Sample records for background genetic susceptibility

  1. Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload.

    PubMed

    Fetterman, Jessica L; Zelickson, Blake R; Johnson, Larry W; Moellering, Douglas R; Westbrook, David G; Pompilius, Melissa; Sammy, Melissa J; Johnson, Michelle; Dunham-Snary, Kimberly J; Cao, Xuemei; Bradley, Wayne E; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G; Kesterson, Robert A; Dell'italia, Louis J; Darley-Usmar, Victor M; Welch, Danny R; Ballinger, Scott W

    2013-10-15

    Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.

  2. The role of genetic background in susceptibility to chemical warfare nerve agents across rodent and non-human primate models.

    PubMed

    Matson, Liana M; McCarren, Hilary S; Cadieux, C Linn; Cerasoli, Douglas M; McDonough, John H

    2018-01-15

    Genetics likely play a role in various responses to nerve agent exposure, as genetic background plays an important role in behavioral, neurological, and physiological responses to environmental stimuli. Mouse strains or selected lines can be used to identify susceptibility based on background genetic features to nerve agent exposure. Additional genetic techniques can then be used to identify mechanisms underlying resistance and sensitivity, with the ultimate goal of developing more effective and targeted therapies. Here, we discuss the available literature on strain and selected line differences in cholinesterase activity levels and response to nerve agent-induced toxicity and seizures. We also discuss the available cholinesterase and toxicity literature across different non-human primate species. The available data suggest that robust genetic differences exist in cholinesterase activity, nerve agent-induced toxicity, and chemical-induced seizures. Available cholinesterase data suggest that acetylcholinesterase activity differs across strains, but are limited by the paucity of carboxylesterase data in strains and selected lines. Toxicity and seizures, two outcomes of nerve agent exposure, have not been fully evaluated for genetic differences, and thus further studies are required to understand baseline strain and selected line differences. Published by Elsevier B.V.

  3. Background differences in baseline and stimulated MMP levels influence abdominal aortic aneurysm susceptibility

    PubMed Central

    Dale, Matthew A.; Ruhlman, Melissa K.; Zhao, Shijia; Meisinger, Trevor; Gu, Linxia; Swier, Vicki J.; Agrawal, Devendra K.; Greiner, Timothy C.; Carson, Jeffrey S.; Baxter, B. Timothy; Xiong, Wanfen

    2015-01-01

    Objective Evidence has demonstrated profound influence of genetic background on cardiovascular phenotypes. Murine models in Marfan syndrome (MFS) have shown that genetic background-related variations affect thoracic aortic aneurysm formation, rupture, and lifespan of mice. MFS mice with C57Bl/6 genetic background are less susceptible to aneurysm formation compared to the 129/SvEv genetic background. In this study, we hypothesize that susceptibility to abdominal aortic aneurysm (AAA) will be increased in 129/SvEv mice versus C57Bl/6 mice. We tested this hypothesis by assessing differences in aneurysm size, tissue properties, immune response, and MMP expression. Methods Mice of C57Bl/6 or 129/SvEv background underwent AAA induction by periaortic application of CaCl2. Baseline aortic diameters, tissue properties and MMP levels were measured. After aneurysm induction, diameters, MMP expression, and immune response (macrophage infiltration and bone marrow transplantation) were measured. Results Aneurysms were larger in 129/SvEv mice than C57Bl/6 mice (83.0% ± 13.6 increase compared to 57.8% ± 6.4). The aorta was stiffer in the 129/SvEv mice compared to C57Bl/6 mice (952.5 kPa ± 93.6 versus 621.4 kPa ± 84.2). Baseline MMP-2 and post-aneurysm MMP-2 and -9 levels were higher in 129/SvEv aortas compared to C57Bl/6 aortas. Elastic lamella disruption/fragmentation and macrophage infiltration were increased in 129/SvEv mice. Myelogenous cell reversal by bone marrow transplantation did not affect aneurysm size. Conclusions These data demonstrate that 129/SvEv mice are more susceptible to AAA compared to C57Bl/6 mice. Intrinsic properties of the aorta between the two strains of mice, including baseline expression of MMP-2, influence susceptibility to AAA. PMID:26546710

  4. Mitochondrial Genetic Background Modulates Bioenergetics and Susceptibility to Acute Cardiac Volume – Overload

    PubMed Central

    Fetterman, Jessica L.; Zelickson, Blake R.; Johnson, Larry W.; Moellering, Douglas R.; Westbrook, David G.; Pompilius, Melissa; Sammy, Melissa J.; Johnson, Michelle; Dunham-Snary, Kimberly J.; Cao, Xuemei; Bradley, Wayne E.; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G.; Kesterson, Robert A.; Dell’Italia, Louis J.; Darley-Usmar, Victor M.; Welch, Danny R.; Ballinger, Scott W.

    2013-01-01

    Synopsis Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mitochondrial DNA (mtDNA) sequence variation contributes to disease susceptibility. In this study we present a novel animal model of mtDNA polymorphisms, the mitochondrial nuclear exchange mouse (MNX), in which the mtDNA from C3H/HeN mouse has been inserted onto the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harboring the C57/BL6J mtDNA generate more reactive oxygen species (ROS) and have a higher mitochondrial membrane potential relative to those having the C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the “mitochondrial paradigm” for the development of disease susceptibility, and show that the mtDNA modulates, cellular bioenergetics, mitochondrial reactive oxygen species generation and susceptibility to cardiac stress. PMID:23924350

  5. Ontology driven modeling for the knowledge of genetic susceptibility to disease.

    PubMed

    Lin, Yu; Sakamoto, Norihiro

    2009-05-12

    For the machine helped exploring the relationships between genetic factors and complex diseases, a well-structured conceptual framework of the background knowledge is needed. However, because of the complexity of determining a genetic susceptibility factor, there is no formalization for the knowledge of genetic susceptibility to disease, which makes the interoperability between systems impossible. Thus, the ontology modeling language OWL was used for formalization in this paper. After introducing the Semantic Web and OWL language propagated by W3C, we applied text mining technology combined with competency questions to specify the classes of the ontology. Then, an N-ary pattern was adopted to describe the relationships among these defined classes. Based on the former work of OGSF-DM (Ontology of Genetic Susceptibility Factors to Diabetes Mellitus), we formalized the definition of "Genetic Susceptibility", "Genetic Susceptibility Factor" and other classes by using OWL-DL modeling language; and a reasoner automatically performed the classification of the class "Genetic Susceptibility Factor". The ontology driven modeling is used for formalization the knowledge of genetic susceptibility to complex diseases. More importantly, when a class has been completely formalized in an ontology, the OWL reasoning can automatically compute the classification of the class, in our case, the class of "Genetic Susceptibility Factors". With more types of genetic susceptibility factors obtained from the laboratory research, our ontologies always needs to be refined, and many new classes must be taken into account to harmonize with the ontologies. Using the ontologies to develop the semantic web needs to be applied in the future.

  6. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview.

    PubMed

    Andreoli, Virginia; Sprovieri, Francesca

    2017-01-18

    Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive "feedback" to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the "window of susceptibility" in the human health risks due to mercury exposure.

  7. Genetic Susceptibility to Lymphoma

    PubMed Central

    Skibola, Christine F.; Curry, John D.; Nieters, Alexandra

    2010-01-01

    BACKGROUND Genetic susceptibility studies of lymphoma may serve to identify at risk populations and to elucidate important disease mechanisms. METHODS This review considered all studies published through October 2006 on the contribution of genetic polymorphisms in the risk of lymphoma. RESULTS Numerous studies implicate the role of genetic variants that promote B-cell survival and growth with increased risk of lymphoma. Several reports including a large pooled study by InterLymph, an international consortium of non-Hodgkin lymphoma (NHL) case-control studies, found positive associations between variant alleles in TNF -308G>A and IL10 -3575T>A genes and risk of diffuse large B-cell lymphoma. Four studies reported positive associations between a GSTT1 deletion and risk of Hodgkin and non-Hodgkin lymphoma. Genetic studies of folate-metabolizing genes implicate folate in NHL risk, but further studies that include folate and alcohol assessments are needed. Links between NHL and genes involved in energy regulation and hormone production and metabolism may provide insights into novel mechanisms implicating neuro- and endocrine-immune cross-talk with lymphomagenesis, but will need replication in larger populations. CONCLUSIONS Numerous studies suggest that common genetic variants with low penetrance influence lymphoma risk, though replication studies will be needed to eliminate false positive associations. PMID:17606447

  8. Genetic susceptibility to endomyocardial fibrosis

    PubMed Central

    Beaton, Andrea; Sable, Craig; Brown, Juliette; Hoffman, Joshua; Mungoma, Michael; Mondo, Charles; Cereb, Nezith; Brown, Colin; Summar, Marshall; Freers, Jurgen; Ferreira, Maria Beatriz; Yacoub, Magdi; Mocumbi, Ana Olga

    2014-01-01

    Background: Endomyocardial fibrosis (EMF) is the most common form of restrictive cardiomyopathy worldwide. It has been linked to poverty and various environmental factors, but—for unknown reasons—only some people who live in similar conditions develop the disease. EMF cases cluster within both families and ethnic groups, suggesting a role for a genetic factor in host susceptibility. The human leukocyte antigen (HLA) system is associated with predisposition to various diseases. This two-center study was designed to investigate variation in the HLA system between EMF patients and unaffected controls. We provide the first genetic investigation of patients with EMF, as well as a comprehensive review of the literature. Methods: HLA class I (HLA-A, -B, -C) and class II (DRB1, DQB1) types were determined in 71 patients with severe EMF and 137 controls from Uganda and Mozambique. Chi Square analysis was used to identify any significant difference in frequency of class I and class II HLA types between cases and controls. Results: Compared to ethnically matched controls, HLA-B*58 occurred more frequently in Mozambique patients with EMF and HLA-A*02:02 occurred more frequently in Ugandan patients with EMF. Conclusions: Ample subjective evidence in the historical literature suggests the importance of a genetically susceptible host in EMF development. In this first formal genetic study, we found HLA alleles associated with cases of EMF in two populations from sub-Saharan Africa, with EMF patients being more likely than controls to have the HLA-B*58 allele in Mozambique (p-0.03) and the HLA-A*02:02 in Uganda (p = 0.005). Further investigations are needed to more fully understand the role of genetics in EMF development. PMID:25780800

  9. A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis

    PubMed Central

    Yu, Haiyang; Artomov, Mykyta; Brähler, Sebastian; Stander, M. Christine; Shamsan, Ghaidan; Sampson, Matthew G.; White, J. Michael; Kretzler, Matthias; Jain, Sanjay; Winkler, Cheryl A.; Mitra, Robi D.; Daly, Mark J.; Shaw, Andrey S.

    2016-01-01

    Focal segmental glomerulosclerosis (FSGS) is a syndrome that involves kidney podocyte dysfunction and causes chronic kidney disease. Multiple factors including chemical toxicity, inflammation, and infection underlie FSGS; however, highly penetrant disease genes have been identified in a small fraction of patients with a family history of FSGS. Variants of apolipoprotein L1 (APOL1) have been linked to FSGS in African Americans with HIV or hypertension, supporting the proposal that genetic factors enhance FSGS susceptibility. Here, we used sequencing to investigate whether genetics plays a role in the majority of FSGS cases that are identified as primary or sporadic FSGS and have no known cause. Given the limited number of biopsy-proven cases with ethnically matched controls, we devised an analytic strategy to identify and rank potential candidate genes and used an animal model for validation. Nine candidate FSGS susceptibility genes were identified in our patient cohort, and three were validated using a high-throughput mouse method that we developed. Specifically, we introduced a podocyte-specific, doxycycline-inducible transactivator into a murine embryonic stem cell line with an FSGS-susceptible genetic background that allows shRNA-mediated targeting of candidate genes in the adult kidney. Our analysis supports a broader role for genetic susceptibility of both sporadic and familial cases of FSGS and provides a tool to rapidly evaluate candidate FSGS-associated genes. PMID:26901816

  10. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview

    PubMed Central

    Andreoli, Virginia; Sprovieri, Francesca

    2017-01-01

    Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive “feedback” to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the “window of susceptibility” in the human health risks due to mercury exposure. PMID:28106810

  11. Genetic susceptibility to Grave's disease.

    PubMed

    Li, Hong; Chen, Qiuying

    2013-06-01

    The variety of clinical presentations of eye changes in patients with Graves' disease (GD) suggests that complex interactions between genetic, environmental, endogenous and local factors influence the severity of Graves' ophthalmopathy (GO). It is thought that the development of GO might be influenced by genetic factors and environmental factors, such as cigarette smoking. At present, however, the role of genetic factors in the development of GO is not known. On the basis of studies with candidate genes and other genetic approaches, several susceptibility loci in GO have been proposed, including immunological genes, human leukocyte antigen (HLA), cytotoxic T-lymphocyte antigen-4 (CTLA-4), regulatory T-cell genes and thyroid-specific genes. This review gives a brief overview of the current range of major susceptibility genes found for GD.

  12. Meta-analysis and genome-wide interpretation of genetic susceptibility to drug addiction

    PubMed Central

    2011-01-01

    Background Classical genetic studies provide strong evidence for heritable contributions to susceptibility to developing dependence on addictive substances. Candidate gene and genome-wide association studies (GWAS) have sought genes, chromosomal regions and allelic variants likely to contribute to susceptibility to drug addiction. Results Here, we performed a meta-analysis of addiction candidate gene association studies and GWAS to investigate possible functional mechanisms associated with addiction susceptibility. From meta-data retrieved from 212 publications on candidate gene association studies and 5 GWAS reports, we linked a total of 843 haplotypes to addiction susceptibility. We mapped the SNPs in these haplotypes to functional and regulatory elements in the genome and estimated the magnitude of the contributions of different molecular mechanisms to their effects on addiction susceptibility. In addition to SNPs in coding regions, these data suggest that haplotypes in gene regulatory regions may also contribute to addiction susceptibility. When we compared the lists of genes identified by association studies and those identified by molecular biological studies of drug-regulated genes, we observed significantly higher participation in the same gene interaction networks than expected by chance, despite little overlap between the two gene lists. Conclusions These results appear to offer new insights into the genetic factors underlying drug addiction. PMID:21999673

  13. Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line

    PubMed Central

    Krentz, Anthony D.; Murphy, Mark W.; Zhang, Teng; Sarver, Aaron L.; Jain, Sanjay; Griswold, Michael D.; Bardwell, Vivian J.; Zarkower, David

    2013-01-01

    Dmrt1(doublesex and mab-3 related transcription factor 1) is a regulator of testis development in vertebrates that has been implicated in testicular germ cell tumors of mouse and human. In the fetal mouse testis Dmrt1 regulates germ cell pluripotency in a strain-dependent manner. Loss of Dmrt1 in 129Sv strain mice results in a >90% incidence of testicular teratomas, tumors consisting cells of multiple germ layers; by contrast, these tumors have never been observed in Dmrt1 mutants of C57BL/6J (B6) or mixed genetic backgrounds. To further investigate the interaction between Dmrt1 and genetic background we compared mRNA expression in wild type and Dmrt1 mutant fetal testes of 129Sv and B6 mice at embryonic day 15.5 (E15.5), prior to overt tumorigenesis. Loss of Dmrt1 caused misexpression of overlapping but distinct sets of mRNAs in the two strains. The mRNAs that were selectively affected included some that changed expression only in one strain or the other and some that changed in both strains but to a greater degree in one versus the other. In particular, loss of Dmrt1 in 129Sv testes caused a more severe failure to silence regulators of pluripotency than in B6 testes. A number of genes misregulated in 129Sv mutant testes also are misregulated in human testicular germ cell tumors (TGCTs), suggesting similar etiology between germ cell tumors in mouse and man. Expression profiling showed that DMRT1 also regulates pluripotency genes in the fetal ovary, although Dmrt1 mutant females do not develop teratomas. Pathway analysis indicated disruption of several signaling pathways in Dmrt1 mutant fetal testes, including Nodal, Notch, and GDNF. We used a Nanos3-cre knock-in allele to perform conditional gene targeting, testing the GDNF coreceptors Gfra1 and Ret for effects on teratoma susceptibility. Conditional deletion of Gfra1 but not Ret in fetal germ cells of animals outcrossed to 129Sv caused a modest but significant elevation in tumor incidence. Despite some

  14. Mediation and modification of genetic susceptibility to obesity by eating behaviors.

    PubMed

    de Lauzon-Guillain, Blandine; Clifton, Emma Ad; Day, Felix R; Clément, Karine; Brage, Soren; Forouhi, Nita G; Griffin, Simon J; Koudou, Yves Akoli; Pelloux, Véronique; Wareham, Nicholas J; Charles, Marie-Aline; Heude, Barbara; Ong, Ken K

    2017-10-01

    Background: Many genetic variants show highly robust associations with body mass index (BMI). However, the mechanisms through which genetic susceptibility to obesity operates are not well understood. Potentially modifiable mechanisms, including eating behaviors, are of particular interest to public health. Objective: Here we explore whether eating behaviors mediate or modify genetic susceptibility to obesity. Design: Genetic risk scores for BMI (BMI-GRSs) were calculated for 3515 and 2154 adults in the Fenland and EDEN (Etude des déterminants pré et postnatals de la santé et du développement de l'enfant) population-based cohort studies, respectively. The eating behaviors-emotional eating, uncontrolled eating, and cognitive restraint-were measured through the use of a validated questionnaire. The mediating effect of each eating behavior on the association between the BMI-GRS and measured BMI was assessed by using the Sobel test. In addition, we tested for interactions between each eating behavior and the BMI-GRS on BMI. Results: The association between the BMI-GRS and BMI was mediated by both emotional eating (EDEN: P- Sobel = 0.01; Fenland: P- Sobel = 0.02) and uncontrolled eating (EDEN: P- Sobel = 0.04; Fenland: P -Sobel = 0.0006) in both sexes combined. Cognitive restraint did not mediate this association ( P -Sobel > 0.10), except among EDEN women ( P -Sobel = 0.0009). Cognitive restraint modified the relation between the BMI-GRS and BMI among men (EDEN: P -interaction = 0.0001; Fenland: P -interaction = 0.04) and Fenland women ( P -interaction = 0.0004). By tertiles of cognitive restraint, the association between the BMI-GRS and BMI was strongest in the lowest tertile of cognitive restraint, and weakest in the highest tertile. Conclusions: Genetic susceptibility to obesity was partially mediated by the "appetitive" eating behavior traits (uncontrolled and emotional eating) and, in 3 of the 4 population groups studied, was modified by cognitive restraint

  15. Canine susceptibility to visceral leishmaniasis: A systematic review upon genetic aspects, considering breed factors and immunological concepts.

    PubMed

    de Vasconcelos, Tassia Cristina Bello; Furtado, Marina Carvalho; Belo, Vínicus Silva; Morgado, Fernanda Nazaré; Figueiredo, Fabiano Borges

    2017-10-05

    Dogs have different susceptibility degrees to leishmaniasis; however, genetic research on this theme is scarce, manly on visceral form. The aims of this systematic review were to describe and discuss the existing scientific findings on genetic susceptibility to canine leishmaniasis, as well as to show the gaps of the existing knowledge. Twelve articles were selected, including breed immunological studies, genome wide associations or other gene polymorphism or gene sequencing studies, and transcription approaches. As main results of literature, there was a suggestion of genetic clinical resistance background for Ibizan Hound dogs, and alleles associated with protection or susceptibility to visceral leishmaniasis in Boxer dogs. Genetic markers can explain phenotypic variance in both pro- and anti-inflammatory cytokines and in cellular immune responses, including antigen presentation. Many gene segments are involved in canine visceral leishmaniasis phenotype, with Natural Resistance Associated Macrophage Protein 1 (NRAMP1) as the most studied. This was related to both protection and susceptibility. In comparison with murine and human genetic approaches, lack of knowledge in dogs is notorious, with many possibilities for new studies, revealing a wide field to be assessed on canine leishmaniasis susceptibility research. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    PubMed Central

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  17. A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure

    PubMed Central

    Luoma, Sarah E.; St. Armour, Genevieve E.; Thakkar, Esha

    2017-01-01

    The genetic factors that give rise to variation in susceptibility to environmental toxins remain largely unexplored. Studies on genetic variation in susceptibility to environmental toxins are challenging in human populations, due to the variety of clinical symptoms and difficulty in determining which symptoms causally result from toxic exposure; uncontrolled environments, often with exposure to multiple toxicants; and difficulty in relating phenotypic effect size to toxic dose, especially when symptoms become manifest with a substantial time lag. Drosophila melanogaster is a powerful model that enables genome-wide studies for the identification of allelic variants that contribute to variation in susceptibility to environmental toxins, since the genetic background, environmental rearing conditions and toxic exposure can be precisely controlled. Here, we used extreme QTL mapping in an outbred population derived from the D. melanogaster Genetic Reference Panel to identify alleles associated with resistance to lead and/or cadmium, two ubiquitous environmental toxins that present serious health risks. We identified single nucleotide polymorphisms (SNPs) associated with variation in resistance to both heavy metals as well as SNPs associated with resistance specific to each of them. The effects of these SNPs were largely sex-specific. We applied mutational and RNAi analyses to 33 candidate genes and functionally validated 28 of them. We constructed networks of candidate genes as blueprints for orthologous networks of human genes. The latter not only provided functional contexts for known human targets of heavy metal toxicity, but also implicated novel candidate susceptibility genes. These studies validate Drosophila as a translational toxicogenomics gene discovery system. PMID:28732062

  18. Genetic susceptibility to Candida infections

    PubMed Central

    Smeekens, Sanne P; van de Veerdonk, Frank L; Kullberg, Bart Jan; Netea, Mihai G

    2013-01-01

    Candida spp. are medically important fungi causing severe mucosal and life-threatening invasive infections, especially in immunocompromised hosts. However, not all individuals at risk develop Candida infections, and it is believed that genetic variation plays an important role in host susceptibility. On the one hand, severe fungal infections are associated with monogenic primary immunodeficiencies such as defects in STAT1, STAT3 or CARD9, recently discovered as novel clinical entities. On the other hand, more common polymorphisms in genes of the immune system have also been associated with fungal infections such as recurrent vulvovaginal candidiasis and candidemia. The discovery of the genetic susceptibility to Candida infections can lead to a better understanding of the pathogenesis of the disease, as well as to the design of novel immunotherapeutic strategies. This review is part of the review series on host-pathogen interactions. See more reviews from this series. PMID:23629947

  19. PKCepsilon overexpression, irrespective of genetic background, sensitizes skin to UVR-induced development of squamous-cell carcinomas.

    PubMed

    Sand, Jordan M; Aziz, Moammir H; Dreckschmidt, Nancy E; Havighurst, Thomas C; Kim, KyungMann; Oberley, Terry D; Verma, Ajit K

    2010-01-01

    Chronic exposure to UVR is the major etiologic factor in the development of human skin cancers including squamous-cell carcinoma (SCC). We have previously shown that protein Kinase C epsilon (PKCepsilon) transgenic mice on FVB/N background, which overexpress PKCepsilon protein approximately eightfold over endogenous levels in epidermis, exhibit about threefold more sensitivity than wild-type littermates to UVR-induced development of SCC. To determine whether it is PKCepsilon and not the mouse genetic background that determines susceptibility to UVR carcinogenesis, we cross-bred PKCepsilon FVB/N transgenic mice with SKH-1 hairless mice to generate PKCepsilon-overexpressing SKH-1 hairless mice. To evaluate the susceptibility of PKCepsilon SKH-1 hairless transgenic mice to UVR carcinogenesis, the mice were exposed to UVR (1-2 KJ m(-2)) three times weekly from a bank of six kodacel-filtered FS40 sunlamps. As compared with the wild-type hairless mice, PKCepsilon overexpression in SKH-1 hairless mice decreased the latency (12 weeks), whereas it increased the incidence (twofold) and multiplicity (fourfold) of SCC. The SKH hairless transgenic mice were observed to be as sensitive as FVB/N transgenic mice to UVR-induced development of SCC and expression of proliferative markers (proliferating cell nuclear antigen, signal transducers and activators of transcription 3, and extracellular signal-regulated kinase 1/2). The results indicate that PKCepsilon level dictates susceptibility, irrespective of genetic background, to UVR carcinogenesis.

  20. Human genetic susceptibility and infection with Leishmania peruviana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, M.A.; Davis, C.R.; Collins, A.

    1995-11-01

    Racial differences, familial clustering, and murine studies are suggestive of host genetic control of Leishmania infections. Complex segregation analysis has been carried out by use of the programs POINTER and COMDS and data from a total population survey, comprising 636 nuclear families, from an L. perurviana endemic area. The data support genetic components controlling susceptibility to clinical leishmaniasis, influencing severity of disease and resistance to disease among healthy individuals. A multifactorial model is favored over a sporadic model. Two-locus models provided the best fit to the data, the optimal model being a recessive gene (frequency .57) plus a modifier locus.more » Individuals infected at an early age and with recurrent lesions are genetically more susceptible than those infected with a single episode of disease at a later age. Among people with no lesions, those with a positive skin-test response are genetically less susceptible than those with a negative response. The possibility of the involvement of more than one gene together with environmental effects has implications for the design of future linkage studies. 31 refs., 7 tabs.« less

  1. Awareness of Cancer Susceptibility Genetic Testing

    PubMed Central

    Mai, Phuong L.; Vadaparampil, Susan Thomas; Breen, Nancy; McNeel, Timothy S.; Wideroff, Louise; Graubard, Barry I.

    2014-01-01

    Background Genetic testing for several cancer susceptibility syndromes is clinically available; however, existing data suggest limited population awareness of such tests. Purpose To examine awareness regarding cancer genetic testing in the U.S. population aged ≥25 years in the 2000, 2005, and 2010 National Health Interview Surveys. Methods The weighted percentages of respondents aware of cancer genetic tests, and percent changes from 2000–2005 and 2005–2010, overall and by demographic, family history, and healthcare factors were calculated. Interactions were used to evaluate the patterns of change in awareness between 2005 and 2010 among subgroups within each factor. To evaluate associations with awareness in 2005 and 2010, percentages were adjusted for covariates using multiple logistic regression. The analysis was performed in 2012. Results Awareness decreased from 44.4% to 41.5% (p<0.001) between 2000 and 2005, and increased to 47.0% (p<0.001) in 2010. Awareness increased between 2005 and 2010 in most subgroups, particularly among individuals in the South (p-interaction=0.03) or with a usual place of care (p-interaction=0.01). In 2005 and 2010, awareness was positively associated with personal or family cancer history and high perceived cancer risk, and inversely associated with racial/ethnic minorities, age 25–39 or ≥60 years, male gender, lower education and income levels, public or no health insurance, and no provider contact in 12 months. Conclusions Despite improvement from 2005 to 2010, ≤50% of the U.S. adult population was aware of cancer genetic testing in 2010. Notably, disparities persist for racial/ethnic minorities and individuals with limited health care access or income. PMID:24745633

  2. Genetic background of osteoporosis.

    PubMed

    Obermayer-Pietsch, B; Chararas, C; Kotschan, S; Walter, D; Leb, G

    2000-01-01

    Osteoporosis is a systemic disorder of decreased skeletal mass as measured by bone mineral density (BMD), and disturbed skeletal architecture and function which results in an increased risk for bone fractures with consecutively increased morbidity and mortality. Twin and family studies have shown an important genetic component of BMD of about 40-60%. This exceeds other well known factors influencing BMD such as environmental factors like dietary calcium, physical activity or several drugs and diseases. Therefore, interest increased in the genetic background of bone mineral density. Polymorphisms of the Vitamin D receptor gene were the first to be published in this area. Studies on other loci or candidate genes such as the estrogen receptor gene or the collagen type I alpha1 gene also showed associations with bone mineral density that could explain at least a part of the genetic background of osteoporosis. Recently published data suggest that these genetic markers of bone metabolism are important in interaction with each other or in certain bone-affecting diseases. In the future, genetic studies on osteoporosis will have to screen further relevant genes and markers for bone metabolism as well as to evaluate the complex interactions of genetic influences, so that it would be possible to calculate a patient's individual risk for osteoporosis in the context of environmental influences.

  3. Computational Integration of Human Genetic Data to Evaluate AOP-Specific Susceptibility

    EPA Science Inventory

    There is a need for approaches to efficiently evaluate human genetic variability and susceptibility related to environmental chemical exposure. Direct estimation of the genetic contribution to variability in susceptibility to environmental chemicals is only possible in special ca...

  4. Genetic Susceptibility to Head and Neck Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacko, Martin; Braakhuis, Boudewijn J.M.; Sturgis, Erich M.

    2014-05-01

    Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and its incidence is growing. Although environmental carcinogens and carcinogenic viruses are the main etiologic factors, genetic predisposition obviously plays a risk-modulating role, given that not all individuals exposed to these carcinogens experience the disease. This review highlights some aspects of genetic susceptibility to HNSCC: among others, genetic polymorphisms in biotransformation enzymes, DNA repair pathway, apoptotic pathway, human papillomavirus-related pathways, mitochondrial polymorphisms, and polymorphism related to the bilirubin-metabolized pathway. Furthermore, epigenetic variations, familial forms of HNSCC, functional assays for HNSCC risk assessment, and the implications and perspectives ofmore » research on genetic susceptibility in HNSCC are discussed.« less

  5. The nature of genetic susceptibility to multiple sclerosis: constraining the possibilities.

    PubMed

    Goodin, Douglas S

    2016-04-27

    Epidemiological observations regarding certain population-wide parameters (e.g., disease-prevalence, recurrence-risk in relatives, gender predilections, and the distribution of common genetic-variants) place important constraints on the possibilities for the genetic-basis underlying susceptibility to multiple sclerosis (MS). Using very broad range-estimates for the different population-wide epidemiological parameters, a mathematical model can help elucidate the nature and the magnitude of these constraints. For MS no more than 8.5 % of the population can possibly be in the "genetically-susceptible" subset (defined as having a life-time MS-probability at least as high as the overall population average). Indeed, the expected MS-probability for this subset is more than 12 times that for every other person of the population who is not in this subset. Moreover, provided that those genetically susceptible persons (genotypes), who carry the well-established MS susceptibility allele (DRB1*1501), are equally or more likely to get MS than those susceptible persons, who don't carry this allele, then at least 84 % of MS-cases must come from this "genetically susceptible" subset. Finally, because men, compared to women, are at least as likely (and possibly more likely) to be susceptible, it can be demonstrated that women are more responsive to the environmental factors that are involved in MS-pathogenesis (whatever these are) and, thus, susceptible women are more likely actually to develop MS than susceptible men. Finally, in contrast to genetic susceptibility, more than 70 % of men (and likely also women) must have an environmental experience (including all of the necessary factors), which is sufficient to produce MS in a susceptible individual. As a result, because of these constraints, it is possible to distinguish two classes of persons, indicating either that MS can be caused by two fundamentally different pathophysiological mechanisms or that the large majority of the

  6. Genetic architecture for susceptibility to gout in the KARE cohort study.

    PubMed

    Shin, Jimin; Kim, Younyoung; Kong, Minyoung; Lee, Chaeyoung

    2012-06-01

    This study aimed to identify functional associations of cis-regulatory regions with gout susceptibility using data resulted from a genome-wide association study (GWAS), and to show a genetic architecture for gout with interaction effects among genes within each of the identified functions. The GWAS was conducted with 8314 control subjects and 520 patients with gout in the Korea Association REsource cohort. However, genetic associations with any individual nucleotide variants were not discovered by Bonferroni multiple testing in the GWAS (P>1.42 × 10(-7)). Genomic regions enrichment analysis was employed to identify functional associations of cis-regulatory regions. This analysis revealed several biological processes associated with gout susceptibility, and they were quite different from those with serum uric acid level. Epistasis for susceptibility to gout was estimated using entropy decomposition with selected genes within each biological process identified by the genomic regions enrichment analysis. Some epistases among nucleotide sequence variants for gout susceptibility were found to be larger than their individual effects. This study provided the first evidence that genetic factors for gout susceptibility greatly differed from those for serum uric acid level, which may suggest that research endeavors for identifying genetic factors for gout susceptibility should not be heavily dependent on pathogenesis of uric acid. Interaction effects between genes should be examined to explain a large portion of phenotypic variability for gout susceptibility.

  7. Population genetic testing for cancer susceptibility: founder mutations to genomes.

    PubMed

    Foulkes, William D; Knoppers, Bartha Maria; Turnbull, Clare

    2016-01-01

    The current standard model for identifying carriers of high-risk mutations in cancer-susceptibility genes (CSGs) generally involves a process that is not amenable to population-based testing: access to genetic tests is typically regulated by health-care providers on the basis of a labour-intensive assessment of an individual's personal and family history of cancer, with face-to-face genetic counselling performed before mutation testing. Several studies have shown that application of these selection criteria results in a substantial proportion of mutation carriers being missed. Population-based genetic testing has been proposed as an alternative approach to determining cancer susceptibility, and aims for a more-comprehensive detection of mutation carriers. Herein, we review the existing data on population-based genetic testing, and consider some of the barriers, pitfalls, and challenges related to the possible expansion of this approach. We consider mechanisms by which population-based genetic testing for cancer susceptibility could be delivered, and suggest how such genetic testing might be integrated into existing and emerging health-care structures. The existing models of genetic testing (including issues relating to informed consent) will very likely require considerable alteration if the potential benefits of population-based genetic testing are to be fully realized.

  8. Evolutionary Determinants of Genetic Variation in Susceptibility to Infectious Diseases in Humans

    PubMed Central

    Baker, Christi; Antonovics, Janis

    2012-01-01

    Although genetic variation among humans in their susceptibility to infectious diseases has long been appreciated, little focus has been devoted to identifying patterns in levels of variation in susceptibility to different diseases. Levels of genetic variation in susceptibility associated with 40 human infectious diseases were assessed by a survey of studies on both pedigree-based quantitative variation, as well as studies on different classes of marker alleles. These estimates were correlated with pathogen traits, epidemiological characteristics, and effectiveness of the human immune response. The strongest predictors of levels of genetic variation in susceptibility were disease characteristics negatively associated with immune effectiveness. High levels of genetic variation were associated with diseases with long infectious periods and for which vaccine development attempts have been unsuccessful. These findings are consistent with predictions based on theoretical models incorporating fitness costs associated with the different types of resistance mechanisms. An appreciation of these observed patterns will be a valuable tool in directing future research given that genetic variation in disease susceptibility has large implications for vaccine development and epidemiology. PMID:22242158

  9. Genetic susceptibility to neuroblastoma

    PubMed Central

    Tolbert, Vanessa P.; Coggins, Grace E.; Maris, John M.

    2017-01-01

    Until recently, the genetic basis of neuroblastoma, a heterogeneous neoplasm arising from the developing sympathetic nervous system, remained undefined. The discovery of gain-of-function mutations in the ALK receptor tyrosine kinase gene as the major cause of familial neuroblastoma led to the discovery of identical somatic mutations and rapid advancement of ALK as a tractable therapeutic target. Inactivating mutations in a master regulator of neural crest development, PHOX2B, have also been identified in a subset of familial neuroblastomas. Other high penetrance susceptibility alleles likely exist, but together these heritable mutations account for less than 10% of neuroblastoma cases. A genome-wide association study of a large neuroblastoma cohort identified common and rare polymorphisms highly associated with the disease. Ongoing resequencing efforts aim to further define the genetic landscape of neuroblastoma. PMID:28458126

  10. Exploring Genetic Susceptibility to Fibromyalgia

    PubMed Central

    Park, Dong-Jin; Kang, Ji-Hyoun; Yim, Yi-Rang; Kim, Ji-Eun; Lee, Jeong-Won; Lee, Kyung-Eun; Wen, Lihui; Kim, Tae-Jong; Park, Yong-Wook

    2015-01-01

    Fibromyalgia (FM) affects 1% to 5% of the population, and approximately 90% of the affected individuals are women. FM patients experience impaired quality of life and the disorder places a considerable economic burden on the medical care system. With the recognition of FM as a major health problem, many recent studies have evaluated the pathophysiology of FM. Although the etiology of FM remains unknown, it is thought to involve some combination of genetic susceptibility and environmental exposure that triggers further alterations in gene expression. Because FM shows marked familial aggregation, most previous research has focused on genetic predisposition to FM and has revealed associations between genetic factors and the development of FM, including specific gene polymorphisms involved in the serotonergic, dopaminergic, and catecholaminergic pathways. The aim of this review was to discuss the current evidence regarding genetic factors that may play a role in the development and symptom severity of FM. PMID:26306300

  11. Genetic background effects in quantitative genetics: gene-by-system interactions.

    PubMed

    Sardi, Maria; Gasch, Audrey P

    2018-04-11

    Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype-phenotype relationships across individuals.

  12. Genetic background in nonalcoholic fatty liver disease: A comprehensive review

    PubMed Central

    Macaluso, Fabio Salvatore; Maida, Marcello; Petta, Salvatore

    2015-01-01

    In the Western world, nonalcoholic fatty liver disease (NAFLD) is considered as one of the most significant liver diseases of the twenty-first century. Its development is certainly driven by environmental factors, but it is also regulated by genetic background. The role of heritability has been widely demonstrated by several epidemiological, familial, and twin studies and case series, and likely reflects the wide inter-individual and inter-ethnic genetic variability in systemic metabolism and wound healing response processes. Consistent with this idea, genome-wide association studies have clearly identified Patatin-like phosholipase domain-containing 3 gene variant I148M as a major player in the development and progression of NAFLD. More recently, the transmembrane 6 superfamily member 2 E167K variant emerged as a relevant contributor in both NAFLD pathogenesis and cardiovascular outcomes. Furthermore, numerous case-control studies have been performed to elucidate the potential role of candidate genes in the pathogenesis and progression of fatty liver, although findings are sometimes contradictory. Accordingly, we performed a comprehensive literature search and review on the role of genetics in NAFLD. We emphasize the strengths and weaknesses of the available literature and outline the putative role of each genetic variant in influencing susceptibility and/or progression of the disease. PMID:26494964

  13. A Systems Genetic Approach to Identify Low Dose Radiation-Induced Lymphoma Susceptibility/DOE2013FinalReport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmain, Allan; Song, Ihn Young

    2013-05-15

    The ultimate goal of this project is to identify the combinations of genetic variants that confer an individual's susceptibility to the effects of low dose (0.1 Gy) gamma-radiation, in particular with regard to tumor development. In contrast to the known effects of high dose radiation in cancer induction, the responses to low dose radiation (defined as 0.1 Gy or less) are much less well understood, and have been proposed to involve a protective anti-tumor effect in some in vivo scientific models. These conflicting results confound attempts to develop predictive models of the risk of exposure to low dose radiation, particularlymore » when combined with the strong effects of inherited genetic variants on both radiation effects and cancer susceptibility. We have used a Systems Genetics approach in mice that combines genetic background analysis with responses to low and high dose radiation, in order to develop insights that will allow us to reconcile these disparate observations. Using this comprehensive approach we have analyzed normal tissue gene expression (in this case the skin and thymus), together with the changes that take place in this gene expression architecture a) in response to low or high- dose radiation and b) during tumor development. Additionally, we have demonstrated that using our expression analysis approach in our genetically heterogeneous/defined radiation-induced tumor mouse models can uniquely identify genes and pathways relevant to human T-ALL, and uncover interactions between common genetic variants of genes which may lead to tumor susceptibility.« less

  14. Characterizing Genetic Susceptibility to Breast Cancer in Women of African Ancestry.

    PubMed

    Feng, Ye; Rhie, Suhn Kyong; Huo, Dezheng; Ruiz-Narvaez, Edward A; Haddad, Stephen A; Ambrosone, Christine B; John, Esther M; Bernstein, Leslie; Zheng, Wei; Hu, Jennifer J; Ziegler, Regina G; Nyante, Sarah; Bandera, Elisa V; Ingles, Sue A; Press, Michael F; Deming, Sandra L; Rodriguez-Gil, Jorge L; Zheng, Yonglan; Yao, Song; Han, Yoo-Jeong; Ogundiran, Temidayo O; Rebbeck, Timothy R; Adebamowo, Clement; Ojengbede, Oladosu; Falusi, Adeyinka G; Hennis, Anselm; Nemesure, Barbara; Ambs, Stefan; Blot, William; Cai, Qiuyin; Signorello, Lisa; Nathanson, Katherine L; Lunetta, Kathryn L; Sucheston-Campbell, Lara E; Bensen, Jeannette T; Chanock, Stephen J; Marchand, Loic Le; Olshan, Andrew F; Kolonel, Laurence N; Conti, David V; Coetzee, Gerhard A; Stram, Daniel O; Olopade, Olufunmilayo I; Palmer, Julie R; Haiman, Christopher A

    2017-07-01

    Background: Genome-wide association studies have identified approximately 100 common genetic variants associated with breast cancer risk, the majority of which were discovered in women of European ancestry. Because of different patterns of linkage disequilibrium, many of these genetic markers may not represent signals in populations of African ancestry. Methods: We tested 74 breast cancer risk variants and conducted fine-mapping of these susceptibility regions in 6,522 breast cancer cases and 7,643 controls of African ancestry from three genetic consortia (AABC, AMBER, and ROOT). Results: Fifty-four of the 74 variants (73%) were found to have ORs that were directionally consistent with those previously reported, of which 12 were nominally statistically significant ( P < 0.05). Through fine-mapping, in six regions ( 3p24, 12p11, 14q13, 16q12/FTO, 16q23, 19p13 ), we observed seven markers that better represent the underlying risk variant for overall breast cancer or breast cancer subtypes, whereas in another two regions ( 11q13, 16q12/TOX3 ), we identified suggestive evidence of signals that are independent of the reported index variant. Overlapping chromatin features and regulatory elements suggest that many of the risk alleles lie in regions with biological functionality. Conclusions: Through fine-mapping of known susceptibility regions, we have revealed alleles that better characterize breast cancer risk in women of African ancestry. Impact: The risk alleles identified represent genetic markers for modeling and stratifying breast cancer risk in women of African ancestry. Cancer Epidemiol Biomarkers Prev; 26(7); 1016-26. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Genetic Background and Climatic Droplet Keratopathy Incidence in a Mapuche Population from Argentina

    PubMed Central

    Schurr, Theodore G.; Dulik, Matthew C.; Cafaro, Thamara A.; Suarez, María F.

    2013-01-01

    Purpose To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. Methods To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. Results This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. Conclusions These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK. PMID:24040292

  16. Genetic background and climatic droplet keratopathy incidence in a Mapuche population from Argentina.

    PubMed

    Schurr, Theodore G; Dulik, Matthew C; Cafaro, Thamara A; Suarez, María F; Urrets-Zavalia, Julio A; Serra, Horacio M

    2013-01-01

    To determine whether the incidence of and susceptibility to climatic droplet keratopathy (CDK), an acquired, often bilateral degenerative corneal disease, is influenced by the genetic background of the individuals who exhibit the disorder. To determine whether the disease expression was influenced by the genetic ancestry of CDK cases in native Mapuche of the northwest area of Patagonia in Argentina, we examined mitochondrial DNA and Y-chromosome variation in 53 unrelated individuals. Twenty-nine of them were part of the CDK (patient) population, while 24 were part of the control group. The analysis revealed the maternal and paternal lineages that were present in the two study groups. This analysis demonstrated that nearly all persons had a Native American mtDNA background, whereas 50% of the CDK group and 37% of the control group had Native American paternal ancestry, respectively. There was no significant difference in the frequencies of mtDNA haplogroups between the CDK patient and control groups. Although the Y-chromosome data revealed differences in specific haplogroup frequencies between these two groups, there was no statistically significant relationship between individual paternal genetic backgrounds and the incidence or stage of disease. These results indicate a lack of correlation between genetic ancestry as represented by haploid genetic systems and the incidence of CDK in Mapuche populations. In addition, the mtDNA appears to play less of a role in CDK expression than for other complex diseases linked to bioenergetic processes. However, further analysis of the mtDNA genome sequence and other genes involved in corneal function may reveal the more precise role that mitochondria play in the expression of CDK.

  17. Computational Integration of Human Genetic and Toxicological Data to Evaluate AOP-Specific Susceptibility

    EPA Science Inventory

    Susceptibility to environmental chemicals can be modulated by genetic differences. Direct estimation of the genetic contribution to variability in susceptibility to environmental chemicals is only possible in special cases where there is an observed association between exposure a...

  18. Genetic susceptibility testing for neurodegenerative diseases: ethical and practice issues.

    PubMed

    Roberts, J Scott; Uhlmann, Wendy R

    2013-11-01

    As the genetics of neurodegenerative disease become better understood, opportunities for genetic susceptibility testing for at-risk individuals will increase. Such testing raises important ethical and practice issues related to test access, informed consent, risk estimation and communication, return of results, and policies to prevent genetic discrimination. The advent of direct-to-consumer genetic susceptibility testing for various neurodegenerative disorders (including Alzheimer's disease (AD), Parkinson's disease, and certain prion diseases) means that ethical and practical challenges must be faced not only in traditional research and clinical settings, but also in broader society. This review addresses several topics relevant to the development and implementation of genetic susceptibility tests across research, clinical, and consumer settings; these include appropriate indications for testing, the implications of different methods for disclosing test results, clinical versus personal utility of risk information, psychological and behavioral responses to test results, testing of minors, genetic discrimination, and ethical dilemmas posed by whole-genome sequencing. We also identify future areas of likely growth in the field, including pharmacogenomics and genetic screening for individuals considering or engaged in activities that pose elevated risk of brain injury (e.g., football players, military personnel). APOE gene testing for risk of Alzheimer's disease is used throughout as an instructive case example, drawing upon the authors' experience as investigators in a series of multisite randomized clinical trials that have examined the impact of disclosing APOE genotype status to interested individuals (e.g., first-degree relatives of AD patients, persons with mild cognitive impairment). Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Genetic susceptibility testing for neurodegenerative diseases: Ethical and practice issues

    PubMed Central

    Roberts, J. Scott; Uhlmann, Wendy R.

    2013-01-01

    As the genetics of neurodegenerative disease become better understood, opportunities for genetic susceptibility testing for at-risk individuals will increase. Such testing raises important ethical and practice issues related to test access, informed consent, risk estimation and communication, return of results, and policies to prevent genetic discrimination. The advent of direct-to-consumer genetic susceptibility testing for various neurodegenerative disorders (including Alzheimer’s disease, Parkinson’s disease, and certain prion diseases) means that ethical and practical challenges must be faced not only in traditional research and clinical settings, but also in broader society. This review addresses several topics relevant to the development and implementation of genetic susceptibility tests across research, clinical, and consumer settings; these include appropriate indications for testing, the implications of different methods for disclosing test results, clinical versus personal utility of risk information, psychological and behavioral responses to test results, testing of minors, genetic discrimination, and ethical dilemmas posed by whole-genome sequencing. We also identify future areas of likely growth in the field, including pharmacogenomics and genetic screening for individuals considering or engaged in activities that pose elevated risk of brain injury (e.g., football players, military personnel). APOE gene testing for risk of Alzheimer’s disease is used throughout as an instructive case example, drawing upon the authors’ experience as investigators in a series of multisite randomized clinical trials that have examined the impact of disclosing APOE genotype status to interested individuals (e.g., first-degree relatives, persons with mild cognitive impairment). PMID:23583530

  20. Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes

    DTIC Science & Technology

    2013-03-14

    SUPPLEMENTARY NOTES 14. ABSTRACT Autism is an extremely common and heterogeneous neurodevelopmental disorder. While genetic factors are known to play...AFRL-SA-WP-TR-2013-0013 Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes...Genetic Mapping for the Discovery of Autism Susceptibility Genes 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6

  1. Genetic background effects in Neuroligin-3 mutant mice: Minimal behavioral abnormalities on C57 background.

    PubMed

    Jaramillo, Thomas C; Escamilla, Christine Ochoa; Liu, Shunan; Peca, Lauren; Birnbaum, Shari G; Powell, Craig M

    2018-02-01

    Neuroligin-3 (NLGN3) is a postsynaptic cell adhesion protein that interacts with presynaptic ligands including neurexin-1 (NRXN1) [Ichtchenko et al., Journal of Biological Chemistry, 271, 2676-2682, 1996]. Mice harboring a mutation in the NLGN3 gene (NL3R451C) mimicking a mutation found in two brothers with autism spectrum disorder (ASD) were previously generated and behaviorally phenotyped for autism-related behaviors. In these NL3R451C mice generated and tested on a hybrid C57BL6J/129S2/SvPasCrl background, we observed enhanced spatial memory and reduced social interaction [Tabuchi et al., Science, 318, 71-76, 2007]. Curiously, an independently generated second line of mice harboring the same mutation on a C57BL6J background exhibited minimal aberrant behavior, thereby providing apparently discrepant results. To investigate the origin of the discrepancy, we previously replicated the original findings of Tabuchi et al. by studying the same NL3R451C mutation on a pure 129S2/SvPasCrl genetic background. Here we complete the behavioral characterization of the NL3R451C mutation on a pure C57BL6J genetic background to determine if background genetics play a role in the discrepant behavioral outcomes involving NL3R451C mice. NL3R451C mutant mice on a pure C57BL6J background did not display spatial memory enhancements or social interaction deficits. We only observed a decreased startle response and mildly increased locomotor activity in these mice suggesting that background genetics influences behavioral outcomes involving the NL3R451C mutation. Autism Res 2018, 11: 234-244. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Behavioral symptoms of autism can be highly variable, even in cases that involve identical genetic mutations. Previous studies in mice with a mutation of the Neuroligin-3 gene showed enhanced learning and social deficits. We replicated these findings on the same and different genetic backgrounds. In this study, however, the

  2. Patients' understanding of and responses to multiplex genetic susceptibility test results.

    PubMed

    Kaphingst, Kimberly A; McBride, Colleen M; Wade, Christopher; Alford, Sharon Hensley; Reid, Robert; Larson, Eric; Baxevanis, Andreas D; Brody, Lawrence C

    2012-07-01

    Examination of patients' responses to direct-to-consumer genetic susceptibility tests is needed to inform clinical practice. This study examined patients' recall and interpretation of, and responses to, genetic susceptibility test results provided directly by mail. This observational study had three prospective assessments (before testing, 10 days after receiving results, and 3 months later). Participants were 199 patients aged 25-40 years who received free genetic susceptibility testing for eight common health conditions. More than 80% of the patients correctly recalled their results for the eight health conditions. Patients were unlikely to interpret genetic results as deterministic of health outcomes (mean = 6.0, s.d. = 0.8 on a scale of 1-7, 1 indicating strongly deterministic). In multivariate analysis, patients with the least deterministic interpretations were white (P = 0.0098), more educated (P = 0.0093), and least confused by results (P = 0.001). Only 1% talked about their results with a provider. Findings suggest that most patients will correctly recall their results and will not interpret genetics as the sole cause of diseases. The subset of those confused by results could benefit from consultation with a health-care provider, which could emphasize that health habits currently are the best predictors of risk. Providers could leverage patients' interest in genetic tests to encourage behavior changes to reduce disease risk.

  3. GENETIC SUSCEPTIBILITY AND EXPERIMENTAL INDUCTION OF PULMONARY DISEASE

    EPA Science Inventory

    Genetic Susceptibility and Experimental Induction of Pulmonary Disease. UP Kodavanti, MC Schladweiler, AD Ledbetter, PS Gilmour, P Evansky, KR Smith*, WP Watkinson, DL Costa, KE Pinkerton*. ETD, NHEERL, ORD, US EPA, RTP, NC; *Univ California, Davis, CA, USA.
    Conventional la...

  4. Genetic and environmental determinants of the susceptibility of Amerindian derived populations for having hypertriglyceridemia

    PubMed Central

    Aguilar-Salinas, Carlos A.; Tusie-Luna, Teresa; Pajukanta, Päivi

    2014-01-01

    Here, we discuss potential explanations for the higher prevalence of hypertriglyceridemia in populations with an Amerindian background. Although environmental factors are the triggers, the search for the ethnic related factors that explains the increased susceptibility of the Amerindians is a promising area for research. The study of the genetics of hypertriglyceridemia in Hispanic populations faces several challenges. Ethnicity could be a major confounding variable to prove genetic associations. Despite that, the study of hypertriglyceridemia in Hispanics has resulted in significant contributions. Two GWAS reports have exclusively included Mexican mestizos. Fifty percent of the associations reported in Caucasians could be generalized to the Mexicans, but in many cases the Mexican lead SNP was different than that reported in Europeans. Both reports included new associations with apo B or triglycerides concentrations. The frequency of susceptibility alleles in Mexicans is higher than that found in Europeans for several of the genes with the greatest effect on triglycerides levels. An example is the SNP rs964184 in APOA5. The same trend was observed for ANGPTL3 and TIMD4 variants. In summary, we postulate that the study of the genetic determinants of hypertriglyceridemia in Amerindian populations which have major changes in their lifestyle, may prove to be a great resource to identify new genes and pathways associated with hypertriglyceridemia. PMID:24768220

  5. Physical exercise counteracts genetic susceptibility to depression.

    PubMed

    Haslacher, Helmuth; Michlmayr, Matthias; Batmyagmar, Delgerdalai; Perkmann, Thomas; Ponocny-Seliger, Elisabeth; Scheichenberger, Vanessa; Pilger, Alexander; Dal-Bianco, Peter; Lehrner, Johann; Pezawas, Lukas; Wagner, Oswald; Winker, Robert

    2015-01-01

    Depression is a highly prevalent disorder in elderly individuals. A genetic variant (rs6265) of the brain-derived neurotrophic factor (BDNF) impacting on emotion processing is known to increase the risk for depression. We aim to investigate whether intensive endurance sports might attenuate this genetic susceptibility in a cohort of elderly marathon athletes. Fifty-five athletes and 58 controls were included. rs6265 of the BDNF gene was genotyped by the TaqMan method. Depressive symptoms were assessed by standardized self-rating tests (BDI = Beck Depression Inventory, GDS = Geriatric Depression Scale). In multivariable analysis of BDI and GDS scores, the interaction between group (athletes vs. controls) and genotypes ([C];[C] vs. [C];[T] + [T];[T]) was found to be statistically significant (BDI: p = 0.027, GDS: p = 0.013). Among [C];[C] carriers, merely controls had an increased relative risk of 3.537 (95% CI = 1.276-9.802) of achieving a subclinical depression score ≥10 on the BDI. There was no such effect in carriers of the [T] allele. In a multivariable binary logistic regression, genetic information, group (athletes/controls), but no information on rs6265 allele carrier status presented as a significant predictor of BDI scores ≥10. Physical exercise positively affects BDNF effects on mood. Since 66Met BDNF secretion is impaired, this effect seems to be much stronger in [C];[C] homozygous individuals expressing the 66Val variant. This confirms that genetic susceptibility to depressive symptoms can indeed be influenced by endurance sports in elderly people. © 2015 S. Karger AG, Basel.

  6. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain

    NASA Astrophysics Data System (ADS)

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C. M.; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions

  7. Genetic dissection of MHC-associated susceptibility to Lepeophtheirus salmonis in Atlantic salmon

    PubMed Central

    Gharbi, Karim; Glover, Kevin A; Stone, Louise C; MacDonald, Elizabeth S; Matthews, Louise; Grimholt, Unni; Stear, Michael J

    2009-01-01

    Background Genetic variation has been shown to play a significant role in determining susceptibility to the salmon louse, Lepeophtheirus salmonis. However, the mechanisms involved in differential response to infection remain poorly understood. Recent findings in Atlantic salmon (Salmo salar) have provided evidence for a potential link between marker variation at the major histocompatibility complex (MHC) and differences in lice abundance among infected siblings, suggesting that MHC genes can modulate susceptibility to the parasite. In this study, we used quantitative trait locus (QTL) analysis to test the effect of genomic regions linked to MHC class I and II on linkage groups (LG) 15 and 6, respectively. Results Significant QTL effects were detected on both LG 6 and LG 15 in sire-based analysis but the QTL regions remained unresolved due to a lack of recombination between markers. In dam-based analysis, a significant QTL was identified on LG 6, which accounted for 12.9% of within-family variance in lice abundance. However, the QTL was located at the opposite end of DAA, with no significant overlap with the MHC class II region. Interestingly, QTL modelling also revealed evidence of sex-linked differences in lice abundance, indicating that males and females may have different susceptibility to infection. Conclusion Overall, QTL analysis provided relatively weak support for a proximal effect of classical MHC regions on lice abundance, which can partly be explained by linkage to other genes controlling susceptibility to L. salmonis on the same chromosome. PMID:19397823

  8. Evolution, revolution and heresy in the genetics of infectious disease susceptibility

    PubMed Central

    Hill, Adrian V. S.

    2012-01-01

    Infectious pathogens have long been recognized as potentially powerful agents impacting on the evolution of human genetic diversity. Analysis of large-scale case–control studies provides one of the most direct means of identifying human genetic variants that currently impact on susceptibility to particular infectious diseases. For over 50 years candidate gene studies have been used to identify loci for many major causes of human infectious mortality, including malaria, tuberculosis, human immunodeficiency virus/acquired immunodeficiency syndrome, bacterial pneumonia and hepatitis. But with the advent of genome-wide approaches, many new loci have been identified in diverse populations. Genome-wide linkage studies identified a few loci, but genome-wide association studies are proving more successful, and both exome and whole-genome sequencing now offer a revolutionary increase in power. Opinions differ on the extent to which the genetic component to common disease susceptibility is encoded by multiple high frequency or rare variants, and the heretical view that most infectious diseases might even be monogenic has been advocated recently. Review of findings to date suggests that the genetic architecture of infectious disease susceptibility may be importantly different from that of non-infectious diseases, and it is suggested that natural selection may be the driving force underlying this difference. PMID:22312051

  9. Genetic susceptibility to bone and soft tissue sarcomas: a field synopsis and meta-analysis

    PubMed Central

    Benna, Clara; Simioni, Andrea; Pasquali, Sandro; De Boni, Davide; Rajendran, Senthilkumar; Spiro, Giovanna; Colombo, Chiara; Virgone, Calogero; DuBois, Steven G.; Gronchi, Alessandro; Rossi, Carlo Riccardo; Mocellin, Simone

    2018-01-01

    Background The genetic architecture of bone and soft tissue sarcomas susceptibility is yet to be elucidated. We aimed to comprehensively collect and meta-analyze the current knowledge on genetic susceptibility in these rare tumors. Methods We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing sarcomas through searching PubMed, The Cochrane Library, Scopus and Web of Science databases. To evaluate result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Integrative analysis of genetic and eQTL (expression quantitative trait locus) data was coupled with network and pathway analysis to explore the hypothesis that specific cell functions are involved in sarcoma predisposition. Results We retrieved 90 eligible studies comprising 47,796 subjects (cases: 14,358, 30%) and investigating 1,126 polymorphisms involving 320 distinct genes. Meta-analysis identified 55 single nucleotide polymorphisms (SNPs) significantly associated with disease risk with a high (N=9), moderate (N=38) and low (N=8) level of evidence, findings being classified as noteworthy basically only when the level of evidence was high. The estimated joint population attributable risk for three independent SNPs (rs11599754 of ZNF365/EGR2, rs231775 of CTLA4, and rs454006 of PRKCG) was 37.2%. We also identified 53 SNPs significantly associated with sarcoma risk based on single studies. Pathway analysis enabled us to propose that sarcoma predisposition might be linked especially to germline variation of genes whose products are involved in the function of the DNA repair machinery. Conclusions We built the first knowledgebase on the evidence linking DNA variation to sarcomas susceptibility, which can be used to generate mechanistic hypotheses and inform future studies in this field of oncology. PMID:29719630

  10. Background field removal using a region adaptive kernel for quantitative susceptibility mapping of human brain.

    PubMed

    Fang, Jinsheng; Bao, Lijun; Li, Xu; van Zijl, Peter C M; Chen, Zhong

    2017-08-01

    Background field removal is an important MR phase preprocessing step for quantitative susceptibility mapping (QSM). It separates the local field induced by tissue magnetic susceptibility sources from the background field generated by sources outside a region of interest, e.g. brain, such as air-tissue interface. In the vicinity of air-tissue boundary, e.g. skull and paranasal sinuses, where large susceptibility variations exist, present background field removal methods are usually insufficient and these regions often need to be excluded by brain mask erosion at the expense of losing information of local field and thus susceptibility measures in these regions. In this paper, we propose an extension to the variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP) background field removal method using a region adaptive kernel (R-SHARP), in which a scalable spherical Gaussian kernel (SGK) is employed with its kernel radius and weights adjustable according to an energy "functional" reflecting the magnitude of field variation. Such an energy functional is defined in terms of a contour and two fitting functions incorporating regularization terms, from which a curve evolution model in level set formation is derived for energy minimization. We utilize it to detect regions of with a large field gradient caused by strong susceptibility variation. In such regions, the SGK will have a small radius and high weight at the sphere center in a manner adaptive to the voxel energy of the field perturbation. Using the proposed method, the background field generated from external sources can be effectively removed to get a more accurate estimation of the local field and thus of the QSM dipole inversion to map local tissue susceptibility sources. Numerical simulation, phantom and in vivo human brain data demonstrate improved performance of R-SHARP compared to V-SHARP and RESHARP (regularization enabled SHARP) methods, even when the whole paranasal sinus regions

  11. AB087. Synergistic genetic effects of RET and NRG1 susceptibility variants in Hirschsprung disease

    PubMed Central

    Iskandar, Kristy; Makhmudi, Akhmad; Gunadi

    2017-01-01

    Background Hirschsprung disease (HSCR) is a complex genetic disorder, which characterized by absence of ganglion cells along variable lengths of the intestines in neonates, with the RET and NRG1 are reported as the most common susceptible genes for HSCR development. Here, we investigated three common genetic markers: RET rs2506030 and NRG1 rs7835688 and rs16879552, to determine their potential interactions to the susceptibility of HSCR in Indonesian population. Methods We ascertained 60 HSCR subjects and 118 non-HSCR controls. Three genetic markers of the RET and NRG1 were examined using TaqMan assay. Case-control association tests between three genetic markers and HSCR were performed using the χ2 (chi square) statistic and 2×2 contingency tables. We analyzed the family based association in duos and trios using the transmission disequilibrium test (TDT) for the variants using PLINK. Results There was association between NRG1 rs7835688 (4.3×10−3) variant and HSCR, but not RET rs2506030 (P=0.042) and NRG1 rs16879552 (P=0.097). TDT of 33 HSCR families demonstrates no genetic effect either at RET rs2506030 (P=0.034) or NRG1 rs7835688 (P=0.18) and rs16879552 (P=0.28). Two locus analyses of polymorphisms demonstrated that RET rs2506030 (GG), in combination with NRG1 rs7835688 (CC) or rs16879552 (CC), were associated with the increased disease risks of HSCR (OR =6.22, P=0.028 and OR =3.34, P=6.0×10−4, respectively) compared with a single variant of either RET or NRG1. Conclusions Our study shows that RET and NRG1 polymorphisms are common genetic risk factors for Indonesian HSCR. These results also imply that synergistic effects of RET and NRG1 is necessary for normal ganglionosis.

