptake of the chemicals is desorption from albumin, because blood passes the human liver within seconds. Desorption kinetics from albumin can thus be an important parameter for our pharmacokinetic and toxicokinetic understanding of chemicals. This work presents a dataset of measured desorption rate constants and reveals a possibility for their prediction. Additionally, the obtained extraction profiles directly indicate physiological relevance of desorption kinetics, because desorption of the test chemicals is still incomplete after time frames comparable to the residence time of blood in the liver.

  19. A possible answer to the mysterious non-detection of hydroxylamine in space: the thermal desorption mechanism

    NASA Astrophysics Data System (ADS)

    Jonusas, Mindaugas; Krim, Lahouari

    2016-06-01

    The presence of NH2OH, one of the main precursors in the formation of amino-acids, on dust grain mantles, may be the most obvious elucidation for the creation of large pre-biotic molecules in the interstellar medium. However, while many laboratory experimental studies, to simulate the icy grain chemistry in space, found that NH2OH molecules may be easily formed in solid phase with high abundances and then they should desorb, through a temperature-induced desorption into the gas phase, with the same high abundances; all the spatial observations conclude that NH2OH is not detected in gas phase within any of the explored astronomical sources. Such inconsistencies between laboratory experiment simulations and spatial observations lead our investigations towards this experimental study to see if there is any chemical transformation of NH2OH, occurring in the solid phase before the desorption processes of NH2OH from the mantle of interstellar icy grains. Our experimental results show that the heating of NH2OH-H2O ices lead to a decomposition of NH2OH into HNO, NH3 and O2, even before reaching its desorption temperature. We show through this work that the NH2OH non-detection from previous examined astronomical sources could mainly due to its high reactivity in solid phase on the icy interstellar grains.

  20. Deuterium desorption from ion-irradiated tantalum and effects on surface morphology

    NASA Astrophysics Data System (ADS)

    Novakowski, T. J.; Sundaram, A.; Tripathi, J. K.; Gonderman, S.; Hassanein, A.

    2018-06-01

    Compared to tungsten (W), tantalum (Ta) has shown superior resistance to helium (He)-induced surface morphology changes under fusion-relevant irradiation conditions. However, Ta is also expected to have a stronger interaction with hydrogen isotopes, potentially limiting its use as a plasma-facing material. Despite these concerns, detailed investigations on hydrogen irradiation effects on Ta are scarce. In this study, pristine and fuzzy (He+ ion-irradiated) Ta samples are irradiated with 120 eV deuterium (D) ions at various temperatures and examined with a combination of thermal desorption spectroscopy (TDS), scanning electron microscopy (SEM), and optical reflectivity. TDS reveals discrete D desorption temperatures at 660 and 760 K, corresponding to trapping energies of 1.82 and 2.11 eV, respectively. Although D is retained in Ta both in higher quantities and at higher temperatures compared to W, extreme surface temperatures expected in tokamak divertors may exceed these desorption temperatures and counteract retention. Furthermore, this study indicates that Ta is relatively resistant to adverse surface structuring under D+ ion irradiation. In fact, D+ is shown to prevent and suppress Ta fuzz formation in sequential D+/He+ ion irradiation experiments. While further investigations are needed to elucidate this behavior, these initial investigations show a strong potential for the use of Ta as a PFC material.

  1. Desorption Kinetics of Methanol, Ethanol, and Water from Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2014-09-18

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignmentmore » throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.« less

  2. Desorption kinetics of methanol, ethanol, and water from graphene.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2014-09-18

    The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water, the first and second layers are not resolved. At low water coverages (<1 monolayer (ML)) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10-100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the nonalignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

  3. The Effect of Platinum-coatings on Hydrogen- and Water-absorption and Desorption Characteristics of Lithium Zirconate

    NASA Astrophysics Data System (ADS)

    Tsuchiya, B.; Bandow, S.; Nagata, S.; Saito, K.; Tokunaga, K.; Morita, K.

    Hydrogen (H)- and water (H2O)-storage and desorption characteristics of 25 nm thick Pt films onLi2ZrO3composite materials, exposed to normal air at room temperature, have been investigated by means of elastic recoil detection (ERD), Rutherford backscattering spectrometry (RBS), weight gain measurement (WGM), and thermal desorption spectroscopy (TDS) techniques. It was found by the ERD and TDS that H and H2O were absorbed into the Pt-coated Li2ZrO3 in air at room temperature and desorbed from it in vacuum at much low temperatures of approximately 317 and 309 K, respectively. In addition, the WGM and TDS spectra revealed that the absorption and desorption characters ofsome gases such as CH4, CO, and CO2including H as well as H2Ointo the Li2ZrO3 bulk were improved by Pt deposition.

  4. High-throughput trace analysis of explosives in water by laser diode thermal desorption/atmospheric pressure chemical ionization-tandem mass spectrometry.

    PubMed

    Badjagbo, Koffi; Sauvé, Sébastien

    2012-07-03

    Harmful explosives can accumulate in natural waters in the long term during their testing, usage, storage, and dumping and can pose a health risk to humans and the environment. For the first time, attachment of small anions to neutral molecules in laser diode thermal desorption/atmospheric pressure chemical ionization was systematically investigated for the direct determination of trace nitroaromatics, nitrate esters, and nitramine explosives in water. Using ammonium chloride as an additive improved the instrument response for all the explosives tested and promoted the formation of several characteristic adduct ions. The method performs well achieving good linearity over at least 2 orders of magnitude, with coefficients of determination greater than 0.995. The resulting limits of detection are in the range of 0.009-0.092 μg/L. River water samples were successfully analyzed by the proposed method with accuracy in the range of 96-98% and a response time of 15 s, without any further pretreatment or chromatographic separation.

  5. Optimization and Validation of Thermal Desorption Gas Chromatography-Mass Spectrometry for the Determination of Polycyclic Aromatic Hydrocarbons in Ambient Air

    PubMed Central

    Durana, Nieves; García, José Antonio; Gómez, María Carmen; Alonso, Lucio

    2018-01-01

    Thermal desorption (TD) coupled with gas chromatography/mass spectrometry (TD-GC/MS) is a simple alternative that overcomes the main drawbacks of the solvent extraction-based method: long extraction times, high sample manipulation, and large amounts of solvent waste. This work describes the optimization of TD-GC/MS for the measurement of airborne polycyclic aromatic hydrocarbons (PAHs) in particulate phase. The performance of the method was tested by Standard Reference Material (SRM) 1649b urban dust and compared with the conventional method (Soxhlet extraction-GC/MS), showing a better recovery (mean of 97%), precision (mean of 12%), and accuracy (±25%) for the determination of 14 EPA PAHs. Furthermore, other 15 nonpriority PAHs were identified and quantified using their relative response factors (RRFs). Finally, the proposed method was successfully applied for the quantification of PAHs in real 8 h-samples (PM10), demonstrating its capability for determination of these compounds in short-term monitoring. PMID:29854561

  6. GoAmazon 2014/15 Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, JN

    2016-04-01

    The Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) deployment to the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility T3 site in Manacapuru, Brazil, was motivated by two main scientific objectives of the Green Ocean Amazon (GoAmazon) 2014/15 field campaign. 1) Study the interactions between anthropogenic and biogenic emissions by determining important molecular species in ambient nanoparticles. To address this, TDCIMS data will be combined with coincident measurements such as gas-phase sulfuric acid to determine the contribution of sulfuric acid condensation to nucleation and growth. We can then compare that result to TDCIMS-derived nanoparticle composition tomore » determine the fraction of growth that can be attributed to the uptake of organic compounds. The molecular composition of sampled particles will also be used to attribute specific chemical species and mechanisms to growth, such as the condensation of low-volatility species or the oligomerization of α-dicarbonyl compounds. 2) Determine the source of new ambient nanoparticles in the Amazon. The hypothesis prior to measurements was that potassium salts formed from the evaporation of primary particles emitted by fungal spores can provide a unique and important pathway for new particle production in the Amazon basin. To explore this hypothesis, the TDCIMS recorded the mass spectra of sampled ambient particles using a protonated water cluster Chemical Ionization Mass Spectrometer (CIMS). Laboratory tests performed using potassium salts show that the TDCIMS can detect potassium with high sensitivity with this technique.« less

  7. Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions

    NASA Astrophysics Data System (ADS)

    Li, Guo; Su, Hang; Li, Xin; Kuhn, Uwe; Meusel, Hannah; Hoffmann, Thorsten; Ammann, Markus; Pöschl, Ulrich; Shao, Min; Cheng, Yafang

    2016-08-01

    Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ˜ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05) × 10-4 is determined, which gradually drops to (5.5 ± 0.4) × 10-5 after 8 h experiments. Experiments under wet conditions show a smaller γ that drops faster over time until reaching a plateau. The drop of γ with increasing relative humidity as well as the drop over time can be explained by the adsorption theory in which high surface coverage leads to a reduced uptake rate. The fact that γ stabilizes at a non-zero plateau suggests the involvement of irreversible chemical reactions. Further back-flushing experiments show that two-thirds of the adsorbed HCHO can be re-emitted into the gas phase while the residual is retained by the soil. This partial reversibility confirms that HCHO uptake by soil is a complex process involving both adsorption/desorption and chemical reactions which must be considered in trace gas exchange (emission or deposition) at the atmosphere-soil interface. Our results suggest that soil and soil-derived airborne particles can either act as a source or a sink for HCHO, depending on ambient conditions and HCHO concentrations.

  8. Comparison of two common adsorption materials for thermal desorption gas chromatography - mass spectrometry of biogenic volatile organic compounds.

    PubMed

    Marcillo, Andrea; Jakimovska, Viktorija; Widdig, Anja; Birkemeyer, Claudia

    2017-09-08

    Volatile organic compounds (VOCs) are commonly collected from gaseous samples by adsorption to materials such as the porous polymer Tenax TA. Adsorbed compounds are subsequently released from these materials by thermal desorption (TD) and separated then by gas chromatography (GC) with flame ionization (FID) or mass spectrometry (MS) detection. Tenax TA is known to be particularly suitable for non-polar to semipolar volatiles, however, many volatiles from environmental and biological samples possess a rather polar character. Therefore, we tested if the polymer XAD-2, which so far is widely used to adsorb organic compounds from aqueous and organic solvents, could provide a broader coverage for (semi)polar VOCs during gas-phase sampling. Mixtures of volatile compounds covering a wide range of volatility (bp. 20-256°C) and different chemical classes were introduced by liquid spiking into sorbent tubes with one of the two porous polymers, Tenax TA or XAD-2, and analyzed by TD/GC-MS. At first, an internal standard mixture composed of 17 authentic standards was used to optimize desorption temperature with respect to sorbent degradation and loading time for calibration. Secondly, we tested the detectability of a complex standard mixture composed of 57 volatiles, most of them common constituents of the body odor of mammals. Moreover, the performance of XAD-2 compared with Tenax TA was assessed as limit of quantitation and linearity for the internal standard mixture and 33 compounds from the complex standard mixture. Volatiles were analyzed in a range between 0.01-∼250ng/tube depending on the compound and material. Lower limits of quantitation were between 0.01 and 3 ng±<25% RSD (R 2 >0.9). Interestingly, we found different kinetics for compound adsorption with XAD-2, and a partially better sensitivity in comparison with Tenax TA. For these analytes, XAD-2 might be recommended as an alternative of Tenax TA for TD/GC-MS analysis. Copyright © 2017 Elsevier B.V. All rights

  9. Direct thermal desorption in the analysis of cheese volatiles by gas chromatography and gas chromatography-mass spectrometry: comparison with simultaneous distillation-extraction and dynamic headspace.

    PubMed

    Valero, E; Sanz, J; Martínez-Castro, I

    2001-06-01

    Direct thermal desorption (DTD) has been used as a technique for extracting volatile components of cheese as a preliminary step to their gas chromatographic (GC) analysis. In this study, it is applied to different cheese varieties: Camembert, blue, Chaumes, and La Serena. Volatiles are also extracted using other techniques such as simultaneous distillation-extraction and dynamic headspace. Separation and identification of the cheese components are carried out by GC-mass spectrometry. Approximately 100 compounds are detected in the examined cheeses. The described results show that DTD is fast, simple, and easy to automate; requires only a small amount of sample (approximately 50 mg); and affords quantitative information about the main groups of compounds present in cheeses.

  10. Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory.

    PubMed

    Gao, Li; Pal, Partha Pratim; Seideman, Tamar; Guisinger, Nathan P; Guest, Jeffrey R

    2016-02-04

    Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionization induced by inelastic tunneling electrons. The observed current independence of the desorption yield suggests that the vibrational excitation is a single-electron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (∼2 eV), as would be expected from the identified desorption mechanism.

  11. Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, L.; Pal, Partha P.; Seideman, Tamar

    2016-02-04

    Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionizationmore » induced by inelastic tunneling electrons. The observed current-independence of the desorption yield suggests that the vibrational excitation is a singleelectron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (~ 2 eV), as would be expected from the identified desorption mechanism« less

  12. Rapid screening of basic colorants in processed vegetables through mass spectrometry using an interchangeable thermal desorption electrospray ionization source.

    PubMed

    Chao, Yu-Ying; Chen, Yen-Ling; Lin, Hong-Yi; Huang, Yeou-Lih

    2018-06-20

    Thermal desorption electrospray ionization/mass spectrometry (TD-ESI-MS) employing a quickly interchangeable ionization source is a relatively new ambient ionization mass spectrometric technique that has had, to date, only a limited number of applications related to food safety control. With reallocation of resources, this direct-analysis technique has had wider use in food analysis when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to an ambient ionization source from a traditional atmospheric pressure ionization source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants in processed vegetables (PVs), as a proof-of-concept for the detection of basic colorants. While TD-ESI can offer direct qualitative screening analyses for PVs with detection capabilities lower than those provided with liquid chromatography/UV detection within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous food matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. DART-MS analysis of inorganic explosives using high temperature thermal desorption†‡

    PubMed Central

    Sisco, Edward; Staymates, Matthew; Gillen, Greg

    2018-01-01

    An ambient mass spectrometry (MS) platform coupling resistive Joule heating thermal desorption (JHTD) and direct analysis in real time (DART) was implemented for the analysis of inorganic nitrite, nitrate, chlorate, and perchlorate salts. The resistive heating component generated discrete and rapid heating ramps and elevated temperatures, up to approximately 400 °C s−1 and 750 °C, by passing a few amperes of DC current through a nichrome wire. JHTD enhanced the utility and capabilities of traditional DART-MS for the trace detection of previously difficult to detect inorganic compounds. A partial factorial design of experiments (DOE) was implemented for the systematic evaluation of five system parameters. A base set of conditions for JHTD-DART-MS was derived from this evaluation, demonstrating sensitive detection of a range of inorganic oxidizer salts, down to single nanogram levels. DOE also identified JHTD filament current and in-source collision induced dissociation (CID) energy as inducing the greatest effect on system response. Tuning of JHTD current provided a method for controlling the relative degrees of thermal desorption and thermal decomposition. Furthermore, in-source CID provided manipulation of adduct and cluster fragmentation, optimizing the detection of molecular anion species. Finally, the differential thermal desorption nature of the JHTD-DART platform demonstrated efficient desorption and detection of organic and inorganic explosive mixtures, with each desorbing at its respective optimal temperature. PMID:29651308

  14. Evaluation of laser diode thermal desorption-tandem mass spectrometry (LDTD-MS-MS) in forensic toxicology.

    PubMed

    Bynum, Nichole D; Moore, Katherine N; Grabenauer, Megan

    2014-10-01

    Many forensic laboratories experience backlogs due to increased drug-related cases. Laser diode thermal desorption (LDTD) has demonstrated its applicability in other scientific areas by providing data comparable with instrumentation, such as liquid chromatography-tandem mass spectrometry, in less time. LDTD-MS-MS was used to validate 48 compounds in drug-free human urine and blood for screening or quantitative analysis. Carryover, interference, limit of detection, limit of quantitation, matrix effect, linearity, precision and accuracy and stability were evaluated. Quantitative analysis indicated that LDTD-MS-MS produced precise and accurate results with the average overall within-run precision in urine and blood represented by a %CV <14.0 and <7.0, respectively. The accuracy for all drugs in urine ranged from 88.9 to 104.5% and 91.9 to 107.1% in blood. Overall, LDTD has the potential for use in forensic toxicology but before it can be successfully implemented that there are some challenges that must be addressed. Although the advantages of the LDTD system include minimal maintenance and rapid analysis (∼10 s per sample) which makes it ideal for high-throughput forensic laboratories, a major disadvantage is its inability or difficulty analyzing isomers and isobars due to the lack of chromatography without the use of high-resolution MS; therefore, it would be best implemented as a screening technique. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. High Surface Area of Porous Silicon Drives Desorption of Intact Molecules

    PubMed Central

    Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary

    2007-01-01

    The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245

  16. Remediation of 1,2,3-trichlorobenzene contaminated soil using a combined thermal desorption-molten salt oxidation reactor system.

    PubMed

    Li, Jin-hui; Sun, Xiao-fei; Yao, Zhi-tong; Zhao, Xiang-yang

    2014-02-01

    A combined thermal desorption (TD)-molten salt oxidation (MSO) reactor system was applied to remediate the 1,2,3-trichlorobenzene (1,2,3-TCB) contaminated soil. The TD reactor was used to enrich the contaminant from soil, and its dechlorination of the contaminant was achieved in the MSO reactor. The optimum operating conditions of TD, and the effects of MSO reactor temperatures, additive amounts of the TCB on destruction and removal efficiency (DRE) of TCB and chlorine retention efficiency (CRE) were investigated. The reaction mechanism and pathway were proposed as well. The combined system could remediate the contaminated soil at a large scale of concentration from 5 to 25gkg(-1), and the DRE and CRE reached more than 99% and 95%, respectively, at temperatures above 850°C. The reaction emissions included C6H6, CH4, CO and CO2, and chlorinated species were not detected. It was found that a little increase in the temperature can considerably reduce the emission of C6H6, CH4, and CO, while the CO2 level increased. Copyright © 2014. Published by Elsevier Ltd.

  17. Desorption of Benzene, 1,3,5-Trifluorobenzene, and Hexafluorobenzene from a Graphene Surface: The Effect of Lateral Interactions on the Desorption Kinetics.

    PubMed

    Smith, R Scott; Kay, Bruce D

    2018-05-17

    The desorption of benzene, 1,3,5-trifluorobenzene (TFB), and hexafluorobenzene (HFB) from a graphene covered Pt(111) substrate was investigated using temperature-programmed desorption (TPD). All three species have well-resolved monolayer and second-layer desorption peaks. The desorption spectra for submonolayer coverages of benzene and HFB are consistent with first-order desorption kinetics. In contrast, the submonolayer TPD spectra for TFB align on a common leading-edge, which is indicative of zero-order desorption kinetics. The desorption behavior of the three molecules can be correlated with the strength of the quadrupole moments. Calculations (second-order Møller-Plesset perturbation and density functional theory) show that the potential minimum for coplanar TFB dimers is more than a factor of 2 greater than that for either benzene or HFB dimers. The calculations support the interpretation that benzene and HFB are less likely to form the two-dimensional islands that are needed for submonolayer zero-order desorption kinetics.

  18. First-principles study of water desorption from montmorillonite surface.

    PubMed

    Zhang, Yao; Meng, Yingfeng; Liu, Houbin; Yang, Mingli

    2016-05-01

    Knowledge about water desorption is important to give a full picture of water diffusion in montmorillonites (MMT), which is a driving factor in MMT swelling. The desorption paths and energetics of water molecules from the surface of MMT with trapped Li(+), Na(+) or K(+) counterions were studied using periodic density functional theory calculations. Two paths--surface and vacuum desorption--were designed for water desorption starting from a stationary structure in which water bonds with both the counterion and the MMT surface. Surface desorption is energetically more favorable than vacuum desorption due to water-surface hydrogen bonds that help stabilize the intermediate structure of water released from the counterion. The energy barriers of water desorption are in the order of Li(+) > Na(+) > K(+), which can be attributed to the short ionic radius of Li(+), which favors strong binding with the water molecule. The temperature dependence of water adsorption and desorption rates were compared based on the computed activation energies. Our calculations reveal that the water desorption on the MMT surface has a different mechanism from water adsorption, which results from surface effects favoring stabilization of water conformers during the desorption process.

  19. Coverage-dependent adsorption and desorption of oxygen on Pd(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnen, Angela den; Jacobse, Leon; Wiegman, Sandra

    2016-06-28

    We have studied the adsorption and desorption of O{sub 2} on Pd(100) by supersonic molecular beam techniques and thermal desorption spectroscopy. Adsorption measurements on the bare surface confirm that O{sub 2} initially dissociates for all kinetic energies between 56 and 380 meV and surface temperatures between 100 and 600 K via a direct mechanism. At and below 150 K, continued adsorption leads to a combined O/O{sub 2} overlayer. Dissociation of molecularly bound O{sub 2} during a subsequent temperature ramp leads to unexpected high atomic oxygen coverages, which are also obtained at high incident energy and high surface temperature. At intermediatemore » temperatures and energies, these high final coverages are not obtained. Our results show that kinetic energy of the gas phase reactant and reaction energy dissipated during O{sub 2} dissociation on the cold surface both enable activated nucleation of high-coverage surface structures. We suggest that excitation of local substrate phonons may play a crucial role in oxygen dissociation at any coverage.« less

  20. Analyses of the wood preservative component N-cyclohexyl-diazeniumdioxide in impregnated pine sapwood by direct thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Jüngel, Peter; de Koning, Sjaak; Brinkman, Udo A Th; Melcher, Eckhard

    2002-04-12

    Investigations concerning the qualitative and quantitative determination of the organic wood preservative component N-cyclohexyl-diazeniumdioxide (HDO) in treated timber were carried out by means of direct thermal desorption-gas chromatography-mass spectrometry (DTD-GC-MS). It could be shown that the identification of HDO in treated pine sapwood (Pinus sylyestris L.) is relatively simple using this analytical technique. Quantification of this active ingredient can be carried out using the peak area of the specific mass fragment m/z 114. A calibration curve with a high correlation coefficient was obtained in the range from 40 to 550 mg HDO per kg timber. Furthermore it can be deduced that the results obtained are characterised by an excellent reproducibility with standard deviations ranging from 5 to 10% in general. For the chosen experimental set up a detection limit of 4 mg HDO per kg treated pine sapwood was calculated, although merely 20% of the active ingredient was desorbed.

  1. Thermal stability of single-side hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Openov, L. A.; Podlivaev, A. I.

    2012-11-01

    The temperature dependence of the time of hydrogen desorption from single-side hydrogenated graphene is calculated using molecular dynamics simulation. The activation energy ( E a = 0.75 ± 0.10 eV) and the frequency factor ( A = (2.5 ± 1.0) × 1015 s-1) of the desorption are found. This quasi-two-dimensional carbon-hydrogen system is shown to have a relatively low thermal stability, which makes it difficult to use it in practice.

  2. Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems

    NASA Astrophysics Data System (ADS)

    Yiotis, Andreas G.; Kainourgiakis, Michael E.; Kosmidis, Lefteris I.; Charalambopoulou, Georgia C.; Stubos, Athanassios K.

    2014-12-01

    We study the thermal coupling potential between a high temperature metal hydride (MH) tank and a Solid Oxide Fuel Cell (SOFC) aiming towards the design of an efficient integrated system, where the thermal power produced during normal SOFC operation is redirected towards the MH tank in order to maintain H2 desorption without the use of external heating sources. Based on principles of thermodynamics, we calculate the energy balance in the SOFC/MH system and derive analytical expressions for both the thermal power produced during SOFC operation and the corresponding thermal power required for H2 desorption, as a function of the operating temperature, efficiency and fuel utilization ratio in the SOFC, and the MH enthalpy of desorption in the tank. Based on these calculations, we propose an integrated SOFC/MH design where heat is transferred primarily by radiation to the tank in order to maintain steady-state desorption conditions. We develop a mathematical model for this particular design that accounts for heat/mass transfer and desorption kinetics in the tank, and solve for the dynamics of the system assuming MgH2 as a storage material. Our results focus primarily on tank operating conditions, such as pressure, temperature and H2 saturation profiles vs operation time.

  3. Trapping state of hydrogen isotopes in carbon and graphite investigated by thermal desorption spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atsumi, H.; Tanabe, T.; Shikama, T.

    Thermal desorption spectrometry (TDS) has been investigated to obtain fundamental information of tritium behavior in graphite and carbon materials especially at high temperatures. 29 brands of graphite, HOPG, glassy carbon and CFC materials charged with deuterium gas are tested up to the temperature of 1735 K with a heating rate of 0.1 K/s. TDS spectra have five peaks at 600-700 K, around 900 K, 1200 K, 1300-1450 K and 1600-1650 K. The amounts of released deuterium have been compared with crystallographic parameters derived from XRD analysis. The results can be summarized as follows. First, TDS spectra of deuterium were quitemore » varied among the samples tested, such as existence of peaks, peak temperatures and release amounts of deuterium. Secondly, TDS spectra may consist of five peaks, which are peak 1 (600-700 K), peak 2 (around 900 K), peak 3 (around 1200 K), peak 4 (1300-1450 K) and peak 5 (1600-1650 K). Thirdly, the correlations between the estimated surface area of edge surface and the total amount of released deuterium could be observed for peaks 4 and 5. Fourthly, high energy trapping site (peak 5) may exist even at edge surface or a near surface region, not only for intercalary. And fifth, in order to obtain the lower tritium retention for graphite and CFC materials, the material should be composed of a filler grain with a smaller crystallite size or having the smaller net edge surface in its structure. It is shown that heat treatment does not reduce originally existing trapping sites but trapping sites generated by neutron irradiation for instance can be reduced in some degree.« less

  4. Desorption Kinetics of Benzene and Cyclohexane from a Graphene Surface.

    PubMed

    Smith, R Scott; Kay, Bruce D

    2018-01-18

    The desorption kinetics for benzene and cyclohexane from a graphene covered Pt(111) surface were investigated using temperature-programmed desorption (TPD). The benzene desorption spectra show well-resolved monolayer and multilayer desorption peaks. The benzene monolayer and submonolayer TPD spectra for coverages greater than ∼0.1 ML have nearly the same desorption peak temperature and have line shapes which are consistent with first-order desorption kinetics. For benzene coverages greater than 1 ML, the TPD spectra align on a common leading edge which is consistent with zero-order desorption. An "inversion" procedure in which the prefactor is varied to find the value that best reproduces the entire set of experimental desorption spectra was used to analyze the benzene data. The inversion analysis of the benzene TPD spectra yielded a desorption activation energy of 54 ± 3 kJ/mol with a prefactor of 10 17±1 s -1 . The TPD spectra for cyclohexane also have well-resolved monolayer and multilayer desorption features. The desorption leading edges for the monolayer and the multilayer TPD spectra are aligned indicating zero-order desorption kinetics in both cases. An Arrhenius analysis of the monolayer cyclohexane TPD spectra yielded a desorption activation energy of 53.5 ± 2 kJ/mol with a prefactor of 10 16±1 ML s -1 .

  5. Interaction of D2 with H2O amorphous ice studied by temperature-programmed desorption experiments.

    PubMed

    Amiaud, L; Fillion, J H; Baouche, S; Dulieu, F; Momeni, A; Lemaire, J L

    2006-03-07

    The gas-surface interaction of molecular hydrogen D2 with a thin film of porous amorphous solid water (ASW) grown at 10 K by slow vapor deposition has been studied by temperature-programmed-desorption (TPD) experiments. Molecular hydrogen diffuses rapidly into the porous network of the ice. The D2 desorption occurring between 10 and 30 K is considered here as a good probe of the effective surface of ASW interacting with the gas. The desorption kinetics have been systematically measured at various coverages. A careful analysis based on the Arrhenius plot method has provided the D2 binding energies as a function of the coverage. Asymmetric and broad distributions of binding energies were found, with a maximum population peaking at low energy. We propose a model for the desorption kinetics that assumes a complete thermal equilibrium of the molecules with the ice film. The sample is characterized by a distribution of adsorption sites that are filled according to a Fermi-Dirac statistic law. The TPD curves can be simulated and fitted to provide the parameters describing the distribution of the molecules as a function of their binding energy. This approach contributes to a correct description of the interaction of molecular hydrogen with the surface of possibly porous grain mantles in the interstellar medium.

  6. Desorption atmospheric pressure photoionization.

    PubMed

    Haapala, Markus; Pól, Jaroslav; Saarela, Ville; Arvola, Ville; Kotiaho, Tapio; Ketola, Raimo A; Franssila, Sami; Kauppila, Tiina J; Kostiainen, Risto

    2007-10-15

    An ambient ionization technique for mass spectrometry, desorption atmospheric pressure photoionization (DAPPI), is presented, and its application to the rapid analysis of compounds of various polarities on surfaces is demonstrated. The DAPPI technique relies on a heated nebulizer microchip delivering a heated jet of vaporized solvent, e.g., toluene, and a photoionization lamp emitting 10-eV photons. The solvent jet is directed toward sample spots on a surface, causing the desorption of analytes from the surface. The photons emitted by the lamp ionize the analytes, which are then directed into the mass spectrometer. The limits of detection obtained with DAPPI were in the range of 56-670 fmol. Also, the direct analysis of pharmaceuticals from a tablet surface was successfully demonstrated. A comparison of the performance of DAPPI with that of the popular desorption electrospray ionization method was done with four standard compounds. DAPPI was shown to be equally or more sensitive especially in the case of less polar analytes.

  7. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1983-07-26

    This invention relates generally to the field of gas desorption from metals; and, more particularly, to a method of enhancing the selective desorption of a particular isotope of a gas from metals. Enhanced selective desorption is especially useful in the operation of fusion devices.

  8. Rapid detection of illegal colorants on traditional Chinese pastries through mass spectrometry with an interchangeable thermal desorption electrospray ionization source.

    PubMed

    Chao, Yu-Ying; Chen, Yen-Ling; Chen, Wei-Chu; Chen, Bai-Hsiun; Huang, Yeou-Lih

    2018-06-30

    Ambient mass spectrometry using an interchangeable thermal desorption/electrospray ionization source (TD-ESI) is a relatively new technique that has had only a limited number of applications to date. Nevertheless, this direct-analysis technique has potential for wider use in analytical chemistry (e.g., in the rapid direct detection of contaminants, residues, and adulterants on and in food) when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to a TD-ESI source from a conventional ESI source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants on traditional Chinese pastries (TCPs), as a proof-of-concept for the detection of illegal colorants. While TD-ESI can offer direct (i.e., without any sample preparation) qualitative screening analyses for TCPs with adequate sensitivity within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous matrices (e.g., tang yuan). Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    DOE PAGES

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; ...

    2016-08-30

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less

  10. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less

  11. Fundamental data on the desorption of pure interstellar ices

    NASA Astrophysics Data System (ADS)

    Brown, Wendy A.; Bolina, Amandeep S.

    2007-01-01

    The desorption of molecular ices from grain surfaces is important in a number of astrophysical environments including dense molecular clouds, cometary nuclei and the surfaces and atmospheres of some planets. With this in mind, we have performed a detailed investigation of the desorption of pure water, pure methanol and pure ammonia ices from a model dust-grain surface. We have used these results to determine the desorption energy, order of desorption and the pre-exponential factor for the desorption of these molecular ices from our model surface. We find good agreement between our desorption energies and those determined previously; however, our values for the desorption orders, and hence also the pre-exponential factors, are different to those reported previously. The kinetic parameters derived from our data have been used to model desorption on time-scales relevant to astrophysical processes and to calculate molecular residence times, given in terms of population half-life as a function of temperature. These results show the importance of laboratory data for the understanding of astronomical situations whereby icy mantles are warmed by nearby stars and by other dynamical events.

  12. Development of analysis of volatile polyfluorinated alkyl substances in indoor air using thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Wu, Yaoxing; Chang, Victor W-C

    2012-05-18

    The study attempts to utilize thermal desorption (TD) coupled with gas chromatography-mass spectrometry (GC-MS) for determination of indoor airborne volatile polyfluorinated alkyl substances (PFASs), including four fluorinated alcohols (FTOHs), two fluorooctane sulfonamides (FOSAs), and two fluorooctane sulfonamidoethanols (FOSEs). Standard stainless steel tubes of Tenax/Carbograph 1 TD were employed for low-volume sampling and exhibited minimal breakthrough of target analytes in sample collection. The method recoveries were in the range of 88-119% for FTOHs, 86-138% for FOSAs, exhibiting significant improvement compared with other existing air sampling methods. However, the widely reported high method recoveries of FOSEs were also observed (139-210%), which was probably due to the structural differences between FOSEs and internal standards. Method detection limit, repeatability, linearity, and accuracy were reported as well. The approach has been successfully applied to routine quantification of targeted PFASs in indoor environment of Singapore. The significantly shorter sampling time enabled the observation of variations of concentrations of targeted PFASs within different periods of a day, with higher concentration levels at night while ventilation systems were shut off. This indicated the existence of indoor sources and the importance of building ventilation and air conditioning system. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-06

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. N2 and CO Desorption Energies from Water Ice

    NASA Astrophysics Data System (ADS)

    Fayolle, Edith C.; Balfe, Jodi; Loomis, Ryan; Bergner, Jennifer; Graninger, Dawn; Rajappan, Mahesh; Öberg, Karin I.

    2016-01-01

    The relative desorption energies of CO and N2 are key to interpretations of observed interstellar CO and N2 abundance patterns, including the well-documented CO and N2H+ anti-correlations in disks, protostars, and molecular cloud cores. Based on laboratory experiments on pure CO and N2 ice desorption, the difference between CO and N2 desorption energies is small; the N2-to-CO desorption energy ratio is 0.93 ± 0.03. Interstellar ices are not pure, however, and in this study we explore the effect of water ice on the desorption energy ratio of the two molecules. We present temperature programmed desorption experiments of different coverages of 13CO and 15N2 on porous and compact amorphous water ices and, for reference, of pure ices. In all experiments, 15N2 desorption begins a few degrees before the onset of 13CO desorption. The 15N2 and 13CO energy barriers are 770 and 866 K for the pure ices, 1034-1143 K and 1155-1298 K for different submonolayer coverages on compact water ice, and 1435 and 1575 K for ˜1 ML of ice on top of porous water ice. For all equivalent experiments, the N2-to-CO desorption energy ratio is consistently 0.9. Whenever CO and N2 ice reside in similar ice environments (e.g., experience a similar degree of interaction with water ice) their desorption temperatures should thus be within a few degrees of one another. A smaller N2-to-CO desorption energy ratio may be present in interstellar and circumstellar environments if the average CO ice molecules interacts more with water ice compared to the average N2 molecules.

  15. Electron- and Photon-stimulated Desorption of Alkali Atoms from Lunar Sample and a Model Mineral Surface

    NASA Technical Reports Server (NTRS)

    Yakshinskiy, B. V.; Madey, T. E.

    2003-01-01

    We report recent results on an investigation of source mechanisms for the origin of alkali atoms in the tenuous planetary atmospheres, with focus on non-thermal processes (photon stimulated desorption (PSD), electron stimulated desorption (ESD), and ion sputtering). Whereas alkaline earth oxides (MgO, CaO) are far more abundant in lunar samples than alkali oxides (Na2O, K2O), the atmosphere of the Moon contains easily measurable concentrations of Na and K, while Ca and Mg are undetected there; traces of Ca have recently been seen in the Moon's atmosphere (10-3 of Na). The experiments have included ESD, PSD and ion sputtering of alkali atoms from model mineral surface (amorphous SiO2) and from a lunar basalt sample obtained from NASA. The comparison is made between ESD and PSD efficiency of monovalent alkalis (Na, K) and divalent alkaline earths (Ba, Ca).The ultrahigh vacuum measurement scheme for ESD and PSD of Na atoms includes a highly sensitive alkali metal detector based on surface ionization, and a time-of-flight technique. For PSD measurements, a mercury arc light source (filtered and chopped) is used. We find that bombardment of the alkali covered surfaces by ultraviolet photons or by low energy electrons (E>4 eV) causes desorption of hot alkali atoms. This results are consistent with the model developed to explain our previous measurements of sodium desorption from a silica surface and from water ice: electron- or photon-induced charge transfer from the substrate to the ionic adsorbate causes formation of a neutral alkali atom in a repulsive configuration, from which desorption occurs. The two-electron charge transfer to cause desorption of divalent alkaline eath ions is a less likely process.The data support the suggestion that PSD by UV solar photons is a dominant source process for alkalis in the tenuous lunar atmosphere.

  16. Optimisation and performance of NaClO-assisted maintenance cleaning for fouling control in membrane bioreactors.

    PubMed

    Wang, Zhizhen; Meng, Fangang; He, Xiang; Zhou, Zhongbo; Huang, Li-Nan; Liang, Shuang

    2014-04-15

    Based on conventional chemical cleaning and physical backflush methods, a novel in situ chemical backflush method, i.e., chemically assisted maintenance cleaning with NaClO as the principal reagent, was developed for membrane fouling control in membrane bioreactors (MBRs). The results demonstrated that, compared with a control MBR with water backflush, the use of low NaClO loads had few adverse effects on nutrient removal; on the contrary, the exposure to NaClO enhanced the denitrification performance of the MBR as a result of the formation of sludge granules. Measurements of transmembrane pressure (TMP) showed that an NaClO backflush at 0.2 ppm could achieve effective membrane fouling control in MBRs. Ex situ backflush tests showed that an NaClO backflush enhanced the detachment of biopolymers from the fouled membranes compared with a water backflush. Comparative 16S rRNA sequencing showed differing bacterial community composition in the fouling layers of the two MBRs. Specifically, the NaClO backflush could suppress filament-caused membrane fouling (i.e., lowered the abundance of Thiothrix eikelboomii in the fouling layers). Both the water and NaClO backflush resulted in significant increases in the pure water permeability of the membranes as a result of the enlargement of membrane pores. The results of Fourier transform infrared spectrometry indicated that the frequent NaClO backflush did not change the functional groups of the active layer of the membranes significantly. This study could provide an alternative for the implementation of membrane cleaning in MBR plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Experimental and computational studies of positron-stimulated ion desorption from TiO2(1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Yamashita, T.; Hagiwara, S.; Tachibana, T.; Watanabe, K.; Nagashima, Y.

    2017-11-01

    Experimental and computational studies of the positron-stimulated O+ ion desorption process from a TiO2(1 1 0) surface are reported. The measured data indicate that the O+ ion yields depend on the positron incident energy in the energy range between 0.5 keV and 15 keV. This dependence is closely related to the fraction of positrons which diffuse back to the surface after thermalization in the bulk. Based on the experimental and computational results, we conclude that the ion desorption via positron-stimulation occurs dominantly by the annihilation of surface-trapped positrons with core electrons of the topmost surface atoms.

  18. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    NASA Astrophysics Data System (ADS)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  19. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry.

    PubMed

    Duemichen, E; Braun, U; Senz, R; Fabian, G; Sturm, H

    2014-08-08

    For analysis of the gaseous thermal decomposition products of polymers, the common techniques are thermogravimetry, combined with Fourier transformed infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). These methods offer a simple approach to the decomposition mechanism, especially for small decomposition molecules. Complex spectra of gaseous mixtures are very often hard to identify because of overlapping signals. In this paper a new method is described to adsorb the decomposition products during controlled conditions in TGA on solid-phase extraction (SPE) material: twisters. Subsequently the twisters were analysed with thermal desorption gas chromatography mass spectrometry (TDS-GC-MS), which allows the decomposition products to be separated and identified using an MS library. The thermoplastics polyamide 66 (PA 66) and polybutylene terephthalate (PBT) were used as example polymers. The influence of the sample mass and of the purge gas flow during the decomposition process was investigated in TGA. The advantages and limitations of the method were presented in comparison to the common analysis techniques, TGA-FTIR and TGA-MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Hydrogen sulphide in human nasal air quantified using thermal desorption and selected ion flow tube mass spectrometry.

    PubMed

    Wondimu, Taddese; Wang, Rui; Ross, Brian

    2014-09-01

    The discovery that hydrogen sulphide (H2S) acts as a gasotransmitter when present at very low concentrations (sub-parts per billion (ppbv)) has resulted in the need to quickly quantify trace amounts of the gas in complex biological samples. Selected ion flow tube mass spectrometry (SIFT-MS) is capable of real-time quantification of H2S but many SIFT-MS instruments lack sufficient sensitivity for this application. In this study we investigate the utility of combining thermal desorption with SIFT-MS for quantifying H2S in the 0.1-1 ppbv concentration range. Human orally or nasally derived breath, and background ambient air, were collected in sampling bags and dried by passing through CaCl2 and H2S pre-concentrated using a sorbent trap optimised for the capture of this gas. The absorbed H2S was then thermally desorbed and quantified by SIFT-MS. H2S concentrations in ambient air, nasal breath and oral breath collected from 10 healthy volunteers were 0.12  ±  0.02 (mean ± SD), 0.40  ±  0.11 and 3.1  ±  2.5 ppbv respectively, and in the oral cavity H2S, quantified by SIFT-MS without pre-concentration, was present at 13.5  ±  8.6 ppbv. The oral cavity H2S correlates well with oral breath H2S but not with nasal breath H2S, suggesting that oral breath H2S derives mainly from the oral cavity but nasal breath is likely pulmonary in origin. The successful quantification of such low concentrations of H2S in nasal air using a rapid analytical procedure paves the way for the straightforward analysis of H2S in breath and may assist in elucidating the role that H2S plays in biological systems.