  12. The effects of learning about one's own genetic susceptibility to alcoholism: a randomized experiment.

    PubMed

    Dar-Nimrod, Ilan; Zuckerman, Miron; Duberstein, Paul R

    2013-02-01

    Increased accessibility of direct-to-consumer personalized genetic reports raises the question: how are people affected by information about their own genetic predispositions? Participants were led to believe that they had entered a study on the genetics of alcoholism and sleep disorders. Participants provided a saliva sample purportedly to be tested for the presence of relevant genes. While awaiting the results, they completed a questionnaire assessing their emotional state. They subsequently received a bogus report about their genetic susceptibility and completed a questionnaire about their emotional state and items assessing perceived control over drinking, relevant future drinking-related intentions, and intervention-related motivation and behavior. Participants who were led to believe that they had a gene associated with alcoholism showed an increase in negative affect, decrease in positive affect, and reduced perceived personal control over drinking. Reported intentions for alcohol consumption in the near future were not affected; however, individuals were more likely to enroll in a "responsible drinking" workshop after learning of their alleged genetic susceptibility. The first complete randomized experiment to examine the psychological and behavioral effects of receiving personalized genetic susceptibility information indicates some potential perils and benefits of direct-to-consumer genetic tests.

  13. Regulation of male germ cell cycle arrest and differentiation by DND1 is modulated by genetic background

    PubMed Central

    Cook, Matthew S.; Munger, Steven C.; Nadeau, Joseph H.; Capel, Blanche

    2011-01-01

    Human germ cell tumors show a strong sensitivity to genetic background similar to Dnd1Ter/Ter mutant mice, where testicular teratomas arise only on the 129/SvJ genetic background. The introduction of the Bax mutation onto mixed background Dnd1Ter/Ter mutants, where teratomas do not typically develop, resulted in a high incidence of teratomas. However, when Dnd1Ter/Ter; Bax–/– double mutants were backcrossed to C57BL/6J, no tumors arose. Dnd1Ter/Ter germ cells show a strong downregulation of male differentiation genes including Nanos2. In susceptible strains, where teratomas initiate around E15.5-E17.5, many mutant germ cells fail to enter mitotic arrest in G0 and do not downregulate the pluripotency markers NANOG, SOX2 and OCT4. We show that DND1 directly binds a group of transcripts that encode negative regulators of the cell cycle, including p27Kip1 and p21Cip1. P27Kip1 and P21Cip1 protein are both significantly decreased in Dnd1Ter/Ter germ cells on all strain backgrounds tested, strongly suggesting that DND1 regulates mitotic arrest in male germ cells through translational regulation of cell cycle genes. Nonetheless, in C57BL/6J mutants, germ cells arrest prior to M-phase of the cell cycle and downregulate NANOG, SOX2 and OCT4. Consistent with their ability to rescue cell cycle arrest, C57BL/6J germ cells overexpress negative regulators of the cell cycle relative to 129/SvJ. This work suggests that reprogramming of pluripotency in germ cells and prevention of tumor formation requires cell cycle arrest, and that differences in the balance of cell cycle regulators between 129/SvJ and C57BL/6 might underlie differences in tumor susceptibility. PMID:21115610

  14. Host Genetic Background Strongly Affects Pulmonary microRNA Expression before and during Influenza A Virus Infection.

    PubMed

    Preusse, Matthias; Schughart, Klaus; Pessler, Frank

    2017-01-01

    Expression of host microRNAs (miRNAs) changes markedly during influenza A virus (IAV) infection of natural and adaptive hosts, but their role in genetically determined host susceptibility to IAV infection has not been explored. We, therefore, compared pulmonary miRNA expression during IAV infection in two inbred mouse strains with differential susceptibility to IAV infection. miRNA expression profiles were determined in lungs of the more susceptible strain DBA/2J and the less susceptible strain C57BL/6J within 120 h post infection (hpi) with IAV (H1N1) PR8. Even the miRNomes of uninfected lungs differed substantially between the two strains. After a period of relative quiescence, major miRNome reprogramming was detected in both strains by 48 hpi and increased through 120 hpi. Distinct groups of miRNAs regulated by IAV infection could be defined: (1) miRNAs ( n  = 39) whose expression correlated with hemagglutinin (HA) mRNA expression and represented the general response to IAV infection independent of host genetic background; (2) miRNAs ( n  = 20) whose expression correlated with HA mRNA expression but differed between the two strains; and (3) remarkably, miR-147-3p, miR-208b-3p, miR-3096a-5p, miR-3069b-3p, and the miR-467 family, whose abundance even in uninfected lungs differentiated nearly perfectly (area under the ROC curve > 0.99) between the two strains throughout the time course, suggesting a particularly strong association with the differential susceptibility of the two mouse strains. Expression of subsets of miRNAs correlated significantly with peripheral blood granulocyte and monocyte numbers, particularly in DBA/2J mice; miR-223-3p, miR-142-3p, and miR-20b-5p correlated most positively with these cell types in both mouse strains. Higher abundance of antiapoptotic (e.g., miR-467 family) and lower abundance of proapoptotic miRNAs (e.g., miR-34 family) and those regulating the PI3K-Akt pathway (e.g., miR-31-5p) were associated with the

  15. Differences in genetic background influence the induction of innate and acquired immune responses in chickens depending on the virulence of the infecting infectious bursal disease virus (IBDV) strain.

    PubMed

    Aricibasi, Merve; Jung, Arne; Heller, E Dan; Rautenschlein, Silke

    2010-05-15

    Previous studies and field observations have suggested that genetic background influences infectious bursal disease virus (IBDV) pathogenesis. However, the influence of the virulence of the infecting IBDV strain and the mechanisms underlying the differences in susceptibility are not known. In the present study IBDV pathogenesis was compared between specific-pathogen-free layer-type (LT) chickens, which are the most susceptible chicken for IBDV and have been used as the model for pathogenesis studies, and broiler-type (BT) chickens, which are known to be less susceptible to clinical infectious bursal disease (IBD). The innate and acquired immune responses were investigated after inoculation of an intermediate (i), virulent (v) or very virulent (vv) strain of IBDV. IBDV pathogenesis was comparable among genetic backgrounds after infection with iIBDV. After infection with vIBDV and vvIBDV, LT birds showed severe clinical disease and mortality, higher bursal lesion scores and IBDV-antigen load relative to BT birds. Circulating cytokine induction varied significantly in both timing and quantity between LT and BT birds and among virus strains (P<0.05). Evaluation of different immune cell populations by flow-cytometric analysis in the bursa of Fabricius provided circumstantial evidence of a stronger local T cell response in BT birds vs. LT birds after infection with the virulent strain. On the other hand, LT birds showed a more significant increase in circulating macrophage-derived immune mediators such as total interferon (IFN) and serum nitrite than BT birds on days 2 and 3 post-vIBDV infection (P<0.05). Stronger stimulation of innate immune reactions especially after vIBDV infection in the early phase may lead to faster and more severe lesion development accompanied by clinical disease and death in LT chickens relative to BT chickens. Interestingly, no significant differences were seen between genetic backgrounds in induction of the IBDV-specific humoral response

  16. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background.

    PubMed

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-05-30

    Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial

  17. Population differences in platinum toxicity as a means to identify novel genetic susceptibility variants

    PubMed Central

    O'Donnell, Peter H.; Gamazon, Eric; Zhang, Wei; Stark, Amy L.; Kistner-Griffin, Emily O.; Huang, R. Stephanie; Dolan, M. Eileen

    2010-01-01

    Objectives Clinical studies show that Asians (ASN) are more susceptible to toxicities associated with platinum-containing regimens. We hypothesized that studying ASN as an `enriched phenotype' population could enable the discovery of novel genetic determinants of platinum susceptibility. Methods Using well-genotyped lymphoblastoid cell lines from the HapMap, we determined cisplatin and carboplatin cytotoxicity phenotypes (IC50s) for ASN, Caucasians (CEU), and Africans (YRI). IC50s were used in genome-wide association studies. Results ASN were most sensitive to platinums, corroborating clinical findings. ASN genome-wide association studies produced 479 single-nucleotide polymorphisms (SNPs) associating with cisplatin susceptibility and 199 with carboplatin susceptibility (P<10−4). Considering only the most significant variants (P< 9.99 × 10−6), backwards elimination was then used to identify reduced-model SNPs, which robustly described the drug phenotypes within ASN. These SNPs comprised highly descriptive genetic signatures of susceptibility, with 12 SNPs explaining more than 95% of the susceptibility phenotype variation for cisplatin, and eight SNPs approximately 75% for carboplatin. To determine the possible function of these variants in ASN, the SNPs were tested for association with differential expression of target genes. SNPs were highly associated with the expression of multiple target genes, and notably, the histone H3 family was implicated for both drugs, suggesting a platinum-class mechanism. Histone H3 has repeatedly been described as regulating the formation of platinum-DNA adducts, but this is the first evidence that specific genetic variants might mediate these interactions in a pharmacogenetic manner. Finally, to determine whether any ASN-identified SNPs might also be important in other human populations, we interrogated all 479/199 SNPs for association with platinum susceptibility in an independent combined CEU/YRI population. Three unique SNPs

  18. Role of genetic background in induced instability

    NASA Technical Reports Server (NTRS)

    Kadhim, Munira A.; Nelson, G. A. (Principal Investigator)

    2003-01-01

    Genomic instability is effectively induced by ionizing radiation. Recently, evidence has accumulated supporting a relationship between genetic background and the radiation-induced genomic instability phenotype. This is possibly due to alterations in proteins responsible for maintenance of genomic integrity or altered oxidative metabolism. Studies in human cell lines, human primary cells, and mouse models have been performed predominantly using high linear energy transfer (LET) radiation, or high doses of low LET radiation. The interplay between genetics, radiation response, and genomic instability has not been fully determined at low doses of low LET radiation. However, recent studies using low doses of low LET radiation suggest that the relationship between genetic background and radiation-induced genomic instability may be more complicated than these same relationships at high LET or high doses of low LET radiation. The complexity of this relationship at low doses of low LET radiation suggests that more of the population may be at risk than previously recognized and may have implications for radiation risk assessment.

  19. Genetic susceptibility for Alzheimer disease neuritic plaque pathology.

    PubMed

    Shulman, Joshua M; Chen, Kewei; Keenan, Brendan T; Chibnik, Lori B; Fleisher, Adam; Thiyyagura, Pradeep; Roontiva, Auttawut; McCabe, Cristin; Patsopoulos, Nikolaos A; Corneveaux, Jason J; Yu, Lei; Huentelman, Matthew J; Evans, Denis A; Schneider, Julie A; Reiman, Eric M; De Jager, Philip L; Bennett, David A

    2013-09-01

    While numerous genetic susceptibility loci have been identified for clinical Alzheimer disease (AD), it is important to establish whether these variants are risk factors for the underlying disease pathology, including neuritic plaques. To investigate whether AD susceptibility loci from genome-wide association studies affect neuritic plaque pathology and to additionally identify novel risk loci for this trait. Candidate analysis of single-nucleotide polymorphisms and genome-wide association study in a joint clinicopathologic cohort, including 725 deceased subjects from the Religious Orders Study and the Rush Memory and Aging Project (2 prospective, community-based studies), followed by targeted validation in an independent neuroimaging cohort, including 114 subjects from multiple clinical and research centers. A quantitative measure of neuritic plaque pathologic burden, based on assessments of silver-stained tissue averaged from multiple brain regions. Validation based on β-amyloid load by immunocytochemistry, and replication with fibrillar β-amyloid positron emission tomographic imaging with Pittsburgh Compound B or florbetapir. Besides the previously reported APOE and CR1 loci, we found that the ABCA7 (rs3764650; P = .02) and CD2AP (rs9349407; P = .03) AD susceptibility loci are associated with neuritic plaque burden. In addition, among the top results of our genome-wide association study, we discovered a novel variant near the amyloid precursor protein gene (APP, rs2829887) that is associated with neuritic plaques (P = 3.3 × 10-6). This polymorphism was associated with postmortem β-amyloid load as well as fibrillar β-amyloid in 2 independent cohorts of adults with normal cognition. These findings enhance understanding of AD risk factors by relating validated susceptibility alleles to increased neuritic plaque pathology and implicate common genetic variation at the APP locus in the earliest, presymptomatic stages of AD.

  20. Behavioural Susceptibility Theory: Professor Jane Wardle and the Role of Appetite in Genetic Risk of Obesity.

    PubMed

    Llewellyn, Clare H; Fildes, Alison

    2017-03-01

    There is considerable variability in human body weight, despite the ubiquity of the 'obesogenic' environment. Human body weight has a strong genetic basis and it has been hypothesised that genetic susceptibility to the environment explains variation in human body weight, with differences in appetite being implicated as the mediating mechanism; so-called 'behavioural susceptibility theory' (BST), first described by Professor Jane Wardle. This review summarises the evidence for the role of appetite as a mediator of genetic risk of obesity. Variation in appetitive traits is observable from infancy, drives early weight gain and is highly heritable in infancy and childhood. Obesity-related common genetic variants identified through genome-wide association studies show associations with appetitive traits, and appetite mediates part of the observed association between genetic risk and adiposity. Obesity results from an interaction between genetic susceptibility to overeating and exposure to an 'obesogenic' food environment.

  1. Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds.

    PubMed

    Petkau, T L; Hill, A; Leavitt, B R

    2016-02-19

    Loss-of-function mutations in the progranulin gene (GRN) are a common cause of familial frontotemporal lobar degeneration (FTLD). A high degree of heterogeneity in the age-of-onset, duration of disease, and clinical presentation of FTLD, even among families carrying the same GRN mutation, suggests that additional modifying genes may be important to pathogenesis. Progranulin-knockout mice display subtle behavioral abnormalities and progressive neuropathological changes, as well as altered dendritic morphology and synaptic deficits in the hippocampus. In this study we evaluated multiple neuropathological endpoints in aged progranulin knockout mice and their wild-type littermates on two different genetic backgrounds: C57Bl/6 and 129/SvImJ. We find that in most brain regions, both strains are susceptible to progranulin-mediated neuropathological phenotypes, including astrogliosis, microgliosis, and highly accelerated deposition of the aging pigment lipofuscin. Neuroinflammation due to progranulin deficiency is exaggerated in the B6 strain and present, but less pronounced, in the 129 strain. Differences between the strains in hippocampal neuron counts and neuronal morphology suggest a complex role for progranulin in the hippocampus. We conclude that core progranulin-mediated neurodegenerative phenotypes are penetrant on multiple inbred mouse strains, but that genetic background modulates progranulin's role in neuroinflammation and hippocampal biology. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Nutrigenetics: links between genetic background and response to Mediterranean-type diets.

    PubMed

    Lairon, Denis; Defoort, Catherine; Martin, Jean-Charles; Amiot-Carlin, Marie-Jo; Gastaldi, Marguerite; Planells, Richard

    2009-09-01

    It has been substantiated that the onset of most major diseases (CVD, diabetes, obesity, cancers, etc.) is modulated by the interaction between genetic traits (susceptibility) and environmental factors, especially diet. We aim to report more specific observations relating the effects of Mediterranean-type diets on cardiovascular risk factors and the genetic background of subjects. In the first part, general concepts about nutrigenetics are briefly presented. Human genome has, overall, only marginally changed since its origin but it is thought that minor changes (polymorphisms) of common genes that occurred during evolution are now widespread in human populations, and can alter metabolic pathways and response to diets. In the second part, we report the data obtained during the Medi-RIVAGE intervention study performed in the South-East of France. Data obtained in 169 subjects at moderate cardiovascular risk after a 3-month dietary intervention indicate that some of the twenty-three single nucleotide polymorphisms (SNP) studied exhibit interactions with diets regarding changes of particular parameters after 3-month regimens. Detailed examples are presented, such as interactions between SNP in genes coding for microsomial transfer protein (MTTP) or intestinal fatty acid binding protein (FABP2) and triglyceride, LDL-cholesterol or Framigham score lowering in responses to Mediterranean-type diets. The data provided add further evidence of the interaction between particular SNP and metabolic responses to diets. Finally, improvement in dietary recommendations by taking into account known genetic variability has been discussed.

  3. Effect of genetic background on the contribution of New Zealand Black loci to autoimmune lupus nephritis

    PubMed Central

    Rozzo, Stephen J.; Vyse, Timothy J.; Drake, Charles G.; Kotzin, Brian L.

    1996-01-01

    Autoimmune diseases such as systemic lupus erythematosus are complex genetic traits with contributions from major histocompatibility complex (MHC) genes and multiple unknown non-MHC genes. Studies of animal models of lupus have provided important insight into the immunopathogenesis of disease, and genetic analyses of these models overcome certain obstacles encountered when studying human patients. Genome-wide scans of different genetic crosses have been used to map several disease-linked loci in New Zealand hybrid mice. Although some consensus exists among studies mapping the New Zealand Black (NZB) and New Zealand White (NZW) loci that contribute to lupus-like disease, considerable variability is also apparent. A variable in these studies is the genetic background of the non-autoimmune strain, which could influence genetic contributions from the affected strain. A direct examination of this question was undertaken in the present study by mapping NZB nephritis-linked loci in backcrosses involving different non-autoimmune backgrounds. In a backcross with MHC-congenic C57BL/6J mice, H2z appeared to be the strongest genetic determinant of severe lupus nephritis, whereas in a backcross with congenic BALB/cJ mice, H2z showed no influence on disease expression. NZB loci on chromosomes 1, 4, 11, and 14 appeared to segregate with disease in the BALB/cJ cross, but only the influence of the chromosome 1 locus spanned both crosses and showed linkage with disease when all mice were considered. Thus, the results indicate that contributions from disease-susceptibility loci, including MHC, may vary markedly depending on the non-autoimmune strain used in a backcross analysis. These studies provide insight into variables that affect genetic heterogeneity and add an important dimension of complexity for linkage analyses of human autoimmune disease. PMID:8986781

  4. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease.

    PubMed

    Lee, James C; Biasci, Daniele; Roberts, Rebecca; Gearry, Richard B; Mansfield, John C; Ahmad, Tariq; Prescott, Natalie J; Satsangi, Jack; Wilson, David C; Jostins, Luke; Anderson, Carl A; Traherne, James A; Lyons, Paul A; Parkes, Miles; Smith, Kenneth G C

    2017-02-01

    For most immune-mediated diseases, the main determinant of patient well-being is not the diagnosis itself but instead the course that the disease takes over time (prognosis). Prognosis may vary substantially between patients for reasons that are poorly understood. Familial studies support a genetic contribution to prognosis, but little evidence has been found for a proposed association between prognosis and the burden of susceptibility variants. To better characterize how genetic variation influences disease prognosis, we performed a within-cases genome-wide association study in two cohorts of patients with Crohn's disease. We identified four genome-wide significant loci, none of which showed any association with disease susceptibility. Conversely, the aggregated effect of all 170 disease susceptibility loci was not associated with disease prognosis. Together, these data suggest that the genetic contribution to prognosis in Crohn's disease is largely independent of the contribution to disease susceptibility and point to a biology of prognosis that could provide new therapeutic opportunities.

  5. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease

    PubMed Central

    Lee, James C.; Biasci, Daniele; Roberts, Rebecca; Gearry, Richard B.; Mansfield, John C.; Ahmad, Tariq; Prescott, Natalie J.; Satsangi, Jack; Wilson, David C.; Jostins, Luke; Anderson, Carl A.; Traherne, James A.; Lyons, Paul A.; Parkes, Miles; Smith, Kenneth G.C.

    2017-01-01

    For most immune-mediated diseases, the main determinant of patient well-being is not the diagnosis itself, but the course the disease takes over time (prognosis)1–3. This varies substantially between patients for reasons that are poorly understood. Familial studies support a genetic contribution to prognosis4–6, but little evidence has been found for a proposed association between prognosis and the burden of susceptibility variants7–13. To better characterise how genetic variation influences disease prognosis, we performed a within-cases genome-wide association study in two cohorts of patients with Crohn's disease. We identified four genome-wide significant loci, none of which showed any association with disease susceptibility. Conversely, the aggregated effect of all 170 disease susceptibility loci was not associated with prognosis. Together, these data suggest that the genetic contribution to prognosis in Crohn’s disease is largely independent from the contribution to disease susceptibility, and point to a biology of prognosis that could provide new therapeutic opportunities. PMID:28067912

  6. Causes and Consequences of Genetic Background Effects Illuminated by Integrative Genomic Analysis

    PubMed Central

    Chandler, Christopher H.; Chari, Sudarshan; Dworkin, Ian

    2014-01-01

    The phenotypic consequences of individual mutations are modulated by the wild-type genetic background in which they occur. Although such background dependence is widely observed, we do not know whether general patterns across species and traits exist or about the mechanisms underlying it. We also lack knowledge on how mutations interact with genetic background to influence gene expression and how this in turn mediates mutant phenotypes. Furthermore, how genetic background influences patterns of epistasis remains unclear. To investigate the genetic basis and genomic consequences of genetic background dependence of the scallopedE3 allele on the Drosophila melanogaster wing, we generated multiple novel genome-level datasets from a mapping-by-introgression experiment and a tagged RNA gene expression dataset. In addition we used whole genome resequencing of the parental lines—two commonly used laboratory strains—to predict polymorphic transcription factor binding sites for SD. We integrated these data with previously published genomic datasets from expression microarrays and a modifier mutation screen. By searching for genes showing a congruent signal across multiple datasets, we were able to identify a robust set of candidate loci contributing to the background-dependent effects of mutations in sd. We also show that the majority of background-dependent modifiers previously reported are caused by higher-order epistasis, not quantitative noncomplementation. These findings provide a useful foundation for more detailed investigations of genetic background dependence in this system, and this approach is likely to prove useful in exploring the genetic basis of other traits as well. PMID:24504186

  7. Genetic testing in asymptomatic minors Background considerations towards ESHG Recommendations

    PubMed Central

    Borry, Pascal; Evers-Kiebooms, Gerry; Cornel, Martina C; Clarke, Angus; Dierickx, Kris

    2009-01-01

    Although various guidelines and position papers have discussed, in the past, the ethical aspects of genetic testing in asymptomatic minors, the European Society of Human Genetics had not earlier endorsed any set of guidelines exclusively focused on this issue. This paper has served as a background document in preparation of the development of the policy recommendations of the Public and Professional Committee of the European Society of Human Genetics. This background paper first discusses some general considerations with regard to the provision of genetic tests to minors. It discusses the concept of best interests, participation of minors in health-care decisions, parents' responsibilities to share genetic information, the role of clinical genetics and the health-care system in communication within the family. Second, it discusses, respectively, the presymptomatic and predictive genetic testing for adult-onset disorders, childhood-onset disorders and carrier testing. PMID:19277061

  8. Genetic Variants of CD209 Associated with Kawasaki Disease Susceptibility

    PubMed Central

    Kuo, Ho-Chang; Huang, Ying-Hsien; Chien, Shu-Chen; Yu, Hong-Ren; Hsieh, Kai-Sheng; Hsu, Yu-Wen; Chang, Wei-Chiao

    2014-01-01

    Background Kawasaki disease (KD) is a systemic vasculitis with unknown etiology mainly affecting children in Asian countries. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN, CD209) in humans was showed to trigger an anti-inflammatory cascade and associated with KD susceptibility. This study was conducted to investigate the association between genetic polymorphisms of CD209 and the risk KD. Methods A total of 948 subjects (381 KD and 567 controls) were recruited. Nine tagging SNPs (rs8112310, rs4804800, rs11465421, rs1544766, rs4804801, rs2287886, rs735239, rs735240, rs4804804) were selected for TaqMan allelic discrimination assay. Clinical phenotypes, coronary artery lesions (CAL) and intravenous immunoglobulin (IVIG) treatment outcomes were collected for analysis. Results Significant associations were found between CD209 polymorphisms (rs4804800, rs2287886, rs735240) and the risk of KD. Haplotype analysis for CD209 polymorphisms showed that A/A/G haplotype (P = 0.0002, OR = 1.61) and G/A/G haplotype (P = 0.0365, OR = 1.52) had higher risk of KD as compared with G/G/A haplotype in rs2287886/rs735239/rs735240 pairwise allele analysis. There were no significant association in KD with regards to CAL formation and IVIG treatment responses. Conclusion CD209 polymorphisms were responsible for the susceptibility of KD, but not CAL formation and IVIG treatment responsiveness. PMID:25148534

  9. Genetic susceptibility to retinopathy of prematurity: the evidence from clinical and experimental animal studies.

    PubMed

    Holmström, Gerd; van Wijngaarden, Peter; Coster, Douglas J; Williams, Keryn A

    2007-12-01

    Despite advances in management and treatment, retinopathy of prematurity remains a major cause of childhood blindness. Evidence for a genetic basis for susceptibility to retinopathy of prematurity is examined, including the influences of sex, ethnicity, and ocular pigmentation. The role of polymorphisms is explored in the genes for vascular endothelial growth factor and insulin-like growth factor-1, and of mutations in the Norrie disease gene. Insights into the genetic basis of retinopathy of prematurity provided by the animal model of oxygen induced retinopathy are examined. Evidence for a genetic component for susceptibility to retinopathy of prematurity is strong, although the molecular identity of the gene or genes involved remains uncertain.

  10. Genetic susceptibility and periodontal disease: a retrospective study on a large italian sample.

    PubMed

    Tettamanti, L; Gaudio, R M; Iapichino, A; Mucchi, D; Tagliabue, A

    2017-01-01

    Periodontal disease (PD) is a multifactorial illness in which environment and host interact. The genetic component plays a key role in the onset of PD. In fact the genetic compound can modulate the inflammation of the mucous membranes and the loss of alveolar bone. The genetics of PD is not well understood. Previous studies suggest a strong association between PD occurrence and individual genetic profile. The role of genetic susceptibility could impact on the clinical manifestations of PD, and consequently on prevention and therapy. Genetic polymorphisms of VRD, IL6 and IL10 were investigated in Italian adults affected by PD. 571 cases classified according the criteria of the American Academy of Periodontology were included. All patients were Italian coming from three areas according to italian institute of statistics (ISTAT) (www.istat.it/it/archivio/regioni). The sample comprised 379 patients from North (66%), 152 from Central (26%) and 40 of South (8%). No significant differences were found among allele distribution. Chronic PD is a complex disease caused by a combination of genetic susceptibility, patients habits (oral hygiene, smoking, alcohol consumption) and oral pathogens. In our report no differences were detected among three Italian regions in allele distribution.

  11. Genetic background contributes to the co-morbidity of anxiety and depression with audiogenic seizure propensity and responses to fluoxetine treatment.

    PubMed

    Sarkisova, Karine Yu; Fedotova, Irina B; Surina, Natalia M; Nikolaev, Georgy M; Perepelkina, Olga V; Kostina, Zoya A; Poletaeva, Inga I

    2017-03-01

    Anxiety and depression are the most frequent comorbidities of different types of convulsive and non-convulsive epilepsies. Increased anxiety and depression-like phenotype have been described in the genetic absence epilepsy models as well as in models of limbic epilepsy and acquired seizure models, suggesting a neurobiological connection. However, whether anxiety and/or depression are comorbid to audiogenic epilepsy remains unclear. The aim of this study was to investigate whether anxiety or depression-like behavior can be found in rat strains with different susceptibility to audiogenic seizures (AS) and whether chronic fluoxetine treatment affects this co-morbidity. Behavior in the elevated plus-maze and the forced swimming test was studied in four strains: Wistar rats non-susceptible to AS; Krushinsky-Molodkina (KM) strain, selectively bred for AS propensity from outbred Wistar rats; and a selection lines bred for maximal AS expression (strain "4") and for a lack of AS (strain "0") from KM×Wistar F2 hybrids. Effects of chronic antidepressant treatment on AS and behavior were also evaluated. Anxiety and depression levels were higher in KM rats (with AS) compared with Wistar rats (without AS), indicating the comorbidity with AS. However, in strains "4" and "0" with contrasting AS expression, but with a genetic background close to KM rats, anxiety and depression were not as divergent as in KMs versus Wistars. Fluoxetine treatment exerted an antidepressant effect in all rat strains irrespective of its effect on AS. Genetic background contributes substantively to the co-morbidity of anxiety and depression with AS propensity. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Ethnic background and genetic variation in the evaluation of cancer risk: a systematic review.

    PubMed

    Jing, Lijun; Su, Li; Ring, Brian Z

    2014-01-01

    The clinical use of genetic variation in the evaluation of cancer risk is expanding, and thus understanding how determinants of cancer susceptibility identified in one population can be applied to another is of growing importance. However there is considerable debate on the relevance of ethnic background in clinical genetics, reflecting both the significance and complexity of genetic heritage. We address this via a systematic review of reported associations with cancer risk for 82 markers in 68 studies across six different cancer types, comparing association results between ethnic groups and examining linkage disequilibrium between risk alleles and nearby genetic loci. We find that the relevance of ethnic background depends on the question. If asked whether the association of variants with disease risk is conserved across ethnic boundaries, we find that the answer is yes, the majority of markers show insignificant variability in association with cancer risk across ethnic groups. However if the question is whether a significant association between a variant and cancer risk is likely to reproduce, the answer is no, most markers do not validate in an ethnic group other than the discovery cohort's ancestry. This lack of reproducibility is not attributable to studies being inadequately populated due to low allele frequency in other ethnic groups. Instead, differences in local genomic structure between ethnic groups are associated with the strength of association with cancer risk and therefore confound interpretation of the implied physiologic association tracked by the disease allele. This suggest that a biological association for cancer risk alleles may be broadly consistent across ethnic boundaries, but reproduction of a clinical study in another ethnic group is uncommon, in part due to confounding genomic architecture. As clinical studies are increasingly performed globally this has important implications for how cancer risk stratifiers should be studied and employed.

  13. Ethnic Background and Genetic Variation in the Evaluation of Cancer Risk: A Systematic Review

    PubMed Central

    Jing, Lijun; Su, Li; Ring, Brian Z.

    2014-01-01

    The clinical use of genetic variation in the evaluation of cancer risk is expanding, and thus understanding how determinants of cancer susceptibility identified in one population can be applied to another is of growing importance. However there is considerable debate on the relevance of ethnic background in clinical genetics, reflecting both the significance and complexity of genetic heritage. We address this via a systematic review of reported associations with cancer risk for 82 markers in 68 studies across six different cancer types, comparing association results between ethnic groups and examining linkage disequilibrium between risk alleles and nearby genetic loci. We find that the relevance of ethnic background depends on the question. If asked whether the association of variants with disease risk is conserved across ethnic boundaries, we find that the answer is yes, the majority of markers show insignificant variability in association with cancer risk across ethnic groups. However if the question is whether a significant association between a variant and cancer risk is likely to reproduce, the answer is no, most markers do not validate in an ethnic group other than the discovery cohort’s ancestry. This lack of reproducibility is not attributable to studies being inadequately populated due to low allele frequency in other ethnic groups. Instead, differences in local genomic structure between ethnic groups are associated with the strength of association with cancer risk and therefore confound interpretation of the implied physiologic association tracked by the disease allele. This suggest that a biological association for cancer risk alleles may be broadly consistent across ethnic boundaries, but reproduction of a clinical study in another ethnic group is uncommon, in part due to confounding genomic architecture. As clinical studies are increasingly performed globally this has important implications for how cancer risk stratifiers should be studied and

  14. Innate immunity and genetic determinants of urinary tract infection susceptibility

    PubMed Central

    Godaly, Gabriela; Ambite, Ines; Svanborg, Catharina

    2015-01-01

    Purpose of review Urinary tract infections (UTIs) are common, dangerous and interesting. Susceptible individuals experience multiple, often clustered episodes, and in a subset of patients, infections progress to acute pyelonephritis (APN), sometimes accompanied by uro-sepsis. Others develop asymptomatic bacteriuria (ABU). Here, we review the molecular basis for these differences, with the intention to distinguish exaggerated host responses that drive disease from attenuated responses that favour protection and to highlight the genetic basis for these extremes, based on knock-out mice and clinical studies. Recent findings The susceptibility to UTI is controlled by specific innate immune signalling and by promoter polymorphisms and transcription factors that modulate the expression of genes controlling these pathways. Gene deletions that disturb innate immune activation either favour asymptomatic bacteriuria or create acute morbidity and disease. Promoter polymorphisms and transcription factor variants affecting those genes are associated with susceptibility in UTI-prone patients. Summary It is time to start using genetics in UTI-prone patients, to improve diagnosis and to assess the risk for chronic sequels such as renal malfunction, hypertension, spontaneous abortions, dialysis and transplantation. Furthermore, the majority of UTI patients do not need follow-up, but for lack of molecular markers, they are unnecessarily investigated. PMID:25539411

  15. Connecting the dots between genes, biochemistry, and disease susceptibility: systems biology modeling in human genetics.

    PubMed

    Moore, Jason H; Boczko, Erik M; Summar, Marshall L

    2005-02-01

    Understanding how DNA sequence variations impact human health through a hierarchy of biochemical and physiological systems is expected to improve the diagnosis, prevention, and treatment of common, complex human diseases. We have previously developed a hierarchical dynamic systems approach based on Petri nets for generating biochemical network models that are consistent with genetic models of disease susceptibility. This modeling approach uses an evolutionary computation approach called grammatical evolution as a search strategy for optimal Petri net models. We have previously demonstrated that this approach routinely identifies biochemical network models that are consistent with a variety of genetic models in which disease susceptibility is determined by nonlinear interactions between two or more DNA sequence variations. We review here this approach and then discuss how it can be used to model biochemical and metabolic data in the context of genetic studies of human disease susceptibility.

  16. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE PAGES

    Zhang, Pengju; Lo, Alvin; Huang, Yurong; ...

    2015-03-09

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  17. Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengju; Lo, Alvin; Huang, Yurong

    The interplay between host genetics, tumor microenvironment and environmental exposure in cancer susceptibility remains poorly understood. Here we assessed the genetic control of stromal mediation of mammary tumor susceptibility to low dose ionizing radiation (LDIR) using backcrossed F1 into BALB/c (F1Bx) between cancer susceptible (BALB/c) and resistant (SPRET/EiJ) mouse strains. Tumor formation was evaluated after transplantation of non-irradiated Trp53-/- BALB/c mammary gland fragments into cleared fat pads of F1Bx hosts. Genome-wide linkage analysis revealed 2 genetic loci that constitute the baseline susceptibility via host microenvironment. However, once challenged with LDIR, we discovered 13 additional loci that were enriched for genesmore » involved in cytokines, including TGFβ1 signaling. Surprisingly, LDIR-treated F1Bx cohort significantly reduced incidence of mammary tumors from Trp53-/- fragments as well as prolonged tumor latency, compared to sham-treated controls. We demonstrated further that plasma levels of specific cytokines were significantly correlated with tumor latency. Using an ex vivo 3-D assay, we confirmed TGFβ1 as a strong candidate for reduced mammary invasion in SPRET/EiJ, which could explain resistance of this strain to mammary cancer risk following LDIR. Our results open possible new avenues to understand mechanisms of genes operating via the stroma that affect cancer risk from external environmental exposures.« less

  18. [The genetic background for the eye malformations anophthalmia and microphthalmia].

    PubMed

    Roos, Laura Sønderberg; Grønskov, Karen; Jensen, Hanne; Tümer, Zeynep

    2012-03-12

    Anophthalmia and microphthalmia (AO/MO) are rare congenital eye malformations, in which the eyeball is apparently absent or smaller than normal, which causes various degrees of visual impairment. Over 200 different AO/MO-related syndromes have been described, but the genetic background is unknown in many cases. The aim of this article is to give an overview of AO/MO, focusing on the genetic background. It is illustrated that the future identification of new AO/MO related genes will benefit in the genetic counseling of AO/MO patients, and in the understanding of eye development and congenital eye malformations.

  19. Genetic susceptibility to retinopathy of prematurity: the evidence from clinical and experimental animal studies

    PubMed Central

    Holmström, Gerd; van Wijngaarden, Peter; Coster, Douglas J; Williams, Keryn A

    2007-01-01

    Despite advances in management and treatment, retinopathy of prematurity remains a major cause of childhood blindness. Evidence for a genetic basis for susceptibility to retinopathy of prematurity is examined, including the influences of sex, ethnicity, and ocular pigmentation. The role of polymorphisms is explored in the genes for vascular endothelial growth factor and insulin‐like growth factor‐1, and of mutations in the Norrie disease gene. Insights into the genetic basis of retinopathy of prematurity provided by the animal model of oxygen induced retinopathy are examined. Evidence for a genetic component for susceptibility to retinopathy of prematurity is strong, although the molecular identity of the gene or genes involved remains uncertain. PMID:18024814

  20. Genetic susceptibility to Chagas disease cardiomyopathy: involvement of several genes of the innate immunity and chemokine-dependent migration pathways

    PubMed Central

    2013-01-01

    Background Chagas disease, caused by the protozoan Trypanosoma cruzi is endemic in Latin America. Thirty percent of infected individuals develop chronic Chagas cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy that is, by far, the most important clinical consequence of T. cruzi infection. The others remain asymptomatic (ASY). A possible genetic component to disease progression was suggested by familial aggregation of cases and the association of markers of innate and adaptive immunity genes with CCC development. Migration of Th1-type T cells play a major role in myocardial damage. Methods Our genetic analysis focused on CCR5, CCL2 and MAL/TIRAP genes. We used the Tag SNPs based approach, defined to catch all the genetic information from each gene. The study was conducted on a large Brazilian population including 315 CCC cases and 118 ASY subjects. Results The CCL2rs2530797A/A and TIRAPrs8177376A/A were associated to an increase susceptibility whereas the CCR5rs3176763C/C genotype is associated to protection to CCC. These associations were confirmed when we restricted the analysis to severe CCC, characterized by a left ventricular ejection fraction under 40%. Conclusions Our data show that polymorphisms affecting key molecules involved in several immune parameters (innate immunity signal transduction and T cell/monocyte migration) play a role in genetic susceptibility to CCC development. This also points out to the multigenic character of CCC, each polymorphism imparting a small contribution. The identification of genetic markers for CCC will provide information for pathogenesis as well as therapeutic targets. PMID:24330528

  1. Genetic susceptibility to neuroblastoma: current knowledge and future directions.

    PubMed

    Ritenour, Laura E; Randall, Michael P; Bosse, Kristopher R; Diskin, Sharon J

    2018-05-01

    Neuroblastoma, a malignancy of the developing peripheral nervous system that affects infants and young children, is a complex genetic disease. Over the past two decades, significant progress has been made toward understanding the genetic determinants that predispose to this often lethal childhood cancer. Approximately 1-2% of neuroblastomas are inherited in an autosomal dominant fashion and a combination of co-morbidity and linkage studies has led to the identification of germline mutations in PHOX2B and ALK as the major genetic contributors to this familial neuroblastoma subset. The genetic basis of "sporadic" neuroblastoma is being studied through a large genome-wide association study (GWAS). These efforts have led to the discovery of many common susceptibility alleles, each with modest effect size, associated with the development and progression of sporadic neuroblastoma. More recently, next-generation sequencing efforts have expanded the list of potential neuroblastoma-predisposing mutations to include rare germline variants with a predicted larger effect size. The evolving characterization of neuroblastoma's genetic basis has led to a deeper understanding of the molecular events driving tumorigenesis, more precise risk stratification and prognostics and novel therapeutic strategies. This review details the contemporary understanding of neuroblastoma's genetic predisposition, including recent advances and discusses ongoing efforts to address gaps in our knowledge regarding this malignancy's complex genetic underpinnings.

  2. Genetic susceptibility markers for a breast-colorectal cancer phenotype: Exploratory results from genome-wide association studies

    PubMed Central

    Joon, Aron; Brewster, Abenaa M.; Chen, Wei V.; Eng, Cathy; Shete, Sanjay; Casey, Graham; Schumacher, Fredrick; Lin, Yi; Harrison, Tabitha A.; White, Emily; Ahsan, Habibul; Andrulis, Irene L.; Whittemore, Alice S.; Ko Win, Aung; Schmidt, Daniel F.; Kapuscinski, Miroslaw K.; Ochs-Balcom, Heather M.; Gallinger, Steven; Jenkins, Mark A.; Newcomb, Polly A.; Lindor, Noralane M.; Peters, Ulrike; Amos, Christopher I.; Lynch, Patrick M.

    2018-01-01

    Background Clustering of breast and colorectal cancer has been observed within some families and cannot be explained by chance or known high-risk mutations in major susceptibility genes. Potential shared genetic susceptibility between breast and colorectal cancer, not explained by high-penetrance genes, has been postulated. We hypothesized that yet undiscovered genetic variants predispose to a breast-colorectal cancer phenotype. Methods To identify variants associated with a breast-colorectal cancer phenotype, we analyzed genome-wide association study (GWAS) data from cases and controls that met the following criteria: cases (n = 985) were women with breast cancer who had one or more first- or second-degree relatives with colorectal cancer, men/women with colorectal cancer who had one or more first- or second-degree relatives with breast cancer, and women diagnosed with both breast and colorectal cancer. Controls (n = 1769), were unrelated, breast and colorectal cancer-free, and age- and sex- frequency-matched to cases. After imputation, 6,220,060 variants were analyzed using the discovery set and variants associated with the breast-colorectal cancer phenotype at P<5.0E-04 (n = 549, at 60 loci) were analyzed for replication (n = 293 cases and 2,103 controls). Results Multiple correlated SNPs in intron 1 of the ROBO1 gene were suggestively associated with the breast-colorectal cancer phenotype in the discovery and replication data (most significant; rs7430339, Pdiscovery = 1.2E-04; rs7429100, Preplication = 2.8E-03). In meta-analysis of the discovery and replication data, the most significant association remained at rs7429100 (P = 1.84E-06). Conclusion The results of this exploratory analysis did not find clear evidence for a susceptibility locus with a pleiotropic effect on hereditary breast and colorectal cancer risk, although the suggestive association of genetic variation in the region of ROBO1, a potential tumor suppressor gene, merits further investigation

  3. Association between adult height, genetic susceptibility and risk of glioma

    PubMed Central

    Kitahara, Cari M; Wang, Sophia S; Melin, Beatrice S; Wang, Zhaoming; Braganza, Melissa; Inskip, Peter D; Albanes, Demetrius; Andersson, Ulrika; Beane Freeman, Laura E; Buring, Julie E; Carreón, Tania; Feychting, Maria; Gapstur, Susan M; Gaziano, J Michael; Giles, Graham G; Hallmans, Goran; Hankinson, Susan E; Henriksson, Roger; Hsing, Ann W; Johansen, Christoffer; Linet, Martha S; McKean-Cowdin, Roberta; Michaud, Dominique S; Peters, Ulrike; Purdue, Mark P; Rothman, Nathaniel; Ruder, Avima M; Sesso, Howard D; Severi, Gianluca; Shu, Xiao-Ou; Stevens, Victoria L; Visvanathan, Kala; Waters, Martha A; White, Emily; Wolk, Alicja; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Hoover, Robert; Fraumeni, Joseph F; Chatterjee, Nilanjan; Yeager, Meredith; Chanock, Stephen J; Hartge, Patricia; Rajaraman, Preetha

    2012-01-01

    Background Some, but not all, observational studies have suggested that taller stature is associated with a significant increased risk of glioma. In a pooled analysis of observational studies, we investigated the strength and consistency of this association, overall and for major sub-types, and investigated effect modification by genetic susceptibility to the disease. Methods We standardized and combined individual-level data on 1354 cases and 4734 control subjects from 13 prospective and 2 case–control studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for glioma and glioma sub-types were estimated using logistic regression models stratified by sex and adjusted for birth cohort and study. Pooled ORs were additionally estimated after stratifying the models according to seven recently identified glioma-related genetic variants. Results Among men, we found a positive association between height and glioma risk (≥190 vs 170–174 cm, pooled OR = 1.70, 95% CI: 1.11–2.61; P-trend = 0.01), which was slightly stronger after restricting to cases with glioblastoma (pooled OR = 1.99, 95% CI: 1.17–3.38; P-trend = 0.02). Among women, these associations were less clear (≥175 vs 160–164 cm, pooled OR for glioma = 1.06, 95% CI: 0.70–1.62; P-trend = 0.22; pooled OR for glioblastoma = 1.36, 95% CI: 0.77–2.39; P-trend = 0.04). In general, we did not observe evidence of effect modification by glioma-related genotypes on the association between height and glioma risk. Conclusion An association of taller adult stature with glioma, particularly for men and stronger for glioblastoma, should be investigated further to clarify the role of environmental and genetic determinants of height in the etiology of this disease. PMID:22933650

  4. Antimicrobial susceptibility/resistance and genetic characteristics of Neisseria gonorrhoeae isolates from Poland, 2010-2012

    PubMed Central

    2014-01-01

    Background In Poland, gonorrhoea has been a mandatorily reported infection since 1948, however, the reported incidences are likely underestimated. No antimicrobial resistance (AMR) data for Neisseria gonorrhoeae has been internationally reported in nearly four decades, and data concerning genetic characteristics of N. gonorrhoeae are totally lacking. The aims of this study were to investigate the AMR to previously and currently recommended gonorrhoea treatment options, the main genetic resistance determinant (penA) for extended-spectrum cephalosporins (ESCs), and genotypic distribution of N. gonorrhoeae isolates in Poland in 2010-2012. Methods N. gonorrhoeae isolates cultured in 2010 (n = 28), 2011 (n = 92) and 2012 (n = 108) in Warsaw and Bialystok, Poland, were examined using antimicrobial susceptibility testing (Etest), pyrosequencing of penA and N. gonorrhoeae multi-antigen sequence typing (NG-MAST). Results The proportions of N. gonorrhoeae isolates showing resistance were as follows: ciprofloxacin 61%, tetracycline 43%, penicillin G 22%, and azithromycin 8.8%. No isolates resistant to ceftriaxone, cefixime or spectinomycin were found. However, the proportion of isolates with an ESC MIC = 0.125 mg/L, i.e. at the resistance breakpoint, increased significantly from none in 2010 to 9.3% and 19% in 2012 for ceftriaxone and cefixime, respectively. Furthermore, 3.1% of the isolates showed multidrug resistance, i.e., resistance to ciprofloxacin, penicillin G, azithromycin, and decreased susceptibility to cefixime (MIC = 0.125 mg/L). Seventy-six isolates (33%) possessed a penA mosaic allele and 14 isolates (6.1%) contained an A501V/T alteration in penicillin-binding protein 2. NG-MAST ST1407 (n = 58, 25% of isolates) was the most prevalent ST, which significantly increased from 2010 (n = 0) to 2012 (n = 46; 43%). Conclusions In Poland, the diversified gonococcal population displayed a high resistance to most antimicrobials

  5. Genetic variation for maternal effects on parasite susceptibility.

    PubMed

    Stjernman, M; Little, T J

    2011-11-01

    The expression of infectious disease is increasingly recognized to be impacted by maternal effects, where the environmental conditions experienced by mothers alter resistance to infection in offspring, independent of heritability. Here, we studied how maternal effects (high or low food availability to mothers) mediated the resistance of the crustacean Daphnia magna to its bacterial parasite Pasteuria ramosa. We sought to disentangle maternal effects from the effects of host genetic background by studying how maternal effects varied across 24 host genotypes sampled from a natural population. Under low-food conditions, females produced offspring that were relatively resistant, but this maternal effect varied strikingly between host genotypes, i.e. there were genotype by maternal environment interactions. As infection with P. ramosa causes a substantial reduction in host fecundity, this maternal effect had a large effect on host fitness. Maternal effects were also shown to impact parasite fitness, both because they prevented the establishment of the parasites and because even when parasites did establish in the offspring of poorly fed mothers, and they tended to grow more slowly. These effects indicate that food stress in the maternal generation can greatly influence parasite susceptibility and thus perhaps the evolution and coevolution of host-parasite interactions. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  6. Mitochondrial DNA Haplogroup Confers Genetic Susceptibility to Nasopharyngeal Carcinoma in Chaoshanese from Guangdong, China

    PubMed Central

    Hu, Sheng-Ping; Du, Ju-Ping; Li, De-Rui; Yao, Yong-Gang

    2014-01-01

    Recent studies have shown association of mtDNA background with cancer development. We analyzed mitochondrial DNA (mtDNA) control region variation of 201 patients with nasopharyngeal carcinoma (NPC) and of 201 normal controls from Chaoshan Han Chinese to discern mtDNA haplogroup effect on the disease onset. Binary logistic regression analysis with adjustment for gender and age revealed that the haplogroup R9 (P = 0.011, OR = 1.91, 95% CI = 1.16–3.16), particularly its sub-haplogroup F1 (P = 0.015, OR = 2.43, 95% CI = 1.18–5.00), were associated significantly with increased NPC risk. These haplogroups were further confirmed to confer high NPC risk in males and/or individuals ≥40 years of age, but not in females or in subjects <40 years old. Our results indicated that mtDNA background confers genetic susceptibility to NPC in Chaoshan Han Chinese, and R9, particularly its sub-haplogroup F1, is a risk factor for NPC. PMID:24498198

  7. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity

    PubMed Central

    Bearoff, Frank; del Rio, Roxana; Case, Laure K.; Dragon, Julie A.; Nguyen-Vu, Trang; Lin, Chin-Yo; Blankenhorn, Elizabeth P.; Teuscher, Cory; Krementsov, Dimitry N.

    2016-01-01

    Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases, such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naïve immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific, and sex-specific. Bioinformatic analysis of the genetically-controlled transcript networks reveals reduced cell type-specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared to PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease. PMID:27653816

  8. Genetic variation in Toll-like receptors and disease susceptibility.

    PubMed

    Netea, Mihai G; Wijmenga, Cisca; O'Neill, Luke A J

    2012-05-18

    Toll-like receptors (TLRs) are key initiators of the innate immune response and promote adaptive immunity. Much has been learned about the role of TLRs in human immunity from studies linking TLR genetic variation with disease. First, monogenic disorders associated with complete deficiency in certain TLR pathways, such as MyD88-IRAK4 or TLR3-Unc93b-TRIF-TRAF3, have demonstrated the specific roles of these pathways in host defense against pyogenic bacteria and herpesviruses, respectively. Second, common polymorphisms in genes encoding several TLRs and associated genes have been associated with both infectious and autoimmune diseases. The study of genetic variation in TLRs in various populations combined with information on infection has demonstrated complex interaction between genetic variation in TLRs and environmental factors. This interaction explains the differences in the effect of TLR polymorphisms on susceptibility to infection and autoimmune disease in various populations.

  9. Identification of multiple genetic susceptibility loci in Takayasu arteritis.

    PubMed

    Saruhan-Direskeneli, Güher; Hughes, Travis; Aksu, Kenan; Keser, Gokhan; Coit, Patrick; Aydin, Sibel Z; Alibaz-Oner, Fatma; Kamalı, Sevil; Inanc, Murat; Carette, Simon; Hoffman, Gary S; Akar, Servet; Onen, Fatos; Akkoc, Nurullah; Khalidi, Nader A; Koening, Curry; Karadag, Omer; Kiraz, Sedat; Langford, Carol A; McAlear, Carol A; Ozbalkan, Zeynep; Ates, Askin; Karaaslan, Yasar; Maksimowicz-McKinnon, Kathleen; Monach, Paul A; Ozer, Hüseyin T; Seyahi, Emire; Fresko, Izzet; Cefle, Ayse; Seo, Philip; Warrington, Kenneth J; Ozturk, Mehmet A; Ytterberg, Steven R; Cobankara, Veli; Onat, A Mesut; Guthridge, Joel M; James, Judith A; Tunc, Ercan; Duzgun, Nurşen; Bıcakcıgil, Muge; Yentür, Sibel P; Merkel, Peter A; Direskeneli, Haner; Sawalha, Amr H

    2013-08-08

    Takayasu arteritis is a rare inflammatory disease of large arteries. The etiology of Takayasu arteritis remains poorly understood, but genetic contribution to the disease pathogenesis is supported by the genetic association with HLA-B*52. We genotyped ~200,000 genetic variants in two ethnically divergent Takayasu arteritis cohorts from Turkey and North America by using a custom-designed genotyping platform (Immunochip). Additional genetic variants and the classical HLA alleles were imputed and analyzed. We identified and confirmed two independent susceptibility loci within the HLA region (r(2) < 0.2): HLA-B/MICA (rs12524487, OR = 3.29, p = 5.57 × 10(-16)) and HLA-DQB1/HLA-DRB1 (rs113452171, OR = 2.34, p = 3.74 × 10(-9); and rs189754752, OR = 2.47, p = 4.22 × 10(-9)). In addition, we identified and confirmed a genetic association between Takayasu arteritis and the FCGR2A/FCGR3A locus on chromosome 1 (rs10919543, OR = 1.81, p = 5.89 × 10(-12)). The risk allele in this locus results in increased mRNA expression of FCGR2A. We also established the genetic association between IL12B and Takayasu arteritis (rs56167332, OR = 1.54, p = 2.18 × 10(-8)). Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Genetic diversity and antifungal susceptibility of Fusarium isolates in onychomycosis.

    PubMed

    Rosa, Priscila D; Heidrich, Daiane; Corrêa, Carolina; Scroferneker, Maria Lúcia; Vettorato, Gerson; Fuentefria, Alexandre M; Goldani, Luciano Z

    2017-09-01

    Fusarium species have emerged as an important human pathogen in skin disease, onychomycosis, keratitis and invasive disease. Onychomycosis caused by Fusarium spp. The infection has been increasingly described in the immunocompetent and immunosuppressed hosts. Considering onychomycosis is a difficult to treat infection, and little is known about the genetic variability and susceptibility pattern of Fusarium spp., further studies are necessary to understand the pathogenesis and better to define the appropriate antifungal treatment for this infection. Accordingly, the objective of this study was to describe the in vitro susceptibility to different antifungal agents and the genetic diversity of 35 Fusarium isolated from patients with onychomycosis. Fusarium spp. were isolated predominantly from female Caucasians, and the most frequent anatomical location was the nail of the hallux. Results revealed that 25 (71.4%) of isolates belonged to the Fusarium solani species complex, followed by 10 (28.5%) isolates from the Fusarium oxysporum species complex. Noteworthy, the authors report the first case of Neocosmospora rubicola isolated from a patient with onychomycosis. Amphotericin B was the most effective antifungal agent against the majority of isolates (60%, MIC ≤4 μg/mL), followed by voriconazole (34.2%, MIC ≤4 μg/mL). In general, Fusarium species presented MIC values >64 μg/mL for fluconazole, itraconazole and terbinafine. Accurate pathogen identification, characterisation and susceptibility testing provide a better understanding of pathogenesis of Fusarium in onychomycosis. © 2017 Blackwell Verlag GmbH.

  11. Genetic variant in CXCL13 gene is associated with susceptibility to intrauterine infection of hepatitis B virus

    PubMed Central

    Wan, Zhihua; Lin, Xiaofang; Li, Tongyang; Zhou, Aifen; Yang, Mei; Hu, Dan; Feng, Li; Peng, Songxu; Fan, Linlin; Tu, Si; Bin Zhang; Du, Yukai

    2016-01-01

    Intrauterine infection of hepatitis B virus (HBV), which accounts for the majority of mother-to-child transmission, is one of the main reasons for the failure of combined immunoprophylaxis against the transmission. Recent studies have identified that genetic background might influence the susceptibility to intrauterine infection of HBV. We conducted this study to investigate the associations between 10 genetic variants in 9 genes (SLC10A1, HLA-DP, HLA-C, CXCR5, CXCL13, TLR3, TLR4, TLR9 and UBE2L3) of mothers and their neonates and HBV intrauterine infection. A significantly decreased risk of HBV intrauterine transmission were found among mothers who carried the rs355687 CT genotypes in CXCL13 gene compared to those with CC genotypes (OR = 0.25, 95% CI, 0.08–0.82, P = 0.022); and a marginally significantly decreased risk was also observed under the dominant model (OR = 0.34, 95% CI, 0.11–1.01, P = 0.052). Besides, neonatal rs3130542 in HLA-C gene was found to be marginally significantly associated with decreased risk of HBV intrauterine infection under the additive model (OR = 0.55, 95% CI, 0.29–1.04, P = 0.064). However, we found no evidence of associations between the remaining 8 SNPs and risk of HBV intrauterine infection among mothers and their neonates. In conclusion, this study suggested that genetic variant in CXCL13 gene was associated with susceptibility to intrauterine infection of HBV. PMID:27212637

  12. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Classen, Aimee T; Chapman, Samantha K.; Whitham, Thomas G

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimentalmore » removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting

  13. Characterization of Genetic Loci That Affect Susceptibility to Inflammatory Bowel Diseases in African Americans

    PubMed Central

    Cutler, David J.; Zwick, Michael E.; Taylor, Kent D.; Datta, Lisa W.; Maranville, Joseph C.; Liu, Zhenqiu; Ellis, Shannon; Chopra, Pankaj; Alexander, Jonathan S.; Baldassano, Robert N.; Cross, Raymond K.; Dassopoulos, Themistocles; Dhere, Tanvi A.; Duerr, Richard H.; Hanson, John S.; Hou, Jason K.; Hussain, Sunny Z.; Isaacs, Kim L.; Kachelries, Kelly E; Kader, Howard; Kappelman, Michael D.; Katz, Jeffrey; Kellermayer, Richard; Kirschner, Barbara S.; Kuemmerle, John F.; Kumar, Archana; Kwon, John H.; Lazarev, Mark; Mannon, Peter; Moulton, Dedrick E.; Osuntokun, Bankole O.; Patel, Ashish; Rioux, John D.; Rotter, Jerome I.; Saeed, Shehzad; Scherl, Ellen J.; Silverberg, Mark S.; Silverman, Ann; Targan, Stephan R.; Valentine, John F.; Wang, Ming-Hsi; Simpson, Claire L.; Bridges, S. Louis; Kimberly, Robert P.; Rich, Stephen S.; Cho, Judy H.; Rienzo, Anna Di; Kao, Linda W.H.

    2015-01-01

    Background & Aims Inflammatory bowel disease (IBD) has familial aggregation in African Americans (AAs), but little is known about the molecular genetic susceptibility. Mapping studies using the Immunochip genotyping array expand the number of susceptibility loci for IBD in Caucasians to 163, but the contribution of the 163 loci and European admixture to IBD risk in AAs is unclear. We performed a genetic mapping study using the Immunochip to determine whether IBD susceptibility loci in Caucasians also affect risk in AAs and identify new associated loci. Methods We recruited AAs with IBD and without IBD (controls) from 34 IBD centers in the US; additional controls were collected from 4 other immunochip studies. Association and admixture loci were mapped for 1088 patients with Crohn's disease (CD), 361 with ulcerative colitis (UC), 62 with IBD type-unknown (IBDU), and 1797 controls; 130,241 autosomal single-nucleotide polymorphisms (SNPs) were analyzed. Results The strongest associations were observed between UC and HLA rs9271366 (P=7.5e–6), CD and 5p13.1 rs4286721 (P=3.0e–6), and IBD and KAT2A rs730086 (P=2.3e–6). Additional suggestive associations (P<4.2e-5) were observed between CD and IBD and African-specific SNPs in STAT5A and STAT3; between IBD and SNPs in IL23R, IL12B, and C2 open reading frame 43; and between UC and SNPs near HDAC11 and near LINC00994. The latter 3 loci have not been previously associated with IBD, but require replication. Established Caucasian associations were replicated in AAs (P<3.1e-4) at NOD2, IL23R, 5p15.3, and IKZF3. Significant admixture (P<3.9e–4) was observed for 17q12-17q21.31 (IZKF3 through STAT3), 10q11.23-10q21.2, 15q22.2–15q23, and 16p12.2–16p12.1. Network analyses showed significant enrichment (false discovery rate <1e–5) in genes that encode members of the JAK–STAT, cytokine, and chemokine signaling pathways, as well those involved in pathogenesis of measles. Conclusions In a genetic analysis of 3308 AA IBD

  14. Susceptibility to keel bone fractures in laying hens and the role of genetic variation.

    PubMed

    Candelotto, Laura; Stratmann, Ariane; Gebhardt-Henrich, Sabine G; Rufener, Christina; van de Braak, Teun; Toscano, Michael J

    2017-10-01

    Keel bone fractures are a well-known welfare problem in modern commercial laying hen systems. The present study sought to identify genetic variation in relation to keel bone fracture susceptibility of 4 distinct crossbred and one pure line, and by extension, possible breeding traits. Susceptibility to fractures were assessed using an ex vivo impact testing protocol in combination with a study design that minimized environmental variation to focus on genetic differences. The 5 crossbred/pure lines differed in their susceptibility to keel bone fractures with the greatest likelihood of fracture in one of the 3 commercial lines and the lowest susceptibility to fractures in one of the experimental lines. Egg production at the hen-level did not differ between the crossbred/pure lines (P > 0.05), though an increased susceptibility to keel bone fractures was associated with thinner eggshells and reduced egg breaking strength, a pattern consistent among all tested crossbred/pure lines. Our findings suggest an association between egg quality and bone strength which appeared to be independent of crossbred/pure line. The findings indicate the benefit of the impact methodology to identify potential breeding characteristics to reduce incidence of keel fracture as well as the potential relationship with eggshell quality. © 2017 Poultry Science Association Inc.

  15. An overview of the genetic susceptibility to alcoholism.

    PubMed

    Buscemi, Loredana; Turchi, Chiara

    2011-01-01

    unknown. Technological progress and advances in transcriptomics, epigenomics and proteomics are expected to enhance our knowledge of the genetic susceptibility to alcoholism.

  16. Genetic susceptibility testing for chronic disease and intention for behavior change in healthy young adults.

    PubMed

    Vassy, Jason L; Donelan, Karen; Hivert, Marie-France; Green, Robert C; Grant, Richard W

    2013-04-01

    Genetic testing for chronic disease susceptibility may motivate young adults for preventive behavior change. This nationally representative survey gave 521 young adults hypothetical scenarios of receiving genetic susceptibility results for heart disease, type 2 diabetes, and stroke and asked their (1) interest in such testing, (2) anticipated likelihood of improving diet and physical activity with high- and low-risk test results, and (3) readiness to make behavior change. Responses were analyzed by presence of established disease-risk factors. Respondents with high phenotypic diabetes risk reported increased likelihood of improving their diet and physical activity in response to high-risk results compared with those with low diabetes risk (odds ratio (OR), 1.82 (1.03, 3.21) for diet and OR, 2.64 (1.24, 5.64) for physical activity). In contrast, poor baseline diet (OR, 0.51 (0.27, 0.99)) and poor physical activity (OR, 0.53 (0.29, 0.99)) were associated with decreased likelihood of improving diet. Knowledge of genetic susceptibility may motivate young adults with higher personal diabetes risk for improvement in diet and exercise, but poor baseline behaviors are associated with decreased intention to make these changes. To be effective, genetic risk testing in young adults may need to be coupled with other strategies to enable behavior change.

  17. Associations of VEGF-C Genetic Polymorphisms with Urothelial Cell Carcinoma Susceptibility Differ between Smokers and Non-Smokers in Taiwan

    PubMed Central

    Tung, Min-Che; Hsieh, Ming-Ju; Wang, Shian-Shiang; Yang, Shun-Fa; Chen, Shiou-Sheng; Wang, Shih-Wei; Lee, Liang-Ming; Lee, Wei-Jiunn; Chien, Ming-Hsien

    2014-01-01

    Background Vascular endothelial growth factor (VEGF)-C is associated with lymphangiogenesis, pelvic regional lymph node metastasis, and an antiapoptotic phenotype in urothelial cell carcinoma (UCC). Knowledge of potential roles of VEGF-C genetic polymorphisms in susceptibility to UCC is lacking. This study was designed to examine associations between VEGF-C gene variants and UCC susceptibility and evaluate whether they are modified by smoking. Methodology/Principal Findings Five single-nucleotide polymorphisms (SNPs) of VEGF-C were analyzed by a TaqMan-based real-time polymerase chain reaction (PCR) in 233 patients with UCC and 520 cancer-free controls. A multivariate logistic regression was applied to model associations between genetic polymorphisms and UCC susceptibility, and to determine if the effect was modified by smoking. We found that after adjusting for other covariates, individuals within the entire population and the 476 non-smokers carrying at least one A allele at VEGF-C rs1485766 respectively had 1.742- and 1.834-fold risks of developing UCC than did wild-type (CC) carriers. Among the 277 smokers, we found that VEGF-C rs7664413 T (CT+TT) and rs2046463 G (AG+GG) allelic carriers were more prevalent in UCC patients than in non-cancer participants. Moreover, UCC patients with the smoking habit who had at least one T allele of VEGF-C rs7664413 were at higher risk of developing larger tumor sizes (p = 0.021), compared to those patients with CC homozygotes. Conclusions Our results suggest that the involvement of VEGF-C genotypes in UCC risk differs among smokers compared to non-smokers among Taiwanese. The genetic polymorphism of VEGF-C rs7664413 might be a predictive factor for the tumor size of UCC patients who have a smoking habit. PMID:24608123

  18. Identification of salt-tolerant QTLs with strong genetic background effect using two sets of reciprocal introgression lines in rice.

    PubMed

    Cheng, Lirui; Wang, Yun; Meng, Lijun; Hu, Xia; Cui, Yanru; Sun, Yong; Zhu, Linghua; Ali, Jauhar; Xu, Jianlong; Li, Zhikang

    2012-01-01

    Effect of genetic background on detection of quantitative trait locus (QTL) governing salinity tolerance (ST) was studied using two sets of reciprocal introgression lines (ILs) derived from a cross between a moderately salinity tolerant japonica variety, Xiushui09 from China, and a drought tolerant but salinity susceptible indica breeding line, IR2061-520-6-9 from the Philippines. Salt toxicity symptoms (SST) on leaves, days to seedling survival (DSS), and sodium and potassium uptake by shoots were measured under salinity stress of 140 mmol/L of NaCl. A total of 47 QTLs, including 26 main-effect QTLs (M-QTLs) and 21 epistatic QTLs (E-QTLs), were identified from the two sets of reciprocal ILs. Among the 26 M-QTLs, only four (15.4%) were shared in the reciprocal backgrounds while no shared E-QTLs were detected, indicating that ST QTLs, especially E-QTLs, were very specific to the genetic background. Further, 78.6% of the M-QTLs for SST and DSS identified in the reciprocal ILs were also detected in the recombinant inbred lines (RILs) from the same cross, which clearly brings out the background effect on ST QTL detection and its utilization in ST breeding. The detection of ILs with various levels of pyramiding of nonallelic M-QTL alleles for ST from Xiushui09 into IR2061-520-6-9 allowed us to further improve the ST in rice.

  19. Genetic diversity and antifungal susceptibility profiles in causative agents of sporotrichosis

    PubMed Central

    2014-01-01

    Background Sporotrichosis is a chronic subcutaneous mycosis of humans and animals, which is typically acquired by traumatic inoculation of plant material contaminated with Sporothrix propagules, or via animals, mainly felines. Sporothrix infections notably occur in outbreaks, with large epidemics currently taking place in southeastern Brazil and northeastern China. Pathogenic species include Sporothrix brasiliensis, Sporothrix schenckii s. str., Sporothrix globosa, and Sporothrix luriei, which exhibit differing geographical distribution, virulence, and resistance to antifungals. The phylogenetically remote species Sporothrix mexicana also shows a mild pathogenic potential. Methods We assessed a genetically diverse panel of 68 strains. Susceptibility profiles of medically important Sporothrix species were evaluated by measuring the MICs and MFCs for amphotericin B (AMB), fluconazole (FLC), itraconazole (ITC), voriconazole (VRC), posaconazole (PCZ), flucytosine (5FC), and caspofungin (CAS). Haplotype networks were constructed to reveal interspecific divergences within clinical Sporothrix species to evaluate genetically deviant isolates. Results ITC and PCZ were moderately effective against S. brasiliensis (MIC90 = 2 and 2 μg/mL, respectively) and S. schenckii (MIC90 = 4 and 2 μg/mL, respectively). PCZ also showed low MICs against the rare species S. mexicana. 5FC, CAS, and FLC showed no antifungal activity against any Sporothrix species. The minimum fungicidal concentration ranged from 2 to >16 μg/mL for AMB against S. brasiliensis and S. schenckii, while the MFC90 was >16 μg/mL for ITC, VRC, and PCZ. Conclusion Sporothrix species in general showed high degrees of resistance against antifungals. Evaluating a genetically diverse panel of strains revealed evidence of multidrug resistant phenotypes, underlining the need for molecular identification of etiologic agents to predict therapeutic outcome. PMID:24755107

  20. Relative susceptibilities of male germ cells to genetic defects induced by cancer chemotherapies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrobek, A J; Schmid, T E; Marchetti, F

    Some chemotherapy regimens include agents that are mutagenic or clastogenic in model systems. This raises concerns that cancer survivors, who were treated before or during their reproductive years, may be at increased risks for abnormal reproductive outcomes. However, the available data from offspring of cancer survivors are limited, representing diverse cancers, therapies, time-to-pregnancies, and reproductive outcomes. Rodent breeding data after paternal exposures to individual chemotherapeutic agents illustrate the complexity of factors that influence the risk for transmitted genetic damage including agent, dose, endpoint, and the germ-cell susceptibility profiles that vary across agents. Direct measurements of chromosomal abnormalities in sperm ofmore » mice and humans by sperm FISH have corroborated the differences in germ-cell susceptibilities. The available evidence suggests that the risk of producing chromosomally defective sperm is highest during the first few weeks after the end of chemotherapy, and decays with time. Thus, sperm samples provided immediately after the initiation of cancer therapies may contain treatment-induced genetic defects that will jeopardize the genetic health of offspring.« less

  1. Genome supranucleosomal organization and genetic susceptibility to diseases

    NASA Astrophysics Data System (ADS)

    Jablonski, K. P.; Fretter, C.; Carron, L.; Forné, T.; Hütt, M.-T.; Lesne, A.

    2017-09-01

    The notion of disease-associated single-nucleotide polymorphisms (da-SNP), as determined in genome-wide association studies (GWAS), is relevant for many complex pathologies, including cancers. It appeared that da-SNPs are not only markers of causal genetic variation but may contribute to the disease development through an influence on gene expression levels. We argue that understanding this possible functional role of da-SNPs requires to consider their embedding in the tridimensional (3D) multi-scale organization of the human genome. We then focus on the potential impact of da-SNPs on chromatin loops and recently observed topologically associating domains (TADs). We show that for some diseases and cancer types, da-SNPs are over-represented in the borders of these topological domains, in a way that cannot be explained by an increased exon density. This analysis of the distribution of da-SNPs within the 3D genome organization suggests candidate loci for further experimental investigation of the mechanisms underlying genetic susceptibility to diseases, in particular cancer.

  2. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    PubMed Central

    McKay, James D.; Hung, Rayjean J.; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C.; Caporaso, Neil E.; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A.; Qian, David C.; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N.; Bojesen, Stig E.; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C.; Bush, William S.; Tardon, Adonina; Rennert, Gad; Teare, M. Dawn; Field, John K.; Kiemeney, Lambertus A.; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B.; Andrew, Angeline S.; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C.; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S.; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A.; Wilkens, Lynne R.; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F.M.; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael PA; Marcus, Michael W.; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C.; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A.; Barnett, Matt P.; Chen, Chu; Goodman, Gary E.; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H.-Erich; Manz, Judith; Muley, Thomas R.; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A.; Tsao, Ming-Sound; Arnold, Susanne M.; Haura, Eric B.; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M.; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J.; Butler, Lesley M.; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S.; McLaughlin, John; Stevens, Victoria L.; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C.; Obeidat, Ma’en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D.; Wain, Louise V.; Rafnar, Thorunn; Thorgeirsson, Thorgeir E.; Reginsson, Gunnar W.; Stefansson, Kari; Hancock, Dana B.; Bierut, Laura J.; Spitz, Margaret R.; Gaddis, Nathan C.; Lutz, Sharon M.; Gu, Fangyi; Johnson, Eric O.; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F.; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I.

    2017-01-01

    Summary While several lung cancer susceptibility loci have been identified, much of lung cancer heritability remains unexplained. Here, 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated GWAS analysis of lung cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility loci achieving genome wide significance, including 10 novel loci. The novel loci highlighted the striking heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four loci associated with lung cancer overall and six with lung adenocarcinoma. Gene expression quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes, OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer. PMID:28604730

  3. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    PubMed

    Sisay, Sofia; Pryce, Gareth; Jackson, Samuel J; Tanner, Carolyn; Ross, Ruth A; Michael, Gregory J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  4. Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Li, J. W.; Zhou, B.; Yuan, Z. Q.; Chen, Y. P.

    2013-03-01

    In the last few decades, the development of Geographical Information Systems (GIS) technology has provided a method for the evaluation of landslide susceptibility and hazard. Slope units were found to be appropriate for the fundamental morphological elements in landslide susceptibility evaluation. Following the DEM construction in a loess area susceptible to landslides, the direct-reverse DEM technology was employed to generate 216 slope units in the studied area. After a detailed investigation, the landslide inventory was mapped in which 39 landslides, including paleo-landslides, old landslides and recent landslides, were present. Of the 216 slope units, 123 involved landslides. To analyze the mechanism of these landslides, six environmental factors were selected to evaluate landslide occurrence: slope angle, aspect, the height and shape of the slope, distance to river and human activities. These factors were extracted in terms of the slope unit within the ArcGIS software. The spatial analysis demonstrates that most of the landslides are located on convex slopes at an elevation of 100-150 m with slope angles from 135°-225° and 40°-60°. Landslide occurrence was then checked according to these environmental factors using an artificial neural network with back propagation, optimized by genetic algorithms. A dataset of 120 slope units was chosen for training the neural network model, i.e., 80 units with landslide presence and 40 units without landslide presence. The parameters of genetic algorithms and neural networks were then set: population size of 100, crossover probability of 0.65, mutation probability of 0.01, momentum factor of 0.60, learning rate of 0.7, max learning number of 10 000, and target error of 0.000001. After training on the datasets, the susceptibility of landslides was mapped for the land-use plan and hazard mitigation. Comparing the susceptibility map with landslide inventory, it was noted that the prediction accuracy of landslide occurrence

  5. Genetic testing in heritable cardiac arrhythmia syndromes: differentiating pathogenic mutations from background genetic noise.

    PubMed

    Giudicessi, John R; Ackerman, Michael J

    2013-01-01

    In this review, we summarize the basic principles governing rare variant interpretation in the heritable cardiac arrhythmia syndromes, focusing on recent advances that have led to disease-specific approaches to the interpretation of positive genetic testing results. Elucidation of the genetic substrates underlying heritable cardiac arrhythmia syndromes has unearthed new arrhythmogenic mechanisms and given rise to a number of clinically meaningful genotype-phenotype correlations. As such, genetic testing for these disorders now carries important diagnostic, prognostic, and therapeutic implications. Recent large-scale systematic studies designed to explore the background genetic 'noise' rate associated with these genetic tests have provided important insights and enhanced how positive genetic testing results are interpreted for these potentially lethal, yet highly treatable, cardiovascular disorders. Clinically available genetic tests for heritable cardiac arrhythmia syndromes allow the identification of potentially at-risk family members and contribute to the risk-stratification and selection of therapeutic interventions in affected individuals. The systematic evaluation of the 'signal-to-noise' ratio associated with these genetic tests has proven critical and essential to assessing the probability that a given variant represents a rare pathogenic mutation or an equally rare, yet innocuous, genetic bystander.

  6. Genetic antimicrobial susceptibility testing in Gram-negative sepsis - impact on time to results in a routine laboratory.

    PubMed

    Kommedal, Øyvind; Aasen, Johanne Lind; Lindemann, Paul Christoffer

    2016-07-01

    Diagnostic testing of positive blood cultures is among the most critical tasks performed by clinical microbiology laboratories, and the total analysis time from sampling to results should be kept as short as possible. By providing identification of pelleted bacteria directly from positive blood-cultures, MALDI-TOF MS opens for relatively low-complex species-adjusted genetic susceptibility testing from the same bacterial pellet. In our lab routine, we prospectively evaluated a rapid in-house real-time PCR targeting the most common aminoglycoside and cephalosporin resistance genes in Escherichia coli and Klebsiella pneumoniae and measured time to preliminary susceptibility reporting for 138 samples. The results were compared to direct phenotypic susceptibility testing with interpretation after 6 h and overnight incubation respectively. Results from the genetic susceptibility testing were available for 69.5% (96/138) of the positive blood cultures within 24 h after sample collection. No phenotypic susceptibility results were available at this time. Compared to overnight direct susceptibility testing, the average time from sample collection to preliminary susceptibility reporting was reduced with 43%, from 45 h and 5 min to 25 h and 44 min, providing an earlier adjustment of antimicrobial therapy for 12 patients. Minor logistic adjustments have the potential to save yet another 4 h. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  7. FACTORS INFLUENCING AGE AND STRAIN-RELATED SUSCEPTIBILITY TO 3-METHYLCHOLANTHRENE CARCINOGENICITY

    EPA Science Inventory

    Fetal mice are more sensitive to chemical carcinogens than are adults. Further, some strains of mice are more susceptible to chemical carcinogens than others. We have been conducting studies to understand the interactions between age and genetic background underlying these suscep...

  8. Effect of genetic background on the dystrophic phenotype in mdx mice

    PubMed Central

    Coley, William D.; Bogdanik, Laurent; Vila, Maria Candida; Yu, Qing; Van Der Meulen, Jack H.; Rayavarapu, Sree; Novak, James S.; Nearing, Marie; Quinn, James L.; Saunders, Allison; Dolan, Connor; Andrews, Whitney; Lammert, Catherine; Austin, Andrew; Partridge, Terence A.; Cox, Gregory A.; Lutz, Cathleen; Nagaraju, Kanneboyina

    2016-01-01

    Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan-null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them with the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared with their respective control strains at multiple time points between 6 and 52 weeks of age. Skeletal and cardiac muscle function, inflammation, regeneration, histology and biochemistry were characterized. We found that D2-mdx mice showed significantly reduced skeletal muscle function as early as 7 weeks and reduced cardiac function by 28 weeks, suggesting that the disease phenotype is more severe than in B10-mdx mice. In addition, D2-mdx mice showed fewer central myonuclei and increased calcifications in the skeletal muscle, heart and diaphragm at 7 weeks, suggesting that their pathology is different from the B10-mdx mice. The new D2-mdx model with an earlier onset and more pronounced dystrophy phenotype may be useful for evaluating therapies that target cardiac and skeletal muscle function in dystrophin-deficient mice. Our data align the D2-mdx with Duchenne muscular dystrophy patients with the LTBP4 genetic modifier, making it one of the few instances of cross-species genetic modifiers of monogenic traits. PMID:26566673

  9. Genetic variation may explain why females are less susceptible to dental erosion.

    PubMed

    Uhlen, Marte-Mari; Stenhagen, Kjersti R; Dizak, Piper M; Holme, Børge; Mulic, Aida; Tveit, Anne B; Vieira, Alexandre R

    2016-10-01

    Not all individuals at risk for dental erosion (DE) display erosive lesions. The prevalence of DE is higher among male subjects. The occurrence of DE may depend on more than just acidic challenge, with genetics possibly playing a role. The aim of this study was to investigate the association of enamel-formation genes with DE. One premolar and a saliva sample were collected from 90 individuals. Prepared teeth were immersed in 0.01 M HCl (pH 2.2), and enamel loss (μm) was measured using white light interferometry. DNA was extracted from saliva, and 15 single-nucleotide polymorphisms were analysed. Allele and genotype frequencies were related to the enamel loss of the specimens. Single-marker and haplotype analyses were performed using sex as a covariate. Mean enamel loss was higher for male donors than for female donors (P = 0.047). Significant associations were found between enamel loss and amelogenin, X-linked (AMELX), tuftelin 1 (TUFT1), and tuftelin-interacting protein 11 (TFIP11). Analyses showed significant associations between variation in enamel-formation genes and a lower susceptibility to DE in female subjects. The results indicate that susceptibility to DE is influenced by genetic variation, and may, in part, explain why some individuals are more susceptible than others to DE, including differences between female subjects and male subjects. © 2016 Eur J Oral Sci.

  10. Genetic testing of newborns for type 1 diabetes susceptibility: a prospective cohort study on effects on maternal mental health

    PubMed Central

    2010-01-01

    Background Concerns about the general psychological impact of genetic testing have been raised. In the Environmental Triggers of Type 1 Diabetes (MIDIA) study, genetic testing was performed for HLA-conferred type 1 diabetes susceptibility among Norwegian newborns. The present study assessed whether mothers of children who test positively suffer from poorer mental health and well-being after receiving genetic risk information about their children. Methods The study was based on questionnaire data from the Norwegian Mother and Child Cohort (MoBa) study conducted by the Norwegian Institute of Public Health. Many of the mothers in the MoBa study also took part in the MIDIA study, in which their newborn children were tested for HLA-conferred genetic susceptibility for type 1 diabetes. We used MoBa questionnaire data from the 30th week of pregnancy (baseline) and 6 months post-partum (3-3.5 months after disclosure of test results). We measured maternal symptoms of anxiety and depression (SCL-8), maternal self-esteem (RSES), and satisfaction with life (SWLS). The mothers also reported whether they were seriously worried about their child 6 months post-partum. We compared questionnaire data from mothers who had received information about having a newborn with high genetic risk for type 1 diabetes (N = 166) with data from mothers who were informed that their baby did not have a high-risk genotype (N = 7224). The association between genetic risk information and maternal mental health was analysed using multiple linear regression analysis, controlling for baseline mental health scores. Results Information on genetic risk in newborns was found to have no significant impact on maternal symptoms of anxiety and depression (p = 0.9), self-esteem (p = 0.2), satisfaction with life (p = 0.2), or serious worry about their child (OR = 0.98, 95% CI 0.64-1.48). Mental health before birth was strongly associated with mental health after birth. In addition, an increased risk of maternal

  11. American Society of Clinical Oncology Policy Statement Update: Genetic and Genomic Testing for Cancer Susceptibility.

    PubMed

    Robson, Mark E; Bradbury, Angela R; Arun, Banu; Domchek, Susan M; Ford, James M; Hampel, Heather L; Lipkin, Stephen M; Syngal, Sapna; Wollins, Dana S; Lindor, Noralane M

    2015-11-01

    The American Society of Clinical Oncology (ASCO) has long affirmed that the recognition and management of individuals with an inherited susceptibility to cancer are core elements of oncology care. ASCO released its first statement on genetic testing in 1996 and updated that statement in 2003 and 2010 in response to developments in the field. In 2014, the Cancer Prevention and Ethics Committees of ASCO commissioned another update to reflect the impact of advances in this area on oncology practice. In particular, there was an interest in addressing the opportunities and challenges arising from the application of massively parallel sequencing-also known as next-generation sequencing-to cancer susceptibility testing. This technology introduces a new level of complexity into the practice of cancer risk assessment and management, requiring renewed effort on the part of ASCO to ensure that those providing care to patients with cancer receive the necessary education to use this new technology in the most effective, beneficial manner. The purpose of this statement is to explore the challenges of new and emerging technologies in cancer genetics and provide recommendations to ensure their optimal deployment in oncology practice. Specifically, the statement makes recommendations in the following areas: germline implications of somatic mutation profiling, multigene panel testing for cancer susceptibility, quality assurance in genetic testing, education of oncology professionals, and access to cancer genetic services. © 2015 by American Society of Clinical Oncology.

  12. A Novel Differential Susceptibility Gene: "CHRNA4" and Moderation of the Effect of Maltreatment on Child Personality

    ERIC Educational Resources Information Center

    Grazioplene, Rachael G.; DeYoung, Colin G.; Rogosch, Fred A.; Cicchetti, Dante

    2013-01-01

    Background: The differential susceptibility hypothesis states that some genetic variants that confer risk in adverse environments are beneficial in normal or nurturing environments. The cholinergic system is promising as a source of susceptibility genes because of its involvement in learning and neural plasticity. The cholinergic receptor gene…

  13. EXPERIMENTAL INDUCTION OF CHRONIC PULMONARY DISEASE IN GENETICALLY SUSCEPTIBLE RAT MODEL

    EPA Science Inventory



    Experimental induction of chronic pulmonary disease in genetically susceptible rat model. M.C.Schladweiler, BS 1, A.D.Ledbetter 1, K.E.Pinkerton, PhD 2, K.R.Smith, PhD 2, P.S.Gilmour, PhD 1, P.A.Evansky 1, D.L.Costa, ScD 1, W.P.Watkinson, PhD 1, J.P.Nolan 1 and U.P.Kodava...

  14. Development of a tiered and binned genetic counseling model for informed consent in the era of multiplex testing for cancer susceptibility.

    PubMed

    Bradbury, Angela R; Patrick-Miller, Linda; Long, Jessica; Powers, Jacquelyn; Stopfer, Jill; Forman, Andrea; Rybak, Christina; Mattie, Kristin; Brandt, Amanda; Chambers, Rachelle; Chung, Wendy K; Churpek, Jane; Daly, Mary B; Digiovanni, Laura; Farengo-Clark, Dana; Fetzer, Dominique; Ganschow, Pamela; Grana, Generosa; Gulden, Cassandra; Hall, Michael; Kohler, Lynne; Maxwell, Kara; Merrill, Shana; Montgomery, Susan; Mueller, Rebecca; Nielsen, Sarah; Olopade, Olufunmilayo; Rainey, Kimberly; Seelaus, Christina; Nathanson, Katherine L; Domchek, Susan M

    2015-06-01

    Multiplex genetic testing, including both moderate- and high-penetrance genes for cancer susceptibility, is associated with greater uncertainty than traditional testing, presenting challenges to informed consent and genetic counseling. We sought to develop a new model for informed consent and genetic counseling for four ongoing studies. Drawing from professional guidelines, literature, conceptual frameworks, and clinical experience, a multidisciplinary group developed a tiered-binned genetic counseling approach proposed to facilitate informed consent and improve outcomes of cancer susceptibility multiplex testing. In this model, tier 1 "indispensable" information is presented to all patients. More specific tier 2 information is provided to support variable informational needs among diverse patient populations. Clinically relevant information is "binned" into groups to minimize information overload, support informed decision making, and facilitate adaptive responses to testing. Seven essential elements of informed consent are provided to address the unique limitations, risks, and uncertainties of multiplex testing. A tiered-binned model for informed consent and genetic counseling has the potential to address the challenges of multiplex testing for cancer susceptibility and to support informed decision making and adaptive responses to testing. Future prospective studies including patient-reported outcomes are needed to inform how to best incorporate multiplex testing for cancer susceptibility into clinical practice.Genet Med 17 6, 485-492.

  15. American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility.

    PubMed

    2003-06-15

    As the leading organization representing cancer specialists involved in patient care and clinical research, the American Society of Clinical Oncology (ASCO) reaffirms its commitment to integrating cancer risk assessment and management, including molecular analysis of cancer predisposition genes, into the practice of oncology and preventive medicine. The primary goal of this effort is to foster expanded access to, and continued advances in, medical care provided to patients and families affected by hereditary cancer syndromes. The 1996 ASCO Statement on Genetic Testing for Cancer Susceptibility set forth specific recommendations relating to clinical practice, research needs, educational opportunities, requirement for informed consent, indications for genetic testing, regulation of laboratories, and protection from discrimination, as well as access to and reimbursement for cancer genetics services. In updating this Statement, ASCO endorses the following principles: Indications for Genetic Testing: ASCO recommends that genetic testing be offered when 1) the individual has personal or family history features suggestive of a genetic cancer susceptibility condition, 2) the test can be adequately interpreted, and 3) the results will aid in diagnosis or influence the medical or surgical management of the patient or family members at hereditary risk of cancer. ASCO recommends that genetic testing only be done in the setting of pre- and post-test counseling, which should include discussion of possible risks and benefits of cancer early detection and prevention modalities. Special Issues in Testing Children for Cancer Susceptibility: ASCO recommends that the decision to offer testing to potentially affected children should take into account the availability of evidence-based risk-reduction strategies and the probability of developing a malignancy during childhood. Where risk-reduction strategies are available or cancer predominantly develops in childhood, ASCO believes that

  16. Genetic variations of MMP9 gene and intracerebral hemorrhage susceptibility: a case-control study in Chinese Han population.

    PubMed

    Yang, Jie; Wu, Bo; Lin, Sen; Zhou, Junshan; Li, Yingbin; Dong, Wei; Arima, Hisatomi; Zhang, Chanfei; Liu, Yukai; Liu, Ming

    2014-06-15

    To investigate the association between genetic variations of matrix metalloproteinase 9 (MMP9) gene and intracerebral hemorrhage (ICH) susceptibility in Chinese Han population. The clinical data and peripheral blood samples from the patients with ICH and hypertension, and controlled subjects with hypertension only, were collected. MassARRAY Analyzer was used to genotype the tagger single nucleotide polymorphism (SNP) of MMP9 gene. Haploview4.2 and Unphased3.1.7 were employed to construct haplotypes and to analyze the association between genetic variations (alleles, genotypes and haplotypes) of MMP9 gene and ICH susceptibility. 181 patients with ICH and hypertension, and 197 patients with hypertension only, were recruited between Sep 2009 and Oct 2010. Patients in the ICH group were younger (61.80 ± 13.27 vs. 72.44 ± 12.71 years, p<0.05). Other conventional risk factors between the ICH and control groups were similar. There were 6 Tagger SNPs and 4 haplotypes of MMP9 gene in our sample population. Our logistical regression analysis showed that there were no significant associations between genetic variations of the MPP9 gene and ICH susceptibility (all p>0.05). The genetic variations of MMP9 gene were not significantly associated with ICH susceptibility in the Chinese Han population. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.

    PubMed

    McKay, James D; Hung, Rayjean J; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C; Caporaso, Neil E; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A; Qian, David C; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N; Bojesen, Stig E; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C; Bush, William S; Tardon, Adonina; Rennert, Gad; Teare, M Dawn; Field, John K; Kiemeney, Lambertus A; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B; Andrew, Angeline S; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A; Wilkens, Lynne R; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F M; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael P A; Marcus, Michael W; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A; Barnett, Matt P; Chen, Chu; Goodman, Gary E; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H-Erich; Manz, Judith; Muley, Thomas R; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A; Tsao, Ming-Sound; Arnold, Susanne M; Haura, Eric B; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J; Butler, Lesley M; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S; McLaughlin, John; Stevens, Victoria L; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C; Obeidat, Ma'en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D; Wain, Louise V; Rafnar, Thorunn; Thorgeirsson, Thorgeir E; Reginsson, Gunnar W; Stefansson, Kari; Hancock, Dana B; Bierut, Laura J; Spitz, Margaret R; Gaddis, Nathan C; Lutz, Sharon M; Gu, Fangyi; Johnson, Eric O; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I

    2017-07-01

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.

  18. Genetic Susceptibility to ANCA-Associated Vasculitis: State of the Art

    PubMed Central

    Bonatti, Francesco; Reina, Michele; Neri, Tauro Maria; Martorana, Davide

    2014-01-01

    ANCA-associated vasculitis (AAV) is a group of disorders that is caused by inflammation affecting small blood vessels. Both arteries and veins are affected. AAV includes microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA) renamed from Wegener’s granulomatosis, and eosinophilic granulomatosis with polyangiitis (EGPA), renamed from Churg–Strauss syndrome. AAV is primarily due to leukocyte migration and resultant damage. Despite decades of research, the mechanisms behind AAV disease etiology are still not fully understood, although it is clear that genetic and environmental factors are involved. To improve the understanding of the disease, the genetic component has been extensively studied by candidate association studies and two genome-wide association studies. The majority of the identified genetic AAV risk factors are common variants. These have uncovered information that still needs further investigation to clarify its importance. In this review, we summarize and discuss the results of the genetic studies in AAV. We also present the novel approaches to identifying the causal variants in complex susceptibility loci and disease mechanisms. Finally, we discuss the limitations of current methods and the challenges that we still have to face in order to incorporate genomic and epigenomic data into clinical practice. PMID:25452756

  19. The Role of Abcb5 Alleles in Susceptibility to Haloperidol-Induced Toxicity in Mice and Humans

    PubMed Central

    Zheng, Ming; Zhang, Haili; Dill, David L.; Clark, J. David; Tu, Susan; Yablonovitch, Arielle L.; Tan, Meng How; Zhang, Rui; Rujescu, Dan; Wu, Manhong; Tessarollo, Lino; Vieira, Wilfred; Gottesman, Michael M.; Deng, Suhua; Eberlin, Livia S.; Zare, Richard N.; Billard, Jean-Martin; Gillet, Jean-Pierre; Li, Jin Billy; Peltz, Gary

    2015-01-01

    Background We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity. HIT in humans is directly mirrored in a murine genetic model, where inbred mouse strains are differentially susceptible to HIT. Therefore, we genetically analyzed this murine model and performed a translational human genetic association study. Methods and Findings A whole genome SNP database and computational genetic mapping were used to analyze the murine genetic model of HIT. Guided by the mouse genetic analysis, we demonstrate that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution strains, imaged haloperidol abundance in brain tissue sections and directly measured haloperidol (and its metabolite) levels in brain, and characterized Abcb5 knockout mice. Our results demonstrate that Abcb5 is part of the blood-brain barrier; it affects susceptibility to HIT by altering the brain concentration of haloperidol. Moreover, a genetic association study in a haloperidol-treated human cohort indicates that human ABCB5 alleles had a time-dependent effect on susceptibility to individual and combined measures of HIT. Abcb5 alleles are pharmacogenetic factors that affect susceptibility to HIT, but it is likely that additional pharmacogenetic susceptibility factors will be discovered

  20. Molecular Neuro-Pathomechanism of Neurocysticercosis: How Host Genetic Factors Influence Disease Susceptibility.

    PubMed

    Arora, Naina; Tripathi, Shweta; Sao, Reshma; Mondal, Prosenjit; Mishra, Amit; Prasad, Amit

    2018-02-01

    Neurocysticercosis (NCC) is one of the most neglected tropical diseases among widely endemic neurological diseases. It is caused by cysticerci of Taenia solium. The clinical symptom for the outcome of infection and progression of disease is pleomorphic and its neuro-pathomechanism is still illusive. Identification of host genetic factors and their association with disease susceptibility is one of the most important areas of research towards personalized medicine in the era of omics. Several genes and their allelic variations had been identified to be associated with various neurological disorders; however, the information for parasitic diseases affecting the central nervous system is very limited. Both Th1 and Th2 arms of the immune system are reported to be active at different stages of T. solium infection in the brain. Recently, several papers had been published, where the role of host genetic makeup with NCC had been explored. Increased frequency of HLA-A28, HLA-B63, HLA-B58, TLR 4 Asp299Gly, sICAM-1 gene K469E, GSTM1, and GSTT1 were found to be associated with increased risk of NCC occurrence, while HLA-DQW2 and HLA-A11 were shown to be providing protection from disease. In this review, we have summarized these findings and analyzed the influence of host genetic polymorphism on the susceptibility/resistance of host to NCC.

  1. Genetic Susceptibility, Change in Physical Activity, and Long-term Weight Gain.

    PubMed

    Wang, Tiange; Huang, Tao; Heianza, Yoriko; Sun, Dianjianyi; Zheng, Yan; Ma, Wenjie; Jensen, Majken K; Kang, Jae H; Wiggs, Janey L; Pasquale, Louis R; Rimm, Eric B; Manson, JoAnn E; Hu, Frank B; Willett, Walter C; Qi, Lu

    2017-10-01

    Whether change in physical activity over time modifies the genetic susceptibility to long-term weight gain is unknown. We calculated a BMI-genetic risk score (GRS) based on 77 BMI-associated single nucleotide polymorphisms (SNPs) and a body fat percentage (BF%)-GRS based on 12 BF%-associated SNPs in 9,390 women from the Nurses' Health Study (NHS) and 5,291 men from the Health Professionals Follow-Up Study (HPFS). We analyzed the interactions between each GRS and change in physical activity on BMI/body weight change within five 4-year intervals from 1986 to 2006 using multivariable generalized linear models with repeated-measures analyses. Both the BMI-GRS and the BF%-GRS were associated with long-term increases in BMI/weight, and change in physical activity consistently interacted with the BF%-GRS on BMI change in the NHS ( P for interaction = 0.025) and HPFS ( P for interaction = 0.001). In the combined cohorts, 4-year BMI change per 10-risk allele increment was -0.02 kg/m 2 among participants with greatest increase in physical activity and 0.24 kg/m 2 among those with greatest decrease in physical activity ( P for interaction < 0.001), corresponding to 0.01 kg versus 0.63 kg weight changes every 4 years ( P for interaction = 0.001). Similar but marginal interactions were observed for the BMI-GRS ( P for interaction = 0.045). Our data indicate that the genetic susceptibility to weight gain may be diminished by increasing physical activity. © 2017 by the American Diabetes Association.

  2. Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus.

    PubMed

    Sanchez, Elena; Nadig, Ajay; Richardson, Bruce C; Freedman, Barry I; Kaufman, Kenneth M; Kelly, Jennifer A; Niewold, Timothy B; Kamen, Diane L; Gilkeson, Gary S; Ziegler, Julie T; Langefeld, Carl D; Alarcón, Graciela S; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Brown, Elizabeth E; Kimberly, Robert P; Reveille, John D; Vilá, Luis M; Merrill, Joan T; Anaya, Juan-Manuel; James, Judith A; Pons-Estel, Bernardo A; Martin, Javier; Park, So-Yeon; Bang, So-Young; Bae, Sang-Cheol; Moser, Kathy L; Vyse, Timothy J; Criswell, Lindsey A; Gaffney, Patrick M; Tsao, Betty P; Jacob, Chaim O; Harley, John B; Alarcón-Riquelme, Marta E; Sawalha, Amr H

    2011-10-01

    Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus. 4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria. Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0 × 10(-6), OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing. Signifi cant associations were found between clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future.

  3. Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus

    PubMed Central

    Sanchez, Elena; Nadig, Ajay; Richardson, Bruce C; Freedman, Barry I; Kaufman, Kenneth M; Kelly, Jennifer A; Niewold, Timothy B; Kamen, Diane L; Gilkeson, Gary S; Ziegler, Julie T; Langefeld, Carl D; Alarcón, Graciela S; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Brown, Elizabeth E; Kimberly, Robert P; Reveille, John D; Vilá, Luis M; Merrill, Joan T; Anaya, Juan-Manuel; James, Judith A; Pons-Estel, Bernardo A; Martin, Javier; Park, So-Yeon; Bang, So-Young; Bae, Sang-Cheol; Moser, Kathy L; Vyse, Timothy J; Criswell, Lindsey A; Gaffney, Patrick M; Tsao, Betty P; Jacob, Chaim O; Harley, John B; Alarcón-Riquelme, Marta E; Sawalha, Amr H

    2011-01-01

    Objective Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus. Materials and methods 4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria. Results Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0×10−6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing. Conclusion Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future. PMID:21719445

  4. Genetic and intermediate phenotypic susceptibility markers of gastric cancer in Hispanic Americans: a case-control study.

    PubMed

    Sun, Yuhui; Gu, Jian; Ajani, Jaffer A; Chang, David W; Wu, Xifeng; Stroehlein, John R

    2014-10-01

    Hispanics are the largest nonwhite ethnic group in the US population, and they have higher incidence and mortality rates for gastric cancer (GC) than whites and Asians. Studies have identified several genetic susceptibility loci and intermediate phenotypic biomarkers for GC in whites and Asians. No studies have evaluated genetic susceptibility and intermediate phenotypic biomarkers in Hispanics. In a case-control study of 132 Hispanic patients with GC (cases) and a control group of 125 Hispanics (controls), the authors evaluated the association of 5 single nucleotide polymorphisms (SNPs) that predispose whites and/or Asians to GC and of 2 intermediate phenotypic markers in peripheral blood leukocytes, ie, telomere length and mitochondrial DNA (mtDNA) copy number, with the GC risk. The variant C allele of the reference SNP rs2294008 in the PSCA gene was associated with a significantly reduced risk of GC (per allele-adjusted odds ratio [aOR], 0.51; 95% confidence interval [CI], 0.33-0.77; P = .002). Leukocyte mtDNA copy numbers were significantly lower in GC cases (mean ± standard deviation, 0.91 ± 0.28) than in controls (1.29 ± 0.42; P < .001). When individuals were dichotomized into high and low mtDNA copy number groups based on the median mtDNA copy number value in the controls, those who had a low mtDNA copy number had a significantly increased risk of GC (aOR, 11.00; 95% CI, 4.79-25.23; P < .001) compared with those who had a high mtDNA copy number. Telomere length was not associated significantly with the risk of GC (aOR, 1.21; 95% CI, 0.65-2.27; P = .551). Hispanics share certain genetic susceptibility loci and intermediate phenotypic GC biomarkers with whites and Asians and may also have distinct genetic susceptibility factors. © 2014 American Cancer Society.

  5. Genetic variation in susceptibility to fusiform rust in seedlings from a wild population of loblolly pine

    Treesearch

    Bohun B. Kinloch Jr.; Roy W. Stonecypher

    1969-01-01

    Striking genetic variation in susceptibility to fusiform rust was observed among SS controlled-pollinated (CP) and 48 wind-pollinated (WP) families from parent trees of loblolly pine selected at random in a natural forest stand in southwest Georgia. The mating design permitted statistical tests for estimating both additive and total genetic variance. WP families were...

  6. Genetic evidence for an ethnic diversity in the susceptibility to Ménière's disease.

    PubMed

    Ohmen, Jeffrey Douglass; White, Cory H; Li, Xin; Wang, Juemei; Fisher, Laurel M; Zhang, Huan; Derebery, Mary Jennifer; Friedman, Rick A

    2013-09-01

    Ménière's disease (MD) is a debilitating disorder of the inner ear characterized by cochlear and vestibular dysfunction. The cause of this disease is still unknown, and epidemiological data for MD are sparse. From the existing literature, women seem to be more susceptible than men, and Caucasians seem to be more susceptible than Asians. In this article, we characterize a large definite MD cohort for sex and age of onset of disease and use molecular genetic methodologies to characterize ethnicity. Medical record review for sex and age of onset. Ancestry analysis compared results from the principal component analysis of whole-genome genotype data from MD patients to self-identified ancestry in control samples. House Clinic in Los Angeles. Definitive MD patients. Our review of medical records for definitive MD patients reveals that women are more susceptible than men. We also find that men and women have nearly identical age of onset for disease. Lastly, interrogation of molecular genetic data with principal component analysis allowed detailed observations about the ethnic ancestry of our patients. Comparison of the ethnicity of MD patients presenting to our tertiary care clinic with the self-recollected ethnicity of all patients visiting the clinic revealed an ethnic bias, with Caucasians presenting at a higher frequency than expected and the remaining major ethnicities populating Los Angeles (Hispanics, Blacks, and Asians) presenting at a lower frequency than expected. To the best of our knowledge, this report is the first ethnic characterization of a large MD cohort from a large metropolitan region using molecular genetic data. Our data suggest that there is a bias in sex and ethnic susceptibility to this disease.

  7. Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2 Receptor) in Experimental Autoimmune Encephalomyelitis Models of Multiple Sclerosis

    PubMed Central

    Jackson, Samuel J.; Tanner, Carolyn; Ross, Ruth A.; Michael, Gregory J.; Selwood, David L.; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  8. Comprehensive Clinical Phenotyping & Genetic Mapping for the Discovery of Autism Susceptibility Genes

    DTIC Science & Technology

    2012-12-05

    Bisgaier J, Levinson D, Cutts DB, & Rhodes KV., (2011) Access to autism evaluation appointments with developmental-behavioral and neurodevelopmental ...W403 Columbus, OH 43205 Final Report Comprehensive Clinical Phenotyping & Genetic Mapping for the Discovery of Autism Susceptibility Genes...QFOXGHDUHDFRGH 1.0 Summary In 2006, the Central Ohio Registry for Autism (CORA) was initiated as a collaboration between Wright-Patterson Air

  9. [Susceptibility HLA alleles and amino acids to Takayasu arteritis].

    PubMed

    Terao, Chikashi; Yoshifuji, Hajime; Mimori, Tsuneyo; Matsuda, Fumihiko

    2014-01-01

    Takayasu arteritis (TAK) is a systemic vasculitis affecting aorta and its large branches which were firstly reported from Japan. TAK develops mainly in young females and the number of patients with TAK in Japan is estimated about 6,000 to 10,000. This low prevalence has made genetic studies of TAK difficult to elucidate its genetic background. The HLA region, especially HLA-B locus, is the strongest susceptibility locus to TAK. The association between TAK and HLA-B*52:01 has been established beyond ethnicity. Recently, two different Japanese research groups identified HLA-B67:01, a relatively rare allele in East Asian population, as a novel susceptibility allele. At the same time, two amino acid variations, namely, histidine at position 171 and phenylalanine at position 67 were reported as susceptibility and protective variations, respectively. Since these positions of amino acid are in the peptide binding grooves of HLA-B protein, changes of peptide-binding in MHC class I seem to play a critical role on susceptibility to TAK. Furthermore, the importance of these two amino acid variations would explain the lack of susceptibility effect of HLA-B*51:01 to TAK, which shares most of amino acid sequences with HLA-B*52:01 except for two amino acids including the position 67.

  10. Biomarkers: The Clues to Genetic Susceptibility.

    PubMed Central

    Zeiger, M

    1994-01-01

    There are approximately 500,000 cancer-related deaths annually in the United States. Scientists believe as that many as 80% of those deaths could be prevented due to the fact that most malignancies are a result of external factors rather than inherent biological conditions. With recent advances in molecular biology, a new field that combines highly sensitive and specific techniques for detecting early damage associated with cancer has emerged. By combining knowledge about external factors related to lifestyle and environmental or occupational exposure to chemicals with knowledge of how genetic differences cause variations in human responses to environmental pollutants, scientists are developing a better understanding of questions such as why some smokers get cancer but others do not, why certain groups of people have a higher incidence of cancer after exposure to a toxicant and others do not, and why certain women are more prone to develop breast cancer than others. Scientists using biomarkers of susceptibility will be able to identify risks and prevent adverse health effects through prevention and intervention strategies. PMID:9719667

  11. Do Genetic Susceptibility Variants Associate with Disease Severity in Early Active Rheumatoid Arthritis?

    PubMed

    Scott, Ian C; Rijsdijk, Frühling; Walker, Jemma; Quist, Jelmar; Spain, Sarah L; Tan, Rachael; Steer, Sophia; Okada, Yukinori; Raychaudhuri, Soumya; Cope, Andrew P; Lewis, Cathryn M

    2015-07-01

    Genetic variants affect both the development and severity of rheumatoid arthritis (RA). Recent studies have expanded the number of RA susceptibility variants. We tested the hypothesis that these associated with disease severity in a clinical trial cohort of patients with early, active RA. We evaluated 524 patients with RA enrolled in the Combination Anti-Rheumatic Drugs in Early RA (CARDERA) trials. We tested validated susceptibility variants - 69 single-nucleotide polymorphisms (SNP), 15 HLA-DRB1 alleles, and amino acid polymorphisms in 6 HLA molecule positions - for their associations with progression in Larsen scoring, 28-joint Disease Activity Scores, and Health Assessment Questionnaire (HAQ) scores over 2 years using linear mixed-effects and latent growth curve models. HLA variants were associated with joint destruction. The *04:01 SNP (rs660895, p = 0.0003), *04:01 allele (p = 0.0002), and HLA-DRβ1 amino acids histidine at position 13 (p = 0.0005) and valine at position 11 (p = 0.0012) significantly associated with radiological progression. This association was only significant in anticitrullinated protein antibody (ACPA)-positive patients, suggesting that while their effects were not mediated by ACPA, they only predicted joint damage in ACPA-positive RA. Non-HLA variants did not associate with radiograph damage (assessed individually and cumulatively as a weighted genetic risk score). Two SNP - rs11889341 (STAT4, p = 0.0001) and rs653178 (SH2B3-PTPN11, p = 0.0004) - associated with HAQ scores over 6-24 months. HLA susceptibility variants play an important role in determining radiological progression in early, active ACPA-positive RA. Genome-wide and HLA-wide analyses across large populations are required to better characterize the genetic architecture of radiological progression in RA.

  12. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortensen, Holly M., E-mail: mortensen.holly@epa.gov; Euling, Susan Y.

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization ofmore » drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.« less

  13. iGWAS: Integrative Genome-Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis.

    PubMed

    Huang, Yen-Tsung; Liang, Liming; Moffatt, Miriam F; Cookson, William O C M; Lin, Xihong

    2015-07-01

    Genome-wide association studies (GWAS) have been a standard practice in identifying single nucleotide polymorphisms (SNPs) for disease susceptibility. We propose a new approach, termed integrative GWAS (iGWAS) that exploits the information of gene expressions to investigate the mechanisms of the association of SNPs with a disease phenotype, and to incorporate the family-based design for genetic association studies. Specifically, the relations among SNPs, gene expression, and disease are modeled within the mediation analysis framework, which allows us to disentangle the genetic effect on a disease phenotype into two parts: an effect mediated through a gene expression (mediation effect, ME) and an effect through other biological mechanisms or environment-mediated mechanisms (alternative effect, AE). We develop omnibus tests for the ME and AE that are robust to underlying true disease models. Numerical studies show that the iGWAS approach is able to facilitate discovering genetic association mechanisms, and outperforms the SNP-only method for testing genetic associations. We conduct a family-based iGWAS of childhood asthma that integrates genetic and genomic data. The iGWAS approach identifies six novel susceptibility genes (MANEA, MRPL53, LYCAT, ST8SIA4, NDFIP1, and PTCH1) using the omnibus test with false discovery rate less than 1%, whereas no gene using SNP-only analyses survives with the same cut-off. The iGWAS analyses further characterize that genetic effects of these genes are mostly mediated through their gene expressions. In summary, the iGWAS approach provides a new analytic framework to investigate the mechanism of genetic etiology, and identifies novel susceptibility genes of childhood asthma that were biologically meaningful. © 2015 WILEY PERIODICALS, INC.

  14. Genetics and genomics of susceptibility and immune response to necrotic enteritis in chicken: a review.

    PubMed

    Zahoor, Imran; Ghayas, Abdul; Basheer, Atia

    2018-02-01

    Global poultry production is facing many challenges and is currently under pressure due to the presence of several diseases like Necrotic Enteritis (NE). It is estimated that NE-caused global economic losses has increased from 2 billion to 6 billion US$ in 2015 because it is not easy to diagnose and control disease at the earlier stage of occurrence. Additionally, ban on the in-feed antibiotics and some other genetic and non-genetic predisposing factors affect the occurrence of the disease. Though the incidence of the disease can be reduced by minimizing the predisposing factors and through immunization of birds but there is no single remedy to control the disease. Therefore, we suggest that there is need to find out the genetic variants that could help to select the birds resistant to NE. The current review details the pertinent features about the genetic and genomics of susceptibility and immune response of birds to Necrotic Enteritis. We report here the list of candidate gene reported for their involvement with the susceptibility and/or resistance to the disease. However, most of these genes are involved in immune-related functions. For better understanding of the role of Clostridium perfringens and its toxins in the pathogenesis of disease there is need to unveil the association between any specific genetic variation and clinical status of NE. However, the presence of substantial genetic variations among different breeds/strains of chicken shows that it is possible to develop broiler strain with genetic resistant against NE. It would help in the cost-effective and sustainable production of safe broiler meat.

  15. Adherence to a Mediterranean diet, genetic susceptibility, and progression to advanced macular degeneration: a prospective cohort study.

    PubMed

    Merle, Bénédicte M J; Silver, Rachel E; Rosner, Bernard; Seddon, Johanna M

    2015-11-01

    Adherence to a Mediterranean-type diet is linked to a lower risk of mortality and chronic disease, but the association with the progression of age-related macular degeneration (AMD) and genetic susceptibility is unknown. We examined the association of adherence to the Mediterranean diet and genetic susceptibility with progression to advanced AMD. Among 2525 subjects in the AREDS (Age-Related Eye Disease Study), 1028 eyes progressed to advanced AMD over 13 y. Baseline data for demographic and behavioral covariates were collected by using questionnaires. Dietary data were collected from food-frequency questionnaires. The alternate Mediterranean diet (aMeDi) score (range: 0-9) was constructed from individual intakes of vegetables, fruit, legumes, whole grains, nuts, fish, red and processed meats, alcohol, and the ratio of monounsaturated to saturated fats. Ten genetic loci in 7 genes [complement factor H (CFH), age-related maculopathy susceptibility 2/high-temperature requirement A serine peptidase 1 (ARMS2/HTRA1), complement component 2 (C2), complement factor B (CFB), complement component 3 (C3), collagen type VIII α 1 (COL8A1), and RAD51 paralog B (RAD51B)] were examined. Survival analysis was used to assess individual eyes for associations between incident AMD and aMeDi score, as well as interaction effects between aMeDi score and genetic variation on risk of AMD. A high aMeDi score (score of 6-9) was significantly associated with a reduced risk of progression to advanced AMD after adjustment for demographic, behavioral, ocular, and genetic covariates (HR: 0.74; 95% CI: 0.61, 0.91; P-trend = 0.007). The aMeDi score was significantly associated with a lower risk of incident advanced AMD among subjects carrying the CFH Y402H nonrisk (T) allele (P-trend = 0.0004, P-interaction = 0.04). The aMeDi score was not associated with AMD among subjects who were homozygous for the risk (C) allele. Higher adherence to a Mediterranean diet was associated with reduced risk of

  16. Common genetic variation in ETV6 is associated with colorectal cancer susceptibility

    PubMed Central

    Wang, Meilin; Gu, Dongying; Du, Mulong; Xu, Zhi; Zhang, Suzhan; Zhu, Lingjun; Lu, Jiachun; Zhang, Rui; Xing, Jinliang; Miao, Xiaoping; Chu, Haiyan; Hu, Zhibin; Yang, Lei; Tang, Cuiju; Pan, Lei; Du, Haina; Zhao, Jian; Du, Jiangbo; Tong, Na; Sun, Jielin; Shen, Hongbing; Xu, Jianfeng; Zhang, Zhengdong; Chen, Jinfei

    2016-01-01

    Genome-wide association studies (GWASs) have identified multiple susceptibility loci for colorectal cancer, but much of heritability remains unexplained. To identify additional susceptibility loci for colorectal cancer, here we perform a GWAS in 1,023 cases and 1,306 controls and replicate the findings in seven independent samples from China, comprising 5,317 cases and 6,887 controls. We find a variant at 12p13.2 associated with colorectal cancer risk (rs2238126 in ETV6, P=2.67 × 10−10). We replicate this association in an additional 1,046 cases and 1,076 controls of European ancestry (P=0.034). The G allele of rs2238126 confers earlier age at onset of colorectal cancer (P=1.98 × 10−6) and reduces the binding affinity of transcriptional enhancer MAX. The mRNA level of ETV6 is significantly lower in colorectal tumours than in paired normal tissues. Our findings highlight the potential importance of genetic variation in ETV6 conferring susceptibility to colorectal cancer. PMID:27145994

  17. Role of a Genetic Variant on the 15q25.1 Lung Cancer Susceptibility Locus in Smoking-Associated Nasopharyngeal Carcinoma

    PubMed Central

    Ji, Xuemei; Zhang, Weidong; Gui, Jiang; Fan, Xia; Zhang, Weiwei; Li, Yafang; An, Guangyu; Zhu, Dakai; Hu, Qiang

    2014-01-01

    Background The 15q25.1 lung cancer susceptibility locus, containing CHRNA5, could modify lung cancer susceptibility and multiple smoking related phenotypes. However, no studies have investigated the association between CHRNA5 rs3841324, which has been proven to have the highest association with CHRNA5 mRNA expression, and the risk of other smoking-associated cancers, except lung cancer. In the current study we examined the association between rs3841324 and susceptibility to smoking-associated nasopharyngeal carcinoma (NPC). Methods In this case-control study we genotyped the CHRNA5 rs3841324 polymorphism with 400 NPC cases and 491 healthy controls who were Han Chinese and frequency-matched by age (±5 years), gender, and alcohol consumption. Univariate and multivariate logistic regression analyses were used to calculate the odds ratio (OR) and 95% confidence intervals (95% CI). Results We found that individuals with CHRNA5 rs3841324 combined variant genotypes (ins/del+del/del) had a >1.5-fold elevated risk for NPC than those with the ins/ins genotype (adjusted OR = 1.52; 95% CI, 1.16–2.00), especially among ever smokers (adjusted OR = 2.07; 95% CI, 1.23–3.48). The combined variant genotypes acted jointly with cigarette smoking to contribute to a 4.35-fold increased NPC risk (adjusted OR = 4.35; 95% CI, 2.57–7.38). There was a dose-response relationship between deletion alleles and NPC susceptibility (trend test, P = 0.011). Conclusions Our results suggest that genetic variants on the 15q25.1 lung cancer susceptibility locus may influence susceptibility to NPC, particularly for smoking-associated NPC. Such work may be helpful to facilitate an understanding of the etiology of smoking-associated cancers and improve prevention efforts. PMID:25329654

  18. Genetic susceptibility to family environment: BDNF Val66met and 5-HTTLPR influence depressive symptoms.

    PubMed

    Dalton, Elizabeth D; Hammen, Constance L; Najman, Jake M; Brennan, Patricia A

    2014-12-01

    Functional genetic polymorphisms associated with Brain-Derived Neurotrophic Factor (BDNF) and serotonin (5-HTTLPR) have demonstrated associations with depression in interaction with environmental stressors. In light of evidence for biological connections between BDNF and serotonin, it is prudent to consider genetic epistasis between variants in these genes in the development of depressive symptoms. The current study examined the effects of val66met, 5-HTTLPR, and family environment quality on youth depressive symptoms in adolescence and young adulthood in a longitudinal sample oversampled for maternal depression history. A differential susceptibility model was tested, comparing the effects of family environment on depression scores across different levels of a cumulative plasticity genotype, defined as presence of both, either, or neither plasticity alleles (defined here as val66met Met and 5-HTTLPR 'S'). Cumulative plasticity genotype interacted with family environment quality to predict depression among males and females at age 15. After age 15, however, the interaction of cumulative plasticity genotype and early family environment quality was only predictive of depression among females. Results supported a differential susceptibility model at age 15, such that plasticity allele presence was associated with more or less depressive symptoms depending on valence of the family environment, and a diathesis-stress model of gene-environment interaction after age 15. These findings, although preliminary because of the small sample size, support prior results indicating interactive effects of 5-HTTLPR, val66met, and environmental stress, and suggest that family environment may have a stronger influence on genetically susceptible women than men.