  1. Zero-Headspace Coal-Core Gas Desorption Canister, Revised Desorption Data Analysis Spreadsheets and a Dry Canister Heating System

    USGS Publications Warehouse

    Barker, Charles E.; Dallegge, Todd A.

    2005-01-01

    Coal desorption techniques typically use the U.S. Bureau of Mines (USBM) canister-desorption method as described by Diamond and Levine (1981), Close and Erwin (1989), Ryan and Dawson (1993), McLennan and others (1994), Mavor and Nelson (1997) and Diamond and Schatzel (1998). However, the coal desorption canister designs historically used with this method have an inherent flaw that allows a significant gas-filled headspace bubble to remain in the canister that later has to be compensated for by correcting the measured desorbed gas volume with a mathematical headspace volume correction (McLennan and others, 1994; Mavor and Nelson, 1997).

  2. Effects of Molybdenum Addition on Hydrogen Desorption of TiC Precipitation-Hardened Steel

    NASA Astrophysics Data System (ADS)

    Song, Eun Ju; Baek, Seung-Wook; Nahm, Seung Hoon; Suh, Dong-Woo

    2018-05-01

    The hydrogen-trap states in TiC and MoC that have coherent interfaces with ferrite were investigated using first-principles calculation. The trapping sites of TiC were the interfaces and interstitial sites of ferrite. On the other hand, the trapping sites of MoC were ferrite interstitial sites; the interface had a negative binding energy with H. Thermal desorption analysis confirms that the amounts of diffusible hydrogen were significantly reduced by addition of Mo in Ti-bearing steel.

  3. IMPULSIVE SPOT HEATING AND THERMAL EXPLOSION OF INTERSTELLAR GRAINS REVISITED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivlev, A. V.; Röcker, T. B.; Vasyunin, A.

    The problem of the impulsive heating of dust grains in cold, dense interstellar clouds is revisited theoretically with the aim of better understanding the leading mechanisms of the explosive desorption of icy mantles. We rigorously show that if the heating of a reactive medium occurs within a sufficiently localized spot (e.g., the heating of mantles by cosmic rays (CRs)), then the subsequent thermal evolution is characterized by a single dimensionless number λ. This number identifies a bifurcation between two distinct regimes: when λ exceeds a critical value (threshold), the heat equation exhibits the explosive solution, i.e., the thermal (chemical) explosionmore » is triggered. Otherwise, thermal diffusion causes the deposited heat to spread over the entire grain—this regime is commonly known as whole-grain heating. The theory allows us to find a critical combination of physical parameters that govern the explosion of icy mantles due to impulsive spot heating. In particular, our calculations suggest that heavy CR species (e.g., iron ions) colliding with dust are able to trigger the explosion. Based on recently calculated local CR spectra, we estimate the expected rate of explosive desorption. The efficiency of the desorption, which in principle affects all solid species independent of their binding energy, is shown to be comparable to other CR desorption mechanisms typically considered in the literature. Also, the theory allows us to estimate the maximum abundances of reactive species that may be stored in the mantles, which provides important constraints on the available astrochemical models.« less

  4. Alternate Methods for Disposal of Nitrocellulose Fines

    DTIC Science & Technology

    1985-07-22

    13 Microwave ..................................... 14 Plasma ........................................ 14V Laser pyrolysis...would either be backflushed (not expected to be too successful) or replaced. Microwave Thermal Degradation The use of microwave heating has been...with microwave heating, new designs would be needed if a practical, cost effective system is to be developed. Considerable additional research would be

  5. A thermal desorption mass spectrometer for freshly nucleated secondary aerosol particles

    NASA Astrophysics Data System (ADS)

    Held, A.; Gonser, S. G.

    2012-04-01

    Secondary aerosol formation in the atmosphere is observed in a large variety of locations worldwide, introducing new particles to the atmosphere which can grow to sizes relevant for health and climate effects of aerosols. The chemical reactions leading to atmospheric secondary aerosol formation are not yet fully understood. At the same time, analyzing the chemical composition of freshly nucleated particles is still a challenging task. We are currently finishing the development of a field portable aerosol mass spectrometer for nucleation particles with diameters smaller than 30 nm. This instrument consists of a custom-built aerosol sizing and collection unit coupled to a time-of-flight mass spectrometer (TOF-MS). The aerosol sizing and collection unit is composed of three major parts: (1) a unipolar corona aerosol charger, (2) a radial differential mobility analyzer (rDMA) for aerosol size separation, and (3) an electrostatic precipitator for aerosol collection. After collection, the aerosol sample is thermally desorbed, and the resulting gas sample is transferred to the TOF-MS for chemical analysis. The unipolar charger is based on corona discharge from carbon fibres (e.g. Han et al., 2008). This design allows efficient charging at voltages below 2 kV, thus eliminating the potential for ozone production which would interfere with the collected aerosol. With the current configuration the extrinsic charging efficiency for 20 nm particles is 32 %. The compact radial DMA similar to the design of Zhang et al. (1995) is optimized for a diameter range from 1 nm to 100 nm. Preliminary tests show that monodisperse aerosol samples (geometric standard deviation of 1.09) at 10 nm, 20 nm, and 30 nm can easily be separated from the ambient polydisperse aerosol population. Finally, the size-segregated aerosol sample is collected on a high-voltage biased metal filament. The collected sample is protected from contamination using a He sheath counterflow. Resistive heating of the

  6. Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    University of Illinois at Chicago; Blaze, Melvin M. T.; Takahashi, Lynelle

    2011-03-14

    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMsmore » when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment.« less

  7. Testosterone sorption and desorption: effects of soil particle size.

    PubMed

    Qi, Yong; Zhang, Tian C; Ren, Yongzheng

    2014-08-30

    Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay>silt>sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36-65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Determination of short chain chlorinated paraffins in water by stir bar sorptive extraction-thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry.

    PubMed

    Tölgyessy, P; Nagyová, S; Sládkovičová, M

    2017-04-21

    A simple, robust, sensitive and environment friendly method for the determination of short chain chlorinated paraffins (SCCPs) in water using stir bar sorptive extraction (SBSE) coupled to thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry (TD-GC-QqQ-MS/MS) was developed. SBSE was performed using 100mL of water sample, 20mL of methanol as a modifier, and a commercial sorptive stir bar (with 10mm×0.5mm PDMS layer) during extraction period of 16h. After extraction, the sorptive stir bar was thermally desorbed and online analysed by GC-MS/MS. Method performance was evaluated for MilliQ and surface water spiked samples. For both types of matrices, a linear dynamic range of 0.5-3.0μgL -1 with correlation coefficients >0.999 and relative standard deviations (RSDs) of the relative response factors (RRFs) <12% was established. The limits of quantification (LOQs) of 0.06 and 0.08μgL -1 , and the precision (repeatability) of 6.4 and 7.7% (RSDs) were achieved for MilliQ and surface water, respectively. The method also showed good robustness, recovery and accuracy. The obtained performance characteristics indicate that the method is suitable for screening and monitoring and compliance checking with environmental quality standards (EQS, set by the EU) for SCCPs in surface waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Investigation of the local structure variance of water molecules in laser-induced thermal desorption process

    NASA Astrophysics Data System (ADS)

    Ju, Shin-Pon; Weng, Cheng-I.

    2004-05-01

    This paper presents the use of molecular dynamics simulation in the study of laser-induced thermal desorption (LITD) of water molecules adjacent to a laser-heated Au substrate. The local structure of the water molecules is investigated by considering the densities of the oxygen and hydrogen atoms, the average number of neighbors, nNN, and the average number of H-bonds, nHB. At an equilibrium temperature of 300 K, the simulation results show that three adsorption water layers are formed in the immediate vicinity of the Au surface, and that each four-fold hollow site on the uppermost Au(0 0 1) surface is occupied by a single water molecule. Following laser-induced heating of the Au substrate with a sub-picosecond laser pulse of 350 fs, the substrate temperature increases to 1000 K. This causes a gradual heating of the adjacent water film, which is accompanied by a decrease in the values of nNN and nHB. Hence, it can be concluded that an increase in the water film temperature destroys the hydrogen-bonding network throughout the water film. Although the maximum local temperature of the water film occurs in the region immediately adjacent to the Au substrate, it is determined that the attractive energy between the Au atoms and the water molecules in this region causes the water molecules to aggregate together to form three-dimensional water clusters. Furthermore, this energy prevents the hydrogen bonds in this region from breaking apart as violently as those within the phase explosion region. Finally, it is observed that the phase explosion phenomenon occurs in the region of the water film where the values of nNN and nHB are at a minimum.

  10. Development and validation of a sensitive thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method for the determination of phosgene in air samples.

    PubMed

    Juillet, Y; Dubois, C; Bintein, F; Dissard, J; Bossée, A

    2014-08-01

    A new rapid, sensitive and reliable method was developed for the determination of phosgene in air samples using thermal desorption (TD) followed by gas chromatography-mass spectrometry (GC-MS). The method is based on a fast (10 min) active sampling of only 1 L of air onto a Tenax® GR tube doped with 0.5 mL of derivatizing mixture containing dimercaptotoluene and triethylamine in hexane solution. Validation of the TD-GC-MS method showed a low limit of detection (40 ppbv), acceptable repeatability, intermediate fidelity (relative standard deviation within 12 %) and excellent accuracy (>95%). Linearity was demonstrated for two concentration ranges (0.04 to 2.5 ppmv and 2.5 to 10 ppmv) owing to variation of derivatization recovery between low and high concentration levels. Due to its simple on-site implementation and its close similarity with recommended operating procedure (ROP) for chemical warfare agents vapour sampling, the method is particularly useful in the process of verification of the Chemical Weapons Convention.

  11. Desorption of oxygen from YBa2Cu3O6+x films studied by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bock, A.; Kürsten, R.; Brühl, M.; Dieckmann, N.; Merkt, U.

    1996-08-01

    Phonons of laser-deposited YBa2Cu3O6+x films on MgO(100) substrates are investigated in a Raman setup as a function of laser power density. Investigations of YBa2Cu3O7 films allow us to study oxygen out-diffusion, where the onset of out-diffusion is indicated by the appearance of disorder-induced modes in the Raman spectra. At a pressure of 5×10-6 mbar the temperature threshold of the out-diffusion is (490+/-15) K. With increasing oxygen pressure the observed temperature thresholds rise only moderately in contrast to the behavior expected from the pox-T phase diagram of YBa2Cu3O6+x. Even at 1 bar oxygen partial pressure out-diffusion is observed and tetragonal sites with x=0 develop. These observations can be explained by photon-stimulated desorption of oxygen. Investigations of YBa2Cu3O6 films allow us to study oxygen in-diffusion. In 1 bar oxygen we observe competing oxygen fluxes due to thermally activated diffusion and photon-stimulated desorption. From these measurements we determine an upper bound of the thermal activation energy of the oxygen in-diffusion into YBa2Cu3O6 films of (0.19+/-0.01) eV.

  12. Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets

    PubMed Central

    Jorabchi, Kaveh; Westphall, Michael S.; Smith, Lloyd M.

    2008-01-01

    We propose and evaluate a new mechanism to account for analyte ion signal enhancement in ultraviolet-laser desorption mass spectrometry of droplets in the presence of corona ions. Our new insights are based on timing control of corona ion production, laser desorption, and peptide ion extraction achieved by a novel pulsed corona apparatus. We demonstrate that droplet charging rather than gas-phase ion-neutral reactions is the major contributor to analyte ion generation from an electrically isolated droplet. Implications of the new mechanism, termed charge assisted laser desorption/ionization (CALDI), are discussed and contrasted to those of the laser desorption atmospheric pressure chemical ionization method (LD-APCI). It is also demonstrated that analyte ion generation in CALDI occurs with external electric fields about one order of magnitude lower than those needed for atmospheric pressure matrix assisted laser desorption/ionization or electrospray ionization of droplets. PMID:18387311

  13. China action of "Cleanup Plan for Polychlorinated Biphenyls Burial Sites": emissions during excavation and thermal desorption of a capacitor-burial site.

    PubMed

    Yang, Bing; Zhou, Lingli; Xue, Nandong; Li, Fasheng; Wu, Guanglong; Ding, Qiong; Yan, Yunzhong; Liu, Bo

    2013-10-01

    Scarce data are available so far on emissions in a given scenario for excavation and thermal desorption, a common practice, of soils contaminated with polychlorinated biphenyls (PCBs). As part of China action of "Cleanup Plan for PCBs Burial Sites", this study roughly estimated PCBs emissions in the scenario for a capacitor-burial site. The concentrations of total PCBs (22 congeners) in soils were in the range of 2.1-16,000μg/g with a mean of 2300μg/g, among the same order of magnitude as the highest values obtained in various PCBs-contaminated sites. Only six congeners belonging to Di-, Tri-, and Tetra-CBs were observed above limits of detection in air samples in the scenario, partially which can be estimated by the USEPA air emission model. Comparing concentrations and composition profiles of PCBs in the soil and air samples further indicated a leaked source of commercial PCBs formulations of trichlorobiphenyl (China PCB no. 1). The measures taken if any to mitigate the volatilization and movement of PCBs and to minimize worker exposure were discussed for improvements of the excavation practice. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Development and Characterization of a Laser-Induced Acoustic Desorption Source.

    PubMed

    Huang, Zhipeng; Ossenbrüggen, Tim; Rubinsky, Igor; Schust, Matthias; Horke, Daniel A; Küpper, Jochen

    2018-03-20

    A laser-induced acoustic desorption source, developed for use at central facilities, such as free-electron lasers, is presented. It features prolonged measurement times and a fixed interaction point. A novel sample deposition method using aerosol spraying provides a uniform sample coverage and hence stable signal intensity. Utilizing strong-field ionization as a universal detection scheme, the produced molecular plume is characterized in terms of number density, spatial extend, fragmentation, temporal distribution, translational velocity, and translational temperature. The effect of desorption laser intensity on these plume properties is evaluated. While translational velocity is invariant for different desorption laser intensities, pointing to a nonthermal desorption mechanism, the translational temperature increases significantly and higher fragmentation is observed with increased desorption laser fluence.

  15. Physisorption and desorption of H2, HD and D2 on amorphous solid water ice. Effect on mixing isotopologue on statistical population of adsorption sites.

    PubMed

    Amiaud, Lionel; Fillion, Jean-Hugues; Dulieu, François; Momeni, Anouchah; Lemaire, Jean-Louis

    2015-11-28

    We study the adsorption and desorption of three isotopologues of molecular hydrogen mixed on 10 ML of porous amorphous water ice (ASW) deposited at 10 K. Thermally programmed desorption (TPD) of H2, D2 and HD adsorbed at 10 K have been performed with different mixings. Various coverages of H2, HD and D2 have been explored and a model taking into account all species adsorbed on the surface is presented in detail. The model we propose allows to extract the parameters required to fully reproduce the desorption of H2, HD and D2 for various coverages and mixtures in the sub-monolayer regime. The model is based on a statistical description of the process in a grand-canonical ensemble where adsorbed molecules are described following a Fermi-Dirac distribution.

  16. High heating rate thermal desorption for molecular surface sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2016-03-29

    A method for analyzing a sample having at least one analyte includes the step of heating the sample at a rate of at least 10.sup.6 K/s to thermally desorb at least one analyte from the sample. The desorbed analyte is collected. The analyte can then be analyzed.

  17. A new direct thermal desorption-GC/MS method: Organic speciation of ambient particulate matter collected in Golden, BC

    NASA Astrophysics Data System (ADS)

    Ding, Luyi C.; Ke, Fu; Wang, Daniel K. W.; Dann, Tom; Austin, Claire C.

    Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33-98% by mass of the organic compounds identified. PAHs accounted for 1-65% and biomarkers (hopanes and steranes) 1-8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07-1.55 ng m -3), 16 PAHs (0.02-1.83 ng m -3), and biomarkers (0.02-0.18 ng m -3). Daily levels of these organics were 4.89-74.38 ng m -3, 0.27-100.24 ng m -3, 0.14-4.39 ng m -3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source - most likely motor vehicles and space heating.

  18. Aminocyclopyrachlor sorption-desorption and leaching from three Brazilian soils.

    PubMed

    Francisco, Jeane G; Mendes, Kassio F; Pimpinato, Rodrigo F; Tornisielo, Valdemar L; Guimarães, Ana C D

    2017-07-03

    This study aimed to evaluate the sorption-desorption and leaching of aminocyclopyrachlor from three Brazilian soils. The sorption-desorption of 14 C-aminocyclopyrachlor was evaluated using the batch method and leaching was assessed in glass columns. The Freundlich model showed an adequate fit for the sorption-desorption of aminocyclopyrachlor. The Freundlich sorption coefficient [K f (sorption) ] ranged from 0.37 to 1.34 µmol (1-1/n) L 1/n kg -1 and showed a significant positive correlation with the clay content of the soil, while the K f (desorption) ranged from 3.62 to 5.36 µmol (1-1/n) L 1/n kg -1 . The K f (desorption) values were higher than their respective K f (sorption) , indicating that aminocyclopyrachlor sorption is reversible, and the fate of this herbicide in the environment can be affected by leaching. Aminocyclopyrachlor was detected at all depths (0-30 cm) in all the studied soils, where leaching was influenced by soil texture. The total herbicide leaching from the sandy clay and clay soils was <0.06%, whereas, ∼3% leached from the loamy sand soil. The results suggest that aminocyclopyrachlor has a high potential of leaching, based on its low sorption and high desorption capacities. Therefore, this herbicide can easily contaminate underground water resources.

  19. Experimental study on desorption characteristics of SAPO-34 and ZSM-5 zeolite

    NASA Astrophysics Data System (ADS)

    Yuan, Z. X.; Zhang, X.; Wang, W. C.; Du, C. X.; Liu, Z. B.; Chen, Y. C.

    2018-03-01

    The dynamic characteristics of SAPO-34 and ZSM-5 zeolite in the desorption process have been experimentally studied with the gravimetric method. The weight change of the test sample was recorded continually for different conditions of temperature and pressure. The curve of the desorption degree with the temperature and the pressure was obtained and discussed. With the intrinsic different micro-structure, the two zeolites showed distinguished characteristics of the desorption. In contrast to an S-shaped desorption curve of the SAPO-34, the ZSM-5 showed an exponential desorption curve. In comparison, the desorption characteristics of the ZSM-5 were better than that of the SAPO-34 in the temperature range of 40 °C 90 °C. Nevertheless, the effect of the pressure on the desorption degree was stronger for the SAPO-34 than for the ZSM-5. Further analysis revealed that the desorption speed was affected more strongly by the temperature than by the pressure.

  20. Effect of surface polishing and vacuum firing on electron stimulated desorption from 316LN stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyshev, Oleg B., E-mail: oleg.malyshev@stfc.ac.uk; Hogan, Benjamin T.; Pendleton, Mark

    2014-09-01

    The reduction of thermal outgassing from stainless steel by surface polishing or vacuum firing is well-known in vacuum technology, and the consequent use of both techniques allows an even further reduction of outgassing. The aim of this study was to identify the effectiveness of surface polishing and vacuum firing for reducing electron-stimulated desorption (ESD) from 316LN stainless steel, which is a frequently used material for particle accelerator vacuum chambers and components. It was found that, unlike for thermal outgassing, surface polishing does not reduce the ESD yield and may even increase it, while vacuum firing of nonpolished sample reduces onlymore » the H{sub 2} ESD yield by a factor 2.« less

  1. ATRAZINE DESORPTION KINETICS FROM A FRESH-WATER SEDIMENT

    EPA Science Inventory

    Research has shown that the sorption and desorption of neutral organic compounds to soils and sediments occurs in two stages, with an initial rapid sorption/desorption phase (usually less than an hour) followed by a slower phase that can last for several months to years for very ...

  2. Apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2005-12-13

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  3. Method for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Matson, Dean W.; Drost, M. Kevin; Viswanathan, Vilayanur V.

    2003-10-07

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  4. Diffusion Analysis Of Hydrogen-Desorption Measurements

    NASA Technical Reports Server (NTRS)

    Danford, Merlin D.

    1988-01-01

    Distribution of hydrogen in metal explains observed desorption rate. Report describes application of diffusion theory to anaylsis of experimental data on uptake and elimination of hydrogen in high-strength alloys of 25 degree C. Study part of program aimed at understanding embrittlement of metals by hydrogen. Two nickel-base alloys, Rene 41 and Waspaloy, and one ferrous alloy, 4340 steel, studied. Desorption of hydrogen explained by distribution of hydrogen in metal. "Fast" hydrogen apparently not due to formation of hydrides on and below surface as proposed.

  5. Quantification of diesel exhaust gas phase organics by a thermal desorption proton transfer reaction mass spectrometer

    NASA Astrophysics Data System (ADS)

    Erickson, M. H.; Wallace, H. W.; Jobson, B. T.

    2012-02-01

    A new approach was developed to measure the total abundance of long chain alkanes (C12 and above) in urban air using thermal desorption with a proton transfer reaction mass spectrometer (PTR-MS). These species are emitted in diesel exhaust and may be important precursors to secondary organic aerosol production in urban areas. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula CnH2n+1. The yield of the fragment ions is a function of drift conditions. At a drift field strength of 80 Townsends, the most abundant ion fragments from C10 to C16 n-alkanes were m/z 57, 71 and 85. The PTR-MS is insensitive to n-alkanes less than C8 but displays an increasing sensitivity for larger alkanes. Higher drift field strengths yield greater normalized sensitivity implying that the proton affinity of the long chain n-alkanes is less than H2O. Analysis of diesel fuel shows the mass spectrum was dominated by alkanes (CnH2n+1), monocyclic aromatics, and an ion group with formula CnH2n-1 (m/z 97, 111, 125, 139). The PTR-MS was deployed in Sacramento, CA during the Carbonaceous Aerosols and Radiative Effects Study field experiment in June 2010. The ratio of the m/z 97 to 85 ion intensities in ambient air matched that found in diesel fuel. Total diesel exhaust alkane concentrations calculated from the measured abundance of m/z 85 ranged from the method detection limit of ~1 μg m-3 to 100 μg m-3 in several air pollution episodes. The total diesel exhaust alkane concentration determined by this method was on average a factor of 10 greater than the sum of alkylbenzenes associated with spark ignition vehicle exhaust.

  6. Kinetics of Molybdenum Adsorption and Desorption in Soils.

    PubMed

    Sun, Wenguang; Selim, H Magdi

    2018-05-01

    Much uncertainty exists in mechanisms and kinetics controlling the adsorption and desorption of molybdenum (Mo) in the soil environment. To investigate the characteristics of Mo adsorption and desorption and predict Mo behavior in the vadose zone, kinetic batch experiments were performed using three soils: Webster loam, Windsor sand and Mahan sand. Adsorption isotherms for Mo were strongly nonlinear for all three soils. Strong kinetic adsorption of Mo by all soils was also observed, where the rate of retention was rapid initially and was followed by slow retention behavior with time. The time-dependent Mo sorption rate was not influenced when constant pH was maintained. Desorption or release results indicated that there were significant fractions of Mo that appeared to be irreversible or slowly reversibly sorbed by Windsor and Mahan. X-ray absorption near edge structure (XANES) analysis for Windsor and Mahan soils indicated that most of Mo had been bound to kaolinite, whereas Webster had similar XANES features to those of Mo sorbed to montmorillonite. A sequential extraction procedure provided evidence that a significant amount of Mo was irreversibly sorbed. A multireaction model (MRM) with nonlinear equilibrium and kinetic sorption parameters was used to describe the adsorption-desorption kinetics of Mo on soils. Our results demonstrated that a formulation of MRM with two sorption sites (equilibrium and reversible) successfully described Mo adsorption-desorption data for Webster loam, and an additional irreversible reaction phase was recommended to describe Mo desorption or release with time for Windsor and Mahan soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Desorption of Mercury(II) on Kaolinite in the Presence of Oxalate or Cysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senevirathna, W. U.; Zhang, Hong; Gu, Baohua

    2011-01-01

    Sorption and desorption of Hg(II) on clay minerals can impact the biogeochemical cycle and bio- uptake of Hg in aquatic systems. We studied the desorption of Hg(II) on kaolinite in the presence of oxalate or cysteine, representing the ligands with carboxylic and thiol groups of different affinities for Hg(II). The effects of pH (3, 5, 7), ligand concentration (0.25, 1.0 mM), and temperature (15, 25, 35 C) on the Hg(II) desorption were investigated through desorption kinetics. Our study showed that the Hg(II) desorption was pH-dependant. In the absence of any organic ligand, >90% of the previously adsorbed Hg(II) desorbed atmore » pH 3 within 2 h, compared to <10% at pH 7. Similar results were observed in the presence of oxalate, showing that it hardly affected the Hg(II) desorption. Cysteine inhibited the Hg(II) desorption significantly at all the pH tested, especially in the first 80 min with the desorption less than 20%, but it appeared to enhance the Hg(II) desorption afterwards. The effect of ligand concentration on the Hg(II) desorption was small, especially in the presence of oxalate. The effect of temperature on the desorption was nearly insignificant. The effect of the organic acids on the Hg(II) sorption and desorption is explained by the formation of the ternary surface complexes involving the mineral, ligand, and Hg(II). The competition for Hg(II) between the cysteine molecules adsorbed on the particles and in the solution probably can also affect the Hg(II) desorption.« less

  8. Determination of airborne carbonyls: comparison of a thermal desorption/GC method with the standard DNPH/HPLC method.

    PubMed

    Ho, Steven Sai Hang; Yu, Jian Zhen

    2004-02-01

    The standard method for the determination of gaseous carbonyls is to collect carbonyls onto 2,4-dinitrophenyl hydrazine (DNPH) coated solid sorbent followed by solvent extraction of the solid sorbent and analysis of the derivatives using high-pressure liquid chromatography (HPLC). This paper describes a newly developed approach that involves collection of the carbonyls onto pentafluorophenyl hydrazine (PFPH) coated solid sorbents followed by thermal desorption and gas chromatographic (GC) analysis of the PFPH derivatives with mass spectrometric (MS) detection. Sampling tubes loaded with 510 nmol of PFPH on Tenax sorbent effectively collect gaseous carbonyls, including formaldehyde, acetaldehyde, propanal, butanal, heptanal, octanal, acrolein, 2-furfural, benzaldehyde, p-tolualdehyde, glyoxal, and methylglyoxal, at a flow rate of at least up to 100 mL/min. All of the tested carbonyls are shown to have method detection limits (MDLs) of subnanomoles per sampling tube, corresponding to air concentrations of <0.3 ppbv for a sampled volume of 24 L. These limits are 2-12 times lower than those that can be obtained using the DNPH/HPLC method. The improvement of MDLs is especially pronounced for carbonyls larger than formaldehyde and acetaldehyde. The PFPH/GC method also offers better peak separation and more sensitive and specific detection through the use of MS detection. Comparison studies on ambient samples and kitchen exhaust samples have demonstrated that the two methods do not yield systematic differences in concentrations of the carbonyls that are above their respective MDLs in both methods, including formaldehyde, acetaldehyde, acrolein, and butanal. The lower MDLs afforded by the PFPH/ GC method also enable the determination of a few more carbonyls in both applications.

  9. Minimizing thermal degradation in gas chromatographic quantitation of pentaerythritol tetranitrate.

    PubMed

    Lubrano, Adam L; Field, Christopher R; Newsome, G Asher; Rogers, Duane A; Giordano, Braden C; Johnson, Kevin J

    2015-05-15

    An analytical method for establishing calibration curves for the quantitation of pentaerythriol tetranitrate (PETN) from sorbent-filled thermal desorption tubes by gas chromatography with electron capture detection (TDS-GC-ECD) was developed. As PETN has been demonstrated to thermally degrade under typical GC instrument conditions, peaks corresponding to both PETN degradants and molecular PETN are observed. The retention time corresponding to intact PETN was verified by high-resolution mass spectrometry with a flowing atmospheric pressure afterglow (FAPA) ionization source, which enabled soft ionization of intact PETN eluting the GC and subsequent accurate-mass identification. The GC separation parameters were transferred to a conventional GC-ECD instrument where analytical method-induced PETN degradation was further characterized and minimized. A method calibration curve was established by direct liquid deposition of PETN standard solutions onto the glass frit at the head of sorbent-filled thermal desorption tubes. Two local, linear relationships between detector response and PETN concentration were observed, with a total dynamic range of 0.25-25ng. Published by Elsevier B.V.

  10. Hard versus soft dynamics for adsorption-desorption kinetics: Exact results in one-dimension.

    PubMed

    Manzi, S J; Huespe, V J; Belardinelli, R E; Pereyra, V D

    2009-11-01

    The adsorption-desorption kinetics is discussed in the framework of the kinetic lattice-gas model. The master equation formalism has been introduced to describe the evolution of the system, where the transition probabilities are written as an expansion of the occupation configurations of all neighboring sites. Since the detailed balance principle determines half of the coefficients that arise from the expansion, it is necessary to introduce ad hoc, a dynamic scheme to get the rest of them. Three schemes of the so-called hard dynamics, in which the probability of transition from single site cannot be factored into a part which depends only on the interaction energy and one that only depends on the field energy, and five schemes of the so-called soft dynamics, in which this factorization is possible, were introduced for this purpose. It is observed that for the hard dynamic schemes, the equilibrium and nonequilibrium observables, such as adsorption isotherms, sticking coefficients, and thermal desorption spectra, have a normal or physical sustainable behavior. While for the soft dynamics schemes, with the exception of the transition state theory, the equilibrium and nonequilibrium observables have several problems. Some of them can be regarded as abnormal behavior.

  11. Efficient and surface site-selective ion desorption by positron annihilation.

    PubMed

    Tachibana, Takayuki; Yamashita, Takashi; Nagira, Masaru; Yabuki, Hisakuni; Nagashima, Yasuyuki

    2018-05-08

    We compared positron- and electron-stimulated desorption (e + SD and ESD) of positive ions from a TiO 2 (110) surface. Although desorption of O + ions was observed in both experiments, the desorption efficiency caused by positron bombardment was larger by one order of magnitude than that caused by electron bombardment at an incident energy of 500 eV. e + SD of O + ions remained highly efficient with incident positron energies between 10 eV and 600 eV. The results indicate that e + SD of O + ions is predominantly caused by pair annihilation of surface-trapped positrons with inner-shell electrons. We also tested e + SD from water chemisorbed on the TiO 2 surface and found that the desorption of specific ions was enhanced by positron annihilation, above the ion yield with electron bombardment. This finding corroborates our conclusion that annihilation-site selectivity of positrons results in site-selective ion desorption from a bombarded surface.

  12. Analysis of trace contamination of phthalate esters in ultrapure water using a modified solid-phase extraction procedure and automated thermal desorption-gas chromatography/mass spectrometry.

    PubMed

    Liu, Hsu-Chuan; Den, Walter; Chan, Shu-Fei; Kin, Kuan Tzu

    2008-04-25

    The present study was aimed to develop a procedure modified from the conventional solid-phase extraction (SPE) method for the analysis of trace concentration of phthalate esters in industrial ultrapure water (UPW). The proposed procedure allows UPW sample to be drawn through a sampling tube containing hydrophobic sorbent (Tenax TA) to concentrate the aqueous phthalate esters. The solid trap was then demoisturized by two-stage gas drying before subjecting to thermal desorption and analysis by gas chromatography-mass spectrometry. This process removes the solvent extraction procedure necessary for the conventional SPE method, and permits automation of the analytical procedure for high-volume analyses. Several important parameters, including desorption temperature and duration, packing quantity and demoisturizing procedure, were optimized in this study based on the analytical sensitivity for a standard mixture containing five different phthalate esters. The method detection limits for the five phthalate esters were between 36 ng l(-1) and 95 ng l(-1) and recovery rates between 15% and 101%. Dioctyl phthalate (DOP) was not recovered adequately because the compound was both poorly adsorbed and desorbed on and off Tenax TA sorbents. Furthermore, analyses of material leaching from poly(vinyl chloride) (PVC) tubes as well as the actual water samples showed that di-n-butyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) were the common contaminants detected from PVC contaminated UPW and the actual UPW, as well as in tap water. The reduction of DEHP in the production processes of actual UPW was clearly observed, however a DEHP concentration of 0.20 microg l(-1) at the point of use was still being quantified, suggesting that the contamination of phthalate esters could present a barrier to the future cleanliness requirement of UPW. The work demonstrated that the proposed modified SPE procedure provided an effective method for rapid analysis and contamination

  13. Spontaneous desorption and phase transitions of self-assembled alkanethiol and alicyclic thiol monolayers chemisorbed on Au(111) in ultrahigh vacuum at room temperature.

    PubMed

    Ito, Eisuke; Kang, Hungu; Lee, Dongjin; Park, Joon B; Hara, Masahiko; Noh, Jaegeun

    2013-03-15

    Scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) were used to examine the surface structure and adsorption conditions of hexanethiol (HT) and cyclohexanethiol (CHT) self-assembled monolayers (SAMs) on Au(111) as a function of storage period in ultrahigh vacuum (UHV) conditions of 3×10(-7) Pa at room temperature (RT). STM imaging revealed that after storage for 7 days, HT SAMs underwent phase transitions from c(4×2) phase to low coverage 4×√3 phase. This transition is due to a structural rearrangement of hexanethiolates that results from the spontaneous desorption of chemisorbed HT molecules on Au(111) surface. XPS measurements showed approximately 28% reduction in sulfur coverage, which indicates desorption of hexanethiolates from the surfaces. Contrary to HT SAMs, the structural order of CHT SAMs with (5×2√3)R35° phase completely disappeared after storage for 3 or 7 days. XPS results show desorption of more than 80% of the cyclohexanethiolates, even after storage for 3 days. We found that spontaneous desorption of CHT molecules on Au(111) in UHV at RT occurred quickly, whereas spontaneous desorption of HT molecules was much slower. Thermal desorption spectroscopy (TDS) results suggest CHT SAMs in UHV at RT can desorb more efficiently than HT SAMs due to formation of thiol desorption fragments that result from chemical reactions between surface hydrogen atoms and thiolates on Au(111) surfaces. This study clearly demonstrated that organic thiols chemisorbed on gold surfaces are desorbed spontaneously in UHV at RT and van der Waals interactions play an important role in determining the structural stability of thiolate SAMs in UHV. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. A new desorption method for removing organic solvents from activated carbon using surfactant.

    PubMed

    Hinoue, Mitsuo; Ishimatsu, Sumiyo; Fueta, Yukiko; Hori, Hajime

    2017-03-28

    A new desorption method was investigated, which does not require toxic organic solvents. Efficient desorption of organic solvents from activated carbon was achieved with an ananionic surfactant solution, focusing on its washing and emulsion action. Isopropyl alcohol (IPA) and methyl ethyl ketone (MEK) were used as test solvents. Lauryl benzene sulfonic acid sodium salt (LAS) and sodium dodecyl sulfate (SDS) were used as the surfactant. Activated carbon (100 mg) was placed in a vial and a predetermined amount of organic solvent was added. After leaving for about 24 h, a predetermined amount of the surfactant solution was added. After leaving for another 72 h, the vial was heated in an incubator at 60°C for a predetermined time. The organic vapor concentration was then determined with a frame ionization detector (FID)-gas chromatograph and the desorption efficiency was calculated. A high desorption efficiency was obtained with a 10% surfactant solution (LAS 8%, SDS 2%), 5 ml desorption solution, 60°C desorption temperature, and desorption time of over 24 h, and the desorption efficiency was 72% for IPA and 9% for MEK. Under identical conditions, the desorption efficiencies for another five organic solvents were investigated, which were 36%, 3%, 32%, 2%, and 3% for acetone, ethyl acetate, dichloromethane, toluene, and m-xylene, respectively. A combination of two anionic surfactants exhibited a relatively high desorption efficiency for IPA. For toluene, the desorption efficiency was low due to poor detergency and emulsification power.

  15. Effect of molecular desorption on the electronic properties of self-assembled polarizable molecular monolayers.

    PubMed

    Wang, Gunuk; Jeong, Hyunhak; Ku, Jamin; Na, Seok-In; Kang, Hungu; Ito, Eisuke; Jang, Yun Hee; Noh, Jaegeun; Lee, Takhee

    2014-04-01

    We investigated the interfacial electronic properties of self-assembled monolayers (SAM)-modified Au metal surface at elevated temperatures. We observed that the work functions of the Au metal surfaces modified with SAMs changed differently under elevated-temperature conditions based on the type of SAMs categorized by three different features based on chemical anchoring group, molecular backbone structure, and the direction of the dipole moment. The temperature-dependent work function of the SAM-modified Au metal could be explained in terms of the molecular binding energy and the thermal stability of the SAMs, which were investigated with thermal desorption spectroscopic measurements and were explained with molecular modeling. Our study will aid in understanding the electronic properties at the interface between SAMs and metals in organic electronic devices if an annealing treatment is applied. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Thermal enhancement cartridge heater modified (TECH Mod) tritium hydride bed development, Part 1 - Design and fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, J.E.; Estochen, E.G.

    The Savannah River Site (SRS) tritium facilities have used first generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and third generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds require replacement due tomore » tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed. (authors)« less

  17. THERMAL ENHANCEMENT CARTRIDGE HEATER MODIFIED TECH MOD TRITIUM HYDRIDE BED DEVELOPMENT PART I DESIGN AND FABRICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, J.; Estochen, E.

    The Savannah River Site (SRS) tritium facilities have used 1{sup st} generation (Gen1) LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride storage beds for tritium absorption, storage, and desorption. The Gen1 design utilizes hot and cold nitrogen supplies to thermally cycle these beds. Second and 3{sup rd} generation (Gen2 and Gen3) storage bed designs include heat conducting foam and divider plates to spatially fix the hydride within the bed. For thermal cycling, the Gen2 and Gen 3 beds utilize internal electric heaters and glovebox atmosphere flow over the bed inside the bed external jacket for cooling. The currently installed Gen1 beds requiremore » replacement due to tritium aging effects on the LANA0.75 material, and cannot be replaced with Gen2 or Gen3 beds due to different designs of these beds. At the end of service life, Gen1 bed desorption efficiencies are limited by the upper temperature of hot nitrogen supply. To increase end-of-life desorption efficiency, the Gen1 bed design was modified, and a Thermal Enhancement Cartridge Heater Modified (TECH Mod) bed was developed. Internal electric cartridge heaters in the new design to improve end-of-life desorption, and also permit in-bed tritium accountability (IBA) calibration measurements to be made without the use of process tritium. Additional enhancements implemented into the TECH Mod design are also discussed.« less

  18. 24-HOUR DIFFUSIVE SAMPLING OF 1,3-BUTADIENE IN AIR ONTO CARBONPAK X SOLID ADSORBENT WITH THEMAL DESORPTION/GC/MS ANALYSIS - FEASIBILITY STUDIES

    EPA Science Inventory

    Diffusive sampling of 1,3-butadiene for 24 hours onto the graphitic adsorbent Carbopack X contained in a stainless steel tube badge (6.3 mm OD, 5 mm ID, and 90 mm in length) with analysis by thermal desorption/GC/MS has been evaluated in controlled tests. A test matrix of 42 tr...

  19. Adsorption, Desorption, and Diffusion of Nitrogen in a Model Nanoporous Material: II. Diffusion Limited Kinetics in Amorphous Solid Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubkov, Tykhon; Smith, R. Scott; Engstrom, Todd R.

    2007-11-14

    Tykhon Zubkov, R. Scott Smith, Todd R. Engstrom, and Bruce D. Kay The adsorption, desorption, and diffusion kinetics of N2 on thick (up to ~9 mm) porous films of amorphous solid water (ASW) films were studied using molecular beam techniques and temperature programmed desorption (TPD). Porous ASW films were grown on Pt(111) at low temperature (<30 K) from a collimated H2O beam at glancing incident angles. In thin films (<1 mm), the desorption kinetics are well described by a model that assumes rapid and uniform N2 distribution throughout the film. In thicker films, (>1 mm), N2 adsorption at 27 Kmore » results in a non-uniform distribution where most of N2 is trapped in the outer region of the film. Redistribution of N2 can be induced by thermal annealing. The apparent activation energy for this process is ~7 kJ/mol, which is approximately half of the desorption activation energy at the corresponding coverage. Blocking adsorption sites near the film surface facilitates transport into the film. Despite the onset of limited diffusion, the adsorption kinetics are efficient, precursor-mediated and independent of film thickness. An adsorption mechanism is proposed, in which a high-coverage N2 front propagates into a pore by the rapid transport of physisorbed 2nd layer N2 species on top of the 1st layer chemisorbed layer.« less

  20. Electronic Desorption of gas from metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molvik, A W; Kollmus, H; Mahner, E

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  1. A new desorption method for removing organic solvents from activated carbon using surfactant

    PubMed Central

    Hinoue, Mitsuo; Ishimatsu, Sumiyo; Fueta, Yukiko; Hori, Hajime

    2017-01-01

    Objectives: A new desorption method was investigated, which does not require toxic organic solvents. Efficient desorption of organic solvents from activated carbon was achieved with an ananionic surfactant solution, focusing on its washing and emulsion action. Methods: Isopropyl alcohol (IPA) and methyl ethyl ketone (MEK) were used as test solvents. Lauryl benzene sulfonic acid sodium salt (LAS) and sodium dodecyl sulfate (SDS) were used as the surfactant. Activated carbon (100 mg) was placed in a vial and a predetermined amount of organic solvent was added. After leaving for about 24 h, a predetermined amount of the surfactant solution was added. After leaving for another 72 h, the vial was heated in an incubator at 60°C for a predetermined time. The organic vapor concentration was then determined with a frame ionization detector (FID)-gas chromatograph and the desorption efficiency was calculated. Results: A high desorption efficiency was obtained with a 10% surfactant solution (LAS 8%, SDS 2%), 5 ml desorption solution, 60°C desorption temperature, and desorption time of over 24 h, and the desorption efficiency was 72% for IPA and 9% for MEK. Under identical conditions, the desorption efficiencies for another five organic solvents were investigated, which were 36%, 3%, 32%, 2%, and 3% for acetone, ethyl acetate, dichloromethane, toluene, and m-xylene, respectively. Conclusions: A combination of two anionic surfactants exhibited a relatively high desorption efficiency for IPA. For toluene, the desorption efficiency was low due to poor detergency and emulsification power. PMID:28132972

  2. Ionic Adsorption and Desorption of CNT Nanoropes

    PubMed Central

    Shang, Jun-Jun; Yang, Qing-Sheng; Yan, Xiao-Hui; He, Xiao-Qiao; Liew, Kim-Meow

    2016-01-01

    A nanorope is comprised of several carbon nanotubes (CNTs) with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment. PMID:28335306

  3. Ionic Adsorption and Desorption of CNT Nanoropes.

    PubMed

    Shang, Jun-Jun; Yang, Qing-Sheng; Yan, Xiao-Hui; He, Xiao-Qiao; Liew, Kim-Meow

    2016-09-28

    A nanorope is comprised of several carbon nanotubes (CNTs) with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  4. Various causes behind the desorption hysteresis of carboxylic acids on mudstones.

    PubMed

    Rasamimanana, S; Lefèvre, G; Dagnelie, R V H

    2017-02-01

    Adsorption desorption is a key factor for leaching, migration and (bio)degradation of organic pollutants in soils and sediments. Desorption hysteresis of apolar organic compounds is known to be correlated with adsorption/diffusion into soil organic matter. This work focuses on the desorption hysteresis of polar organic compounds on a natural mudstone sample. Acetic, citric and ortho-phthalic acids displayed adsorption-desorption hysteresis on Callovo-Oxfordian mudstone. The non-reversible behaviours resulted from three different mechanisms. Adsorption and desorption kinetics were evaluated using 14C- and 3H-labelled tracers and an isotopic exchange method. The solid-liquid distribution ratio of acetate decreased using a NaN 3 bactericide, indicating a rapid bacterial consumption compared with negligible adsorption. The desorption hysteresis of phthalate was apparent and suppressed by the equilibration of renewal pore water with mudstone. This confirms the significant and reversible adsorption of phthalate. Finally, persistent desorption hysteresis was evidenced for citrate. In this case, a third mechanism should be considered, such as the incorporation of citrate in the solid or a chemical perturbation, leading to strong desorption resilience. The results highlighted the different pathways that polar organic pollutants might encounter in a similar environment. Data on phthalic acid is useful to predict the retarded transport of phthalate esters and amines degradation products in sediments. The behaviour of citric acid is representative of polydentate chelating agents used in ore and remediation industries. The impact of irreversible adsorption on solid/solution partitioning and transport deserves further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Formation of nanocarbon spheres by thermal treatment of woody char from fast pyrolysis process

    Treesearch

    Qiangu Yan; Hossein Toghiani; Zhiyong Cai; Jilei Zhang

    2014-01-01

    Influences of thermal treatment conditions of temperature, reaction cycle and time, and purge gas type on nanocarbon formation over bio-chars from fast pyrolysis and effects of thermal reaction cycle and purge gas type on bio-char surface functional groups were investigated by temperature-programmed desorption (TPD) and temperature programmed reduction methods....

  6. Experimental study and modelling of deuterium thermal release from Be-D co-deposited layers

    NASA Astrophysics Data System (ADS)

    Baldwin, M. J.; Schwarz-Selinger, T.; Doerner, R. P.

    2014-07-01

    A study of the thermal desorption of deuterium from 1 µm thick co-deposited Be-(0.1)D layers formed at 330 K by a magnetron sputtering technique is reported. A range of thermal desorption rates 0 ⩽ β ⩽ 1.0 K s-1 are explored with a view to studying the effectiveness of the proposed ITER wall and divertor bake procedure (β = 0 K s-1) to be carried out at 513 and 623 K. Fixed temperature bake durations up to 24 h are examined. The experimental thermal release data are used to validate a model input into the Tritium Migration and Analysis Program (TMAP-7). Good agreement with experiment is observed for a TMAP-7 model incorporating trap populations of activation energies for D release of 0.80 and 0.98 eV, and a dynamically computed surface D atomic to molecular recombination rate.

  7. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calciummore » alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.« less

  8. Oxygen sorption and desorption properties of selected lanthanum manganites and lanthanum ferrite manganites.

    PubMed

    Nielsen, Jimmi; Skou, Eivind M; Jacobsen, Torben

    2015-06-08

    Temperature-programmed desorption (TPD) with a carrier gas was used to study the oxygen sorption and desorption properties of oxidation catalysts and solid-oxide fuel cell (SOFC) cathode materials (La(0.85) Sr(0.15)0.95 MnO(3+δ) (LSM) and La(0.60) Sr(0.40) Fe(0.80) Mn(0.20) O(3-δ) (LSFM). The powders were characterized by X-ray diffractometry, atomic force microscopy (AFM), and BET surface adsorption. Sorbed oxygen could be distinguished from oxygen originating from stoichiometry changes. The results indicated that there is one main site for oxygen sorption/desorption. The amount of sorbed oxygen was monitored over time at different temperatures. Furthermore, through data analysis it was shown that the desorption peak associated with oxygen sorption is described well by second-order desorption kinetics. This indicates that oxygen molecules dissociate upon adsorption and that the rate-determining step for the desorption reaction is a recombination of monatomic oxygen. Typical problems with re-adsorption in this kind of TPD setup were revealed to be insignificant by using simulations. Finally, different key parameters of sorption and desorption were determined, such as desorption activation energies, density of sorption sites, and adsorption and desorption reaction order. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Investigation of molecule-adsorption kinetics by a pulsed laser desorption technique

    NASA Astrophysics Data System (ADS)

    Varakin, V. N.; Lozovskii, A. D.; Panesh, A. M.; Simonov, A. P.

    1987-02-01

    The laser thermal desorption technique is used to measure the adsorption kinetics of SO2 and CO molecules on stainless steel with the aim of investigating the initial stage of oxidation of the steel by adsorbed CO molecules. Attention is given to the dependence of the rate of establishment of the equilibrium concentration of adsorbed molecules on SO2-gas pressure; CO adsorption kinetics on stainless steel at a gas pressure of 9 x 10 to the -8th torr; and the dependence of the concentration of adsorbed CO molecules on exposure in the gas at a pressure of 9 x 10 to the -8th torr under irradiation by laser pulses with repetition periods of 1-2, 2-4, 3-6, and 4-8 min.

  10. Bacterial desorption from food container and food processing surfaces.

    PubMed

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  11. Desorption and sublimation kinetics for fluorinated aluminum nitride surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F.; Nemanich, Robert J.

    2014-09-01

    The adsorption and desorption of halogen and other gaseous species from surfaces is a key fundamental process for both wet chemical and dry plasma etch and clean processes utilized in nanoelectronic fabrication processes. Therefore, to increase the fundamental understanding of these processes with regard to aluminum nitride (AlN) surfaces, temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) have been utilized to investigate the desorption kinetics of water (H{sub 2}O), fluorine (F{sub 2}), hydrogen (H{sub 2}), hydrogen fluoride (HF), and other related species from aluminum nitride thin film surfaces treated with an aqueous solution of buffered hydrogen fluoride (BHF) dilutedmore » in methanol (CH{sub 3}OH). Pre-TPD XPS measurements of the CH{sub 3}OH:BHF treated AlN surfaces showed the presence of a variety of Al-F, N-F, Al-O, Al-OH, C-H, and C-O surfaces species in addition to Al-N bonding from the AlN thin film. The primary species observed desorbing from these same surfaces during TPD measurements included H{sub 2}, H{sub 2}O, HF, F{sub 2}, and CH{sub 3}OH with some evidence for nitrogen (N{sub 2}) and ammonia (NH{sub 3}) desorption as well. For H{sub 2}O, two desorption peaks with second order kinetics were observed at 195 and 460 °C with activation energies (E{sub d}) of 51 ± 3 and 87 ± 5 kJ/mol, respectively. Desorption of HF similarly exhibited second order kinetics with a peak temperature of 475 °C and E{sub d} of 110 ± 5 kJ/mol. The TPD spectra for F{sub 2} exhibited two peaks at 485 and 585 °C with second order kinetics and E{sub d} of 62 ± 3 and 270 ± 10 kJ/mol, respectively. These values are in excellent agreement with previous E{sub d} measurements for desorption of H{sub 2}O from SiO{sub 2} and AlF{sub x} from AlN surfaces, respectively. The F{sub 2} desorption is therefore attributed to fragmentation of AlF{sub x} species in the mass spectrometer ionizer. H{sub 2} desorption

  12. Lead sorption-desorption from organic residues.

    PubMed

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  13. CO Diffusion and Desorption Kinetics in CO2 Ices

    NASA Astrophysics Data System (ADS)

    Cooke, Ilsa R.; Öberg, Karin I.; Fayolle, Edith C.; Peeler, Zoe; Bergner, Jennifer B.

    2018-01-01

    The diffusion of species in icy dust grain mantles is a fundamental process that shapes the chemistry of interstellar regions; yet, measurements of diffusion in interstellar ice analogs are scarce. Here we present measurements of CO diffusion into CO2 ice at low temperatures (T = 11–23 K) using CO2 longitudinal optical phonon modes to monitor the level of mixing of initially layered ices. We model the diffusion kinetics using Fick’s second law and find that the temperature-dependent diffusion coefficients are well fit by an Arrhenius equation, giving a diffusion barrier of 300 ± 40 K. The low barrier along with the diffusion kinetics through isotopically labeled layers suggest that CO diffuses through CO2 along pore surfaces rather than through bulk diffusion. In complementary experiments, we measure the desorption energy of CO from CO2 ices deposited at 11–50 K by temperature programmed desorption and find that the desorption barrier ranges from 1240 ± 90 K to 1410 ± 70 K depending on the CO2 deposition temperature and resultant ice porosity. The measured CO–CO2 desorption barriers demonstrate that CO binds equally well to CO2 and H2O ices when both are compact. The CO–CO2 diffusion–desorption barrier ratio ranges from 0.21 to 0.24 dependent on the binding environment during diffusion. The diffusion–desorption ratio is consistent with the above hypothesis that the observed diffusion is a surface process and adds to previous experimental evidence on diffusion in water ice that suggests surface diffusion is important to the mobility of molecules within interstellar ices.

  14. Photothermal Desorption of Single-Walled Carbon Nanotubes and Coconut Shell-Activated Carbons Using a Continuous Light Source for Application in Air Sampling

    PubMed Central

    Floyd, Evan L.; Sapag, Karim; Oh, Jonghwa; Lungu, Claudiu T.

    2014-01-01

    Many techniques exist to measure airborne volatile organic compounds (VOCs), each with differing advantages; sorbent sampling is compact, versatile, has good sample stability, and is the preferred technique for collecting VOCs for hygienists. Development of a desorption technique that allows multiple analyses per sample (similar to chemical desorption) with enhanced sensitivity (similar to thermal desorption) would be helpful to field hygienists. In this study, activated carbon (AC) and single-walled carbon nanotubes (SWNT) were preloaded with toluene vapor and partially desorbed with light using a common 12-V DC, 50-W incandescent/halogen lamp. A series of experimental chamber configurations were explored starting with a 500-ml chamber under static conditions, then with low ventilation and high ventilation, finally a 75-ml high ventilation chamber was evaluated. When preloaded with toluene and irradiated at the highest lamp setting for 4min, AC desorbed 13.9, 18.5, 23.8, and 45.9% of the loaded VOC mass, in each chamber configuration, respectively; SWNT desorbed 25.2, 24.3, 37.4, and 70.5% of the loaded VOC mass, respectively. SWNT desorption was significantly greater than AC in all test conditions (P = 0.02–<0.0001) demonstrating a substantial difference in sorbent performance. When loaded with 0.435mg toluene and desorbed at the highest lamp setting for 4min in the final chamber design, the mean desorption for AC was 45.8% (39.7, 52.0) and SWNT was 72.6% (68.8, 76.4) (mean represented in terms of 95% confidence interval). All desorption measurements were obtained using a field grade photoionization detector; this demonstrates the potential of using this technique to perform infield prescreening of VOC samples for immediate exposure feedback and in the analytical lab to introduce sample to a gas chromatograph for detailed analysis of the sample. PMID:25016598

  15. Sample Desorption/Onization From Mesoporous Silica

    DOEpatents

    Iyer, Srinivas; Dattelbaum, Andrew M.

    2005-10-25

    Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin film on the substrate. Samples having a molecular weight below 1000, such as C.sub.60 and tryptophan, were adsorbed onto and into the mesoporous silica thin film sample holder and analyzed using laser desorption/ionization mass spectrometry.

  16. Investigation of the charge boost technology for the efficiency increase of closed sorption thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Rohringer, C.; Engel, G.; Köll, R.; Wagner, W.; van Helden, W.

    2017-10-01

    The inclusion of solar thermal energy into energy systems requires storage possibilities to overcome the gap between supply and demand. Storage of thermal energy with closed sorption thermal energy systems has the advantage of low thermal losses and high energy density. However, the efficiency of these systems needs yet to be increased to become competitive on the market. In this paper, the so-called “charge boost technology” is developed and tested via experiments as a new concept for the efficiency increase of compact thermal energy storages. The main benefit of the charge boost technology is that it can reach a defined state of charge for sorption thermal energy storages at lower temperature levels than classic pure desorption processes. Experiments are conducted to provide a proof of principle for this concept. The results show that the charge boost technology does function as predicted and is a viable option for further improvement of sorption thermal energy storages. Subsequently, a new process application is developed by the author with strong focus on the utilization of the advantages of the charge boost technology over conventional desorption processes. After completion of the conceptual design, the theoretical calculations are validated via experiments.

  17. Commercial silicon-on-insulator (SOI) wafers as a versatile substrate for laser desorption/ionization mass spectrometry.

    PubMed

    Kim, Shin Hye; Kim, Jeongkwon; Moon, Dae Won; Han, Sang Yun

    2013-01-01

    We report here that a commercial silicon-on-insulator (SOI) wafer offers an opportunity for laser desorption/ionization (LDI) of peptide molecules, which occurs directly from its flat surface without requiring special surface preparation. The LDI-on-SOI exhibits intact ionization of peptides with a good detection limit of lower than 20 fmol, of which the mass range is demonstrated up to insulin with citric acid additives. The LDI process most likely arises from laser-induced surface heating promoted by two-dimensional thermal confinement in the thin Si surface layer of the SOI wafer. As a consequence of the thermal process, the LDI-on-SOI method is also capable of creating post-source decay (PSD) of the resulting peptide LDI ions, which is suitable for peptide sequencing using conventional TOF/TOF mass spectrometry.

  18. Examination of a New Desorption Method for Solid Adsorption Method of Working Environment Measurement -Attempt to Improve Desorption Efficiency of Organic Solvents from a Coconut-Shell-Activated Carbon Using Surfactant Solutions-.

    PubMed

    Hinoue, Mitsuo; Hori, Hajime

    2017-01-01

    For a new desorption method development for working environment measurement, desorption efficiency of organic solvent vapors from an activated carbon was examined using desorption solutions that consisted of anionic and nonionic surfactants. Ten μl of an aqueous solution of isopropyl alcohol or methyl ethyl ketone diluted with distilled water was spiked into a 10 ml vial with a coconut-shell-activated carbon (100 mg). The vial was left for 24 h, and 5 ml a desorption solution was added. Afterwards, the vial was put into an incubator at 60°C and left for 24 h, then the desorption efficiency was determined by analyzing the headspace gas in the vial with a gas chromatograph equipped with flame ionization detector. By adding one or four kinds of nonionic surfactants to the aqueous solution containing two kinds of anionic surfactants, the effect adding nonionic surfactant to the desorption efficiency was investigated, but improvement of desorption efficiency was not observed. On the other hand, desorption efficiency varied depending on the production lot of the coconut-shell-activated carbon tube used as the adsorbent.

  19. Experimental and theoretical investigation of Fe-catalysis phenomenon in hydrogen thermal desorption from hydrocarbon plasma-discharge films from T-10 tokama

    NASA Astrophysics Data System (ADS)

    Stankevich, Vladimir G.; Sukhanov, Leonid P.; Svechnikov, Nicolay Yu.; Lebedev, Alexey M.; Menshikov, Kostantin A.; Kolbasov, Boris N.

    2017-10-01

    Investigations of the effect of Fe impurities on D2 thermal desorption (TD) from homogeneous CDx films (x ˜ 0.5) formed in the D-plasma discharge of the T-10 tokamak were carried out. The experimental TD spectra of the films showed two groups of peaks at 650-850 K and 900-1000 K for two adsorption states. The main result of the iron catalysis effect consists in the shift of the high-temperature peak by -24 K and in the increase in the fraction of the weakly bonded adsorption states. To describe the effect of iron impurities on TD of hydrogen isotopes, a structural cluster model based on the interaction of the Fe+ ion with the 1,3-C6H8 molecule was proposed. The potential energy surfaces of chemical reactions with the H2 elimination were calculated using ab initio methods of quantum chemistry. It was established that the activation barrier of hydrogen TD is reduced by about 1 eV due to the interaction of the Fe+ ion with the π-subsystem of the 1,3-C6H8 molecule leading to a redistribution of the double bonds along the carbon system. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)"", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea

  20. Laser desorption mass spectrometry for biomolecule detection and its applications

    NASA Astrophysics Data System (ADS)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  1. [Target and non-target screening of volatile organic compounds in industrial exhaust gas using thermal desorption-gas chromatography-mass spectrometry].

    PubMed

    Ma, Huilian; Jin, Jing; Li, Yun; Chen, Jiping

    2017-10-08

    A method of comprehensive screening of the target and non-target volatile organic compounds (VOCs) in industrial exhaust gas using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed. In this paper, two types of solid phase adsorption column were compared, and the Tenex SS TD Tube was selected. The analytes were enriched into the adsorption tube by constant flow sampling, and detected by TD-GC-MS in full scan mode. Target compounds were quantified by internal standard method, and the quantities of non-target compounds were calculated by response coefficient of toluene. The method detection limits (MDLs) for the 24 VOCs were 1.06 to 5.44 ng, and MDLs could also be expressed as 0.004 to 0.018 mg/m 3 assuming that the sampling volume was 300 mL. The average recoveries were in the range of 78.4% to 89.4% with the relative standard deviations (RSDs) of 3.9% to 14.4% ( n =7). The established analytical method was applied for the comprehensive screening of VOCs in a waste incineration power plant in Dalian city. Twenty-nine VOCs were identified. In these compounds, only five VOCs were the target compounds set in advance, which accounted for 26.7% of the total VOCs identified. Therefore, this study further proved the importance of screening non-target compounds in the analysis of VOCs in industrial exhaust gas, and has certain reference significance for the complete determination of VOCs distribution.

  2. Positron-annihilation-induced ion desorption from TiO2(110)

    NASA Astrophysics Data System (ADS)

    Tachibana, T.; Hirayama, T.; Nagashima, Y.

    2014-05-01

    We have investigated the positron-stimulated desorption of ions from a TiO2(110) surface. Desorbed O+ ions were detected in coincidence with the emission of annihilation γ rays. The energy dependence of the ion yields shows that the O+ ions were detected at energies much lower than the previously reported threshold for electron impact desorption corresponding to the excitation energy of Ti(3p) core electrons. These results provide evidence that core-hole creation by positron annihilation with electrons in the core levels leads to ion desorption.

  3. Sorption-desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: isotherm hysteresis.

    PubMed

    Shirvani, Mehran; Kalbasi, Mahmoud; Shariatmadari, Hosein; Nourbakhsh, Farshid; Najafi, Bijan

    2006-12-01

    Sorption isotherms have been widely used to assess the heavy metal retention characteristics of soil particles. Desorption behavior of the retained metals, however, usually differ from that of sorption, leading to a lack of coincidence in the experimentally obtained sorption and desorption isotherms. In this study, we examine the nonsingularity of cadmium (Cd) sorption-desorption isotherms, to check the possible hysteresis and reversibility phenomena, in aqueous palygorskite, sepiolite and calcite systems. Sorption of Cd was carried out using a 24-h batch equilibration experiment with eight different Cd solution concentrations, equivalent to 20-100% of maximum sorption capacity of each mineral. Immediately after sorption, desorption took place using successive dilution method with five consecutive desorption steps. Both Cd sorption and desorption data were adequately described by Freundlich equation (0.81desorption reactions, however, did not provide the same isotherms, indicating that hysteresis occurred in Cd sorption-desorption processes. The extent of hysteresis was quantified based on the differences obtained from sorption and desorption isotherms regarding the amount of Cd sorbed, the Freundlich exponent, and the Cd distribution coefficient. The results revealed that, sepiolite possessed the most hysteretic behavior among the minerals studied. Calcite showed much smaller hysteresis compared to the other two silicate clays at low Cd surface load, but its hysteresis indices significantly increased, and exceeded that of palygorskite, as the amount of Cd in the systems increased. The average amount of Cd released after five desorption steps, was 13.8%, 2.2% and 3.6% for the palygorskite, sepiolite and calcite, respectively, indicating that a large portion of Cd was irreversibly retained by the minerals.

  4. A study of the kinetics of isothermal nicotine desorption from silicon dioxide

    NASA Astrophysics Data System (ADS)

    Adnadjevic, Borivoj; Lazarevic, Natasa; Jovanovic, Jelena

    2010-12-01

    The isothermal kinetics of nicotine desorption from silicon dioxide (SiO 2) was investigated. The isothermal thermogravimetric curves of nicotine at temperatures of 115 °C, 130 °C and 152 °C were recorded. The kinetic parameters ( Ea, ln A) of desorption of nicotine were calculated using various methods (stationary point, model constants and differential isoconversion method). By applying the "model-fitting" method, it was found that the kinetic model of nicotine desorption from silicon dioxide was a phase boundary controlled reaction (contracting volume). The values of the kinetic parameters, Ea,α and ln Aα, complexly change with changing degree of desorption and a compensation effect exists. A new mechanism of activation for the desorption of the absorbed molecules of nicotine was suggested in agreement with model of selective energy transfer.

  5. Sorption and desorption of indaziflam degradates in several agricultural soils

    USDA-ARS?s Scientific Manuscript database

    Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption-desorption are important processes as they regulate movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involvi...

  6. Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles

    NASA Astrophysics Data System (ADS)

    Huber, F. M.; Heck, S.; Truche, L.; Bouby, M.; Brendlé, J.; Hoess, P.; Schäfer, T.

    2015-01-01

    Sorption/desorption kinetics for selected radionuclides (99Tc(VII), 232Th(IV), 233U(VI), 237Np(V), 242Pu and 243Am(III)) under Grimsel (Switzerland) ground water conditions (pH 9.7 and ionic strength of ∼1 mM) in the presence of synthetic Zn or Ni containing montmorillonite nanoparticles and granodiorite fracture filling material (FFM) from Grimsel were examined in batch studies. The structurally bound Zn or Ni in the octahedral sheet of the synthetic colloids rendered them suitable as colloid markers. Only a weak interaction of the montmorillonite colloids with the fracture filling material occurs over the experimental duration of 10,000 h (∼13 months). The tri- and tetravalent radionuclides are initially strongly associated with nanoparticles in contrast to 99Tc(VII), 233U(VI) and 237Np(V) which showed no sorption to the montmorillonite colloids. Radionuclide desorption of the nanoparticles followed by sorption to the fracture filling material is observed for 232Th(IV), 242Pu and 243Am(III). Based on the conceptual model that the driving force for the kinetically controlled radionuclide desorption from nanoparticles and subsequent association to the FFM is the excess in surface area offered by the FFM, the observed desorption kinetics are related to the colloid/FFM surface area ratio. The observed decrease in concentration of the redox sensitive elements 99Tc(VII), 233U(VI) and 237Np(V) may be explained by reduction to lower oxidation states in line with Eh-pH conditions prevailing in the experiments and thermodynamic considerations leading to (i) precipitation of a sparingly soluble phase, (ii) sorption to the fracture filling material, (iii) possible formation of eigencolloids and/or (iv) sorption to the montmorillonite colloids. Subsequent to the sorption/desorption kinetics study, an additional experiment was conducted investigating the potential remobilization of radionuclides/colloids attached to the FFM used in the sorption/desorption kinetic

  7. Long-term Kinetics of Uranyl Desorption from Sediments Under Advective Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming

    2014-02-15

    Long-term (> 4 months) column experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption in sediments collected from the Integrated Field Research Challenge (IFRC) site at the US Department of Energy (DOE) Hanford 300 Area. The experimental results were used to evaluate alternative multi-rate surface complexation reaction (SCR) approaches to describe the short- and long-term kinetics of U(VI) desorption under flow conditions. The SCR stoichiometry, equilibrium constants, and multi-rate parameters were independently characterized in batch and stirred flow-cell reactors. Multi-rate SCR models that were either additively constructed using the SCRs for individual size fractions (e.g., Shang et al.,more » 2011), or composite in nature could effectively describe short-term U(VI) desorption under flow conditions. The long-term desorption results, however, revealed that using a labile U concentration measured by carbonate extraction under-estimated desorbable U(VI) and the long-term rate of U(VI) desorption. An alternative modeling approach using total U as the desorbable U(VI) concentration was proposed to overcome this difficulty. This study also found that the gravel size fraction (2-8 mm), which is typically treated as non-reactive in modeling U(VI) reactive transport because of low external surface area, can have an important effect on the U(VI) desorption in the sediment. This study demonstrates an approach to effectively extrapolate U(VI) desorption kinetics for field-scale application, and identifies important parameters and uncertainties affecting model predictions.« less

  8. Sequential Desorption of Nitroaromatic Compounds (NAC) from Soils

    DTIC Science & Technology

    2005-03-01

    the soil solution . Weissmahr et al. [20] suggest an electron donor acceptor (EDA) complex between oxygens of the siloxane surface of the clays and the...release of NACs into the soil solution . At high pH values desorption is superimposed by NACs hydrolysis. Therefore, in- creasing pH values impedes the...presented demonstrate that both the cation present in the soil solution and its concentration may affect the desorption behavior of NACs in contaminated soils

  9. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    PubMed

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  10. Analysis of nitrogen-based explosives with desorption atmospheric pressure photoionization mass spectrometry.

    PubMed

    Kauppila, T J; Flink, A; Pukkila, J; Ketola, R A

    2016-02-28

    Fast methods that allow the in situ analysis of explosives from a variety of surfaces are needed in crime scene investigations and home-land security. Here, the feasibility of the ambient mass spectrometry technique desorption atmospheric pressure photoionization (DAPPI) in the analysis of the most common nitrogen-based explosives is studied. DAPPI and desorption electrospray ionization (DESI) were compared in the direct analysis of trinitrotoluene (TNT), trinitrophenol (picric acid), octogen (HMX), cyclonite (RDX), pentaerythritol tetranitrate (PETN), and nitroglycerin (NG). The effect of different additives in DAPPI dopant and in DESI spray solvent on the ionization efficiency was tested, as well as the suitability of DAPPI to detect explosives from a variety of surfaces. The analytes showed ions only in negative ion mode. With negative DAPPI, TNT and picric acid formed deprotonated molecules with all dopant systems, while RDX, HMX, PETN and NG were ionized by adduct formation. The formation of adducts was enhanced by addition of chloroform, formic acid, acetic acid or nitric acid to the DAPPI dopant. DAPPI was more sensitive than DESI for TNT, while DESI was more sensitive for HMX and picric acid. DAPPI could become an important method for the direct analysis of nitroaromatics from a variety of surfaces. For compounds that are thermally labile, or that have very low vapor pressure, however, DESI is better suited. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Solid solution barium–strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialy, Agata; Jensen, Peter B.; Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, Fysikvej 311, DK-2800 Kgs. Lyngby

    Metal halide ammines are very attractive materials for ammonia absorption and storage—applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35–50% barium and 65–50% strontium, stablemore » materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia. - Graphical abstract: Thermal desorption curves of ammonia from Ba{sub x}Sr{sub (1−x)}Cl{sub 2} mixtures with x equal to 0.125, 0.25 and 0.5 and atomic structure of Sr(NH{sub 3}){sub 8}Cl{sub 2}. - Highlights: • Solid solutions of strontium and barium chloride were synthesized by spray drying. • Adjusting molar ratios led to different crystallographic phases and compositions. • Different molar ratios led to different ammonia ab-/desorption properties. • 35–50 mol% BaCl{sub 2} in SrCl{sub 2} yields higher ammonia density than any other metal halide. • DFT calculations can be used to predict properties of the mixtures.« less

  12. Silver-gold alloy nanoparticles as tunable substrates for systematic control of ion-desorption efficiency and heat transfer in surface-assisted laser desorption/ionization.

    PubMed

    Lai, Samuel Kin-Man; Cheng, Yu-Hong; Tang, Ho-Wai; Ng, Kwan-Ming

    2017-08-09

    Systematically controlling heat transfer in the surface-assisted laser desorption/ionization (SALDI) process and thus enhancing the analytical performance of SALDI-MS remains a challenging task. In the current study, by tuning the metal contents of Ag-Au alloy nanoparticle substrates (AgNPs, Ag55Au45NPs, Ag15Au85NPs and AuNPs, ∅: ∼2.0 nm), it was found that both SALDI ion-desorption efficiency and heat transfer can be controlled in a wide range of laser fluence (21.3 mJ cm -2 to 125.9 mJ cm -2 ). It was discovered that ion detection sensitivity can be enhanced at any laser fluence by tuning up the Ag content of the alloy nanoparticle, whereas the extent of ion fragmentation can be reduced by tuning up the Au content. The enhancement effect of Ag content on ion desorption was found to be attributable to the increase in laser absorption efficiency (at 355 nm) with Ag content. Tuning the laser absorption efficiency by changing the metal composition was also effective in controlling the heat transfer from the NPs to the analytes. The laser-induced heating of Ag-rich alloy NPs could be balanced or even overridden by increasing the Au content of NPs, resulting in the reduction of the fragmentation of analytes. In the correlation of experimental measurement with molecular dynamics simulation, the effect of metal composition on the dynamics of the ion desorption process was also elucidated. Upon increasing the Ag content, it was also found that phase transition temperatures, such as melting, vaporization and phase explosion temperature, of NPs could be reduced. This further enhanced the desorption of analyte ions via phase-transition-driven desorption processes. The significant cooling effect on the analyte ions observed at high laser fluence was also determined to be originated from the phase explosion of the NPs. This study revealed that the development of alloy nanoparticles as SALDI substrates can constitute an effective means for the systematic control of ion-desorption

  13. Covalent organic framework as efficient desorption/ionization matrix for direct detection of small molecules by laser desorption/ionization mass spectrometry.

    PubMed

    Feng, Dan; Xia, Yan

    2018-07-19

    Covalent organic framework (COF) was explored as a novel matrix with a high desorption/ionization efficiency for direct detection of small molecules by laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS). By using COF as an LDI MS matrix, we could detect not only biological micro molecules such as amino acids and fatty acids, but also emerging environmental pollutants like bisphenol S (BPS) and pyrene. With COF as the matrix, higher desorption/ionization efficiency, and less background interference were achieved than the conventional organic matrices. Good salt tolerance (as high as 500 mM NaCl) and repeatability allowed the detection limit of amino acids was 90 fmol. In addition, COF matrix performed well for amino acids analysis in the honey sample. The ionization mechanism was also discussed. These results demonstrate that COF is a powerful matrix for small molecules analysis in real samples by MS. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Effect of pH and polypropylene beads in hybrid water treatment process of alumina ceramic microfiltration and PP beads with air back-flushing and UV irradiation.

    PubMed

    Park, Jin Yong; Song, Seunghwa

    2017-07-07

    For advanced water treatment, effects of pH and pure polypropylene (PP) beads packing concentration on membrane fouling and treatment efficiency were observed in a hybrid process of alumina ceramic microfiltration (MF; pore size 0.1 μm) and pure PP beads. Instead of natural organic matters and fine inorganic particles in natural water source, a quantity of humic acid (HA) and kaolin was dissolved in distilled water. The synthetic feed flowed inside the MF membrane, and the permeated water contacted the PP beads fluidized in the gap of the membrane and the acryl module case with outside UV irradiation. Periodic air back-flushing was performed to control membrane fouling during 10 s per 10 min. The membrane fouling resistance (R f ) was the maximum at 30 g/L of PP bead concentration. Finally, the maximum total permeated volume (V T ) was acquired at 5 g/L of PP beads, because flux maintained higher all through the operation. The treatment efficiency of turbidity was almost constant, independent of PP bead concentration; however, that of dissolved organic materials (DOM) showed the maximal at 50 g/L of PP beads. The R f increased as increasing feed pH from 5 to 9; however, the maximum V T was acquired at pH 6. It means that the membrane fouling could be inhibited at low acid condition. The treatment efficiency of turbidity increased a little, and that of DOM increased from 73.6 to 75.7% as increasing pH from 5 to 9.

  15. PAES study of the positron thermal desorption from a Ge(100) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soininen, E.; Schwab, A.; Lynn, K.G.

    1991-02-01

    Positron induced Auger electron spectroscopy (PAES) from a clean Ge(100) surface was studied as a function of temperature. Three low-energy Auger peaks were detected at 50 eV, 90 eV and 100--150 eV, attributed to M{sub 2,3}M{sub 4}M{sub 4}, M{sub 2,3}M{sub 4}V and M{sub 1}M{sub 4}M{sub 4} Auger transitions, respectively. An estimated 4({plus minus}1)% of the surface trapped positrons annihilate with Ge 3p level electrons. The PAES yield from a Ge(100) surface is reduced at elevated temperatures, in accordance with an activation process found earlier in several Ps fraction experiments. A desorption model adopted from these studies does not accurately describemore » the PAES intensity at higher temperatures ({gt}500 {degree}C), which levels off at 5% of the room temperature value. Possible sources for the discrepancy are discussed. On a Ge(100) surface, an upper limit for the Ps emission near the melting point is 97%. The error in calibration parameters due to the earlier assumption of 100% Ps emission from Ge surfaces seems to induce only small errors to the Ps fraction measurements.« less

  16. USGS Coal Desorption Equipment and a Spreadsheet for Analysis of Lost and Total Gas from Canister Desorption Measurements

    USGS Publications Warehouse

    Barker, Charles E.; Dallegge, Todd A.; Clark, Arthur C.

    2002-01-01

    We have updated a simple polyvinyl chloride plastic canister design by adding internal headspace temperature measurement, and redesigned it so it is made with mostly off-the-shelf components for ease of construction. Using self-closing quick connects, this basic canister is mated to a zero-head manometer to make a simple coalbed methane desorption system that is easily transported in small aircraft to remote localities. This equipment is used to gather timed measurements of pressure, volume and temperature data that are corrected to standard pressure and temperature (STP) and graphically analyzed using an Excel(tm)-based spreadsheet. Used together these elements form an effective, practical canister desorption method.

  17. Desorption behavior of sorbed flavor compounds from packaging films with ethanol solution.

    PubMed

    Hwang, Y H; Matsui, T; Hanada, T; Shimoda, M; Matsumoto, K; Osajima, Y

    2000-09-01

    Desorption behavior of sorbed flavor compounds such as ethyl esters, n-aldehydes, and n-alcohols from LDPE and PET films was investigated in 0 to 100% (v/v) ethanol solutions at 20 degrees C, 50 degrees C, and 60 degrees C. In both films, the desorption apparently increased with increasing ethanol concentration and treatment temperature, depending on the compatibility of the flavor compound with the solvent. Namely, the partition coefficient of ethyl esters, n-aldehydes, and n-alcohols in the LDPE film turned out to be approximately zero at >/=60%, >/=80%, and >/=40% (v/v) ethanol, respectively (for PET film, >/=80%, >/=80%, and >/=40% (v/v) ethanol concentrations were required for complete desorption, respectively). As for physical properties (heat of fusion, melting point, and tensile strength and elongation at break) of LDPE and PET films, there were no significant differences between intact film and the treated film with 60% (v/v) ethanol for 30 min at 60 degrees C. These results suggest that it is possible to apply a desorption solvent such as ethanol solution for desorption of sorbed flavor compounds from packaging films with no physical change in the film properties by this desorption treatment.

  18. Desorption of plutonium from montmorillonite: An experimental and modeling study

    DOE PAGES

    Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.

    2017-01-15

    Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. In this article, we evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with K d values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in K d, indicating that true sorption equilibrium was not achieved withinmore » the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. In addition, a conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50–100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.« less

  19. Desorption of plutonium from montmorillonite: An experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Begg, James D.; Zavarin, Mavrik; Kersting, Annie B.

    2017-01-01

    Desorption of plutonium (Pu) will likely control the extent to which it is transported by mineral colloids. We evaluated the adsorption/desorption behavior of Pu on SWy-1 montmorillonite colloids at pH 4, pH 6, and pH 8 using batch adsorption and flow cell desorption experiments. After 21 days adsorption, Pu(IV) affinity for montmorillonite displayed a pH dependency, with Kd values highest at pH 4 and lowest at pH 8. The pH 8 experiment was further allowed to equilibrate for 6 months and showed an increase in Kd, indicating that true sorption equilibrium was not achieved within the first 21 days. For the desorption experiments, aliquots of the sorption suspensions were placed in a flow cell, and Pu-free solutions were then pumped through the cell for a period of 12 days. Changes in influent solution flow rate were used to investigate the kinetics of Pu desorption and demonstrated that it was rate-limited over the experimental timescales. At the end of the 12-day flow cell experiments, the extent of desorption was again pH dependent, with pH 8 > pH 6 > pH 4. Further, at pH 8, less Pu was desorbed after an adsorption contact time of 6 months than after a contact time of 21 days, consistent with an aging of Pu on the clay surface. A conceptual model for Pu adsorption/desorption that incorporated known surface-mediated Pu redox reactions was used to fit the experimental data. The resulting rate constants indicated processes occurring on timescales of months and even years which may, in part, explain observations of clay colloid-facilitated Pu transport on decadal timescales. Importantly, however, our results also imply that migration of Pu adsorbed to montmorillonite colloids at long (50-100 year) timescales under oxic conditions may not be possible without considering additional phenomena, such as co-precipitation.

  20. Comparison of Adsorption/Desorption of Volatile Organic Compounds (VOCs) on Electrospun Nanofibers with Tenax TA for Potential Application in Sampling

    PubMed Central

    Chu, Lanling; Deng, Siwei; Zhao, Renshan; Deng, Jianjun; Kang, Xuejun

    2016-01-01

    The objective of this study was to compare the adsorption/desorption of target compounds on homemade electrospun nanofibers, polystyrene (PS) nanofibers, acrylic resin (AR) nanofibers and PS-AR composite nanofibers with Tenax TA. Ten volatile organic compounds (VOCs) were analyzed by preconcentration onto different sorbents followed by desorption (thermal and solvent orderly) and analysis by capillary gas chromatography. In comparison to Tenax TA, the electrospun nanofibers displayed a significant advantage in desorption efficiency and adsorption selectivity. Stability studies were conducted as a comparative experiment between PS-AR nanofibers and Tenax TA using toluene as the model compound. No stability problems were observed upon storage of toluene on both PS-AR nanofibers and Tenax TA over 60 hours period when maintained in an ultra-freezer (−80°C). The nanofibers provided slightly better stability for the adsorbed analytes than Tenax TA under other storage conditions. In addition, the nanofibers also provided slightly better precision than Tenax TA. The quantitative adsorption of PS-AR nanofibers exhibited a good linearity, as evidenced by the 0.988–0.999 range of regression coefficients (R). These results suggest that for VOCs sampling the electrospun nanofibers can be a potential ideal adsorbent. PMID:27776140

  1. USING METHANOL-WATER SYSTEMS TO INVESTIGATE PHENANTHRENE SORPTION-DESORPTION ON SEDIMENT

    EPA Science Inventory

    Sorption isotherm nonlinearity, sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic matter (NOM) polymers associated with soils and sediments. A conceptualizat...

  2. Thermal release of D2 from new Be-D co-deposits on previously baked co-deposits

    NASA Astrophysics Data System (ADS)

    Baldwin, M. J.; Doerner, R. P.

    2015-12-01

    Past experiments and modeling with the TMAP code in [1, 2] indicated that Be-D co-deposited layers are less (time-wise) efficiently desorbed of retained D in a fixed low-temperature bake, as the layer grows in thickness. In ITER, beryllium rich co-deposited layers will grow in thickness over the life of the machine. Although, compared with the analyses in [1, 2], ITER presents a slightly different bake efficiency problem because of instances of prior tritium recover/control baking. More relevant to ITER, is the thermal release from a new and saturated co-deposit layer in contact with a thickness of previously-baked, less-saturated, co-deposit. Experiments that examine the desorption of saturated co-deposited over-layers in contact with previously baked under-layers are reported and comparison is made to layers of the same combined thickness. Deposition temperatures of ∼323 K and ∼373 K are explored. It is found that an instance of prior bake leads to a subtle effect on the under-layer. The effect causes the thermal desorption of the new saturated over-layer to deviate from the prediction of the validated TMAP model in [2]. Instead of the D thermal release reflecting the combined thickness and levels of D saturation in the over and under layer, experiment differs in that, i) the desorption is a fractional superposition of desorption from the saturated over-layer, with ii) that of the combined over and under -layer thickness. The result is not easily modeled by TMAP without the incorporation of a thin BeO inter-layer which is confirmed experimentally on baked Be-D co-deposits using X-ray micro-analysis.