  19. Parental genetic diversity of brown trout (Salmo trutta m. fario) brood stock affects offspring susceptibility to whirling disease.

    PubMed

    Eszterbauer, Edit; Forró, Barbara; Tolnai, Zoltán; Guti, Csaba Ferenc; Zsigmond, Gergely; Hoitsy, György; Kallert, Dennis Marc

    2015-03-03

    Whirling disease, caused by the myxozoan parasite Myxobolus cerebralis, has high economical and ecological importance worldwide. Susceptibility to the disease varies considerably among salmonid species. In brown trout (Salmo trutta) the infection is usually subclinical with low mortality, which increases the risk of parasite dissemination, especially when farm fish are used for stocking natural habitats. The influence of intraspecific genetic differences (especially the level of homozygosity) on susceptibility is unknown. Therefore, we examined the possible correlations between parental genetic diversity and offspring susceptibility of brown trout stocks to whirling disease. Two brown trout brood stocks from a German and a Hungarian fish farm were genetically characterized using microsatellite and lineage-specific genetic markers. The individual inbreeding coefficient f and pairwise relatedness factor r were estimated based on eight microsatellite markers. Brood stock populations were divided into groups according to low and high f and r value estimates and subjected to selective fertilization. The offspring from these separate groups were exposed to M. cerebralis actinospores, and the infection prevalence and intensity was measured and statistically analysed. The analysis of phylogeographic lineage heritage revealed high heterogeneity in the Hungarian brood stock since > 50% of individuals were Atlantic-Danubian hybrids, while only pure Atlantic-descending specimens were detected in the German population. Based on f msat and r msat estimations, classified non-inbred (NIB), inbred (IB) and a group of closely related fish (REL) were created. The susceptibility of their offspring varied considerably. Although there was no significant difference in the prevalence of M. cerebralis infection, the mean intensity of infection differed significantly between NIB and IB groups. In REL and IB groups, a high variability was observed in infection intensity. No external

  20. The Integrative Studies of Genetic and Environmental Factors in Systemic Sclerosis

    DTIC Science & Technology

    2008-05-01

    15. SUBJECT TERMS Scleroderma (SSc), fibroblasts, fibrosis, silica, environmental particles, susceptibility. 16. SECURITY CLASSIFICATION OF...factors in a viable system - human fibroblasts. Fibroblasts with a scleroderma (SSc) susceptible genetic background may be more vulnerable to...for understanding environmental contributions to fibrosing diseases such as scleroderma (SSc). Third, in the studies of specific biological

  1. Penicillin-resistant, ampicillin-susceptible Enterococcus faecalis of hospital origin: pbp4 gene polymorphism and genetic diversity.

    PubMed

    Conceição, Natália; da Silva, Lucas Emanuel Pinheiro; Darini, Ana Lúcia da Costa; Pitondo-Silva, André; de Oliveira, Adriana Gonçalves

    2014-12-01

    Despite the spread of penicillin-resistant, ampicillin-susceptible Enterococcus faecalis (PRASEF) isolates in diverse countries, the mechanisms leading to this unusual resistance phenotype have not yet been investigated. The aim of this study was to evaluate whether polymorphism in the pbp4 gene is associated with penicillin resistance in PRASEF isolates and to determine their genetic diversity. E. faecalis isolates were recovered from different clinical specimens of hospitalized patients from February 2006 to June 2010. The β-lactam minimal inhibitory concentrations (MICs) were determined by E-test®. The PCR-amplified pbp4 gene was sequenced with an automated sequencer. The genetic diversities of the isolates were established by PFGE (pulsed-field gel electrophoresis) and MLST (multilocus sequencing typing). Seventeen non-producing β-lactamase PRASEF and 10 penicillin-susceptible, ampicillin-susceptible E. faecalis (PSASEF) strains were analyzed. A single-amino-acid substitution (Asp-573→Glu) in the penicillin-binding domain was significantly found in all PRASEF isolates by sequencing of the pbp4 gene but not in the penicillin-susceptible isolates. In contrast to the PSASEF isolates, a majority of the PRASEFs had similar PFGE profiles. Six representative PRASEF isolates were resolved by MLST into ST9 and ST524 and belong to the globally dispersed clonal complex 9 (CC9). In conclusion, it appears quite likely that the amino acid alteration (Asp-573→Glu) found in the PBP4 of the Brazilian PRASEF isolates may account for their reduced susceptibility to penicillin, although other resistance mechanisms remain to be investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Differential Susceptibility: The Genetic Moderation of Peer Pressure on Alcohol Use

    PubMed Central

    Cleveland, H. Harrington; Schlomer, Gabriel L.; Vandenbergh, David J.; Feinberg, Mark E.

    2016-01-01

    Although peer pressure can influence adolescents’ alcohol use, individual susceptibility to these pressures varies across individuals. The dopamine receptor D4 gene (DRD4) is a potential candidate gene that may influence adolescents’ susceptibility to their peer environment due to the role dopamine plays in reward sensation during social interaction. We hypothesized that DRD4 genotype status would moderate the impact of 7th-grade antisocial peer pressure on 12th-grade lifetime alcohol use (n = 414; 58.7 % female; 92.8 % White). The results revealed significant main effects for antisocial peer pressure, but no main effects for DRD4 genotype on lifetime alcohol use. Adolescent DRD4 genotype moderated the association between peer pressure and lifetime alcohol use. For individuals who carried at least one copy of the DRD4 7-repeat allele (7+), antisocial peer pressure was associated with increased lifetime alcohol use. These findings indicate that genetic sensitivity to peer pressure confers increased alcohol use in late adolescence. PMID:26307243

  3. Differential Susceptibility: The Genetic Moderation of Peer Pressure on Alcohol Use.

    PubMed

    Griffin, Amanda M; Cleveland, H Harrington; Schlomer, Gabriel L; Vandenbergh, David J; Feinberg, Mark E

    2015-10-01

    Although peer pressure can influence adolescents' alcohol use, individual susceptibility to these pressures varies across individuals. The dopamine receptor D4 gene (DRD4) is a potential candidate gene that may influence adolescents' susceptibility to their peer environment due to the role dopamine plays in reward sensation during social interaction. We hypothesized that DRD4 genotype status would moderate the impact of 7th-grade antisocial peer pressure on 12th-grade lifetime alcohol use (n = 414; 58.7% female; 92.8% White). The results revealed significant main effects for antisocial peer pressure, but no main effects for DRD4 genotype on lifetime alcohol use. Adolescent DRD4 genotype moderated the association between peer pressure and lifetime alcohol use. For individuals who carried at least one copy of the DRD4 7-repeat allele (7+), antisocial peer pressure was associated with increased lifetime alcohol use. These findings indicate that genetic sensitivity to peer pressure confers increased alcohol use in late adolescence.

  4. [Clinical characteristics, prognosis and genetic susceptibility of herpes simplex encephalitis in children].

    PubMed

    Feng, Wenya; Chen, Tianming; Hu, Bing; Wan, Jiabin; Liu, Gang

    2015-09-01

    To summarize the clinical characteristics and long-term prognosis of herpes simplex virus encephalitis (HSE) in childhood and to analyze genotype of UNC93B1 and TLR3. Data of a total of 30 HSE patients admitted to Beijing Children's Hospital from January 2008 to September 2013 were retrospectively analyzed, the data included clinical manifestations, physical sign, auxiliary examination, therapy and long-term clinical prognosis. The family history obtained during follow-up visit was also analyzed for genetic predisposition. With parents' agreement, the blood specimens of patients were collected in EDTA anticoagulant tubes, the first 2 genetic etiologies UNC93B1 and TLR3 were sequenced, and the genetic susceptibility to HSE in childhood was summarized. (1) All the 30 patients (100%) had fever, 28 (93%) had seizure, 25 (83%) had altered state of consciousness, only 11 (37%) had personality changes, and in 8 (73%) appeared at or after 2 weeks of onset . (2) During the long-term follow up, 2 (7%) patients died after discharge, 23 patients (82%) had neurological sequelae, 13 patients (57%) had moderate, severe disability and vegetative state. (3) After sequencing of UNC93B1, and TLR3, one patient was found homozygous for a single-nucleotide substitution at position C.414C>G in exon 4 of UNC93B1 which affected the expression of UNC93B1, and may block or decrease the production of interferon. (4) Six single nucleotide polymorphisms (SNPs) were found in this study, their genotype frequency and gene frequency of Chinese were respectively searched in Genomes Project in NCBI and defined 1 000 genomes group. The genotype frequency of UNC93B1 rs7149 between 1 000 genomes group and HSE group was significantly different (χ² = 55.37, P<0.05). The frequency of CC type and C type was higher in HSE group, both of them had significant difference (χ² = 93.90, P<0.05, OR=61.563; χ² = 134.40, P<0.05, OR=12.491). HSE lacks specific clinical manifestations, the long-term prognosis is

  5. On the relative roles of background selection and genetic hitchhiking in shaping human cytomegalovirus genetic diversity.

    PubMed

    Renzette, Nicholas; Kowalik, Timothy F; Jensen, Jeffrey D

    2016-01-01

    A central focus of population genetics has been examining the contribution of selective and neutral processes in shaping patterns of intraspecies diversity. In terms of selection specifically, surveys of higher organisms have shown considerable variation in the relative contributions of background selection and genetic hitchhiking in shaping the distribution of polymorphisms, although these analyses have rarely been extended to bacteria and viruses. Here, we study the evolution of a ubiquitous, viral pathogen, human cytomegalovirus (HCMV), by analysing the relationship among intraspecies diversity, interspecies divergence and rates of recombination. We show that there is a strong correlation between diversity and divergence, consistent with expectations of neutral evolution. However, after correcting for divergence, there remains a significant correlation between intraspecies diversity and recombination rates, with additional analyses suggesting that this correlation is largely due to the effects of background selection. In addition, a small number of loci, centred on long noncoding RNAs, also show evidence of selective sweeps. These data suggest that HCMV evolution is dominated by neutral mechanisms as well as background selection, expanding our understanding of linked selection to a novel class of organisms. © 2015 John Wiley & Sons Ltd.

  6. Genetic susceptibility to bone and soft tissue sarcomas: a field synopsis and meta-analysis.

    PubMed

    Benna, Clara; Simioni, Andrea; Pasquali, Sandro; De Boni, Davide; Rajendran, Senthilkumar; Spiro, Giovanna; Colombo, Chiara; Virgone, Calogero; DuBois, Steven G; Gronchi, Alessandro; Rossi, Carlo Riccardo; Mocellin, Simone

    2018-04-06

    The genetic architecture of bone and soft tissue sarcomas susceptibility is yet to be elucidated. We aimed to comprehensively collect and meta-analyze the current knowledge on genetic susceptibility in these rare tumors. We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing sarcomas through searching PubMed, The Cochrane Library, Scopus and Web of Science databases. To evaluate result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Integrative analysis of genetic and eQTL (expression quantitative trait locus) data was coupled with network and pathway analysis to explore the hypothesis that specific cell functions are involved in sarcoma predisposition. We retrieved 90 eligible studies comprising 47,796 subjects (cases: 14,358, 30%) and investigating 1,126 polymorphisms involving 320 distinct genes. Meta-analysis identified 55 single nucleotide polymorphisms (SNPs) significantly associated with disease risk with a high (N=9), moderate (N=38) and low (N=8) level of evidence, findings being classified as noteworthy basically only when the level of evidence was high. The estimated joint population attributable risk for three independent SNPs (rs11599754 of ZNF365/EGR2 , rs231775 of CTLA4 , and rs454006 of PRKCG ) was 37.2%. We also identified 53 SNPs significantly associated with sarcoma risk based on single studies.Pathway analysis enabled us to propose that sarcoma predisposition might be linked especially to germline variation of genes whose products are involved in the function of the DNA repair machinery. We built the first knowledgebase on the evidence linking DNA variation to sarcomas susceptibility, which can be used to generate mechanistic hypotheses and inform future studies in this field of oncology.

  7. MAOA Variants and Genetic Susceptibility to Major Psychiatric Disorders.

    PubMed

    Liu, Zichao; Huang, Liang; Luo, Xiong-Jian; Wu, Lichuan; Li, Ming

    2016-09-01

    Monoamine oxidase A (MAOA) is a mitochondrial enzyme involved in the metabolism of several biological amines such as dopamine, norepinephrine, and serotonin, which are important neurochemicals in the pathogenesis of major psychiatric illnesses. MAOA is regarded as a functional plausible susceptibility gene for psychiatric disorders, whereas previous hypothesis-driven association studies obtained controversial results, a reflection of small sample size, genetic heterogeneity, or true negative associations. In addition, MAOA is not analyzed in most of genome-wide association studies (GWAS) on psychiatric disorders, since it is located on Chromosome Xp11.3. Therefore, the effects of MAOA variants on genetic predisposition to psychiatric disorders remain obscure. To fill this gap, we collected psychiatric phenotypic (schizophrenia, bipolar disorder, and major depressive disorder) and genetic data in up to 18,824 individuals from diverse ethnic groups. We employed classical fixed (or random) effects inverse variance weighted methods to calculate summary odds ratios (OR) and 95 % confidence intervals (CI). We identified a synonymous SNP rs1137070 showing significant associations with major depressive disorder (p = 0.00067, OR = 1.263 for T allele) and schizophrenia (p = 0.0039, OR = 1.225 for T allele) as well as a broad spectrum of psychiatric phenotype (p = 0.000066, OR = 1.218 for T allele) in both males and females. The effect size was similar between different ethnic populations and different gender groups. Collectively, we confirmed that MAOA is a risk gene for psychiatric disorders, and our results provide useful information toward a better understanding of genetic mechanism involving MAOA underlying risk of complex psychiatric disorders.

  8. Genetic and Functional Evidence Supports LPAR1 as a Susceptibility Gene for Hypertension.

    PubMed

    Xu, Ke; Ma, Lu; Li, Yang; Wang, Fang; Zheng, Gu-Yan; Sun, Zhijun; Jiang, Feng; Chen, Yundai; Liu, Huirong; Dang, Aimin; Chen, Xi; Chun, Jerold; Tian, Xiao-Li

    2015-09-01

    Essential hypertension is a complex disease affected by genetic and environmental factors and serves as a major risk factor for cardiovascular diseases. Serum lysophosphatidic acid correlates with an elevated blood pressure in rats, and lysophosphatidic acid interacts with 6 subtypes of receptors. In this study, we assessed the genetic association of lysophosphatidic acid receptors with essential hypertension by genotyping 28 single-nucleotide polymorphisms from genes encoding for lysophosphatidic acid receptors, LPAR1, LPAR2, LPAR3, LPAR4, LPAR5, and LPAR6 and their flanking sequences, in 3 Han Chinese cohorts consisting of 2630 patients and 3171 controls in total. We identified a single-nucleotide polymorphism, rs531003 in the 3'-flanking genomic region of LPAR1, associated with hypertension (the Bonferroni corrected P=1.09×10(-5), odds ratio [95% confidence interval]=1.23 [1.13-1.33]). The risk allele C of rs531003 is associated with the increased expression of LPAR1 and the susceptibility of hypertension, particularly in those with a shortage of sleep (P=4.73×10(-5), odds ratio [95% confidence interval]=1.75 [1.34-2.28]). We further demonstrated that blood pressure elevation caused by sleep deprivation and phenylephrine-induced vasoconstriction was both diminished in LPAR1-deficient mice. Together, we show that LPAR1 is a novel susceptibility gene for human essential hypertension and that stress, such as shortage of sleep, increases the susceptibility of patients with risk allele to essential hypertension. © 2015 American Heart Association, Inc.

  9. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility.

    PubMed

    Mahajan, Anubha; Go, Min Jin; Zhang, Weihua; Below, Jennifer E; Gaulton, Kyle J; Ferreira, Teresa; Horikoshi, Momoko; Johnson, Andrew D; Ng, Maggie C Y; Prokopenko, Inga; Saleheen, Danish; Wang, Xu; Zeggini, Eleftheria; Abecasis, Goncalo R; Adair, Linda S; Almgren, Peter; Atalay, Mustafa; Aung, Tin; Baldassarre, Damiano; Balkau, Beverley; Bao, Yuqian; Barnett, Anthony H; Barroso, Ines; Basit, Abdul; Been, Latonya F; Beilby, John; Bell, Graeme I; Benediktsson, Rafn; Bergman, Richard N; Boehm, Bernhard O; Boerwinkle, Eric; Bonnycastle, Lori L; Burtt, Noël; Cai, Qiuyin; Campbell, Harry; Carey, Jason; Cauchi, Stephane; Caulfield, Mark; Chan, Juliana C N; Chang, Li-Ching; Chang, Tien-Jyun; Chang, Yi-Cheng; Charpentier, Guillaume; Chen, Chien-Hsiun; Chen, Han; Chen, Yuan-Tsong; Chia, Kee-Seng; Chidambaram, Manickam; Chines, Peter S; Cho, Nam H; Cho, Young Min; Chuang, Lee-Ming; Collins, Francis S; Cornelis, Marylin C; Couper, David J; Crenshaw, Andrew T; van Dam, Rob M; Danesh, John; Das, Debashish; de Faire, Ulf; Dedoussis, George; Deloukas, Panos; Dimas, Antigone S; Dina, Christian; Doney, Alex S; Donnelly, Peter J; Dorkhan, Mozhgan; van Duijn, Cornelia; Dupuis, Josée; Edkins, Sarah; Elliott, Paul; Emilsson, Valur; Erbel, Raimund; Eriksson, Johan G; Escobedo, Jorge; Esko, Tonu; Eury, Elodie; Florez, Jose C; Fontanillas, Pierre; Forouhi, Nita G; Forsen, Tom; Fox, Caroline; Fraser, Ross M; Frayling, Timothy M; Froguel, Philippe; Frossard, Philippe; Gao, Yutang; Gertow, Karl; Gieger, Christian; Gigante, Bruna; Grallert, Harald; Grant, George B; Grrop, Leif C; Groves, Chrisropher J; Grundberg, Elin; Guiducci, Candace; Hamsten, Anders; Han, Bok-Ghee; Hara, Kazuo; Hassanali, Neelam; Hattersley, Andrew T; Hayward, Caroline; Hedman, Asa K; Herder, Christian; Hofman, Albert; Holmen, Oddgeir L; Hovingh, Kees; Hreidarsson, Astradur B; Hu, Cheng; Hu, Frank B; Hui, Jennie; Humphries, Steve E; Hunt, Sarah E; Hunter, David J; Hveem, Kristian; Hydrie, Zafar I; Ikegami, Hiroshi; Illig, Thomas; Ingelsson, Erik; Islam, Muhammed; Isomaa, Bo; Jackson, Anne U; Jafar, Tazeen; James, Alan; Jia, Weiping; Jöckel, Karl-Heinz; Jonsson, Anna; Jowett, Jeremy B M; Kadowaki, Takashi; Kang, Hyun Min; Kanoni, Stavroula; Kao, Wen Hong L; Kathiresan, Sekar; Kato, Norihiro; Katulanda, Prasad; Keinanen-Kiukaanniemi, Kirkka M; Kelly, Ann M; Khan, Hassan; Khaw, Kay-Tee; Khor, Chiea-Chuen; Kim, Hyung-Lae; Kim, Sangsoo; Kim, Young Jin; Kinnunen, Leena; Klopp, Norman; Kong, Augustine; Korpi-Hyövälti, Eeva; Kowlessur, Sudhir; Kraft, Peter; Kravic, Jasmina; Kristensen, Malene M; Krithika, S; Kumar, Ashish; Kumate, Jesus; Kuusisto, Johanna; Kwak, Soo Heon; Laakso, Markku; Lagou, Vasiliki; Lakka, Timo A; Langenberg, Claudia; Langford, Cordelia; Lawrence, Robert; Leander, Karin; Lee, Jen-Mai; Lee, Nanette R; Li, Man; Li, Xinzhong; Li, Yun; Liang, Junbin; Liju, Samuel; Lim, Wei-Yen; Lind, Lars; Lindgren, Cecilia M; Lindholm, Eero; Liu, Ching-Ti; Liu, Jian Jun; Lobbens, Stéphane; Long, Jirong; Loos, Ruth J F; Lu, Wei; Luan, Jian'an; Lyssenko, Valeriya; Ma, Ronald C W; Maeda, Shiro; Mägi, Reedik; Männisto, Satu; Matthews, David R; Meigs, James B; Melander, Olle; Metspalu, Andres; Meyer, Julia; Mirza, Ghazala; Mihailov, Evelin; Moebus, Susanne; Mohan, Viswanathan; Mohlke, Karen L; Morris, Andrew D; Mühleisen, Thomas W; Müller-Nurasyid, Martina; Musk, Bill; Nakamura, Jiro; Nakashima, Eitaro; Navarro, Pau; Ng, Peng-Keat; Nica, Alexandra C; Nilsson, Peter M; Njølstad, Inger; Nöthen, Markus M; Ohnaka, Keizo; Ong, Twee Hee; Owen, Katharine R; Palmer, Colin N A; Pankow, James S; Park, Kyong Soo; Parkin, Melissa; Pechlivanis, Sonali; Pedersen, Nancy L; Peltonen, Leena; Perry, John R B; Peters, Annette; Pinidiyapathirage, Janini M; Platou, Carl G; Potter, Simon; Price, Jackie F; Qi, Lu; Radha, Venkatesan; Rallidis, Loukianos; Rasheed, Asif; Rathman, Wolfgang; Rauramaa, Rainer; Raychaudhuri, Soumya; Rayner, N William; Rees, Simon D; Rehnberg, Emil; Ripatti, Samuli; Robertson, Neil; Roden, Michael; Rossin, Elizabeth J; Rudan, Igor; Rybin, Denis; Saaristo, Timo E; Salomaa, Veikko; Saltevo, Juha; Samuel, Maria; Sanghera, Dharambir K; Saramies, Jouko; Scott, James; Scott, Laura J; Scott, Robert A; Segrè, Ayellet V; Sehmi, Joban; Sennblad, Bengt; Shah, Nabi; Shah, Sonia; Shera, A Samad; Shu, Xiao Ou; Shuldiner, Alan R; Sigurđsson, Gunnar; Sijbrands, Eric; Silveira, Angela; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S; So, Wing Yee; Stančáková, Alena; Stefansson, Kari; Steinbach, Gerald; Steinthorsdottir, Valgerdur; Stirrups, Kathleen; Strawbridge, Rona J; Stringham, Heather M; Sun, Qi; Suo, Chen; Syvänen, Ann-Christine; Takayanagi, Ryoichi; Takeuchi, Fumihiko; Tay, Wan Ting; Teslovich, Tanya M; Thorand, Barbara; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Trakalo, Joseph; Tremoli, Elena; Trip, Mieke D; Tsai, Fuu Jen; Tuomi, Tiinamaija; Tuomilehto, Jaakko; Uitterlinden, Andre G; Valladares-Salgado, Adan; Vedantam, Sailaja; Veglia, Fabrizio; Voight, Benjamin F; Wang, Congrong; Wareham, Nicholas J; Wennauer, Roman; Wickremasinghe, Ananda R; Wilsgaard, Tom; Wilson, James F; Wiltshire, Steven; Winckler, Wendy; Wong, Tien Yin; Wood, Andrew R; Wu, Jer-Yuarn; Wu, Ying; Yamamoto, Ken; Yamauchi, Toshimasa; Yang, Mingyu; Yengo, Loic; Yokota, Mitsuhiro; Young, Robin; Zabaneh, Delilah; Zhang, Fan; Zhang, Rong; Zheng, Wei; Zimmet, Paul Z; Altshuler, David; Bowden, Donald W; Cho, Yoon Shin; Cox, Nancy J; Cruz, Miguel; Hanis, Craig L; Kooner, Jaspal; Lee, Jong-Young; Seielstad, Mark; Teo, Yik Ying; Boehnke, Michael; Parra, Esteban J; Chambers, Jonh C; Tai, E Shyong; McCarthy, Mark I; Morris, Andrew P

    2014-03-01

    To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.

  10. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility

    PubMed Central

    2014-01-01

    To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS) including 26,488 cases and 83,964 controls of European, East Asian, South Asian, and Mexican and Mexican American ancestry. We observed significant excess in directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven novel T2D susceptibility loci. Furthermore, we observed considerable improvements in fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterisation of complex trait loci, and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry. PMID:24509480

  11. Public interest in predictive genetic testing, including direct-to-consumer testing, for susceptibility to major depression: preliminary findings.

    PubMed

    Wilde, Alex; Meiser, Bettina; Mitchell, Philip B; Schofield, Peter R

    2010-01-01

    The past decade has seen rapid advances in the identification of associations between candidate genes and a range of common multifactorial disorders. This paper evaluates public attitudes towards the complexity of genetic risk prediction in psychiatry involving susceptibility genes, uncertain penetrance and gene-environment interactions on which successful molecular-based mental health interventions will depend. A qualitative approach was taken to enable the exploration of the views of the public. Four structured focus groups were conducted with a total of 36 participants. The majority of participants indicated interest in having a genetic test for susceptibility to major depression, if it was available. Having a family history of mental illness was cited as a major reason. After discussion of perceived positive and negative implications of predictive genetic testing, nine of 24 participants initially interested in having such a test changed their mind. Fear of genetic discrimination and privacy issues predominantly influenced change of attitude. All participants still interested in having a predictive genetic test for risk for depression reported they would only do so through trusted medical professionals. Participants were unanimously against direct-to-consumer genetic testing marketed through the Internet, although some would consider it if there was suitable protection against discrimination. The study highlights the importance of general practitioner and public education about psychiatric genetics, and the availability of appropriate treatment and support services prior to implementation of future predictive genetic testing services.

  12. From degeneration to genetic susceptibility, from eugenics to genethics, from Bezugsziffer to LOD score: the history of psychiatric genetics.

    PubMed

    Schulze, Thomas G; Fangerau, Heiner; Propping, Peter

    2004-11-01

    Reviewing the history of psychiatric genetics is a difficult task, since--in contrast to genetic research into most other disorders--it cannot simply be done by chronologically listing methodological achievements and major findings. Instead, it necessitates a comprehensive assessment of how the aetiological concept of mental disorders has developed since as early as the world of ancient Greece. Furthermore, it has to touch upon the sensitive issue of the eugenic movement that was closely linked to the study of heredity in mental disorders in the first half of the 20th century and, in Nazi Germany, led to the systematic mass murder of psychiatric patients. Finally, reviewing the scientific dimensions, history of psychiatric genetics is at the same time a walk through the history of complex genetics in general. In our review, we try to pay tribute to this complexity. We argue that psychiatric genetics has not only propelled our understanding of mental disorders but has significantly benefited genetic research into other complex disorders through the development of methodologically robust approaches (e.g., systematic phenotype characterisation, methods to control for ascertainment biases, age-correction). Given the recent reasons for new optimism, i.e., the identification of susceptibility genes for psychiatric phenotypes, a continued methodologically sound approach is needed more than ever to guarantee robust results. Finally, psychiatric genetic research should never again be performed in an environment void of ethical standards.

  13. On the use of haplotype phylogeny to detect disease susceptibility loci

    PubMed Central

    Bardel, Claire; Danjean, Vincent; Hugot, Jean-Pierre; Darlu, Pierre; Génin, Emmanuelle

    2005-01-01

    Background The cladistic approach proposed by Templeton has been presented as promising for the study of the genetic factors involved in common diseases. This approach allows the joint study of multiple markers within a gene by considering haplotypes and grouping them in nested clades. The idea is to search for clades with an excess of cases as compared to the whole sample and to identify the mutations defining these clades as potential candidate disease susceptibility sites. However, the performance of this approach for the study of the genetic factors involved in complex diseases has never been studied. Results In this paper, we propose a new method to perform such a cladistic analysis and we estimate its power through simulations. We show that under models where the susceptibility to the disease is caused by a single genetic variant, the cladistic test is neither really more powerful to detect an association nor really more efficient to localize the susceptibility site than an individual SNP testing. However, when two interacting sites are responsible for the disease, the cladistic analysis greatly improves the probability to find the two susceptibility sites. The impact of the linkage disequilibrium and of the tree characteristics on the efficiency of the cladistic analysis are also discussed. An application on a real data set concerning the CARD15 gene and Crohn disease shows that the method can successfully identify the three variant sites that are involved in the disease susceptibility. Conclusion The use of phylogenies to group haplotypes is especially interesting to pinpoint the sites that are likely to be involved in disease susceptibility among the different markers identified within a gene. PMID:15904492

  14. Identification of novel potential genetic predictors of urothelial bladder carcinoma susceptibility in Pakistani population.

    PubMed

    Ali, Syeda Hafiza Benish; Bangash, Kashif Sardar; Rauf, Abdur; Younis, Muhammad; Anwar, Khursheed; Khurram, Raja; Khawaja, Muhammad Athar; Azam, Maleeha; Qureshi, Abid Ali; Akhter, Saeed; Kiemeney, Lambertus A; Qamar, Raheel

    2017-10-01

    Urothelial bladder carcinoma (UBC) is the most common among urinary bladder neoplasms. We carried out a preliminary study to determine the genetic etiology of UBC in Pakistani population, for this 25 sequence variants from 17 candidate genes were studied in 400 individuals by using polymerase chain reaction-based techniques. Multivariate logistic regression analysis was performed for association analysis of the overall data as well as the data stratified by smoking status, tumor grade and tumor stage. Variants of GSTM1, IGFBP3, LEPR and ACE were found to be associated with altered UBC risk in the overall comparison. CYP1B1 and CDKN1A variants displayed a risk modulation among smokers; IGFBP3 and LEPR variants among non-smokers while GSTM1 polymorphism exhibited association with both. GSTM1 and LEPR variants conferred an altered susceptibility to low grade UBC; GSTT1, IGFBP3 and PPARG variants to high grade UBC while ACE polymorphism to both grades. GSTM1 and LEPR variants exhibited risk modulation for non-muscle-invasive bladder cancer (NMIBC); GSTT1 and PPARG variants for muscle-invasive bladder cancer (MIBC), and ACE variant for NMIBC as well as MIBC. In general, the susceptibility markers were common for low grade and NMIBC; and distinct from those for high grade and MIBC indicating the distinct pathologies of both groups. In brief, our results conform to reports of previously associated variants in addition to identifying novel potential genetic predictors of UBC susceptibility.

  15. Antibiotic Susceptibility, Genetic Diversity, and the Presence of Toxin Producing Genes in Campylobacter Isolates from Poultry.

    PubMed

    Lee, Jeeyeon; Jeong, Jiyeon; Lee, Heeyoung; Ha, Jimyeong; Kim, Sejeong; Choi, Yukyung; Oh, Hyemin; Seo, Kunho; Yoon, Yohan; Lee, Soomin

    2017-11-17

    This study examined antibiotic susceptibility, genetic diversity, and characteristics of virulence genes in Campylobacter isolates from poultry. Chicken ( n = 152) and duck ( n = 154) samples were collected from 18 wet markets in Korea. Campylobacter spp. isolated from the carcasses were identified by PCR. The isolated colonies were analyzed for antibiotic susceptibility to chloramphenicol, amikacin, erythromycin, tetracycline, ciprofloxacin, nalidixic acid, and enrofloxacin. The isolates were also used to analyze genetic diversity using the DiversiLab TM system and were tested for the presence of cytolethal distending toxin ( cdt ) genes. Campylobacter spp. were isolated from 45 poultry samples out of 306 poultry samples (14.7%) and the average levels of Campylobacter contamination were 22.0 CFU/g and 366.1 CFU/g in chicken and duck samples, respectively. Moreover, more than 90% of the isolates showed resistance to nalidixic acid and ciprofloxacin. Genetic correlation analysis showed greater than 95% similarity between 84.4% of the isolates, and three cdt genes ( cdtA , cdtB , and cdtC ) were present in 71.1% of Campylobacter isolates. These results indicate that Campylobacter contamination should be decreased to prevent and treat Campylobacter foodborne illness.

  16. Genetic Characterization of Spondweni and Zika Viruses and Susceptibility of Geographically Distinct Strains of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus (Diptera: Culicidae) to Spondweni Virus

    DTIC Science & Technology

    2016-10-26

    1 Genetic characterization of Spondweni and Zika viruses and susceptibility of geographically distinct strains of Aedes aegypti, Aedes albopictus...substantial genetic and vector susceptibility data exist for ZIKV, less is 5 known for its sister flavivirus, Spondweni virus (SPONV). Both ZIKV and SPONV...have 6 been known to circulate in Africa since the mid-1900s, but neither has been genetically 7 characterized by gene and compared in parallel

  17. Variants of the MTHFR gene and susceptibility to acute lymphoblastic leukemia in children: a synthesis of genetic association studies.

    PubMed

    Zintzaras, Elias; Doxani, Chrysoula; Rodopoulou, Paraskevi; Bakalos, Georgios; Ziogas, Dimitris C; Ziakas, Panayiotis; Voulgarelis, Michael

    2012-04-01

    Acute lymphoblastic leukemia (ALL) is a complex disease with genetic background. The genetic association studies (GAS) that investigated the association between ALL and the MTHFR C677T and A1298C gene variants have produced contradictory or inconclusive results. In order to decrease the uncertainty of estimated genetic risk effects, a meticulous meta-analysis of published GAS related the variants in the MTFHR gene with susceptibility to ALL was conducted. The risk effects were estimated based on the odds ratio (OR) of the allele contrast and the generalized odds ratio (OR(G)). Cumulative and recursive cumulative meta-analyses were also performed. The analysis showed marginal significant association for the C677T variant, overall [OR=0.91 (0.82-1.00) and OR(G)=0.89 (0.79-1.01)], and in Whites [OR=0.88 (0.77-0.99) and OR(G)=0.85 (0.73-0.99)]. The A1298C variant produced non-significant results. For both variants, the cumulative meta-analysis did not show a trend of association as evidence accumulates and the recursive cumulative meta-analysis indicated lack of sufficient evidence for denying or claiming an association. The current evidence is not sufficient to draw definite conclusions regarding the association of MTHFR variants and development of ALL. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. A unifying theory for genetic epidemiological analysis of binary disease data

    PubMed Central

    2014-01-01

    Background Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Results Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. Conclusions We have derived a genetic-epidemiological function for quantitative

  19. THE MITOCHONDRIAL PARADIGM FOR CARDIOVASCULAR DISEASE SUSCEPTIBILITY AND CELLULAR FUNCTION: A COMPLEMENTARY CONCEPT TO MENDELIAN GENETICS

    PubMed Central

    Kryzwanski, David M.; Moellering, Douglas; Fetterman, Jessica L.; Dunham-Snary, Kimberly J.; Sammy, Melissa J.; Ballinger, Scott W.

    2013-01-01

    While there is general agreement that cardiovascular disease (CVD) development is influenced by a combination of genetic, environmental, and behavioral contributors, the actual mechanistic basis of how these factors initiate or promote CVD development in some individuals while others with identical risk profiles do not, is not clearly understood. This review considers the potential role for mitochondrial genetics and function in determining CVD susceptibility from the standpoint that the original features that molded cellular function were based upon mitochondrial-nuclear relationships established millions of years ago and were likely refined during prehistoric environmental selection events that today, are largely absent. Consequently, contemporary risk factors that influence our susceptibility to a variety of age-related diseases, including CVD were probably not part of the dynamics that defined the processes of mitochondrial – nuclear interaction, and thus, cell function. In this regard, the selective conditions that contributed to cellular functionality and evolution should be given more consideration when interpreting and designing experimental data and strategies. Finally, future studies that probe beyond epidemiologic associations are required. These studies will serve as the initial steps for addressing the provocative concept that contemporary human disease susceptibility is the result of selection events for mitochondrial function that increased chances for prehistoric human survival and reproductive success. PMID:21647091

  20. Genetically Determined Susceptibility to Tuberculosis in Mice Causally Involves Accelerated and Enhanced Recruitment of Granulocytes

    PubMed Central

    Keller, Christine; Hoffmann, Reinhard; Lang, Roland; Brandau, Sven; Hermann, Corinna; Ehlers, Stefan

    2006-01-01

    Classical twin studies and recent linkage analyses of African populations have revealed a potential involvement of host genetic factors in susceptibility or resistance to Mycobacterium tuberculosis infection. In order to identify the candidate genes involved and test their causal implication, we capitalized on the mouse model of tuberculosis, since inbred mouse strains also differ substantially in their susceptibility to infection. Two susceptible and two resistant mouse strains were aerogenically infected with 1,000 CFU of M. tuberculosis, and the regulation of gene expression was examined by Affymetrix GeneChip U74A array with total lung RNA 2 and 4 weeks postinfection. Four weeks after infection, 96 genes, many of which are involved in inflammatory cell recruitment and activation, were regulated in common. One hundred seven genes were differentially regulated in susceptible mouse strains, whereas 43 genes were differentially expressed only in resistant mice. Data mining revealed a bias towards the expression of genes involved in granulocyte pathophysiology in susceptible mice, such as an upregulation of those for the neutrophil chemoattractant LIX (CXCL5), interleukin 17 receptor, phosphoinositide kinase 3 delta, or gamma interferon-inducible protein 10. Following M. tuberculosis challenge in both airways or peritoneum, granulocytes were recruited significantly faster and at higher numbers in susceptible than in resistant mice. When granulocytes were efficiently depleted by either of two regimens at the onset of infection, only susceptible mice survived aerosol challenge with M. tuberculosis significantly longer than control mice. We conclude that initially enhanced recruitment of granulocytes contributes to susceptibility to tuberculosis. PMID:16790804

  1. CHEMICALLY AND GENETICALLY IMMUNOCOMPROMISED MICE ARE NOT MORE SUSCEPTIBLE THAN IMMUNOCOMPETENT MICE TO INFECTION WITH CRYPTOSPORIDIUM MURIS

    EPA Science Inventory

    The prevailing paradigm is that immunosuppressed individuals are more susceptible to infection and are at higher risk of infection from Cryptosporidium oocysts if present in drinking water. To test this hypothesis, three immune conditions were examined: genetically immunocomprom...

  2. Effect of genetic background on the stability of sunflower fatty acid composition in different high oleic mutations.

    PubMed

    Alberio, Constanza; Aguirrezábal, Luis An; Izquierdo, Natalia G; Reid, Roberto; Zuil, Sebastián; Zambelli, Andrés

    2018-02-01

    The effect of genetic background on the stability of fatty acid composition in sunflower near isogenic lines (NILs) carrying high-oleic Pervenets (P) or high-oleic NM1 mutations was studied. The materials were field-tested in different locations and at different sowing dates to evaluate a wide range of environmental conditions. Relationships were established between the fatty acids and the minimum night temperature (MNT) and the response was characterized. A genetic background effect for the fatty acid composition was found in both groups of NILs. The NM1-NILs showed an oleic level higher than 910 g kg -1 and they were more stable across environments with a zero or low dependence on the genetic background; on the other hand, high oleic materials bearing the P mutation showed lower levels of oleic acid, with a higher variation in fatty acid composition and a highly significant dependence on the genetic background. The NM1 mutation is the best option to develop ultra-high oleic sunflower oil that is stable across environments and genetic backgrounds, making its agronomical production more efficient and predictable. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Effects of Elevated Pax6 Expression and Genetic Background on Mouse Eye Development

    PubMed Central

    Chanas, Simon A.; Collinson, J. Martin; Ramaesh, Thaya; Dorà, Natalie; Kleinjan, Dirk A.; Hill, Robert E.; West, John D.

    2009-01-01

    Purpose To analyze the effects of Pax6 overexpression and its interaction with genetic background on eye development. Methods Histologic features of eyes from hemizygous PAX77+/− transgenic (high Pax6 gene dose) and wild-type mice were compared on different genetic backgrounds. Experimental PAX77+/−↔wild-type and control wild-type↔wild-type chimeras were analyzed to investigate the causes of abnormal eye development in PAX77+/− mice. Results PAX77+/− mice showed an overlapping but distinct spectrum of eye abnormalities to Pax6+/− heterozygotes (low Pax6 dose). Some previously reported PAX77+/− eye abnormalities did not occur on all three genetic backgrounds examined. Several types of eye abnormalities occurred in the experimental PAX77+/−↔wild-type chimeras, and they occurred more frequently in chimeras with higher contributions of PAX77+/− cells. Groups of RPE cells intruded into the optic nerve sheath, indicating that the boundary between the retina and optic nerve may be displaced. Both PAX77+/− and wild-type cells were involved in this ingression and in retinal folds, suggesting that neither effect was cell-autonomous. Cell-autonomous effects included failure of PAX77+/− and wild-type cells to mix normally and overrepresentation of PAX77+/− in the lens epithelium and RPE. Conclusions The extent of PAX77+/− eye abnormalities depended on PAX77+/− genotype, genetic background, and stochastic variation. Chimera analysis identified two types of cell-autonomous effects of the PAX77+/− genotype. Abnormal cell mixing between PAX77+/− and wild-type cells suggests altered expression of cell surface adhesion molecules. Some phenotypic differences between PAX77+/−↔wild-type and Pax6+/−↔wild-type chimeras may reflect differences in the levels of PAX77+/− and Pax6+/− contributions to chimeric lenses. PMID:19387074

  4. Temporal Dependence of Chromosomal Aberration on Radiation Quality and Cellular Genetic Background

    NASA Technical Reports Server (NTRS)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2017-01-01

    Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative

  5. Reversal of Refractory Ulcerative Colitis and Severe Chronic Fatigue Syndrome Symptoms Arising from Immune Disturbance in an HLADR/DQ Genetically Susceptible Individual with Multiple Biotoxin Exposures

    PubMed Central

    Gunn, Shelly R.; Gibson Gunn, G.; Mueller, Francis W.

    2016-01-01

    Patient: Male, 25 Final Diagnosis: Ulcerative colitis and chronic fatigue syndrome Symptoms: Colitis • profound fatigue • multi-joint pain • cognitive impairment • corneal keratitis Medication: — Clinical Procedure: VIP replacement therapy Specialty: Family Medicine Objective: Unusual clinical course Background: Patients with multisymptom chronic conditions, such as refractory ulcerative colitis (RUC) and chronic fatigue syndrome (CFS), present diagnostic and management challenges for clinicians, as well as the opportunity to recognize and treat emerging disease entities. In the current case we report reversal of co-existing RUC and CFS symptoms arising from biotoxin exposures in a genetically susceptible individual. Case Report: A 25-year-old previously healthy male with new-onset refractory ulcerative colitis (RUC) and chronic fatigue syndrome (CFS) tested negative for autoimmune disease biomarkers. However, urine mycotoxin panel testing was positive for trichothecene group and air filter testing from the patient’s water-damaged rental house identified the toxic mold Stachybotrys chartarum. HLA-DR/DQ testing revealed a multisusceptible haplotype for development of chronic inflammation, and serum chronic inflammatory response syndrome (CIRS) biomarker testing was positive for highly elevated TGF-beta and a clinically undetectable level of vasoactive intestinal peptide (VIP). Following elimination of biotoxin exposures, VIP replacement therapy, dental extractions, and implementation of a mind body intervention-relaxation response (MBI-RR) program, the patient’s symptoms resolved. He is off medications, back to work, and resuming normal exercise. Conclusions: This constellation of RUC and CFS symptoms in an HLA-DR/DQ genetically susceptible individual with biotoxin exposures is consistent with the recently described CIRS disease pathophysiology. Chronic immune disturbance (turbatio immuno) can be identified with clinically available CIRS biomarkers and

  6. Are family-oriented interventions in Portuguese genetics services a remote possibility? Professionals' views on a multifamily intervention for cancer susceptibility families.

    PubMed

    Mendes, Alvaro; Paneque, Milena; Sousa, Liliana

    2012-10-01

    This article examines genetics healthcare professionals' opinions about a multifamily psychoeducational programme for hereditary cancer susceptibility families, implemented at a Portuguese genetics service. Their views on how a family-oriented approach is envisioned to be incorporated in Portuguese genetic counselling services are also reported. Six focus groups and three individual interviews were undertaken comprising 30 professionals working in the provision of genetic counselling and genetic counsellor trainees. Participants were given a page-summary describing the intervention and asked to comment the strengths and limitations of the multifamily intervention. All interviews were fully transcribed and analysed using the constant comparison method. The qualitative analysis generated data comprising four thematic categories in relation to the professionals' views: (a) usefulness of the programme; (b) programme's methodological and practical obstacles; (c) genetics services constraints; and (d) suggestions for improving the programme and further family-oriented interventions. We reflect on the reported views examining the intervention, and on how current constraints of genetic services limit the provision of psychosocial support for cancer susceptibility families. The implications of these findings regarding the purpose of genetic counselling are discussed. Results may sensitise stakeholders and policy makers for the need to deliver family-based services in cancer genetic counselling, with adequate planning and collaborative involvement of different professionals.

  7. Complex interplay between neutral and adaptive evolution shaped differential genomic background and disease susceptibility along the Italian peninsula.

    PubMed

    Sazzini, Marco; Gnecchi Ruscone, Guido Alberto; Giuliani, Cristina; Sarno, Stefania; Quagliariello, Andrea; De Fanti, Sara; Boattini, Alessio; Gentilini, Davide; Fiorito, Giovanni; Catanoso, Mariagrazia; Boiardi, Luigi; Croci, Stefania; Macchioni, Pierluigi; Mantovani, Vilma; Di Blasio, Anna Maria; Matullo, Giuseppe; Salvarani, Carlo; Franceschi, Claudio; Pettener, Davide; Garagnani, Paolo; Luiselli, Donata

    2016-09-01

    The Italian peninsula has long represented a natural hub for human migrations across the Mediterranean area, being involved in several prehistoric and historical population movements. Coupled with a patchy environmental landscape entailing different ecological/cultural selective pressures, this might have produced peculiar patterns of population structure and local adaptations responsible for heterogeneous genomic background of present-day Italians. To disentangle this complex scenario, genome-wide data from 780 Italian individuals were generated and set into the context of European/Mediterranean genomic diversity by comparison with genotypes from 50 populations. To maximize possibility of pinpointing functional genomic regions that have played adaptive roles during Italian natural history, our survey included also ~250,000 exomic markers and ~20,000 coding/regulatory variants with well-established clinical relevance. This enabled fine-grained dissection of Italian population structure through the identification of clusters of genetically homogeneous provinces and of genomic regions underlying their local adaptations. Description of such patterns disclosed crucial implications for understanding differential susceptibility to some inflammatory/autoimmune disorders, coronary artery disease and type 2 diabetes of diverse Italian subpopulations, suggesting the evolutionary causes that made some of them particularly exposed to the metabolic and immune challenges imposed by dietary and lifestyle shifts that involved western societies in the last centuries.

  8. Cognitive, Noncognitive, and Family Background Contributions to College Attainment: A Behavioral Genetic Perspective.

    PubMed

    McGue, Matt; Rustichini, Aldo; Iacono, William G

    2017-02-01

    There is considerable evidence that college attainment is associated with family background and cognitive and noncognitive skills. Behavioral genetic methods are used to determine whether the family background effect is mediated through cognitive and noncognitive skill development. We analyze data from two longitudinal behavioral genetic studies: the Minnesota Twin Family Study, consisting of 1,382 pairs of like-sex twins and their parents, and the Sibling Interaction and Behavior Study, consisting of 409 adoptive and 208 nonadoptive families with two offspring and their rearing parents. Cognitive ability, noncognitive skills, and family background are all associated with offspring college attainment. Biometric analysis shows that the intergenerational transmission of college attainment owes to both genetic and shared environmental factors. The shared environmental influence was not due to highly educated parents fostering noncognitive skill development in their children, and there was limited evidence that they foster cognitive skill development. The environmental transmission of educational attainment does not appear to be a consequence of highly educated parents fostering cognitive and noncognitive skill development. Alternative mechanisms are needed to explain the strong shared environmental influence on college attainment. Possibilities include academic expectations, social network effects, and the economic benefits of having wealthy parents. © 2015 Wiley Periodicals, Inc.

  9. Genetics of the APM1 locus and its contribution to type 2 diabetes susceptibility in French Caucasians.

    PubMed

    Gibson, Fernando; Froguel, Philippe

    2004-11-01

    We have carried out a detailed reexamination of the genetics of the APM1 locus and its contribution to the genetic basis of type 2 diabetes susceptibility in the French Caucasian population. The G allele of single nucleotide polymorphism -11426 in the APM1 promoter showed modest association with type 2 diabetes (odds ratio 1.44 [95% CI 1.04-1.98]; P = 0.03), providing corroborative evidence that single nucleotide polymorphisms in the APM1 promoter region contribute to the genetic risk of type 2 diabetes. A "sliding window" analysis identified haplotypes 1-1-1, 1-1-1-1, and 1-1-1-1-1 as being strongly protective against type 2 diabetes (P genetic variation in the APM1 gene is a major contributor to the type 2 diabetes linkage result at chromosome 3q27. Finally, in families with early-onset type 2 diabetes, we obtained suggestive evidence of a linkage peak for serum adiponectin levels (logarithm of odds = 2.1) that closely matched the position of the type 2 diabetes linkage peak. This result indicated that the type 2 diabetes susceptibility locus at 3q27 influences both genetic predisposition to type 2 diabetes and serum adiponectin levels in patients with type 2 diabetes.

  10. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    NASA Astrophysics Data System (ADS)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  11. Cervical Cancer Genetic Susceptibility: A Systematic Review and Meta-Analyses of Recent Evidence

    PubMed Central

    Martínez-Nava, Gabriela A.; Fernández-Niño, Julián A.; Madrid-Marina, Vicente; Torres-Poveda, Kirvis

    2016-01-01

    Introduction Cervical cancer (CC) has one of the highest mortality rates among women worldwide. Several efforts have been made to identify the genetic susceptibility factors underlying CC development. However, only a few polymorphisms have shown consistency among studies. Materials and Methods We conducted a systematic review of all recent case-control studies focused on the evaluation of single nucleotide polymorphisms (SNPs) and CC risk, stringently following the “PRISMA” statement recommendations. The MEDLINE data base was used for the search. A total of 100 case-control studies were included in the meta-analysis. Polymorphisms that had more than two reports were meta-analyzed by fixed or random models according to the heterogeneity presented among studies. Results We found significant negative association between the dominant inheritance model of p21 rs1801270 polymorphism (C/A+A/A) and CC (pooled OR = 0.76; 95%CI: 0.63–0.91; p<0.01). We also found a negative association with the rs2048718 BRIP1 polymorphism dominant inheritance model (T/C+C/C) and CC (pooled OR = 0.83; 95%CI: 0.70–0.98; p = 0.03), as well as with the rs11079454 BRIP1 polymorphism recessive inheritance model and CC (pooled OR = 0.79; 95%CI: 0.63–0.99; p = 0.04). Interestingly, we observed a strong tendency of the meta-analyzed studies to be of Asiatic origin (67%). We also found a significant low representation of African populations (4%). Conclusions Our results provide evidence of the negative association of p21 rs1801270 polymorphism, as well as BRIP1 rs2048718 and rs11079454 polymorphisms, with CC risk. This study suggests the urgent need for more replication studies focused on GWAS identified CC susceptibility variants, in order to reveal the most informative genetic susceptibility markers for CC across different populations. PMID:27415837

  12. Genetic architecture of atherosclerosis dissected by QTL analyses in three F2 intercrosses of apolipoprotein E-null mice on C57BL6/J, DBA/2J and 129S6/SvEvTac backgrounds

    PubMed Central

    Makhanova, Natalia; Morgan, Andrew P.; Kayashima, Yukako; Makhanov, Andrei; Hiller, Sylvia; Zhilicheva, Svetlana; Xu, Longquan; Pardo-Manuel de Villena, Fernando; Maeda, Nobuyo

    2017-01-01

    Quantitative trait locus (QTL) analyses of intercross populations between widely used mouse inbred strains provide a powerful approach for uncovering genetic factors that influence susceptibility to atherosclerosis. Epistatic interactions are common in complex phenotypes and depend on genetic backgrounds. To dissect genetic architecture of atherosclerosis, we analyzed F2 progeny from a cross between apolipoprotein E-null mice on DBA/2J (DBA-apoE) and C57BL/6J (B6-apoE) genetic backgrounds and compared the results with those from two previous F2 crosses of apolipoprotein E-null mice on 129S6/SvEvTac (129-apoE) and DBA-apoE backgrounds, and B6-apoE and 129-apoE backgrounds. In these round-robin crosses, in which each parental strain was crossed with two others, large-effect QTLs are expected to be detectable at least in two crosses. On the other hand, observation of QTLs in one cross only may indicate epistasis and/or absence of statistical power. For atherosclerosis at the aortic arch, Aath4 on chromosome (Chr)2:66 cM follows the first pattern, with significant QTL peaks in (DBAx129)F2 and (B6xDBA)F2 mice but not in (B6x129)F2 mice. We conclude that genetic variants unique to DBA/2J at Aath4 confer susceptibility to atherosclerosis at the aortic arch. A similar pattern was observed for Aath5 on chr10:35 cM, verifying that the variants unique to DBA/2J at this locus protect against arch plaque development. However, multiple loci, including Aath1 (Chr1:49 cM), and Aath2 (Chr1:70 cM) follow the second type of pattern, showing significant peaks in only one of the three crosses (B6-apoE x 129-apoE). As for atherosclerosis at aortic root, the majority of QTLs, including Ath29 (Chr9:33 cM), Ath44 (Chr1:68 cM) and Ath45 (Chr2:83 cM), was also inconsistent, being significant in only one of the three crosses. Only the QTL on Chr7:37 cM was consistently suggestive in two of the three crosses. Thus QTL analysis of round-robin crosses revealed the genetic architecture of

  13. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses

    PubMed Central

    Zhang, S; Meng, L; Wang, J; Zhang, L

    2017-01-01

    Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population. PMID:28722705

  14. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses.

    PubMed

    Zhang, S; Meng, L; Wang, J; Zhang, L

    2017-10-01

    Pure lines derived from multiple parents are becoming more important because of the increased genetic diversity, the possibility to conduct replicated phenotyping trials in multiple environments and potentially high mapping resolution of quantitative trait loci (QTL). In this study, we proposed a new mapping method for QTL detection in pure-line populations derived from four-way crosses, which is able to control the background genetic variation through a two-stage mapping strategy. First, orthogonal variables were created for each marker and used in an inclusive linear model, so as to completely absorb the genetic variation in the mapping population. Second, inclusive composite interval mapping approach was implemented for one-dimensional scanning, during which the inclusive linear model was employed to control the background variation. Simulation studies using different genetic models demonstrated that the new method is efficient when considering high detection power, low false discovery rate and high accuracy in estimating quantitative trait loci locations and effects. For illustration, the proposed method was applied in a reported wheat four-way recombinant inbred line population.

  15. Human susceptibility to legionnaires' disease.

    PubMed

    Berrington, William R; Hawn, Thomas R

    2013-01-01

    Legionella pneumophila is a facultative intracellular pathogen that is an important cause of pneumonia. Although host factors that may predispose to acquisition of Legionnaire's Disease (LD) include comorbid illnesses (e.g., diabetes, chronic lung disease), age, male sex, and smoking, many individuals have no identifiable risk factors. Some studies suggest that genetic factors may enhance susceptibility to LD. In this chapter we discuss current techniques and scientific methods to identify genetic susceptibility factors. These genetic studies provide insight into the human immune response to intracellular pathogens and may improve strategies for treatment and vaccine development.

  16. Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics.

    PubMed

    Sirugo, Giorgio; Hennig, Branwen J; Adeyemo, Adebowale A; Matimba, Alice; Newport, Melanie J; Ibrahim, Muntaser E; Ryckman, Kelli K; Tacconelli, Alessandra; Mariani-Costantini, Renato; Novelli, Giuseppe; Soodyall, Himla; Rotimi, Charles N; Ramesar, Raj S; Tishkoff, Sarah A; Williams, Scott M

    2008-07-01

    Africa is the ultimate source of modern humans and as such harbors more genetic variation than any other continent. For this reason, studies of the patterns of genetic variation in African populations are crucial to understanding how genes affect phenotypic variation, including disease predisposition. In addition, the patterns of extant genetic variation in Africa are important for understanding how genetic variation affects infectious diseases that are a major problem in Africa, such as malaria, tuberculosis, schistosomiasis, and HIV/AIDS. Therefore, elucidating the role that genetic susceptibility to infectious diseases plays is critical to improving the health of people in Africa. It is also of note that recent and ongoing social and cultural changes in sub-Saharan Africa have increased the prevalence of non-communicable diseases that will also require genetic analyses to improve disease prevention and treatment. In this review we give special attention to many of the past and ongoing studies, emphasizing those in Sub-Saharan Africans that address the role of genetic variation in human disease.

  17. Ovine Reference Materials and Assays for Prion Genetic Testing

    USDA-ARS?s Scientific Manuscript database

    Background: Genetic predisposition to scrapie in sheep is associated with variation in the peptide sequence of the ovine prion protein encoded by Prnp. Codon variants implicated in scrapie susceptibility or disease progression include those at amino acid positions 112, 136, 141, 154, and 171. Nin...

  18. T-cell receptor variable genes and genetic susceptibility to celiac disease: an association and linkage study.

    PubMed

    Roschmann, E; Wienker, T F; Gerok, W; Volk, B A

    1993-12-01

    Genetic susceptibility of celiac disease is primarily associated with a particular combination of and HLA-DQA1/DQB1 gene; however, this does not fully account for the genetic predisposition. Therefore, the aim of this study was to examine whether T-cell receptor (TCR) genes may be susceptibility genes in celiac disease. HLA class II typing was performed by polymerase chain reaction amplification in combination with sequence-specific oligonucleotide hybridization. TCR alpha (TCRA), TCR gamma (TCRG), and TCR beta (TCRB) loci were investigated by restriction fragment length polymorphism analysis. Allelic frequencies of TCRA, TCRG, and TCRB variable genes were compared between patients with celiac disease (n = 53) and control patients (n = 67), and relative risk (RR) estimates were calculated. The RR was 1.67 for allele C1 at TCRA1, 3.35 for allele D2 at TCRA2, 1.66 for allele B2 at TCRG, and 1.35 for allele B at TCRB, showing no significant association. Additionally, linkage analysis was performed in 23 families. The logarithm of odd scores for celiac disease vs. the TCR variable genes at TCRA, TCRG, and TCRB showed no significant linkage. These data suggest that the analyzed TCR variable gene segments V alpha 1.2, V gamma 11, and V beta 8 do not play a major role in susceptibility to celiac disease.

  19. Genetic susceptibility factors for alcohol-induced chronic pancreatitis.

    PubMed

    Aghdassi, Ali A; Weiss, F Ulrich; Mayerle, Julia; Lerch, Markus M; Simon, Peter

    2015-07-01

    Chronic pancreatitis is a progressive inflammatory disease of the pancreas and frequently associated with immoderate alcohol consumption. Since only a small proportion of alcoholics eventually develop chronic pancreatitis genetic susceptibility factors have long been suspected to contribute to the pathogenesis of the disease. Smaller studies in ethnically defined populations have found that not only polymorphism in proteins involved in the metabolism of ethanol, such as Alcohol Dehydrogenase and Aldehyde Dehydrogenase, can confer a risk for developing chronic pancreatitis but also mutations that had previously been reported in association with idiopathic pancreatitis, such as SPINK1 mutations. In a much broader approach employing genome wide search strategies the NAPS study found that polymorphisms in the Trypsin locus (PRSS1 rs10273639), and the Claudin 2 locus (CLDN2-RIPPLY1-MORC4 locus rs7057398 and rs12688220) confer an increased risk of developing alcohol-induced pancreatitis. These results from North America have now been confirmed by a European consortium. In another genome wide approach polymorphisms in the genes encoding Fucosyltransferase 2 (FUT2) non-secretor status and blood group B were not only found in association with higher serum lipase levels in healthy volunteers but also to more than double the risk for developing alcohol-associated chronic pancreatitis. These novel genetic associations will allow to investigate the pathophysiological and biochemical basis of alcohol-induced chronic pancreatitis on a cellular level and in much more detail than previously possible. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  20. Association between environmental tobacco smoke exposure and lung cancer susceptibility: modification by antioxidant enzyme genetic polymorphisms.