  3. Comparison of Ti-Based Coatings on Silicon Nanowires for Phosphopeptide Enrichment and Their Laser Assisted Desorption/Ionization Mass Spectrometry Detection

    PubMed Central

    Kurylo, Ievgen; Hamdi, Abderrahmane; Addad, Ahmed; Coffinier, Yannick

    2017-01-01

    We created different TiO2-based coatings on silicon nanowires (SiNWs) by using either thermal metallization or atomic layer deposition (ALD). The fabricated surfaces were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and reflectivity measurements. Surfaces with different TiO2 based coating thicknesses were then used for phosphopeptide enrichment and subsequent detection by laser desorption/ionization mass spectrometry (LDI-MS). Results showed that the best enrichment and LDI-MS detection were obtained using the silicon nanowires covered with 10 nm of oxidized Ti deposited by means of thermal evaporation. This sample was also able to perform phosphopeptide enrichment and MS detection from serum. PMID:28914806

  4. Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies.

    PubMed

    Abdolali, Atefeh; Ngo, Huu Hao; Guo, Wenshan; Zhou, John L; Du, Bin; Wei, Qin; Wang, Xiaochang C; Nguyen, Phuoc Dan

    2015-10-01

    This work attends to preparation and characterization of a novel multi-metal binding biosorbent after chemical modification and desorption studies. Biomass is a combination of tea waste, maple leaves and mandarin peels with a certain proportion to adsorb cadmium, copper, lead and zinc ions from aqueous solutions. The mechanism involved in metal removal was investigated by SEM, SEM/EDS and FTIR. SEM/EDS showed the presence of different chemicals and adsorbed heavy metal ions on the surface of biosorbent. FTIR of both unmodified and modified biosorbents revealed the important role of carboxylate groups in heavy metal biosorption. Desorption using different eluents and 0.1 M HCl showed the best desorption performance. The effectiveness of regeneration step by 1 M CaCl2 on five successive cycles of sorption and desorption displays this multi-metal binding biosorbent (MMBB) can effectively be utilized as an adsorbent to remove heavy metal ions from aqueous solutions in five cycles of sorption/desorption/regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Influence of dissolved organic matter and activated carbon pore characteristics on organic micropollutant desorption.

    PubMed

    Aschermann, Geert; Zietzschmann, Frederik; Jekel, Martin

    2018-04-15

    By simulating decreasing inflow concentrations, the extent of desorption of organic micropollutants (OMP) from three activated carbons (AC) was examined in laboratory batch tests. The tested AC showed strong differences in pore size distribution and could therefore be characterized as typical micro-, meso- and macroporous AC, respectively. Adsorption and desorption conditions were varied by using drinking water (containing dissolved organic matter (DOM)) and DOM-free pure water as background solutions to examine the influence of DOM on OMP desorption for the different AC. Under ideal conditions (adsorption and desorption in pure water) adsorption of the tested OMP was found to be highly up to completely reversible for all tested AC. Under real conditions (adsorption and desorption in drinking water) additional DOM adsorption affects desorption in different ways depending on the AC pore structure. For the micro- and mesoporous AC, an increased irreversibility of OMP adsorption was found, which shows that DOM adsorption prevents OMP desorption. This could be referred to pore blockage effects that occur during the parallel adsorption of DOM and OMP. For the macroporous AC, DOM adsorption led to an enhanced OMP desorption which could be attributed to displacement processes. These results show that smaller pores tend to be blocked by DOM which hinders OMP from desorption. The overall larger pores of the macroporous AC do not get blocked which could allow (i) OMP to desorb and (ii) DOM to enter and displace OMP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Studies on desorption and regeneration of natural pumice for iron removal from aqueous solution.

    PubMed

    Indah, S; Helard, D; Binuwara, A

    2018-05-01

    To make the adsorption process more economic and environmental friendly, it is necessary to study desorption and reutilization of the adsorbents. In the present study, the effectiveness of natural pumice in removal of iron from aqueous solution was investigated in several sorption-desorption cycles. The desorption characteristics of previously adsorbed iron ions on natural pumice were tested by various desorbing agents such as HCl, NaOH and aquadest. Among them, HCl showed the highest desorption efficiency (37.89%) with 0.1 M of concentration and 60 min of contact time. The removal efficiency of iron ions in reused natural pumice could be maintained up to 90% in the third cycle of adsorption. The results indicate that although complete desorption was not achieved, natural pumice from Sungai Pasak, West Sumatra, Indonesia, can be sufficiently reused up to three cycles of adsorption-desorption.

  7. Time and temperature dependent adsorption-desorption behaviour of pretilachlor in soil.

    PubMed

    Kaur, Paawan; Kaur, Pervinder

    2018-06-04

    Understanding and quantifying the adsorption-desorption behaviour of herbicide in soil is imperative for predicting their fate and transport in the environment. In the present study, the effect of time and temperature on the adsorption-desorption behaviour of pretilachlor in soils was investigated using batch equilibration technique. The adsorption-desorption kinetics of pretilachlor in soils was two step process and was well described by pseudo-second-order kinetic model. Freundlich model accurately predicted the sorption behaviour of pretilachlor. The adsorption-desorption of pretilachlor varied significantly with the concentration, temperature and properties of soil viz. organic matter and clay content. All the studied soils had non-linear slopes (n < 1) and degree of nonlinearity increased with increase in clay, organic matter content and temperature (p < 0.05). Desorption of pretilachlor was hysteretic in studied soils and hysteresis coefficient varied from 0.023 to 0.275. Thermodynamic analysis showed that pretilachlor adsorption onto soils was a feasible, spontaneous and endothermic process which becomes more favourable at high temperature. It could be inferred that the adsorption of pretilachlor on soils was physical in nature. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Agile Thermal Management STT-RX. Catalytic Influence of Ni-based Additives on the Dehydrogentation Properties of Ball Milled MgH2 (PREPRINT)

    DTIC Science & Technology

    2011-12-01

    Wronski: Particle size, grain size and gamma-MgH2 effects on the desorption properties of nanocrystal- line commercial magnesium hydride processed...Catalytic effects of various forms of nickel on the synthesis rate and hydrogen desorption properties of nanocrystalline magnesium hydride (MgH2...dehydrogenation reaction. 15. SUBJECT TERMS magnesium hydride , MgH, thermal energy storage materials, endothermic reaction 16. SECURITY CLASSIFICATION

  9. FOREWORD: The 12th International Workshop on Desorption Induced by Electronic Transitions (DIET XII) (Pine Mountain, Georgia, USA, 19-23 April 2009) The 12th International Workshop on Desorption Induced by Electronic Transitions (DIET XII) (Pine Mountain, Georgia, USA, 19-23 April 2009)

    NASA Astrophysics Data System (ADS)

    Orlando, Thomas M.; Diebold, Ulrike

    2010-03-01

    The 12th International Workshop on Desorption Induced by Electronic Transitions (DIET XII) took place from 19-23 April 2009 in Pine Mountain, Georgia, USA. This was the 12th conference in a strong and vibrant series, which dates back to the early 1980s. DIET XII continued the tradition of exceptional interdisciplinary science and focused on the study of desorption and dynamics induced by electronic excitations of surfaces and interfaces. The format involved invited lectures, contributed talks and a poster session on the most recent developments and advances in this area of surface physics. The Workshop International Steering Committee and attendees wish to dedicate DIET XII to the memory of the late Professor Theodore (Ted) Madey. Ted was one of the main pioneers of this field and was one of the primary individuals working to keep this area of science exciting and adventurous. His overall contributions to surface science were countless and his contributions to the DIET field and community were enormous. He is missed and remembered by many friends and colleagues throughout the world. The papers collected in this issue cover many of the highlights of DIET XII. Topics include ultrafast electron transfer at surfaces and interfaces, quantum and spatially resolved mapping of surface dynamics and desorption, photon-, electron- and ion-beam induced processes at complex interfaces, the role of non-thermal desorption in astrochemistry and astrophysics and laser-/ion-based methods of examining soft matter and biological media. Although the workshop attracted many scientists active in the general area of non-thermal surface processes, DIET XII also attracted many younger scientists (i.e., postdoctoral fellows, advanced graduate students, and a select number of advanced undergraduate students). This field has had an impact in a number of areas including nanoscience, device physics, astrophysics, and now biophysics. We believe that this special issue of Journal of Physics

  10. Photothermal desorption of single-walled carbon nanotubes and coconut shell-activated carbons using a continuous light source for application in air sampling.

    PubMed

    Floyd, Evan L; Sapag, Karim; Oh, Jonghwa; Lungu, Claudiu T

    2014-08-01

    Many techniques exist to measure airborne volatile organic compounds (VOCs), each with differing advantages; sorbent sampling is compact, versatile, has good sample stability, and is the preferred technique for collecting VOCs for hygienists. Development of a desorption technique that allows multiple analyses per sample (similar to chemical desorption) with enhanced sensitivity (similar to thermal desorption) would be helpful to field hygienists. In this study, activated carbon (AC) and single-walled carbon nanotubes (SWNT) were preloaded with toluene vapor and partially desorbed with light using a common 12-V DC, 50-W incandescent/halogen lamp. A series of experimental chamber configurations were explored starting with a 500-ml chamber under static conditions, then with low ventilation and high ventilation, finally a 75-ml high ventilation chamber was evaluated. When preloaded with toluene and irradiated at the highest lamp setting for 4min, AC desorbed 13.9, 18.5, 23.8, and 45.9% of the loaded VOC mass, in each chamber configuration, respectively; SWNT desorbed 25.2, 24.3, 37.4, and 70.5% of the loaded VOC mass, respectively. SWNT desorption was significantly greater than AC in all test conditions (P = 0.02-<0.0001) demonstrating a substantial difference in sorbent performance. When loaded with 0.435mg toluene and desorbed at the highest lamp setting for 4min in the final chamber design, the mean desorption for AC was 45.8% (39.7, 52.0) and SWNT was 72.6% (68.8, 76.4) (mean represented in terms of 95% confidence interval). All desorption measurements were obtained using a field grade photoionization detector; this demonstrates the potential of using this technique to perform infield prescreening of VOC samples for immediate exposure feedback and in the analytical lab to introduce sample to a gas chromatograph for detailed analysis of the sample. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  11. Atomic Force Microscopy Thermally-Assisted Microsampling with Atmospheric Pressure Temperature Ramped Thermal Desorption/Ionization-Mass Spectrometry Analysis

    DOE PAGES

    Hoffmann, William D.; Kertesz, Vilmos; Srijanto, Bernadeta R.; ...

    2017-02-20

    The use of atomic force microscopy controlled nano-thermal analysis probes for reproducible spatially resolved thermally-assisted sampling of micrometer-sized areas (ca. 11 m 17 m wide 2.4 m deep) from relatively low number average molecular weight (M n < 3000) polydisperse thin films of poly(2-vinylpyridine) (P2VP) is presented. Following sampling, the nano-thermal analysis probes were moved up from the surface and the probe temperature ramped to liberate the sampled materials into the gas phase for atmospheric pressure chemical ionization and mass spectrometric analysis. Furthermore, the procedure and mechanism for material pickup, the sampling reproducibility and sampling size are discussed and themore » oligomer distribution information available from slow temperature ramps versus ballistic temperature jumps is presented. For the M n = 970 P2VP, the Mn and polydispersity index determined from the mass spectrometric data were in line with both the label values from the sample supplier and the value calculated from the simple infusion of a solution of polymer into the commercial atmospheric pressure chemical ionization source on this mass spectrometer. With a P2VP sample of higher Mn (M n = 2070 and 2970), intact oligomers were still observed (as high as m/z 2793 corresponding to the 26-mer), but a significant abundance of thermolysis products were also observed. In addition, the capability for confident identification of the individual oligomers by slowly ramping the probe temperature and collecting data dependent tandem mass spectra was also demonstrated. We also discuss the material type limits to the current sampling and analysis approach as well as possible improvements in nano-thermal analysis probe design to enable smaller area sampling and to enable controlled temperature ramps beyond the present upper limit of about 415°C.« less

  12. Atomic Force Microscopy Thermally-Assisted Microsampling with Atmospheric Pressure Temperature Ramped Thermal Desorption/Ionization-Mass Spectrometry Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, William D.; Kertesz, Vilmos; Srijanto, Bernadeta R.

    The use of atomic force microscopy controlled nano-thermal analysis probes for reproducible spatially resolved thermally-assisted sampling of micrometer-sized areas (ca. 11 m 17 m wide 2.4 m deep) from relatively low number average molecular weight (M n < 3000) polydisperse thin films of poly(2-vinylpyridine) (P2VP) is presented. Following sampling, the nano-thermal analysis probes were moved up from the surface and the probe temperature ramped to liberate the sampled materials into the gas phase for atmospheric pressure chemical ionization and mass spectrometric analysis. Furthermore, the procedure and mechanism for material pickup, the sampling reproducibility and sampling size are discussed and themore » oligomer distribution information available from slow temperature ramps versus ballistic temperature jumps is presented. For the M n = 970 P2VP, the Mn and polydispersity index determined from the mass spectrometric data were in line with both the label values from the sample supplier and the value calculated from the simple infusion of a solution of polymer into the commercial atmospheric pressure chemical ionization source on this mass spectrometer. With a P2VP sample of higher Mn (M n = 2070 and 2970), intact oligomers were still observed (as high as m/z 2793 corresponding to the 26-mer), but a significant abundance of thermolysis products were also observed. In addition, the capability for confident identification of the individual oligomers by slowly ramping the probe temperature and collecting data dependent tandem mass spectra was also demonstrated. We also discuss the material type limits to the current sampling and analysis approach as well as possible improvements in nano-thermal analysis probe design to enable smaller area sampling and to enable controlled temperature ramps beyond the present upper limit of about 415°C.« less

  13. Variable Temperature Infrared Spectroscopy Investigations of Benzoic Acid Desorption from Sodium and Calcium Montmorillonite Clays.

    PubMed

    Nickels, Tara M; Ingram, Audrey L; Maraoulaite, Dalia K; White, Robert L

    2015-12-01

    Processes involved in thermal desorption of benzoic acid from sodium and calcium montmorillonite clays are investigated by using variable temperature diffuse reflection Fourier transform infrared spectroscopy (DRIFTS). By monitoring the temperature dependence of infrared absorbance bands while heating samples, subtle changes in molecular vibrations are detected and employed to characterize specific benzoic acid adsorption sites. Abrupt changes in benzoic acid adsorption site properties occur for both clay samples at about 125 °C. Difference spectra absorbance band frequency variations indicate that adsorbed benzoic acid interacts with interlayer cations through water bridges and that these interactions can be disrupted by the presence of organic anions, in particular, benzoate.

  14. Desorption Mass Spectrometry for Nonvolatile Compounds Using an Ultrasonic Cutter

    NASA Astrophysics Data System (ADS)

    Habib, Ahsan; Ninomiya, Satoshi; Chen, Lee Chuin; Usmanov, Dilshadbek T.; Hiraoka, Kenzo

    2014-07-01

    In this work, desorption of nonvolatile analytes induced by friction was studied. The nonvolatile compounds deposited on the perfluoroalkoxy substrate were gently touched by an ultrasonic cutter oscillating with a frequency of 40 kHz. The desorbed molecules were ionized by a dielectric barrier discharge (DBD) ion source. Efficient desorption of samples such as drugs, pharmaceuticals, amino acids, and explosives was observed. The limits of detection for these compounds were about 1 ng. Many compounds were detected in their protonated forms without undergoing significant fragmentation. When the DBD was off, no ions for the neutral samples could be detected, meaning that only desorption along with little ionization took place by the present technique.

  15. Desorption mass spectrometry for nonvolatile compounds using an ultrasonic cutter.

    PubMed

    Habib, Ahsan; Ninomiya, Satoshi; Chen, Lee Chuin; Usmanov, Dilshadbek T; Hiraoka, Kenzo

    2014-07-01

    In this work, desorption of nonvolatile analytes induced by friction was studied. The nonvolatile compounds deposited on the perfluoroalkoxy substrate were gently touched by an ultrasonic cutter oscillating with a frequency of 40 kHz. The desorbed molecules were ionized by a dielectric barrier discharge (DBD) ion source. Efficient desorption of samples such as drugs, pharmaceuticals, amino acids, and explosives was observed. The limits of detection for these compounds were about 1 ng. Many compounds were detected in their protonated forms without undergoing significant fragmentation. When the DBD was off, no ions for the neutral samples could be detected, meaning that only desorption along with little ionization took place by the present technique.

  16. Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids.

    PubMed

    Ma, Xin; Yang, Sheng-Tao; Tang, Huan; Liu, Yuanfang; Wang, Haifang

    2015-06-15

    Carbon nanotubes (CNTs) had meaningful adsorption capacities for Pb(2+), Cu(2+), Zn(2+) and Cd(2+), while Pb(2+) showed the highest adsorption in the competitive adsorption evaluations. The desorption behaviors of heavy metal ions were completely different in various biofluids, where the desorption was significantly influenced by pH and the presence of proteins/other cations. The desorption was most effective in simulated stomach juice, and much less effective in other simulated biofluids. More Pb(2+) stuck to CNTs than others, resulting in less desorption. Interestingly, the competitive desorption behaviors of four ions were largely changed comparing to the individual desorption behaviors. The implications to the biosafety evaluations and synergistic effects of CNT are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Thermal expansion of composites: Methods and results. [large space structures

    NASA Technical Reports Server (NTRS)

    Bowles, D. E.; Tenney, D. R.

    1981-01-01

    The factors controlling the dimensional stability of various components of large space structures were investigated. Cyclic, thermal and mechanical loading were identified as the primary controlling factors of the dimensional stability of cables. For organic matrix composites, such as graphite-epoxy, it was found that these factors include moisture desorption in the space environment, thermal expansion as the structure moves from the sunlight to shadow in its orbit, mechanical loading, and microyielding of the material caused by microcracking of the matrix material. The major focus was placed on the thermal expansion of composites and in particular the development and testing of a method for its measurement.

  18. Advanced structural analysis of nanoporous materials by thermal response measurements.

    PubMed

    Oschatz, Martin; Leistner, Matthias; Nickel, Winfried; Kaskel, Stefan

    2015-04-07

    Thermal response measurements based on optical adsorption calorimetry are presented as a versatile tool for the time-saving and profound characterization of the pore structure of porous carbon-based materials. This technique measures the time-resolved temperature change of an adsorbent during adsorption of a test gas. Six carbide and carbon materials with well-defined nanopore architecture including micro- and/or mesopores are characterized by thermal response measurements based on n-butane and carbon dioxide as the test gases. With this tool, the pore systems of the model materials can be clearly distinguished and accurately analyzed. The obtained calorimetric data are correlated with the adsorption/desorption isotherms of the materials. The pore structures can be estimated from a single experiment due to different adsorption enthalpies/temperature increases in micro- and mesopores. Adsorption/desorption cycling of n-butane at 298 K/1 bar with increasing desorption time allows to determine the pore structure of the materials in more detail due to different equilibration times. Adsorption of the organic test gas at selected relative pressures reveals specific contributions of particular pore systems to the increase of the temperature of the samples and different adsorption mechanisms. The use of carbon dioxide as the test gas at 298 K/1 bar provides detailed insights into the ultramicropore structure of the materials because under these conditions the adsorption of this test gas is very sensitive to the presence of pores smaller than 0.7 nm.

  19. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  20. A Holistic Approach to Understanding the Desorption of Phosphorus in Soils.

    PubMed

    Menezes-Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney D; Darch, Tegan; George, Timothy S; Shand, Charles; Lumsdon, David; Blackwell, Martin; Wearing, Catherine; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Haygarth, Philip M

    2016-04-05

    The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics.

  1. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor.

    PubMed

    Efremov, Mikhail Yu; Nealey, Paul F

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  2. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor

    NASA Astrophysics Data System (ADS)

    Efremov, Mikhail Yu.; Nealey, Paul F.

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  3. Reaction-Mediated Desorption of Macromolecules: Novel Phenomenon Enabling Simultaneous Reaction and Separation.

    PubMed

    Isakari, Yu; Kishi, Yuhi; Yoshimoto, Noriko; Yamamoto, Shuichi; Podgornik, Aleš

    2018-02-02

    Combining chemical reaction with separation offers several advantages. In this work possibility to induce spontaneous desorption of adsorbed macromolecules, once being PEGylated, through adjustment of the reagent composition is investigated. Bovine serum albumin (BSA) and activated oligonucleotide, 9T, are used as the test molecules and 20 kDa linear activated PEG is used for their PEGylation. BSA solid-phase PEGylation is performed on Q Sepharose HP. Distribution coefficient of BSA and PEG-BSA as a function of NaCl is determined using linear gradient elution (LGE) experiments and Yamamoto model. According to the distribution coefficient the selectivity between BSA and PEG - BSA of around 15 is adjusted by using NaCl. Spontaneous desorption of PEG - BSA is detected with no presence of BSA. However, due to a rather low selectivity, also desorption of BSA occurred at high elution volume. A similar procedure is applied for activated 9T oligonucleotide, this time using monolithic CIM QA disk monolithic column for adsorption. Selectivity of over 2000 is obtained by proper adjustment of PEG reagent composition. High selectivity enables spontaneous desorption of PEG-9T without any desorption of activated 9T. Both experiments demonstrates that reaction-mediated desorption of macromolecules is possible when the reaction conditions are properly tuned. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Photoinduced Br Desorption from CsBr Thin Films Grown on Cu(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halliday, Matthew T.; Joly, Alan G.; Hess, Wayne P.

    2015-10-22

    Thin films of CsBr deposited onto metals such as copper are potential photocathode materials for light sources and other applications. We investigate desorption dynamics of Br atoms from CsBr films grown on insulator (KBr, LiF) and metal (Cu) substrates induced by sub-bandgap 6.4 eV laser pulses. The experimental results demonstrate that the peak kinetic energy of Br atoms desorbed from CsBr/Cu films is much lower than that for the hyperthermal desorption from CsBr/LiF films. Kelvin probe measurements indicate negative charge at the surface following Br desorption from CsBr/Cu films. Our ab initio calculations of excitons at CsBr surfaces demonstrate thatmore » this behavior can be explained by an exciton model of desorption including electron trapping at the CsBr surface. Trapped negative charges reduce the energy of surface excitons available for Br desorption. We examine the electron-trapping characteristics of low-coordinated sites at the surface, in particular, divacancies and kink sites. We also provide a model of cation desorption caused by Franck-Hertz excitation of F centers at the surface in the course of irradiation of CsBr/Cu films. These results provide new insights into the mechanisms of photoinduced structural evolution of alkali halide films on metal substrates and activation of metal photocathodes coated with CsBr.« less

  5. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth.

    PubMed

    Son, H K; Sivakumar, S; Rood, M J; Kim, B J

    2016-01-15

    Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40-900 ppm(v)) and superficial gas velocity (6.3-9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Electron-driven and thermal chemistry during water-assisted purification of platinum nanomaterials generated by electron beam induced deposition

    PubMed Central

    Warneke, Jonas; Kopyra, Janina

    2018-01-01

    Focused electron beam induced deposition (FEBID) is a versatile tool for the direct-write fabrication of nanostructures on surfaces. However, FEBID nanostructures are usually highly contaminated by carbon originating from the precursor used in the process. Recently, it was shown that platinum nanostructures produced by FEBID can be efficiently purified by electron irradiation in the presence of water. If such processes can be transferred to FEBID deposits produced from other carbon-containing precursors, a new general approach to the generation of pure metallic nanostructures could be implemented. Therefore this study aims to understand the chemical reactions that are fundamental to the water-assisted purification of platinum FEBID deposits generated from trimethyl(methylcyclopentadienyl)platinum(IV) (MeCpPtMe3). The experiments performed under ultrahigh vacuum conditions apply a combination of different desorption experiments coupled with mass spectrometry to analyse reaction products. Electron-stimulated desorption monitors species that leave the surface during electron exposure while post-irradiation thermal desorption spectrometry reveals products that evolve during subsequent thermal treatment. In addition, desorption of volatile products was also observed when a deposit produced by electron exposure was subsequently brought into contact with water. The results distinguish between contributions of thermal chemistry, direct chemistry between water and the deposit, and electron-induced reactions that all contribute to the purification process. We discuss reaction kinetics for the main volatile products CO and CH4 to obtain mechanistic information. The results provide novel insights into the chemistry that occurs during purification of FEBID nanostructures with implications also for the stability of the carbonaceous matrix of nanogranular FEBID materials under humid conditions. PMID:29441253

  7. Fate and transport with material response characterization of green sorption media for copper removal via desorption process.

    PubMed

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-07-01

    Multiple adsorption and desorption cycles are required to achieve the reliable operation of copper removal and recovery. A green sorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was evaluated in this study for its desorptive characteristics as a companion study of the corresponding adsorption process in an earlier publication. We conducted a screening of potential desorbing agents, batch desorption equilibrium and kinetic studies, and batch tests through 3 adsorption/desorption cycles. The desorbing agent screening revealed that hydrochloric acid has good potential for copper desorption. Equilibrium data fit the Freundlich isotherm, whereas kinetic data had high correlation with the Lagergren pseudo second-order model and revealed a rapid desorption reaction. Batch equilibrium data over 3 adsorption/desorption cycles showed that the coconut coir and media mixture were the most resilient, demonstrating they could be used through 3 or more adsorption/desorption cycles. FE-SEM imaging, XRD, and EDS analyses supported the batch adsorption and desorption results showing significant surface sorption of CuO species in the media mixture and coconut coir, followed by partial desorption using 0.1 M HCl as a desorbing agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air.

    PubMed

    Larson, Tuula; Östman, Conny; Colmsjö, Anders

    2011-04-01

    The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb®-747 and Carbosphere®). A combination of purification techniques--ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting--was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level γ-, ß/γ-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement.

  9. Influence of surface coverage on the chemical desorption process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorptionmore » efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.« less

  10. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Chen, Hao

    2016-06-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.

  11. Kinetic and isothermal adsorption-desorption of PAEs on biochars: effect of biomass feedstock, pyrolysis temperature, and mechanism implication of desorption hysteresis.

    PubMed

    Jing, Fanqi; Pan, Minjun; Chen, Jiawei

    2018-04-01

    Biochar has the potential to sequester biomass carbon efficiently into land, simultaneously while improving soil fertility and crop production. Biochar has also attracted attention as a potential sorbent for good performance on adsorption and immobilization of many organic pollutants such as phthalic acid esters (PAEs), a typical plasticizer in plastic and presenting a current environmental issue. Due to lack of investigation on the kinetic and thermodynamic adsorption-desorption of PAEs on biochar, we systematically assessed adsorption-desorption for two typical PAEs, dimethyl phthalate (DMP) and diethyl phthalate (DEP), using biochar derived from peanut hull and wheat straw at different pyrolysis temperatures (450, 550, and 650 °C). The aromaticity and specific surface area of biochars increased with the pyrolysis temperature, whereas the total amount of surface functional groups decreased. The quasi-second-order kinetic model could better describe the adsorption of DMP/DEP, and the adsorption capacity of wheat straw biochars was higher than that of peanut hull biochars, owing to the O-bearing functional groups of organic matter on exposed minerals within the biochars. The thermodynamic analysis showed that DMP/DEP adsorption on biochar is physically spontaneous and endothermic. The isothermal desorption and thermodynamic index of irreversibility indicated that DMP/DEP is stably adsorbed. Sorption of PAEs on biochar and the mechanism of desorption hysteresis provide insights relevant not only to the mitigation of plasticizer mobility but also to inform on the effect of biochar amendment on geochemical behavior of organic pollutants in the water and soil.

  12. Desorption of CO{sub 2} from MDEA and activated MDEA solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.W.; Zhang, C.F.; Qin, S.J.

    1995-03-01

    A packed column was used for investigating the desorption rate of CO{sub 2} from aqueous methyldiethanolamine (MDEA) and activated MDEA solutions. Experiments were conducted within the temperature range 30--70 C, the concentration of MDEA was 4.28 kmol/m{sup 3}, and the concentration of piperazine (PZ) was 0.10 kmol/m{sup 3} for aqueous activated MDEA solutions. Experimental data confirmed that the kinetics model of absorption CO{sub 2} into aqueous MDEA and activated MDEA solutions can be applicable to the situations in which desorption occurs, and the desorption rate of model predictions agree well with that of experimental determination.

  13. Stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry: an effective tool for determining persistent organic pollutants and nonylphenol in coastal waters in compliance with existing Directives.

    PubMed

    Sánchez-Avila, Juan; Quintana, Jordi; Ventura, Francesc; Tauler, Romà; Duarte, Carlos M; Lacorte, Silvia

    2010-01-01

    A multi-residual method based on stir bar sorptive extraction coupled with thermal desorption-gas chromatography-mass spectrometry (SBSE-TD-GC-MS) has been developed to measure 49 organic pollutants (organochlorine pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and nonylphenol) in seawater. Using 100ml of water, the method exhibited good linearity, with recoveries between 86% and 118% and relative standard deviation between 2% and 24% for almost all compounds. The method was applied to determine target contaminants in Catalonian seawater, including coastal areas, ports and desalination plant feed water. Overall individual compound levels oscillated between 0.16 and 597 ng l(-1); PAHs and nonylpenol were the compounds found at the highest concentrations. The method provided LODs between 0.011 and 2.5 ng l(-1), lower than the Environmental Quality Standards (EQS) fixed by Directive 2008/105/EC. In compliance with the directive, this method can be used as a tool to survey target compounds and is aimed at protecting coastal ecosystems from chemical pollution. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Fast and solvent-free quantitation of boar taint odorants in pig fat by stable isotope dilution analysis-dynamic headspace-thermal desorption-gas chromatography/time-of-flight mass spectrometry.

    PubMed

    Fischer, Jochen; Haas, Torsten; Leppert, Jan; Lammers, Peter Schulze; Horner, Gerhard; Wüst, Matthias; Boeker, Peter

    2014-09-01

    Boar taint is a specific off-odour of boar meat products, known to be caused by at least three unpleasant odorants, with very low odour thresholds. Androstenone is a boar pheromone produced in the testes, whereas skatole and indole originate from the microbial breakdown of tryptophan in the intestinal tract. A new procedure, applying stable isotope dilution analysis (SIDA) and dynamic headspace-thermal desorption-gas chromatography/time-of-flight mass spectrometry (dynHS-TD-GC/TOFMS) for the simultaneous quantitation of these boar taint compounds in pig fat was elaborated and validated in this paper. The new method is characterised by a simple and solvent-free dynamic headspace sampling. The deuterated compounds d3-androstenone, d3-skatole and d6-indole were used as internal standards to eliminate matrix effects. The method validation performed revealed low limits of detection (LOD) and quantitation (LOQ) with high accuracy and precision, thus confirming the feasibility of the new dynHS-TD-GC/TOFMS approach for routine analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Sorption and desorption of carbamazepine from water by smectite clays.

    PubMed

    Zhang, Weihao; Ding, Yunjie; Boyd, Stephen A; Teppen, Brian J; Li, Hui

    2010-11-01

    Carbamazepine is a prescription anticonvulsant and mood stabilizing pharmaceutical administered to humans. Carbamazepine is persistent in the environment and frequently detected in water systems. In this study, sorption and desorption of carbamazepine from water was measured for smectite clays with the surface negative charges compensated with K+, Ca2+, NH4+, tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA) cations. The magnitude of sorption followed the order: TMPA-smectite≥HDTMA-smectite>NH4-smectite>K-smectite>Ca-smectite⩾TMA-smectite. The greatest sorption of carbamazepine by TMPA-smectite is attributed to the interaction of conjugate aromatic moiety in carbamazepine with the phenyl ring in TMPA through π-π interaction. Partitioning process is the primary mechanism for carbamazepine uptake by HDTMA-smectite. For NH4-smectite the urea moiety in carbamazepine interacts with exchanged cation NH4+ by H-bonding hence demonstrating relatively higher adsorption. Sorption by K-, Ca- and TMA-smectites from water occurs on aluminosilicate mineral surfaces. These results implicate that carbamazepine sorption by soils occurs primarily in soil organic matter, and soil mineral fractions play a secondary role. Desorption of carbamazepine from the sorbents manifested an apparent hysteresis. Increasing irreversibility of desorption vs. sorption was observed for K-, Ca-, TMA-, TMPA- and HDTMA-clays as aqueous carbamazepine concentrations increased. Desorption hysteresis of carbamazepine from K-, Ca-, NH4-smectites was greater than that from TMPA- and HDTMA-clays, suggesting that the sequestrated carbamazepine molecules in smectite interlayers are more resistant to desorption compared to those sorbed by organic phases in smectite clays. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    NASA Astrophysics Data System (ADS)

    Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2018-02-01

    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.

  17. Theoretical and experimental studies of hydrogen adsorption and desorption on Ir surfaces

    DOE PAGES

    Kaghazchi, Payam; Jacob, Timo; Chen, Wenhua; ...

    2013-06-03

    Here, we report adsorption and desorption of hydrogen on planar Ir(210) and faceted Ir(210), consisting of nanoscale {311} and (110) facets, by means of temperature programmed desorption (TPD) and density functional theory (DFT) in combination with the ab initio atomistic thermodynamics approach. TPD spectra show that only one H 2 peak is seen from planar Ir(210) at all coverages whereas a single H 2 peak is observed at around 440 K (F1) at fractional monolayer (ML) coverage and an additional H 2 peak appears at around 360 K (F2) at 1 ML coverage on faceted Ir(210), implying structure sensitivity inmore » recombination and desorption of hydrogen on faceted Ir(210) versus planar Ir(210), but no evidence is found for size effects in recombination and desorption of hydrogen on faceted Ir(210) for average facet sizes of 5-14 nm. Calculations indicate that H prefers to bind at the two-fold short-bridge sites of the Ir surfaces. In addition, we studied the stability of the Ir surfaces in the presence of hydrogen at different H coverages through surface free energy plots as a function of the chemical potential, which is also converted to a temperature scale. Moreover, the calculations revealed the origin of the two TPD peaks of H 2 from faceted Ir(210): F1 from desorption of H 2 on {311} facets while F2 from desorption of H 2 on (110) facets.« less

  18. Molecular-Scale Description of SPAN80 Desorption from a Squalane-Water Interface.

    PubMed

    Tan, L; Pratt, L R; Chaudhari, M I

    2018-04-05

    Extensive all-atom molecular dynamics calculations on the water-squalane interface for nine different loadings with sorbitan monooleate (SPAN80), at T = 300 K, are analyzed for the surface tension equation of state, desorption free-energy profiles as they depend on loading, and to evaluate escape times for adsorbed SPAN80 into the bulk phases. These results suggest that loading only weakly affects accommodation of a SPAN80 molecule by this squalane-water interface. Specifically, the surface tension equation of state is simple through the range of high tension to high loading studied, and the desorption free-energy profiles are weakly dependent on loading here. The perpendicular motion of the centroid of the SPAN80 headgroup ring is well-described by a diffusional model near the minimum of the desorption free-energy profile. Lateral diffusional motion is weakly dependent on loading. Escape times evaluated on the basis of a diffusional model and the desorption free energies are 7 × 10 -2 s (into the squalane) and 3 × 10 2 h (into the water). The latter value is consistent with desorption times of related lab-scale experimental work.

  19. Measurements of VOC adsorption/desorption characteristics of typical interior building materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Y.; Zhang, J.S.; Shaw, C.Y.

    2000-07-01

    The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model wasmore » based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.« less

  20. Determination of ultraviolet filters in bathing waters by stir bar sorptive-dispersive microextraction coupled to thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Benedé, Juan L; Chisvert, Alberto; Giokas, Dimosthenis L; Salvador, Amparo

    2016-01-15

    In this work, a new approach that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive solid phase extraction (DSPE), i.e. stir bar sorptive-dispersive microextraction (SBSDµE), is employed as enrichment and clean-up technique for the sensitive determination of eight lipophilic UV filters in water samples. The extraction is accomplished using a neodymium stir bar magnetically coated with oleic acid-coated cobalt ferrite magnetic nanoparticles (MNPs) as sorbent material, which are detached and dispersed into the solution at high stirring rate. When stirring is stopped, MNPs are magnetically retrieved onto the stir bar, which is subjected to thermal desorption (TD) to release the analytes into the gas chromatography-mass spectrometry (GC-MS) system. The SBSDµE approach allows for lower extraction time than SBSE and easier post-extraction treatment than DSPE, while TD allows for an effective and solvent-free injection of the entire quantity of desorbed analytes into GC-MS, and thus achieving a high sensitivity. The main parameters involved in TD, as well as the extraction time, were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ngL(-1) range and good intra- and inter-day repeatability (RSD<12%). This accurate and sensitive analytical method was applied to the determination of trace amounts of UV filters in three bathing water samples (river, sea and swimming pool) with satisfactory relative recovery values (80-116%). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Adsorption/desorption characteristics of lead on various types of soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, R.W.; Shem, L.

    1994-09-01

    Laboratory studies were conducted to address the phenomena of adsorption/desorption of lead onto various types of soils, both in the absence and presence of the chelating agent, ethylenediaminetetraacetic acid (EDTA). The linear and Freundlich isotherm models provided adequate description of the adsorption/desorption behavior. Over the range of EDTA concentrations employed in the study (0.01 to 0.10M), no significant difference in the isotherm parameters was observed as a result of the applied EDTA concentration. The presence of EDTA significantly altered the adsorption/desorption behavior of lead on the soil, resulting in less of the metal being adsorbed. The soil with the highermore » silt/clay content had a greater amount of lead adsorbed onto it (as compared with the sandy soil).« less

  2. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts.

    PubMed

    Dimas-Rivera, Gloria Lourdes; de la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J; De Los Reyes Heredia, José Antonio; González, Virgilio González; Hernández, Tomás

    2014-01-20

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al₂O₃ 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al₂O₃ support helped to stabilize the furfural molecule on the surface.

  3. Improved Thermal Modulator for Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Hasselbrink, Ernest Frederick, Jr.; Hunt, Patrick J.; Sacks, Richard D.

    2008-01-01

    An improved thermal modulator has been invented for use in a variant of gas chromatography (GC). The variant in question denoted as two-dimensional gas chromatography (2DGC) or GC-GC involves the use of three series-connected chromatographic columns, in the form of capillary tubes coated interiorly with suitable stationary phases (compounds for which different analytes exhibit different degrees of affinity). The two end columns are relatively long and are used as standard GC columns. The thermal modulator includes the middle column, which is relatively short and is not used as a standard GC column: instead, its temperature is modulated to affect timed adsorption and desorption of analyte gases between the two end columns in accordance with a 2DGC protocol.

  4. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    NASA Astrophysics Data System (ADS)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  5. Quantum theory of laser-stimulated desorption

    NASA Technical Reports Server (NTRS)

    Slutsky, M. S.; George, T. F.

    1978-01-01

    A quantum theory of laser-stimulated desorption (LSDE) is presented and critically analyzed. It is shown how LSDE depends on laser-pulse characteristics and surface-lattice dynamics. Predictions of the theory for a Debye model of the lattice dynamics are compared to recent experimental results.

  6. Molecule desorption induced by gate-voltage application in MOS structure

    NASA Astrophysics Data System (ADS)

    Hirota, Nozomu; Hattori, Ken; Daimon, Hiroshi; Hattori, Azusa N.; Tanaka, Hidekazu

    2016-04-01

    For the first time, we demonstrate desorption from a MOS surface by applying gate voltages (V G). We observed CH4, CO, and CO2 desorption from a MOS (Fe nanofilm/a-SiO2/Si) surface in vacuum only when applying negative V G, suggesting the occurrence of electronic excitation by hot-hole injection. This demonstration is the first step in the application of MOSs to electrically controlled catalysts.

  7. Explosive desorption of icy grain mantles in dense clouds

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Greenberg, J. M.

    1991-01-01

    The cycling of the condensible material in dense clouds between the gas phase and the icy grain mantles is investigated. In the model studied, desorption of the ice occurs due to grain mantle explosions when photochemically stored energy is released after transient heating by a cosmic ray particle. It is shown that, depending on the grain size distribution in dense clouds, explosive desorption can maintain up to about eight percent of the carbon in the form of CO in the gas phase at typical cloud densities.

  8. Shear-induced desorption of isolated polymer molecules from a planar wall

    NASA Astrophysics Data System (ADS)

    Dutta, Sarit; Dorfman, Kevin; Kumar, Satish

    2014-03-01

    Shear-induced desorption of isolated polymer molecules is studied using Brownian dynamics simulations. The polymer molecules are modeled as freely jointed bead-spring chains interacting with a planar wall via a short-range potential. The simulations include both intrachain and chain-wall hydrodynamic interactions. Shear flow is found to cause chain flattening, resulting at low shear rates in an increased fraction of chain segments bound to the wall. However, above a critical shear rate the chains desorb completely. The desorption process is nucleated by random protrusions in the shear gradient direction which evolve under the combined effect of drag, hydrodynamic interaction, and vorticity-induced rotation, and subsequently lead to recapture. Above the critical shear rate, these protrusions grow in length until the entire chain is peeled off the wall. For free-draining chains, the protrusions are not sustained and no desorption is observed even at shear rates much higher than the critical value. These simulations can help in interpreting experiments on shear-induced desorption of polymer films and brushes.