    PubMed

    Fathy, Mona; Hamed, Mai; Youssif, Omnia; Fawzy, Nahla; Ashour, Wafa

    2014-02-01

    Environmental tobacco smoke (ETS) is the primary etiologic factor responsible for lung cancer. However, only 10-15 % of smokers develop lung cancer, suggesting a genetic role in modifying individual susceptibility to lung cancer. Antioxidant enzymes and genetic polymorphisms should be considered. The present study aimed to evaluate the role of antioxidant enzyme activity and genetic polymorphisms in modifying the susceptibility to lung cancer among individuals exposed to ETS. A total of 150 male subjects were divided into three groups: 50 lung cancer patients, 50 chronic smokers, and 50 passive smokers. Genotyping of microsomal epoxide hydrolase (mEH) exon 3 (Tyr(113)Hist) and exon 4 (Hist(139)Arg) polymorphisms were done by the polymerase chain reaction-restriction fragment length polymorphism technique. MnSOD (Val(16)Ala) polymorphism was detected by the real time-TaqMan assay. Erythrocyte MnSOD activity was measured spectrophotometrically. ETS-exposed individuals (both active and passive smokers) who carried the His allele of mEH exon3 have a 2.9-fold increased risk of lung cancer (odds ratio [OR] 2.9, P < 0.001). In addition, ETS-exposed carriers of the Arg allele of mEH exon 4 have a 2.1-fold increased risk of lung cancer (OR 2.1, P = 0.024). However, no association between the MnSOD Val(16)Ala polymorphism and lung cancer was detected among ETS-exposed individuals (OR 1.6, P = 0.147), although the lung cancer group had significantly lower MnSOD activity than the chronic or passive smoker groups (P = 0.03). Exons 3 and 4 polymorphisms of the mEH gene may contribute to lung cancer susceptibility through disturbed antioxidant balance. However, this was not the case with the MnSOD Val(16)Ala single-nucleotid polymorphism. Antioxidant enzymes may modulate the influence of ETS exposure on lung cancer risk.

  1. Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing.

    PubMed

    Chen, Zhangguo; Gowan, Katherine; Leach, Sonia M; Viboolsittiseri, Sawanee S; Mishra, Ameet K; Kadoishi, Tanya; Diener, Katrina; Gao, Bifeng; Jones, Kenneth; Wang, Jing H

    2016-10-21

    Whole genome next generation sequencing (NGS) is increasingly employed to detect genomic rearrangements in cancer genomes, especially in lymphoid malignancies. We recently established a unique mouse model by specifically deleting a key non-homologous end-joining DNA repair gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in germinal center B cells. This mouse model spontaneously develops mature B cell lymphomas (termed G1XP lymphomas). Here, we attempt to employ whole genome NGS to identify novel structural rearrangements, in particular inter-chromosomal translocations (CTXs), in these G1XP lymphomas. We sequenced six lymphoma samples, aligned our NGS data with mouse reference genome (in C57BL/6J (B6) background) and identified CTXs using CREST algorithm. Surprisingly, we detected widespread CTXs in both lymphomas and wildtype control samples, majority of which were false positive and attributable to different genetic backgrounds. In addition, we validated our NGS pipeline by sequencing multiple control samples from distinct tissues of different genetic backgrounds of mouse (B6 vs non-B6). Lastly, our studies showed that widespread false positive CTXs can be generated by simply aligning sequences from different genetic backgrounds of mouse. We conclude that mapping and alignment with reference genome might not be a preferred method for analyzing whole-genome NGS data obtained from a genetic background different from reference genome. Given the complex genetic background of different mouse strains or the heterogeneity of cancer genomes in human patients, in order to minimize such systematic artifacts and uncover novel CTXs, a preferred method might be de novo assembly of personalized normal control genome and cancer cell genome, instead of mapping and aligning NGS data to mouse or human reference genome. Thus, our studies have critical impact on the manner of data analysis for cancer genomics.

  2. Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis

    PubMed Central

    Hinks, Anne; Eyre, Steve; Ke, Xiayi; Barton, Anne; Martin, Paul; Flynn, Edward; Packham, Jon; Worthington, Jane; Thomson, Wendy

    2010-01-01

    Background Genome-wide association studies (GWAS) have been extremely successful in the search for susceptibility risk factors for complex genetic autoimmune diseases. As more studies are published, evidence is emerging of considerable overlap of loci between these diseases. In juvenile idiopathic arthritis (JIA), another complex genetic autoimmune disease, the strategy of using information from autoimmune disease GWAS or candidate gene studies to help in the search for novel JIA susceptibility loci has been successful, with confirmed association with two genes, PTPN22 and IL2RA. Rheumatoid arthritis (RA) is an autoimmune disease that shares similar clinical and pathological features with JIA and, therefore, recently identified confirmed RA susceptibility loci are also excellent JIA candidate loci. Objective To determine the overlap of disease susceptibility loci for RA and JIA. Methods Fifteen single nucleotide polymorphisms (SNPs) at nine RA-associated loci were genotyped in Caucasian patients with JIA (n=1054) and controls (n=3531) and tested for association with JIA. Allele and genotype frequencies were compared between cases and controls using the genetic analysis software, PLINK. Results Two JIA susceptibility loci were identified, one of which was a novel JIA association (STAT4) and the second confirmed previously published associations of the TRAF1/C5 locus with JIA. Weak evidence of association of JIA with three additional loci (Chr6q23, KIF5A and PRKCQ) was also obtained, which warrants further investigation. Conclusion All these loci are good candidates in view of the known pathogenesis of JIA, as genes within these regions (TRAF1, STAT4, TNFAIP3, PRKCQ) are known to be involved in T-cell receptor signalling or activation pathways. PMID:19674979

  3. Prevalence and susceptibility of infection to Myxobolus cerebralis, and genetic differences among populations of Tubifex tubifex.

    PubMed

    Beauchamp, Katherine A; Gay, Melanie; Kelley, Garry O; El-Matbouli, Mansour; Kathman, R Deedee; Nehring, R Barry; Hedrick, Ronald P

    2002-08-29

    The prevalence of infection and susceptibility of the aquatic oligochaete Tubifex tubifex to Myxobolus cerebralis, was examined in 2 studies on the upper Colorado River, Colorado, USA, where whirling disease occurs in wild trout populations. In the first study, the prevalence of infection ranged from 0.4 to 1.5%, as determined by counting the number of T. tubifex releasing triactinomyxons of M. cerebralis directly following their collection from the field. The susceptibility of those T. tubifex not releasing triactinomyxons was assessed by the number of these oligochaetes releasing triactinomyxons 3 mo following experimental exposures to spores of M. cerebralis. The prevalence of infection following experimental exposures of these T. tubifex ranged from 4.2 to 14.1%. In a second study, all T. tubifex collected at 2 different times directly from the 2 field sites in Colorado were exposed to spores of M. cerebralis. Individual oligochaetes representing those groups of T. tubifex releasing and those groups not releasing triactinomyxons at 3 mo were screened with molecular genetic markers. T. tubifex populations found at the 2 study sites consisted of 4 genetically distinct lineages that varied with respect to their susceptibility to experimental exposure to M. cerebralis. Lineages I and III contained the most oligochaetes susceptible to M. cerebralis and were the most prominent lineages at Windy Gap Reservoir, a site of high infectivity for wild rainbow trout on the upper Colorado River. In contrast, at the Breeze Bridge site which is below Windy Gap Reservoir and where M. cerebralis infections are less severe in wild trout, oligochaetes in lineages V and VI that are resistant to M. cerebralis were more prominent. These results suggest that certain habitats, such as Windy Gap Reservoir, are conducive to large and more homogenous populations of susceptible T. tubifex lineages that may serve as point sources of infection for M. cerebralis. Although not a direct

  4. Genetic predictions of prion disease susceptibility in carnivore species based on variability of the prion gene coding region.

    PubMed

    Stewart, Paula; Campbell, Lauren; Skogtvedt, Susan; Griffin, Karen A; Arnemo, Jon M; Tryland, Morten; Girling, Simon; Miller, Michael W; Tranulis, Michael A; Goldmann, Wilfred

    2012-01-01

    Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE) during the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD) remains an open question. Variation in the host-encoded prion protein (PrP(C)) largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrP(C) protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo) and pine marten (Martes martes) were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus) and mountain lion (Puma concolor) from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter.

  5. Genetic Predictions of Prion Disease Susceptibility in Carnivore Species Based on Variability of the Prion Gene Coding Region

    PubMed Central

    Stewart, Paula; Campbell, Lauren; Skogtvedt, Susan; Griffin, Karen A.; Arnemo, Jon M.; Tryland, Morten; Girling, Simon; Miller, Michael W.; Tranulis, Michael A.; Goldmann, Wilfred

    2012-01-01

    Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE) during the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD) remains an open question. Variation in the host-encoded prion protein (PrPC) largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrPC protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo) and pine marten (Martes martes) were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus) and mountain lion (Puma concolor) from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter. PMID:23236380

  6. Background field removal technique based on non-regularized variable kernels sophisticated harmonic artifact reduction for phase data for quantitative susceptibility mapping.

    PubMed

    Kan, Hirohito; Arai, Nobuyuki; Takizawa, Masahiro; Omori, Kazuyoshi; Kasai, Harumasa; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2018-06-11

    We developed a non-regularized, variable kernel, sophisticated harmonic artifact reduction for phase data (NR-VSHARP) method to accurately estimate local tissue fields without regularization for quantitative susceptibility mapping (QSM). We then used a digital brain phantom to evaluate the accuracy of the NR-VSHARP method, and compared it with the VSHARP and iterative spherical mean value (iSMV) methods through in vivo human brain experiments. Our proposed NR-VSHARP method, which uses variable spherical mean value (SMV) kernels, minimizes L2 norms only within the volume of interest to reduce phase errors and save cortical information without regularization. In a numerical phantom study, relative local field and susceptibility map errors were determined using NR-VSHARP, VSHARP, and iSMV. Additionally, various background field elimination methods were used to image the human brain. In a numerical phantom study, the use of NR-VSHARP considerably reduced the relative local field and susceptibility map errors throughout a digital whole brain phantom, compared with VSHARP and iSMV. In the in vivo experiment, the NR-VSHARP-estimated local field could sufficiently achieve minimal boundary losses and phase error suppression throughout the brain. Moreover, the susceptibility map generated using NR-VSHARP minimized the occurrence of streaking artifacts caused by insufficient background field removal. Our proposed NR-VSHARP method yields minimal boundary losses and highly precise phase data. Our results suggest that this technique may facilitate high-quality QSM. Copyright © 2017. Published by Elsevier Inc.

  7. Genetic variants of CD209 associated with Kawasaki disease susceptibility.

    PubMed

    Kuo, Ho-Chang; Huang, Ying-Hsien; Chien, Shu-Chen; Yu, Hong-Ren; Hsieh, Kai-Sheng; Hsu, Yu-Wen; Chang, Wei-Chiao

    2014-01-01

    Kawasaki disease (KD) is a systemic vasculitis with unknown etiology mainly affecting children in Asian countries. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN, CD209) in humans was showed to trigger an anti-inflammatory cascade and associated with KD susceptibility. This study was conducted to investigate the association between genetic polymorphisms of CD209 and the risk KD. A total of 948 subjects (381 KD and 567 controls) were recruited. Nine tagging SNPs (rs8112310, rs4804800, rs11465421, rs1544766, rs4804801, rs2287886, rs735239, rs735240, rs4804804) were selected for TaqMan allelic discrimination assay. Clinical phenotypes, coronary artery lesions (CAL) and intravenous immunoglobulin (IVIG) treatment outcomes were collected for analysis. Significant associations were found between CD209 polymorphisms (rs4804800, rs2287886, rs735240) and the risk of KD. Haplotype analysis for CD209 polymorphisms showed that A/A/G haplotype (P = 0.0002, OR = 1.61) and G/A/G haplotype (P = 0.0365, OR = 1.52) had higher risk of KD as compared with G/G/A haplotype in rs2287886/rs735239/rs735240 pairwise allele analysis. There were no significant association in KD with regards to CAL formation and IVIG treatment responses. CD209 polymorphisms were responsible for the susceptibility of KD, but not CAL formation and IVIG treatment responsiveness.

  8. Differential genetic susceptibility to child risk at birth in predicting observed maternal behavior.

    PubMed

    Fortuna, Keren; van Ijzendoorn, Marinus H; Mankuta, David; Kaitz, Marsha; Avinun, Reut; Ebstein, Richard P; Knafo, Ariel

    2011-01-01

    This study examined parenting as a function of child medical risks at birth and parental genotype (dopamine D4 receptor; DRD4). Our hypothesis was that the relation between child risks and later maternal sensitivity would depend on the presence/absence of a genetic variant in the mothers, thus revealing a gene by environment interaction (GXE). Risk at birth was defined by combining risk indices of children's gestational age at birth, birth weight, and admission to the neonatal intensive care unit. The DRD4-III 7-repeat allele was chosen as a relevant genotype as it was recently shown to moderate the effect of environmental stress on parental sensitivity. Mothers of 104 twin pairs provided DNA samples and were observed with their children in a laboratory play session when the children were 3.5 years old. Results indicate that higher levels of risk at birth were associated with less sensitive parenting only among mothers carrying the 7-repeat allele, but not among mothers carrying shorter alleles. Moreover, mothers who are carriers of the 7-repeat allele and whose children scored low on the risk index were observed to have the highest levels of sensitivity. These findings provide evidence for the interactive effects of genes and environment (in this study, children born at higher risk) on parenting, and are consistent with a genetic differential susceptibility model of parenting by demonstrating that some parents are inherently more susceptible to environmental influences, both good and bad, than are others.

  9. Quantitative autistic trait measurements index background genetic risk for ASD in Hispanic families.

    PubMed

    Page, Joshua; Constantino, John Nicholas; Zambrana, Katherine; Martin, Eden; Tunc, Ilker; Zhang, Yi; Abbacchi, Anna; Messinger, Daniel

    2016-01-01

    Recent studies have indicated that quantitative autistic traits (QATs) of parents reflect inherited liabilities that may index background genetic risk for clinical autism spectrum disorder (ASD) in their offspring. Moreover, preferential mating for QATs has been observed as a potential factor in concentrating autistic liabilities in some families across generations. Heretofore, intergenerational studies of QATs have focused almost exclusively on Caucasian populations-the present study explored these phenomena in a well-characterized Hispanic population. The present study examined QAT scores in siblings and parents of 83 Hispanic probands meeting research diagnostic criteria for ASD, and 64 non-ASD controls, using the Social Responsiveness Scale-2 (SRS-2). Ancestry of the probands was characterized by genotype, using information from 541,929 single nucleotide polymorphic markers. In families of Hispanic children with an ASD diagnosis, the pattern of quantitative trait correlations observed between ASD-affected children and their first-degree relatives (ICCs on the order of 0.20), between unaffected first-degree relatives in ASD-affected families (sibling/mother ICC = 0.36; sibling/father ICC = 0.53), and between spouses (mother/father ICC = 0.48) were in keeping with the influence of transmitted background genetic risk and strong preferential mating for variation in quantitative autistic trait burden. Results from analysis of ancestry-informative genetic markers among probands in this sample were consistent with that from other Hispanic populations. Quantitative autistic traits represent measurable indices of inherited liability to ASD in Hispanic families. The accumulation of autistic traits occurs within generations, between spouses, and across generations, among Hispanic families affected by ASD. The occurrence of preferential mating for QATs-the magnitude of which may vary across cultures-constitutes a mechanism by which background genetic liability

  10. Interest in Genetic Counseling and Testing for Adolescent Nicotine Addiction Susceptibility among a Sample of Adolescent Medicine Providers Attending a Scientific Conference on Adolescent Health

    PubMed Central

    Tercyak, Kenneth P.; Peshkin, Beth N.; Abraham, Anisha; Wine, Lauren; Walker, Leslie R.

    2007-01-01

    Purpose Preventing adolescents from smoking and becoming addicted to nicotine is an important public health issue. New research on the genetics of susceptibility to nicotine addition is emerging and may someday help identify adolescents at high risk. Over time, genetic counseling and testing for nicotine addiction susceptibility may become incorporated into tobacco control practice, and providers in primary care settings are likely to be at the forefront of these services. As such, it is important to understand the attitudes and practices of adolescent medicine providers toward tobacco control and genetic testing to better anticipate their needs and interests and prepare for the future. This study describes adolescent medicine providers’ interest, and correlates of their interest, in genetic counseling and testing for nicotine addiction susceptibility among their adolescent patients--a test which is not yet clinically available. Methods Adolescent medicine providers attending a national scientific conference (N = 232) completed a survey about their patient tobacco control and other screening behaviors, perceptions of their patients’ attitudes and beliefs toward tobacco control, and their own attitudes and beliefs about smoking and genetics. Results Providers who engaged in more regular tobacco screening behaviors with their adolescent patients (Odds Ratio [OR] = 4.07, 95% Confidence Interval [CI] = 2.20, 7.751, p = .00) and those who were more optimistic that biobehavioral research would lead to significant improvements in adolescent smoking prevention and treatment (OR = 2.47, 95% CI = 1.40, 4.37, p = .00), were more interested in counseling and testing. Conclusions Someday, adolescent wellness visits may present an opportunity to offer genetic counseling and testing for nicotine addiction susceptibility. Implementation at the provider level may depend on tobacco screening behavior and research optimism. Educating providers about safe and effective adolescent

  11. Genetic variation of the riparian pioneer tree species populus nigra. II. Variation In susceptibility to the foliar rust melampsora larici-populina

    PubMed

    Legionnet; Muranty; Lefevre

    1999-04-01

    Partial resistance of Populus nigra L. to three races of the foliar rust Melampsora larici-populina Kleb. was studied in a field trial and in laboratory tests, using a collection of P. nigra originating from different places throughout France. No total resistance was found. The partial resistance was split into epidemiological components, which proved to be under genetic control. Various patterns of association of epidemiological components values were found. Principal components analysis revealed their relationships. Only 24% of the variance of the field susceptibility could be explained by the variation of the epidemiological components of susceptibility. This variable was significantly correlated with susceptibility to the most ancient and widespread race of the pathogen, and with the variables related to the size of the lesions of the different races. Analysis of variance showed significant differences in susceptibility between regions and between stands within one region. Up to 20% of variation was between regions, and up to 22% between stands, so that these genetic factors appeared to be more differentiated than the neutral diversity (up to 3.5% Legionnet & Lefevre, 1996). However, no clear pattern of geographical distribution of diversity was detected.

  12. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization.

    PubMed

    Randles, Michael J; Woolf, Adrian S; Huang, Jennifer L; Byron, Adam; Humphries, Jonathan D; Price, Karen L; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J; Long, David A; Lennon, Rachel

    2015-12-01

    Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein-protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. Copyright © 2015 by the American Society of Nephrology.

  13. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization

    PubMed Central

    Randles, Michael J.; Woolf, Adrian S.; Huang, Jennifer L.; Byron, Adam; Humphries, Jonathan D.; Price, Karen L.; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J.; Long, David A.

    2015-01-01

    Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein–protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. PMID:25896609

  14. Inherited behavioral susceptibility to adiposity in infancy: a multivariate genetic analysis of appetite and weight in the Gemini birth cohort.

    PubMed

    Llewellyn, Clare H; van Jaarsveld, Cornelia H M; Plomin, Robert; Fisher, Abigail; Wardle, Jane

    2012-03-01

    The behavioral susceptibility model proposes that inherited differences in traits such as appetite confer differential risk of weight gain and contribute to the heritability of weight. Evidence that the FTO gene may influence weight partly through its effects on appetite supports this model, but testing the behavioral pathways for multiple genes with very small effects is not feasible. Twin analyses make it possible to get a broad-based estimate of the extent of shared genetic influence between appetite and weight. The objective was to use multivariate twin analyses to test the hypothesis that associations between appetite and weight are underpinned by shared genetic effects. Data were from Gemini, a population-based birth cohort of twins (n = 4804) born in 2007. Infant weights at 3 mo were taken from the records of health professionals. Appetite was assessed at 3 mo for the milk-feeding period by using the Baby Eating Behaviour Questionnaire (BEBQ), a parent-reported measure of appetite [enjoyment of food, food responsiveness, slowness in eating (SE), satiety responsiveness (SR), and appetite size (AS)]. Multivariate quantitative genetic modeling was used to test for shared genetic influences. Significant correlations were found between all BEBQ traits and weight. Significant shared genetic influence was identified for weight with SE, SR, and AS; genetic correlations were between 0.22 and 0.37. Shared genetic effects explained 41-45% of these phenotypic associations. Differences in weight in infancy may be due partly to genetically determined differences in appetitive traits that confer differential susceptibility to obesogenic environments.

  15. Is variation in susceptibility to Phytophthora ramorum correlated with population genetic structure in coast live oak (Quercus agrifolia)?

    PubMed

    Dodd, Richard S; Hüberli, Daniel; Douhovnikoff, Vlad; Harnik, Tamar Y; Afzal-Rafii, Zara; Garbelotto, Matteo

    2005-01-01

    California coastal woodlands are suffering severe disease and mortality as a result of infection from Phytophthora ramorum. Quercus agrifolia is one of the major woodland species at risk. This study investigated within- and among-population variation in host susceptibility to inoculation with P. ramorum and compared this with population genetic structure using molecular markers. Susceptibility was assessed using a branch-cutting inoculation test. Trees were selected from seven natural populations in California. Amplified fragment length polymorphism molecular markers were analysed for all trees used in the trials. Lesion sizes varied quantitatively among individuals within populations, with up to an eightfold difference. There was little support for population differences in susceptibility. Molecular structure also showed a strong within-population, and weaker among-population, pattern of variation. Our data suggest that susceptibility of Q. agrifolia to P. ramorum is variable and is under the control of several gene loci. This variation exists within populations, so that less susceptible local genotypes may provide the gene pool for regeneration of woodlands where mortality is high.

  16. Genetic Factors Affecting Late-Onset Alzheimer's Disease Susceptibility.

    PubMed

    Rezazadeh, Maryam; Khorrami, Aziz; Yeghaneh, Tarlan; Talebi, Mahnaz; Kiani, Seyed Jalal; Heshmati, Yaser; Gharesouran, Jalal

    2016-03-01

    Alzheimer's disease is considered a progressive brain disease in the older population. Late-onset Alzheimer's disease (LOAD) as a multifactorial dementia has a polygenic inheritance. Age, environment, and lifestyle along with a growing number of genetic factors have been reported as risk factors for LOAD. Our aim was to present results of LOAD association studies that have been done in northwestern Iran, and we also explored possible interactions with apolipoprotein E (APOE) status. We re-evaluated the association of these markers in dominant, recessive, and additive models. In all, 160 LOAD and 163 healthy control subjects of Azeri Turkish ethnicity were studied. The Chi-square test with Yates' correction and Fisher's exact test were used for statistical analysis. A Bonferroni-corrected p value, based on the number of statistical tests, was considered significant. Our results confirmed that chemokine receptor type 2 (CCR2), estrogen receptor 1 (ESR1), toll-like receptor 2 (TLR2), tumor necrosis factor alpha (TNF α), APOE, bridging integrator 1 (BIN1), and phosphatidylinositol-binding clathrin assembly protein (PICALM) are LOAD susceptibility loci in Azeri Turk ancestry populations. Among them, variants of CCR2, ESR1, TNF α, and APOE revealed associations in three different genetic models. After adjusting for APOE, the association (both allelic and genotypic) with CCR2, BIN1, and ESRα (PvuII) was evident only among subjects without the APOE ε4, whereas the association with CCR5, without Bonferroni correction, was significant only among subjects carrying the APOE ε4 allele. This result is an evidence of a synergistic and antagonistic effect of APOE on variant associations with LOAD.

  17. Genetic selection for coping style predicts stressor susceptibility.

    PubMed

    Veenema, A H; Meijer, O C; de Kloet, E R; Koolhaas, J M

    2003-03-01

    Genetically selected aggressive (SAL) and nonaggressive (LAL) male wild house-mice which show distinctly different coping styles, also display a differential regulation of the hypothalamic-pituitary-adrenal axis after exposure to an acute stressor. To test the hypothesis that coping style predicts stressor susceptibility, the present study examined line differences in response to a chronic stressor. Chronic psychosocial stress was evoked using two paradigms. In the first paradigm, a SAL or LAL male was living in sensory contact (except tactile contact) with a dominant SAL male for 25 days (sensory contact stress). In the second paradigm, a SAL or LAL male was, in addition to the first paradigm, defeated by a SAL male for 21 consecutive days (defeat stress). The sensory contact stressor induced in LAL mice chronic body weight loss and increased plasma adrenocorticotropic hormone levels compared to SAL mice and increased corticosterone levels, thymus involution and lower hippocampal mineralocorticoid receptor (MR) : glucocorticoid receptor (GR) ratio compared to LAL controls. The defeat stressor increased corticosterone secretion and caused adrenal hypertrophy and thymus involution in both mouse lines. Defeated LAL mice showed long-lasting body weight loss and higher corticosterone concentrations than SAL mice and lower hippocampal MR : GR ratio and decreased immobility behaviour in the forced swimming test than LAL controls. Hypothalamic corticotropin-releasing hormone mRNA expression was higher in defeated SAL than in controls. The present data show that both stress paradigms induced line-dependent physiological and neuroendocrine changes, but that the sensory contact stressor produced chronic stress symptoms in LAL mice only. This latter stress paradigm therefore seems promising to analyse the role of genetic factors in the individual differences in stress-related psychopathology.

  18. Integrating genetic and toxicogenomic information for determining underlying susceptibility to developmental disorders.

    PubMed

    Robinson, Joshua F; Port, Jesse A; Yu, Xiaozhong; Faustman, Elaine M

    2010-10-01

    To understand the complex etiology of developmental disorders, an understanding of both genetic and environmental risk factors is needed. Human and rodent genetic studies have identified a multitude of gene candidates for specific developmental disorders such as neural tube defects (NTDs). With the emergence of toxicogenomic-based assessments, scientists now also have the ability to compare and understand the expression of thousands of genes simultaneously across strain, time, and exposure in developmental models. Using a systems-based approach in which we are able to evaluate information from various parts and levels of the developing organism, we propose a framework for integrating genetic information with toxicogenomic-based studies to better understand gene-environmental interactions critical for developmental disorders. This approach has allowed us to characterize candidate genes in the context of variables critical for determining susceptibility such as strain, time, and exposure. Using a combination of toxicogenomic studies and complementary bioinformatic tools, we characterize NTD candidate genes during normal development by function (gene ontology), linked phenotype (disease outcome), location, and expression (temporally and strain-dependent). In addition, we show how environmental exposures (cadmium, methylmercury) can influence expression of these genes in a strain-dependent manner. Using NTDs as an example of developmental disorder, we show how simple integration of genetic information from previous studies into the standard microarray design can enhance analysis of gene-environment interactions to better define environmental exposure-disease pathways in sensitive and resistant mouse strains. © Wiley-Liss, Inc.

  19. The genetic basis for susceptibility to Rift Valley fever disease in MBT/Pas mice.

    PubMed

    Tokuda, S; Do Valle, T Z; Batista, L; Simon-Chazottes, D; Guillemot, L; Bouloy, M; Flamand, M; Montagutelli, X; Panthier, J-J

    2015-01-01

    The large variation in individual response to infection with Rift Valley fever virus (RVFV) suggests that host genetic determinants play a role in determining virus-induced disease outcomes. These genetic factors are still unknown. The systemic inoculation of mice with RVFV reproduces major pathological features of severe human disease, notably the hepatitis and encephalitis. A genome scan performed on 546 (BALB/c × MBT) F2 progeny identified three quantitative trait loci (QTLs), denoted Rvfs-1 to Rvfs-3, that were associated with disease susceptibility in MBT/Pas mice. Non-parametric interval-mapping revealed one significant and two suggestive linkages with survival time on chromosomes 2 (Rvfs-1), 5 (Rvfs-3) and 11 (Rvfs-2) with respective logarithm of odds (LOD) scores of 4.58, 2.95 and 2.99. The two-part model, combining survival time and survival/death, identified one significant linkage to Rvfs-2 and one suggestive linkage to Rvfs-1 with respective LOD scores of 5.12 and 4.55. Under a multiple model, with additive effects and sex as a covariate, the three QTLs explained 8.3% of the phenotypic variance. Sex had the strongest influence on susceptibility. The contribution of Rvfs-1, Rvfs-2 and Rvfs-3 to survival time of RVFV-infected mice was further confirmed in congenic mice.

  20. Are SCN1A gene mutations responsible for genetic susceptibility to subacute sclerosing panencephalitis?

    PubMed

    Garg, Ravindra Kumar

    2012-02-01

    Dravet syndrome, characterized predominantly by myoclonus, has a striking clinical resemblance to subacute sclerosing panencephalitis (SSPE). Patients with Dravet syndrome develop significant mental decline with advancing age of affected child like in SSPE. It is well established that SCN1A gene mutations are associated with Dravet syndrome. Even periodic EEG complexes have been described in Dravet syndrome. In addition to Dravet syndrome, several other types of acute and subacute encephalopathic syndromes having clinical and electroencephalographic resemblance to SSPE are associated with SCN1A gene mutations. SSPE is a devastating progressive inflammatory disorder of the central nervous system. It is caused by persistent infection of the brain by an aberrant measles virus. Only a few of a vast number of measles infected pediatric population develop SSPE. There are several reports describing presence of SSPE is close relatives and it has been described previously in sibling and twin pairs. A genetic susceptibility for development of SSPE is likely. In fact, a variety of genetic abnormalities have already been described in patients with SSPE. It can also be argued that because of striking clinical resemblance between Dravet and various epileptic and encephalopathic syndromes associated with SCN1A gene mutations and SSPE, SCN1A gene abnormalities may also be responsible for susceptibility to SSPE in measles infected children. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Identification of Hotspots of Genetic Risk for Type 2 Diabetes Using GIS Methods

    EPA Science Inventory

    BACKGROUND: Having the ability to scan the entire country for potential "hotspots" with increased risk of developing chronic diseases due to various environmental, demographic, and genetic susceptibility factors may inform risk management decisions and enable better env...

  2. Gene-environment interaction involving recently identified colorectal cancer susceptibility loci

    PubMed Central

    Kantor, Elizabeth D.; Hutter, Carolyn M.; Minnier, Jessica; Berndt, Sonja I.; Brenner, Hermann; Caan, Bette J.; Campbell, Peter T.; Carlson, Christopher S.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chanock, Stephen J.; Cotterchio, Michelle; Du, Mengmeng; Duggan, David; Fuchs, Charles S.; Giovannucci, Edward L.; Gong, Jian; Harrison, Tabitha A.; Hayes, Richard B.; Henderson, Brian E.; Hoffmeister, Michael; Hopper, John L.; Jenkins, Mark A.; Jiao, Shuo; Kolonel, Laurence N.; Le Marchand, Loic; Lemire, Mathieu; Ma, Jing; Newcomb, Polly A.; Ochs-Balcom, Heather M.; Pflugeisen, Bethann M.; Potter, John D.; Rudolph, Anja; Schoen, Robert E.; Seminara, Daniela; Slattery, Martha L.; Stelling, Deanna L.; Thomas, Fridtjof; Thornquist, Mark; Ulrich, Cornelia M.; Warnick, Greg S.; Zanke, Brent W.; Peters, Ulrike; Hsu, Li; White, Emily

    2014-01-01

    BACKGROUND Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer (CRC). Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS Data on 9160 cases and 9280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, post-menopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed-effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS None of the permutation-adjusted p-values reached statistical significance. CONCLUSIONS The associations between recently identified genetic susceptibility loci and CRC are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for CRC taken one at a time. PMID:24994789

  3. Allele variations in the OCA2 gene (pink-eyed-dilution locus) are associated with genetic susceptibility to melanoma.

    PubMed

    Jannot, Anne-Sophie; Meziani, Roubila; Bertrand, Guylene; Gérard, Benedicte; Descamps, Vincent; Archimbaud, Alain; Picard, Catherine; Ollivaud, Laurence; Basset-Seguin, Nicole; Kerob, Delphine; Lanternier, Guy; Lebbe, Celeste; Saiag, P; Crickx, Beatrice; Clerget-Darpoux, Françoise; Grandchamp, Bernard; Soufir, Nadem; Melan-Cohort

    2005-08-01

    The occuloalbinism 2 (OCA2) gene, localized at 15q11, encodes a melanosomal transmembrane protein that is involved in the most common form of human occulo-cutaneous albinism, a human genetic disorder characterized by fair pigmentation and susceptibility to skin cancer. We wondered whether allele variations at this locus could influence susceptibility to malignant melanoma (MM). In all, 10 intragenic single-nucleotide polymorphisms (SNPs) were genotyped in 113 patients with melanomas and in 105 Caucasian control subjects with no personal or family history of skin cancer. By comparing allelic distribution between cases and controls, we show that MM and OCA2 are associated (p value=0.030 after correction for multiple testing). Then, a recently developed strategy, the 'combination test' enabled us to show that a combination formed by two SNPs was most strongly associated to MM, suggesting a possible interaction between intragenic SNPs. In addition, the role of OCA2 on MM risk was also detected using a logistic model taking into account the presence of variants of the melanocortin 1 receptor gene (MC1R, a key pigmentation gene) and all pigmentation characteristics as melanoma risk factors. Our data demonstrate that a second pigmentation gene, in addition to MC1R, is involved in genetic susceptibility to melanoma.

  4. Allele-specific DNA methylation of disease susceptibility genes in Japanese patients with inflammatory bowel disease

    PubMed Central

    Chiba, Hirofumi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Kawai, Yosuke; Watanabe, Kazuhiro; Nagao, Munenori; Naito, Takeo; Onodera, Motoyuki; Moroi, Rintaro; Kuroha, Masatake; Kanazawa, Yoshitake; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Negoro, Kenichi; Nagasaki, Masao; Unno, Michiaki; Shimosegawa, Tooru

    2018-01-01

    Background Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. Methods CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score (ΔRAS¯) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing ΔRAS¯ >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. Results We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of ΔRAS¯ (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 (ΔRAS¯ = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). Conclusions We confirmed the existence of cis-regulated ASM around IBD

  5. The interplay between environmental and genetic factors in Parkinson's disease susceptibility: the evidence for pesticides.

    PubMed

    Dardiotis, Efthimios; Xiromerisiou, Georgia; Hadjichristodoulou, Christos; Tsatsakis, Aristidis M; Wilks, Martin F; Hadjigeorgiou, Georgios M

    2013-05-10

    Parkinson's disease (PD) is a common neurodegenerative disorder characterized by dopaminergic neuron loss in the substantia nigra. Several genetic and environmental factors have been implicated in the pathogenesis of PD. Single risk factors are likely to exert relatively minor effects, whereas their interaction may prove to be sufficient to cause PD. In the present review we summarize current knowledge from human genetic association studies regarding the interaction between gene polymorphisms and pesticide exposure in the risk of PD. A number of genetic association studies have investigated joint effects between genes and pesticides on PD risk. They have provided some evidence that genetic susceptibility either in metabolism, elimination and transport of pesticides or in the extent of mitochondrial dysfunction, oxidative stress and neuronal loss may predispose individuals to PD if they have been exposed to pesticides. These findings confirm the importance of considering pesticide-gene interactions in future studies in order to gain a better understanding of the pathogenic mechanisms of PD. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. The Physiological Effects of Deleting the Mouse Slc30a8 Gene Encoding Zinc Transporter-8 Are Influenced by Gender and Genetic Background

    PubMed Central

    Pound, Lynley D.; Sarkar, Suparna A.; Ustione, Alessandro; Dadi, Prasanna K.; Shadoan, Melanie K.; Lee, Catherine E.; Walters, Jay A.; Shiota, Masakazu; McGuinness, Owen P.; Jacobson, David A.; Piston, David W.; Hutton, John C.; Powell, David R.; O’Brien, Richard M.

    2012-01-01

    Objective The SLC30A8 gene encodes the islet-specific transporter ZnT-8, which is hypothesized to provide zinc for insulin-crystal formation. A polymorphic variant in SLC30A8 is associated with altered susceptibility to type 2 diabetes. Several groups have examined the effect of global Slc30a8 gene deletion but the results have been highly variable, perhaps due to the mixed 129SvEv/C57BL/6J genetic background of the mice studied. We therefore sought to remove the conflicting effect of 129SvEv-specific modifier genes. Methods The impact of Slc30a8 deletion was examined in the context of the pure C57BL/6J genetic background. Results Male C57BL/6J Slc30a8 knockout (KO) mice had normal fasting insulin levels and no change in glucose-stimulated insulin secretion (GSIS) from isolated islets in marked contrast to the ∼50% and ∼35% decrease, respectively, in both parameters observed in male mixed genetic background Slc30a8 KO mice. This observation suggests that 129SvEv-specific modifier genes modulate the impact of Slc30a8 deletion. In contrast, female C57BL/6J Slc30a8 KO mice had reduced (∼20%) fasting insulin levels, though this was not associated with a change in fasting blood glucose (FBG), or GSIS from isolated islets. This observation indicates that gender also modulates the impact of Slc30a8 deletion, though the physiological explanation as to why impaired insulin secretion is not accompanied by elevated FBG is unclear. Neither male nor female C57BL/6J Slc30a8 KO mice showed impaired glucose tolerance. Conclusions Our data suggest that, despite a marked reduction in islet zinc content, the absence of ZnT-8 does not have a substantial impact on mouse physiology. PMID:22829903

  7. A role for the Fas/FasL system in modulating genetic susceptibility to T-cell lymphoblastic lymphomas.

    PubMed

    Villa-Morales, María; Santos, Javier; Pérez-Gómez, Eduardo; Quintanilla, Miguel; Fernández-Piqueras, José

    2007-06-01

    The Fas/FasL system mediates induced apoptosis of immature thymocytes and peripheral T lymphocytes, but little is known about its implication in genetic susceptibility to T-cell malignancies. In this article, we report that the expression of FasL increases early in all mice after gamma-radiation treatments, maintaining such high levels for a long time in mice that resisted tumor induction. However, its expression is practically absent in T-cell lymphoblastic lymphomas. Interestingly, there exist significant differences in the level of expression between two mice strains exhibiting extremely distinct susceptibilities that can be attributed to promoter functional polymorphisms. In addition, several functional nucleotide changes in the coding sequences of both Fas and FasL genes significantly affect their biological activity. These results lead us to propose that germ-line functional polymorphisms affecting either the levels of expression or the biological activity of both Fas and FasL genes could be contributing to the genetic risk to develop T-cell lymphoblastic lymphomas and support the use of radiotherapy as an adequate procedure to choose in the treatment of T-cell malignancies.

  8. Neuronal Susceptibility to GRIM in Drosophila melanogaster Measures the Rate of Genetic Changes that Scale to Lifespan

    PubMed Central

    Bedoukian, Matthew A.; Rodriguez, Sarah M.; Cohen, Matthew B.; Duncan Smith, Stuart V.; Park, Jennifer

    2009-01-01

    Gene expression in Drosophila melanogaster changes significantly throughout life and some of these changes can be delayed by lowering ambient temperature and also by dietary restriction. These two interventions are known to slow the rate of aging as well as the accumulation of damage. It is unknown, however, whether gene expression changes that occur during development and early adult life make an animal more vulnerable to death. Here we develop a method capable of measuring the rate of programmed genetic changes during young adult life in Drosophila melanogaster and show that these changes can be delayed or accelerated in a manner that is predictive of longevity. We show that temperature shifts and dietary restriction, which slow the rate of aging in Drosophila melanogaster, extend the window of neuronal susceptibility to GRIM over-expression in a way that scales to lifespan. We propose that this susceptibility can be used to test compounds and genetic manipulations that alter the onset of senescence by changing the programmed timing of gene expression that correlates and may be causal to aging. PMID:19428445

  9. Gene interaction at seed-awning loci in the genetic background of wild rice.

    PubMed

    Ikemoto, Mai; Otsuka, Mitsuharu; Thanh, Pham Thien; Phan, Phuong Dang Thai; Ishikawa, Ryo; Ishii, Takashige

    2017-09-12

    Seed awning is one of the important traits for successful propagation in wild rice. During the domestication of rice by ancient humans, plants with awnless seeds may have been selected because long awns hindered collection and handling activities. To investigate domestication of awnless rice, QTL analysis for seed awning was first carried out using backcross recombinant inbred lines between Oryza sativa Nipponbare (recurrent parent) and O. rufipogon W630 (donor parent). Two strong QTLs were detected in the same regions as known major seed-awning loci, An-1 and RAE2. Subsequent causal mutation surveying and fine mapping confirmed that O. rufipogon W630 has functional alleles at both loci. The gene effects and interactions at these loci were examined using two backcross populations with reciprocal genetic backgrounds of O. sativa Nipponbare and O. rufipogon W630. As awn length in wild rice varied among seeds even in the same plant, awn length was measured based on spikelet position. In the genetic background of cultivated rice, the wild alleles at An-1 and RAE2 had awning effects, and plants having both wild homozygous alleles produced awns whose length was about 70% of those of the wild parent. On the other hand, in the genetic background of wild rice, the substitution of cultivated alleles at An-1 and RAE2 contributed little to awn length reduction. These results indicate that the domestication process of awnless seeds was complicated because many genes are involved in awn formation in wild rice.

  10. MicroRNA genes are frequently located near mouse cancer susceptibility loci

    PubMed Central

    Sevignani, Cinzia; Calin, George A.; Nnadi, Stephanie C.; Shimizu, Masayoshi; Davuluri, Ramana V.; Hyslop, Terry; Demant, Peter; Croce, Carlo M.; Siracusa, Linda D.

    2007-01-01

    MicroRNAs (miRNAs) are short 19- to 24-nt RNA molecules that have been shown to regulate the expression of other genes in a variety of eukaryotic systems. Abnormal expression of miRNAs has been observed in several human cancers, and furthermore, germ-line and somatic mutations in human miRNAs were recently identified in patients with chronic lymphocytic leukemia. Thus, human miRNAs can act as tumor suppressor genes or oncogenes, where mutations, deletions, or amplifications can underlie the development of certain types of leukemia. In addition, previous studies have shown that miRNA expression profiles can distinguish among human solid tumors from different organs. Because a single miRNA can simultaneously influence the expression of two or more protein-coding genes, we hypothesized that miRNAs could be candidate genes for cancer risk. Research in complex trait genetics has demonstrated that genetic background determines cancer susceptibility or resistance in various tissues, such as colon and lung, of different inbred mouse strains. We compared the genome positions of mouse tumor susceptibility loci with those of mouse miRNAs. Here, we report a statistically significant association between the chromosomal location of miRNAs and those of mouse cancer susceptibility loci that influence the development of solid tumors. Furthermore, we identified distinct patterns of flanking DNA sequences for several miRNAs located at or near susceptibility loci in inbred strains with different tumor susceptibilities. These data provide a catalog of miRNA genes in inbred strains that could represent genes involved in the development and penetrance of solid tumors. PMID:17470785

  11. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease.

    PubMed

    Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A

    2018-03-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.

  12. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease

    PubMed Central

    Gray, Alan; Neyton, Lucile P. A.; Barrett, Jeffrey; Stahl, Eli A.; Tenesa, Albert; Andersson, Robin; Brown, J. Ben; Faulkner, Geoffrey J.; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Kawaji, Hideya; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A.; Hacohen, Nir; Freeman, Thomas C.; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Hume, David A.

    2018-01-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn’s disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits. PMID:29494619

  13. Can mutation-mediated effects occurring early in development cause long-term seizure susceptibility in genetic generalized epilepsies?

    PubMed

    Reid, Christopher Alan; Rollo, Ben; Petrou, Steven; Berkovic, Samuel F

    2018-05-01

    Epilepsy has a strong genetic component, with an ever-increasing number of disease-causing genes being discovered. Most epilepsy-causing mutations are germ line and thus present from conception. These mutations are therefore well positioned to have a deleterious impact during early development. Here we review studies that investigate the role of genetic lesions within the early developmental window, specifically focusing on genetic generalized epilepsy (GGE). Literature on the potential pathogenic role of sub-mesoscopic structural changes in GGE is also reviewed. Evidence from rodent models of genetic epilepsy support the idea that functional and structural changes can occur in early development, leading to altered seizure susceptibility into adulthood. Both animal and human studies suggest that sub-mesoscopic structural changes occur in GGE. The existence of sub-mesoscopic structural changes prior to seizure onset may act as biomarkers of excitability in genetic epilepsies. We also propose that presymptomatic treatment may be essential for limiting the long-term consequences of disease-causing mutations in genetic epilepsies. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  14. Quantitative genetics of taura syndrome resistance in pacific white shrimp (penaeus vannamei): a cure model approach

    PubMed Central

    2011-01-01

    Background In aquaculture breeding, resistance against infectious diseases is commonly assessed as time until death under exposure to a pathogen. For some diseases, a fraction of the individuals may appear as "cured" (non-susceptible), and the resulting survival time may thus be a result of two confounded underlying traits, i.e., endurance (individual hazard) and susceptibility (whether at risk or not), which may be accounted for by fitting a cure survival model. We applied a cure model to survival data of Pacific white shrimp (Penaeus vannamei) challenged with the Taura syndrome virus, which is one of the major pathogens of Panaeid shrimp species. Methods In total, 15,261 individuals of 513 full-sib families from three generations were challenge-tested in 21 separate tests (tanks). All challenge-tests were run until mortality naturally ceased. Time-until-event data were analyzed with a mixed cure survival model using Gibbs sampling, treating susceptibility and endurance as separate genetic traits. Results Overall mortality at the end of test was 28%, while 38% of the population was considered susceptible to the disease. The estimated underlying heritability was high for susceptibility (0.41 ± 0.07), but low for endurance (0.07 ± 0.03). Furthermore, endurance and susceptibility were distinct genetic traits (rg = 0.22 ± 0.25). Estimated breeding values for endurance and susceptibility were only moderately correlated (0.50), while estimated breeding values from classical models for analysis of challenge-test survival (ignoring the cured fraction) were closely correlated with estimated breeding values for susceptibility, but less correlated with estimated breeding values for endurance. Conclusions For Taura syndrome resistance, endurance and susceptibility are apparently distinct genetic traits. However, genetic evaluation of susceptibility based on the cure model showed clear associations with standard genetic evaluations that ignore the cure fraction for these

  15. Genetic, Clinical, and Pathologic Backgrounds of Patients with Autosomal Dominant Alport Syndrome

    PubMed Central

    Kamiyoshi, Naohiro; Fu, Xue Jun; Morisada, Naoya; Nozu, Yoshimi; Ye, Ming Juan; Imafuku, Aya; Miura, Kenichiro; Yamamura, Tomohiko; Minamikawa, Shogo; Shono, Akemi; Ninchoji, Takeshi; Morioka, Ichiro; Nakanishi, Koichi; Yoshikawa, Norishige; Kaito, Hiroshi; Iijima, Kazumoto

    2016-01-01

    Background and objectives Alport syndrome comprises a group of inherited heterogeneous disorders involving CKD, hearing loss, and ocular abnormalities. Autosomal dominant Alport syndrome caused by heterozygous mutations in collagen 4A3 and/or collagen 4A4 accounts for <5% of patients. However, the clinical, genetic, and pathologic backgrounds of patients with autosomal dominant Alport syndrome remain unclear. Design, setting, participants, & measurements We conducted a retrospective analysis of 25 patients with genetically proven autosomal dominant Alport syndrome and their family members (a total of 72 patients) from 16 unrelated families. Patients with suspected Alport syndrome after pathologic examination who were referred from anywhere in Japan for genetic analysis from 2006 to 2015 were included in this study. Clinical, laboratory, and pathologic data were collected from medical records at the point of registration for genetic diagnosis. Genetic analysis was performed by targeted resequencing of 27 podocyte-related genes, including Alport–related collagen genes, to make a diagnosis of autosomal dominant Alport syndrome and identify modifier genes or double mutations. Clinical data were obtained from medical records. Results The median renal survival time was 70 years, and the median age at first detection of proteinuria was 17 years old. There was one patient with hearing loss and one patient with ocular lesion. Among 16 patients who underwent kidney biopsy, three showed FSGS, and seven showed thinning without lamellation of the glomerular basement membrane. Five of 13 detected mutations were reported to be causative mutations for autosomal recessive Alport syndrome in previous studies. Two families possessed double mutations in both collagen 4A3 and collagen 4A4, but no modifier genes were detected among the other podocyte–related genes. Conclusions The renal phenotype of autosomal dominant Alport syndrome was much milder than that of autosomal recessive

  16. Genetic variation in bacterial kidney disease (BKD) susceptibility in Lake Michigan Chinook Salmon and its progenitor population from the Puget Sound.

    PubMed

    Purcell, Maureen K; Hard, Jeffrey J; Neely, Kathleen G; Park, Linda K; Winton, James R; Elliott, Diane G

    2014-03-01

    Mass mortality events in wild fish due to infectious diseases are troubling, especially given the potential for long-term, population-level consequences. Evolutionary theory predicts that populations with sufficient genetic variation will adapt in response to pathogen pressure. Chinook Salmon Oncorhynchus tshawytscha were introduced into Lake Michigan in the late 1960s from a Washington State hatchery population. In the late 1980s, collapse of the forage base and nutritional stress in Lake Michigan were thought to contribute to die-offs of Chinook Salmon due to bacterial kidney disease (BKD). Previously, we demonstrated that Lake Michigan Chinook Salmon from a Wisconsin hatchery have greater survival following BKD challenge relative to their progenitor population. Here, we evaluated whether the phenotypic divergence of these populations in BKD susceptibility was due to selection rather than genetic drift. Comparison of the overall magnitude of quantitative trait to neutral marker divergence between the populations suggested selection had occurred but a direct test of quantitative trait divergence was not significant, preventing the rejection of the null hypothesis of differentiation through genetic drift. Estimates of phenotypic variation (VP ), additive genetic variation (VA ) and narrow-sense heritability (h (2)) were consistently higher in the Wisconsin relative to the Washington population. If selection had acted on the Wisconsin population there was no evidence of a concomitant loss of genetic variation in BKD susceptibility. The Renibacterium salmoninarum exposures were conducted at both 14°C and 9°C; the warmer temperature accelerated time to death in both populations and there was no evidence of phenotypic plasticity or a genotype-by-environment (G × E) interaction. High h (2) estimates for BKD susceptibility in the Wisconsin population, combined with a lack of phenotypic plasticity, predicts that future adaptive gains in BKD resistance are still

  17. Genetic variation in bacterial kidney disease (BKD) susceptibility in Lake Michigan Chinook Salmon and its progenitor population from the Puget Sound

    USGS Publications Warehouse

    Purcell, Maureen K.; Hard, Jeffrey J.; Neely, Kathleen G.; Park, Linda K.; Winton, James R.; Elliott, Diane G.

    2014-01-01

    Mass mortality events in wild fish due to infectious diseases are troubling, especially given the potential for long-term, population-level consequences. Evolutionary theory predicts that populations with sufficient genetic variation will adapt in response to pathogen pressure. Chinook Salmon Oncorhynchus tshawytscha were introduced into Lake Michigan in the late 1960s from a Washington State hatchery population. In the late 1980s, collapse of the forage base and nutritional stress in Lake Michigan were thought to contribute to die-offs of Chinook Salmon due to bacterial kidney disease (BKD). Previously, we demonstrated that Lake Michigan Chinook Salmon from a Wisconsin hatchery have greater survival following BKD challenge relative to their progenitor population. Here, we evaluated whether the phenotypic divergence of these populations in BKD susceptibility was due to selection rather than genetic drift. Comparison of the overall magnitude of quantitative trait to neutral marker divergence between the populations suggested selection had occurred but a direct test of quantitative trait divergence was not significant, preventing the rejection of the null hypothesis of differentiation through genetic drift. Estimates of phenotypic variation (VP), additive genetic variation (VA) and narrow-sense heritability (h2) were consistently higher in the Wisconsin relative to the Washington population. If selection had acted on the Wisconsin population there was no evidence of a concomitant loss of genetic variation in BKD susceptibility. The Renibacterium salmoninarum exposures were conducted at both 14°C and 9°C; the warmer temperature accelerated time to death in both populations and there was no evidence of phenotypic plasticity or a genotype-by-environment (G × E) interaction. High h2 estimates for BKD susceptibility in the Wisconsin population, combined with a lack of phenotypic plasticity, predicts that future adaptive gains in BKD resistance are still possible and

  18. Convergent Genetic and Expression Datasets Highlight TREM2 in Parkinson's Disease Susceptibility.

    PubMed

    Liu, Guiyou; Liu, Yongquan; Jiang, Qinghua; Jiang, Yongshuai; Feng, Rennan; Zhang, Liangcai; Chen, Zugen; Li, Keshen; Liu, Jiafeng

    2016-09-01

    A rare TREM2 missense mutation (rs75932628-T) was reported to confer a significant Alzheimer's disease (AD) risk. A recent study indicated no evidence of the involvement of this variant in Parkinson's disease (PD). Here, we used the genetic and expression data to reinvestigate the potential association between TREM2 and PD susceptibility. In stage 1, using 10 independent studies (N = 89,157; 8787 cases and 80,370 controls), we conducted a subgroup meta-analysis. We identified a significant association between rs75932628 and PD (P = 3.10E-03, odds ratio (OR) = 3.88, 95 % confidence interval (CI) 1.58-9.54) in No-Northern Europe subgroup, and significantly increased PD risks (P = 0.01 for Mann-Whitney test) in No-Northern Europe subgroup than in Northern Europe subgroup. In stage 2, we used the summary results from a large-scale PD genome-wide association study (GWAS; N = 108,990; 13,708 cases and 95,282 controls) to search for other TREM2 variants contributing to PD susceptibility. We identified 14 single-nucleotide polymorphisms (SNPs) associated with PD within 50-kb upstream and downstream range of TREM2. In stage 3, using two brain expression GWAS datasets (N = 773), we identified 6 of the 14 SNPs regulating increased expression of TREM2. In stage 4, using the whole human genome microarray data (N = 50), we further identified significantly increased expression of TREM2 in PD cases compared with controls in human prefrontal cortex. In summary, convergent genetic and expression datasets demonstrate that TREM2 is a potent risk factor for PD and may be a therapeutic target in PD and other neurodegenerative diseases.

  19. Water Sources in a Zoological Park Harbor Genetically Diverse Strains of Clostridium Perfringens Type A with Decreased Susceptibility to Metronidazole.

    PubMed

    Álvarez-Pérez, Sergio; Blanco, José L; Peláez, Teresa; Martínez-Nevado, Eva; García, Marta E

    2016-11-01

    The presence of Clostridium perfringens in water is generally regarded as an indicator of fecal contamination, and exposure to waterborne spores is considered a possible source of infection for animals. We assessed the presence and genetic diversity of C. perfringens in water sources in a zoological park located in Madrid (Spain). A total of 48 water samples from 24 different sources were analyzed, and recovered isolates were toxinotyped, genotyped by fluorophore-enhanced repetitive polymerase chain reaction (rep-PCR) fingerprinting and tested for antimicrobial susceptibility. C. perfringens was recovered from 43.8 % of water samples and 50 % of water sources analyzed. All isolates (n = 70) were type A and 42.9 % were β2-toxigenic (i.e., cpb2+), but none contained the enterotoxin-encoding gene (cpe). Isolates belonged to 15 rep-PCR genotypes and most genetic diversity (88 %) was distributed among isolates obtained from the same sample. Most isolates displayed intermediate susceptibility (57.1 %; MIC = 16 μg ml -1 ) or resistance (5.7 %; MIC ≥ 32 μg ml -1 ) to metronidazole. No resistance to other antimicrobials was detected, although some isolates showed elevated MICs to erythromycin and/or linezolid. Finally, a marginally significant association between absence of cpb2 and decreased susceptibility to metronidazole (MIC ≥ 16 μg ml -1 ) was detected. In conclusion, our results reveal a high prevalence of C. perfringens type A in the studied water reservoirs, which constitutes a health risk for zoo animals. The elevated MICs to metronidazole observed for genetically diverse isolates is a cause of additional concern, but more work is required to clarify the significance of reduced metronidazole susceptibility in environmental strains.

  20. Identification of Cd101 as a susceptibility gene for Novosphingobium aromaticivorans - induced liver autoimmunity

    PubMed Central

    Mohammed, Javid P.; Fusakio, Michael E.; Rainbow, Daniel B.; Moule, Carolyn; Fraser, Heather I.; Clark, Jan; Todd, John A.; Peterson, Laurence B.; Savage, Paul B.; Wills-Karp, Marsha; Ridgway, William M.; Wicker, Linda S.; Mattner, Jochen

    2011-01-01

    Environmental and genetic factors define the susceptibility of an individual to autoimmune disease. Although common genetic pathways affect general immunological tolerance mechanisms in autoimmunity, the effects of such genes could vary under distinct immune challenges within different tissues. Here we demonstrate this by observing that autoimmune type 1 diabetes (T1D) protective haplotypes at the susceptibility region 10 (Idd10) introgressed from chromosome 3 of B6 and A/J mice onto the NOD background increase the severity of autoimmune primary biliary cirrhosis (PBC) induced by infection with Novosphingobium aromaticivorans (N. aro), an ubiquitous alphaproteobacterium, when compared to mice having the NOD and NOD.CAST Idd10 T1D susceptible haplotypes. Substantially increased liver pathology in mice having the B6 and A/J Idd10 haplotypes correlates with reduced expression of CD101 on dendritic cells (DCs), macrophages and granulocytes following infection, delayed clearance of N. aro and the promotion of overzealous, IFN-γ- and IL-17-dominated T cell responses essential for the adoptive transfer of liver lesions. CD101-knockout mice generated on the B6 background also exhibit substantially more severe N.aro-induced liver disease correlating with increased IFN-γ and IL-17 responses compared to wild type mice. These data strongly support the hypothesis that allelic variation of the Cd101 gene, located in the Idd10 region, alters the severity of liver autoimmunity induced by N. aro. PMID:21613619

  1. Impact of Gene Patents and Licensing Practices on Access to Genetic Testing for Inherited Susceptibility to Cancer: Comparing Breast and Ovarian Cancers to Colon Cancers

    PubMed Central

    Cook-Deegan, Robert; DeRienzo, Christopher; Carbone, Julia; Chandrasekharan, Subhashini; Heaney, Christopher; Conover, Christopher

    2011-01-01

    Genetic testing for inherited susceptibility to breast and ovarian cancer can be compared to similar testing for colorectal cancer as a “natural experiment.” Inherited susceptibility accounts for a similar fraction of both cancers and genetic testing results guide decisions about options for prophylactic surgery in both sets of conditions. One major difference is that in the United States, Myriad Genetics is the sole provider of genetic testing, because it has sole control of relevant patents for BRCA1 and BRCA2 genes whereas genetic testing for familial colorectal cancer is available from multiple laboratories. Colorectal cancer-associated genes are also patented, but they have been nonexclusively licensed. Prices for BRCA1 and 2 testing do not reflect an obvious price premium attributable to exclusive patent rights compared to colorectal cancer testing, and indeed Myriad’s per unit costs are somewhat lower for BRCA1/2 testing than testing for colorectal cancer susceptibility. Myriad has not enforced patents against basic research, and negotiated a Memorandum of Understanding with the National Cancer Institute in 1999 for institutional BRCA testing in clinical research. The main impact of patenting and licensing in BRCA compared to colorectal cancer is the business model of genetic testing, with a sole provider for BRCA and multiple laboratories for colorectal cancer genetic testing. Myriad’s sole provider model has not worked in jurisdictions outside the United States, largely because of differences in breadth of patent protection, responses of government health services, and difficulty in patent enforcement. PMID:20393305

  2. Genome-wide linkage meta-analysis identifies susceptibility loci at 2q34 and 13q31.3 for genetic generalized epilepsies.

    PubMed

    Leu, Costin; de Kovel, Carolien G F; Zara, Federico; Striano, Pasquale; Pezzella, Marianna; Robbiano, Angela; Bianchi, Amedeo; Bisulli, Francesca; Coppola, Antonietta; Giallonardo, Anna Teresa; Beccaria, Francesca; Trenité, Dorothée Kasteleijn-Nolst; Lindhout, Dick; Gaus, Verena; Schmitz, Bettina; Janz, Dieter; Weber, Yvonne G; Becker, Felicitas; Lerche, Holger; Kleefuss-Lie, Ailing A; Hallman, Kerstin; Kunz, Wolfram S; Elger, Christian E; Muhle, Hiltrud; Stephani, Ulrich; Møller, Rikke S; Hjalgrim, Helle; Mullen, Saul; Scheffer, Ingrid E; Berkovic, Samuel F; Everett, Kate V; Gardiner, Mark R; Marini, Carla; Guerrini, Renzo; Lehesjoki, Anna-Elina; Siren, Auli; Nabbout, Rima; Baulac, Stephanie; Leguern, Eric; Serratosa, Jose M; Rosenow, Felix; Feucht, Martha; Unterberger, Iris; Covanis, Athanasios; Suls, Arvid; Weckhuysen, Sarah; Kaneva, Radka; Caglayan, Hande; Turkdogan, Dilsad; Baykan, Betul; Bebek, Nerses; Ozbek, Ugur; Hempelmann, Anne; Schulz, Herbert; Rüschendorf, Franz; Trucks, Holger; Nürnberg, Peter; Avanzini, Giuliano; Koeleman, Bobby P C; Sander, Thomas

    2012-02-01

    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% with heritability estimates of 80%. A considerable proportion of families with siblings affected by GGEs presumably display an oligogenic inheritance. The present genome-wide linkage meta-analysis aimed to map: (1) susceptibility loci shared by a broad spectrum of GGEs, and (2) seizure type-related genetic factors preferentially predisposing to either typical absence or myoclonic seizures, respectively. Meta-analysis of three genome-wide linkage datasets was carried out in 379 GGE-multiplex families of European ancestry including 982 relatives with GGEs. To dissect out seizure type-related susceptibility genes, two family subgroups were stratified comprising 235 families with predominantly genetic absence epilepsies (GAEs) and 118 families with an aggregation of juvenile myoclonic epilepsy (JME). To map shared and seizure type-related susceptibility loci, both nonparametric loci (NPL) and parametric linkage analyses were performed for a broad trait model (GGEs) in the entire set of GGE-multiplex families and a narrow trait model (typical absence or myoclonic seizures) in the subgroups of JME and GAE families. For the entire set of 379 GGE-multiplex families, linkage analysis revealed six loci achieving suggestive evidence for linkage at 1p36.22, 3p14.2, 5q34, 13q12.12, 13q31.3, and 19q13.42. The linkage finding at 5q34 was consistently supported by both NPL and parametric linkage results across all three family groups. A genome-wide significant nonparametric logarithm of odds score of 3.43 was obtained at 2q34 in 118 JME families. Significant parametric linkage to 13q31.3 was found in 235 GAE families assuming recessive inheritance (heterogeneity logarithm of odds = 5.02). Our linkage results support an oligogenic predisposition of familial GGE syndromes. The genetic risk factor at 5q34 confers risk to a broad spectrum of familial GGE syndromes, whereas susceptibility loci at 2q34 and 13q31

  3. Synergistic Association of Genetic Variants with Environmental Risk Factors in Susceptibility to Essential Hypertension.

    PubMed

    Sousa, Ana Célia; Mendonça, Maria I; Pereira, Andreia; Gouveia, Sara; Freitas, Ana I; Guerra, Graça; Rodrigues, Mariana; Henriques, Eva; Freitas, Sónia; Borges, Sofia; Pereira, Décio; Brehm, António; Palma Dos Reis, Roberto

    2017-10-01

    Essential hypertension (EH) is a disease in which both environment and genes have an important role. This study was designed to identify the interaction model between genetic variants and environmental risk factors that most highly potentiates EH development. We performed a case-control study with 1641 participants (mean age 50.6 ± 8.1 years), specifically 848 patients with EH and 793 controls, adjusted for gender and age. Traditional risk factors, biochemical and genetic parameters, including the genotypic discrimination of 14 genetic variants previously associated with EH, were investigated. Multifactorial dimensionality reduction (MDR) software was used to analyze gene-environment interactions. Validation was performed using logistic regression analysis with environmental risk factors, significant genetic variants, and the best MDR model. The best model indicates that the interactions among the ADD1 rs4961 640T allele, diabetes, and obesity (body mass index ≥30) increase approximately four-fold the risk of EH (odds ratio = 3.725; 95% confidence interval: 2.945-4.711; p < 0.0001). This work showed that the interaction between the ADD1 rs4961 variant, obesity, and the presence of diabetes increased the susceptibility to EH four-fold. In these circumstances, lifestyle adjustment and diabetes control should be intensified in patients who carry the ADD1 variant.

  4. The genetics of sports injuries and athletic performance

    PubMed Central

    Maffulli, Nicola; Margiotti, Katia; Longo, Umile Giuseppe; Loppini, Mattia; Fazio, Vito Michele; Denaro, Vincenzo

    2013-01-01

    Summary Purpose: in the last two decades, several evidences have been provided to support the relationship between single nucleotide polymorphisms and the susceptibility to develop injuries participating in sport and performance related to sports activity. We report up-to-date review of the genetics factors involved in tendon injuries and athletic performance. Methods: we searched PubMed using the terms “sports injuries”, “athletic performance” and “genetics” over the period 1990 to the present day. We also included non-English journals. Results: most of the currently established or putative tendinopathy susceptibility loci have been analyzed by candidate gene studies. The genes currently associated with tendon injuries include gene encoding for collagen, matrix metallopeptidase, tenascin and growth factors. Several genes have been related to the physical performance phenotypes affecting endurance capacity and muscle performance. The most studied include ACE and ACTN3 genes. Conclusions: genetics determines the response of an individual to the surrounding environment. Recently, some of the individual genetic variations contributing to the athletic performance and the onset of musculoskeletal injuries, particularly in tendon and ligament tissues, have been identified. However, the identification of the genetic background related to susceptibility to injuries and physical performance of the athletes is challenging yet and further studies must be performed to establish the specific role of each gene and the potential effect of the interaction of these. PMID:24367777

  5. Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry.

    PubMed

    Zhao, Zhiguo; Wen, Wanqing; Michailidou, Kyriaki; Bolla, Manjeet K; Wang, Qin; Zhang, Ben; Long, Jirong; Shu, Xiao-Ou; Schmidt, Marjanka K; Milne, Roger L; García-Closas, Montserrat; Chang-Claude, Jenny; Lindstrom, Sara; Bojesen, Stig E; Ahsan, Habibul; Aittomäki, Kristiina; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W; Beeghly-Fadiel, Alicia; Benitez, Javier; Blomqvist, Carl; Bogdanova, Natalia V; Børresen-Dale, Anne-Lise; Brand, Judith; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Cai, Qiuyin; Casey, Graham; Chenevix-Trench, Georgia; Couch, Fergus J; Cox, Angela; Cross, Simon S; Czene, Kamila; Dörk, Thilo; Dumont, Martine; Fasching, Peter A; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fostira, Florentia; Gammon, Marilie; Giles, Graham G; Guénel, Pascal; Haiman, Christopher A; Hamann, Ute; Harrington, Patricia; Hartman, Mikael; Hooning, Maartje J; Hopper, John L; Jakubowska, Anna; Jasmine, Farzana; John, Esther M; Johnson, Nichola; Kabisch, Maria; Khan, Sofia; Kibriya, Muhammad; Knight, Julia A; Kosma, Veli-Matti; Kriege, Mieke; Kristensen, Vessela; Le Marchand, Loic; Lee, Eunjung; Li, Jingmei; Lindblom, Annika; Lophatananon, Artitaya; Luben, Robert; Lubinski, Jan; Malone, Kathleen E; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Miao, Hui; Muir, Kenneth; Neuhausen, Susan L; Nevanlinna, Heli; Neven, Patrick; Olson, Janet E; Perkins, Barbara; Peterlongo, Paolo; Phillips, Kelly-Anne; Pylkäs, Katri; Rudolph, Anja; Santella, Regina; Sawyer, Elinor J; Schmutzler, Rita K; Schoemaker, Minouk; Shah, Mitul; Shrubsole, Martha; Southey, Melissa C; Swerdlow, Anthony J; Toland, Amanda E; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Ursin, Giske; Van Der Luijt, Rob B; Verhoef, Senno; Wang-Gohrke, Shan; Whittemore, Alice S; Winqvist, Robert; Pilar Zamora, M; Zhao, Hui; Dunning, Alison M; Simard, Jacques; Hall, Per; Kraft, Peter; Pharoah, Paul; Hunter, David; Easton, Douglas F; Zheng, Wei

    2016-05-01

    Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression models were used to derive adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) to measure the association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were conducted to obtain summary ORs across all studies. The T2D GRS was not found to be associated with breast cancer risk, overall, by menopausal status, or for estrogen receptor positive or negative breast cancer. Three T2D associated risk variants were individually associated with breast cancer risk after adjustment for multiple comparisons using the Bonferroni method (at p < 0.001), rs9939609 (FTO) (OR 0.94, 95 % CI = 0.92-0.95, p = 4.13E-13), rs7903146 (TCF7L2) (OR 1.04, 95 % CI = 1.02-1.06, p = 1.26E-05), and rs8042680 (PRC1) (OR 0.97, 95 % CI = 0.95-0.99, p = 8.05E-04). We have shown that several genetic risk variants were associated with the risk of both T2D and breast cancer. However, overall genetic susceptibility to T2D may not be related to breast cancer risk.

  6. Catechol-O-Methyltransferase "Val[superscript 158]Met" Genotype, Parenting Practices and Adolescent Alcohol Use: Testing the Differential Susceptibility Hypothesis

    ERIC Educational Resources Information Center

    Laucht, Manfred; Blomeyer, Dorothea; Buchmann, Arlette F.; Treutlein, Jens; Schmidt, Martin H.; Esser, Gunter; Jennen-Steinmetz, Christine; Rietschel, Marcella; Zimmermann, Ulrich S.; Banaschewski, Tobias

    2012-01-01

    Background: Recently, first evidence has been reported for a gene-parenting interaction (G x E) with regard to adolescent alcohol use. The present investigation set out to extend this research using the catechol-O-methyltransferase ("COMT") "Val[superscript 158]Met" polymorphism as a genetic susceptibility factor. Moreover, the current study…

  7. Multipactor susceptibility on a dielectric with a bias dc electric field and a background gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Peng; Lau, Y. Y.; Franzi, Matthew

    2011-05-15

    We use Monte Carlo simulations and analytical calculations to derive the condition for the onset of multipactor discharge on a dielectric surface at various combinations of the bias dc electric field, rf electric field, and background pressures of noble gases, such as Argon. It is found that the presence of a tangential bias dc electric field on the dielectric surface lowers the magnitude of rf electric field threshold to initiate multipactor, therefore plausibly offering robust protection against high power microwaves. The presence of low pressure gases may lead to a lower multipactor saturation level, however. The combined effects of tangentialmore » dc electric field and external gases on multipactor susceptibility are presented.« less

  8. Genetics of nonsyndromic obesity.

    PubMed

    Lee, Yung Seng

    2013-12-01

    Common obesity is widely regarded as a complex, multifactorial trait influenced by the 'obesogenic' environment, sedentary behavior, and genetic susceptibility contributed by common and rare genetic variants. This review describes the recent advances in understanding the role of genetics in obesity. New susceptibility loci and genetic variants are being uncovered, but the collective effect is relatively small and could not explain most of the BMI heritability. Yet-to-be identified common and rare variants, epistasis, and heritable epigenetic changes may account for part of the 'missing heritability'. Evidence is emerging about the role of epigenetics in determining obesity susceptibility, mediating developmental plasticity, which confers obesity risk from early life experiences. Genetic prediction scores derived from selected genetic variants, and also differential DNA methylation levels and methylation scores, have been shown to correlate with measures of obesity and response to weight loss intervention. Genetic variants, which confer susceptibility to obesity-related morbidities like nonalcoholic fatty liver disease, were also discovered recently. We can expect discovery of more rare genetic variants with the advent of whole exome and genome sequencing, and also greater understanding of epigenetic mechanisms by which environment influences genetic expression and which mediate the gene-environment interaction.

  9. Geographic Differences in Genetic Susceptibility to IgA Nephropathy: GWAS Replication Study and Geospatial Risk Analysis

    PubMed Central

    Kiryluk, Krzysztof; Li, Yifu; Sanna-Cherchi, Simone; Rohanizadegan, Mersedeh; Suzuki, Hitoshi; Eitner, Frank; Snyder, Holly J.; Choi, Murim; Hou, Ping; Scolari, Francesco; Izzi, Claudia; Gigante, Maddalena; Gesualdo, Loreto; Savoldi, Silvana; Amoroso, Antonio; Cusi, Daniele; Zamboli, Pasquale; Julian, Bruce A.; Novak, Jan; Wyatt, Robert J.; Mucha, Krzysztof; Perola, Markus; Kristiansson, Kati; Viktorin, Alexander; Magnusson, Patrik K.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Stefansson, Kari; Boland, Anne; Metzger, Marie; Thibaudin, Lise; Wanner, Christoph; Jager, Kitty J.; Goto, Shin; Maixnerova, Dita; Karnib, Hussein H.; Nagy, Judit; Panzer, Ulf; Xie, Jingyuan; Chen, Nan; Tesar, Vladimir; Narita, Ichiei; Berthoux, Francois; Floege, Jürgen; Stengel, Benedicte; Zhang, Hong; Lifton, Richard P.; Gharavi, Ali G.

    2012-01-01

    IgA nephropathy (IgAN), major cause of kidney failure worldwide, is common in Asians, moderately prevalent in Europeans, and rare in Africans. It is not known if these differences represent variation in genes, environment, or ascertainment. In a recent GWAS, we localized five IgAN susceptibility loci on Chr.6p21 (HLA-DQB1/DRB1, PSMB9/TAP1, and DPA1/DPB2 loci), Chr.1q32 (CFHR3/R1 locus), and Chr.22q12 (HORMAD2 locus). These IgAN loci are associated with risk of other immune-mediated disorders such as type I diabetes, multiple sclerosis, or inflammatory bowel disease. We tested association of these loci in eight new independent cohorts of Asian, European, and African-American ancestry (N = 4,789), followed by meta-analysis with risk-score modeling in 12 cohorts (N = 10,755) and geospatial analysis in 85 world populations. Four susceptibility loci robustly replicated and all five loci were genome-wide significant in the combined cohort (P = 5×10−32–3×10−10), with heterogeneity detected only at the PSMB9/TAP1 locus (I2 = 0.60). Conditional analyses identified two new independent risk alleles within the HLA-DQB1/DRB1 locus, defining multiple risk and protective haplotypes within this interval. We also detected a significant genetic interaction, whereby the odds ratio for the HORMAD2 protective allele was reversed in homozygotes for a CFHR3/R1 deletion (P = 2.5×10−4). A seven–SNP genetic risk score, which explained 4.7% of overall IgAN risk, increased sharply with Eastward and Northward distance from Africa (r = 0.30, P = 3×10−128). This model paralleled the known East–West gradient in disease risk. Moreover, the prediction of a South–North axis was confirmed by registry data showing that the prevalence of IgAN–attributable kidney failure is increased in Northern Europe, similar to multiple sclerosis and type I diabetes. Variation at IgAN susceptibility loci correlates with differences in disease prevalence among world

  10. Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance

    DOE PAGES

    Sardi, Maria; Rovinskiy, Nikolay; Zhang, Yaoping; ...

    2016-07-22

    We report a major obstacle to sustainable lignocellulosic biofuel production is microbe inhibition by the combinatorial stresses in pretreated plant hydrolysate. Chemical biomass pretreatment releases a suite of toxins that interact with other stressors, including high osmolarity and temperature, which together can have poorly understood synergistic effects on cells. Improving tolerance in industrial strains has been hindered, in part because the mechanisms of tolerance reported in the literature often fail to recapitulate in other strain backgrounds. Here, we explored and then exploited variations in stress tolerance, toxin-induced transcriptomic responses, and fitness effects of gene overexpression in different Saccharomyces cerevisiae (yeast)more » strains to identify genes and processes linked to tolerance of hydrolysate stressors. Using six different S. cerevisiae strains that together maximized phenotypic and genetic diversity, first we explored transcriptomic differences between resistant and sensitive strains to identify common and strain-specific responses. This comparative analysis implicated primary cellular targets of hydrolysate toxins, secondary effects of defective defense strategies, and mechanisms of tolerance. Dissecting the responses to individual hydrolysate components across strains pointed to synergistic interactions between osmolarity, pH, hydrolysate toxins, and nutrient composition. By characterizing the effects of high-copy gene overexpression in three different strains, we revealed the breadth of the background-specific effects of gene fitness contributions in synthetic hydrolysate. Lastly, our approach identified new genes for engineering improved stress tolerance in diverse strains while illuminating the effects of genetic background on molecular mechanisms.« less

  11. Association between adult height, genetic susceptibility and risk of glioma.

    PubMed

    Kitahara, Cari M; Wang, Sophia S; Melin, Beatrice S; Wang, Zhaoming; Braganza, Melissa; Inskip, Peter D; Albanes, Demetrius; Andersson, Ulrika; Beane Freeman, Laura E; Buring, Julie E; Carreón, Tania; Feychting, Maria; Gapstur, Susan M; Gaziano, J Michael; Giles, Graham G; Hallmans, Goran; Hankinson, Susan E; Henriksson, Roger; Hsing, Ann W; Johansen, Christoffer; Linet, Martha S; McKean-Cowdin, Roberta; Michaud, Dominique S; Peters, Ulrike; Purdue, Mark P; Rothman, Nathaniel; Ruder, Avima M; Sesso, Howard D; Severi, Gianluca; Shu, Xiao-Ou; Stevens, Victoria L; Visvanathan, Kala; Waters, Martha A; White, Emily; Wolk, Alicja; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Hoover, Robert; Fraumeni, Joseph F; Chatterjee, Nilanjan; Yeager, Meredith; Chanock, Stephen J; Hartge, Patricia; Rajaraman, Preetha

    2012-08-01

    Some, but not all, observational studies have suggested that taller stature is associated with a significant increased risk of glioma. In a pooled analysis of observational studies, we investigated the strength and consistency of this association, overall and for major sub-types, and investigated effect modification by genetic susceptibility to the disease. We standardized and combined individual-level data on 1354 cases and 4734 control subjects from 13 prospective and 2 case-control studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for glioma and glioma sub-types were estimated using logistic regression models stratified by sex and adjusted for birth cohort and study. Pooled ORs were additionally estimated after stratifying the models according to seven recently identified glioma-related genetic variants. Among men, we found a positive association between height and glioma risk (≥ 190 vs 170-174 cm, pooled OR = 1.70, 95% CI: 1.11-2.61; P-trend = 0.01), which was slightly stronger after restricting to cases with glioblastoma (pooled OR = 1.99, 95% CI: 1.17-3.38; P-trend = 0.02). Among women, these associations were less clear (≥ 175 vs 160-164 cm, pooled OR for glioma = 1.06, 95% CI: 0.70-1.62; P-trend = 0.22; pooled OR for glioblastoma = 1.36, 95% CI: 0.77-2.39; P-trend = 0.04). In general, we did not observe evidence of effect modification by glioma-related genotypes on the association between height and glioma risk. An association of taller adult stature with glioma, particularly for men and stronger for glioblastoma, should be investigated further to clarify the role of environmental and genetic determinants of height in the etiology of this disease.

  12. Bivariate threshold models for genetic evaluation of susceptibility to and ability to recover from mastitis in Danish Holstein cows.

    PubMed

    Welderufael, B G; Janss, L L G; de Koning, D J; Sørensen, L P; Løvendahl, P; Fikse, W F

    2017-06-01

    Mastitis in dairy cows is an unavoidable problem and genetic variation in recovery from mastitis, in addition to susceptibility, is therefore of interest. Genetic parameters for susceptibility to and recovery from mastitis were estimated for Danish Holstein-Friesian cows using data from automatic milking systems equipped with online somatic cell count measuring units. The somatic cell count measurements were converted to elevated mastitis risk, a continuous variable [on a (0-1) scale] indicating the risk of mastitis. Risk values >0.6 were assumed to indicate that a cow had mastitis. For each cow and lactation, the sequence of health states (mastitic or healthy) was converted to a weekly transition: 0 if the cow stayed within the same state and 1 if the cow changed state. The result was 2 series of transitions: one for healthy to diseased (HD, to model mastitis susceptibility) and the other for diseased to healthy (DH, to model recovery ability). The 2 series of transitions were analyzed with bivariate threshold models, including several systematic effects and a function of time. The model included effects of herd, parity, herd-test-week, permanent environment (to account for the repetitive nature of transition records from a cow) plus two time-varying effects (lactation stage and time within episode). In early lactation, there was an increased risk of getting mastitis but the risk remained stable afterwards. Mean recovery rate was 45% per lactation. Heritabilities were 0.07 [posterior mean of standard deviations (PSD) = 0.03] for HD and 0.08 (PSD = 0.03) for DH. The genetic correlation between HD and DH has a posterior mean of -0.83 (PSD = 0.13). Although susceptibility and recovery from mastitis are strongly negatively correlated, recovery can be considered as a new trait for selection. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under

  13. The genetic architecture of long QT syndrome: A critical reappraisal.

    PubMed

    Giudicessi, John R; Wilde, Arthur A M; Ackerman, Michael J

    2018-03-30

    Collectively, the completion of the Human Genome Project and subsequent development of high-throughput next-generation sequencing methodologies have revolutionized genomic research. However, the rapid sequencing and analysis of thousands upon thousands of human exomes and genomes has taught us that most genes, including those known to cause heritable cardiovascular disorders such as long QT syndrome, harbor an unexpected background rate of rare, and presumably innocuous, non-synonymous genetic variation. In this Review, we aim to reappraise the genetic architecture underlying both the acquired and congenital forms of long QT syndrome by examining how the clinical phenotype associated with and background genetic variation in long QT syndrome-susceptibility genes impacts the clinical validity of existing gene-disease associations and the variant classification and reporting strategies that serve as the foundation for diagnostic long QT syndrome genetic testing. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Genetic background effects of keratin 8 and 18 in a DDC-induced hepatotoxicity and Mallory-Denk body formation mouse model.

    PubMed

    Haybaeck, Johannes; Stumptner, Cornelia; Thueringer, Andrea; Kolbe, Thomas; Magin, Thomas M; Hesse, Michael; Fickert, Peter; Tsybrovskyy, Oleksiy; Müller, Heimo; Trauner, Michael; Zatloukal, Kurt; Denk, Helmut

    2012-06-01

    Keratin 8 (K8) and keratin 18 (K18) form the major hepatocyte cytoskeleton. We investigated the impact of genetic loss of either K8 or K18 on liver homeostasis under toxic stress with the hypothesis that K8 and K18 exert different functions. krt8⁻/⁻ and krt18⁻/⁻ mice crossed into the same 129-ola genetic background were treated by acute and chronic administration of 3,5-diethoxy-carbonyl-1,4-dihydrocollidine (DDC). In acutely DDC-intoxicated mice, macrovesicular steatosis was more pronounced in krt8⁻/⁻ and krt18⁻/⁻ compared with wild-type (wt) animals. Mallory-Denk bodies (MDBs) appeared in krt18⁻/⁻ mice already at an early stage of intoxication in contrast to krt8⁻/⁻ mice that did not display MDB formation when fed with DDC. Keratin-deficient mice displayed significantly lower numbers of apoptotic hepatocytes than wt animals. krt8⁻/⁻, krt18⁻/⁻ and control mice displayed comparable cell proliferation rates. Chronically DDC-intoxicated krt18⁻/⁻ and wt mice showed a similarly increased degree of steatohepatitis with hepatocyte ballooning and MDB formation. In krt8⁻/⁻ mice, steatosis was less, ballooning, and MDBs were absent. krt18⁻/⁻ mice developed MDBs whereas krt8⁻/⁻ mice on the same genetic background did not, highlighting the significance of different structural properties of keratins. They are independent of the genetic background as an intrinsic factor. By contrast, toxicity effects may depend on the genetic background. krt8⁻/⁻ and krt18⁻/⁻ mice on the same genetic background show similar sensitivity to DDC intoxication and almost resemble wt animals regarding survival, degree of porphyria, liver-to-body weight ratio, serum bilirubin and liver enzyme levels. This stands in contrast to previous work where krt8⁻/⁻ and krt18⁻/⁻ mice on different genetic backgrounds were investigated.

  15. Genetic backgrounds and redox conditions influence morphological characteristics and cell differentiation of osteoclasts in mice.

    PubMed

    Narahara, Shun; Matsushima, Haruna; Sakai, Eiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki

    2012-04-01

    Osteoclasts (OCLs) are multinucleated giant cells and are formed by the fusion of mononuclear progenitors of monocyte/macrophage lineage. It is known that macrophages derived from different genetic backgrounds exhibit quite distinct characteristics of immune responses. However, it is unknown whether OCLs from different genetic backgrounds show distinct characteristics. In this study, we showed that bone-marrow macrophages (BMMs) derived from C57BL/6, BALB/c and ddY mice exhibited considerably distinct morphological characteristics and cell differentiation into OCLs. The differentiation of BMMs into OCLs was comparatively quicker in the C57BL/6 and ddY mice, while that of BALB/c mice was rather slow. Morphologically, ddY OCLs showed a giant cell with a round shape, C57BL/6 OCLs were of a moderate size with many protrusions and BALB/c OCLs had the smallest size with fewer nuclei. The intracellular signaling of differentiation and expression levels of marker proteins of OCLs were different in the respective strains. Treatment of BMMs from the three different strains with the reducing agent N-acetylcysteine (NAC) or with the oxidation agent hydrogen peroxide (H(2)O(2)) induced changes in the shape and sizes of the cells and caused distinct patterns of cell differentiation and survival. Thus, genetic backgrounds and redox conditions regulate the morphological characteristics and cell differentiation of OCLs.

  16. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    PubMed Central

    Faita, Francesca; Cori, Liliana; Bianchi, Fabrizio; Andreassi, Maria Grazia

    2013-01-01

    The arsenic (As) exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects. PMID:23583964

  17. Genetic susceptibility: radiation effects relevant to space travel.

    PubMed

    Peng, Yuanlin; Nagasawa, Hatsumi; Warner, Christy; Bedford, Joel S

    2012-11-01

    Genetic variation in the capacity to repair radiation damage is an important factor influencing both cellular and tissue radiosensitivity variation among individuals as well as dose rate effects associated with such damage. This paper consists of two parts. The first part reviews some of the available data relating to genetic components governing such variability among individuals in susceptibility to radiation damage relevant for radiation protection and discusses the possibility and extent to which these may also apply for space radiations. The second part focuses on the importance of dose rate effects and genetic-based variations that influence them. Very few dose rate effect studies have been carried out for the kinds of radiations encountered in space. The authors present here new data on the production of chromosomal aberrations in noncycling low passage human ATM+/+ or ATM+/- cells following irradiations with protons (50 MeV or 1 GeV), 1 GeV(-1) n iron ions and gamma rays, where doses were delivered at a high dose rate of 700 mGy(-1) min, or a lower dose rate of 5 mGy min(-1). Dose responses were essentially linear over the dose ranges tested and not significantly different for the two cell strains. Values of the dose rate effectiveness factor (DREF) were expressed as the ratio of the slopes of the dose-response curves for the high versus the lower (5 mGy min(-1)) dose rate exposures. The authors refer to this as the DREF5. For the gamma ray standard, DREF5 values of approximately two were observed. Similar dose rate effects were seen for both energies of protons (DREF5 ≈ 2.2 in both cases). For 1 GeV(-1) n iron ions [linear energy transfer (LET) ≈ 150 keV μ(-1)], the DREF5 was not 1 as might have been expected on the basis of LET alone but was approximately 1.3. From these results and conditions, the authors estimate that the relative biological effectiveness for 1 GeV(-1) n iron ions for high and low dose rates, respectively, were about 10 and 15

  18. Association of Genetic Susceptibility Variants for Type 2 Diabetes with Breast Cancer Risk in Women of European Ancestry

    PubMed Central

    Zhao, Zhiguo; Wen, Wanqing; Michailidou, Kyriaki; Bolla, Manjeet K.; Wang, Qin; Zhang, Ben; Long, Jirong; Shu, Xiao-Ou; Schmidt, Marjanka K.; Milne, Roger L.; García-Closas, Montserrat; Chang-Claude, Jenny; Lindstrom, Sara; Bojesen, Stig E.; Ahsan, Habibul; Aittomäki, Kristiina; Andrulis, Irene L.; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Blomqvist, Carl; Bogdanova, Natalia V.; Børresen-Dale, Anne-Lise; Brand, Judith; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Cai, Qiuyin; Casey, Graham; Chenevix-Trench, Georgia; Couch, Fergus J.; Cox, Angela; Cross, Simon S.; Czene, Kamila; Dörk, Thilo; Dumont, Martine; Fasching, Peter A.; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Fostira, Florentia; Gammon, Marilie; Giles, Graham G.; Guénel, Pascal; Haiman, Christopher A.; Hamann, Ute; Harrington, Patricia; Hartman, Mikael; Hooning, Maartje J.; Hopper, John L.; Jakubowska, Anna; Jasmine, Farzana; John, Esther M.; Johnson, Nichola; Kabisch, Maria; Khan, Sofia; Kibriya, Muhammad; Knight, Julia A.; Kosma, Veli-Matti; Kriege, Mieke; Kristensen, Vessela; Le Marchand, Loic; Lee, Eunjung; Li, Jingmei; Lindblom, Annika; Lophatananon, Artitaya; Luben, Robert; Lubinski, Jan; Malone, Kathleen E.; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; McLean, Catriona; Meijers-Heijboer, Hanne; Meindl, Alfons; Miao, Hui; Muir, Kenneth; Neuhausen, Susan L.; Nevanlinna, Heli; Neven, Patrick; Olson, Janet E.; Perkins, Barbara; Peterlongo, Paolo; Phillips, Kelly-Anne; Pylkäs, Katri; Rudolph, Anja; Santella, Regina; Sawyer, Elinor J.; Schmutzler, Rita K.; Schoemaker, Minouk; Shah, Mitul; Shrubsole, Martha; Southey, Melissa C.; Swerdlow, Anthony J; Toland, Amanda E.; Tomlinson, Ian; Torres, Diana; Truong, Thérèse; Ursin, Giske; Van Der Luijt, Rob B.; Verhoef, Senno; Wang-Gohrke, Shan; Whittemore, Alice S.; Winqvist, Robert; Zamora, M. Pilar; Zhao, Hui; Dunning, Alison M.; Simard, Jacques; Hall, Per; Kraft, Peter; Pharoah, Paul; Hunter, David; Easton, Douglas F.; Zheng, Wei

    2016-01-01

    Purpose Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. Methods We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression models were used to derive adjusted odds ratios (OR) and 95% confidence intervals (CI) to measure the association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were conducted to obtain summary ORs across all studies. Results The T2D GRS was not found to be associated with breast cancer risk, overall, by menopausal status, or for estrogen receptor positive or negative breast cancer. Three T2D associated risk variants were individually associated with breast cancer risk after adjustment for multiple comparisons using the Bonferroni method (at P < 0.001), rs9939609 (FTO) (OR = 0.94, 95% CI = 0.92 – 0.95, P = 4.13E-13), rs7903146 (TCF7L2) (OR = 1.04, 95% CI = 1.02 – 1.06, P = 1.26E-05), and rs8042680 (PRC1) (OR = 0.97, 95% CI = 0.95 – 0.99, P = 8.05E-04). Conclusions We have shown that several genetic risk variants were associated with the risk of both T2D and breast cancer. However, overall genetic susceptibility to T2D may not be related to breast cancer risk. PMID:27053251

  19. Cardiac Teratogenicity in Mouse Maternal Phenylketonuria: Defining phenotype parameters and genetic background influences

    PubMed Central

    Seagraves, Nikki J.; McBride, Kim L.

    2012-01-01

    Maternal phenylketonuria (MPKU) is a syndrome including cardiovascular malformations (CVMs), microcephaly, intellectual impairment, and small for gestational age, caused by in-utero exposure to elevated serum phenylalanine (Phe) due to PKU in the mother. It is becoming a public health concern as more women with PKU reach child bearing age. Although a mouse model of PKU, BTBR Pahenu2, has been available for 20 years, it has not been well utilized for studying MPKU. We used this model to delineate critical parameters in Phe cardiovascular teratogenicity and study the effect of genetic background. Dosing and timing experiments were performed with the BTBR Pahenu2 mouse. A dose response curve was noted, with CVM rates at maternal serum Phe levels <360 μM (control), 360 – 600 μM (low), 600 – 900 μM (mid), and >900μM (high) of 11.86%, 16.67%, 30.86%, and 46.67% respectively. A variety of CVMs were noted on the BTBR background, including double outlet right ventricle (DORV), aortic arch artery (AAA)abnormalities, and ventricular septal defects (VSDs). Timed exposure experiments identified a teratogenic window from embryonic day 8.5-13.5, with higher rates of conotruncal and valve defects occurring in early exposure time and persistent truncus arteriosus (PTA) and aortic arch branching abnormalities occurring with late exposure. Compared to the BTBR strain, N10+ Pahenu2 congenics on the C3H/HeJ background had higher rates of CVMs in general and propensity to left ventricular outflow tract (LVOT) malformations, while the C57B/L6 background had similar CVM rates but predominately AAA abnormalities. We have delineated key parameters of Phe cardiovascular teratogenicity, demonstrated the utility of this MPKU model on different mouse strains, and shown how genetic background profoundly affects the phenotype. PMID:22951387

  20. Evaluation of Genetic Susceptibility to Childhood Allergy and ...

    EPA Pesticide Factsheets

    Background: Asthma and allergy represent complex phenotypes, which disproportionately burden ethnic minorities in the United States. Strong evidence for genomic factors predisposing subjects to asthma/allergy is available. However, methods to utilize this information to identify high risk groups are variable and replication of genetic associations in African Americans is warranted. Methods: We evaluated 41 single nucleotide polymorphisms (SNP) and a deletion corresponding to 11 genes demonstrating association with asthma in the literature, for association with asthma, atopy, testing positive for food allergens, eosinophilia, and total serum IgE among 141 African American children living in Detroit, Michigan. Independent SNP and haplotype associations were investigated for association with each trait, and subsequently assessed in concert using a genetic risk score (GRS). Results: Statistically significant associations with asthma were observed for SNPs in GSTM1, MS4A2, and GSTP1 genes, after correction for multiple testing. Chromosome 11 haplotype CTACGAGGCC (corresponding to MS4A2 rs574700, rs1441586, rs556917, rs502581, rs502419 and GSTP1 rs6591256, rs17593068, rs1695, rs1871042, rs947895) was associated with a nearly five-fold increase in the odds of asthma (Odds Ratio (OR) = 4.8, p = 0.007). The GRS was significantly associated with a higher odds of asthma (OR = 1.61, 95% Confidence Interval = 1.21, 2.13; p = 0.001). Conclusions: Variation in genes a

  1. Implication of IL-2/IL-21 region in systemic sclerosis genetic susceptibility

    PubMed Central

    Diaz-Gallo, Lina-Marcela; Simeon, Carmen P; Broen, Jasper C; Ortego-Centeno, Norberto; Beretta, Lorenzo; Vonk, Madelon C; Carreira, Patricia E; Vargas, Sofia; Román-Ivorra, José Andrés; González-Gay, Miguel A; Tolosa, Carlos; López-Longo, Francisco Javier; Espinosa, Gerard; Vicente, Esther F; Hesselstrand, Roger; Riemekasten, Gabriela; Witte, Torsten; Distler, Jörg H W; Voskuyl, Alexandre E; Schuerwegh, Annemie J; Shiels, Paul G; Nordin, Annika; Padyukov, Leonid; Hoffmann-Vold, Anna-Maria; Scorza, Raffaella; Lunardi, Claudio; Airo, Paolo; van Laar, Jacob M; Hunzelmann, Nicolas; Gathof, Birgit S; Kreuter, Alexander; Herrick, Ariane; Worthington, Jane; Denton, Christopher P; Zhou, Xiaodong; Arnett, Frank C; Fonseca, Carmen; Koeleman, Bobby PC; Assasi, Shervin; Radstake, Timothy R D J; Mayes, Maureen D; Martín, Javier

    2013-01-01

    Objective The interleukin 2 (IL-2) and interleukin 21 (IL-21) locus at chromosome 4q27 has been associated with several autoimmune diseases, and both genes are related to immune system functions. The aim of this study was to evaluate the role of the IL-2/IL-21 locus in systemic sclerosis (SSc). Patients and methods The case control study included 4493 SSc Caucasian patients and 5856 healthy controls from eight Caucasian populations (Spain, Germany, The Netherlands, USA, Italy, Sweden, UK and Norway). Four single nucleotide polymorphisms (rs2069762, rs6822844, rs6835457 and rs907715) were genotyped using TaqMan allelic discrimination assays. Results We observed evidence of association of the rs6822844 and rs907715 variants with global SSc (pc=6.6E-4 and pc=7.2E-3, respectively). Similar statistically significant associations were observed for the limited cutaneous form of the disease. The conditional regression analysis suggested that the most likely genetic variation responsible for the association was the rs6822844 polymorphism. Consistently, the rs2069762A-rs6822844T-rs6835457G-rs907715T allelic combination showed evidence of association with SSc and limited cutaneous SSc subtype (pc=1.7E-03 and pc=8E-4, respectively). Conclusions These results suggested that the IL-2/IL-21 locus influences the genetic susceptibility to SSc. Moreover, this study provided further support for the IL-2/IL-21 locus as a common genetic factor in autoimmune diseases. PMID:23172754

  2. Multiple effects of genetic background on variegated transgene expression in mice.

    PubMed Central

    Opsahl, Margaret L; McClenaghan, Margaret; Springbett, Anthea; Reid, Sarah; Lathe, Richard; Colman, Alan; Whitelaw, C Bruce A

    2002-01-01

    BLG/7 transgenic mice express an ovine beta-lactoglobulin transgene during lactation. Unusually, transgene expression levels in milk differ between siblings. This variable expression is due to variegated transgene expression in the mammary gland and is reminiscent of position-effect variegation. The BLG/7 line was created and maintained on a mixed CBA x C57BL/6 background. We have investigated the effect on transgene expression of backcrossing for 13 generations into these backgrounds. Variable transgene expression was observed in all populations examined, confirming that it is an inherent property of the transgene array at its site of integration. There were also strain-specific effects on transgene expression that appear to be independent of the inherent variegation. The transgene, compared to endogenous milk protein genes, is specifically susceptible to inbreeding depression. Outcrossing restored transgene expression levels to that of the parental population; thus suppression was not inherited. Finally, no generation-dependent decrease in mean expression levels was observed in the parental population. Thus, although the BLG/7 transgene is expressed in a variegated manner, there was no generation-associated accumulated silencing of transgene expression. PMID:11901126

  3. Multiple effects of genetic background on variegated transgene expression in mice.

    PubMed

    Opsahl, Margaret L; McClenaghan, Margaret; Springbett, Anthea; Reid, Sarah; Lathe, Richard; Colman, Alan; Whitelaw, C Bruce A

    2002-03-01

    BLG/7 transgenic mice express an ovine beta-lactoglobulin transgene during lactation. Unusually, transgene expression levels in milk differ between siblings. This variable expression is due to variegated transgene expression in the mammary gland and is reminiscent of position-effect variegation. The BLG/7 line was created and maintained on a mixed CBA x C57BL/6 background. We have investigated the effect on transgene expression of backcrossing for 13 generations into these backgrounds. Variable transgene expression was observed in all populations examined, confirming that it is an inherent property of the transgene array at its site of integration. There were also strain-specific effects on transgene expression that appear to be independent of the inherent variegation. The transgene, compared to endogenous milk protein genes, is specifically susceptible to inbreeding depression. Outcrossing restored transgene expression levels to that of the parental population; thus suppression was not inherited. Finally, no generation-dependent decrease in mean expression levels was observed in the parental population. Thus, although the BLG/7 transgene is expressed in a variegated manner, there was no generation-associated accumulated silencing of transgene expression.

  4. The Pleiotropic Phenotype of Apc Mutations in the Mouse: Allele Specificity and Effects of the Genetic Background

    PubMed Central

    Halberg, Richard B.; Chen, Xiaodi; Amos-Landgraf, James M.; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C.; Dove, William F.

    2008-01-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes. PMID:18723878

  5. The pleiotropic phenotype of Apc mutations in the mouse: allele specificity and effects of the genetic background.

    PubMed

    Halberg, Richard B; Chen, Xiaodi; Amos-Landgraf, James M; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C; Dove, William F

    2008-09-01

    Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes.

  6. Genetic differential susceptibility in literacy-delayed children: a randomized controlled trial on emergent literacy in kindergarten.

    PubMed

    Plak, Rachel D; Kegel, Cornelia A T; Bus, Adriana G

    2015-02-01

    In this randomized controlled trial, 508 5-year-old kindergarten children participated, of whom 257 were delayed in literacy skills because they belonged to the lowest quartile of a national standard literacy test. We tested the hypothesis that some children are more susceptible to school-entry educational interventions than their peers due to their genetic makeup, and thus whether the dopamine receptor D4 gene moderated intervention effects. Children were randomly assigned to a control condition or one of two interventions involving computer programs tailored to the literacy needs of delayed pupils: Living Letters for alphabetic knowledge and Living Books for text comprehension. Effects of Living Books met the criteria of differential susceptibility. For carriers of the dopamine receptor D4 gene seven-repeat allele (about one-third of the delayed group), the Living Books program was an important addition to the common core curriculum in kindergarten (effect size d = 0.56), whereas the program did not affect the other children (d = -0.09). The same seven-repeat carriers benefited more from Living Letters than did the noncarriers, as reflected in effect sizes of 0.63 and 0.34, respectively, although such differences did not fulfill the statistical criteria for differential susceptibility. The implications of differential susceptibility for education and regarding the crucial question "what works for whom?" are discussed.

  7. Genetic Background and Environment Influence the Effects of Mutations in pykF and Help Reveal Mechanisms Underlying Their Benefit

    DTIC Science & Technology

    2015-08-01

    another trait (Losos 2011). All of these factors make it hard to identify adaptations. Mutations are the ultimate source of genetic variation that is...effects when added to the same evolved background (See Table 2.2 for results of one-way ANOVAs). Genetic background explains most (~ 88%) of the variation ...in fitness whereas the variation explained by different pykF alleles is negligible (~2%) compared to statistical noise (~8%) (Table 2.3). These

  8. The Genetic Basis for Variation in Sensitivity to Lead Toxicity in Drosophila melanogaster

    PubMed Central

    Zhou, Shanshan; Morozova, Tatiana V.; Hussain, Yasmeen N.; Luoma, Sarah E.; McCoy, Lenovia; Yamamoto, Akihiko; Mackay, Trudy F.C.; Anholt, Robert R.H.

    2016-01-01

    Background: Lead toxicity presents a worldwide health problem, especially due to its adverse effects on cognitive development in children. However, identifying genes that give rise to individual variation in susceptibility to lead toxicity is challenging in human populations. Objectives: Our goal was to use Drosophila melanogaster to identify evolutionarily conserved candidate genes associated with individual variation in susceptibility to lead exposure. Methods: To identify candidate genes associated with variation in susceptibility to lead toxicity, we measured effects of lead exposure on development time, viability and adult activity in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association analyses to identify candidate genes. We used mutants to assess functional causality of candidate genes and constructed a genetic network associated with variation in sensitivity to lead exposure, on which we could superimpose human orthologs. Results: We found substantial heritabilities for all three traits and identified candidate genes associated with variation in susceptibility to lead exposure for each phenotype. The genetic architectures that determine variation in sensitivity to lead exposure are highly polygenic. Gene ontology and network analyses showed enrichment of genes associated with early development and function of the nervous system. Conclusions: Drosophila melanogaster presents an advantageous model to study the genetic underpinnings of variation in susceptibility to lead toxicity. Evolutionary conservation of cellular pathways that respond to toxic exposure allows predictions regarding orthologous genes and pathways across phyla. Thus, studies in the D. melanogaster model system can identify candidate susceptibility genes to guide subsequent studies in human populations. Citation: Zhou S, Morozova TV, Hussain YN, Luoma SE, McCoy L, Yamamoto A, Mackay TF, Anholt RR. 2016. The genetic basis for variation in

  9. Exome Array Analysis of Susceptibility to Pneumococcal Meningitis

    PubMed Central

    Kloek, Anne T.; van Setten, Jessica; van der Ende, Arie; Bots, Michiel L.; Asselbergs, Folkert W.; Serón, Mercedes Valls; Brouwer, Matthijs C.; van de Beek, Diederik; Ferwerda, Bart

    2016-01-01

    Host genetic variability may contribute to susceptibility of bacterial meningitis, but which genes contribute to the susceptibility to this complex disease remains undefined. We performed a genetic association study in 469 community-acquired pneumococcal meningitis cases and 2072 population-based controls from the Utrecht Health Project in order to find genetic variants associated with pneumococcal meningitis susceptibility. A HumanExome BeadChip was used to genotype 102,097 SNPs in the collected DNA samples. Associations were tested with the Fisher exact test. None of the genetic variants tested reached Bonferroni corrected significance (p-value <5 × 10−7). Our strongest signals associated with susceptibility to pneumococcal meningitis were rs139064549 on chromosome 1 in the COL11A1 gene (p = 1.51 × 10−6; G allele OR 3.21 [95% CI 2.05–5.02]) and rs9309464 in the EXOC6B gene on chromosome 2 (p = 6.01 × 10−5; G allele OR 0.66 [95% CI 0.54–0.81]). The sequence kernel association test (SKAT) tests for associations between multiple variants in a gene region and pneumococcal meningitis susceptibility yielded one significant associated gene namely COL11A1 (p = 1.03 × 10−7). Replication studies are needed to validate these results. If replicated, the functionality of these genetic variations should be further studied to identify by which means they influence the pathophysiology of pneumococcal meningitis. PMID:27389768

  10. Relation between HLA-DQA1 genes and genetic susceptibility to duodenal ulcer in Wuhan Hans

    PubMed Central

    Du, Yi-Ping; Deng, Chang-Sheng; Lu, De-Yin; Huang, Mei-Fang; Guo, Shu-Fang; Hou, Wei

    2000-01-01

    AIM: To study the genetic susceptibility of HLA-DQA1 alleles to duodenal ulcer in Wuhan Hans. METHODS: Seventy patients with duodenal ulcer and fifty health y controls were examined for HLA-DQA1 genotypes. HLA-DQA1 typing was carried out by digesting the locus specific polymerase chain reaction amplified products with alleles specific restriction enzymes (PCR-RFLP), i.e. Apal I, Bsaj I, Hph I, Fok I, Mbo II and Mnl I. RESULTS: The allele frequencies of DQA1*0301 and DQA1*0102 in patients with duodenal ulcer were significantly higher and lower respectivel y than those in healthy controls (0.40 vs 0.20, P = 0.003, Pc orret = 0.024) and (0.05 vs 0.14, P = 0.012, but P corret > 0.05), respectively. CONCLUSION: DQA1*0301 is a susceptible gene for duodenal ulcer in Wuhan Hans, and there are immunogenetic differences in HLA-DQA1 locus between duodenal ulcer patients and healthy controls. PMID:11819534

  11. Phase processing for quantitative susceptibility mapping of regions with large susceptibility and lack of signal.

    PubMed

    Fortier, Véronique; Levesque, Ives R

    2018-06-01

    Phase processing impacts the accuracy of quantitative susceptibility mapping (QSM). Techniques for phase unwrapping and background removal have been proposed and demonstrated mostly in brain. In this work, phase processing was evaluated in the context of large susceptibility variations (Δχ) and negligible signal, in particular for susceptibility estimation using the iterative phase replacement (IPR) algorithm. Continuous Laplacian, region-growing, and quality-guided unwrapping were evaluated. For background removal, Laplacian boundary value (LBV), projection onto dipole fields (PDF), sophisticated harmonic artifact reduction for phase data (SHARP), variable-kernel sophisticated harmonic artifact reduction for phase data (V-SHARP), regularization enabled sophisticated harmonic artifact reduction for phase data (RESHARP), and 3D quadratic polynomial field removal were studied. Each algorithm was quantitatively evaluated in simulation and qualitatively in vivo. Additionally, IPR-QSM maps were produced to evaluate the impact of phase processing on the susceptibility in the context of large Δχ with negligible signal. Quality-guided unwrapping was the most accurate technique, whereas continuous Laplacian performed poorly in this context. All background removal algorithms tested resulted in important phase inaccuracies, suggesting that techniques used for brain do not translate well to situations where large Δχ and no or low signal are expected. LBV produced the smallest errors, followed closely by PDF. Results suggest that quality-guided unwrapping should be preferred, with PDF or LBV for background removal, for QSM in regions with large Δχ and negligible signal. This reduces the susceptibility inaccuracy introduced by phase processing. Accurate background removal remains an open question. Magn Reson Med 79:3103-3113, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Genome-Wide Association Study for Susceptibility to and Recoverability From Mastitis in Danish Holstein Cows.

    PubMed

    Welderufael, B G; Løvendahl, Peter; de Koning, Dirk-Jan; Janss, Lucas L G; Fikse, W F

    2018-01-01

    Because mastitis is very frequent and unavoidable, adding recovery information into the analysis for genetic evaluation of mastitis is of great interest from economical and animal welfare point of view. Here we have performed genome-wide association studies (GWAS) to identify associated single nucleotide polymorphisms (SNPs) and investigate the genetic background not only for susceptibility to - but also for recoverability from mastitis. Somatic cell count records from 993 Danish Holstein cows genotyped for a total of 39378 autosomal SNP markers were used for the association analysis. Single SNP regression analysis was performed using the statistical software package DMU. Substitution effect of each SNP was tested with a t -test and a genome-wide significance level of P -value < 10 -4 was used to declare significant SNP-trait association. A number of significant SNP variants were identified for both traits. Many of the SNP variants associated either with susceptibility to - or recoverability from mastitis were located in or very near to genes that have been reported for their role in the immune system. Genes involved in lymphocyte developments (e.g., MAST3 and STAB2 ) and genes involved in macrophage recruitment and regulation of inflammations ( PDGFD and PTX3 ) were suggested as possible causal genes for susceptibility to - and recoverability from mastitis, respectively. However, this is the first GWAS study for recoverability from mastitis and our results need to be validated. The findings in the current study are, therefore, a starting point for further investigations in identifying causal genetic variants or chromosomal regions for both susceptibility to - and recoverability from mastitis.

  13. Novel Gentic Variations Contributing to Asthma Susceptability in Saudi Arabia

    ClinicalTrials.gov

    2014-04-13

    Collection of Clinical Data That Will be Used in This Study and Will Form a Data Bank for Asthma in Saudi Arabia; Identify Known and NOVEL Genetic Risk Factors Contributing to Asthma Susceptibility; Study the Mechanistic Roles of the Genetic Variants Within Major Asthma Susceptibility Genes

  14. Genetic relatedness, antimicrobial and biocide susceptibility comparative analysis of methicillin-resistant and -susceptible Staphylococcus pseudintermedius from Portugal.

    PubMed

    Couto, Natacha; Belas, Adriana; Couto, Isabel; Perreten, Vincent; Pomba, Constança

    2014-08-01

    Forty methicillin-resistant and -susceptible Staphylococcus pseudintermedius (MRSP and MSSP, respectively) from colonization and infection in dogs and cats were characterized for clonality, antimicrobial, and biocide susceptibility. MSSP were genetically more diverse than MRSP by multi-locus sequence typing and pulsed-field gel electrophoresis. Three different spa types (t06, t02, t05) and two SCCmec types (II-III and V) were detected in the MRSP isolates. All MRSP and two MSSP strains were multidrug-resistant. Several antibiotic resistance genes (mecA, blaZ, tet(M), tet(K), aac(6')-Ie-aph(2')-Ia, aph(3')-III, ant(6)-Ia, sat4, erm(B), lnu(A), dfr(G), and catp(C221)) were identified by microarray and double mutations in the gyrA and grlA genes and a single mutation in the rpoB gene were detected by sequence analysis. No differences were detected between MSSP and MRSP in the chlorhexidine acetate (CHA) minimum inhibitory concentrations (MICs). However, two MSSP had elevated MIC to triclosan (TCL) and one to benzalkonium chloride and ethidium bromide. One MSSP isolate harboured a qacA gene, while in another a qacB gene was detected. None of the isolates harboured the sh-fabI gene. Three of the biocide products studied had high bactericidal activity (Otodine(®), Clorexyderm Spot Gel(®), Dermocanis Piocure-M(®)), while Skingel(®) failed to achieve a five log reduction in the bacterial counting. S. pseudintermedius have become a serious therapeutic challenge in particular if methicillin- resistance and/or multidrug-resistance are involved. Biocides, like CHA and TCL, seem to be clinically effective and safe topical therapeutic options.

  15. Interactions Among Polymorphisms of Susceptibility Loci for Alzheimer’s Disease or Depressive Disorder

    PubMed Central

    Kitzlerová, Eva; Lelková, Petra; Jirák, Roman; Zvěřová, Martina; Hroudová, Jana; Manukyan, Ada; Martásek, Pavel; Raboch, Jiří

    2018-01-01

    Background Several genetic susceptibility loci for major depressive disorder (MDD) or Alzheimer’s disease (AD) have been described. Interactions among polymorphisms are thought to explain the differences between low- and high-risk groups. We tested for the contribution of interactions between multiple functional polymorphisms in the risk of MDD or AD. Material/Methods A genetic association case-control study was performed in 68 MDD cases, 84 AD cases (35 of them with comorbid depression), and 90 controls. The contribution of 7 polymorphisms from 5 genes (APOE, HSPA1A, SLC6A4, HTR2A, and BDNF) related to risk of MDD or AD development was analyzed. Results Significant associations were found between MDD and interactions among polymorphisms in HSPA1A, SLC6A4, and BDNF or HSPA1A, BDNF, and APOE genes. For polymorphisms in the APOE gene in AD, significant differences were confirmed on the distributions of alleles and genotype rates compared to the control or MDD. Increased probability of comorbid depression was found in patients with AD who do not carry the ɛ4 allele of APOE. Conclusions Assessment of the interactions among polymorphisms of susceptibility loci in both MDD and AD confirmed a synergistic effect of genetic factors influencing inflammatory, serotonergic, and neurotrophic pathways at these heterogenous complex diseases. The effect of interactions was greater in MDD than in AD. A presence of the ɛ4 allele was confirmed as a genetic susceptibility factor in AD. Our findings indicate a role of APOE genotype in onset of comorbid depression in a subgroup of patients with AD who are not carriers of the APOE ɛ4 allele. PMID:29703883

  16. Associations of VEGF-C genetic polymorphisms with urothelial cell carcinoma susceptibility differ between smokers and non-smokers in Taiwan.

    PubMed

    Tung, Min-Che; Hsieh, Ming-Ju; Wang, Shian-Shiang; Yang, Shun-Fa; Chen, Shiou-Sheng; Wang, Shih-Wei; Lee, Liang-Ming; Lee, Wei-Jiunn; Chien, Ming-Hsien

    2014-01-01

    Vascular endothelial growth factor (VEGF)-C is associated with lymphangiogenesis, pelvic regional lymph node metastasis, and an antiapoptotic phenotype in urothelial cell carcinoma (UCC). Knowledge of potential roles of VEGF-C genetic polymorphisms in susceptibility to UCC is lacking. This study was designed to examine associations between VEGF-C gene variants and UCC susceptibility and evaluate whether they are modified by smoking. Five single-nucleotide polymorphisms (SNPs) of VEGF-C were analyzed by a TaqMan-based real-time polymerase chain reaction (PCR) in 233 patients with UCC and 520 cancer-free controls. A multivariate logistic regression was applied to model associations between genetic polymorphisms and UCC susceptibility, and to determine if the effect was modified by smoking. We found that after adjusting for other covariates, individuals within the entire population and the 476 non-smokers carrying at least one A allele at VEGF-C rs1485766 respectively had 1.742- and 1.834-fold risks of developing UCC than did wild-type (CC) carriers. Among the 277 smokers, we found that VEGF-C rs7664413 T (CT+TT) and rs2046463 G (AG+GG) allelic carriers were more prevalent in UCC patients than in non-cancer participants. Moreover, UCC patients with the smoking habit who had at least one T allele of VEGF-C rs7664413 were at higher risk of developing larger tumor sizes (p = 0.021), compared to those patients with CC homozygotes. Our results suggest that the involvement of VEGF-C genotypes in UCC risk differs among smokers compared to non-smokers among Taiwanese. The genetic polymorphism of VEGF-C rs7664413 might be a predictive factor for the tumor size of UCC patients who have a smoking habit.

  17. Interaction between Y chromosome haplogroup O3* and 4-n-octylphenol exposure reduces the susceptibility to spermatogenic impairment in Han Chinese.

    PubMed

    Hu, Weiyue; Chen, Minjian; Ji, Juan; Qin, Yufeng; Zhang, Feng; Xu, Miaofei; Wu, Wei; Du, Guizhen; Wu, Di; Han, Xiumei; Jin, Li; Xia, Yankai; Lu, Chuncheng; Wang, Xinru

    2017-10-01

    Certain genetic background (mainly Y chromosome haplogroups, Y-hg) may modify the susceptibility of certain environmental exposure to some diseases. Compared with respective main effects of genetic background or environmental exposure, interactions between them reflect more realistic combined effects on the susceptibility to a disease. To identify the interactions on spermatogenic impairment, we performed Y chromosome haplotyping and measurement of 9 urinary phenols concentrations in 774 infertile males and 520 healthy controls in a Han Chinese population, and likelihood ratio tests were used to examine the interactions between Y-hgs and phenols. Originally, we observed that Y-hg C and Y-hg F * might modify the susceptibility to male infertility with urinary 4-n-octylphenol (4-n-OP) level (P inter = 0.005 and 0.019, respectively). Subsequently, based on our results, two panels were tested to identify the possible protective sub-branches of Y-hg F * to 4-n-OP exposure, and Y-hg O3 * was uncovered to interact with 4-n-OP (P inter = 0.019). In conclusion, while 4-n-OP shows an adverse effect on spermatogenesis, Y-hg O3 * makes individuals more adaptive to such an effect for maintaining basic reproductive capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Health communication, genetic determinism, and perceived control: the roles of beliefs about susceptibility and severity versus disease essentialism.

    PubMed

    Parrott, Roxanne; Kahl, Mary L; Ndiaye, Khadidiatou; Traeder, Tara

    2012-08-01

    This research examined the lay public's beliefs about genes and health that might be labeled deterministic. The goals of this research were to sort through the divergent and contested meanings of genetic determinism in an effort to suggest directions for public health genomic communication. A survey conducted in community-based settings of 717 participants included 267 who self-reported race as African American and 450 who self-reported race as Caucasian American. The survey results revealed that the structure of genetic determinism included 2 belief sets. One set aligned with perceived threat, encompassing susceptibility and severity beliefs linked to genes and health. The other set represents beliefs about biological essentialism linked to the role of genes for health. These concepts were found to be modestly positively related. Threat beliefs predicted perceived control over genes. Public health efforts to communicate about genes and health should consider effects of these messages for (a) perceived threat relating to susceptibility and severity and (b) perceptions of disease essentialism. Perceived threat may enhance motivation to act in health protective ways, whereas disease essentialist beliefs may contribute to a loss of motivation associated with control over health.

  19. Using case-control designs for genome-wide screening for associations between genetic markers and disease susceptibility loci.