  9. The desorptivity model of bulk soil-water evaporation

    NASA Technical Reports Server (NTRS)

    Clapp, R. B.

    1983-01-01

    Available models of bulk evaporation from a bare-surfaced soil are difficult to apply to field conditions where evaporation is complicated by two main factors: rate-limiting climatic conditions and redistribution of soil moisture following infiltration. Both factors are included in the "desorptivity model', wherein the evaporation rate during the second stage (the soil-limiting stage) of evaporation is related to the desorptivity parameter, A. Analytical approximations for A are presented. The approximations are independent of the surface soil moisture. However, calculations using the approximations indicate that both soil texture and soil moisture content at depth significantly affect A. Because the moisture content at depth decreases in time during redistribution, it follows that the A parameter also changes with time. Consequently, a method to calculate a representative value of A was developed. When applied to field data, the desorptivity model estimated cumulative evaporation well. The model is easy to calculate, but its usefulness is limited because it requires an independent estimate of the time of transition between the first and second stages of evaporation. The model shows that bulk evaporation after the transition to the second stage is largely independent of climatic conditions.

  10. Formaldehyde sorption and desorption characteristics of gypsum wallboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, T.G.; Hawthorne, A.R.; Thompson, C.V.

    1986-01-01

    The sorption and subsequent desorption of formaldehyde (CH/sub 2/O) vapor from unpainted gypsum wallboard has been investigated in environmental chamber experiments conducted at 23/sup 0/C, 50% relative humidity, an air exchange to board loading ratio of 0.43 m/h, and CH/sub 2/O concentrations ranging from 0 to 0.50 mg/m/sup 3/. Both CH/sub 2/O sorption and desorption processes are described using a three-parameter, single-exponential model with an exponential lifetime of 2.9 +- 0.1 days. The storage capacity of gypsum board for CH/sub 2/O vapor results in a time-dependent buffer to changes in CH/sub 2/O vapor concentration surrounding the board, but appears tomore » cause only a weak, permanent loss mechanism for CH/sub 2/O vapor. Short-term CH/sub 2/O desorption rates from CH/sub 2/O-exposed gypsum board (prior to significant depletion of sorbed CH/sub 2/O) exhibit a linear dependence with negative slope on CH/sub 2/O vapor concentration analogous to CH/sub 2/O emissions from pressed-wood products bonded with urea-formaldehyde resins.« less

  11. Adsorption-desorption kinetics of soft particles onto surfaces

    NASA Astrophysics Data System (ADS)

    Osberg, Brendan; Gerland, Ulrich

    A broad range of physical, chemical, and biological systems feature processes in which particles randomly adsorb on a substrate. Theoretical models usually assume ``hard'' (mutually impenetrable) particles, but in soft matter physics the adsorbing particles can be effectively compressible, implying ``soft'' interaction potentials. We recently studied the kinetics of such soft particles adsorbing onto one-dimensional substrates, identifying three novel phenomena: (i) a gradual density increase, or ''cramming'', replaces the usual jamming behavior of hard particles, (ii) a density overshoot, can occur (only for soft particles) on a time scale set by the desorption rate, and (iii) relaxation rates of soft particles increase with particle size (on a lattice), while hard particles show the opposite trend. The latter occurs since unjamming requires desorption and many-bodied reorganization to equilibrate -a process that is generally very slow. Here we extend this analysis to a two-dimensional substrate, focusing on the question of whether the adsorption-desorption kinetics of particles in two dimensions is similarly enriched by the introduction of soft interactions. Application to experiments, for example the adsorption of fibrinogen on two-dimensional surfaces, will be discussed.

  12. ON-LINE ANALYSIS OF AQUEOUS AEROSOLS BY LASER DESORPTION IONIZATION. (R823980)

    EPA Science Inventory

    In this work the effects of water on the laser desorption ionization mass spectra of single aerosol particles are explored. Aqueous aerosols are produced by passing dry particles through a humid environment so that they undergo deliquescent growth. Laser desorption ionization is ...

  13. Laser-induced surface-plasmon desorption of dye molecules from aluminum films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, I.; Callcott, T.A.; Arakawa, E.T.

    1992-03-01

    Rhodamine 8 molecules were desorbed without fragmentation from the surface of an Al film by surface-plasmon-induced desorption. Surface plasmons were excited In the Al film by the second harmonic of a Nd:YAG laser in an attenuated-to-tal-reflection (ATR) geometry. The desorbed neutrals were Ionized by a XeCl excimer laser and detected by a time-of-flight mass spectrometer. The desorption yields of both Al and rhodamine B showed a dependence with incidence angle which peaked at the plasmon resonance angle. The thresholds for desorption of Al and rhodamine B occur at the same laser fluence. Two models are proposed to explain these observations.more » 31 refs., 4 figs.« less

  14. Laser Pulse Width Dependence and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Liang, Sheng-Ping; Lu, I.-Chung; Tsai, Shang-Ting; Chen, Jien-Lian; Lee, Yuan Tseh; Ni, Chi-Kung

    2017-10-01

    Ultraviolet laser pulses at 355 nm with variable pulse widths in the region from 170 ps to 1.5 ns were used to investigate the ionization mechanism of matrix-assisted laser desorption/ionization (MALDI) for matrices 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA). The mass spectra of desorbed ions and the intensity and velocity distribution of desorbed neutrals were measured simultaneously for each laser shot. These quantities were found to be independent of the laser pulse width. A comparison of the experimental measurements and numerical simulations according to the multiphoton ionization, coupled photophysical and chemical dynamics (CPCD), and thermally induced proton transfer models showed that the predictions of thermally induced proton transfer model were in agreement with the experimental data, but those of the multiphoton ionization model were not. Moreover, the predictions of the CPCD model based on singlet-singlet energy pooling were inconsistent with the experimental data of CHCA and SA, but were consistent with the experimental data of DHB only when some parameters used in the model were adjusted to extreme values. [Figure not available: see fulltext.

  15. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    PubMed Central

    Dimas-Rivera, Gloria Lourdes; de la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J.; De los Reyes Heredia, José Antonio; González, Virgilio González; Hernández, Tomás

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface. PMID:28788472

  16. Intensification of ion exchange desorption of thiamine diphosphate by low-powered ultrasound.

    PubMed

    Pinchukova, Natalia A; Voloshko, Alexander Y; Merko, Maria A; Bondarenko, Yana A; Chebanov, Valentin A

    2018-03-01

    The process of ultrasound-assisted ion-exchange desorption of cocarboxylase (thiamine diphosphate (TDP)) from a strong acidic cation resin was studied. Kinetics studies revealed that ultrasound accelerates TDP desorption by 3 times. The optimal desorption parameters, viz. US power input, sonication time, eluent/resin ratio and the eluent (ammonium acetate buffer) concentration were established which were 15mW/cm 3 , 20min, 1:1 and 1M, respectively. The resin stability studies showed that the optimal ultrasonic power was less by the order than the resin degradation threshold which ensures durable and efficient resin exploitation during production. The resin sorption capacity remained unchanged even after 20 cycles of TDP sorption, ultrasonic desorption and resin regeneration. The recovery ratio of TDP was shown to increase non-linearly with decreasing the resin saturation factor, which can be attributed to diffusion limitations occurring during desorption. The optimal resin loading corresponding to more than 90 per cent of TDP recovery was found to be at the level of 10 per cent of the maximal sorption capacity. The study revealed 4-5-fold increase in concentrations of the recovered solutions, which together with process times shortening should result in considerable energy saving in downstream operations on production scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Counterion adsorption and desorption rate of a charged macromolecule

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Yang, Jingfa; Zhao, Jiang

    The rate constant of counterion adsorption to and desorption from a synthetic polyelectrolyte, polystyrene sulfonate (PSS-), is measured in aqueous solution by single molecule fluorescence spectroscopy. The results show that both adsorption and desorption rate of counterions have strong dependence on polymer concentration, salt concentration as well as the molecular weight of polyelectrolytes. The results clearly demonstrate that the contribution of electrostatic interaction and the translational entropy to the distribution of counterions of a polyelectrolyte molecule. The information is helpful to the understanding of polyelectrolyte physics. National Natural Science Foundation of China.

  18. Evaluation of solid-phase microextraction desorption parameters for fast GC analysis of cocaine in coca leaves.

    PubMed

    Ilias, Yara; Bieri, Stefan; Christen, Philippe; Veuthey, Jean-Luc

    2006-08-01

    By its simplicity and rapidity, solid-phase microextraction (SPME) appears as an interesting alternative for sample introduction in fast gas chromatography (fast GC). This combination depends on numerous parameters affecting the desorption step (i.e., the release of compounds from the SPME fiber coating to the GC column). In this study, different liner diameters, injection temperatures, and gas flow rates are evaluated to accelerate the thermal desorption process in the injection port. This process is followed with real-time direct coupling a split/splitless injector to a mass spectrometer by means of a short capillary. It is shown that an effective, quantitative, and rapid transfer of cocaine (COC) and cocaethylene (CE) is performed with a 0.75-mm i.d. liner, at 280 degrees C and 4 mL/min gas flow rate. The 7-microm polydimethylsiloxane (PDMS) coating is selected for combination with fast GC because the 100-microm PDMS fiber presents some limitations caused by fiber bleeding. Finally, the developed SPME-fast GC method is applied to perform in less than 5 min, the quantitation of COC extracted from coca leaves by focused microwave-assisted extraction. An amount of 7.6 +/- 0.5 mg of COC per gram of dry mass is found, which is in good agreement with previously published results.

  19. Distribution law of temperature changes during methane adsorption and desorption in coal using infrared thermography technology

    NASA Astrophysics Data System (ADS)

    Zhao, Dong; Chen, Hao; An, Jiangfei; Zhou, Dong; Feng, Zengchao

    2018-05-01

    Gas adsorption and desorption is a thermodynamic process that takes place within coal as temperature changes and that is related to methane (CH4) storage. As infrared thermographic technology has been applied in this context to measure surface temperature changes, the aim of this research was to further elucidate the distribution law underlying this process as well as the thermal effects induced by heat adsorption and desorption in coal. Specimens of two different coal ranks were used in this study, and the surface temperature changes seen in the latter were detected. A contour line map was then drawn on the basis of initial results enabling a distribution law of temperature changes for samples. The results show that different regions of coal sample surfaces exhibit different heating rates during the adsorption process, but they all depends on gas storage capacity to a certain extent. It proposes a correlation coefficient that expresses the relationship between temperature change and gas adsorption capacity that could also be used to evaluate the feasibility of coalbed CH4 extraction in the field. And finally, this study is deduced a method to reveal the actual adsorption capacity of coal or CH4 reservoirs in in situ coal seams.

  20. Plasma Desorption Mass Spectrometry: Coming of Age.

    ERIC Educational Resources Information Center

    Cotter, Robert J.

    1988-01-01

    Discusses the history and development of Plasma Desorption Mass Spectrometry to determine molecular weights and structures of proteins and polymers. Outlines theory, instrumentation, and sample preparation commonly used. Gives several examples of resulting spectra. (ML)

  1. Method and apparatus for thermal swing adsorption and thermally-enhanced pressure swing adsorption

    DOEpatents

    Wegeng, Robert S.; Rassat, Scot D.; TeGrotenhuis, Ward E.; Drost, Kevin; Vishwanathan, Vilayanur V.

    2004-06-08

    The present invention provides compact adsorption systems that are capable of rapid temperature swings and rapid cycling. Novel methods of thermal swing adsorption and thermally-enhanced pressure swing adsorption are also described. In some aspects of the invention, a gas is passed through the adsorbent thus allowing heat exchangers to be very close to all portions of the adsorbent and utilize less space. In another aspect, the adsorption media is selectively heated, thus reducing energy costs. Methods and systems for gas adsorption/desorption having improved energy efficiency with capability of short cycle times are also described. In another aspect, the apparatus or methods utilize heat exchange channels of varying lengths that have volumes controlled to provide equal heat fluxes. Methods of fuel cell startup are also described. Advantages of the invention include the ability to use (typically) 30-100 times less adsorbent compared to conventional systems.

  2. Photon Stimulated Ion Desorption.

    DTIC Science & Technology

    1982-03-03

    1978) 1997.(181 T. Shibaguchi, H . Onuki and R. Onaka, J. Phys. Soc. Contract DE.AC04.76-DPO0789. Experiments were Japan 42 (1977) S51. conducted at...University of California and the Naval Weapons Center. Sincerely COPY ovoikoble to DTIC doee 00t pe m i jully legible rep oductC r h Christopher C... H 20 is studied; only hydrogen ions are observed. Desorption of hydrogen ions from amorphous ice 7 is part of an ongoing study of condensed gases

  3. Indaziflam sorption-desorption in diverse soils

    USDA-ARS?s Scientific Manuscript database

    Indaziflam is a new preemergence-herbicide active ingredient, classified as a member of the new chemical class “alkylazine”. There is no published information on its fate and behavior in soil. This study is aimed at characterizing the adsorption and desorption of indaziflam in soils with different p...

  4. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, M.; Kondo, M.; Noda, N.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel ismore » limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)« less

  5. The feasibility of desorption on Zeolite-water pair using dry gas

    NASA Astrophysics Data System (ADS)

    Oktariani, E.; Nakashima, K.; Noda, A.; Xue, B.; Tahara, K.; Nakaso, K.; Fukai, J.

    2018-04-01

    The increase in temperature, reduction in partial pressure, reduction in concentration, purging with an inert fluid, and displacement with a more strongly adsorbing species are the basic things that occur in the practical method of desorption. In this study, dry gas at constant temperature and pressure was employed as the aid to reduce the partial pressure in the water desorption on the zeolite 13X. The objective of this study is to confirm the feasibility of desorption using dry gas experimentally and numerically. The implication of heat and mass transfers were numerically investigated to find the most influential. The results of numerical simulation agree with the experimental ones for the distribution of local temperature and average water adsorbed in the packed bed.

  6. High translational energy release in H2 (D2) associative desorption from H (D) chemisorbed on C(0001).

    PubMed

    Baouche, S; Gamborg, G; Petrunin, V V; Luntz, A C; Baurichter, A; Hornekaer, L

    2006-08-28

    Highly energetic translational energy distributions are reported for hydrogen and deuterium molecules desorbing associatively from the atomic chemisorption states on highly oriented pyrolytic graphite (HOPG). Laser assisted associative desorption is used to measure the time of flight of molecules desorbing from a hydrogen (deuterium) saturated HOPG surface produced by atomic exposure from a thermal atom source at around 2100 K. The translational energy distributions normal to the surface are very broad, from approximately 0.5 to approximately 3 eV, with a peak at approximately 1.3 eV. The highest translational energy measured is close to the theoretically predicted barrier height. The angular distribution of the desorbing molecules is sharply peaked along the surface normal and is consistent with thermal broadening contributing to energy release parallel to the surface. All results are in qualitative agreement with recent density functional theory calculations suggesting a lowest energy para-type dimer recombination path.

  7. Desorption of cesium from granite under various aqueous conditions.

    PubMed

    Wang, Tsing-Hai; Li, Ming-Hsu; Wei, Yuan-Yaw; Teng, Shi-Ping

    2010-12-01

    In this work the desorption of cesium ions from crushed granite in synthetic groundwater (GW) and seawater (SW) was investigated. Results were compared with those obtained in deionized water (DW) and in two kinds of extraction solutions, namely: MgCl(2) and NaOAc (sodium acetate). In general, the desorption rate of Cs from crushed granite increased proportionally with initial Cs loadings. Also, amounts of desorbed Cs ions followed the tendency in the order SW>GW>NaOAc approximately equal MgCl(2)>DW solutions. This indicated that the utilization of extraction reagents for ion exchange will underestimate the Cs desorption behavior. Fitting these experimental data by Langmuir model showed that these extraction reagents have reduced Cs uptake by more than 90%, while only less than 1% of adsorbed Cs ions are still observed in GW and SW solutions in comparison to those in DW. Further SEM/EDS mapping studies clearly demonstrate that these remaining adsorbed Cs ions are at the fracture areas of biotite. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. The gas chromatographic determination of volatile fatty acids in wastewater samples: evaluation of experimental biases in direct injection method against thermal desorption method.

    PubMed

    Ullah, Md Ahsan; Kim, Ki-Hyun; Szulejko, Jan E; Cho, Jinwoo

    2014-04-11

    The production of short-chained volatile fatty acids (VFAs) by the anaerobic bacterial digestion of sewage (wastewater) affords an excellent opportunity to alternative greener viable bio-energy fuels (i.e., microbial fuel cell). VFAs in wastewater (sewage) samples are commonly quantified through direct injection (DI) into a gas chromatograph with a flame ionization detector (GC-FID). In this study, the reliability of VFA analysis by the DI-GC method has been examined against a thermal desorption (TD-GC) method. The results indicate that the VFA concentrations determined from an aliquot from each wastewater sample by the DI-GC method were generally underestimated, e.g., reductions of 7% (acetic acid) to 93.4% (hexanoic acid) relative to the TD-GC method. The observed differences between the two methods suggest the possibly important role of the matrix effect to give rise to the negative biases in DI-GC analysis. To further explore this possibility, an ancillary experiment was performed to examine bias patterns of three DI-GC approaches. For instance, the results of the standard addition (SA) method confirm the definite role of matrix effect when analyzing wastewater samples by DI-GC. More importantly, their biases tend to increase systematically with increasing molecular weight and decreasing VFA concentrations. As such, the use of DI-GC method, if applied for the analysis of samples with a complicated matrix, needs a thorough validation to improve the reliability in data acquisition. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Characteristics and influencing factors of tetrachloroethylene sorption-desorption on soil and its components.

    PubMed

    Qiu, Zhaofu; Yang, Weiwei; He, Long; Zhao, Zhexuan; Lu, Shuguang; Sui, Qian

    2016-02-01

    To investigate the effects of soil structure, soil organic carbon (SOC), minerals, initial tetrachloroethylene (PCE) concentration (C0), and ionic strength (Ci) on PCE sorption-desorption, six types of soil were adopted as adsorbents, including two types of natural soil and four types of soil with most of the "soft carbon" pre-treated by H2O2 or with all SOC removed from the original soil by 600 °C ignition. The results showed that all of the sorption-desorption isotherms of PCE were non-linear within the experimental range, and the H2O2-treated samples exhibited higher non-linear sorption isotherms than those of the original soils. The hysteresis index of PCE sorption to original soil is less pronounced than that of the H2O2-treated and 600 °C-heated samples due to the entrapment of sorbate molecules in the "hard carbon" domain, together with the meso- and microporous structures within the 600 °C-heated samples. Both SOC and minerals have impacts on the sorption-desorption of PCE, and the sorption-desorption contribution rate of minerals increased with decreasing SOC content. C0 has almost no influence on the sorption to minerals of the soils, but the contribution rate of minerals decreased with increasing C0 in the desorption stage. As a result of the salting-out effect, PCE sorption capacity was increased by increasing Ci, especially when Ci ≥ 0.1 M. Moreover, desorption increased and hysteresis weakened with increasing Ci, except for the 600 °C-heated samples. In addition, no significant effect of Ci on desorption of PCE and no hysteresis was observed in this experimental range for the 600 °C-heated samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG)

    DOE PAGES

    Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.; ...

    2016-11-25

    Here, we present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arrangedmore » into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level

  11. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG)

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-11-01

    We present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography-mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arranged into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level resolution on

  12. New insights into the electrochemical desorption of alkanethiol SAMs on gold

    PubMed Central

    Pensa, Evangelina; Vericat, Carolina; Grumelli, Doris; Salvarezza, Roberto C.; Park, Sung Hyun; Longo, Gabriel S.; Szleifer, Igal

    2012-01-01

    A combination of Polarization Modulation Infrared Reflection Absorption Spectroscopy (PMIRRAS) under electrochemical control, Electrochemical Scanning Tunneling Microscopy (ECSTM) and Molecular Dynamics (MD) simulations has been used to shed light on the reductive desorption process of dodecanethiol (C12) and octadecanethiol (C18) SAMs on gold in aqueous electrolytes. Experimental PMIRRAS, ECSTM and MD simulations data for C12 desorption are consistent with formation of randomly distributed micellar aggregates stabilized by Na+ ions, coexisting with a lying-down phase of molecules. The analysis of pit and Au island coverage before and after desorption is consistent with the thiolate-Au adatoms models. On the other hand, PMIRRAS and MD data for C18 indicate that the desorbed alkanethiolates adopt a Na+ ion-stabilized bilayer of interdigitated alkanethiolates, with no evidence of lying down molecules. MD simulations also show that both the degree of order and tilt angle of the desorbed alkanethiolates change with the surface charge on the metal, going from bilayers to micelles. These results demonstrate the complexity of the alkanethiol desorption in the presence of water and the fact that chain length and counterions play a key role in a complex structure. PMID:22870508

  13. Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils.

    PubMed

    Fernández-Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos; Fernández-Sanjurjo, Maria J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2015-01-01

    The purpose of this work was to quantify retention/release of tetracycline, oxytetracycline, and chlortetracycline on two soils, paying attention to sorption kinetics and to implications of the adsorption/desorption processes on transfer of these pollutants to the various environmental compartments. We used the stirred flow chamber (SFC) procedure to achieve this goal. All three antibiotics showed high affinity for both soils, with greater adsorption intensity for soil 1, the one with the highest organic matter and Al and Fe oxides contents. Desorption was always <15%, exhibiting strong hysteresis in the adsorption/desorption processes. Adsorption was adequately modeled using a pseudo first-order equation with just one type of adsorption sites, whereas desorption was better adjusted considering both fast and slow sorption sites. The adsorption maximum (qmax) followed the sequence tetracycline > oxytetracycline > chlortetracycline in soil 1, with similar values for the three antibiotics and the sequence tetracycline > chlortetracycline > oxytetracycline in soil 2. The desorption sequences were oxytetracycline > tetracycline > chlortetracycline in soil 1 and oxytetracycline > chlortetracycline > tetracycline in soil 2. In conclusion, the SFC technique has yielded new kinetic data regarding tetracycline, oxytetracycline, and chlortetracycline adsorption/desorption on soils, indicating that it can be used to shed further light on the retention and transport processes affecting antibiotics on soils and other media, thus increasing knowledge on the behavior and evolution of these pharmaceutical residues in the environment.

  14. Gas-phase chemistry in dense interstellar clouds including grain surface molecular depletion and desorption

    NASA Technical Reports Server (NTRS)

    Bergin, E. A.; Langer, W. D.; Goldsmith, P. F.

    1995-01-01

    We present time-dependent models of the chemical evolution of molecular clouds which include depletion of atoms and molecules onto grain surfaces and desorption, as well as gas-phase interactions. We have included three mechanisms to remove species from the grain mantles: thermal evaporation, cosmic-ray-induced heating, and photodesorption. A wide range of parameter space has been explored to examine the abundance of species present both on the grain mantles and in the gas phase as a function of both position in the cloud (visual extinction) and of evolutionary state (time). The dominant mechanism that removes molecules from the grain mantles is cosmic-ray desorption. At times greater than the depletion timescale, the abundances of some simple species agree with abundances observed in the cold dark cloud TMC-1. Even though cosmic-ray desorption preserves the gas-phase chemistry at late times, molecules do show significant depletions from the gas phase. Examination of the dependence of depletion as a function of density shows that when the density increases from 10(exp 3)/cc to 10(exp 5)/cc several species including HCO(+), HCN, and CN show gas-phase abundance reductions of over an order of magnitude. The CO: H2O ratio in the grain mantles for our standard model is on the order of 10:1, in reasonable agreement with observations of nonpolar CO ice features in rho Ophiuchus and Serpens. We have also examined the interdependence of CO depletion with the space density of molecular hydrogen and binding energy to the grain surface. We find that the observed depletion of CO in Taurus in inconsistent with CO bonding in an H2O rich mantle, in agreement with observations. We suggest that if interstellar grains consist of an outer layer of CO ice, then the binding energies for many species to the grain mantle may be lower than commonly used, and a significant portion of molecular material may be maintained in the gas phase.

  15. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    PubMed

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  16. Sorption-desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature.

    PubMed

    Singh, Anand; Srivastava, Anjana; Srivastava, Prakash C

    2016-08-01

    The sorption-desorpion of fipronil insecticide is influenced by soil properties and variables such as pH, ionic strength, temperature, etc. A better understanding of soil properties and these variables in sorption-desorption processes by quantification of fipronil using liquid chromatography may help to optimise suitable soil management to reduce contamination of surface and groundwaters. In the present investigation, the sorption-desorption of fipronil was studied in some soils at varying concentrations, ionic strengths, temperatures and pH values, and IR specta of fipronil sorbed onto soils were studied. The sorption of fipronil onto soils conformed to the Freundlich isotherm model. The sorption-desorption of fipronil varied with ionic strength in each of the soils. Sorption decreased but desorption increased with temperature. Sorption did not change with increasing pH, but for desorption there was no correlation. The cumulative desorption of fipronil from soil was significantly and inversely related to soil organic carbon content. IR spectra of sorbed fipronil showed the involvement of amino, nitrile, sulfone, chloro and fluoro groups and the pyrazole nucleus of the fipronil molecule. The sorption of fipronil onto soils appeared to be a physical process with the involvement of hydrogen bonding. An increase in soil organic carbon may help to reduce desorption of fipronil. High-temperature regimes are more conducive to the desorption. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. A model for the catalytic reduction of NO with CO and N desorption

    NASA Astrophysics Data System (ADS)

    Díaz, J. J.; Buendía, G. M.

    2018-02-01

    In this work we have investigated by Monte Carlo simulations the dynamical behavior of a modified Yaldram-Khan (YK) model for the catalytic reduction of NO on a surface. Our model is simulated on a square lattice and includes the individual desorption of CO molecules and N atoms, processes associated with temperature effects. When CO desorption is added, strong fluctuations appear, which are associated with the spreading of N checkerboard structures on the surface. These structures take a long time to coalesce, allowing the existence of a unsteady but long lasting reactive state. N desorption also favors the reactivity of the system, this time by diminishing the size of the N structures and impeding their coalescence. The combined desorption of CO and N produces a reactive state as well, where reactive zones among N structures can take place on the surface.

  18. Analysis of trimethoprim, lincomycin, sulfadoxin and tylosin in swine manure using laser diode thermal desorption-atmospheric pressure chemical ionization-tandem mass spectrometry.

    PubMed

    Solliec, Morgan; Massé, Daniel; Sauvé, Sébastien

    2014-10-01

    A new extraction method coupled to a high throughput sample analysis technique was developed for the determination of four veterinary antibiotics. The analytes belong to different groups of antibiotics such as chemotherapeutics, sulfonamides, lincosamides and macrolides. Trimethoprim (TMP), sulfadoxin (SFX), lincomycin (LCM) and tylosin (TYL) were extracted from lyophilized manure using a sonication extraction. McIlvaine buffer and methanol (MeOH) were used as extraction buffers, followed by cation-exchange solid phase extraction (SPE) for clean-up. Analysis was performed by laser diode thermal desorption-atmospheric pressure chemical-ionization (LDTD-APCI) tandem mass spectrometry (MS/MS) with selected reaction monitoring (SRM) detection. The LDTD is a high throughput sample introduction method that reduces total analysis time to less than 15s per sample, compared to minutes when using traditional liquid chromatography (LC). Various SPE parameters were optimized after sample extraction: the stationary phase, the extraction solvent composition, the quantity of sample extracted and sample pH. LDTD parameters were also optimized: solvent deposition, carrier gas, laser power and corona discharge. The method limit of detection (MLD) ranged from 2.5 to 8.3 µg kg(-1) while the method limit of quantification (MLQ) ranged from 8.3 to 28µgkg(-1). Calibration curves in the manure matrix showed good linearity (R(2)≥ 0.996) for all analytes and the interday and intraday coefficients of variation were below 14%. Recoveries of analytes from manure ranged from 53% to 69%. The method was successfully applied to real manure samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Formaldehyde sorption and desorption characteristics of gypsum wallboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, T.G.; Hawthorne, A.R.; Thompson, C.V.

    1987-07-01

    The sorption and subsequent desorption of formaldehyde (CH/sub 2/O) vapor from unpainted gypsum wallboard have been investigated in environmental chamber experiments conducted at 23 /sup 0/C, 50% relative humidity, an air exchange to board loading ratio of 0.43 m/h, and CH/sub 2/O concentrations ranging from 0 to 0.50 mg/m/sup 3/. Both CH/sub 2/O sorption and CH/sub 2/O desorption processes are described by a three-parameter, single-exponential model with an exponential lifetime of 2.9 +/- 0.1 days. The storage capacity of gypsum board for CH/sub 2/O vapor results in a time-dependent buffer to changes in CH/sub 2/O vapor concentration surrounding the boardmore » but appears to cause only a weak, permanent loss mechanism for CH/sub 2/O vapor. Prior to significant depletion of sorbed CH/sub 2/O, desorption rates from CH/sub 2/O-exposed gypsum board exhibit a linear dependence with negative slope on CH/sub 2/O vapor concentration. Analogous CH/sub 2/O emissions properties have been observed for pressed-wood products bonded with urea-formaldehyde resins. 17 references, 5 figures.« less

  20. The effect of chars and their water extractable organic carbon (WEOC) fractions on atrazine adsorption-desorption processes

    NASA Astrophysics Data System (ADS)

    Cavoski, I.; Jablonowski, N.; Burauel, P.; Miano, T.

    2012-04-01

    Chars are carbonaceous material produced from different type of biomass by pyrolysis. They are known as highly effective adsorbents for atrazine therefore limiting its degradation and its diffusion into the aqueous phase. The aim of the present work is to study the effects of different chars and char's derived WEOC on atrazine sorption-desorption processes. The five chars been used in this study derived from: 1) fast pyrolysis from hard wood (FP1); 2) flash pyrolysis from soft wood (FP2); 3) slow pyrolysis from deciduous wood (CC); 4) gasification from deciduous wood (GC) and 5) the market, purchased as activated charcoal standard (AC). Short-term batch equilibration tests were conducted to assess the sorption-desorption behavior of 14C-labeled atrazine on the chars, with a special focus on the desorption behavior using successive dilution method with six consecutive desorption step. Chars and their WEOC were physically and chemically characterized. Results demonstrate that biomass and pyrolysis process used to produce chars affect their physical and chemical properties, and atrazine adsorption-desorption behavior. Atrazine desorption resulted from the positive and competitive interactions between WEOC and chars surfaces. WEOC pool play important role in atrazine adsorption-desorption behavior. FP1 and FP2 with higher concentration of WEOC showed higher desorption rates, whereas GC, CC and AC with insignificant WEOC concentration strongly adsorb atrazine with low desorption rates. According to our results, when high WEOC pools chars are concerned, an increase in atrazine desorption can be observed but further studies would help in confirming the present results.

  1. Reduced biodegradability of desorption-resistant fractions of polycyclic aromatic hydrocarbons in soil and aquifer solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.C.; Alexander, M.

    1996-11-01

    Less of the desorption-resistant fractions of phenanthrene and naphthalene than freshly added phenanthrene and naphthalene was mineralized in columns of aquifer solids, loam, or muck. Slurrying columns of hydrocarbon-amended aquifer solids, loam, or muck enhanced the rate and extent of mineralization of desorption-resistant phenanthrene and naphthalene, but degradation was still less than in slurries amended with fresh compound. A substantial portion of the desorption-resistant compound remained undergraded in the slurry. A surfactant and methanol increased the mineralization of resistant phenanthrene in slurries of loam. A mixed culture of microorganisms enriched on desorption-resistant phenanthrene degraded twice as much of this fractionmore » of compound as a pseudomonad. The authors suggest that predictions of the environment fate of toxic chemicals require information on the biodegradability of the fraction of a compound that is resistant to desorption.« less

  2. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    PubMed

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  3. Heavy-ion induced electronic desorption of gas from metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molvik, A W; Kollmus, H; Mahner, E

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  4. Thermally induced alkylation of diamond.

    PubMed

    Hoeb, Marco; Auernhammer, Marianne; Schoell, Sebastian J; Brandt, Martin S; Garrido, Jose A; Stutzmann, Martin; Sharp, Ian D

    2010-12-21

    We present an approach for the thermally activated formation of alkene-derived self-assembled monolayers on oxygen-terminated single and polycrystalline diamond surfaces. Chemical modification of the oxygen and hydrogen plasma-treated samples was achieved by heating in 1-octadecene. The resulting layers were characterized using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. This investigation reveals that alkenes selectively attach to the oxygen-terminated sites via covalent C-O-C bonds. The hydrophilic oxygen-terminated diamond is rendered strongly hydrophobic following this reaction. The nature of the process limits the organic layer growth to a single monolayer, and FTIR measurements reveal that such monolayers are dense and well ordered. In contrast, hydrogen-terminated diamond sites remain unaffected by this process. This method is thus complementary to the UV-initiated reaction of alkenes with diamond, which exhibits the opposite reactivity contrast. Thermal alkylation increases the range of available diamond functionalization strategies and provides a means of straightforwardly forming single organic layers in order to engineer the surface properties of diamond.

  5. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    PubMed

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Laser-induced desorption determinations of surface diffusion on Rh(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seebauer, E.G.; Schmidt, L.D.

    Surface diffusion of hydrogen, deuterium and CO on Rh(111) has been investigated by laser-induced thermal desorption (LITD) and compared with previous results for these species on Pt(111) and on other metals. For deuterium in the coverage range 0.02 < theta < 0.33, the pre-exponential factor D/sub 0/ - 8 x 10/sup -2/ cm/sup 2//s, with a diffusion activation energy 3.7 < E/sub diff/ < 4.3 kcal/mol. For CO, E/sub diff/ = 7 kcal/mol, but D/sub 0/ rises from 10/sup -3/ to 10/sup -2/ cm/sup 2//s between theta = 0.01 and 0.40. Values of E/sub diff/ on different surfaces appear tomore » correlate with differences in heats of adsorption in different binding states which form saddle point configurations in surface diffusion. In addition, oxidation reactions on Rh and on several other transition metal surfaces may be limited to CO or H surface diffusion. 30 refs., 3 figs., 1 tab.« less

  7. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas.

    PubMed

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M; Orlando, Thomas M

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation. Graphical Abstract ᅟ.

  8. Reactive Desorption and Radiative Association as Possible Drivers of Complex Molecule Formation in the Cold Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Vasyunin, A. I.; Herbst, Eric

    2013-05-01

    The recent discovery of terrestrial-type organic species such as methyl formate and dimethyl ether in the cold interstellar gas has proved that the formation of organic matter in the Galaxy begins at a much earlier stage of star formation than was previously thought. This discovery represents a challenge for astrochemical modelers. The abundances of these molecules cannot be explained by the previously developed "warm-up" scenario, in which organic molecules are formed via diffusive chemistry on surfaces of interstellar grains starting at 30 K, and then released to the gas at higher temperatures during later stages of star formation. In this article, we investigate an alternative scenario in which complex organic species are formed via a sequence of gas-phase reactions between precursor species formed on grain surfaces and then ejected into the gas via efficient reactive desorption, a process in which non-thermal desorption occurs as a result of conversion of the exothermicity of chemical reactions into the ejection of products from the surface. The proposed scenario leads to reasonable if somewhat mixed results at temperatures as low as 10 K and may be considered as a step toward the explanation of abundances of terrestrial-like organic species observed during the earliest stages of star formation.

  9. The Release of Trapped Gases from Amorphous Solid Water Films: II. “Bottom-Up” Induced Desorption Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2013-03-14

    In this (Paper II) and the preceding companion paper (Paper I) we investigate the mechanisms for the release of trapped gases from underneath of amorphous solid water (ASW) films. In Paper I, we focused on the low coverage (pressure) regime where the release mechanism is controlled by crystallization-induced cracks formed in the ASW overlayer. In that regime the results were largely independent of the particular gas underlayer. Here in Paper II, we focus on the high coverage (pressure) regime where new desorption pathways become accessible prior to ASW crystallization. In contrast to the results for the low coverage regime (Papermore » I), the release mechanism is a function of the multilayer thickness and composition, displaying dramatically different behavior between Ar, Kr, Xe, CH4, N2, O2, and CO. Two primary desorption pathways are observed. The first occurs between 100 and 150 K and manifests itself as sharp, extremely narrow desorption peaks. Temperature programmed desorption is utilized to show that abrupt desorption bursts are due to pressure induced structural failure of the ASW overlyaer. The second pathway occurs at low temperature (typically <100 K) where broad desorption peaks are observed. Desorption through this pathway is attributed to diffusion through pores and connected pathways formed during ASW deposition. The extent of desorption and the lineshape of the low temperature desorption peak are dependent on the substrate on which the gas underlayer is deposited. Angle dependent ballistic deposition of the ASW is used vary the porosity of overlayer and confirm that the low temperature desorption pathway is due to porosity that is inherent in the ASW overlayer during deposition.« less

  10. From Laser Desorption to Laser Ablation of Biopolymers

    NASA Astrophysics Data System (ADS)

    Franz, Hillenkamp

    1998-03-01

    For selected indications laser ablation and cutting of biological tissues is clinical practice. Preferentially lasers with emission wavelengths in the far UV and the mid IR are used, for which tissue absorption is very high. Morphologically the ablation sites look surprisingly similar for the two wavelength ranges, despite of the very different prim y putative interaction mechanisms. Ablation depth as a function of fluence follows a sigmoidal curve. Even factors below the nominal ablation threshold superficial layers of material get removed from the surface. This is the fluence range for Matrix-Assisted Laser Desorption/Ionization (MALDI). Evidence will be presented which suggest that strong similarities exist between the desorption and ablation processes both for UV- as well as for IR-wavelengths.

  11. Determination of adsorption and desorption of DNA molecules on freshwater and marine sediments.

    PubMed

    Xue, J; Feng, Y

    2018-06-01

    Free DNA and its adsorption by sediment in the aquatic environment lead to ambiguity in the identification of recent faecal pollution sources. The goal of this study was to understand the mechanisms of DNA adsorption and desorption on aquatic sediment under various conditions using quantitative polymerase chain reaction (qPCR). Both raw sewage (RS) DNA and purified PCR product (PPP) were used in adsorption and desorption experiments; autoclaved freshwater and marine sediments served as sorbents. Thirty-six hours were needed for adsorption to reach equilibrium. More DNA was adsorbed on both sediments in stream water than in 5 mmol l -1 NaCl and DNA adsorption increased in the presence of Ca 2+ and Mg 2+ . Successive desorption experiments showed that between 5% and 22% of adsorbed DNA was desorbed. Organic matter and clay played a significant role in determining the DNA adsorption capacity on sediment. The data suggest the presence of multilayer adsorption. DNA molecules on sediments were mostly adsorbed through ligand binding rather than electrostatic binding. Quantitative polymerase chain reaction assays provide a better way to investigate the DNA adsorption and desorption mechanisms by sediment. DNA desorption can potentially complicate the outcomes of microbial source tracking studies. © 2018 The Society for Applied Microbiology.

  12. H 2 Desorption from MgH 2 Surfaces with Steps and Catalyst-Dopants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, Jason M.; Wang, Lin-Lin; Johnson, Duane D.

    2014-03-10

    Light-metal hydrides, like MgH 2, remain under scrutiny as prototypes for reversible H-storage materials. For MgH 2, we assess hydrogen desorption/adsorption properties (enthalpy and kinetic barriers) for stepped, catalyst-doped surfaces occurring, e.g., from ball-milling in real samples. Employing density functional theory and simulated annealing in a slab model, we studied initial H 2 desorption from stepped surfaces with(out) titanium (Ti) catalytic dopant. Extensive simulated annealing studies were performed to find the dopant’s site preferences. For the most stable initial and final (possibly magnetic) states, nudged elastic band (NEB) calculations were performed to determine the H 2-desorption activation energy. We usedmore » a moment-transition NEB method to account for the dopant’s transition to the lowest-energy magnetic state at each image along the band. We identify a dopant-related surface-desorption mechanism that reloads via bulk H diffusion. While reproducing the observed bulk enthalpy of desorption, we find a decrease of 0.24 eV (a 14% reduction) in the activation energy on doped stepped surface; together with a 22% reduction on a doped flat surface, this brackets the assessed 18% reduction in kinetic barrier for ball-milled MgH 2 samples with low concentration of Ti from experiment.« less

  13. Dimethyl Methylphosphonate Adsorption Capacities and Desorption Energies on Ordered Mesoporous Carbons.

    PubMed

    Huynh, Kim; Holdren, Scott; Hu, Junkai; Wang, Luning; Zachariah, Michael R; Eichhorn, Bryan W

    2017-11-22

    In this study, we determine effective adsorption capacities and desorption energies for DMMP with highly ordered mesoporous carbons (OMCs), 1D cylindrical FDU-15, 3D hexagonal CMK-3, 3D bicontinuous CMK-8, and as a reference, microporous BPL carbon. After exposure to DMMP vapor at room temperature for approximately 70 and 800 h, the adsorption capacity of DMMP for each OMC was generally proportional to the total surface area and pore volume, respectively. Desorption energies of DMMP were determined using a model-free isoconversional method applied to thermogravimetric analysis (TGA) data. Our experiments determined that DMMP saturated carbon will desorb any weakly bound DMMP from pores >2.4 nm at room temperature, and no DMMP will adsorb into pores smaller than 0.5 nm. The calculated desorption energies for high surface coverages, 25% DMMP desorbed from pores ≤2.4 nm, are 68-74 kJ mol -1 , which is similar to the DMMP heat of vaporization (52 kJ mol -1 ). At lower surface coverages, 80% DMMP desorbed, the DMMP desorption energies from the OMCs are 95-103 kJ mol -1 . This is overall 20-30 kJ mol -1 higher in comparison to that of BPL carbon, due to the pore size and diffusion through different porous networks.

  14. Proton-transfer reaction mass spectrometry (PTRMS) in combination with thermal desorption (TD) for sensitive off-line analysis of volatiles.

    PubMed

    Crespo, Elena; Devasena, Samudrala; Sikkens, Cor; Centeno, Raymund; Cristescu, Simona M; Harren, Frans J M

    2012-04-30

    When performing trace gas analysis, it is not always possible to bring the source of volatiles and the gas analyzer together. In these cases, volatile storage containers, such as thermal desorption (TD) tubes, can be used for off-line measurement. TD is routinely combined with gas chromatography/mass spectrometry (GC/MS), but so far not with proton-transfer reaction mass spectrometry (PTRMS), which has a faster response. A PTR-quadrupole-MS instrument and a PTR-ion-trap-MS instrument were separately coupled to a TD unit for off-line analysis of trace volatiles in air. Carbograph 1TD/Carbopack X sorbent tubes were filled with different concentrations of a trace gas mixture containing low molecular weight volatiles (32 g/mol up to 136 g/mol) and measured with the above-mentioned combinations. The carrier gas in the TD unit was changed from helium to nitrogen to be able to combine this instrument with the mass spectrometer. Good linearity and reproducibility with the amount of gas stored were obtained. The storage capacity over time (up to 14 days) showed larger variability (<11% for all compounds, except for acetone 27%). Several tubes were filled with breath of different persons, and the breath of a smoker showed increased levels of acetonitrile and benzene. The combination of the PTR ion-trap instrument with the TD unit was also investigated. Due to its higher sampling rate, the ion-trap system showed higher throughput capabilities than the quadrupole system. The combination of TD with PTRMS using both a quadrupole and an ion trap for off-line volatile analysis has been validated. TD tubes can be a robust and compact volatile storage method when the mass spectrometry and the sampling cannot be performed in the same place, for example in large screening studies. In addition, a higher measurement throughput than with GC/MS could be obtained. Copyright © 2012 John Wiley & Sons, Ltd.

  15. UV-responsive nano-sponge for oil absorption and desorption

    PubMed Central

    Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon

    2015-01-01

    Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil. PMID:26260470

  16. Hydrogen Desorption and Adsorption Measurements on Graphite Nanofibers

    NASA Technical Reports Server (NTRS)

    Ahn, C. C.; Ye, Y.; Ratnakumar, B. V.; Witham, C. K.; Bowman, R. C., Jr.; Fultz, B.

    1998-01-01

    Graphite nanofibers were synthesized and their hydrogen desorption and adsorption properties are reported for 77 and 300 K. Catalysts were made by several different methods including chemical routes, mechanical alloying and gas condensation.

  17. Electron- and photon-stimulated desorption of atomic hydrogen from radiation-modified alkali halide surfaces

    NASA Astrophysics Data System (ADS)

    Hudson, L. T.; Tolk, N. H.; Bao, C.; Nordlander, P.; Russell, D. P.; Xu, J.

    2000-10-01

    The desorption yields of excited hydrogen atoms from the surfaces of KCl, KBr, NaCl, NaF, and LiF have been measured as a function of incident photon and electron energy and flux, time of irradiation, dosing pressure of H2 and sample temperature. As these surfaces are exposed to H2 gas during electron or photon bombardment, the fluorescence from excited hydrogen atoms ejected from the surface is monitored. The desorption yields are found to be contingent upon surface damage induced by the incident particle radiation, leading to dissociative adsorption at surface sites containing an excess of alkali metal. A desorption mechanism is presented in which incident electrons or photons induce a valence excitation to a neutral, antibonding state of the surface alkali hydride molecule complex, leading to the desorption of hydrogen atoms possessing several eV of kinetic energy.

  18. Collisional desorption of NO by fast O atoms

    NASA Technical Reports Server (NTRS)

    Sonnenfroh, David M.; Caledonia, George E.

    1993-01-01

    Surface-adsorbed NO figures largely in the mechanism that produces visible glow around spacecraft in low Earth orbit (LEO). In view of the potential interference to optical observations such a glow represents, we have investigated the collision-induced desorption of NO from Al, Ni, and Z306 Chemglaze-coated surfaces at 96 K by hyperthermal (8 km/s) oxygen atoms. The removal of surface NO was followed by the monitoring of the visible fluorescence of electronically excited NO2 produced through the surface-mediated reaction O + NO. A variability in collisional desorption rate with material was observed. The limited data suggest a removal efficiency of 4 to 8% of the impinging O atom flux. Implications for the atmospheric scouring of contaminants from external surfaces of LEO spacecraft are discussed.

  19. [Thermodynamic analysis of water adsorption and desorption process of Chinese herbal decoction pieces].

    PubMed

    Cheng, Lin; Luo, Xiao-Jian; Han, Xiu-Lin; Wang, Wen-Kai; Rao, Xiao-Yong; Xu, Shao-Zhong; He, Yan

    2016-09-01

    Based on the basic theory of thermodynamics, the thermodynamic parameters and related equations in the process of water adsorption and desorption of Chinese herbal decoction pieces were established, and their water absorption and desorption characteristics were analyzed. The physical significance of the thermodynamic parameters, such as differential adsorption enthalpy, differential adsorption entropy, integral adsorption enthalpy, integral adsorption entropy and the free energy of adsorption, were discussed in this paper to provide theoretical basis for the research on the water adsorption and desorption mechanism, optimum drying process parameters, storage conditions and packaging methods of Chinese herbal decoction pieces. Copyright© by the Chinese Pharmaceutical Association.

  20. Gas chromatographic analysis of trace impurities in chlorine trifluoride.

    PubMed

    Laurens, J B; Swinley, J M; de Coning, J P

    2000-03-24

    The gas chromatographic determination of trace gaseous impurities in highly reactive fluorinated gaseous matrices presents unique requirements to both equipment and techniques. Especially problematic are the gases normally present in ambient air namely oxygen and nitrogen. Analysing these gases at the low microl/l (ppm) level requires special equipment and this publication describes a custom-designed system utilising backflush column switching to protect the columns and detectors. A thermal conductivity detector with nickel filaments was used to determine ppm levels of impurities in ClF3.

  1. A new technique for Auger analysis of surface species subject to electron-induced desorption

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1973-01-01

    A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the surface velocity, incident electron current, beam diameter, and desorption cross section are analyzed. The method is illustrated by the Auger analysis of PTFE, in which the fluorine is removed by electron induced desorption.

  2. Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: experiments and modeling.

    PubMed

    Liang, Yuzhen; Tian, Lei; Lu, Yang; Peng, Lanfang; Wang, Pei; Lin, Jingyi; Cheng, Tao; Dang, Zhi; Shi, Zhenqing

    2018-05-15

    The kinetics of Cd(ii) adsorption/desorption on ferrihydrite is an important process affecting the fate, transport, and bioavailability of Cd(ii) in the environment, which was rarely systematically studied and understood at quantitative levels. In this work, a combination of stirred-flow kinetic experiments, batch adsorption equilibrium experiments, high-resolution transmission electron microscopy (HR-TEM), and mechanistic kinetic modeling were used to study the kinetic behaviors of Cd(ii) adsorption/desorption on ferrihydrite. HR-TEM images showed the open, loose, and sponge-like structure of ferrihydrite. The batch adsorption equilibrium experiments revealed that higher pH and initial metal concentration increased Cd(ii) adsorption on ferrihydrite. The stirred-flow kinetic results demonstrated the increased adsorption rate and capacity as a result of the increased pH, influent concentration, and ferrihydrite concentration. The mechanistic kinetic model successfully described the kinetic behaviors of Cd(ii) during the adsorption and desorption stages under various chemistry conditions. The model calculations showed that the adsorption rate coefficients varied as a function of solution chemistry, and the relative contributions of the weak and strong ferrihydrite sites for Cd(ii) binding varied with time at different pH and initial metal concentrations. Our model is able to quantitatively assess the contributions of each individual ferrihydrite binding site to the overall Cd(ii) adsorption/desorption kinetics. This study provided insights into the dynamic behavior of Cd(ii) and a predictive modeling tool for Cd(ii) adsorption/desorption kinetics when ferrihydrite is present, which may be helpful for the risk assessment and management of Cd contaminated sites.

  3. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    PubMed

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (<12%). The low values of hysteresis coefficient confirm that glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  4. Dynamic desorption of arsenic from polymer-supported hydrated iron(III) oxide in a wastewater treatment plant.

    PubMed

    Hu, Jian-Long; Yang, Xiao-Song; Liu, Ting; Shao, Li-Nan; Zhang, Wang

    2017-11-01

    Polymer-supported hydrated iron(III) oxide (PHIO) was successfully applied as adsorbent for arsenic removal in a wastewater treatment plant in Nandan, China. The practical PHIO adsorbent samples (PHIO-P) were collected from the adsorption column of the wastewater treatment plant, and desorption experiments of the adsorbent were carried out. Our results showed that the formation of precipitates on the surface of PHIO-P might block the porous channel of the adsorbent and decrease its arsenic adsorption capacity. In the dynamic arsenic desorption experiment, the arsenic desorption equilibrium was achieved more quickly at decreasing desorption velocity, and higher arsenic desorption efficiency was obtained at increasing NaOH concentration in regenerant. It was found that the PHIO-P adsorbent could be well regenerated at 1.0 M NaOH solution and desorption velocity of 5 BV h -1 . Comparing with the raw adsorbent, the maximum arsenic adsorption capacity of PHIO-P decreased by 41.1% after practical running for 26 months. Additionally, the frequently used waste PHIO adsorbent could be treated as non-hazardous material in the arsenic-containing wastewater treatment process after long-time use.

  5. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.

    2014-01-01

    A multi-rate expression for uranyl [U(VI)] surface complexation reactions has been proposed to describe diffusion-limited U(VI) sorption/desorption in heterogeneous subsurface sediments. An important assumption in the rate expression is that its rate constants follow a certain type probability distribution. In this paper, a Bayes-based, Differential Evolution Markov Chain method was used to assess the distribution assumption and to analyze parameter and model structure uncertainties. U(VI) desorption from a contaminated sediment at the US Hanford 300 Area, Washington was used as an example for detail analysis. The results indicated that: 1) the rate constants in the multi-rate expression contain uneven uncertaintiesmore » with slower rate constants having relative larger uncertainties; 2) the lognormal distribution is an effective assumption for the rate constants in the multi-rate model to simualte U(VI) desorption; 3) however, long-term prediction and its uncertainty may be significantly biased by the lognormal assumption for the smaller rate constants; and 4) both parameter and model structure uncertainties can affect the extrapolation of the multi-rate model with a larger uncertainty from the model structure. The results provide important insights into the factors contributing to the uncertainties of the multi-rate expression commonly used to describe the diffusion or mixing-limited sorption/desorption of both organic and inorganic contaminants in subsurface sediments.« less

  6. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces.

    PubMed

    Smith, R Scott; May, R Alan; Kay, Bruce D

    2016-03-03

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from graphene-covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature-programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multilayer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do not align (for coverages < 2 ML). The nonalignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.

  7. A new technique for Auger analysis of surface species subject to electron-induced desorption.

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1973-01-01

    A method is presented to observe surface species subject to electron-induced desorption by Auger electron spectroscopy. The surface to be examined is moved under the electron beam at constant velocity, establishing a time-independent condition and eliminating the time response of the electron spectrometer as a limiting factor. The dependence of the Auger signal on the sample velocity, incident electron current, beam diameter, and desorption cross section is analyzed. It is shown that it is advantageous to analyze the moving sample with a high beam current, in contrast to the usual practice of using a low beam current to minimize desorption from a stationary sample. The method is illustrated by the analysis of a friction transfer film of PTFE, in which the fluorine is removed by electron-induced desorption. The method is relevant to surface studies in the field of lubrication and catalysis.

  8. Wide-range and accurate modeling of linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil.

    PubMed

    Oliver-Rodríguez, B; Zafra-Gómez, A; Reis, M S; Duarte, B P M; Verge, C; de Ferrer, J A; Pérez-Pascual, M; Vílchez, J L

    2015-11-01

    In this paper, rigorous data and adequate models about linear alkylbenzene sulfonate (LAS) adsorption/desorption on agricultural soil are presented, contributing with a substantial improvement over available adsorption works. The kinetics of the adsorption/desorption phenomenon and the adsorption/desorption equilibrium isotherms were determined through batch studies for total LAS amount and also for each homologue series: C10, C11, C12 and C13. The proposed multiple pseudo-first order kinetic model provides the best fit to the kinetic data, indicating the presence of two adsorption/desorption processes in the general phenomenon. Equilibrium adsorption and desorption data have been properly fitted by a model consisting of a Langmuir plus quadratic term, which provides a good integrated description of the experimental data over a wide range of concentrations. At low concentrations, the Langmuir term explains the adsorption of LAS on soil sites which are highly selective of the n-alkyl groups and cover a very small fraction of the soil surface area, whereas the quadratic term describes adsorption on the much larger part of the soil surface and on LAS retained at moderate to high concentrations. Since adsorption/desorption phenomenon plays a major role in the LAS behavior in soils, relevant conclusions can be drawn from the obtained results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of equilibration time on Pu desorption from goethite

    DOE PAGES

    Wong, Jennifer C.; Zavarin, Mavrik; Begg, James D.; ...

    2015-01-28

    Strongly sorbing ions such as plutonium may become irreversibly bound to mineral surfaces over time implicates near- and far-field transport of Pu. Batch adsorption–desorption data were collected as a function of time and pH to study the surface stability of Pu on goethite. Pu(IV) was adsorbed to goethite over the pH range 4.2 to 6.6 for different periods of time (1, 6, 15, 34 and 116 d). Moreover, following adsorption, Pu was leached from the mineral surface with desferrioxamine B (DFOB), a complexant capable of effectively competing with the goethite surface for Pu. The amount of Pu desorbed from the goethitemore » was found to vary as a function of the adsorption equilibration time, with less Pu removed from the goethite following longer adsorption periods. This effect was most pronounced at low pH. Logarithmic desorption distribution ratios for each adsorption equilibration time were fit to a pH-dependent model. Model slopes decreased between 1 and 116 d adsorption time, indicating that overall Pu(IV) surface stability on goethite surfaces becomes less dependent on pH with greater adsorption equilibration time. The combination of adsorption and desorption kinetic data suggest that non-redox aging processes affect Pu sorption behavior on goethite.« less

  10. Commercial silicate phosphate sequestration and desorption leads to a gradual decline of aquatic systems.

    PubMed

    Svatos, Karl B W

    2018-02-01

    Laboratory desorption behaviour, function and elemental composition of commercially marketed silicate minerals used to sequester phosphorus pollution as well as Zeolite, Smectite, and Kaolinite were determined to see whether their use by environmental scientists and water managers in eutrophic waterways has the potential to contribute to longer-term environmental impacts. As expected, lower phosphorus concentrations were observed, following treatment. However, data relating to desorption, environmental fate and bioavailability of phospho-silicate complexes (especially those containing rare earth elements) appear to be underrepresented in product testing and trial publications. Analysis of desorption of phosphate (P) was > 5 μg[P]/L for all three non-commercial samples and 0 > μg[P]/L > 5 for all commercial silicates for a range of concentrations from 0 to 300 μg[P]/L. Based on a review of bioaccumulation data specific to the endangered Cherax tenuimanus (Hairy Marron) and other endemic species, this is significant considering anything > 20 μg[La]/L is potentially lethal to the hairy marron, other crustaceans and even other phyla. Where prokaryotic and eukaryotic effects are underreported, this represents a significant challenge. Especially where product protocols recommend continual reapplication, this is significant because both the forward and reverse reactions are equally important. The users of silicate minerals in water columns should accept the dynamic nature of the process and pay equal attention to both adsorption and desorption because desorption behaviour is an inherent trait. Even if broader desorption experimentation is difficult, expensive and time-consuming, it is a critical consideration nonetheless.

  11. Using chromatography – desorption method of manufacturing gas mixtures for analytical instruments calibration

    NASA Astrophysics Data System (ADS)

    Platonov, I. A.; Kolesnichenko, I. N.; Lange, P. K.

    2018-05-01

    In this paper, the chromatography desorption method of obtaining gas mixtures of known compositions stable for a time sufficient to calibrate analytical instruments is considered. The comparative analysis results of the preparation accuracy of gas mixtures with volatile organic compounds using diffusion, polyabarbotage and chromatography desorption methods are presented. It is shown that the application of chromatography desorption devices allows one to obtain gas mixtures that are stable for 10...60 hours in a dynamic condition. These gas mixtures contain volatile aliphatic and aromatic hydrocarbons with a concentration error of no more than 7%. It is shown that it is expedient to use such gas mixtures for analytical instruments calibration (chromatographs, spectrophotometers, etc.)

  12. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; May, Robert A.; Kay, Bruce D.

    2016-03-03

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from grapheme covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multi- layer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do notmore » align (for coverages < 2 ML). The non-alignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates.« less

  13. Study on Desorption Process of n-Heptane and Methyl Cyclohexane Using UiO-66 with Hierarchical Pores.

    PubMed

    Chen, Sijia; Zhang, Lin; Zhang, Zhao; Qian, Gang; Liu, Zongjian; Cui, Qun; Wang, Haiyan

    2018-06-06

    UiO-66 (UiO for University of Oslo), is a zirconium-based MOF with reverse shape selectivity, gives an alternative way to produce high purity n-heptane used for the manufacture of high-purity pharmaceuticals. Couple of studies have shown that UiO-66 gives a high selectivity on the separation of n-/iso-alkanes. However, the microporous structure of UiO-66 causes poor mass transport during the desorption process. In this work, hierarchical-pore UiO-66 (H-UiO-66) was synthesized and utilized as an adsorbent of n-heptane (nHEP) and methyl cyclohexane (MCH) for systematically studying the desorption process of n/iso-alkanes. A suite of physical methods, including XRD patterns verified the UiO-66 structures and HRTEM showed the existence of hierarchical pores. N2 adsorption-desorption isotherms further confirmed the size distribution of hierarchical pores in H-UiO-66. Of particular note, the MCH/nHEP selectivity of H-UiO-66 is similar with UiO-66 in the same adsorption conditions, the desorption process of nHEP/MCH from H-UiO-66 is dramatically enhanced, viz, the desorption rates for nHEP/MCH from H-UiO-66 is enhanced by 30%/23% as comparing to UiO-66 at most. Moreover, desorption activation energy (Ed) derived from temperature-programmed desorption (TPD) experiments indicate that the Ed for nHEP/MCH is lower on H-UiO-66, i.e., the Ed of MCH on H-UiO-66 is ~37% lower than that on UiO-66 at most, leading to a milder condition for the desorption process. The introduction of hierarchical structures will be applicable for the optimization of desorption process during separation on porous materials.

  14. Chromium and fluoride sorption/desorption on un-amended and waste-amended forest and vineyard soils and pyritic material.

    PubMed

    Romar-Gasalla, Aurora; Santás-Miguel, Vanesa; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino; Fernández-Sanjurjo, María J

    2018-05-22

    Using batch-type experiments, chromium (Cr(VI)) and fluoride (F - ) sorption/desorption were studied in forest and vineyard soil samples, pyritic material, pine bark, oak ash, hemp waste and mussel shell, as well as on samples of forest and vineyard soil, and of pyritic material, individually treated with 48 t ha -1 of pine bark, oak ash, and mussel shell. Pine bark showed the highest Cr(VI) sorption (always > 97% of the concentration added) and low desorption (<1.5%). Pyritic material sorbed between 55 and 98%, and desorbed between 0.6 and 9%. Forest and vineyard soils, oak ash, mussel shell and hemp waste showed Cr(VI) sorption always < 32%, and desorption between 22 and 100%. Pine bark also showed the highest F - retention (sorption between 62 and 73%, desorption between 10 and 15%), followed by oak ash (sorption 60-69%, desorption 11-14%), forest soil (sorption 60-73%, desorption 19-36%), and pyritic material (sorption 60-67%, desorption 13-15%), whereas in vineyard sorption was 49-64%, and desorption 24-27%, and in hemp waste sorption was 26-36%, and desorption 41-59%. Sorption data showed better fitting to the Freundlich than to the Langmuir model, especially in the case of Cr(VI), indicating that multilayer sorption dominated. The addition of by-products to the forest and vineyard soils, and to the pyritic material, caused an overall increase in F - sorption, and decreased desorption. Furthermore, the pine bark amendment resulted in increases in Cr(VI) retention by both soils and the pyritic material. These results could be useful to favor the recycling of the by-products studied, aiding in the management of soils and degraded areas affected by Cr(VI) and F - pollution, and in the removal of both anions from polluted waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Adsorption-desorption mediated separation of low concentrated D2O from water with hydrophobic activated carbon fiber.

    PubMed

    Ono, Yuji; Futamura, Ryusuke; Hattori, Yoshiyuki; Sakai, Toshio; Kaneko, Katsumi

    2017-12-15

    The adsorption and desorption of D 2 O on hydrophobic activated carbon fiber (ACF) occurs at a smaller pressure than the adsorption and desorption of H 2 O. The behavior of the critical desorption pressure difference between D 2 O and H 2 O in the pressure range of 1.25-1.80kPa is applied to separate low concentrated D 2 O from water using the hydrophobic ACF, because the desorption branches of D 2 O and H 2 O drop almost vertically. The deuterium concentration of all desorbed water in the above pressure range is lower than that of water without adsorption-treatment on ACF. The single adsorption-desorption procedure on ACF at 1.66kPa corresponding to the maximum difference of adsorption amount between D 2 O and H 2 O reduced the deuterium concentration of desorbed water to 130.6ppm from 143.0ppm. Thus, the adsorption-desorption procedure of water on ACF is a promising separation and concentration method of low concentrated D 2 O from water. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The impact of desorption kinetics from albumin on hepatic extraction efficiency and hepatic clearance: a model study.

    PubMed

    Krause, Sophia; Goss, Kai-Uwe

    2018-05-23

    Until now, the question whether slow desorption of compounds from transport proteins like the plasma protein albumin can affect hepatic uptake and thereby hepatic metabolism of these compounds has not yet been answered conclusively. This work now combines recently published experimental desorption rate constants with a liver model to address this question. For doing so, the used liver model differentiates the bound compound in blood, the unbound compound in blood and the compound within the hepatocytes as three well-stirred compartments. Our calculations show that slow desorption kinetics from albumin can indeed limit hepatic metabolism of a compound by decreasing hepatic extraction efficiency and hepatic clearance. The extent of this decrease, however, depends not only on the value of the desorption rate constant but also on how much of the compound is bound to albumin in blood and how fast intrinsic metabolism of the compound in the hepatocytes is. For strongly sorbing and sufficiently fast metabolized compounds, our calculations revealed a twentyfold lower hepatic extraction efficiency and hepatic clearance for the slowest known desorption rate constant compared to the case when instantaneous equilibrium between bound and unbound compound is assumed. The same desorption rate constant, however, has nearly no effect on hepatic extraction efficiency and hepatic clearance of weakly sorbing and slowly metabolized compounds. This work examines the relevance of desorption kinetics in various example scenarios and provides the general approach needed to quantify the effect of flow limitation, membrane permeability and desorption kinetics on hepatic metabolism at the same time.

  17. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trautschold, Olivia Carol

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  18. Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemical Reactions: A Case of U(VI) Desorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Shang, Jianying; Shan, Huimei

    2014-02-04

    The effect of subgrid heterogeneity in sediment properties on the rate of uranyl[U(VI)] desorption was investigated using a sediment collected from the US Department of Energy Hanford site. The sediment was sieved into 7 grain size fractions that each exhibited different U(VI) desorption properties. Six columns were assembled using the sediment with its grain size fractions arranged in different spatial configurations to mimic subgrid heterogeneity in reactive transport properties. The apparent rate of U(VI) desorption varied significantly in the columns. Those columns with sediment structures leading to preferential transport had much lower rates of U(VI) desorption than those with relativelymore » homogeneous transport. Modeling analysis indicated that the U(VI) desorption model and parameters characterized from well-mixed reactors significantly over-predicted the measured U(VI) desorption in the columns with preferential transport. A dual domain model, which operationally separates reactive transport properties into two subgrid domains improved the predictions significantly. A similar effect of subgrid heterogeneity, albeit at a less degree, was observed for denitrification, which also occurred in the columns. The results imply that subgrid heterogeneity is an important consideration in extrapolating reaction rates from the laboratory to field.« less

  19. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-06-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  20. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    PubMed Central

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-01-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary. PMID:26047466

  1. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons.

    PubMed

    Mitropoulos, A C; Stefanopoulos, K L; Favvas, E P; Vansant, E; Hankins, N P

    2015-06-05

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of 'ink-bottle' pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  2. Sorption/Desorption Interactions of Plutonium with Montmorillonite

    NASA Astrophysics Data System (ADS)

    Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.

    2012-12-01

    Plutonium (Pu) release to the environment through nuclear weapon development and the nuclear fuel cycle is an unfortunate legacy of the nuclear age. In part due to public health concerns over the risk of Pu contamination of drinking water, predicting the behavior of Pu in both surface and sub-surface water is a topic of continued interest. Typically it was assumed that Pu mobility in groundwater would be severely restricted, as laboratory adsorption studies commonly show that naturally occurring minerals can effectively remove plutonium from solution. However, evidence for the transport of Pu over significant distances at field sites highlights a relative lack of understanding of the fundamental processes controlling plutonium behavior in natural systems. At several field locations, enhanced mobility is due to Pu association with colloidal particles that serve to increase the transport of sorbed contaminants (Kersting et al., 1999; Santschi et al., 2002, Novikov et al., 2006). The ability for mineral colloids to transport Pu is in part controlled by its oxidation state and the rate of plutonium adsorption to, and desorption from, the mineral surface. Previously we have investigated the adsorption affinity of Pu for montmorillonite colloids, finding affinities to be similar over a wide range of Pu concentrations. In the present study we examine the stability of adsorbed Pu on the mineral surface. Pu(IV) at an initial concentration of 10-10 M was pre-equilibrated with montmorillonite in a background electrolyte at pH values of 4, 6 and 8. Following equilibration, aliquots of the suspensions were placed in a flow cell and Pu-free background electrolyte at the relevant pH was passed through the system. Flow rates were varied in order to investigate the kinetics of desorption and hence gain a mechanistic understanding of the desorption process. The flow cell experiments demonstrate that desorption of Pu from the montmorillonite surface cannot be modeled as a simple

  3. Hydrogen absorption-desorption properties of U 2Ti

    NASA Astrophysics Data System (ADS)

    Takuya, Yamamoto; Satoru, Tanaka; Michio, Yamawaki

    1990-02-01

    Hydrogen absorption-desorption properties of U 2Ti intermetallic compound was examined over the temperature range of 298 to 973 K and at hydrogen pressures below 10 5 Pa. It absorbs hydrogen up to 7.6 atoms per F.U. (formula unit) by two step reactions and hence each desorption isotherm is separated into two plateau regions. In the first plateau, a newly-found ternary hydride is formed, where the hydrogen concentration, cH, reaches 2.4 H atoms/F.U. In the second plateau, UH 3 is formed and cH reaches 7.6 H atoms/F.U. The specimen is disintegrated into fine powder in the second plateau, while in the first plateau the ternary hydride which was identified to be UTi 2H x, ( x = 4.8 to 6.2) showed high durability against powdering. It is predicted that UTi 2 can be suitable material for tritium storage.

  4. Influence of soil properties on heavy metal sequestration by biochar amendment: 2. copper desorption isotherms

    USDA-ARS?s Scientific Manuscript database

    Contaminant desorption constrains the long-term effectiveness of remediation technologies, and is strongly influenced by dynamic non-equilibrium states of environmental and biological media. Information is currently lacking in the influence of biochar and activated carbon amendments on desorption of...

  5. Identification of carbohydrates by matrix-free material-enhanced laser desorption/ionisation mass spectrometry.

    PubMed

    Hashir, Muhammad Ahsan; Stecher, Guenther; Bakry, Rania; Kasemsook, Saowapak; Blassnig, Bernhard; Feuerstein, Isabel; Abel, Gudrun; Popp, Michael; Bobleter, Ortwin; Bonn, Guenther K

    2007-01-01

    Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) is a sensitive mass spectrometric technique which utilises acidic materials as matrices for laser energy absorption, desorption and ionisation of analytes. These matrix materials produce background signals particularly in the low-mass range and make the detection and identification of small molecules difficult and nearly impossible. To overcome this problem this paper introduces matrix-free material-enhanced laser desorption/ionisation mass spectrometry (mf-MELDI-MS) for the screening and analysis of small molecules such as carbohydrates. For this purpose, 4,4'-azo-dianiline was immobilised on silica gel enabling the absorption of laser energy sufficient for successful desorption and ionisation of low molecular weight compounds. The particle and pore sizes, the solvent system for suspension and the sample preparation procedures have been optimised. The newly synthesised MELDI material delivered excellent spectra with regard to signal-to-noise ratio and detection sensitivity. Finally, wheat straw degradation products and Salix alba L. plant extracts were analysed proving the high performance and excellent behaviour of the introduced material. Copyright (c) 2007 John Wiley & Sons, Ltd.

  6. The influence of material and mesh characteristics on transmission mode desorption electrospray ionization.

    PubMed

    Chipuk, Joseph E; Brodbelt, Jennifer S

    2009-04-01

    Adaptation of desorption electrospray ionization to a transmission mode (TM-DESI) entails passing an electrospray plume through a sample that has been deposited onto a mesh substrate. A combination of mass spectrometry and fluorescence microscopy studies is used to illustrate the critical role material composition, mesh open space, and mesh fiber diameter play on the transmission, desorption, and ionization process. Substrates with open spaces less than 150 microm and accompanying minimal strand diameters produce less scattering of the plume and therefore favor transmission. Larger strand diameters typically encompass larger open spaces, but the increase in the surface area of the strand increases plume scattering as well as solvent and analyte spreading on the mesh. Polypropylene (PP), ethylene tetrafluoroethylene (ETFE), and polyetheretherketone (PEEK) materials afford much better desorption than similarly sized polyethylene terephthalate (PETE) or nylon-6,6 (PA66) substrates. Ultimately, the manner in which the electrospray plume interacts with the mesh as it is transmitted through the substrate is shown to be critical to performing and optimizing TM-DESI analyses. In addition, evidence is presented for analyte dependent variations in the desorption mechanisms of dry and solvated samples.

  7. Laser Infrared Desorption Spectroscopy to Detect Complex Organic Molecules on Icy Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Sollit, Luke S.; Beegle, Luther W.

    2008-01-01

    Laser Desorption-Infrared Spectroscopy (LD-IR) uses an IR laser pulse to desorb surface materials while a spectrometer measures the emission spectrum of the desorbed materials (Figure 1). In this example, laser desorption operates by having the incident laser energy absorbed by near surface material (10 microns in depth). This desorption produces a plume that exists in an excited state at elevated temperatures. A natural analog for this phenomenon can be observed when comets approach the sun and become active and individual molecular emission spectra can be observed in the IR [1,2,3,4,5]. When this occurs in comets, the same species that initially emit radiation down to the ground state are free to absorb it, reducing the amount of detectable emission features. The nature of our technique results in absorption not occurring, because the laser pulse could easily be moved away form the initial desorption plume, and still have better spatial resolution then reflectance spectroscopy. In reflectance spectroscopy, trace components have a relatively weak signal when compared to the entire active nature of the surface. With LDIR, the emission spectrum is used to identify and analyze surface materials.

  8. Adsorption and desorption characteristics of arsenic onto ceria nanoparticles

    PubMed Central

    2012-01-01

    The rapid increase in the use of engineered nanoparticles [ENPs] has resulted in an increasing concern over the potential impacts of ENPs on the environmental and human health. ENPs tend to adsorb a large variety of toxic chemicals when they are emitted into the environment, which may enhance the toxicity of ENPs and/or adsorbed chemicals. The study was aimed to investigate the adsorption and desorption behaviors of arsenic on ceria NPs in aqueous solution using batch technique. Results show that the adsorption behavior of arsenic on ceria NPs was strongly dependent on pH and independent of ionic strength, indicating that the electrostatic effect on the adsorption of these elements was relatively not important compared to surface chemical reactions. The adsorption isotherms fitted very well to both the Langmuir and Freundlich models. The thermodynamic parameters (ΔH0, ΔS0, and ΔG0) for the adsorption of arsenic were determined at three different temperatures of 283, 303, and 323 K. The adsorption reaction was endothermic, and the process of adsorption was favored at high temperature. The desorption data showed that desorption hysteresis occurred at the initial concentration studied. High adsorption capacity of arsenic on ceria NPs suggests that the synergistic effects of ceria NPs and arsenic on the environmental systems may exist when they are released into the environment. PMID:22269298

  9. Coffee-ring effects in laser desorption/ionization mass spectrometry.

    PubMed

    Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L

    2013-03-05

    This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Adsorption, aggregation, and desorption of proteins on smectite particles.

    PubMed

    Kolman, Krzysztof; Makowski, Marcin M; Golriz, Ali A; Kappl, Michael; Pigłowski, Jacek; Butt, Hans-Jürgen; Kiersnowski, Adam

    2014-10-07

    We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes.

  11. Unexpected Analyte Oxidation during Desorption Electrospray Ionization - Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasilis, Sofie P; Kertesz, Vilmos; Van Berkel, Gary J

    2008-01-01

    During the analysis of surface spotted analytes using desorption electrospray ionization mass spectrometry (DESI-MS), abundant ions are sometimes observed that appear to be the result of oxygen addition reactions. In this investigation, the effect of sample aging, the ambient lab environment, spray voltage, analyte surface concentration, and surface type on this oxidative modification of spotted analytes, exemplified by tamoxifen and reserpine, during analysis by desorption electrospray ionization mass spectrometry was studied. Simple exposure of the samples to air and to ambient lighting increased the extent of oxidation. Increased spray voltage lead also to increased analyte oxidation, possibly as a resultmore » of oxidative species formed electrochemically at the emitter electrode or in the gas - phase by discharge processes. These oxidative species are carried by the spray and impinge on and react with the sampled analyte during desorption/ionization. The relative abundance of oxidized species was more significant for analysis of deposited analyte having a relatively low surface concentration. Increasing spray solvent flow rate and addition of hydroquinone as a redox buffer to the spray solvent were found to decrease, but not entirely eliminate, analyte oxidation during analysis. The major parameters that both minimize and maximize analyte oxidation were identified and DESI-MS operational recommendations to avoid these unwanted reactions are suggested.« less

  12. Desorption Product Yields Following Cl2 Adsorption on Si(111)7x7: Coverage and Temperature Dependence

    DTIC Science & Technology

    1991-04-12

    only desorption product at approximately 950 K. At higher chloride coverages of 8/6s5 )0.t, a small’ SICl4 TrD signal -’as als:; monitored at 950 K...SiCI2 desorption along with SiCl4 descrption (20). SiCI4 desorbed from a low temperature desorption state at 400 K, whereas SiCI4 and SiCI2 both desorbed...The ratio of the S "l3 an,’ SiC]4 TPD areas suggests that the SiC]3 and SiC]4 TPD signals are both derived froin the desorption of SiCl4 . The growth

  13. Desorption corona beam ionization source for mass spectrometry.

    PubMed

    Wang, Hua; Sun, Wenjian; Zhang, Junsheng; Yang, Xiaohui; Lin, Tao; Ding, Li

    2010-04-01

    A novel Desorption Corona Beam Ionization (DCBI) source for direct analysis of samples from surface in mass spectrometry is reported. The DCBI source can work under ambient conditions without time-consuming sample pretreatments. The source shares some common features with another ionization source - Direct Analysis in Real Time (DART), developed earlier. For example, helium was used as the discharge gas (although only corona discharge is involved in the present source), and heating of the discharge gas is required for sample desorption. However, the difference between the two sources is substantial. In the present source, a visible thin corona beam extending out around 1 cm can be formed by using a hollow needle/ring electrode structure. This feature would greatly facilitate localizing sampling areas and performing imaging/profiling experiments. The DCBI source is also capable of performing progressive temperature scans between room temperature and 450 degrees C in order to sequentially desorb samples from the surface and, therefore, to achieve a rough separation of the individual components in a complex mixture, resulting in less congestion in the mass spectrum acquired. Mass spectra for a broad range of compounds (pesticides, veterinary additives, OTC drugs, explosive materials) have been acquired using the DCBI source. For most of the compounds tested, the heater temperature required for efficient desorption is at least 150 degrees C. The molecular weight of the sample that can be desorbed/ionized is normally below 600 dalton even at the highest heater temperature, which is mainly limited by the volatility of the sample.

  14. The monolithic carbon aerogels and aerogel composites for electronics and thermal protection applications

    NASA Astrophysics Data System (ADS)

    Lu, Sheng; Guo, Hui; Zhou, Yugui; Liu, Yuanyuan; Jin, Zhaoguo; Liu, Bin; Zhao, Yingmin

    2017-09-01

    Monolithic carbon aerogels have been prepared by condensation polymerization and high temperature pyrolysis. The morphology of carbon aerogels are characterized by SEM. The pore structure is characterized by N2 adsorption-desorption technique. Monolithic carbon aerogels are mesoporous nanomaterials. Carbon fiber reinforced carbon aerogel composites are prepared by in-situ sol-gel process. Fiber reinforced carbon aerogel composites are of high mechanical strength. The thermal response of the fiber reinforced aerogel composite samples are tested in an arc plasma wind tunnel. Carbon aerogel composites show good thermal insulation capability and high temperature resistance in inert atmosphere even at ultrahigh temperature up to 1800 °C. The results show that they are suitable for applications in electrodes for supercapacitors/ Lithium-ion batteries and aerospace thermal protection area.

  15. Mechanism of and relation between the sorption and desorption of nonylphenol on black carbon-inclusive sediment.

    PubMed

    Liping, Lou; Guanghuan, Cheng; Jingyou, Deng; Mingyang, Sun; Huanyu, Chen; Qiang, Yang; Xinhua, Xu

    2014-07-01

    Correlation between the sorption and desorption of nonylphenol (NP) and binary linear regression were conducted to reveal the underlying mechanism of and relation between sorption domains and desorption sites in black carbon (BC)-amended sediment. The sorption and desorption data could be fitted well using dual-mode (R(2) = 0.971-0.996) and modified two-domain model (R(2) = 0.986-0.995), respectively, and there were good correlations between these two parts of parameters (R(2) = 0.884-0.939, P < 0.01). The NP percentage in desorbable fraction was almost equal to that of the partition fraction, suggesting the desorbed NP came from linear partition domain, whereas the resistant desorption NP was segregated in nonlinear adsorption sites, which were dominated by pores in BC-amended sediment. Our investigation refined theory about the relation between sorption domains and desorption sites in sediment and could be used to predict the release risk of NP using sorption data when BC is used for NP pollution control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Competitive adsorption/desorption of tetracycline, oxytetracycline and chlortetracycline on two acid soils: Stirred flow chamber experiments.

    PubMed

    Fernández-Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos; Fernández-Sanjurjo, Maria J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2015-09-01

    The objective of this work was to study the competitive adsorption/desorption of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC) on two acid soils. We used the stirred flow chamber technique to obtain experimental data on rapid kinetic processes affecting the retention/release of the antibiotics. Both adsorption and desorption were higher on soil 1 (which showed the highest carbon, clay and Al and Fe oxides content) than on soil 2. Moreover, hysteresis affected the adsorption/desorption processes. Experimental data were fitted to a pseudo-first order equation, resulting qamax (adsorption maximum) values that were higher for soil 1 than for soil 2, and indicating that CTC competed with TC more intensely than OTC in soil 1. Regarding soil 2, the values corresponding to the adsorption kinetics constants (ka) and desorption kinetics constants for fast sites (kd1), followed a trend inverse to qamax and qdmax respectively. In conclusion, competition affected adsorption/desorption kinetics for the three antibiotics assayed, and thus retention/release and subsequent transport processes in soil and water environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils.

    PubMed

    Davari, Masoud; Rahnemaie, Rasoul; Homaee, Mehdi

    2015-09-01

    Investigating the interactions of heavy metals is imperative for sustaining environment and human health. Among those, Cd is toxic for organisms at any concentration. While Ni acts as a micronutrient at very low concentration but is hazardous toxic above certain threshold value. In this study, the chemical adsorption and desorption reactions of Ni and Cd in contaminated soils were investigated in both single and binary ion systems. Both Ni and Cd experimental data demonstrated Langmuir type adsorption. In the competitive systems, an antagonistic effect was observed, implying that both ions compete for same type of adsorption sites. Adverse effect of Cd on Ni adsorption was slightly stronger than that of opposite system, consistent with adsorption isotherms in single ion systems. Variation in ionic strength indicated that Ca, a much weaker adsorbate, could also compete with Cd and Ni for adsorption on soil particles. Desorption data indicated that Cd and Ni are adsorbed very tightly such that after four successive desorption steps, less than 0.5 % of initially adsorbed ions released into the soil solution. This implies that Ca, at concentration in equilibrium with calcite mineral, cannot adequately compete with and replace adsorbed Ni and Cd ions. This adsorption behavior was led to considerable hysteresis between adsorption and desorption in both single and binary ion systems. In the binary ion systems, desorption of Cd and Ni was increased by increase in both equilibrium concentration of adsorbed ion and concentration of competitor ion. The overall results obtained in this research indicate that Cd and Ni are strongly adsorbed in calcareous soil and Ca, the major dissolved ion, insignificantly influences metal ions adsorption. Consequently, the contaminated soils by Ni and Cd can simultaneously be remediated by environmentally oriented technologies such as phytoremediation.