    PubMed

    Yang, Q; Khoury, M J; Atkinson, M; Sun, F; Cheng, R; Flanders, W D

    1999-01-01

    We used a case-control design to scan the genome for any associations between genetic markers and disease susceptibility loci using the first two replicates of the Mycenaean population from the GAW11 (Problem 2) data. Using a case-control approach, we constructed a series of 2-by-3 tables for each allele of every marker on all six chromosomes. Odds ratios (ORs) and 95% confidence intervals (95% CI) were estimated for all alleles of every marker. We selected the one allele for which the estimated OR had the minimum p-value to plot in the graph. Among these selected ORs, we calculated 95% CI for those that had a p-value < or = adjusted alpha level. Significantly high ORs were taken to indicate an association between a marker locus and a suspected disease-susceptibility gene. For the Mycenaean population, the case-control design identified allele number 1 of marker 24 on chromosome 1 to be associated with a disease susceptibility gene, OR = 2.10 (95% CI 1.66-2.62). Our approach failed to show any other significant association between case-control status and genetic markers. Stratified analysis on the environmental risk factor (E1) provided no further evidence of significant association other than allele 1 of marker 24 on chromosome 1. These data indicate the absence of linkage disequilibrium for markers flanking loci A, B, and C. Finally, we examined the effect of gene x environment (G x E) interaction for the identified allele. Our results provided no evidence of G x E interaction, but suggested that the environmental exposure alone was a risk factor for the disease.

  20. Shared Genetic Influences on ADHD Symptoms and Very Low-Frequency EEG Activity: A Twin Study

    ERIC Educational Resources Information Center

    Tye, Charlotte; Rijsdijk, Fruhling; Greven, Corina U.; Kuntsi, Jonna; Asherson, Philip; McLoughlin, Grainne

    2012-01-01

    Background: Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder with a complex aetiology. The identification of candidate intermediate phenotypes that are both heritable and genetically linked to ADHD may facilitate the detection of susceptibility genes and elucidate aetiological pathways.…

  1. Genetic Biomarkers of Barrett's Esophagus Susceptibility and Progression to Dysplasia and Cancer: A Systematic Review and Meta-Analysis.

    PubMed

    Findlay, John M; Middleton, Mark R; Tomlinson, Ian

    2016-01-01

    Barrett's esophagus (BE) is a common and important precursor lesion of esophageal adenocarcinoma (EAC). A third of patients with BE are asymptomatic, and our ability to predict the risk of progression of metaplasia to dysplasia and EAC (and therefore guide management) is limited. There is an urgent need for clinically useful biomarkers of susceptibility to both BE and risk of subsequent progression. This study aims to systematically identify, review, and meta-analyze genetic biomarkers reported to predict both. A systematic review of the PubMed and EMBASE databases was performed in May 2014. Study and evidence quality were appraised using the revised American Society of Clinical Oncology guidelines, and modified Recommendations for Tumor Marker Scores. Meta-analysis was performed for all markers assessed by more than one study. A total of 251 full-text articles were reviewed; 52 were included. A total of 33 germline markers of susceptibility were identified (level of evidence II-III); 17 were included. Five somatic markers of progression were identified; meta-analysis demonstrated significant associations for chromosomal instability (level of evidence II). One somatic marker of progression/relapse following photodynamic therapy was identified. However, a number of failings of methodology and reporting were identified. This is the first systematic review and meta-analysis to evaluate genetic biomarkers of BE susceptibility and risk of progression. While a number of limitations of study quality temper the utility of those markers identified, some-in particular, those identified by genome-wide association studies, and chromosomal instability for progression-appear plausible, although robust validation is required.

  2. NALP3 inflammasome functional polymorphisms and gout susceptibility.

    PubMed

    Miao, Zhi-Min; Zhao, Shi-Hua; Yan, Sheng-Li; Li, Chang-Gui; Wang, Yan-Gang; Meng, Dong-Mei; Zhou, Li; Mi, Qing-Sheng

    2009-01-01

    Gout is the most common autoinflammatory arthritis characterized by elevated serum urate and recurrent attacks of intra-articular crystal deposition of monosodium urate (MSU). Although the pathogenesis of gout is still unclear, accumulated studies indicate that genetic factors trigger gout development, including some susceptibility genes that control the production and clearance of urate and lead to hyperuricemia. However, the epidemiological evidence suggests that only less than 10% of hyperuricemia patients develop gout, indicating that other genes unrelated to the urate metabolism may also contribute to the diseases susceptibility. Accumulated evidences have implied that MSU crystal-induced inflammation is a paradigm of innate immunity and that NALP3 inflammasome, an innate immune complex containing NALP3, ASC and CARD-8, is involved in gout development. Recent studies suggest that NALP3 and CARD-8 functional mutations contribute to the development of autoinflammatory diseases including hereditary periodic fever syndrome, arthritis as well as hypertension susceptibility. Taking into account these genetic findings, here we would like to propose a novel hypothesis that functional mutations in NALP3 inflammasome may make NALP3 inflammasome as attractive susceptibility candidates and genetic markers for gout. Further clinical genetic studies need to be performed to confirm the role of NALP3 inflammasome in the etiology of gout.

  3. How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects

    PubMed Central

    Choi, Lin; DeNieu, Michael; Sonnenschein, Anne; Hummel, Kristen; Marier, Christian; Victory, Andrew; Porter, Cody; Mammel, Anna; Holms, Julie; Sivaratnam, Gayatri

    2017-01-01

    For a given gene, different mutations influence organismal phenotypes to varying degrees. However, the expressivity of these variants not only depends on the DNA lesion associated with the mutation, but also on factors including the genetic background and rearing environment. The degree to which these factors influence related alleles, genes, or pathways similarly, and whether similar developmental mechanisms underlie variation in the expressivity of a single allele across conditions and among alleles is poorly understood. Besides their fundamental biological significance, these questions have important implications for the interpretation of functional genetic analyses, for example, if these factors alter the ordering of allelic series or patterns of complementation. We examined the impact of genetic background and rearing environment for a series of mutations spanning the range of phenotypic effects for both the scalloped and vestigial genes, which influence wing development in Drosophila melanogaster. Genetic background and rearing environment influenced the phenotypic outcome of mutations, including intra-genic interactions, particularly for mutations of moderate expressivity. We examined whether cellular correlates (such as cell proliferation during development) of these phenotypic effects matched the observed phenotypic outcome. While cell proliferation decreased with mutations of increasingly severe effects, surprisingly it did not co-vary strongly with the degree of background dependence. We discuss these findings and propose a phenomenological model to aid in understanding the biology of genes, and how this influences our interpretation of allelic effects in genetic analysis. PMID:29166655

  4. Genetic susceptibility for specific cancers. Medical liability of the clinician.

    PubMed

    Severin, M J

    1999-12-01

    The use of genetic profiling techniques to detect individuals with an increased susceptibility to heritable cancers has provoked recent legal interest in the duties of the attending physician and in the rights of patients and their families. In the current study specific prima facie and recently litigated cases are presented and explored to delineate the issues facing physicians and to illustrate the prerogatives of patients who are caught up in a heritable cancer enigma. Various courts have attempted to answer questions involving lawsuits in which incidents of breast/ovarian carcinoma and colon carcinoma have provoked claims of negligence against health care providers. Health care workers involved in the care of these patients have specific duties to these individuals. It would appear that physicians are being forced to assume the additional duty of delving into a patient's family history of cancer through multiple generations. This duty is followed by a responsibility to provide detailed counseling to those patients in whom such activity impacts the diagnosis and management of familial cancer.

  5. The association between carbohydrate-rich foods and risk of cardiovascular disease is not modified by genetic susceptibility to dyslipidemia as determined by 80 validated variants.

    PubMed

    Sonestedt, Emily; Hellstrand, Sophie; Schulz, Christina-Alexandra; Wallström, Peter; Drake, Isabel; Ericson, Ulrika; Gullberg, Bo; Hedblad, Bo; Orho-Melander, Marju

    2015-01-01

    It is still unclear whether carbohydrate consumption is associated with cardiovascular disease (CVD) risk. Genetic susceptibility might modify the associations between dietary intakes and disease risk. The aim was to examine the association between the consumption of carbohydrate-rich foods (vegetables, fruits and berries, juice, potatoes, whole grains, refined grains, cookies and cakes, sugar and sweets, and sugar-sweetened beverages) and the risk of incident ischemic CVD (iCVD; coronary events and ischemic stroke), and whether these associations differ depending on genetic susceptibility to dyslipidemia. Among 26,445 individuals (44-74 years; 62% females) from the Malmö Diet and Cancer Study cohort, 2,921 experienced an iCVD event during a mean follow-up time of 14 years. At baseline, dietary data were collected using a modified diet history method, and clinical risk factors were measured in 4,535 subjects. We combined 80 validated genetic variants associated with triglycerides and HDL-C or LDL-C, into genetic risk scores and examined the interactions between dietary intakes and genetic risk scores on the incidence of iCVD. Subjects in the highest intake quintile for whole grains had a 13% (95% CI: 3-23%; p-trend: 0.002) lower risk for iCVD compared to the lowest quintile. A higher consumption of foods rich in added sugar (sugar and sweets, and sugar-sweetened beverages) had a significant cross-sectional association with higher triglyceride concentrations and lower HDL-C concentrations. A stronger positive association between a high consumption of sugar and sweets on iCVD risk was observed among those with low genetic risk score for triglycerides (p-interaction=0.05). In this prospective cohort study that examined food sources of carbohydrates, individuals with a high consumption of whole grains had a decreased risk of iCVD. No convincing evidence of an interaction between genetic susceptibility for dyslipidemia, measured as genetic risk scores of dyslipidemia

  6. Age, experience and genetic background influence treadmill walking in mice

    PubMed Central

    Wooley, Christine M.; Xing, Shuqin; Burgess, Robert W.; Cox, Gregory A.; Seburn, Kevin L.

    2009-01-01

    WOOLEY, C.M., S. XING, R.W. BURGESS, G.A. COX, AND K.L. SEBURN. Age, experience and genetic background influence treadmill walking in mice. PHYSIOL. BEHAV. XX(X), XXX-XXX, 2008 – The use of a treadmill to gather data for gait analysis in mice is a convenient, sensitive method to evaluate motor performance. However, evidence from several species, including mice, shows that treadmill locomotion is a novel task that is not equivalent to over ground locomotion and that may be particularly sensitive to the test environment and protocol. We investigated the effects of age, genetic background and repeated trials on treadmill walking in mice and show that these factors are important considerations in the interpretation of gait data. Specifically we report that as C57BL/6J (B6) mice age, the animals use progressively longer, less frequent strides to maintain the same walking speed. The increase is most rapid between 1 and 6 months of age and is explained, in part, by changes in size and weight. We also extended previous findings showing that repeat trials cause mice to modify their treadmill gait pattern. In general, B6 mice tend to take shorter, more frequent steps and adopt a wider dynamic stance with repeated walking trials. The nature and extent of the response changes with both the number and timing of the trials and was observed with inter-trial intervals as long as 3 months. Finally, we compared the gait pattern of an additional seven inbred strains of mice and found significant variation in the length and frequency of strides used to maintain the same walking speed. The combined results offer the bases for further mechanistic studies and can be used to guide optimal experimental design. PMID:19027767

  7. [Association between HRE-2 gene polymorphism at codon 655 and genetic susceptibility of colorectal cancer].

    PubMed

    Liang, Xia; Zhang, Yong-jing; Liu, Bing; Ni, Qin; Jin, Ming-juan; Ma, Xin-yuan; Yao, Kai-yan; Li, Qi-long; Chen, Kun

    2009-06-01

    To explore the distribution of HER-2 genetic polymorphism at codon 655 and its association with susceptibility of colorectal cancer in Chinese. A population-based case-control study was carried out. 292 patients with colorectal cancer and 842 healthy controls were interviewed. Meanwhile, the genetic polymorphism of HRE-2 was detected using polymerase chain reaction-restriction fragment length polymorphism. The frequencies of Ile/Val+Val/Val genotypes and Val allele were both higher in cases (25.34% and 13.36%) than those in controls (18.41% and 9.74%) (P<0.05). Compared with Ile/Ile genotype, Ile/Val+Val/Val genotypes were significantly associated with colorectal cancer [ORadjusted=1.54, 95% CI: 1.11-2.14]. The adjusted odds ratio of interactions between this polymorphism and smoking, alcohol drinking were 1.43 (95%CI: 0.88-2.30) and 1.29 (95%CI: 0.73-2.29), respectively. The present findings suggest that HER-2 genetic polymorphism at codon 655 may be associated with the risk of colorectal cancer in Chinese. In addition, there are no interactions between this polymorphism and smoking, alcohol drinking, respectively.

  8. Response to dietary-induced energy restriction in dairy sheep divergently selected for resistance or susceptibility to mastitis.

    PubMed

    Bouvier-Muller, J; Allain, C; Enjalbert, F; Tabouret, G; Portes, D; Caubet, C; Tasca, C; Foucras, G; Rupp, R

    2016-01-01

    Dairy ruminants experiencing a severe postpartum negative energy balance (NEB) are considered to be more susceptible to mastitis. Although the genetic variability of mastitis resistance is well established, the biological basis of the link between energy metabolism and resistance is mostly unknown. The aim of this study was to characterize the effect of NEB on metabolism and immune response according to the genetic background for mastitis resistance or susceptibility. Forty-eight ewes from high and low somatic cell score (SCS) genetic lines were allocated to 2 homogeneous subgroups 2 wk after lambing: one group (NEB) received an energy-restricted diet to cover 60% of their energy requirements, and the other group received a control (positive energy balance: PEB) diet. Both diets met the protein requirements. After 10 d on either the NEB or PEB diet, all ewes were injected with a Pam3CSK4/MDP solution in one half-udder to induce an inflammatory response. The ewes were monitored for milk production, somatic cell count (SCC), body weight (BW), body condition score (BCS), and blood metabolites. Differential milk cell counts were determined by flow cytometry. Plasma concentrations of glucose, insulin, nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHB), and triiodothyronine were determined. Energy restriction resulted in an increased fat:protein ratio in milk and decreased milk yield, BW, and BCS. The NEB ewes had significantly higher NEFA and BHB and lower plasma glucose concentrations than PEB ewes, reflecting a mobilization of body reserves and ketone body synthesis. High-SCS ewes had a higher SCS than low-SCS throughout the experiment, except after the inflammatory challenge, which resulted in similar SCS in all 4 groups. A noteworthy interaction between genetic background and diet was evidenced on metabolic parameters and BW. Indeed, high-SCS ewes subjected to NEB showed greater decrease in BW and increased NEFA and BHB concentrations compared with low

  9. Genetic variants of ADAM33 are associated with asthma susceptibility in the Punjabi population of Pakistan.

    PubMed

    Sabar, Muhammad Farooq; Ghani, Muhammad Usman; Shahid, Mariam; Sumrin, Aleena; Ali, Amjad; Akram, Muhammad; Tariq, Muhammad Akram; Bano, Iqbal

    2016-01-01

    A disintegrin and metalloproteinase 33 (ADAM33) gene has been considered as an asthma susceptibility gene due to its possible role in airway remodeling, abnormal cell proliferation, and differentiation. Association of this gene with asthma has been reported in several genetic studies on various populations. The current study aims to evaluate the association of ADAM33 gene polymorphisms with the risk of asthma in the Punjabi population of Pakistan. A total of 101 asthma patients and 102 age-matched healthy controls from Lahore, a city in Punjab, were recruited. ADAM33 single nucleotide polymorphisms (SNPs) T + 1[rs2280089], T2[rs2280090], T1[rs2280091], ST + 5[rs597980], ST + 4[rs44707], S2[rs528557], Q - 1[rs612709], and F + 1[rs511898] were genotyped in both patients and controls using single base extension and capillary electrophoresis-based genetic analyzer. The basic allelic and genotypic model was analyzed for association of the SNPs with asthma using SHEsis software. Haploview software was used to calculate pairwise linkage disequilibrium (LD) among six of the genotyped SNPs. Of the 8 SNPs genotyped, only S2[rs528557] showed significant association with asthma (Allele p = 0.0189, Genotype p = 0.021). SNPs T + 1[rs2280089], T2[rs2280090], T1[rs2280091], ST + 4[rs44707], S2[rs528557], and Q - 1[rs612709] were found to be in moderate to strong LD. The significantly higher frequency of haplotype "AAGTCG" in healthy controls suggests a protective effect against asthma risk in the studied population (p = 0.0059). These findings suggest that genetic variants of ADAM33 gene may play important roles in asthma susceptibility in the Punjabi population of Pakistan.

  10. The Joint Effects of Background Selection and Genetic Recombination on Local Gene Genealogies

    PubMed Central

    Zeng, Kai; Charlesworth, Brian

    2011-01-01

    Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should prove useful for analyzing genome-wide polymorphism data. PMID:21705759

  11. The joint effects of background selection and genetic recombination on local gene genealogies.

    PubMed

    Zeng, Kai; Charlesworth, Brian

    2011-09-01

    Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should prove useful for analyzing genome-wide polymorphism data.

  12. Population Genetic Structure in Glyphosate-Resistant and -Susceptible Palmer Amaranth (Amaranthus palmeri) Populations Using Genotyping-by-sequencing (GBS)

    PubMed Central

    Küpper, Anita; Manmathan, Harish K.; Giacomini, Darci; Patterson, Eric L.; McCloskey, William B.; Gaines, Todd A.

    2018-01-01

    Palmer amaranth (Amaranthus palmeri) is a major weed in United States cotton and soybean production systems. Originally native to the Southwest, the species has spread throughout the country. In 2004 a population of A. palmeri was identified with resistance to glyphosate, a herbicide heavily relied on in modern no-tillage and transgenic glyphosate-resistant (GR) crop systems. This project aims to determine the degree of genetic relatedness among eight different populations of GR and glyphosate-susceptible (GS) A. palmeri from various geographic regions in the United States by analyzing patterns of phylogeography and diversity to ascertain whether resistance evolved independently or spread from outside to an Arizona locality (AZ-R). Shikimic acid accumulation and EPSPS genomic copy assays confirmed resistance or susceptibility. With a set of 1,351 single nucleotide polymorphisms (SNPs), discovered by genotyping-by-sequencing (GBS), UPGMA phylogenetic analysis, principal component analysis, Bayesian model-based clustering, and pairwise comparisons of genetic distances were conducted. A GR population from Tennessee and two GS populations from Georgia and Arizona were identified as genetically distinct while the remaining GS populations from Kansas, Arizona, and Nebraska clustered together with two GR populations from Arizona and Georgia. Within the latter group, AZ-R was most closely related to the GS populations from Kansas and Arizona followed by the GR population from Georgia. GR populations from Georgia and Tennessee were genetically distinct from each other. No isolation by distance was detected and A. palmeri was revealed to be a species with high genetic diversity. The data suggest the following two possible scenarios: either glyphosate resistance was introduced to the Arizona locality from the east, or resistance evolved independently in Arizona. Glyphosate resistance in the Georgia and Tennessee localities most likely evolved separately. Thus, modern farmers

  13. Liver Proteome of Mice with Distinct Genetic Susceptibilities to Fluorosis Treated with Different Concentrations of F in the Drinking Water.

    PubMed

    Khan, Zohaib Nisar; Sabino, Isabela Tomazini; de Souza Melo, Carina Guimarães; Martini, Tatiana; da Silva Pereira, Heloísa Aparecida Barbosa; Buzalaf, Marília Afonso Rabelo

    2018-04-29

    Appropriate doses of fluoride (F) have therapeutic action against dental caries, but higher levels can cause disturbances in soft and mineralized tissues. Interestingly, the susceptibility to the toxic effects of F is genetically determined. This study evaluated the effects of F on the liver proteome of mice susceptible (A/J) or resistant (129P3/J) to the effects of F. Weanling male A/J (n = 12) and 129P3/J (n = 12) mice were housed in pairs and assigned to two groups given low-F food and drinking water containing 15 or 50 ppm F for 6 weeks. Liver proteome profiles were examined using nano-LC-ESI-MS/MS. Difference in expression among the groups was determined using the PLGS software. Treatment with the lower F concentration provoked more pronounced alterations in fold change in liver proteins in comparison to the treatment with the higher F concentration. Interestingly, most of the proteins with fold change upon treatment with 15 ppm F were increased in the A/J mice compared with their 129P3/J counterparts, suggesting an attempt of the former to fight the deleterious effects of F. However, upon treatment with 50 ppm F, most proteins with fold change were decreased in the A/J mice compared with their 129P3/J counterparts, especially proteins related to oxidative stress and protein folding, which might be related to the higher susceptibility of the A/J animals to the deleterious effects of F. Our findings add light into the mechanisms underlying genetic susceptibility to fluorosis.

  14. Detection of CYP2E1, a genetic biomarker of susceptibility to benzene metabolism toxicity in immortal human lymphocytes derived from the Han Chinese Population.

    PubMed

    Zhang, Juan; Yin, Lihong; Liang, Geyu; Liu, Ran; Fan, Kaihong; Pu, Yuepu

    2011-06-01

    Cytochrome P450 2E1 (CYP2E1) is an important metabolizing enzyme involved in oxidative stress responses to benzene, a chemical associated with bone marrow toxicity and leukemia. We aimed to identify the CYP2E1 genetic biomarkers of susceptibility to benzene toxicity in support of environmental and occupational exposure prevention, and to test whether a model using immortal human lymphocytes might be an efficient tool for detecting genetic biomarkers. Immortalized human lymphocyte cell lines with independent genotypes on four CYP2E1 SNP sites were induced with 0.01% phenol, a metabolite of benzene. CYP2E1 gene function was evaluated by mRNA expression and enzyme activity. DNA damage was measured by Single-Cell Gel Electrophoresis (SCGE). Among the four SNPs, cells with rs2070673TT and rs2030920CC showed higher levels of CYP2E1 transcription and enzymatic activity than the other genotypes in the same SNP site. Cells with higher gene expression genotypes also showed higher comet rates compared with lower gene expression genotypes. These results suggest that CYP2E1 rs2070673 and rs2030920 might be the genetic biomarkers of susceptibility to benzene toxicity and that the immortalized human lymphocytes model might be an efficient tool for the detection of genetic biomarkers of susceptibility to chemicals. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  15. Genome-Wide Association Study for Susceptibility to and Recoverability From Mastitis in Danish Holstein Cows

    PubMed Central

    Welderufael, B. G.; Løvendahl, Peter; de Koning, Dirk-Jan; Janss, Lucas L. G.; Fikse, W. F.

    2018-01-01

    Because mastitis is very frequent and unavoidable, adding recovery information into the analysis for genetic evaluation of mastitis is of great interest from economical and animal welfare point of view. Here we have performed genome-wide association studies (GWAS) to identify associated single nucleotide polymorphisms (SNPs) and investigate the genetic background not only for susceptibility to – but also for recoverability from mastitis. Somatic cell count records from 993 Danish Holstein cows genotyped for a total of 39378 autosomal SNP markers were used for the association analysis. Single SNP regression analysis was performed using the statistical software package DMU. Substitution effect of each SNP was tested with a t-test and a genome-wide significance level of P-value < 10-4 was used to declare significant SNP-trait association. A number of significant SNP variants were identified for both traits. Many of the SNP variants associated either with susceptibility to – or recoverability from mastitis were located in or very near to genes that have been reported for their role in the immune system. Genes involved in lymphocyte developments (e.g., MAST3 and STAB2) and genes involved in macrophage recruitment and regulation of inflammations (PDGFD and PTX3) were suggested as possible causal genes for susceptibility to – and recoverability from mastitis, respectively. However, this is the first GWAS study for recoverability from mastitis and our results need to be validated. The findings in the current study are, therefore, a starting point for further investigations in identifying causal genetic variants or chromosomal regions for both susceptibility to – and recoverability from mastitis. PMID:29755506

  16. Genetic susceptibility, colony size, and water temperature drive white-pox disease on the coral Acropora palmata.

    PubMed

    Muller, Erinn M; van Woesik, Robert

    2014-01-01

    Outbreaks of coral diseases are one of the greatest threats to reef corals in the Caribbean, yet the mechanisms that lead to coral diseases are still largely unknown. Here we examined the spatial-temporal dynamics of white-pox disease on Acropora palmata coral colonies of known genotypes. We took a Bayesian approach, using Integrated Nested Laplace Approximation algorithms, to examine which covariates influenced the presence of white-pox disease over seven years. We showed that colony size, genetic susceptibility of the coral host, and high-water temperatures were the primary tested variables that were positively associated with the presence of white-pox disease on A. palmata colonies. Our study also showed that neither distance from previously diseased individuals, nor colony location, influenced the dynamics of white-pox disease. These results suggest that white-pox disease was most likely a consequence of anomalously high water temperatures that selectively compromised the oldest colonies and the most susceptible coral genotypes.

  17. Genetic Susceptibility, Colony Size, and Water Temperature Drive White-Pox Disease on the Coral Acropora palmata

    PubMed Central

    Muller, Erinn M.; van Woesik, Robert

    2014-01-01

    Outbreaks of coral diseases are one of the greatest threats to reef corals in the Caribbean, yet the mechanisms that lead to coral diseases are still largely unknown. Here we examined the spatial-temporal dynamics of white-pox disease on Acropora palmata coral colonies of known genotypes. We took a Bayesian approach, using Integrated Nested Laplace Approximation algorithms, to examine which covariates influenced the presence of white-pox disease over seven years. We showed that colony size, genetic susceptibility of the coral host, and high-water temperatures were the primary tested variables that were positively associated with the presence of white-pox disease on A. palmata colonies. Our study also showed that neither distance from previously diseased individuals, nor colony location, influenced the dynamics of white-pox disease. These results suggest that white-pox disease was most likely a consequence of anomalously high water temperatures that selectively compromised the oldest colonies and the most susceptible coral genotypes. PMID:25372835

  18. Genetic polymorphism of matrix metalloproteinase family and chronic obstructive pulmonary disease susceptibility: a meta-analysis.

    PubMed

    Zhou, Hongbin; Wu, Yinfang; Jin, Yan; Zhou, Jiesen; Zhang, Chao; Che, Luanqing; Jing, Jiyong; Chen, Zhihua; Li, Wen; Shen, Huahao

    2013-10-02

    Matrix metalloproteinase (MMP) family is considered to be associated with chronic obstructive pulmonary disease (COPD) pathogenesis, however, no consistent results have been provided by previous studies. In this report, we performed Meta analysis to investigate the association between four kinds of MMP single nucleotide polymorphisms (SNP, MMP1 -1607 1G/2G, MMP3 -1171 5A/6A, MMP9 -1562 C/T, MMP12 -82 A/G) and COPD risk from 21 studies including 4184 cases and 5716 controls. Both overall and subgroup association between SNP and COPD susceptibility were tested. There was no evident association between MMP polymorphisms and COPD susceptibility in general population. On the other hand, subgroup analysis suggested that MMP9 -1562 C/T polymorphism was related to COPD, as we found that C allele carriers were at lower risk in some subgroups stratified by lung function, age and genotype identification method, compared with TT homozygotes. Our results indicated the genotype TT might be one genetic risk factor of severe COPD.

  19. Genetic background of supernumerary teeth

    PubMed Central

    Subasioglu, Asli; Savas, Selcuk; Kucukyilmaz, Ebru; Kesim, Servet; Yagci, Ahmet; Dundar, Munis

    2015-01-01

    Supernumerary teeth (ST) are odontostomatologic anomaly characterized by as the existence excessive number of teeth in relation to the normal dental formula. This condition is commonly seen with several congenital genetic disorders such as Gardner's syndrome, cleidocranial dysostosis and cleft lip and palate. Less common syndromes that are associated with ST are; Fabry Disease, Ellis-van Creveld syndrome, Nance-Horan syndrome, Rubinstein-Taybi Syndrome and Trico–Rhino–Phalangeal syndrome. ST can be an important component of a distinctive disorder and an important clue for early diagnosis. Certainly early detecting the abnormalities gives us to make correct management of the patient and also it is important for making well-informed decisions about long-term medical care and treatment. In this review, the genetic syndromes that are related with ST were discussed. PMID:25713500

  20. Genetic background of supernumerary teeth.

    PubMed

    Subasioglu, Asli; Savas, Selcuk; Kucukyilmaz, Ebru; Kesim, Servet; Yagci, Ahmet; Dundar, Munis

    2015-01-01

    Supernumerary teeth (ST) are odontostomatologic anomaly characterized by as the existence excessive number of teeth in relation to the normal dental formula. This condition is commonly seen with several congenital genetic disorders such as Gardner's syndrome, cleidocranial dysostosis and cleft lip and palate. Less common syndromes that are associated with ST are; Fabry Disease, Ellis-van Creveld syndrome, Nance-Horan syndrome, Rubinstein-Taybi Syndrome and Trico-Rhino-Phalangeal syndrome. ST can be an important component of a distinctive disorder and an important clue for early diagnosis. Certainly early detecting the abnormalities gives us to make correct management of the patient and also it is important for making well-informed decisions about long-term medical care and treatment. In this review, the genetic syndromes that are related with ST were discussed.

  1. Genetic resistance to rhabdovirus infection in teleost fish is paralleled to the derived cell resistance status.

    PubMed

    Verrier, Eloi R; Langevin, Christelle; Tohry, Corinne; Houel, Armel; Ducrocq, Vincent; Benmansour, Abdenour; Quillet, Edwige; Boudinot, Pierre

    2012-01-01

    Genetic factors of resistance and predisposition to viral diseases explain a significant part of the clinical variability observed within host populations. Predisposition to viral diseases has been associated to MHC haplotypes and T cell immunity, but a growing repertoire of innate/intrinsic factors are implicated in the genetic determinism of the host susceptibility to viruses. In a long-term study of the genetics of host resistance to fish rhabdoviruses, we produced a collection of double-haploid rainbow trout clones showing a wide range of susceptibility to Viral Hemorrhagic Septicemia Virus (VHSV) waterborne infection. The susceptibility of fibroblastic cell lines derived from these clonal fish was fully consistent with the susceptibility of the parental fish clones. The mechanisms determining the host resistance therefore did not associate with specific host immunity, but rather with innate or intrinsic factors. One cell line was resistant to rhabdovirus infection due to the combination of an early interferon IFN induction--that was not observed in the susceptible cells--and of yet unknown factors that hamper the first steps of the viral cycle. The implication of IFN was well consistent with the wide range of resistance of this genetic background to VSHV and IHNV, to the birnavirus IPNV and the orthomyxovirus ISAV. Another cell line was even more refractory to the VHSV infection through different antiviral mechanisms. This collection of clonal fish and isogenic cell lines provides an interesting model to analyze the relative contribution of antiviral pathways to the resistance to different viruses.

  2. Identification of mutant phenotypes associated with loss of individual microRNAs in sensitized genetic backgrounds in Caenorhabditis elegans

    PubMed Central

    Brenner, John L.; Jasiewicz, Kristen L.; Fahley, Alisha F.; Kemp, Benedict J.; Abbott, Allison L.

    2010-01-01

    Summary MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the translation and/or the stability of their mRNA targets. Previous work showed that for most miRNA genes of C. elegans, single gene knockouts did not result in detectable mutant phenotypes [1]. This may be due, in part, to functional redundancy between miRNAs. However, in most cases, worms carrying deletions of all members of a miRNA family do not display strong mutant phenotypes [2]. They may function together with unrelated miRNAs or with non-miRNA genes in regulatory networks, possibly to ensure the robustness of developmental mechanisms. To test this, we examined worms lacking individual miRNAs in genetically sensitized backgrounds. These include genetic backgrounds with reduced processing and activity of all miRNAs or with reduced activity of a wide array of regulatory pathways [3]. Using these two approaches, mutant phenotypes were identified for 25 out of 31 miRNAs included in this analysis. Our findings describe biological roles for individual miRNAs and suggest that use of sensitized genetic backgrounds provides an efficient approach for miRNA functional analysis. PMID:20579881

  3. Genetic variation in SIRT1 affects susceptibility of lung squamous cell carcinomas in former uranium miners from the Colorado plateau

    PubMed Central

    Leng, Shuguang; Picchi, Maria A.; Liu, Yushi; Thomas, Cynthia L.; Willis, Derall G.; Bernauer, Amanda M.; Carr, Teara G.; Mabel, Padilla T.; Han, Younghun; Amos, Christopher I.; Lin, Yong; Stidley, Christine A.; Gilliland, Frank D.; Jacobson, Marty R.; Belinsky, Steven A.

    2013-01-01

    Epidemiological studies of underground miners suggested that occupational exposure to radon causes lung cancer with squamous cell carcinoma (SCC) as the predominant histological type. However, the genetic determinants for susceptibility of radon-induced SCC in miners are unclear. Double-strand breaks induced by radioactive radon daughters are repaired primarily by non-homologous end joining (NHEJ) that is accompanied by the dynamic changes in surrounding chromatin, including nucleosome repositioning and histone modifications. Thus, a molecular epidemiological study was conducted to assess whether genetic variation in 16 genes involved in NHEJ and related histone modification affected susceptibility for SCC in radon-exposed former miners (267 SCC cases and 383 controls) from the Colorado plateau. A global association between genetic variation in the haplotype block where SIRT1 resides and the risk for SCC in miners (P = 0.003) was identified. Haplotype alleles tagged by the A allele of SIRT1 rs7097008 were associated with increased risk for SCC (odds ratio = 1.69, P = 8.2×10−5) and greater survival in SCC cases (hazard ratio = 0.79, P = 0.03) in miners. Functional validation of rs7097008 demonstrated that the A allele was associated with reduced gene expression in bronchial epithelial cells and compromised DNA repair capacity in peripheral lymphocytes. Together, these findings substantiate genetic variation in SIRT1 as a risk modifier for developing SCC in miners and suggest that SIRT1 may also play a tumor suppressor role in radon-induced cancer in miners. PMID:23354305

  4. GENETIC BACKGROUND BUT NOT METALLOTHIONEIN PHENOTYPE DICTATES SENSITIVITY TO CADMIUM-INDUCED TESTICULAR INJURY IN MICE

    EPA Science Inventory

    Genetic Background but not Metallothionein Phenotype Dictates Sensitivity to
    Cadmium-Induced Testicular Injury in Mice

    Jie Liu1,2, Chris Corton3, David J. Dix4, Yaping Liu1, Michael P. Waalkes2
    and Curtis D. Klaassen1

    ABSTRACT

    Parenteral administrati...

  5. Temperature effect on triacylglycerol species in seed oil from high stearic sunflower lines with different genetic backgrounds.

    PubMed

    Izquierdo, Natalia G; Martínez-Force, Enrique; Garcés, Rafael; Aguirrezábal, Luis An; Zambelli, Andrés; Reid, Roberto

    2016-10-01

    This study characterized the influence of temperature during grain filling on the saturated fatty acid distribution in triacylglycerol molecules from high stearic sunflower lines with different genetic backgrounds. Two growth chamber experiments were conducted with day/night temperatures of 16/16, 26/16, 26/26 and 32/26 °C. In all genotypes, independently of the genetic background, higher temperatures increased palmitic and oleic acid and reduced linoleic acid concentrations. Increasing night temperature produced an increase in saturated-unsaturated-saturated species, indicating a more symmetrical distribution of saturated fatty acids. The solid fat index was more affected by temperature during grain filling in lines with high linoleic than high oleic background. Higher variations in symmetry among night temperatures were observed in lines with high oleic background, which are more stable in fatty acid composition. The effect of temperature on triacylglycerol composition is not completely explained by its effect on fatty acid composition. Thus night temperature affects oil properties via its effects on fatty acid synthesis and on the distribution of fatty acids in the triacylglycerol molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Novel Common Genetic Susceptibility Loci for Colorectal Cancer.

    PubMed

    Schmit, Stephanie L; Edlund, Christopher K; Schumacher, Fredrick R; Gong, Jian; Harrison, Tabitha A; Huyghe, Jeroen R; Qu, Chenxu; Melas, Marilena; Van Den Berg, David J; Wang, Hansong; Tring, Stephanie; Plummer, Sarah J; Albanes, Demetrius; Alonso, M Henar; Amos, Christopher I; Anton, Kristen; Aragaki, Aaron K; Arndt, Volker; Barry, Elizabeth L; Berndt, Sonja I; Bezieau, Stéphane; Bien, Stephanie; Bloomer, Amanda; Boehm, Juergen; Boutron-Ruault, Marie-Christine; Brenner, Hermann; Brezina, Stefanie; Buchanan, Daniel D; Butterbach, Katja; Caan, Bette J; Campbell, Peter T; Carlson, Christopher S; Castelao, Jose E; Chan, Andrew T; Chang-Claude, Jenny; Chanock, Stephen J; Cheng, Iona; Cheng, Ya-Wen; Chin, Lee Soo; Church, James M; Church, Timothy; Coetzee, Gerhard A; Cotterchio, Michelle; Cruz Correa, Marcia; Curtis, Keith R; Duggan, David; Easton, Douglas F; English, Dallas; Feskens, Edith J M; Fischer, Rocky; FitzGerald, Liesel M; Fortini, Barbara K; Fritsche, Lars G; Fuchs, Charles S; Gago-Dominguez, Manuela; Gala, Manish; Gallinger, Steven J; Gauderman, W James; Giles, Graham G; Giovannucci, Edward L; Gogarten, Stephanie M; Gonzalez-Villalpando, Clicerio; Gonzalez-Villalpando, Elena M; Grady, William M; Greenson, Joel K; Gsur, Andrea; Gunter, Marc; Haiman, Christopher A; Hampe, Jochen; Harlid, Sophia; Harju, John F; Hayes, Richard B; Hofer, Philipp; Hoffmeister, Michael; Hopper, John L; Huang, Shu-Chen; Huerta, Jose Maria; Hudson, Thomas J; Hunter, David J; Idos, Gregory E; Iwasaki, Motoki; Jackson, Rebecca D; Jacobs, Eric J; Jee, Sun Ha; Jenkins, Mark A; Jia, Wei-Hua; Jiao, Shuo; Joshi, Amit D; Kolonel, Laurence N; Kono, Suminori; Kooperberg, Charles; Krogh, Vittorio; Kuehn, Tilman; Küry, Sébastien; LaCroix, Andrea; Laurie, Cecelia A; Lejbkowicz, Flavio; Lemire, Mathieu; Lenz, Heinz-Josef; Levine, David; Li, Christopher I; Li, Li; Lieb, Wolfgang; Lin, Yi; Lindor, Noralane M; Liu, Yun-Ru; Loupakis, Fotios; Lu, Yingchang; Luh, Frank; Ma, Jing; Mancao, Christoph; Manion, Frank J; Markowitz, Sanford D; Martin, Vicente; Matsuda, Koichi; Matsuo, Keitaro; McDonnell, Kevin J; McNeil, Caroline E; Milne, Roger; Molina, Antonio J; Mukherjee, Bhramar; Murphy, Neil; Newcomb, Polly A; Offit, Kenneth; Omichessan, Hanane; Palli, Domenico; Cotoré, Jesus P Paredes; Pérez-Mayoral, Julyann; Pharoah, Paul D; Potter, John D; Qu, Conghui; Raskin, Leon; Rennert, Gad; Rennert, Hedy S; Riggs, Bridget M; Schafmayer, Clemens; Schoen, Robert E; Sellers, Thomas A; Seminara, Daniela; Severi, Gianluca; Shi, Wei; Shibata, David; Shu, Xiao-Ou; Siegel, Erin M; Slattery, Martha L; Southey, Melissa; Stadler, Zsofia K; Stern, Mariana C; Stintzing, Sebastian; Taverna, Darin; Thibodeau, Stephen N; Thomas, Duncan C; Trichopoulou, Antonia; Tsugane, Shoichiro; Ulrich, Cornelia M; van Duijnhoven, Franzel J B; van Guelpan, Bethany; Vijai, Joseph; Virtamo, Jarmo; Weinstein, Stephanie J; White, Emily; Win, Aung Ko; Wolk, Alicja; Woods, Michael; Wu, Anna H; Wu, Kana; Xiang, Yong-Bing; Yen, Yun; Zanke, Brent W; Zeng, Yi-Xin; Zhang, Ben; Zubair, Niha; Kweon, Sun-Seog; Figueiredo, Jane C; Zheng, Wei; Marchand, Loic Le; Lindblom, Annika; Moreno, Victor; Peters, Ulrike; Casey, Graham; Hsu, Li; Conti, David V; Gruber, Stephen B

    2018-06-16

    Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk. We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided. The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0. This study provides insight

  7. Investigation of Caucasian rheumatoid arthritis susceptibility loci in African patients with the same disease.

    PubMed

    Viatte, Sebastien; Flynn, Edward; Lunt, Mark; Barnes, Joanne; Singwe-Ngandeu, Madeleine; Bas, Sylvette; Barton, Anne; Gabay, Cem

    2012-11-03

    developing RA conferred by a set of 28 Caucasian susceptibility SNPs is significantly different between the UK and Africa with p<0.001. Taken together, these observations strengthen the hypothesis that the genetic architecture of RA susceptibility is different in different ethnic backgrounds.

  8. Investigation of Caucasian rheumatoid arthritis susceptibility loci in African patients with the same disease

    PubMed Central

    2012-01-01

    West/Central Africa. The genetic risk of developing RA conferred by a set of 28 Caucasian susceptibility SNPs is significantly different between the UK and Africa with p<0.001. Taken together, these observations strengthen the hypothesis that the genetic architecture of RA susceptibility is different in different ethnic backgrounds. PMID:23121884

  9. Patient Susceptibility to Candidiasis—A Potential for Adjunctive Immunotherapy

    PubMed Central

    Davidson, Linda; Netea, Mihai G.; Kullberg, Bart Jan

    2018-01-01

    Candida spp. are colonizing fungi of human skin and mucosae of the gastrointestinal and genitourinary tract, present in 30–50% of healthy individuals in a population at any given moment. The host defense mechanisms prevent this commensal fungus from invading and causing disease. Loss of skin or mucosal barrier function, microbiome imbalances, or defects of immune defense mechanisms can lead to an increased susceptibility to severe mucocutaneous or invasive candidiasis. A comprehensive understanding of the immune defense against Candida is essential for developing adjunctive immunotherapy. The important role of underlying genetic susceptibility to Candida infections has become apparent over the years. In most patients, the cause of increased susceptibility to fungal infections is complex, based on a combination of immune regulation gene polymorphisms together with other non-genetic predisposing factors. Identification of patients with an underlying genetic predisposition could help determine which patients could benefit from prophylactic antifungal treatment or adjunctive immunotherapy. This review will provide an overview of patient susceptibility to mucocutaneous and invasive candidiasis and the potential for adjunctive immunotherapy. PMID:29371502

  10. [Genetic factors in myocardial infarction].

    PubMed

    Hara, Masahiko; Sakata, Yasuhiko; Sato, Hiroshi

    2013-02-01

    One of the main mechanisms of acute myocardial infarction (AMI) is plaque rupture or erosion followed by intraluminal thrombus formation and occlusion of the coronary arteries. Thus far, many underlying conditions or environmental factors, such as hypertension, diabetes, dyslipidemia, smoking or obesity, as well as a family history of coronary artery diseases have been identified as risks for the onset of AMI. These risks suggest that AMI occurs due to interactions between underlying conditions and multiple genetic susceptibilities. For this reason, many target gene-disease association studies have been performed with the recent introduction of genome-wide association studies (GWAS) that have further revealed new genetic susceptibilities for AMI. GWAS is a way to examine many common genetic variants in different individuals to see if any variant is associated with a trait in a case-control fashion, and typically focuses on associations between single-nucleotide polymorphisms (SNP) and traits. SNP on chromosome 9p21 is one of the robust susceptibility variants for AMI which has been identified by many GWAS. In this review, we overview the methodology of GWAS, introduce genetic variants identified by GWAS as those with susceptibility for AMI, and describe the foresight of using GWAS to investigate genetic susceptibility to AMI.

  11. Genetic Diversity, Antimicrobial Susceptibility, and Biofilm Formation of Cronobacter spp. Recovered from Spices and Cereals

    PubMed Central

    Li, Yuanhong; Yu, Huan; Jiang, Hua; Jiao, Yang; Zhang, Yaodong; Shao, Jihong

    2017-01-01

    Cronobacter species are important food-borne opportunistic pathogens which have been implicated in the cause of necrotizing enterocolitis, sepsis, and meningitis in neonates and infants. However, these bacteria are routinely found in foodstuffs, clinical specimens, and environmental samples. This study investigated the genetic diversity, antimicrobial susceptibility, and biofilm formation of Cronobacter isolates (n = 40) recovered from spices and cereals in China during 2014–2015. Based on the fusA sequencing analysis, we found that the majority (23/40, 57.5%) of Cronobacter isolates in spices and cereals were C. sakazakii, while the remaining strains were C. dublinensis (6/40, 15.0%), C. malonaticus (5/40, 12.5%), C. turicensis (4/40, 10.0%), and C. universalis (2/40, 5.0%). Multilocus sequence typing (MLST) analysis produced 30 sequence types (STs) among the 40 Cronobacter isolates, with 5 STs (ST4, ST13, ST50, ST129, and ST158) related to neonatal meningitis. The pattern of the overall ST distribution was diverse; in particular, it was revealed that ST148 was the predominant ST, presenting 12.5% within the whole population. MLST assigned 12 isolates to 7 different clonal complexes (CCs), 4, 13, 16, 17, 72, 129, and 143, respectively. The results of O-antigen serotyping indicated that C. sakazakii serotype O1 and O2 were the most two prevalent serotypes. The antimicrobial susceptibility testing showed that the 40 Cronobacter isolates were susceptible to most of the antibiotics tested except for ceftriaxone, meropenem, and aztreona. Of the 40 Cronobacter strains tested, 13 (32.5%) were assessed as weak bioflim producers, one (2.5%) was a moderate biofilm producer, one (2.5%) was strong biofilm producer, and the others (62.5%) were non-biofilm producers. MLST and O-antigen serotyping have indicated that Cronobacter strains recovered from spices and cereals were genetically diverse. Isolates of clinical origin, particularly the C. sakazakii ST4 neonatal meningitic

  12. The genetic profile of susceptibility to infectious diseases in Roman-Period populations from Central Poland.

    PubMed

    Lewandowska, Magda; Jędrychowska-Dańska, Krystyna; Zamerska, Alicja; Płoszaj, Tomasz; Witas, Henryk W

    2017-01-01

    For thousands of years human beings have resisted life-threatening pathogens. This ongoing battle is considered to be the major force shaping our gene pool as every micro-evolutionary process provokes specific shifts in the genome, both that of the host and the pathogen. Past populations were more susceptible to changes in allele frequencies not only due to selection pressure, but also as a result of genetic drift, migration and inbreeding. In the present study we have investigated the frequency of five polymorphisms within innate immune-response genes (SLC11A1 D543N, MBL2 G161A, P2RX7 A1513C, IL10 A-1082G, TLR2 -196 to -174 ins/del) related to susceptibility to infections in humans. The DNA of individuals from two early Roman-Period populations of Linowo and Rogowo was analysed. The distribution of three mutations varied significantly when compared to the modern Polish population. The TAFT analysis suggests that the decreased frequency of SLC11A1 D543N in modern Poles as compared to 2nd century Linowo samples is the result of non-stochastic mechanisms, such as purifying or balancing selection. The disparity in frequency of other mutations is most likely the result of genetic drift, an evolutionary force which is remarkably amplified in low-size groups. Together with the F ST analysis, mtDNA haplotypes' distribution and deviation from the Hardy-Weinberg equilibrium, we suggest that the two populations were not interbreeding (despite the close proximity between them), but rather inbreeding, the results of which are particularly pronounced among Rogowo habitants. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Novel genetic risk markers for ulcerative colitis in the IL2/IL21 region are in epistasis with IL23R and suggest a common genetic background for ulcerative colitis and celiac disease.

    PubMed

    Glas, Jürgen; Stallhofer, Johannes; Ripke, Stephan; Wetzke, Martin; Pfennig, Simone; Klein, Wolfram; Epplen, Jörg T; Griga, Thomas; Schiemann, Uwe; Lacher, Martin; Koletzko, Sibylle; Folwaczny, Matthias; Lohse, Peter; Göke, Burkhard; Ochsenkühn, Thomas; Müller-Myhsok, Bertram; Brand, Stephan

    2009-07-01

    Recently, a genome-wide association study showed that single-nucleotide polymorphisms (SNPs) in the chromosome 4q27 region containing IL2 and IL21 are associated with celiac disease. Given the increased prevalence of inflammatory bowel disease (IBD) among celiac disease patients, we investigated the possible involvement of these SNPs in IBD. Five SNPs strongly associated with celiac disease within the KIAA1109/TENR/IL2/IL21 linkage disequilibrium block on chromosome 4q27 and one coding SNP within the IL21 gene were analyzed in a large German IBD cohort. The study population comprised a total of 2,948 Caucasian individuals, including 1,461 IBD patients (ulcerative colitis (UC): n=514, Crohn's disease (CD): n=947) and 1,487 healthy unrelated controls. Three of the five celiac disease risk markers had a protective effect on UC susceptibility, and this effect remained significant after correcting for multiple testing: rs6840978: P=0.0082, P(corr)=0.049, odds ratio (OR) 0.77, 95% confidence interval (CI) 0.63-0.93; rs6822844: P=0.0028, P(corr)=0.017, OR 0.73, 95% CI 0.59-0.90; rs13119723: P=0.0058, P(corr)=0.035, OR 0.75, 95% CI 0.61-0.92. A haplotype consisting of the six SNPs tested was markedly associated with UC susceptibility (P=0.0025, P(corr)=0.015, OR 0.72, 95% CI 0.58-0.89). Moreover, in UC, epistasis was observed between the IL23R SNP rs1004819 and three SNPs in the KIAA1109/TENR/IL2/IL21 block (rs13151961, rs13119723, and rs6822844). Similar to other autoimmune diseases such as celiac disease, rheumatoid arthritis, type 1 diabetes, Graves' disease, and psoriatic arthritis, genetic variation in the chromosome 4q27 region predisposes to UC, suggesting a common genetic background for these diseases.

  14. Developmental analysis and influence of genetic background on the Lhx3 W227ter mouse model of combined pituitary hormone deficiency disease.

    PubMed

    Prince, Kelly L; Colvin, Stephanie C; Park, Soyoung; Lai, Xianyin; Witzmann, Frank A; Rhodes, Simon J

    2013-02-01

    Combined pituitary hormone deficiency (CPHD) diseases result in severe outcomes for patients including short stature, developmental delays, and reproductive deficiencies. Little is known about their etiology, especially the developmental profiles and the influences of genetic background on disease progression. Animal models for CPHD provide valuable tools to investigate disease mechanisms and inform diagnostic and treatment protocols. Here we examined hormone production during pituitary development and the influence of genetic background on phenotypic severity in the Lhx3(W227ter/W227ter) mouse model. Lhx3(W227ter/W227ter) embryos have deficiencies of ACTH, α-glycoprotein subunit, GH, PRL, TSHβ, and LHβ during prenatal development. Furthermore, mutant mice have significant reduction in the critical pituitary transcriptional activator-1 (PIT1). Through breeding, the Lhx3(W227ter/W227ter) genotype was placed onto the 129/Sv and C57BL/6 backgrounds. Intriguingly, the genetic background significantly affected viability: whereas Lhx3(W227ter/W227ter) animals were found in the expected frequencies in C57BL/6, homozygous animals were not viable in the 129/Sv genetic environment. The hormone marker and PIT1 reductions observed in Lhx3(W227ter/W227ter) mice on a mixed background were also seen in the separate strains but in some cases were more severe in 129/Sv. To further characterize the molecular changes in diseased mice, we conducted a quantitative proteomic analysis of pituitary proteins. This showed significantly lower levels of PRL, pro-opiomelanocortin (ACTH), and α-glycoprotein subunit proteins in Lhx3(W227ter/W227ter) mice. Together, these data show that hormone deficiency disease is apparent in early prenatal stages in this CPHD model system. Furthermore, as is noted in human disease, genetic background significantly impacts the phenotypic outcome of these monogenic endocrine diseases.

  15. Developmental Analysis and Influence of Genetic Background on the Lhx3 W227ter Mouse Model of Combined Pituitary Hormone Deficiency Disease

    PubMed Central

    Prince, Kelly L.; Colvin, Stephanie C.; Park, Soyoung; Lai, Xianyin; Witzmann, Frank A.

    2013-01-01

    Combined pituitary hormone deficiency (CPHD) diseases result in severe outcomes for patients including short stature, developmental delays, and reproductive deficiencies. Little is known about their etiology, especially the developmental profiles and the influences of genetic background on disease progression. Animal models for CPHD provide valuable tools to investigate disease mechanisms and inform diagnostic and treatment protocols. Here we examined hormone production during pituitary development and the influence of genetic background on phenotypic severity in the Lhx3W227ter/W227ter mouse model. Lhx3W227ter/W227ter embryos have deficiencies of ACTH, α-glycoprotein subunit, GH, PRL, TSHβ, and LHβ during prenatal development. Furthermore, mutant mice have significant reduction in the critical pituitary transcriptional activator-1 (PIT1). Through breeding, the Lhx3W227ter/W227ter genotype was placed onto the 129/Sv and C57BL/6 backgrounds. Intriguingly, the genetic background significantly affected viability: whereas Lhx3W227ter/W227ter animals were found in the expected frequencies in C57BL/6, homozygous animals were not viable in the 129/Sv genetic environment. The hormone marker and PIT1 reductions observed in Lhx3W227ter/W227ter mice on a mixed background were also seen in the separate strains but in some cases were more severe in 129/Sv. To further characterize the molecular changes in diseased mice, we conducted a quantitative proteomic analysis of pituitary proteins. This showed significantly lower levels of PRL, pro-opiomelanocortin (ACTH), and α-glycoprotein subunit proteins in Lhx3W227ter/W227ter mice. Together, these data show that hormone deficiency disease is apparent in early prenatal stages in this CPHD model system. Furthermore, as is noted in human disease, genetic background significantly impacts the phenotypic outcome of these monogenic endocrine diseases. PMID:23288907

  16. Atopic Dermatitis Susceptibility Variants in Filaggrin Hitchhike Hornerin Selective Sweep

    PubMed Central

    Eaaswarkhanth, Muthukrishnan; Xu, Duo; Flanagan, Colin; Rzhetskaya, Margarita; Hayes, M. Geoffrey; Blekhman, Ran; Jablonski, Nina G.; Gokcumen, Omer

    2016-01-01

    Human skin has evolved rapidly, leaving evolutionary signatures in the genome. The filaggrin (FLG) gene is widely studied for its skin-barrier function in humans. The extensive genetic variation in this gene, especially common loss-of-function (LoF) mutations, has been established as primary risk factors for atopic dermatitis. To investigate the evolution of this gene, we analyzed 2,504 human genomes and genotyped the copy number variation of filaggrin repeats within FLG in 126 individuals from diverse ancestral backgrounds. We were unable to replicate a recent study claiming that LoF of FLG is adaptive in northern latitudes with lower ultraviolet light exposure. Instead, we present multiple lines of evidence suggesting that FLG genetic variation, including LoF variants, have little or no effect on fitness in modern humans. Haplotype-level scrutinization of the locus revealed signatures of a recent selective sweep in Asia, which increased the allele frequency of a haplotype group (Huxian haplogroup) in Asian populations. Functionally, we found that the Huxian haplogroup carries dozens of functional variants in FLG and hornerin (HRNR) genes, including those that are associated with atopic dermatitis susceptibility, HRNR expression levels and microbiome diversity on the skin. Our results suggest that the target of the adaptive sweep is HRNR gene function, and the functional FLG variants that involve susceptibility to atopic dermatitis, seem to hitchhike the selective sweep on HRNR. Our study presents a novel case of a locus that harbors clinically relevant common genetic variation with complex evolutionary trajectories. PMID:27678121

  17. Tumor Necrosis Factor B (TNFB) Genetic Variants and Its Increased Expression Are Associated with Vitiligo Susceptibility

    PubMed Central

    Laddha, Naresh C.; Dwivedi, Mitesh; Gani, Amina R.; Mansuri, Mohmmad Shoab; Begum, Rasheedunnisa

    2013-01-01

    Genetic polymorphisms in TNFB are involved in the regulation of its expression and are found to be associated with various autoimmune diseases. The aim of the present study was to determine whether TNFB +252A/G (rs909253) and exon 3 C/A (rs1041981) polymorphisms are associated with vitiligo susceptibility, and expression of TNFB and ICAM1 affects the disease onset and progression. We have earlier reported the role of TNFA in autoimmune pathogenesis of vitiligo, and we now show the involvement of TNFB in vitiligo pathogenesis. The two polymorphisms investigated in the TNFB were in strong linkage disequilibrium and significantly associated with vitiligo. TNFB and ICAM1 transcripts were significantly increased in patients compared to controls. Active vitiligo patients showed significant increase in TNFB transcripts compared to stable vitiligo. The genotype-phenotype analysis revealed that TNFB expression levels were higher in patients with GG and AA genotypes as compared to controls. Patients with the early age of onset and female patients showed higher TNFB and ICAM1 expression. Overall, our findings suggest that the increased TNFB transcript levels in vitiligo patients could result, at least in part, from variations at the genetic level which in turn leads to increased ICAM1 expression. For the first time, we show that TNFB +252A/G and exon 3 C/A polymorphisms are associated with vitiligo susceptibility and influence the TNFB and ICAM1 expression. Moreover, the study also emphasizes influence of TNFB and ICAM1 on the disease progression, onset and gender bias for developing vitiligo. PMID:24312346

  18. Genetics and Beyond – The Transcriptome of Human Monocytes and Disease Susceptibility

    PubMed Central

    Zeller, Tanja; Wild, Philipp; Szymczak, Silke; Rotival, Maxime; Schillert, Arne; Castagne, Raphaele; Maouche, Seraya; Germain, Marine; Lackner, Karl; Rossmann, Heidi; Eleftheriadis, Medea; Sinning, Christoph R.; Schnabel, Renate B.; Lubos, Edith; Mennerich, Detlev; Rust, Werner; Perret, Claire; Proust, Carole; Nicaud, Viviane; Loscalzo, Joseph; Hübner, Norbert; Tregouet, David; Münzel, Thomas; Ziegler, Andreas; Tiret, Laurence

    2010-01-01

    Background Variability of gene expression in human may link gene sequence variability and phenotypes; however, non-genetic variations, alone or in combination with genetics, may also influence expression traits and have a critical role in physiological and disease processes. Methodology/Principal Findings To get better insight into the overall variability of gene expression, we assessed the transcriptome of circulating monocytes, a key cell involved in immunity-related diseases and atherosclerosis, in 1,490 unrelated individuals and investigated its association with >675,000 SNPs and 10 common cardiovascular risk factors. Out of 12,808 expressed genes, 2,745 expression quantitative trait loci were detected (P<5.78×10−12), most of them (90%) being cis-modulated. Extensive analyses showed that associations identified by genome-wide association studies of lipids, body mass index or blood pressure were rarely compatible with a mediation by monocyte expression level at the locus. At a study-wide level (P<3.9×10−7), 1,662 expression traits (13.0%) were significantly associated with at least one risk factor. Genome-wide interaction analyses suggested that genetic variability and risk factors mostly acted additively on gene expression. Because of the structure of correlation among expression traits, the variability of risk factors could be characterized by a limited set of independent gene expressions which may have biological and clinical relevance. For example expression traits associated with cigarette smoking were more strongly associated with carotid atherosclerosis than smoking itself. Conclusions/Significance This study demonstrates that the monocyte transcriptome is a potent integrator of genetic and non-genetic influences of relevance for disease pathophysiology and risk assessment. PMID:20502693

  19. Genetic variation for susceptibility to storm-induced stem breakage in Solidago altissima: The role of stem height and morphology

    NASA Astrophysics Data System (ADS)

    Wise, Michael J.; Abrahamson, Warren G.