  18. Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111)

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Young; Xu, Pan; Camillone, Nina R.; White, Michael G.; Camillone, Nicholas

    2016-07-01

    We report our ultrafast photoinduced desorption investigation of the coverage dependence of substrate-adsorbate energy transfer in carbon monoxide adlayers on the (111) surface of palladium. As the CO coverage is increased, the adsorption site population shifts from all threefold hollows (up to 0.33 ML), to bridge and near bridge (>0.5 to 0.6 ML) and finally to mixed threefold hollow plus top site (at saturation at 0.75 ML). We show that between 0.24 and 0.75 ML this progression of binding site motifs is accompanied by two remarkable features in the ultrafast photoinduced desorption of the adsorbates: (i) the desorption probability increases roughly two orders magnitude, and (ii) the adsorbate-substrate energy transfer rate observed in two-pulse correlation experiments varies nonmonotonically, having a minimum at intermediate coverages. Simulations using a phenomenological model to describe the adsorbate-substrate energy transfer in terms of frictional coupling indicate that these features are consistent with an adsorption-site dependent electron-mediated energy coupling strength, ηel, that decreases with binding site in the order: three-fold hollow > bridge and near bridge > top site. This weakening of ηel largely counterbalances the decrease in the desorption activation energy that accompanies this progression of adsorption site motifs, moderating what would otherwise be a rise of several orders of magnitude in the desorption probability. Within this framework, the observed energy transfer rate enhancement at saturation coverage is due to interadsorbate energy transfer from the copopulation of molecules bound in three-fold hollows to their top-site neighbors.

  19. Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Sung -Young; Xu, Pan; Camillone, Nina R.

    Here, we report our ultrafast photoinduced desorption investigation of the coverage dependence of substrate–adsorbate energy transfer in carbon monoxide adlayers on the (111) surface of palladium. As the CO coverage is increased, the adsorption site population shifts from all threefold hollows (up to 0.33 ML), to bridge and near bridge (>0.5 to 0.6 ML) and finally to mixed threefold hollow plus top site (at saturation at 0.75 ML). We show that between 0.24 and 0.75 ML this progression of binding site motifs is accompanied by two remarkable features in the ultrafast photoinduced desorption of the adsorbates: (i) the desorption probabilitymore » increases roughly two orders magnitude, and (ii) the adsorbate–substrate energy transfer rate observed in two-pulse correlation experiments varies nonmonotonically, having a minimum at intermediate coverages. Simulations using a phenomenological model to describe the adsorbate–substrate energy transfer in terms of frictional coupling indicate that these features are consistent with an adsorption-site dependent electron-mediated energy coupling strength, η el, that decreases with binding site in the order: three-fold hollow > bridge and near bridge > top site. This weakening of η el largely counterbalances the decrease in the desorption activation energy that accompanies this progression of adsorption site motifs, moderating what would otherwise be a rise of several orders of magnitude in the desorption probability. Within this framework, the observed energy transfer rate enhancement at saturation coverage is due to interadsorbate energy transfer from the copopulation of molecules bound in three-fold hollows to their top-site neighbors.« less

  20. Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Sung-Young; Camillone, Nina R.; Camillone, Nicholas, E-mail: nicholas@bnl.gov

    We report our ultrafast photoinduced desorption investigation of the coverage dependence of substrate–adsorbate energy transfer in carbon monoxide adlayers on the (111) surface of palladium. As the CO coverage is increased, the adsorption site population shifts from all threefold hollows (up to 0.33 ML), to bridge and near bridge (>0.5 to 0.6 ML) and finally to mixed threefold hollow plus top site (at saturation at 0.75 ML). We show that between 0.24 and 0.75 ML this progression of binding site motifs is accompanied by two remarkable features in the ultrafast photoinduced desorption of the adsorbates: (i) the desorption probability increasesmore » roughly two orders magnitude, and (ii) the adsorbate–substrate energy transfer rate observed in two-pulse correlation experiments varies nonmonotonically, having a minimum at intermediate coverages. Simulations using a phenomenological model to describe the adsorbate–substrate energy transfer in terms of frictional coupling indicate that these features are consistent with an adsorption-site dependent electron-mediated energy coupling strength, η{sub el}, that decreases with binding site in the order: three-fold hollow > bridge and near bridge > top site. This weakening of η{sub el} largely counterbalances the decrease in the desorption activation energy that accompanies this progression of adsorption site motifs, moderating what would otherwise be a rise of several orders of magnitude in the desorption probability. Within this framework, the observed energy transfer rate enhancement at saturation coverage is due to interadsorbate energy transfer from the copopulation of molecules bound in three-fold hollows to their top-site neighbors.« less

  1. Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111)

    DOE PAGES

    Hong, Sung -Young; Xu, Pan; Camillone, Nina R.; ...

    2016-07-01

    Here, we report our ultrafast photoinduced desorption investigation of the coverage dependence of substrate–adsorbate energy transfer in carbon monoxide adlayers on the (111) surface of palladium. As the CO coverage is increased, the adsorption site population shifts from all threefold hollows (up to 0.33 ML), to bridge and near bridge (>0.5 to 0.6 ML) and finally to mixed threefold hollow plus top site (at saturation at 0.75 ML). We show that between 0.24 and 0.75 ML this progression of binding site motifs is accompanied by two remarkable features in the ultrafast photoinduced desorption of the adsorbates: (i) the desorption probabilitymore » increases roughly two orders magnitude, and (ii) the adsorbate–substrate energy transfer rate observed in two-pulse correlation experiments varies nonmonotonically, having a minimum at intermediate coverages. Simulations using a phenomenological model to describe the adsorbate–substrate energy transfer in terms of frictional coupling indicate that these features are consistent with an adsorption-site dependent electron-mediated energy coupling strength, η el, that decreases with binding site in the order: three-fold hollow > bridge and near bridge > top site. This weakening of η el largely counterbalances the decrease in the desorption activation energy that accompanies this progression of adsorption site motifs, moderating what would otherwise be a rise of several orders of magnitude in the desorption probability. Within this framework, the observed energy transfer rate enhancement at saturation coverage is due to interadsorbate energy transfer from the copopulation of molecules bound in three-fold hollows to their top-site neighbors.« less

  2. Determination of 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene and related compounds in marine pore water by automated thermal desorption-gas chromatography/mass spectrometry using disposable optical fiber

    USGS Publications Warehouse

    Eganhouse, Robert P.; DiFilippo, Erica L

    2015-01-01

    A method is described for determination of ten DDT-related compounds in marine pore water based on equilibrium solid-phase microextraction (SPME) using commercial polydimethylsiloxane-coated optical fiber with analysis by automated thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Thermally cleaned fiber was directly exposed to sediments and allowed to reach equilibrium under static conditions at the in situ field temperature. Following removal, fibers were rinsed, dried and cut into appropriate lengths for storage in leak-tight containers at -20°C. Analysis by TD-GC/MS under full scan (FS) and selected ion monitoring (SIM) modes was then performed. Pore-water method detection limits in FS and SIM modes were estimated at 0.05-2.4ng/L and 0.7-16pg/L, respectively. Precision of the method, including contributions from fiber handling, was less than 10%. Analysis of independently prepared solutions containing eight DDT compounds yielded concentrations that were within 6.9±5.5% and 0.1±14% of the actual concentrations in FS and SIM modes, respectively. The use of optical fiber with automated analysis allows for studies at high temporal and/or spatial resolution as well as for monitoring programs over large spatial and/or long temporal scales with adequate sample replication. This greatly enhances the flexibility of the technique and improves the ability to meet quality control objectives at significantly lower cost.

  3. Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases

    PubMed Central

    Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott

    2012-01-01

    Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. PMID:22619179

  4. Effect of thermal stability on protein adsorption to silica using homologous aldo-keto reductases.

    PubMed

    Felsovalyi, Flora; Patel, Tushar; Mangiagalli, Paolo; Kumar, Sanat K; Banta, Scott

    2012-08-01

    Gaining more insight into the mechanisms governing the behavior of proteins at solid/liquid interfaces is particularly relevant in the interaction of high-value biologics with storage and delivery device surfaces, where adsorption-induced conformational changes may dramatically affect biocompatibility. The impact of structural stability on interfacial behavior has been previously investigated by engineering nonwild-type stability mutants. Potential shortcomings of such approaches include only modest changes in thermostability, and the introduction of changes in the topology of the proteins when disulfide bonds are incorporated. Here we employ two members of the aldo-keto reductase superfamily (alcohol dehydrogenase, AdhD and human aldose reductase, hAR) to gain a new perspective on the role of naturally occurring thermostability on adsorbed protein arrangement and its subsequent impact on desorption. Unexpectedly, we find that during initial adsorption events, both proteins have similar affinity to the substrate and undergo nearly identical levels of structural perturbation. Interesting differences between AdhD and hAR occur during desorption and both proteins exhibit some level of activity loss and irreversible conformational change upon desorption. Although such surface-induced denaturation is expected for the less stable hAR, it is remarkable that the extremely thermostable AdhD is similarly affected by adsorption-induced events. These results question the role of thermal stability as a predictor of protein adsorption/desorption behavior. Copyright © 2012 The Protein Society.

  5. Sorption-desorption of indaziflam in selected agricultural soils

    USDA-ARS?s Scientific Manuscript database

    Sorption and desorption of indaziflam in 6 soils from Brazil and 3 soils from the USA, with different physical chemical properties, were investigated using the batch equilibration method. Sorption kinetics demonstrated that soil-solution equilibrium was attained in a 24-h period. The Freundlich equa...

  6. Effect of pH on desorption of CO2 from alkanolamine - rich solvents

    NASA Astrophysics Data System (ADS)

    Du, Min

    2017-08-01

    Adipic acid was used as a pH regulator, which was added to 0.4 mol/L MEA, DEA and MDEA solvents during CO2 desorption process. It is found that when pH value of the solvents swing between 8-10, CO2 desorption rate enhanced, and energy consumption has declined obviously. This research may have reference significance on optimization of alkanolamine CO2 capture process.

  7. Retention of Nickel in Soils: Sorption-Desorption and Extended X-ray Absorption Fine Structure Experiments

    EPA Science Inventory

    Adsorption and desorption of heavy metals in soils are primary factors that influence their bioavailability and mobility in the soil profile. To examine the characteristics of nickel (Ni) adsorption-desorption in soils, kinetic batch experiments were carried out followed by Ni re...

  8. Investigation of ethyl lactate as a green solvent for desorption of total petroleum hydrocarbons (TPH) from contaminated soil.

    PubMed

    Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi

    2016-11-01

    Treatment of oil-contaminated soil is a major environmental concern worldwide. The aim of this study is to examine the applicability of a green solvent, ethyl lactate (EL), in desorption of diesel aliphatic fraction within total petroleum hydrocarbons (TPH) in contaminated soil and to determine the associated desorption kinetics. Batch desorption experiments were carried out on artificially contaminated soil at different EL solvent percentages (%). In analysing the diesel range of TPH, TPH was divided into three fractions and the effect of solvent extraction on each fraction was examined. The experimental results demonstrated that EL has a high and fast desorbing power. Pseudo-second order rate equation described the experimental desorption kinetics data well with correlation coefficient values, R 2 , between 0.9219 and 0.9999. The effects of EL percentage, initial contamination level of soil and liquid to solid ratio (L/S (v/w)) on initial desorption rate have also been evaluated. The effective desorption performance of ethyl lactate shows its potential as a removal agent for remediation of TPH-contaminated soil worldwide.

  9. Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactant.

    PubMed

    Aşçi, Yeliz; Nurbaş, Macid; Sağ Açikel, Yeşim

    2010-01-01

    In the present study, the sorption characteristics of Cd(II) and Zn(II) ions on quartz, a representative soil-component, and the desorption of these metal ions from quartz using rhamnolipid biosurfactant were investigated. In the first part of the studies, the effects of initial metal ion concentration and pH on sorption of Cd(II) and Zn(II) ions by a fixed amount of quartz (1.5g) were studied in laboratory batch mode. The equilibrium sorption capacity for Cd(II) and Zn(II) ions was measured and the best correlation between experimental and model predicted equilibrium uptake was obtained using the Freundlich model. Although investigations on the desorption of heavy metal ions from the main soil-components are crucial to better understand the mobility and bioavailability of metals in the environment, studies on the description of desorption equilibrium were performed rarely. In the second part, the desorption of Cd(II) and Zn(II) from quartz using rhamnolipid biosurfactant was investigated as a function of pH, rhamnolipid concentration, and the amounts of sorbed Cd(II) and Zn(II) ions by quartz. The Freundlich model was also well fitted to the obtained desorption isotherms. Several indexes were calculated based on the differences of the quantity of Cd-Zn sorbed and desorbed. A desorption hysteresis (irreversibility) index based on the Freundlich exponent, concentration-dependent metal distribution coefficients, and the irreversibility index based on the metal distribution coefficient were used to quantify hysteretic behavior observed in the systems. 2009 Elsevier Ltd. All rights reserved.

  10. The Adsorption and Desorption of Pb(2+) and Cd(2+) in Freeze-Thaw Treated Soils.

    PubMed

    Li, Linhui; Ma, Jincai; Xu, Meng; Li, Xu; Tao, Jiahui; Wang, Guanzhu; Yu, Jitong; Guo, Ping

    2016-01-01

    Adsorption and desorption are important processes that influence the potential toxicity and bioavailability of heavy metals in soils. However, information regarding adsorption and desorption behavior of heavy metals in soils subjected to freeze-thaw cycles is poorly understood. In the current study, the effect of freeze-thaw cycles with different freezing temperature (-15, -25, -35°C) on soil properties was investigated. Then the adsorption and desorption behavior of Pb(2+) and Cd(2+) in freeze-thaw treated soils was studied. The adsorption amounts of Pb(2+) and Cd(2+) in freeze-thaw treated soils were smaller than those in unfrozen soils (p < 0.05), due to the fact that pH, cation exchange capacity, organic matter content, free iron oxide content, and CaCO3 content in freeze-thaw treated soils were smaller than those in unfrozen soils. The adsorption amounts of Pb(2+) and Cd(2+) in soils treated with lower freezing temperatures were higher than those in soils treated with higher freezing temperatures. Desorption percentages of Pb(2+) and Cd(2+) in unfrozen soils were smaller than those in freeze-thaw treated soils (p < 0.05). The desorption percentages of Pb(2+) and Cd(2+) were smaller in soils treated with lower freezing temperatures than those in soils treated with higher freezing temperatures. The results obtained highlight the change of the adsorption and desorption behavior of typical heavy metals in freeze-thaw treated soils located in seasonal frozen soils zone in northeast China.

  11. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation

    NASA Astrophysics Data System (ADS)

    Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing

    2018-03-01

    Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.

  12. Change in desorption mechanism from pore blocking to cavitation with temperature for nitrogen in ordered silica with cagelike pores.

    PubMed

    Morishige, Kunimitsu; Tateishi, Masayoshi; Hirose, Fumi; Aramaki, Kenji

    2006-10-24

    To verify pore blocking controlled desorption in ink-bottle pores, we measured the temperature dependence of the adsorption-desorption isotherms of nitrogen on four kinds of KIT-5 samples with expanded cavities hydrothermally treated for different periods of time at 393 K. In the samples, almost spherical cavities are arranged in a face-centered cubic array and the cavities are connected through small channels. The pore size of the channels increased with an increase in the hydrothermal treatment time. At lower temperatures a steep desorption branch changed to a gradual one as the hydrothermal treatment was prolonged. For the sample hydrothermally treated only for 1 day, the rectangular hysteresis loop shrank gradually with increasing temperature while keeping its shape. The temperature dependence of the evaporation pressure observed was identical with that expected for cavitation-controlled desorption. On the other hand, for the samples hydrothermally treated for long times, the gradual desorption branch became a sharp one with increasing temperature. This strongly suggests that the desorption mechanism is altered from pore blocking to cavitation with temperature. Application of percolation theory to the pore blocking controlled desorption observed here is discussed.

  13. Laser desorption with corona discharge ion mobility spectrometry for direct surface detection of explosives.

    PubMed

    Sabo, M; Malásková, M; Matejčík, S

    2014-10-21

    We present a new highly sensitive technique for the detection of explosives directly from the surface using laser desorption-corona discharge-ion mobility spectrometry (LD-CD-IMS). We have developed LD based on laser diode modules (LDM) and the technique was tested using three different LDM (445, 532 and 665 nm). The explosives were detected directly from the surface without any further preparation. We discuss the mechanism of the LD and the limitations of this technique such as desorption time, transport time and desorption area. After the evaluation of experimental data, we estimated the potential limits of detection of this method to be 0.6 pg for TNT, 2.8 pg for RDX and 8.4 pg for PETN.

  14. Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis

    NASA Astrophysics Data System (ADS)

    Deng, Liping; Zhu, Xiaobin; Su, Yingying; Su, Hua; Wang, Xinting

    2008-02-01

    The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were established from batch experiments. The adsorption equilibrium was adequately described by the Langmuir isotherm, and biosorption kinetics was in pseudo-second order model. The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions. Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+. With high capacities of metal biosorption and desorption, the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.

  15. Desorption of zinc by extracellularly produced metabolites of Trichoderma harzianum, Trichoderma reesei and Coriolus versicolor.

    PubMed

    Adams, P; Lynch, J M; De Leij, F A A M

    2007-12-01

    To determine the role of fungal metabolites in the desorption of metals. Desorption of Zn from charcoal by three different fungi was compared against metal desorption with reverse osmosis water, a 0.1% Tween 80 solution and a 0.1 mol l(-1) CaCl(2) solution. All three fungal filtrates desorbed three times more Zn than either 0.1% Tween 80 or 0.1 mol l(-1) CaCl(2). Metal chelator production in Trichoderma harzianum and Coriolus versicolor was constitutively expressed while chelator production in Trichoderma reesei was induced by Zn. The presence of Zn inhibited the production of metal chelators by C. versicolor. Only C. versicolor was found to produce oxalic acid (a strong metal chelator). All fungi caused a marked decrease in pH, although this was not enough to explain the increased desorption of the metals by the different fungal filtrates. Metal chelation via organic acids and proteins are the main mechanisms by which the fungal filtrates increase zinc desorption. The results of this study explain why plants inoculated with T. harzianum T22 take up more metal from soil, than noninoculated plants while metabolites produced by fungi could be used for metal leaching from contaminated soils.

  16. Desorption isotherms of heavy (AZOBE, EBONY) and light heavyweight tropical woods (IROKO, SAPELLI) of Cameroon

    NASA Astrophysics Data System (ADS)

    Nsouandélé, J. L.; Tamba, J. G.; Bonoma, B.

    2018-04-01

    This work is centered on the study of the desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods, which contribute in the determination of drying and storage of tropical plank woods. Desorption isotherms of tropical woods were experimentally determined under different temperatures in this study using the gravimetric method. The determination of Henderson's model isotherms parameters of desorption were obtained for temperatures of 20 °C, 30 °C, 40 °C, and 50 °C. The mean relative deviation between theoretical and experimental moisture contents was calculated and fitted well with the desorption models of tropical woods. We noticed that Henderson models fitted much better with experimental ones for 95% of relative humidity. The sigmoid shapes of results are satisfactory. Hysteresis phenomenon was observed for desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods. Results showed the difference between the stability and use of heavy and heavyweight tropical wood. These results help in the estimation of water content at equilibrium of tropical woods in relative humidity from experimented ones. Hygroscopic equilibrium humidity of heavy tropical woods varied between 0% and 50% while those of heavyweight varied between 0% and 25%. Therefore, these woods can be used in an opened environment; woodwork and decoration.

  17. Laser heating of scanning probe tips for thermal near-field spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    O'Callahan, Brian T.; Raschke, Markus B.

    2017-02-01

    Spectroscopy and microscopy of the thermal near-field yield valuable insight into the mechanisms of resonant near-field heat transfer and Casimir and Casimir-Polder forces, as well as providing nanoscale spatial resolution for infrared vibrational spectroscopy. A heated scanning probe tip brought close to a sample surface can excite and probe the thermal near-field. Typically, tip temperature control is provided by resistive heating of the tip cantilever. However, this requires specialized tips with limited temperature range and temporal response. By focusing laser radiation onto AFM cantilevers, we achieve heating up to ˜1800 K, with millisecond thermal response time. We demonstrate application to thermal infrared near-field spectroscopy (TINS) by acquiring near-field spectra of the vibrational resonances of silicon carbide, hexagonal boron nitride, and polytetrafluoroethylene. We discuss the thermal response as a function of the incident excitation laser power and model the dominant cooling contributions. Our results provide a basis for laser heating as a viable approach for TINS, nanoscale thermal transport measurements, and thermal desorption nano-spectroscopy.

  18. Desorption and mobility mechanisms of co-existing polycyclic aromatic hydrocarbons and heavy metals in clays and clay minerals.

    PubMed

    Saeedi, Mohsen; Li, Loretta Y; Grace, John R

    2018-05-15

    The effects of soil components such as clay minerals and as humic acids, as well as co-existing metals and polycyclic aromatic hydrocarbons, on desorption and mobility are examined. Three types of artificially blended clay and clay mineral mixtures (pure kaolinite, kaolinite + sand and kaolinite + sand + bentonite), each with different humic acid content, were tested for desorption and mobility of acenaphthene, fluorene and fluoranthene by three extracting solutions CaCl 2 (0.01 M) and EDTA (0.01M) with non-ionic surfactants (Tween 80 and Triton X100). Heavy metals (Ni, Pb and Zn) were also studied for desorption and mobility. The influence of co-present metals on simultaneous desorption and mobility of PAHs was investigated as well. The results showed that <10% of metals in the clay mineral mixtures were mobile. Combined EDTA and non-ionic solutions can enhance the desorption and mobility of PAHs to >80% in clay mineral mixtures containing no sand, while in the same soils containing ∼40% sand, the desorption exceeded 90%. Heavy metals, as well as increasing humic acids content in the clay mineral mixtures, decreased the desorption and mobility of PAHs, especially for soils containing no sand, and for fluoranthene compared with fluorene and acenaphthene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Laser desorption mass spectrometry for molecular diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Allman, S. L.; Tang, K.; Matteson, K. J.; Chang, L. Y.; Chung, C. N.; Martin, Steve; Haff, Lawrence

    1996-04-01

    Laser desorption mass spectrometry has been used for molecular diagnosis of cystic fibrosis. Both 3-base deletion and single-base point mutation have been successfully detected by clinical samples. This new detection method can possibly speed up the diagnosis by one order of magnitude in the future. It may become a new biotechnology technique for population screening of genetic disease.

  20. The characteristics of phosphorus adsorption and desorption in gray desert soil of Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Wang, B.; Sun, J. S.; Liu, H.; Ma, Y. B.

    2017-07-01

    The characteristics of phosphorus (P) adsorption and desorption in Xinjiang gray desert soil (0 - 200 mm) of China in the long-term fertilization condition is affected by the level of soil P content which studied through an isothermal adsorption and desorption experiments of P. The results stated that within the experimental concentration range, with the increase of the amount of outer-source phosphorus, P adsorption, desorption and desorption rate increased and adsorption rate decreased gradually in different Olsen-P levels of gray desert soil in Xinjiang, China. Olsen-P content is significantly correlated with the P adsorption saturation (DPS) of gray desert soil. The maximum adsorption capacity (Xm ) of the treatments followed an extremely significant decreasing order of CK>NPK≈NPKM>PK≈NPKS. The maximum buffer capacity (MBC) and adsorption constant (K) of the NPK treatment was much higher than NPKM, NPKS, PK and CK treatments. And, MBC value of CK treatment was extremely higher than NPKS and PK, however, the differences between NPKM and CK, NPKS and PK were not significant. The comparison between NPKM, NPKS, PK and CK treatments showed no significant difference in K value, but these four showed significantly lower than NPK treatments. The value of soil easy desorption P (RDP) of NPKS and NPKM was significantly higher than NPK and PK, and the chemical fertilizer with organic fertilizer was a best way to release the phosphorus for Xinjiang agricultural production, China.

  1. The impact of soil organic matter and soil sterilisation on the bioaccessibility of 14C-azoxystrobin determined by desorption kinetics.

    PubMed

    Clegg, Helen; Riding, Matthew J; Oliver, Robin; Jones, Kevin C; Semple, Kirk T

    2014-08-15

    As soils represent a major sink for most pesticides, factors influencing pesticide degradation are essential in identifying their potential environmental risk. Desorption of (14)C-azoxystrobin was investigated over time in two soils under sterile and non-sterile conditions using exhaustive (solvent) and non-exhaustive (aqueous) methods. Desorption data were fitted to a two-compartment model, differentiating between fast and slow desorbing fractions. With increased ageing, rapid desorption (Frap) (bioaccessibility) decreased with corresponding increases in slowly desorbing fractions (F(slow)). The rapid desorption rate constant (k(fast)) was not affected by ageing, sterility or extraction solvent. The non-exhaustive extractions had similar desorption profiles; whereas exhaustive extractions in aged soils had the highest F(rap). In non-sterile soil, F(rap) was lower resulting in higher F(slow), while desorption rates remained unaffected. Organic matter (OM) reduces F(rap); but not desorption rates. Microorganisms and OM enhanced ageing effects, reducing the fraction of fast desorbing chemicals and potentially the bioaccessibility of pesticides in soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite

    PubMed Central

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni

  3. a Thermally Desorbable Miniature Passive Dosimeter for Organic Vapors

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jesus Antonio

    A thermally desorbable miniature passive dosimeter (MPD) for organic vapors has been developed in conformity with theoretical and practical aspects of passive dosimeter design. The device was optimized for low sample loadings resulting from short-term and/or low concentration level exposure. This was accomplished by the use of thermal desorption rather than solvent elution, which provided the GC method with significantly higher sensitivity. Laboratory evaluation of this device for factors critical to the performance of passive dosimeters using benzene as the test vapor included: desorption efficiency (97.2%), capacity (1400 ppm-min), sensitivity (7ng/sample or 0.06 ppmv for 15 minutes sampling) accuracy and precision, concentration level, environmental conditions (i.e., air face velocity, relative humidity) and sample stability during short (15 minutes) and long periods of time (15 days). This device has demonstrated that its overall accuracy meets NIOSH and OSHA requirements for a sampling and analytical method for the exposure concentration range of 0.1 to 50 ppm (v/v) and 15 minutes exposures. It was demonstrated that the MPD operates in accordance with theoretically predicted performance and should be adequate for short-term and/or low concentration exposure monitoring of organic vapors in the workplace. In addition a dynamic vapor exposure evaluation system for passive dosimeters have been validated using benzene as the test vapor. The system is capable of generating well defined short-square wave concentration profiles suitable for the evaluation of passive dosimeters for ceiling exposure monitoring.

  4. Ambient diode laser desorption dielectric barrier discharge ionization mass spectrometry of nonvolatile chemicals.

    PubMed

    Gilbert-López, Bienvenida; Schilling, Michael; Ahlmann, Norman; Michels, Antje; Hayen, Heiko; Molina-Díaz, Antonio; García-Reyes, Juan F; Franzke, Joachim

    2013-03-19

    In this work, the combined use of desorption by a continuous wave near-infrared diode laser and ionization by a dielectric barrier discharge-based probe (laser desorption dielectric barrier discharge ionization mass spectrometry (LD-DBDI-MS)) is presented as an ambient ionization method for the mass spectrometric detection of nonvolatile chemicals on surfaces. A separation of desorption and ionization processes could be verified. The use of the diode laser is motivated by its low cost, ease of use, and small size. To achieve an efficient desorption, the glass substrates are coated at the back side with a black point (target point, where the sample is deposited) in order to absorb the energy offered by the diode laser radiation. Subsequent ionization is accomplished by a helium plasmajet generated in the dielectric barrier discharge source. Examples on the application of this approach are shown in both positive and negative ionization modes. A wide variety of multiclass species with low vapor pressure were tested including pesticides, pharmaceuticals and explosives (reserpine, roxithromycin, propazine, prochloraz, spinosad, ampicillin, dicloxacillin, enrofloxacin, tetracycline, oxytetracycline, erythromycin, spinosad, cyclo-1,3,5,7-tetramethylene tetranitrate (HMX), and cyclo-1,3,5-trimethylene trinitramine (RDX)). A comparative evaluation revealed that the use of the laser is advantageous, compared to just heating the substrate surface.

  5. Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface

    NASA Astrophysics Data System (ADS)

    Shirhatti, Pranav R.; Rahinov, Igor; Golibrzuch, Kai; Werdecker, Jörn; Geweke, Jan; Altschäffel, Jan; Kumar, Sumit; Auerbach, Daniel J.; Bartels, Christof; Wodtke, Alec M.

    2018-06-01

    The most common mechanism of catalytic surface chemistry is that of Langmuir and Hinshelwood (LH). In the LH mechanism, reactants adsorb, become thermalized with the surface, and subsequently react. The measured vibrational (relaxation) lifetimes of molecules adsorbed at metal surfaces are in the range of a few picoseconds. As a consequence, vibrational promotion of LH chemistry is rarely observed, with the exception of LH reactions occurring via a molecular physisorbed intermediate. Here, we directly detect adsorption and subsequent desorption of vibrationally excited CO molecules from a Au(111) surface. Our results show that CO (v = 1) survives on a Au(111) surface for 1 × 10-10 s. Such long vibrational lifetimes for adsorbates on metal surfaces are unexpected and pose an interesting challenge to the current understanding of vibrational energy dissipation on metal surfaces. They also suggest that vibrational promotion of surface chemistry might be more common than is generally believed.

  6. Sorption and desorption of organophosphate esters with different hydrophobicity by soils.

    PubMed

    Cristale, Joyce; Álvarez-Martín, Alba; Rodríguez-Cruz, Sonia; Sánchez-Martín, María J; Lacorte, Silvia

    2017-12-01

    Organophosphate esters (OPEs) are ubiquitous contaminants with potentially hazardous effects on both the environment and human health. Knowledge about the soil sorption-desorption process of organic chemicals is important in order to understand their fate, mobility, and bioavailability, enabling an estimation to be made of possible risks to the environment and biota. The aim of this study was to use the batch equilibrium technique to evaluate the sorption-desorption behavior of seven OPEs (TCEP, TCPP, TBEP, TDCP, TBP, TPhP, and EHDP) in soils with distinctive characteristics (two unamended soils and a soil amended with sewage sludge). The equilibrium concentrations of the OPEs were determined by high performance liquid chromatography coupled to a triple quadrupole mass spectrometer (HPLC-MS/MS). All the compounds were sorbed by the soils, and soil organic carbon (OC) played an important role in this process. The sorption of the most soluble OPEs (TCEP, TCPP, and TBEP) depended on soil OC content, although desorption was ≥ 58.1%. The less water-soluble OPEs (TDCP, TBP, TPhP, and EHDP) recorded total sorption (100% for TPhP and EHDP) or very high sorption (≥ 34.9%) by all the soils and were not desorbed, which could be explained by their highly hydrophobic nature, as indicated by the logarithmic octanol/water partition coefficient (K ow ) values higher than 3.8, resulting in a high affinity for soil OC. The results of the sorption-desorption of the OPEs by soils with different characteristics highlighted the influence of these compounds' physicochemical properties and the content and nature of soil OC in this process.

  7. Desorption induced by electronic transitions of Na from SiO2: relevance to tenuous planetary atmospheres.

    NASA Astrophysics Data System (ADS)

    Yakshinskiy, B. V.; Madey, T. E.

    2000-04-01

    The authors have studied the desorption induced by electronic transitions (DIET) of Na adsorbed on model mineral surfaces, i.e. amorphous, stoichiometric SiO2 films. They find that electron stimulated desorption (ESD) of atomic Na occurs for electron energy thresholds as low as ≡4 eV, that desorption cross-sections are high (≡1×10-19cm2 at 11 eV), and that desorbing atoms are 'hot', with suprathermal velocities. The estimated Na desorption rate from the lunar surface via ESD by solar wind electrons is a small fraction of the rate needed to sustain the Na atmosphere. However, the solar photon flux at energies ≥5 eV exceeds the solar wind electron flux by orders of magnitude; there are sufficient ultraviolet photons incident on the lunar surface to contribute substantially to the lunar Na atmosphere via PSD of Na from the surface.

  8. Characterization of adsorption and desorption of lawn herbicide siduron in heavy metal contaminated soils.

    PubMed

    Jiang, Rong; Wang, Meie; Chen, Weiping

    2018-08-01

    Siduron is a widely used herbicide in urban lawn and has been frequently detected in urban and suburban surface water. However, characteristics of its environmental behavior in soil are seldom reported. The combined pollution of heavy metals, especially for Cu, Pb, Cd, Zn and siduron would be common because of the widely existence of heavy metal pollution in urban soils. In this study, four soils with similar physicochemical properties but different levels of preexisting heavy metals were selected to investigate the adsorption and successive desorption of siduron using batch experiments. The results revealed a low sorption of siduron to all the tested soils. The organic carbon normalized distribution coefficient (K oc ) of siduron in the studied soils ranged from 117 to 137 L kg -1 and was not significantly correlated to heavy metal levels. No apparent desorption hysteresis was observed with the hysteresis index (HI) ranging from 0.921 to 1.11. More than 50% of the sorbed siduron was readily released into soil solution. Results suggested that siduron was highly mobile and bioavailable in the studied soils. Significant correlation was found between adsorption/desorption parameters and soil organic carbon (SOC) in four soils. soil organic matter was thus considered as the dominant factor determining the adsorption and desorption of siduron in soils. Different from most of reported studies conducted by laboratory-amended soils, the influence of preexisting heavy metals on the adsorption-desorption of siduron was not significant in this work. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effect of delivery condition on desorption rate of ZrCo metal hydride bed for fusion fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, H.G.; Yun, S.H.; Chung, D.

    2015-03-15

    For the safety of fusion fuel cycle, hydrogen isotope gases including tritium are stored as metal hydride form. To satisfy fueling requirement of fusion machine, rapid delivery from metal hydride bed is one of major factors for the development of tritium storage and delivery system. Desorption from metal hydride depends on the operation scenario by pressure and temperature control of the bed. The effect of operation scenario and pump performance on desorption rate of metal hydride bed was experimentally investigated using ZrCo bed. The results showed that the condition of pre-heating scenario before actual delivery of gas affected the deliverymore » performance. Different pumps were connected to desorption line from bed and the effect of pump capacity on desorption rate were also found to be significant. (authors)« less

  10. Adsorption-desorption behavior of atrazine on agricultural soils in China.

    PubMed

    Yue, Lin; Ge, ChengJun; Feng, Dan; Yu, Huamei; Deng, Hui; Fu, Bomin

    2017-07-01

    Adsorption and desorption are important processes that affect atrazine transport, transformation, and bioavailability in soils. In this study, the adsorption-desorption characteristics of atrazine in three soils (laterite, paddy soil and alluvial soil) were evaluated using the batch equilibrium method. The results showed that the kinetics of atrazine in soils was completed in two steps: a "fast" adsorption and a "slow" adsorption and could be well described by pseudo-second-order model. In addition, the adsorption equilibrium isotherms were nonlinear and were well fitted by Freundlich and Langmuir models. It was found that the adsorption data on laterite, and paddy soil were better fitted by the Freundlich model; as for alluvial soil, the Langmuir model described it better. The maximum atrazine sorption capacities ranked as follows: paddy soil>alluvial soil>laterite. Results of thermodynamic calculations indicated that atrazine adsorption on three tested soils was spontaneous and endothermic. The desorption data showed that negative hysteresis occurred. Furthermore, lower solution pH value was conducive to the adsorption of atrazine in soils. The atrazine adsorption in these three tested soils was controlled by physical adsorption, including partition and surface adsorption. At lower equilibrium concentration, the atrazine adsorption process in soils was dominated by surface adsorption; while with the increase of equilibrium concentration, partition was predominant. Copyright © 2016. Published by Elsevier B.V.

  11. Controlling the surface density of DNA on gold by electrically induced desorption.

    PubMed

    Arinaga, Kenji; Rant, Ulrich; Knezević, Jelena; Pringsheim, Erika; Tornow, Marc; Fujita, Shozo; Abstreiter, Gerhard; Yokoyama, Naoki

    2007-10-31

    We report on a method to control the packing density of sulfur-bound oligonucleotide layers on metal electrodes by electrical means. In a first step, a dense nucleic acid layer is deposited by self-assembly from solution; in a second step, defined fractions of DNA molecules are released from the surface by applying a series of negative voltage cycles. Systematic investigations of the influence of the applied electrode potentials and oligonucleotide length allow us to identify a sharp desorption onset at -0.65 V versus Ag/AgCl, which is independent of the DNA length. Moreover, our results clearly show the pronounced influence of competitive adsorbents in solution on the desorption behavior, which can prevent the re-adsorption of released DNA molecules, thereby enhancing the desorption efficiency. The method is fully bio-compatible and can be employed to improve the functionality of DNA layers. This is demonstrated in hybridization experiments revealing almost perfect yields for electrically "diluted" DNA layers. The proposed control method is extremely beneficial to the field of DNA-based sensors.

  12. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions.

    PubMed

    Bakir, Adil; Rowland, Steven J; Thompson, Richard C

    2014-02-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb (14)C-DDT, (14)C-phenanthrene (Phe), (14)C-perfluorooctanoic acid (PFOA) and (14)C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Laser-desorption tandem time-of-flight mass spectrometry with continuous liquid introduction

    NASA Astrophysics Data System (ADS)

    Williams, Evan R.; Jones, Glenn C., Jr.; Fang, LiLing; Nagata, Takeshi; Zare, Richard N.

    1992-05-01

    A new method to combine aqueous sample introduction with matrix assisted laser desorption mass spectrometry (MS) for interfacing liquid-chromatographic techniques, such as capillary electrophoresis, to MS is described. Aqueous sample solution is introduced directly into the ion source of a time-of-. flight (TOF) mass spectrometer through a fused silica capillary; evaporative cooling results in ice formation at the end of the capillary. The ice can be made to extrude continuously by using localized resistive heating. With direct laser desorption, molecular ions from proteins as large as bovine insulin (5734 Da) can be produced. Two-step desorption/photoionization with a variety of wavelengths is demonstrated, and has the advantages of improved resolution and shot-to-shot reproducibility. Ion structural information is obtained using surface-induced dissociation with an in-line collision device in the reflectron mirror of the TOF instrument. Product ion resolution of ~70 is obtained at m/z77. Extensive fragmentation can be produced with dissociation efficiencies between 7-15% obtained for molecular ions of small organic molecules. Efficiencies approaching 30% are obtained for larger peptide ions.

  14. Sorption-desorption of indaziflam in selected agricultural soils.

    PubMed

    Alonso, Diego G; Koskinen, William C; Oliveira, Rubem S; Constantin, Jamil; Mislankar, Suresh

    2011-12-28

    Indaziflam, a new alkylazine herbicide that inhibits cellulose biosynthesis, is under current development for soil applications in perennial crops and nonagricultural areas. Sorption and desorption of indaziflam in six soils from Brazil and three soils from the United States, with different physical chemical properties, were investigated using the batch equilibration method. Sorption kinetics demonstrated that soil-solution equilibrium was attained in <24 h. The Freundlich equation described the sorption behavior of the herbicide for all soils (R(2) > 0.99). K(f) values of the Brazilian oxisols ranged from 4.66 to 29.3, and 1/n values were ≥ 0.95. Sorption was positively correlated to %OC and clay contents. U.S. mollisol K(f) values ranged from 6.62 to 14.3; 1/n values for sorption were ≥ 0.92. K(f) values from mollisols were also positively correlated with %OC. These results suggest that indaziflam potential mobility, based solely on its sorption coefficients, would range from moderate to low in soil. Desorption was hysteretic on all soils, further decreasing its potential mobility for offsite transport.

  15. Adsorption/Desorption Transition of Recombinant Human Neurotrophin 4: Physicochemical Characterization.

    PubMed

    Dąbkowska, Maria; Adamczak, Małgorzata; Barbasz, Jakub; Cieśla, Michał; Machaliński, Bogusław

    2017-09-26

    Bulk physicochemical properties of neurotrophin 4 (NT-4) in electrolyte solutions and its adsorption/desorption on/from mica surfaces have been studied using dynamic light scattering (DLS), microelectrophoresis, a solution depletion technique (enzyme-linked immunosorbent assay, ELISA), and AFM imaging. Our study presents a determination of the diffusion coefficient, hydrodynamic diameters, electrophoretic mobility, and isoelectric point of the NT-4 under various ionic strength and pH conditions. The size of the NT-4 homodimer for an ionic strength of 0.015 M was substantially independent of pH and equal to 5.1 nm. It has been found that the number of electrokinetic charges per NT-4 molecule was equal to zero for all studied ionic strengths at pH 8.1, which was identified as the isoelectric point (iep). The protein adsorption/desorption on/from mica surfaces was examined as a function of ionic strength and pH. The kinetics of neurotrophin adsorption/desorption were evaluated at pH 3.5, 7.4, and 11 by direct AFM imaging and the ELISA technique. A monotonic increase in the maximum coverage of adsorbed NT-4 molecules with ionic strength (up to 5.5 mg/m 2 ) was observed at pH 3.5. These results were interpreted in terms of the theoretical model postulating an irreversible adsorption of the protein governed by the random sequential adsorption (RSA). Our measurements revealed a significant role of ionic strength, pH, and electrolyte composition in the lateral electrostatic interactions among differently charged NT-4 molecules. The transition between adsorption/desorption processes is found for the region of high pH and low surface concentration of adsorbed neurotrophin molecules at constant ionic strength. Additionally, results presented in this work show that the adsorption behavior of neurotrophin molecules may be governed by intrasolvent electrostatic interactions yielding an aggregation process. Understanding polyvalent neurotrophin interactions may have an impact on

  16. Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance.

    PubMed

    Ghafari, Mohsen; Atkinson, John D

    2018-06-05

    A novel one-step hyper-cross-linking method, using 1,2-dichloroethane (DCE) and 1,6-dichlorohexane (DCH) cross-linkers, expands the micropore volume of commercial styrenic polymers. Performance of virgin and modified polymers was evaluated by measuring hexane, toluene, and methyl-ethyl-ketone (MEK) adsorption capacity, adsorption/desorption kinetics, and desorption efficiency. Hyper-cross-linked polymers have up to 128% higher adsorption capacity than virgin polymers at P/P 0  = 0.05 due to micropore volume increases up to 330%. Improvements are most pronounced with the DCE cross-linker. Hyper-cross-linking has minimal impact on hexane adsorption kinetics, but adsorption rates for toluene and MEK decrease by 6-41%. Desorption rates decreased (3-36%) for all materials after hyper-cross-linking, with larger decreases for DCE hyper-cross-linked polymers due to smaller average pore widths. For room temperature desorption, 20-220% more adsorbate remains in hyper-cross-linked polymers after regeneration compared to virgin materials. DCE hyper-cross-linked polymers have 13-92% more residual adsorbate than DCH counterparts. Higher temperatures were required for DCE hyper-cross-linked polymers to completely desorb VOCs compared to the DCH hyper-cross-linked and virgin counterparts. Results show that the one-step hyper-cross-linking method for modifying styrenic polymers improves adsorption capacity because of added micropores, but decreases adsorption/desorption kinetics and desorption efficiency for large VOCs due to a decrease in average pore width. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    PubMed

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  18. Anionic surfactant enhanced phosphate desorption from Mg/Al-layered double hydroxides by micelle formation.

    PubMed

    Shimamura, Akihiro; Jones, Mark I; Metson, James B

    2013-12-01

    Desorption of interlayer hydrogen phosphate (HPO4) from hydrogen phosphate intercalated Mg/Al-layered double hydroxide (LDH-HPO4) by anion exchange with surfactant anions has been investigated under controlled conditions. Three types of surfactant, Dodecylbenzenesulphonate (DBS), Dodecylsulphate (DS) and 1-Octanesulphonate (OS), anions were used for intercalation experiments over a range of concentrations, and for all solutions, it was shown that the desorption of hydrogen phosphate is enhanced at concentrations close to the critical micelle concentration (CMC). Intercalation of the surfactant anions into LDH-HPO4 was confirmed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning electron microscopy (SEM). More than 90% removal of the hydrogen phosphate was achieved at CMC. Repeat adsorption tests to investigate recyclability showed that desorption with 0.005 M DBS improved subsequent phosphate re-adsorption, allowing around 90% of the original adsorption over three cycles. This is much higher than when desorption was conducted using either Na2CO3 or NaCl-NaOH solutions, even at much higher concentrations. This study suggests potential economic and environmental advantages in using these surfactants in improving the cycling performance of LDH materials as absorbents for clean-up of water systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Interactions on External MOF Surfaces: Desorption of Water and Ethanol from CuBDC Nanosheets.

    PubMed

    Elder, Alexander C; Aleksandrov, Alexandr B; Nair, Sankar; Orlando, Thomas M

    2017-10-03

    The external surfaces of metal-organic framework (MOF) materials are difficult to experimentally isolate due to the high porosities of these materials. MOF surface surrogates in the form of copper benzenedicarboxylate (CuBDC) nanosheets were synthesized using a bottom-up approach, and the surface interactions of water and ethanol were investigated by temperature-programmed desorption (TPD). A method of analysis of diffusion-influenced TPD was developed to measure the desorption properties of these porous materials. This approach also allows the extraction of diffusion coefficients from TPD data. The transmission Fourier transform infrared spectra, powder X-ray diffraction patterns, and TPD data indicate that water desorbs from CuBDC nanosheets with activation energies of 44 ± 2 kJ/mol at edge sites and 58 ± 1 kJ/mol at external surface and internal and pore sites. Ethanol desorbs with activation energies of 58 ± 1 kJ/mol at internal pore sites and 66 ± 0.4 kJ/mol at external surface sites. Co-adsorption of water and ethanol was also investigated. The presence of ethanol was found to inhibit the desorption of water, resulting in a water desorption process with an activation energy of 68 ± 0.7 kJ/mol.

  20. NH4+ ad-/desorption in sequencing batch reactors: simulation, laboratory and full-scale studies.

    PubMed

    Schwitalla, P; Mennerich, A; Austermann-Haun, U; Müller, A; Dorninger, C; Daims, H; Holm, N C; Rönner-Holm, S G E

    2008-01-01

    Significant NH4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle-specific NH4+ ad-/desorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH4+ desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH4+ adsorption at the flocs in the course of the filling phases. This NH4+ ad-/desorption corresponds to an antiparallel K+ ad/-desorption.One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded. IWA Publishing 2008.

  1. Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

    PubMed Central

    Field, Christopher R.; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C.; Rose-Pehrsson, Susan L.

    2014-01-01

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples. PMID:25145416

  2. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-07-25

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.

  3. Effect of artificial root exudates on the sorption and desorption of PAHs in meadow brown soils

    NASA Astrophysics Data System (ADS)

    Wang, Hong

    2017-10-01

    The batch equilibrium experiment was conducted to investigate the effect of artificial root exudates on sorption and desorption of phenanthrene and pyrene. The result showed sorption isotherms were fitted well to the Freundlich equation with the treatment of artificial root exudates. Fructose had the most obvious effect on sorption. The artificial root exudates improved desorption of PAHs, while low molecular weight organic acids were better than serine and fructose. The capability of sorption and desorption was strengthened with the increase of organic acids concentration. And the DOM in the solution might be the most important factor of the adsorption of PAHs in solid phase.

  4. Desorption of Arsenic from Drinking Water Distribution System Solids

    EPA Science Inventory

    Given the limited knowledge regarding the soluble release of arsenic from DWDS solids, the objectives of this research were to: 1) investigate the effect of pH on the dissolution/desorption of arsenic from DWDS solids, and 2) examine the effect of orthophosphate on the soluble re...

  5. Remediation and desorption kinetics of pyrene from kaolinite co-contaminated with heavy metals at various organic matter contents

    NASA Astrophysics Data System (ADS)

    Saeedi, Mohsen; Li, Loretta Y.; Grace, John R.

    2017-04-01

    Soils co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals are challenging for remediation. In the present study desorption of pyrene in kaolinite, co-contaminated by Ni, Pb and Zn, was examined by combinations of surfactants and chelating agents such as Triton X-100, Tween 80, Ethylene diamine tetra acetic acid (EDTA) and citric acid. Results showed that a combination of Triton X-100 (7.5 % w/w) + EDTA (0.01 M) and Tween 80 (7.5 % w/w) + EDTA (0.01 M) were effective in simultaneously desorbing both types of contaminants. Batch desorption tests were conducted using single and combined enhancing agents containing Triton X-100 and Tween 80 as non-ionic surfactants, EDTA as a chelating agent, and citric acid as an organic acid. The solution with the highest removal efficiency was the combined solution containing Triton X-100 (7.5 % w/w) + EDTA (0.01M). Triton X-100 (7.5% w/w) + EDTA (0.01M) led to removal efficiencies of 88% for pyrene in base kaolinite. Batch desorption kinetic experiments were performed using Triton X-100 (7.5% w/w) + EDTA (0.01M). During the first 24 h, desorption was rapid. Organic matter content in the kaolinite led to a reduction in the desorption rate of the contaminants. The desorption kinetic data were well fitted by a pseudo-second-order kinetic model.

  6. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption-Desorption Transition.

    PubMed

    Grebíková, Lucie; Whittington, Stuart G; Vancso, Julius G

    2018-05-23

    The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.

  7. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption–Desorption Transition

    PubMed Central

    2018-01-01

    The adsorption–desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption–desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption–desorption transitions. PMID:29712430

  8. A Combined Desorption Ionization by Charge Exchange (DICE) and Desorption Electrospray Ionization (DESI) Source for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B.

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.

  9. LASER DESORPTION IONIZATION OF ULTRAFINE AEROSOL PARTICLES. (R823980)

    EPA Science Inventory

    On-line analysis of ultrafine aerosol particle in the 12 to 150 nm size range is performed by
    laser desorption/ionization. Particles are size selected with a differential mobility analyzer and then
    sent into a linear time-of-flight mass spectrometer where they are ablated w...

  10. Study of Adsorption and Desorption Performances of Zr-Based Metal-Organic Frameworks Using Paper Spray Mass Spectrometry.

    PubMed

    Wang, Xiaoting; Chen, Ying; Zheng, Yajun; Zhang, Zhiping

    2017-07-08

    The dynamic pore systems and high surface areas of flexible metal-organic framework materials make them excellent candidates to be used in different kinds of adsorption processes. However, the adsorption and desorption behaviors of therapeutic drugs on metal-organic frameworks in solution are not fully developed. Here, we systematically investigated the adsorption and desorption behaviors of a typical therapeutic drug, verapamil, over several Zr-based metal-organic frameworks [e.g., Zr-FUM, UiO-66(Zr), UiO-66(Zr)-NH₂ and UiO-66(Zr)-2COOH] as well as ZrO₂ in an acetonitrile solution by using paper spray mass spectrometry. In contrast to other materials, UiO-66(Zr)-2COOH demonstrated a superior adsorption performance to verapamil due to their strong acid-base and/or hydrogen-bond interactions, and the adsorption process fitted well with the pseudo-second-order kinetic model. As verapamil-adsorbed materials were used for desorption experiments, ZrO₂ demonstrated the most favorable desorption performance, whereas UiO-66(Zr)-2COOH yielded the poorest desorption capability. These Zr-based materials had also been coated at the surface with filter papers for the analysis of various drugs and proteins in the process of paper spray mass spectrometry. The results demonstrated that among the studied materials, ZrO₂-coated paper gave the most favorable desorption performance as a pure drug solution, whereas the paper from UiO-66(Zr) demonstrated the optimal capability in the analyses of therapeutic drugs in a complex matrix (e.g., blood) and a protein (e.g., myoglobin).

  11. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    NASA Astrophysics Data System (ADS)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  12. Application of zeolitic material synthesized from thermally treated sediment to the removal of trivalent chromium from wastewater.

    PubMed

    Guan, Qingyu; Wu, Deyi; Lin, Yan; Chen, Xuechu; Wang, Xinze; Li, Chunjie; He, Shengbing; Kong, Hainan

    2009-08-15

    Zeolitic materials were synthesized from thermally treated sediment by alkali treatment using different NaOH/sediment ratios. Characterization of the materials was done by XRD, FTIR, cation exchange capacity and specific surface area. Use of high NaOH/sediment ratio favored the formation of zeolite. The potential value of the zeolitic materials for the retention of trivalent chromium from water was examined. The maximum of Cr(III) sorption by the zeolitic materials, determined by a repeated batch equilibration method, ranged from 38.9 to 75.8 mg/g which was much greater than that of the thermally treated sediment (6.3 mg/g). No release of sorbed Cr(III) by 1.0M MgCl(2) at pH 7 was observed but Cr(III) desorption by ionic electrolyte increased with decreasing pH. The zeolitic materials could completely remove Cr(III) from wastewater even in the presence of Na(+) and Ca(2+) with high concentrations with a dose above 2.5 g/L. The pH-dependent desorption behavior and the high selectivity of zeolitic material for Cr(III) were explained by sorption at surface hydroxyl sites and formation of surface precipitates.

  13. Surfactant effects on desorption rate of nonionic organic compounds from soils to water

    USGS Publications Warehouse

    Cesare, David Di; Smith, James A.

    1994-01-01

    The widespread occurrence of organic contamination in groundwater systems has become an important environmental concern. Of particular interest are nonionic organic compounds, which sorb strongly to natural soil as a result of their characteristic low aqueous solubilities and hydrophobic nature. Consequently, the remediation of nonionic organic contamination in groundwater systems is often highly dependent on contaminant desorption from the sorbed to aqueous phase. The kinetics of desorption will significantly influence the extraction efficiency of pump-and-treat remedial methods that are capable of removing only dissolved phase contaminants.

  14. Moisture Sorption-desorption Characteristics and the Corresponding Thermodynamic Properties of Carvedilol Phosphate.

    PubMed

    Allada, Ravikiran; Maruthapillai, Arthanareeswari; Palanisamy, Kamaraj; Chappa, Praveen

    2017-01-01

    Carvedilol phosphate (CDP) is a nonselective beta-blocker used for the treatment of heart failures and hypertension. In this work, moisture sorption-desorption characteristics and thermodynamic properties of CDP have been investigated. The isotherms were determined using dynamic vapor sorption analyzer at different humidity conditions (0%-90% relative humidity) and three pharmaceutically relevant temperatures (20°C, 30°C, and 40°C). The experimental sorption data determined were fitted to various models, namely, Brunauer-Emmett-Teller; Guggenheim-Anderson-De Boer (GAB); Peleg; and modified GAB. Isosteric heats of sorption were evaluated through the direct use of sorption isotherms by means of the Clausius-Clapeyron equation. The sorption model parameters were determined from the experimental sorption data using nonlinear regression analysis, and mean relative percentage deviation (P), correlation (Correl), root mean square error, and model efficiency were considered as the criteria to select the best fit model. The sorption-desorption isotherms have sigmoidal shape - confirming to Type II isotherms. Based on the statistical data analysis, modified GAB model was found to be more adequate to explain sorption characteristics of CDP. It is noted that the rate of adsorption and desorption is specific to the temperature at which it was being studied. It is observed that isosteric heat of sorption decreased with increasing equilibrium moisture content. The calculation of the thermodynamic properties was further used to draw an understanding of the properties of water and energy requirements associated with the sorption behavior. The sorption-desorption data and the set of equations are useful in the simulation of processing, handling, and storage of CDP and further behavior during manufacture and storage of CDP formulations.

  15. The phosphorus fractions and adsorption-desorption characteristics in the Wuliangsuhai Lake, China.

    PubMed

    Wang, Xinglei; Wei, Jinxing; Bai, Na; Cha, Hancaicike; Cao, Can; Zheng, Kexuan; Liu, Ying

    2018-05-11

    The phosphorus (P) fractions and adsorption-desorption characteristics in the Wuliangsuhai Lake were investigated through molybdenum blue/ascorbic acid method and indoor simulation experiments, respectively. The results showed that the highest total phosphorus concentration in overlying water (W-TP) was found in S1 which was in the hypereutrophic type. The mean concentration of particulate organic phosphorus (POP) was the most abundant P fraction (31.35% of the W-TP). The results of TP contents in sediments (S-TP) indicated that the most sampling sites were in the mild level of pollution. The contents of calcium-bound P (HCl-P) and residual P (Res-P) fractions together comprised 83.03-98.10% of the S-TP. Pseudo-second-order models fitted well with the adsorption-desorption kinetic of P fractions. The Langmuir and Freundlich models well described the adsorption isotherm of P fractions. The results of adsorption-desorption of P fractions indicated that the adsorption capacity was strong, the chemical adsorption was dominant, and the sediments was a source of P. Accordingly, we concluded that the Wuliangsuhai Lake was in the moderate pollution level, and the sediments as a source could desorb P in natural aquatic environment.

  16. Comparative sorption, desorption and leaching potential of aminocyclopyrachlor and picloram

    USDA-ARS?s Scientific Manuscript database

    Aminocyclopyrachlor and picloram sorption, desorption and leaching potential were investigated in three soils from Minnesota and Hawaii. Aminocyclopyrachlor and picloram sorption fit the Freundlich equation and was independent of concentration for aminocyclopyrachlor (1/n = 1), but not for picloram ...

  17. Desorption kinetics of ciprofloxacin in municipal biosolids determined by diffusion gradient in thin films.

    PubMed

    D'Angelo, E; Starnes, D

    2016-12-01

    Ciprofloxacin (CIP) is a commonly-prescribed antibiotic that is largely excreted by the body, and is often found at elevated concentrations in treated sewage sludge (biosolids) at municipal wastewater treatment plants. When biosolids are applied to soils, they could release CIP to surface runoff, which could adversely affect growth of aquatic organisms that inhabit receiving water bodies. The hazard risk largely depends on the amount of antibiotic in the solid phase that can be released to solution (labile CIP), its diffusion coefficient, and sorption/desorption exchange rates in biosolids particles. In this study, these processes were evaluated in a Class A Exceptional Quality Biosolids using a diffusion gradient in thin films (DGT) sampler that continuously removed CIP from solution, which induced desorption and diffusion in biosolids. Mass accumulation of antibiotic in the sampler over time was fit by a diffusion transport and exchange model available in the software tool 2D-DIFS to derive the distribution coefficient of labile CIP (K dl ) and sorption/desorption rate constants in the biosolids. The K dl was 13 mL g -1 , which equated to 16% of total CIP in the labile pool. Although the proportion of labile CIP was considerable, release rates to solution were constrained by slow desorption kinetics (desorption rate constant = 4 × 10 -6 s -1 ) and diffusion rate (effective diffusion coefficient = 6 × 10 -9  cm 2  s -1 . Studies are needed to investigate how changes in temperature, water content, pH and other physical and chemical characteristics can influence antibiotic release kinetics and availability and mobility in biosolid-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy

  19. Cobalt coated substrate for matrix-free analysis of small molecules by laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yalcin, Talat; Li, Liang

    2009-12-01

    Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.

  20. Nitrate sorption and desorption in biochars from fast pyrolysis

    USDA-ARS?s Scientific Manuscript database

    Increasing the nitrate (NO3-) sorption capacity of Midwestern US soils has the potential to reduce nitrate leaching to ground water and reduce the extent of the hypoxia zone in the Gulf of Mexico. The objective of this study was to determine the sorption and desorption capacity of non-activated and ...

  1. Positron-induced Auger-electron study of the Ge(100) surface: Positron thermal desorption and surface condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soininen, E.; Schwab, A.; Lynn, K.G.

    1991-05-01

    Positron-annihilation-induced Auger-electron spectroscopy (PAES) was used to study the effects of oxygen, residual gases, and temperature on a Ge(100) surface. Three low-energy Auger peaks were detected at 50, 90, and 100--150 eV, attributed to {ital M}{sub 2,3}{ital M4}{ital M4}, {ital M}{sub 2,3}{ital M4}{ital V}, and {ital M}{sub 1}{ital M4}{ital M4} Auger transitions, respectively. An estimated (4{plus minus}1)% of the surface-trapped positrons annihilate with Ge 3{ital p}--level electrons. The sensitivity of PAES to the surface condition is demonstrated. The PAES yield from a Ge(100) surface is reduced at elevated temperatures, in accord with an activation process earlier found in several positroniummore » (Ps) -fraction experiments. A desorption model adopted from these studies does not describe accurately the PAES results at higher temperatures ({gt}500 {degree}C), where the PAES intensity levels off to 5% of the room-temperature value. Possible sources for the discrepancy are discussed and models for positron trapping to deep surface traps are introduced. On the Ge(100) surface, an upper limit for Ps emission near the melting point is 97%. The error in calibration parameters due to the earlier assumption of 100% Ps emission seems to introduce only small errors into the Ps-fraction measurements.« less

  2. Laser-induced desorption of atomic and molecular fragments from a tin dioxide surface modified by a thin organic covering of copper phthalocyanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komolov, A. S., E-mail: akomolov07@ya.ru; Komolov, S. A.; Lazneva, E. F.

    2012-01-15

    The systematic features of laser-induced desorption from an SnO{sub 2} surface exposed to 10-ns pulsed neodymium laser radiation are studied at the photon energy 2.34 eV, in the range of pulse energy densities 1 to 50 mJ/cm{sup 2}. As the threshold pulse energy 28 mJ/cm{sup 2} is achieved, molecular oxygen O{sub 2} is detected in the desorption mass spectra from the SnO{sub 2} surface; as the threshold pulse energy 42 mJ/cm{sup 2} is reached, tin Sn, and SnO and (SnO){sub 2} particle desorption is observed. The laser desorption mass spectra from the SnO{sub 2} surface coated with an organic coppermore » phthalocyanine (CuPc) film 50 nm thick are measured. It is shown that laser irradiation causes the fragmentation of CuPc molecules and the desorption of molecular fragments in the laser pulse energy density range 6 to 10 mJ/cm{sup 2}. Along with the desorption of molecular fragments, a weak desorption signal of the substrate components O{sub 2}, Sn, SnO, and (SnO){sub 2} is observed in the same energy range. Desorption energy thresholds of substrate atomic components from the organic film surface are approximately five times lower than thresholds of their desorption from the atomically clean SnO{sub 2} surface, which indicates the diffusion of atomic components of the SnO{sub 2} substrate to the bulk of the deposited organic film.« less

  3. Optimization of CO2 adsorption capacity and cyclical adsorption/desorption on tetraethylenepentamine-supported surface-modified hydrotalcite.

    PubMed

    Thouchprasitchai, Nutthavich; Pintuyothin, Nuthapol; Pongstabodee, Sangobtip

    2018-03-01

    The objective of this research was to investigate CO 2 adsorption capacity of tetraethylenepentamine-functionalized basic-modified calcined hydrotalcite (TEPA/b-cHT) sorbents at atmospheric pressure formed under varying TEPA loading levels, temperatures, sorbent weight to total gaseous flow rate (W/F) ratios and CO 2 concentrations in the influent gas. The TEPA/b-cHT sorbents were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA), Brunauer-Emmet-Teller (BET) analysis of nitrogen (N 2 ) adsorption/desorption and carbon-hydrogen-nitrogen (CHN) elemental analysis. Moreover, a full 2 4 factorial design with three central points at a 95% confidence interval was used to screen important factor(s) on the CO 2 adsorption capacity. It revealed that 85.0% variation in the capacity came from the influence of four main factors and the 15.0% one was from their interactions. A face-centered central composite design response surface method (FCCCD-RSM) was then employed to optimize the condition, the maximal capacity of 5.5-6.1mmol/g was achieved when operating with a TEPA loading level of 39%-49% (W/W), temperature of 76-90°C, W/F ratio of 1.7-2.60(g·sec)/cm 3 and CO 2 concentration of 27%-41% (V/V). The model fitted sufficiently the experimental data with an error range of ±1.5%. From cyclical adsorption/desorption and selectivity at the optimal condition, the 40%TEPA/b-cHT still expressed its effective performance after eight cycles. Copyright © 2017. Published by Elsevier B.V.

  4. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ming; Kang, Zhan, E-mail: zhankang@dlut.edu.cn; Huang, Xiaobo

    2015-08-28

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-networkmore » (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.« less

  5. Study of Adsorption and Desorption Performances of Zr-Based Metal–Organic Frameworks Using Paper Spray Mass Spectrometry

    PubMed Central

    Wang, Xiaoting; Chen, Ying; Zheng, Yajun

    2017-01-01

    The dynamic pore systems and high surface areas of flexible metal–organic framework materials make them excellent candidates to be used in different kinds of adsorption processes. However, the adsorption and desorption behaviors of therapeutic drugs on metal–organic frameworks in solution are not fully developed. Here, we systematically investigated the adsorption and desorption behaviors of a typical therapeutic drug, verapamil, over several Zr-based metal–organic frameworks [e.g., Zr-FUM, UiO-66(Zr), UiO-66(Zr)-NH2 and UiO-66(Zr)-2COOH] as well as ZrO2 in an acetonitrile solution by using paper spray mass spectrometry. In contrast to other materials, UiO-66(Zr)-2COOH demonstrated a superior adsorption performance to verapamil due to their strong acid-base and/or hydrogen-bond interactions, and the adsorption process fitted well with the pseudo-second-order kinetic model. As verapamil-adsorbed materials were used for desorption experiments, ZrO2 demonstrated the most favorable desorption performance, whereas UiO-66(Zr)-2COOH yielded the poorest desorption capability. These Zr-based materials had also been coated at the surface with filter papers for the analysis of various drugs and proteins in the process of paper spray mass spectrometry. The results demonstrated that among the studied materials, ZrO2-coated paper gave the most favorable desorption performance as a pure drug solution, whereas the paper from UiO-66(Zr) demonstrated the optimal capability in the analyses of therapeutic drugs in a complex matrix (e.g., blood) and a protein (e.g., myoglobin). PMID:28773131

  6. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Li, Ming; Huang, Xiaobo; Kang, Zhan

    2015-08-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  7. Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine

    NASA Astrophysics Data System (ADS)

    Wang, Pen-Cheng; Liao, Yu-Chun; Liu, Li-Hung; Lai, Yu-Ling; Lin, Ying-Chang; Hsu, Yao-Jane

    2014-06-01

    We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in Ion/Ioff ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.

  8. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes.

    PubMed

    Hall, Kathleen E; Spokas, Kurt A; Gamiz, Beatriz; Cox, Lucia; Papiernik, Sharon K; Koskinen, William C

    2018-05-01

    Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350 to 900 °C to elucidate fundamental mechanisms. Glyphosate (1 mg L -1 ) sorption on biochars increased with pyrolysis temperature and was highest on 900 °C biochars; however, total sorption was low on a mass basis (<0.1 mg g -1 ). Sorption varied across feedstock materials, and isotherms indicated concentration dependence. Biochars with a greater fraction of micropores exhibited lower sorption capacities, and specific surface groups were also found to be influential. Prepyrolysis treatments with iron and copper, which complex glyphosate in soils, did not alter biochar sorption capacities. Glyphosate did not desorb from biochar with CaCl 2 solution; however, up to 86% of the bound glyphosate was released with a K 2 HPO 4 solution. Results from this study suggest a combined impact of surface chemistry and physical constraints on glyphosate sorption/desorption on biochar. Based on the observed phosphate-induced desorption of glyphosate, the addition of P-fertilizer to biochar-amended soils can remobilize the herbicide and damage non-target plants; therefore, improved understanding of this risk is necessary. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Luo, Guanghong; Diao, Jiajie; Chornoguz, Olesya; Reeves, Mark; Vertes, Akos

    2007-04-01

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3×ω Nd:YAG laser in air, SF6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ~2 µm in SF6 gas and to ~5 µm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (~10×) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits.

  10. Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment.

    PubMed

    An, Chun-jiang; Huang, Guo-he; Wei, Jia; Yu, Hui

    2011-11-01

    This study investigated the effect of short-chain organic acids on biosurfactant-enhanced mobilization of phenanthrene in soil-water system. The desorption characteristics of phenanthrene by soils were assessed in the presence of rhamnolipid and four SCOAs, including acetic acid, oxalic acid, tartaric acid and citric acid. The tests with rhamnolipid and different organic acids could attain the higher desorption of phenanthrene compared to those with only rhamnolipid. Among the different combinations, the series with rhamnolipid and citric acid exhibited more significant effect on the desorption performance. The removal of phenanthrene using rhamnolipid and SCOAs gradually increased as the SCOA concentration increased up to a concentration of 300 mmol/L. The effects of pH, soil dissolved organic matter and ionic strength were further evaluated in the presence of both biosurfactant and SCOAs. The results showed that the extent of phenanthrene desorption was more significant at pH 6 and 9. Desorption of phenanthrene was relatively lower in the DOM-removed soils with the addition of biosurfactant and SCOAs. The presence of more salt ions made phenanthrene more persistent on the solid phase and adversely affected its desorption from contaminated soil. The results from this study may have important implications for soil washing technologies used to treat PAH-contaminated soil and groundwater. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Effects of relative humidity on chloroacetanilide and dinitroaniline herbicide desorption from agricultural PM2.5 on quartz fiber filters.

    PubMed

    Yang, Wenli; Holmén, Britt A

    2007-06-01

    This study quantified the release of seven relatively polar preemergence herbicides to the gas phase from soil-generated PM2.5-loaded quartz fiber filters (QFFs) and bare QFF as a function of relative humidity (RH). A 48-hour desorption fraction, F48, was defined to evaluate the relative desorption behavior of herbicides from two families, chloroacetanilide (alachlor, butachlor, metolachlor, and propachlor) and dinitroaniline (pendimethalin, prodiamine, and trifluralin) using temperature- (8 degrees C) and humidity- (10-64% RH) controlled air at a flow rate of 4 L/min. With increasing RH, an increase in F48 by a factor of 2-8 was observed for all herbicides, except metolachlor and butachlor, which showed significantly strong sorption to both sorbents. The conjugate carbonyl oxygen and amide nitrogen in the chloroacetanilide structure enables stronger specific interactions with the sorbents, leading to lower desorption compared to the dinitroaniline herbicides. Desorption of chloroacetanilides decreased in the order propachlor > alachlor > metolachlor approximately butachlor, and desorption of dinitroanilines decreased in the order trifluralin > pendimethalin > prodiamine. These orders are consistent with the different substituents in the herbicide molecules for each family and their relative tendencies to coordinate with surface moieties as indicated by electron-donating capacity. Henry's law constant and Abraham's H-acceptor parameter were found to be useful empirical parameters for describing the F48 desorption behavior for all seven herbicides.

  12. Coadsorbed species explain the mechanism of methanol temperature-desorption on CeO 2(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Jonathan E.; Steven H. Overbury; Beste, Ariana

    2016-03-24

    Here, we have used density functional theory calculations to investigate the temperature-programmed desorption (TPD) of methanol from CeO 2(111). For the first time, low-temperature water formation and high-temperature methanol desorption are explained by our calculations. High coverages of methanol, which correspond to experimental conditions, are required to properly describe these features of the TPD spectrum. We identify a mechanism for the low-temperature formation of water involving the dissociation of two methanol molecules on the same surface O atom and filling of the resulting surface vacancy with one of the methoxy products. After water desorption, methoxy groups are stabilized on themore » surface and react at higher temperatures to form methanol and formaldehyde by a disproportionation mechanism. Alternatively, the stabilized methoxy groups undergo sequential C–H scission reactions to produce formaldehyde. Calculated energy requirements and methanol/formaldehyde selectivity agree with the experimental data.« less

  13. Boron nitride nanotubes matrix for signal enhancement in infrared laser desorption postionization mass spectrometry.

    PubMed

    Lu, Qiao; Hu, Yongjun; Chen, Jiaxin; Li, Yujian; Song, Wentao; Jin, Shan; Liu, Fuyi; Sheng, Liusi

    2018-09-01

    The nanomaterials function as the substrate to trap analytes, absorb energy from the laser irradiation and transfer energy to the analytes to facilitate the laser desorption process. In this work, the signal intensity and reproducibility of analytes with nanomaterials as matrices were explored by laser desorption postionization mass spectrometry (LDPI-MS). Herein, the desorbed neutral species were further ionized by vacuum ultraviolet (VUV, 118 nm) and analyzed by mass spectrometer. Compared with other nanomaterial matrices such as graphene and carbon nanotubes (CNTs), boron nitride nanotubes (BNNTs) exhibited much higher desorption efficiency under infrared (IR) light and produced no background signal in the whole mass range by LDPI-MS. Additionally, this method was successfully and firstly exploited to in situ detection and imaging for drugs of low concentration in intact tissues, which proved the utility, facility and convenience of this method applied in drug discovery and biomedical research. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. A thermal extrapolation method for the effective temperatures and internal energies of activated ions

    NASA Astrophysics Data System (ADS)

    Meot-Ner (Mautner), Michael; Somogyi, Árpád

    2007-11-01

    The internal energies of dissociating ions, activated chemically or collisionally, can be estimated using the kinetics of thermal dissociation. The thermal Arrhenius parameters can be combined with the observed dissociation rate of the activated ions using kdiss = Athermalexp(-Ea,thermal/RTeff). This Arrhenius-type relation yields the effective temperature, Teff, at which the ions would dissociate thermally at the same rate, or yield the same product distributions, as the activated ions. In turn, Teff is used to calculate the internal energy of the ions and the energy deposited by the activation process. The method yields an energy deposition efficiency of 10% for a chemical ionization proton transfer reaction and 8-26% for the surface collisions of various peptide ions. Internal energies of ions activated by chemical ionization or by gas phase collisions, and of ions produced by desorption methods such as fast atom bombardment, can be also evaluated. Thermal extrapolation is especially useful for ion-molecule reaction products and for biological ions, where other methods to evaluate internal energies are laborious or unavailable.

  15. Sorption-desorption of antimony species onto calcined hydrotalcite: Surface structure and control of competitive anions.

    PubMed

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2018-02-15

    Calcined hydrotalcite can be applied to remove anionic contaminants from aqueous systems such as antimony species due to its great anion exchange capacity and high surface area. Hence, this study evaluated antimonite and antimonate sorption-desorption processes onto calcined hydrotalcite in the presence of nitrate, sulfate and phosphate. Sorption and desorption experiments of antimonite and antimonate were carried out in batch equilibrium and the post-sorption solids were analyzed by X-ray fluorescence (EDXRF). Sorption data were better fitted by dual-mode Langmuir-Freundlich model (R 2 >0.99) and desorption data by Langmuir model. High maximum sorption capacities were found for the calcined hydrotalcite, ranging from 617 to 790meqkg -1 . The competing anions strongly affected the antimony sorption. EDXRF analysis and mathematical modelling showed that sulfate and phosphate presented higher effect on antimonite and antimonate sorption, respectively. High values for sorption efficiency (SE=99%) and sorption capacity were attributed to the sorbent small particles and the large surface area. Positive hysteresis indexes and low mobilization factors (MF>3%) suggest very low desorption capacity to antimony species from LDH. These calcined hydrotalcite characteristics are desirable for sorption of antimony species from aqueous solutions. Copyright © 2017. Published by Elsevier B.V.

  16. A novel experimental system of high stability and lifetime for the laser-desorption of biomolecules.

    PubMed

    Taherkhani, Mehran; Riese, Mikko; BenYezzar, Mohammed; Müller-Dethlefs, Klaus

    2010-06-01

    A novel laser desorption system, with improved signal stability and extraordinary long lifetime, is presented for the study of jet-cooled biomolecules in the gas phase using vibrationally resolved photoionization spectroscopy. As a test substance tryptophane is used to characterize this desorption source. A usable lifetime of above 1 month (for a laser desorption repetition rate of 20 Hz) has been observed by optimizing the pellets (graphite/tryptophane, 3 mm diameter and 6 mm length) from which the substance is laser-desorbed. Additionally, the stability and signal-to-noise ratio has been improved by averaging the signal over the entire sample pellet by synchronizing the data acquisition with the rotation of the sample rod. The results demonstrate how a combination of the above helps to produce stable and conclusive spectra of tryptophane using one-color and two-color resonant two-photon ionization studies.

  17. Moisture Sorption–desorption Characteristics and the Corresponding Thermodynamic Properties of Carvedilol Phosphate

    PubMed Central

    Allada, Ravikiran; Maruthapillai, Arthanareeswari; Palanisamy, Kamaraj; Chappa, Praveen

    2017-01-01

    Aims: Carvedilol phosphate (CDP) is a nonselective beta-blocker used for the treatment of heart failures and hypertension. In this work, moisture sorption–desorption characteristics and thermodynamic properties of CDP have been investigated. Materials and Methods: The isotherms were determined using dynamic vapor sorption analyzer at different humidity conditions (0%–90% relative humidity) and three pharmaceutically relevant temperatures (20°C, 30°C, and 40°C). The experimental sorption data determined were fitted to various models, namely, Brunauer–Emmett–Teller; Guggenheim-Anderson-De Boer (GAB); Peleg; and modified GAB. Isosteric heats of sorption were evaluated through the direct use of sorption isotherms by means of the Clausius-Clapeyron equation. Statistical Analysis Used: The sorption model parameters were determined from the experimental sorption data using nonlinear regression analysis, and mean relative percentage deviation (P), correlation (Correl), root mean square error, and model efficiency were considered as the criteria to select the best fit model. Results: The sorption–desorption isotherms have sigmoidal shape – confirming to Type II isotherms. Based on the statistical data analysis, modified GAB model was found to be more adequate to explain sorption characteristics of CDP. It is noted that the rate of adsorption and desorption is specific to the temperature at which it was being studied. It is observed that isosteric heat of sorption decreased with increasing equilibrium moisture content. Conclusions: The calculation of the thermodynamic properties was further used to draw an understanding of the properties of water and energy requirements associated with the sorption behavior. The sorption–desorption data and the set of equations are useful in the simulation of processing, handling, and storage of CDP and further behavior during manufacture and storage of CDP formulations. PMID:28584488

  18. Bile salts at the air-water interface: adsorption and desorption.

    PubMed

    Maldonado-Valderrama, J; Muros-Cobos, J L; Holgado-Terriza, J A; Cabrerizo-Vílchez, M A

    2014-08-01

    Bile salts (BS) are bio-surfactants which constitute a vital component in the process of fat digestion. Despite the importance of the interfacial properties in their biological role, these have been scarcely studied in the literature. In this work, we present the adsorption-desorption profiles of two BS (NaTC and NaGDC) including dilatational rheology. Findings from this study reveal very different surface properties of NaTC and NaGDC which originate from different complexation properties relevant to the digestion process. Dynamic adsorption curves show higher adsorption rates for NaTC and suggest the existence of various conformational regimes in contrast to NaGDC which presents only one conformational regime. This is corroborated by analysis of the adsorption isotherms and more in detail by the rheological behaviour. Accordingly, the dilatational response at 1Hz displays two maxima of the dilatational modulus for NaTC as a function of bulk concentration, in contrast to NaGDC which displays only one maximum. The desorption profiles reveal that NaTC adopts an irreversibly adsorbed form at high surface coverage whereas NaGDC fully desorbs from the surface within the whole range of concentrations used. Analysis of the adsorption-desorption profiles provides new insight into the surface properties of BS, suggesting a surface complexation of NaTC. This knowledge can be useful since through interfacial engineering we might control the extent of lipolysis providing the basis for the rational design of food products with tailored digestibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effects of wind-wave disturbances on adsorption and desorption of tetracycline and sulfadimidine in water-sediment systems.

    PubMed

    Liao, Qianjiahua; Huang, Zheng; Li, Shu; Wang, Yi; Liu, Yuqing; Luo, Ran; Shang, Jingge

    2018-05-28

    Wind-wave disturbances frequently disperse sediment particles into overlying water, which facilitates the adsorption and desorption of contaminants in aquatic ecosystems. Tetracycline (TC) and sulfadimidine (SM2) are common antibiotics that are frequently found in aquatic environments. This study utilized microcosms, comprising sediment and water from Lake Taihu, China, to examine the adsorption and desorption of TC and SM2 under different wind-wave disturbances in a shallow lake environment. The adsorption experiments were conducted with three different concentrations (1, 5, 10 mg/L) of TC and SM2 in the overlying water, and two different (background and strong) wind-wave conditions for 72 h. Subsequently, four microcosms were employed in a 12-h desorption study. Analysis of adsorption progress showed that TC concentration in the overlying water decreased quickly, while SM2 remained almost constant. In the desorption experiments, SM2 released to the overlying water was an order of magnitude greater than TC. These results indicate that sediment particles strongly adsorb TC but weakly adsorb SM2. Compared to background conditions, the strong wind-wave conditions resulted in higher concentrations of TC and SM2 in sediment and facilitated their migration to deeper sediment during adsorption, correspondingly promoting greater release of TC and SM2 from sediment particles into the overlying water during desorption.

  20. The regeneration characteristics of various red mud granular adsorbents (RMGA) for phosphate removal using different desorption reagents.

    PubMed

    Zhao, Yaqin; Yue, Qinyan; Li, Qian; Gao, Baoyu; Han, Shuxin; Yu, Hui

    2010-10-15

    In this research, various red mud granular adsorbents (RMGA), which were made from red mud--a kind of waste residue from the alumina industry, were manufactured under different sintering temperatures (ST). For the purpose of investigating the regeneration characteristics of them for phosphate removal, systematic experiments were carried out, including adsorption, desorption (using different desorption reagents) and resorption tests. When RMGA were desorbed by HCl solutions, the desorption efficiencies were relatively higher due to acid erosion, but the corresponding resorption capacities became small owing to extraction of effective components. Although RMGA rarely released phosphate in desorption process when being desorbed by deionised water, it performed well on resorption of phosphate afterwards. It was assumed that the lower pH in resorption process, which was caused by the reductive release of CaO into solution, contributed to a weaker competition of OH(-) on phosphate resorption. When NaOH solution was employed as the desorption reagent, resorption capacities of RMGA were relatively larger and increased with the increase of NaOH concentration, because OH(-) might ameliorate the chemical composition on the surface of RMGA potentially. In addition, several RMGA manufactured under lower ST obtained larger resorption capacities than their original adsorption capacities, because of the comparatively unstable crystal structure which led to a stronger amelioration on them. 2010 Elsevier B.V. All rights reserved.