    2010-07-01

    While storms can have obvious ecological impacts on plants, plants' potential to respond evolutionarily to selection for increased resistance to storm damage has received little study. We took advantage of a thunderstorm with strong wind and hail to examine genetic variation for resistance to stem breakage in the herbaceous perennial Solidago altissima. The storm broke the apex of nearly 10% of 1883 marked ramets in a common-garden plot containing 26 genets of S. altissima. Plant genets varied 20-fold in resistance to breakage. Stem height was strongly correlated with resistance to breakage, with taller stems being significantly more susceptible. A stem's growth form (erect versus nodding) had no detectable effect on its resistance to breakage. Therefore, we rejected the hypothesis that a function of the nodding, or "candy-cane," morphology is protection of the apex from storm damage. The significant genetic variation in S. altissima for stem breakage suggests that this plant has the capacity to respond to selection imposed by storms - particularly through changes in mean stem height. Tradeoffs between breakage resistance and competition for light and pollinators may act to maintain a large amount of genetic variation in stem height.

  20. Genetic Resistance to Rhabdovirus Infection in Teleost Fish Is Paralleled to the Derived Cell Resistance Status

    PubMed Central

    Verrier, Eloi R.; Langevin, Christelle; Tohry, Corinne; Houel, Armel; Ducrocq, Vincent; Benmansour, Abdenour; Quillet, Edwige; Boudinot, Pierre

    2012-01-01

    Genetic factors of resistance and predisposition to viral diseases explain a significant part of the clinical variability observed within host populations. Predisposition to viral diseases has been associated to MHC haplotypes and T cell immunity, but a growing repertoire of innate/intrinsic factors are implicated in the genetic determinism of the host susceptibility to viruses. In a long-term study of the genetics of host resistance to fish rhabdoviruses, we produced a collection of double-haploid rainbow trout clones showing a wide range of susceptibility to Viral Hemorrhagic Septicemia Virus (VHSV) waterborne infection. The susceptibility of fibroblastic cell lines derived from these clonal fish was fully consistent with the susceptibility of the parental fish clones. The mechanisms determining the host resistance therefore did not associate with specific host immunity, but rather with innate or intrinsic factors. One cell line was resistant to rhabdovirus infection due to the combination of an early interferon IFN induction - that was not observed in the susceptible cells - and of yet unknown factors that hamper the first steps of the viral cycle. The implication of IFN was well consistent with the wide range of resistance of this genetic background to VSHV and IHNV, to the birnavirus IPNV and the orthomyxovirus ISAV. Another cell line was even more refractory to the VHSV infection through different antiviral mechanisms. This collection of clonal fish and isogenic cell lines provides an interesting model to analyze the relative contribution of antiviral pathways to the resistance to different viruses. PMID:22514610

  1. CISH and Susceptibility to Infectious Diseases

    PubMed Central

    Khor, Chiea C.; Vannberg, Fredrik O.; Chapman, Stephen J.; Guo, Haiyan; Wong, Sunny H.; Walley, Andrew J.; Vukcevic, Damjan; Rautanen, Anna; Mills, Tara C.; Chang, Kwok-Chiu; Kam, Kai-Man; Crampin, Amelia C.; Ngwira, Bagrey; Leung, Chi-Chiu; Tam, Cheuk-Ming; Chan, Chiu-Yeung; Sung, Joseph J.Y.; Yew, Wing-Wai; Toh, Kai-Yee; Tay, Stacey K.H.; Kwiatkowski, Dominic; Lienhardt, Christian; Hien, Tran-Tinh; Day, Nicholas P.; Peshu, Nobert; Marsh, Kevin; Maitland, Kathryn; Scott, J. Anthony; Williams, Thomas N.; Berkley, James A.; Floyd, Sian; Tang, Nelson L.S.; Fine, Paul E.M.; Goh, Denise L.M.; Hill, Adrian V.S.

    2013-01-01

    Background The interleukin-2 (IL2)-mediated immune response is critical for host defence against infectious pathogens. CISH, a suppressor of cytokine signalling, controls IL2 signalling. Methods We tested for association between CISH polymorphisms and susceptibility to major infectious diseases (bacteremia, tuberculosis and severe malaria) in 8402 persons from the Gambia, Hong Kong, Kenya, Malawi, and Vietnam using a case-control design. We have previously tested twenty other immune-related genes in one or more of these sample collections. Results We observed associations between variant alleles of multiple CISH polymorphisms and increased susceptibility to each infectious disease in each of the study populations. When all five SNPs (CISH −639, −292, −163, +1320 and +3415) within the CISH-associated locus were considered together in a multi-SNP score, we found substantial support for an effect of CISH genetic variants on susceptibility to bacteremia, malaria, and tuberculosis (overall P=3.8 × 10−11) with CISH −292 being “responsible” for the majority of the association signal (P=4.58×10−7). Peripheral blood mononuclear cells of adult volunteers carrying the CISH −292 variant showed a muted response to IL2 stimulation — in the form of 25-40% less CISH — when compared with “control” cells lacking the −292 variant. Conclusions Variants of CISH are associated with susceptibility to diseases caused by diverse infectious pathogens, suggesting that negative regulators of cytokine signalling may play a major role in immunity against various infectious diseases. The overall risk of having one of these infectious diseases was found to be increased by at least 18 percent in individuals carrying the variant CISH alleles. PMID:20484391

  2. Contribution of Genetic Background, Traditional Risk Factors, and HIV-Related Factors to Coronary Artery Disease Events in HIV-Positive Persons

    PubMed Central

    Rotger, Margalida; Glass, Tracy R.; Junier, Thomas; Lundgren, Jens; Neaton, James D.; Poloni, Estella S.; van 't Wout, Angélique B.; Lubomirov, Rubin; Colombo, Sara; Martinez, Raquel; Rauch, Andri; Günthard, Huldrych F.; Neuhaus, Jacqueline; Wentworth, Deborah; van Manen, Danielle; Gras, Luuk A.; Schuitemaker, Hanneke; Albini, Laura; Torti, Carlo; Jacobson, Lisa P.; Li, Xiuhong; Kingsley, Lawrence A.; Carli, Federica; Guaraldi, Giovanni; Ford, Emily S.; Sereti, Irini; Hadigan, Colleen; Martinez, Esteban; Arnedo, Mireia; Egaña-Gorroño, Lander; Gatell, Jose M.; Law, Matthew; Bendall, Courtney; Petoumenos, Kathy; Rockstroh, Jürgen; Wasmuth, Jan-Christian; Kabamba, Kabeya; Delforge, Marc; De Wit, Stephane; Berger, Florian; Mauss, Stefan; de Paz Sierra, Mariana; Losso, Marcelo; Belloso, Waldo H.; Leyes, Maria; Campins, Antoni; Mondi, Annalisa; De Luca, Andrea; Bernardino, Ignacio; Barriuso-Iglesias, Mónica; Torrecilla-Rodriguez, Ana; Gonzalez-Garcia, Juan; Arribas, José R.; Fanti, Iuri; Gel, Silvia; Puig, Jordi; Negredo, Eugenia; Gutierrez, Mar; Domingo, Pere; Fischer, Julia; Fätkenheuer, Gerd; Alonso-Villaverde, Carlos; Macken, Alan; Woo, James; McGinty, Tara; Mallon, Patrick; Mangili, Alexandra; Skinner, Sally; Wanke, Christine A.; Reiss, Peter; Weber, Rainer; Bucher, Heiner C.; Fellay, Jacques; Telenti, Amalio; Tarr, Philip E.

    2013-01-01

    Background Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. Methods In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. Results A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9×10−4). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05–2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06–1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16–1.96), diabetes (OR = 1.66; 95% CI, 1.10–2.49), ≥1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06–1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17–2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. Conclusions In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD. PMID:23532479

  3. Contribution of genetic background, traditional risk factors, and HIV-related factors to coronary artery disease events in HIV-positive persons.

    PubMed

    Rotger, Margalida; Glass, Tracy R; Junier, Thomas; Lundgren, Jens; Neaton, James D; Poloni, Estella S; van 't Wout, Angélique B; Lubomirov, Rubin; Colombo, Sara; Martinez, Raquel; Rauch, Andri; Günthard, Huldrych F; Neuhaus, Jacqueline; Wentworth, Deborah; van Manen, Danielle; Gras, Luuk A; Schuitemaker, Hanneke; Albini, Laura; Torti, Carlo; Jacobson, Lisa P; Li, Xiuhong; Kingsley, Lawrence A; Carli, Federica; Guaraldi, Giovanni; Ford, Emily S; Sereti, Irini; Hadigan, Colleen; Martinez, Esteban; Arnedo, Mireia; Egaña-Gorroño, Lander; Gatell, Jose M; Law, Matthew; Bendall, Courtney; Petoumenos, Kathy; Rockstroh, Jürgen; Wasmuth, Jan-Christian; Kabamba, Kabeya; Delforge, Marc; De Wit, Stephane; Berger, Florian; Mauss, Stefan; de Paz Sierra, Mariana; Losso, Marcelo; Belloso, Waldo H; Leyes, Maria; Campins, Antoni; Mondi, Annalisa; De Luca, Andrea; Bernardino, Ignacio; Barriuso-Iglesias, Mónica; Torrecilla-Rodriguez, Ana; Gonzalez-Garcia, Juan; Arribas, José R; Fanti, Iuri; Gel, Silvia; Puig, Jordi; Negredo, Eugenia; Gutierrez, Mar; Domingo, Pere; Fischer, Julia; Fätkenheuer, Gerd; Alonso-Villaverde, Carlos; Macken, Alan; Woo, James; McGinty, Tara; Mallon, Patrick; Mangili, Alexandra; Skinner, Sally; Wanke, Christine A; Reiss, Peter; Weber, Rainer; Bucher, Heiner C; Fellay, Jacques; Telenti, Amalio; Tarr, Philip E

    2013-07-01

    Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9 × 10(-4)). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05-2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06-1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16-1.96), diabetes (OR = 1.66; 95% CI, 1.10-2.49), ≥ 1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06-1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17-2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD.

  4. Telomerase and the Genetics of Emphysema Susceptibility. Implications for Pathogenesis Paradigms and Patient Care

    PubMed Central

    Stanley, Susan E.; Merck, Samantha J.

    2016-01-01

    In the past five decades, alpha-1 antitrypsin deficiency has been the only known genetic cause of emphysema, yet it explains the genetics in only 1–2% of severe cases. Recently, mutations in telomerase genes were found to induce susceptibility to young-onset, severe, and familial emphysema at a frequency comparable to that of alpha-1 antitrypsin deficiency. Telomerase mutation carriers with emphysema report a family history of idiopathic pulmonary fibrosis, and both lung phenotypes show autosomal dominant inheritance within families. The data so far point to a strong gene–environment interaction that determines the lung disease type. In never-smokers, pulmonary fibrosis predominates, while smokers, especially females, are at risk for developing emphysema alone or in combination with pulmonary fibrosis. The telomere-mediated emphysema phenotype appears to have clinically recognizable features that are distinct from alpha-1 antitrypsin deficiency, and patients are prone to developing short telomere syndrome comorbidities that influence clinical outcomes. In animal models, telomere dysfunction causes alveolar epithelial stem cell senescence, which is sufficient to drive lung remodeling and recruit inflammation. Here, we review the implications of these discoveries for understanding emphysema biology as well as for patient care. PMID:28005428

  5. Genetics and epigenetics of obesity.

    PubMed

    Herrera, Blanca M; Keildson, Sarah; Lindgren, Cecilia M

    2011-05-01

    Obesity results from interactions between environmental and genetic factors. Despite a relatively high heritability of common, non-syndromic obesity (40-70%), the search for genetic variants contributing to susceptibility has been a challenging task. Genome wide association (GWA) studies have dramatically changed the pace of detection of common genetic susceptibility variants. To date, more than 40 genetic variants have been associated with obesity and fat distribution. However, since these variants do not fully explain the heritability of obesity, other forms of variation, such as epigenetics marks, must be considered. Epigenetic marks, or "imprinting", affect gene expression without actually changing the DNA sequence. Failures in imprinting are known to cause extreme forms of obesity (e.g. Prader-Willi syndrome), but have also been convincingly associated with susceptibility to obesity. Furthermore, environmental exposures during critical developmental periods can affect the profile of epigenetic marks and result in obesity. We review the most recent evidence for genetic and epigenetic mechanisms involved in the susceptibility and development of obesity. Only a comprehensive understanding of the underlying genetic and epigenetic mechanisms, and the metabolic processes they govern, will allow us to manage, and eventually prevent, obesity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. External apical root resorption concurrent with orthodontic forces: the genetic influence.

    PubMed

    Nieto-Nieto, Nuria; Solano, Jose Enrique; Yañez-Vico, Rosa

    2017-05-01

    Root resorption is a pathological process of multifactorial origin related to the permanent loss of dental root structure in response to a mechanical, inflammatory, autoimmune or infectious stimulus. External apical root resorption (EARR) is a frequent clinical complication secondary to orthodontic tooth movement; apart from variables related to treatment, environmental factors and/or interindividual genetic variations can confer susceptibility or resistance to its occurrence. In this context, genetic predisposition has been described as an etiological factor, together with mechanical factors derived from orthodontic treatment. In recent years, international research groups have determined the degree of influence of some genetic biomarkers in defining increased/reduced susceptibility to postorthodontic EARR. The influences of the IL1 gene cluster (IL1B, IL1A, IL1RN, IL6), P2RX7, CASP1, OPG (TNFRSF11B), RANK (TNFRSF11A), Osteopontin (OPN), TNFα, the vitamin D receptor (TaqI), TNSALP and IRAK1 have been analyzed. The objective of the present review study was to compile and analyze the latest information about the genetic background predisposing to EARR during orthodontic treatment. Genetics-based studies along with other basic science research in the field might help to clarify the exact nature of EARR, the influence of genetic inheritance and possibly lead to the prevention or even eradication of this phenomenon during orthodontic treatment.

  7. Genetic susceptibility to systemic lupus erythematosus protects against cerebral malaria in mice.

    PubMed

    Waisberg, Michael; Tarasenko, Tatyana; Vickers, Brandi K; Scott, Bethany L; Willcocks, Lisa C; Molina-Cruz, Alvaro; Pierce, Matthew A; Huang, Chiung-yu; Torres-Velez, Fernando J; Smith, Kenneth G C; Barillas-Mury, Carolina; Miller, Louis H; Pierce, Susan K; Bolland, Silvia

    2011-01-18

    Plasmodium falciparum has exerted tremendous selective pressure on genes that improve survival in severe malarial infections. Systemic lupus erythematosus (SLE) is an autoimmune disease that is six to eight times more prevalent in women of African descent than in women of European descent. Here we provide evidence that a genetic susceptibility to SLE protects against cerebral malaria. Mice that are prone to SLE because of a deficiency in FcγRIIB or overexpression of Toll-like receptor 7 are protected from death caused by cerebral malaria. Protection appears to be by immune mechanisms that allow SLE-prone mice better to control their overall inflammatory responses to parasite infections. These findings suggest that the high prevalence of SLE in women of African descent living outside of Africa may result from the inheritance of genes that are beneficial in the immune control of cerebral malaria but that, in the absence of malaria, contribute to autoimmune disease.

  8. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep☆

    PubMed Central

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J.; Foster, Russell G.; Peirson, Stuart N.; Nolan, Patrick M.

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226

  9. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep.

    PubMed

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J; Foster, Russell G; Peirson, Stuart N; Nolan, Patrick M

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. DISEASE-SPECIFIC SUSCEPTIBILITY TO ACUTE OZONE-INDUCED INJURY AND INFLAMMATION IN EIGHT RAT STRAINS

    EPA Science Inventory

    Susceptibility to environmental pollutant-induced injuries may be influenced by presence of disease and genetic make-up. To identify disease-specific susceptibility phenotype, we used eight rat strains with or without genetic cardiovascular disease. Male 12-15 wk old Sprague Dawl...

  11. Characteristics of Japanese inflammatory bowel disease susceptibility loci.

    PubMed

    Arimura, Yoshiaki; Isshiki, Hiroyuki; Onodera, Kei; Nagaishi, Kanna; Yamashita, Kentaro; Sonoda, Tomoko; Matsumoto, Takayuki; Takahashi, Atsushi; Takazoe, Masakazu; Yamazaki, Keiko; Kubo, Michiaki; Fujimiya, Mineko; Imai, Kohzoh; Shinomura, Yasuhisa

    2014-08-01

    There are substantial differences in inflammatory bowel disease (IBD) genetics depending on the populations examined. We aimed to identify Japanese population-specific or true culprit susceptibility genes through a meta-analysis of past genetic studies of Japanese IBD. For this study, we reviewed 2,703 articles. The review process consisted of three screening stages: we initially searched for relevant studies and then relevant single nucleotide polymorphisms (SNPs). Finally, we adjusted them for the meta-analysis. To maximize our chances of analysis, we introduced proxy SNPs during the first stage. To minimize publication bias, no significant SNPs and solitary SNPs without pairs were combined to be reconsidered during the third stage. Additionally, two SNPs were newly genotyped. Finally, we conducted a meta-analysis of 37 published studies in 50 SNPs located at 22 loci corresponding to the total number of 4,853 Crohn's disease (CD), 5,612 ulcerative colitis (UC) patients, and 14,239 healthy controls. We confirmed that the NKX2-3 polymorphism is associated with common susceptibility to IBD and that HLA-DRB1*0450 alleles increase susceptibility to CD but reduce risk for UC while HLA-DRB1*1502 alleles increase susceptibility to UC but reduce CD risk. Moreover, we found individual disease risk loci: TNFSF15 and TNFα to CD and HLA-B*5201, and NFKBIL1 to UC. The genetic risk of HLA was substantially high (odds ratios ranged from 1.54 to 2.69) while that of common susceptibility loci to IBD was modest (odds ratio ranged from 1.13 to 1.24). Results indicate that Japanese IBD susceptibility loci identified by the meta-analysis are closely associated with the HLA regions.

  12. Renal Proteome in Mice with Different Susceptibilities to Fluorosis

    PubMed Central

    Peres-Buzalaf, Camila; Salvato, Fernanda; Labate, Carlos Alberto; Everett, Eric T.; Whitford, Gary Milton; Buzalaf, Marília Afonso Rabelo

    2013-01-01

    A/J and 129P3/J mouse strains have different susceptibilities to dental fluorosis due to their genetic backgrounds. They also differ with respect to several features of fluoride (F) metabolism and metabolic handling of water. This study was done to determine whether differences in F metabolism could be explained by diversities in the profile of protein expression in kidneys. Weanling, male A/J mice (susceptible to dental fluorosis, n = 18) and 129P3/J mice (resistant, n = 18) were housed in pairs and assigned to three groups given low-F food and drinking water containing 0, 10 or 50 ppm [F] for 7 weeks. Renal proteome profiles were examined using 2D-PAGE and LC-MS/MS. Quantitative intensity analysis detected between A/J and 129P3/J strains 122, 126 and 134 spots differentially expressed in the groups receiving 0, 10 and 50 ppmF, respectively. From these, 25, 30 and 32, respectively, were successfully identified. Most of the proteins were related to metabolic and cellular processes, followed by response to stimuli, development and regulation of cellular processes. In F-treated groups, PDZK-1, a protein involved in the regulation of renal tubular reabsorption capacity was down-modulated in the kidney of 129P3/J mice. A/J and 129P3/J mice exhibited 11 and 3 exclusive proteins, respectively, regardless of F exposure. In conclusion, proteomic analysis was able to identify proteins potentially involved in metabolic handling of F and water that are differentially expressed or even not expressed in the strains evaluated. This can contribute to understanding the molecular mechanisms underlying genetic susceptibility to dental fluorosis, by indicating key-proteins that should be better addressed in future studies. PMID:23308176

  13. Single nucleotide polymorphisms in multiple sclerosis: disease susceptibility and treatment response biomarkers.

    PubMed

    Pravica, Vera; Popadic, Dusan; Savic, Emina; Markovic, Milos; Drulovic, Jelena; Mostarica-Stojkovic, Marija

    2012-04-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by unpredictable and variable clinical course. Etiology of MS involves both genetic and environmental factors. New technologies identified genetic polymorphisms associated with MS susceptibility among which immunologically relevant genes are significantly overrepresented. Although individual genes contribute only a small part to MS susceptibility, they might be used as biomarkers, thus helping to identify accurate diagnosis, predict clinical disease course and response to therapy. This review focuses on recent progress in research on MS genetics with special emphasis on the possibility to use single nucleotide polymorphism of candidate genes as biomarkers of susceptibility to disease and response to therapy.

  14. Associations of Genetic Variants in the PSCA, MUC1 and PLCE1 Genes with Stomach Cancer Susceptibility in a Chinese Population

    PubMed Central

    Sun, Hongwei; Wu, Xiaoli; Wu, Fang; Li, Ying; Yu, Zhengping; Chen, Xiangrong; Chen, Yunzhi; Yang, Wenjun

    2015-01-01

    Background Several genetic variants including PSCA rs2294008 C>T and rs2976392 G>A, MUC1 rs4072037 T>C, and PLCE1 rs2274223 A>G have shown significant association with stomach cancer risk in the previous genome-wide association studies (GWASs). Methods To evaluate associations of these SNPs in the Han Chinese, an independent hospital based case-control study was performed by genotyping these four polymorphisms in a total of 692 stomach cancer cases and 774 healthy controls acquired by using frequency matching for age and gender. False-positive report probability (FPRP) analysis was also performed to validate all statistically significant findings. Results In the current study, significant association with stomach cancer susceptibility was observed for all the four polymorphisms of interest. Specifically, a significant increased stomach cancer risk was associated with PSCA rs2294008 (CT vs. CC: adjusted OR = 1.37, 95% CI = 1.07–1.74, and CT/TT vs.CC: adjusted OR = 1.30, 95% CI = 1.03–1.63), PSCA rs2976392 (AG vs. GG: adjusted OR = 1.30, 95% CI = 1.02–1.65, and AG/AA vs. GG: adjusted OR = 1.26, 95% CI = 1.00–1.59), or PLCE1 rs2274223 (AG vs. AA: adjusted OR = 1.48, 95% CI = 1.15–1.90, and AG/GG vs. AA: adjusted OR = 1.45, 95% CI = 1.14–1.84), respectively. In contrast, MUC1 rs4072037 was shown to decrease the cancer risk (CT vs. TT: adjusted OR = 0.77, 95% CI = 0.60–0.98). Patients with more than one risk genotypes had significant increased risk to develop stomach cancer (adjusted OR = 1.30, 95% CI = 1.03–1.64), when compared with those having 0–1 risk genotypes. Stratified analysis indicated that the increased risk was more pronounced in younger subjects, men, ever smokers, smokers with pack years ≤ 27, patients with high BMI, or non-cardia stomach cancer. Conclusions This study substantiated the associations between four previous reported genetic variants and stomach cancer susceptibility in an independent Han Chinese population. Further studies

  15. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study.

    PubMed

    Allen, Richard J; Porte, Joanne; Braybrooke, Rebecca; Flores, Carlos; Fingerlin, Tasha E; Oldham, Justin M; Guillen-Guio, Beatriz; Ma, Shwu-Fan; Okamoto, Tsukasa; John, Alison E; Obeidat, Ma'en; Yang, Ivana V; Henry, Amanda; Hubbard, Richard B; Navaratnam, Vidya; Saini, Gauri; Thompson, Norma; Booth, Helen L; Hart, Simon P; Hill, Mike R; Hirani, Nik; Maher, Toby M; McAnulty, Robin J; Millar, Ann B; Molyneaux, Philip L; Parfrey, Helen; Rassl, Doris M; Whyte, Moira K B; Fahy, William A; Marshall, Richard P; Oballa, Eunice; Bossé, Yohan; Nickle, David C; Sin, Don D; Timens, Wim; Shrine, Nick; Sayers, Ian; Hall, Ian P; Noth, Imre; Schwartz, David A; Tobin, Martin D; Wain, Louise V; Jenkins, R Gisli

    2017-11-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with high mortality, uncertain cause, and few treatment options. Studies have identified a significant genetic risk associated with the development of IPF; however, mechanisms by which genetic risk factors promote IPF remain unclear. We aimed to identify genetic variants associated with IPF susceptibility and provide mechanistic insight using gene and protein expression analyses. We used a two-stage approach: a genome-wide association study in patients with IPF of European ancestry recruited from nine different centres in the UK and controls selected from UK Biobank (stage 1) matched for age, sex, and smoking status; and a follow-up of associated genetic variants in independent datasets of patients with IPF and controls from two independent US samples from the Chicago consortium and the Colorado consortium (stage 2). We investigated the effect of novel signals on gene expression in large transcriptomic and genomic data resources, and examined expression using lung tissue samples from patients with IPF and controls. 602 patients with IPF and 3366 controls were selected for stage 1. For stage 2, 2158 patients with IPF and 5195 controls were selected. We identified a novel genome-wide significant signal of association with IPF susceptibility near A-kinase anchoring protein 13 (AKAP13; rs62025270, odds ratio [OR] 1·27 [95% CI 1·18-1·37], p=1·32 × 10 -9 ) and confirmed previously reported signals, including in mucin 5B (MUC5B; rs35705950, OR 2·89 [2·56-3·26], p=1·12 × 10 -66 ) and desmoplakin (DSP; rs2076295, OR 1·44 [1·35-1·54], p=7·81 × 10 -28 ). For rs62025270, the allele A associated with increased susceptibility to IPF was also associated with increased expression of AKAP13 mRNA in lung tissue from patients who had lung resection procedures (n=1111). We showed that AKAP13 is expressed in the alveolar epithelium and lymphoid follicles from patients with IPF, and AKAP

  16. Biomarkers of susceptibility to chemical carcinogens: the example of non-Hodgkin lymphomas.

    PubMed

    Kelly, Rachel S; Vineis, Paolo

    2014-09-01

    Genetic susceptibly to suspected chemical and environmental carcinogens may modify the response to exposure. The aim of this review was to explore the issues involved in the study of gene-environment interactions, and to consider the use of susceptibility biomarkers in cancer epidemiology, using non-Hodgkin lymphoma (NHL) as an example. PubMed, EMBASE and Web of Science were searched for peer-reviewed articles considering biomarkers of susceptibility to chemical, agricultural and industrial carcinogens in the aetiology of NHL. The results suggest a modifying role for genetic susceptibility to a number of occupational and environmental exposures including organochlorines, chlorinated solvents, chlordanes and benzene in the aetiology of NHL. The potential importance of these gene-environment interactions in NHL may help to explain the lack of definitive carcinogens identified to date for this malignancy. Although a large number of genetic variants and gene-environment interactions have been explored for NHL, to date replication is lacking and therefore the findings remain to be validated. These findings highlight the need for novel standardized methodologies in the study of genetic susceptibility to chemical carcinogens. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. New Rodent Population Models May Inform Human Health Risk Assessment and Identification of Genetic Susceptibility to Environmental Exposures

    PubMed Central

    Harrill, Alison H.

    2017-01-01

    Background: This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene–environment interactions in human disease and to inform human health risk assessment. Objectives: This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models. Methods: This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use of these mouse population resources in each step of the risk assessment paradigm. Discussion: These unique resources have the potential to be powerful tools for generating hypotheses related to gene–environment interplay in human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environmental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states. Conclusions: These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274 PMID:28886592

  18. A trans-acting Variant within the Transcription Factor RIM101 Interacts with Genetic Background to Determine its Regulatory Capacity.

    PubMed

    Read, Timothy; Richmond, Phillip A; Dowell, Robin D

    2016-01-01

    Most genetic variants associated with disease occur within regulatory regions of the genome, underscoring the importance of defining the mechanisms underlying differences in regulation of gene expression between individuals. We discovered a pair of co-regulated, divergently oriented transcripts, AQY2 and ncFRE6, that are expressed in one strain of Saccharomyces cerevisiae, ∑1278b, but not in another, S288c. By combining classical genetics techniques with high-throughput sequencing, we identified a trans-acting single nucleotide polymorphism within the transcription factor RIM101 that causes the background-dependent expression of both transcripts. Subsequent RNA-seq experiments revealed that RIM101 regulates many more targets in S288c than in ∑1278b and that deletion of RIM101 in both backgrounds abrogates the majority of differential expression between the strains. Strikingly, only three transcripts undergo a significant change in expression after swapping RIM101 alleles between backgrounds, implying that the differences in the RIM101 allele lead to a remarkably focused transcriptional response. However, hundreds of RIM101-dependent targets undergo a subtle but consistent shift in expression in the S288c RIM101-swapped strain, but not its ∑1278b counterpart. We conclude that ∑1278b may harbor a variant(s) that buffers against widespread transcriptional dysregulation upon introduction of a non-native RIM101 allele, emphasizing the importance of accounting for genetic background when assessing the impact of a regulatory variant.

  19. Role of MHC-Linked Susceptibility Genes in the Pathogenesis of Human and Murine Lupus

    PubMed Central

    Relle, Manfred; Schwarting, Andreas

    2012-01-01

    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies against nuclear antigens and a systemic inflammation that can damage a broad spectrum of organs. SLE patients suffer from a wide variety of symptoms, which can affect virtually almost any tissue. As lupus is difficult to diagnose, the worldwide prevalence of SLE can only be roughly estimated to range from 10 and 200 cases per 100,000 individuals with dramatic differences depending on gender, ethnicity, and location. Although the treatment of this disease has been significantly ameliorated by new therapies, improved conventional drug therapy options, and a trained expert eye, the underlying pathogenesis of lupus still remain widely unknown. The complex etiology reflects the complex genetic background of the disease, which is also not well understood yet. However, in the past few years advances in lupus genetics have been made, notably with the publication of genome-wide association studies (GWAS) in humans and the identification of susceptibility genes and loci in mice. This paper reviews the role of MHC-linked susceptibility genes in the pathogenesis of systemic lupus erythematosus. PMID:22761632

  20. Genetics of Venous Thrombosis: Insights from a New Genome Wide Association Study

    PubMed Central

    Germain, Marine; Saut, Noémie; Greliche, Nicolas; Dina, Christian; Lambert, Jean-Charles; Perret, Claire; Cohen, William; Oudot-Mellakh, Tiphaine; Antoni, Guillemette; Alessi, Marie-Christine; Zelenika, Diana; Cambien, François; Tiret, Laurence; Bertrand, Marion; Dupuy, Anne-Marie; Letenneur, Luc; Lathrop, Mark; Emmerich, Joseph; Amouyel, Philippe; Trégouët, David-Alexandre; Morange, Pierre-Emmanuel

    2011-01-01

    Background Venous Thrombosis (VT) is a common multifactorial disease associated with a major public health burden. Genetics factors are known to contribute to the susceptibility of the disease but how many genes are involved and their contribution to VT risk still remain obscure. We aimed to identify genetic variants associated with VT risk. Methodology/Principal Findings We conducted a genome-wide association study (GWAS) based on 551,141 SNPs genotyped in 1,542 cases and 1,110 controls. Twelve SNPs reached the genome-wide significance level of 2.0×10−8 and encompassed four known VT-associated loci, ABO, F5, F11 and FGG. By means of haplotype analyses, we also provided novel arguments in favor of a role of HIVEP1, PROCR and STAB2, three loci recently hypothesized to participate in the susceptibility to VT. However, no novel VT-associated loci came out of our GWAS. Using a recently proposed statistical methodology, we also showed that common variants could explain about 35% of the genetic variance underlying VT susceptibility among which 3% could be attributable to the main identified VT loci. This analysis additionally suggested that the common variants left to be identified are not uniformly distributed across the genome and that chromosome 20, itself, could contribute to ∼7% of the total genetic variance. Conclusions/Significance This study might also provide a valuable source of information to expand our understanding of biological mechanisms regulating quantitative biomarkers for VT. PMID:21980494

  1. Association of LMX1A genetic polymorphisms with susceptibility to congenital scoliosis in Chinese Han population.

    PubMed

    Wu, Nan; Yuan, Suomao; Liu, Jiaqi; Chen, Jun; Fei, Qi; Liu, Sen; Su, Xinlin; Wang, Shengru; Zhang, Jianguo; Li, Shugang; Wang, Yipeng; Qiu, Guixing; Wu, Zhihong

    2014-10-01

    A genetic association study of single nucleotide polymorphisms (SNPs) for the LMX1A gene with congenital scoliosis (CS) in the Chinese Han population. To determine whether LMX1A genetic polymorphisms are associated with susceptibility to CS. CS is a lateral curvature of the spine due to congenital vertebral defects, whose exact genetic cause has not been well established. The LMX1A gene was suggested as a potential human candidate gene for CS. However, no genetic study of LMX1A in CS has ever been reported. We genotyped 13 SNPs of the LMX1A gene in 154 patients with CS and 144 controls with matched sex and age. After conducting the Hardy-Weinberg equilibrium test, the data of 13 SNPs were analyzed by the allelic and genotypic association with logistic regression analysis. Furthermore, the genotype-phenotype association and haplotype association analysis were also performed. The 13 SNPs of the LMX1A gene met Hardy-Weinberg equilibrium in the controls, which was not in the cases. None of the allelic and genotypic frequencies of these SNPs showed significant difference between case and control groups (P > 0.05). However, the genotypic frequencies of rs1354510 and rs16841013 in the LMX1A gene were associated with CS predisposition in the unconditional logistic regression analysis (P = 0.02 and 0.018, respectively). Genotypic frequencies of 3 SNPs at rs6671290, rs1354510, and rs16841013 were found to exhibit significant differences between patients with CS with failure of formation and the healthy controls (P = 0.019, 0.007, and 0.006, respectively). Besides, in the model analysis by using unconditional logistic regression analysis, the optimized model for the 3 genotypic positive SNPs with failure of formation were rs6671290 (codominant; P = 0.025, Akaike information value = 316.6, Bayesian information criterion = 333.9), rs1354510 (overdominant; P = 0.0017, Akaike information value = 312.1, Bayesian information criterion = 325.9), and rsl6841013 (overdominant; P = 0

  2. Cumulative role of rare and common putative functional genetic variants at NPAS3 in schizophrenia susceptibility.

    PubMed

    González-Peñas, Javier; Arrojo, Manuel; Paz, Eduardo; Brenlla, Julio; Páramo, Mario; Costas, Javier

    2015-10-01

    Schizophrenia may be considered a human-specific disorder arisen as a maladaptive by-product of human-specific brain evolution. Therefore, genetic variants involved in susceptibility to schizophrenia may be identified among those genes related to acquisition of human-specific traits. NPAS3, a transcription factor involved in central nervous system development and neurogenesis, seems to be implicated in the evolution of human brain, as it is the human gene with most human-specific accelerated elements (HAEs), i.e., .mammalian conserved regulatory sequences with accelerated evolution in the lineage leading to humans after human-chimpanzee split. We hypothesize that any nucleotide variant at the NPAS3 HAEs may lead to altered susceptibility to schizophrenia. Twenty-one variants at these HAEs detected by the 1000 genomes Project, as well as five additional variants taken from psychiatric genome-wide association studies, were genotyped in 538 schizophrenic patients and 539 controls from Galicia. Analyses at the haplotype level or based on the cumulative role of the variants assuming different susceptibility models did not find any significant association in spite of enough power under several plausible scenarios regarding direction of effect and the specific role of rare and common variants. These results suggest that, contrary to our hypothesis, the special evolution of the NPAS3 HAEs in Homo relaxed the strong constraint on sequence that characterized these regions during mammalian evolution, allowing some sequence changes without any effect on schizophrenia risk. © 2015 Wiley Periodicals, Inc.

  3. Replication of Associations of Genetic Loci Outside the HLA Region With Susceptibility to Anti–Cyclic Citrullinated Peptide–Negative Rheumatoid Arthritis

    PubMed Central

    Viatte, Sebastien; Massey, Jonathan; Bowes, John; Duffus, Kate; Eyre, Stephen; Barton, Anne; Loughlin, John; Arden, Nigel; Birrell, Fraser; Carr, Andrew; Deloukas, Panos; Doherty, Michael; McCaskie, Andrew W.; Ollier, William E. R.; Rai, Ashok; Ralston, Stuart H.; Spector, Tim D.; Valdes, Ana M.; Wallis, Gillian A.; Wilkinson, J. Mark; Zeggini, Eleftheria

    2016-01-01

    Objective Genetic polymorphisms within the HLA region explain only a modest proportion of anti–cyclic citrullinated peptide (anti‐CCP)–negative rheumatoid arthritis (RA) heritability. However, few non‐HLA markers have been identified so far. This study was undertaken to replicate the associations of anti‐CCP–negative RA with non‐HLA genetic polymorphisms demonstrated in a previous study. Methods The Rheumatoid Arthritis Consortium International densely genotyped 186 autoimmune‐related regions in 3,339 anti‐CCP–negative RA patients and 15,870 controls across 6 different populations using the Illumina ImmunoChip array. We performed a case–control replication study of the anti‐CCP–negative markers with the strongest associations in that discovery study, in an independent cohort of anti‐CCP–negative UK RA patients. Individuals from the arcOGEN Consortium and Wellcome Trust Case Control Consortium were used as controls. Genotyping in cases was performed using Sequenom MassArray technology. Genome‐wide data from controls were imputed using the 1000 Genomes Phase I integrated variant call set release version 3 as a reference panel. Results After genotyping and imputation quality control procedures, data were available for 15 non‐HLA single‐nucleotide polymorphisms in 1,024 cases and 6,348 controls. We confirmed the known markers ANKRD55 (meta‐analysis odds ratio [OR] 0.80; P = 2.8 × 10−13) and BLK (OR 1.13; P = 7.0 × 10−6) and identified new and specific markers of anti‐CCP–negative RA (prolactin [PRL] [OR 1.13; P = 2.1 × 10−6] and NFIA [OR 0.85; P = 2.5 × 10−6]). Neither of these loci is associated with other common, complex autoimmune diseases. Conclusion Anti‐CCP–negative RA and anti‐CCP–positive RA are genetically different disease subsets that only partially share susceptibility factors. Genetic polymorphisms located near the PRL and NFIA genes represent examples of genetic susceptibility

  4. Changes to perceptions of the pros and cons of genetic susceptibility testing after APOE genotyping for Alzheimer disease risk

    PubMed Central

    Christensen, Kurt D.; Roberts, J. Scott; Uhlmann, Wendy R.; Green, Robert C.

    2011-01-01

    Purpose Perceptions about the pros and cons of genetic susceptibility testing are among the best predictors of test utilization. How actual testing changes such perceptions has yet to be examined. Methods In a clinical trial, first-degree relatives of patients with Alzheimer disease received genetic risk assessments for Alzheimer disease including APOE disclosure. Participants rated 11 possible benefits associated with genetic testing (pros) and 10 risks or limitations (cons) before genetic risk disclosure and again 12 months afterward. Results Pros were rated higher than cons at baseline (3.53 vs. 1.83, P < 0.001) and at 12 months after risk disclosure (3.33 vs. 1.88, P < 0.001). Ratings of pros decreased during the 12-month period (3.33 vs. 3.53, P < 0.001). Ratings of cons did not change (1.88 vs. 1.83, P = 0.199) except for a three-item discrimination subscale which increased (2.07 vs. 1.92, P = 0.012). Among specific pros and cons, three items related to prevention and treatment changed the most. Conclusion The process of APOE genetic risk assessment for Alzheimer disease sensitizes some to its limitations and the risks of discrimination; however, 1-year after disclosure, test recipients still consider the pros to strongly outweigh the cons. PMID:21270636

  5. Immunochip analysis identification of 6 additional susceptibility loci for Crohn's disease in Koreans.

    PubMed

    Yang, Suk-Kyun; Hong, Myunghee; Choi, Hyunchul; Zhao, Wanting; Jung, Yusun; Haritunians, Talin; Ye, Byong Duk; Kim, Kyung-Jo; Park, Sang Hyoung; Lee, Inchul; Kim, Won Ho; Cheon, Jae Hee; Kim, Young-Ho; Jang, Byung Ik; Kim, Hyun-Soo; Choi, Jai Hyun; Koo, Ja Seol; Lee, Ji Hyun; Jung, Sung-Ae; Shin, Hyoung Doo; Kang, Daehee; Youn, Hee-Shang; Taylor, Kent D; Rotter, Jerome I; Liu, Jianjun; McGovern, Dermot P B; Song, Kyuyoung

    2015-01-01

    Crohn's disease (CD) is an intractable inflammatory bowel disease of unknown cause. Recent genome-wide association studies of CD in Korean and Japanese populations suggested marginal sharing of susceptibility loci between Caucasian and Asian populations. As the 7 identified loci altogether explain 5.31% of the risk for CD, the objective of this study was to identify additional CD susceptibility loci in the Korean population. Using the ImmunoChip custom single-nucleotide polymorphism array designed for dense genotyping of 186 loci identified through GWAS, we analyzed 722 individuals with CD and 461 controls for 96,048 SNP markers in the discovery stage, followed by validation in an additional 948 affected individuals and 977 controls. We confirmed 6 previously reported loci in Caucasian: GPR35 at 2q37 (rs3749172; P = 5.30 × 10, odds ratio [OR] = 1.45), ZNF365 at 10q21 (rs224143; P = 2.20 × 10, OR = 1.38), ZMIZ1 at 10q22 (rs1250569; P = 3.05 × 10, OR = 1.30), NKX2-3 at 10q24 (rs4409764; P = 7.93 × 10, OR = 1.32), PTPN2 at 18p11 (rs514000; P = 9.00 × 10, OR = 1.33), and USP25 at 21q11 (rs2823256; P = 2.49 × 10, OR = 1.35), bringing the number of known CD loci (including 3 in the HLA) in Koreans to 15. The 6 additional loci increased the total genetic variance for CD risk from 5.31% to 7.27% in Koreans. Although the different genetic backgrounds of CD between Asian and Western countries has been well established for the major susceptibility genes, our findings of overlapping associations offer new insights into the genetic architecture of CD.

  6. The Uyghur Population and Genetic Susceptibility to Type 2 Diabetes: Potential Role for Variants in CDKAL1, JAZF1, and IGF1 Genes

    PubMed Central

    Song, Manshu; Zhao, Feifei; Ran, Longjin; Dolikun, Mamatyusupu; Wu, Lijuan; Ge, Siqi; Dong, Hao; Gao, Qing; Zhai, Yanchun; Zhang, Ling; Yan, Yuxiang; Liu, Fen; Yang, Xinghua; Guo, Xiuhua

    2015-01-01

    Abstract Substantial evidence suggests that type 2 diabetes mellitus (T2DM) is a multi-factorial disease with a strong genetic component. A list of genetic susceptibility loci in populations of European and Asian ancestry has been established in the literature. Little is known on the inter-ethnic contribution of such established functional polymorphic variants. We performed a case-control study to explore the genetic susceptibility of 16 selected T2DM-related SNPs in a cohort of 102 Uyghur objects (51 cases and 51 controls). Three of the 16 SNPs showed significant association with T2DM in the Uyghur population. There were significant differences between the T2DM and control groups in frequencies of the risk allelic distributions of rs7754840 (CDKAL1) (p=0.014), rs864745 (JAZF1) (p=0.032), and rs35767 (IGF1) (p=0.044). Carriers of rs7754840-C, rs35767-A, and rs864745-C risk alleles had a 2.32-fold [OR (95% CI): 1.19–4.54], 2.06-fold [OR (95% CI): 1.02–4.17], 0.48-fold [OR (95% CI): 0.24–0.94] increased risk for T2DM, respectively. The cumulative risk allelic scores of these 16 SNPs differed significantly between the T2DM patients and the controls [17.1±8.1 vs. 15.4±7.3; OR (95%CI): 1.27(1.07–1.50), p=0.007]. This is the first study to evaluate genomic variation at 16 SNPs in respective T2DM candidate genes for the Uyghur population compared with other ethnic groups. The SNP rs7754840 in CDKAL1, rs864745 in JAZF1, and rs35767 in IGF1 might serve as potential susceptibility loci for T2DM in Uyghurs. We suggest a broader capture and study of the world populations, including who that are hitherto understudied, are essential for a comprehensive understanding of the genetic/genomic basis of T2DM. PMID:25785549

  7. Genetic, Clinical, and Pathologic Backgrounds of Patients with Autosomal Dominant Alport Syndrome.

    PubMed

    Kamiyoshi, Naohiro; Nozu, Kandai; Fu, Xue Jun; Morisada, Naoya; Nozu, Yoshimi; Ye, Ming Juan; Imafuku, Aya; Miura, Kenichiro; Yamamura, Tomohiko; Minamikawa, Shogo; Shono, Akemi; Ninchoji, Takeshi; Morioka, Ichiro; Nakanishi, Koichi; Yoshikawa, Norishige; Kaito, Hiroshi; Iijima, Kazumoto

    2016-08-08

    Alport syndrome comprises a group of inherited heterogeneous disorders involving CKD, hearing loss, and ocular abnormalities. Autosomal dominant Alport syndrome caused by heterozygous mutations in collagen 4A3 and/or collagen 4A4 accounts for <5% of patients. However, the clinical, genetic, and pathologic backgrounds of patients with autosomal dominant Alport syndrome remain unclear. We conducted a retrospective analysis of 25 patients with genetically proven autosomal dominant Alport syndrome and their family members (a total of 72 patients) from 16 unrelated families. Patients with suspected Alport syndrome after pathologic examination who were referred from anywhere in Japan for genetic analysis from 2006 to 2015 were included in this study. Clinical, laboratory, and pathologic data were collected from medical records at the point of registration for genetic diagnosis. Genetic analysis was performed by targeted resequencing of 27 podocyte-related genes, including Alport-related collagen genes, to make a diagnosis of autosomal dominant Alport syndrome and identify modifier genes or double mutations. Clinical data were obtained from medical records. The median renal survival time was 70 years, and the median age at first detection of proteinuria was 17 years old. There was one patient with hearing loss and one patient with ocular lesion. Among 16 patients who underwent kidney biopsy, three showed FSGS, and seven showed thinning without lamellation of the glomerular basement membrane. Five of 13 detected mutations were reported to be causative mutations for autosomal recessive Alport syndrome in previous studies. Two families possessed double mutations in both collagen 4A3 and collagen 4A4, but no modifier genes were detected among the other podocyte-related genes. The renal phenotype of autosomal dominant Alport syndrome was much milder than that of autosomal recessive Alport syndrome or X-linked Alport syndrome in men. It may, thus, be difficult to make an

  8. Genetic characteristics of inflammatory bowel disease in a Japanese population.

    PubMed

    Fuyuno, Yuta; Yamazaki, Keiko; Takahashi, Atsushi; Esaki, Motohiro; Kawaguchi, Takaaki; Takazoe, Masakazu; Matsumoto, Takayuki; Matsui, Toshiyuki; Tanaka, Hiroki; Motoya, Satoshi; Suzuki, Yasuo; Kiyohara, Yutaka; Kitazono, Takanari; Kubo, Michiaki

    2016-07-01

    Crohn's disease (CD) and ulcerative colitis (UC) are two major forms of inflammatory bowel disease (IBD). Meta-analyses of genome-wide association studies (GWAS) have identified 163 susceptibility loci for IBD among European populations; however, there is limited information for IBD susceptibility in a Japanese population. We performed a GWAS using imputed genotypes of 743 IBD patients (372 with CD and 371 with UC) and 3321 controls. Using 100 tag single-nucleotide polymorphisms (SNPs) (P < 5 × 10(-5)), a replication study was conducted with an independent set of 1310 IBD patients (949 with CD and 361 with UC) and 4163 controls. In addition, 163 SNPs identified by a European IBD GWAS were genotyped, and genetic backgrounds were compared between the Japanese and European populations. In the IBD GWAS, two East Asia-specific IBD susceptibility loci were identified in the Japanese population: ATG16L2-FCHSD2 and SLC25A15-ELF1-WBP4. Among 163 reported SNPs in European IBD patients, significant associations were confirmed in 18 (8 CD-specific, 4 UC-specific, and 6 IBD-shared). In Japanese CD patients, genes in the Th17-IL23 pathway showed stronger genetic effects, whereas the association of genes in the autophagy pathway was limited. The association of genes in the epithelial barrier and the Th17-IL23R pathways were similar in the Japanese and European UC populations. We confirmed two IBD susceptibility loci as common for CD and UC, and East Asian-specific. The genetic architecture in UC appeared to be similar between Europeans and East Asians, but may have some differences in CD.

  9. Genetic Background Has a Major Impact on Differences in Sleep Resulting from Environmental Influences in Drosophila

    PubMed Central

    Zimmerman, John E.; Chan, May T.; Jackson, Nicholas; Maislin, Greg; Pack, Allan I.

    2012-01-01

    Study Objectives: To determine the effect of different genetic backgrounds on demographic and environmental interventions that affect sleep and evaluate variance of these measures; and to evaluate sleep and variance of sleep behaviors in 6 divergent laboratory strains of common origin. Design: Assessment of the effects of age, sex, mating status, food sources, and social experience using video analysis of sleep behavior in 2 different strains of Drosophila, white1118ex (w1118ex) and white Canton-S (wCS10). Sleep was also determined for 6 laboratory strains of Canton-S and 3 inbred lines. The variance of total sleep was determined for all groups and conditions. Measurements and Results: The circadian periods and the effects of age upon sleep were the same between w1118ex and wCS10 strains. However, the w1118ex and wCS10 strains demonstrated genotype-dependent differences in the effects upon sleep of sex, mating status, social experience, and being on different foods. Variance of total sleep was found to differ in a genotype dependent manner for interventions between the w1118ex and wCS10 strains. Six different laboratory Canton-S strains were found to have significantly different circadian periods (P < 0.001) and sleep phenotypes (P < 0.001). Three inbred lines showed reduced variance for sleep measurements. Conclusions: One must control environmental conditions in a rigorously consistent manner to ensure that sleep data may be compared between experiments. Genetic background has a significant impact upon changes in sleep behavior and variance of behavior due to demographic factors and environmental interventions. This represents an opportunity to discover new genes that modify sleep/wake behavior. Citation: Zimmerman JE; Chan MT; Jackson N; Maislin G; Pack AI. Genetic background has a major impact on differences in sleep resulting from environmental influences in Drosophila. SLEEP 2012;35(4):545-557. PMID:22467993

  10. Persistence of transmitted HIV-1 drug resistance mutations associated with fitness costs and viral genetic backgrounds.

    PubMed

    Yang, Wan-Lin; Kouyos, Roger D; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Scherrer, Alexandra U; Shilaih, Mohaned; Hinkley, Trevor; Petropoulos, Christos; Bonhoeffer, Sebastian; Günthard, Huldrych F

    2015-03-01

    Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM) can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS). All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR) determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities) and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V) to 2.7/100-person-years;[0.7, 10.9] (for 215D). RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs). When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.

  11. Awareness of cancer susceptibility genetic testing: the 2000, 2005, and 2010 National Health Interview Surveys.

    PubMed

    Mai, Phuong L; Vadaparampil, Susan Thomas; Breen, Nancy; McNeel, Timothy S; Wideroff, Louise; Graubard, Barry I

    2014-05-01

    Genetic testing for several cancer susceptibility syndromes is clinically available; however, existing data suggest limited population awareness of such tests. To examine awareness regarding cancer genetic testing in the U.S. population aged ≥25 years in the 2000, 2005, and 2010 National Health Interview Surveys. The weighted percentages of respondents aware of cancer genetic tests, and percent changes from 2000-2005 and 2005-2010, overall and by demographic, family history, and healthcare factors were calculated. Interactions were used to evaluate the patterns of change in awareness between 2005 and 2010 among subgroups within each factor. To evaluate associations with awareness in 2005 and 2010, percentages were adjusted for covariates using multiple logistic regression. The analysis was performed in 2012. Awareness decreased from 44.4% to 41.5% (p<0.001) between 2000 and 2005, and increased to 47.0% (p<0.001) in 2010. Awareness increased between 2005 and 2010 in most subgroups, particularly among individuals in the South (pinteraction=0.03) or with a usual place of care (pinteraction=0.01). In 2005 and 2010, awareness was positively associated with personal or family cancer history and high perceived cancer risk, and inversely associated with racial/ethnic minorities, age 25-39 or ≥60 years, male gender, lower education and income levels, public or no health insurance, and no provider contact in 12 months. Despite improvement from 2005 to 2010, ≤50% of the U.S. adult population was aware of cancer genetic testing in 2010. Notably, disparities persist for racial/ethnic minorities and individuals with limited health care access or income. Published by Elsevier Inc.

  12. Genetics of human susceptibility to active and latent tuberculosis: present knowledge and future perspectives.

    PubMed

    Abel, Laurent; Fellay, Jacques; Haas, David W; Schurr, Erwin; Srikrishna, Geetha; Urbanowski, Michael; Chaturvedi, Nimisha; Srinivasan, Sudha; Johnson, Daniel H; Bishai, William R

    2018-03-01

    Tuberculosis is an ancient human disease, estimated to have originated and evolved over thousands of years alongside modern human populations. Despite considerable advances in disease control, tuberculosis remains one of the world's deadliest communicable diseases with 10 million incident cases and 1·8 million deaths in 2015 alone based on the annual WHO report, due to inadequate health service resources in less-developed regions of the world, and exacerbated by the HIV/AIDS pandemic and emergence of multidrug-resistant strains of Mycobacterium tuberculosis. Recent findings from studies of tuberculosis infection and of patients with Mendelian predisposition to severe tuberculosis have started to reveal human loci influencing tuberculosis outcomes. In this Review, we assess the current understanding of the contribution of host genetics to disease susceptibility and to drug treatment. Despite remarkable progress in technology, only a few associated genetic variants have so far been identified, strongly indicating the need for larger global studies that investigate both common and under-represented rare variants to develop new approaches to combat the disease. Pharmacogenomic discoveries are also likely to lead to more efficient drug design and development, and ultimately safer and more effective therapies for tuberculosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Genetic Variation in the β2-Adrenocepter Gene Is Associated with Susceptibility to Bacterial Meningitis in Adults

    PubMed Central

    Adriani, Kirsten S.; Brouwer, Matthijs C.; Baas, Frank; Zwinderman, Aeilko H.; van der Ende, Arie; van de Beek, Diederik

    2012-01-01

    Recently, the biased β2-adrenoceptor/β-arrestin pathway was shown to play a pivotal role in crossing of the blood brain barrier by Neisseria meningitidis. We hypothesized that genetic variation in the β2-adrenoceptor gene (ADRB2) may influence susceptibility to bacterial meningitis. In a prospective genetic association study we genotyped 542 patients with CSF culture proven community acquired bacterial meningitis and 376 matched controls for 2 functional single nucleotide polymorphisms in the β2-adrenoceptor gene (ADRB2). Furthermore, we analyzed if the use of non-selective beta-blockers, which bind to the β2-adrenoceptor, influenced the risk of bacterial meningitis. We identified a functional polymorphism in ADRB2 (rs1042714) to be associated with an increased risk for bacterial meningitis (Odds ratio [OR] 1.35, 95% confidence interval [CI] 1.04–1.76; p = 0.026). The association remained significant after correction for age and was more prominent in patients with pneumococcal meningitis (OR 1.52, 95% CI 1.12–2.07; p = 0.007). For meningococcal meningitis the difference in genotype frequencies between patients and controls was similar to that in pneumococcal meningitis, but this was not statistically significant (OR 1.43, 95% CI 0.60–3.38; p = 0.72). Patients with bacterial meningitis had a lower frequency of non-selective beta-blockers use compared to the age matched population (0.9% vs. 1.8%), although this did not reach statistical significance (OR 1.96 [95% CI 0.88–4.39]; p = 0.09). In conclusion, we identified an association between a genetic variant in the β2-adrenoceptor and increased susceptibility to bacterial meningitis. The potential benefit of pharmacological treatment targeting the β2-adrenoceptor to prevent bacterial meningitis in the general population or patients with bacteraemia should be further studied in both experimental studies and observational cohorts. PMID:22624056

  14. A Genome-Wide Test of the Differential Susceptibility Hypothesis Reveals a Genetic Predictor of Differential Response to Psychological Treatments for Child Anxiety Disorders

    PubMed Central

    Keers, Robert; Coleman, Jonathan R.I.; Lester, Kathryn J.; Roberts, Susanna; Breen, Gerome; Thastum, Mikael; Bögels, Susan; Schneider, Silvia; Heiervang, Einar; Meiser-Stedman, Richard; Nauta, Maaike; Creswell, Cathy; Thirlwall, Kerstin; Rapee, Ronald M.; Hudson, Jennifer L.; Lewis, Cathryn; Plomin, Robert; Eley, Thalia C.

    2016-01-01

    Background The differential susceptibly hypothesis suggests that certain genetic variants moderate the effects of both negative and positive environments on mental health and may therefore be important predictors of response to psychological treatments. Nevertheless, the identification of such variants has so far been limited to preselected candidate genes. In this study we extended the differential susceptibility hypothesis from a candidate gene to a genome-wide approach to test whether a polygenic score of environmental sensitivity predicted response to cognitive behavioural therapy (CBT) in children with anxiety disorders. Methods We identified variants associated with environmental sensitivity using a novel method in which within-pair variability in emotional problems in 1,026 monozygotic twin pairs was examined as a function of the pairs' genotype. We created a polygenic score of environmental sensitivity based on the whole-genome findings and tested the score as a moderator of parenting on emotional problems in 1,406 children and response to individual, group and brief parent-led CBT in 973 children with anxiety disorders. Results The polygenic score significantly moderated the effects of parenting on emotional problems and the effects of treatment. Individuals with a high score responded significantly better to individual CBT than group CBT or brief parent-led CBT (remission rates: 70.9, 55.5 and 41.6%, respectively). Conclusions Pending successful replication, our results should be considered exploratory. Nevertheless, if replicated, they suggest that individuals with the greatest environmental sensitivity may be more likely to develop emotional problems in adverse environments but also benefit more from the most intensive types of treatment. PMID:27043157

  15. Three ulcerative colitis susceptibility loci are associated with primary sclerosing cholangitis and indicate a role for IL2, REL, and CARD9.

    PubMed

    Janse, Marcel; Lamberts, Laetitia E; Franke, Lude; Raychaudhuri, Soumya; Ellinghaus, Eva; Muri Boberg, Kirsten; Melum, Espen; Folseraas, Trine; Schrumpf, Erik; Bergquist, Annika; Björnsson, Einar; Fu, Jingyuan; Jan Westra, Harm; Groen, Harry J M; Fehrmann, Rudolf S N; Smolonska, Joanna; van den Berg, Leonard H; Ophoff, Roel A; Porte, Robert J; Weismüller, Tobias J; Wedemeyer, Jochen; Schramm, Christoph; Sterneck, Martina; Günther, Rainer; Braun, Felix; Vermeire, Severine; Henckaerts, Liesbet; Wijmenga, Cisca; Ponsioen, Cyriel Y; Schreiber, Stefan; Karlsen, Tom H; Franke, Andre; Weersma, Rinse K

    2011-06-01

    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by inflammation and fibrosis of the bile ducts. Both environmental and genetic factors contribute to its pathogenesis. To further clarify its genetic background, we investigated susceptibility loci recently identified for ulcerative colitis (UC) in a large cohort of 1,186 PSC patients and 1,748 controls. Single nucleotide polymorphisms (SNPs) tagging 13 UC susceptibility loci were initially genotyped in 854 PSC patients and 1,491 controls from Benelux (331 cases, 735 controls), Germany (265 cases, 368 controls), and Scandinavia (258 cases, 388 controls). Subsequently, a joint analysis was performed with an independent second Scandinavian cohort (332 cases, 257 controls). SNPs at chromosomes 2p16 (P-value 4.12 × 10(-4) ), 4q27 (P-value 4.10 × 10(-5) ), and 9q34 (P-value 8.41 × 10(-4) ) were associated with PSC in the joint analysis after correcting for multiple testing. In PSC patients without inflammatory bowel disease (IBD), SNPs at 4q27 and 9q34 were nominally associated (P < 0.05). We applied additional in silico analyses to identify likely candidate genes at PSC susceptibility loci. To identify nonrandom, evidence-based links we used GRAIL (Gene Relationships Across Implicated Loci) analysis showing interconnectivity between genes in six out of in total nine PSC-associated regions. Expression quantitative trait analysis from 1,469 Dutch and UK individuals demonstrated that five out of nine SNPs had an effect on cis-gene expression. These analyses prioritized IL2, CARD9, and REL as novel candidates. We have identified three UC susceptibility loci to be associated with PSC, harboring the putative candidate genes REL, IL2, and CARD9. These results add to the scarce knowledge on the genetic background of PSC and imply an important role for both innate and adaptive immunological factors. Copyright © 2011 American Association for the Study of Liver Diseases.

  16. An In-Depth Characterization of the Major Psoriasis Susceptibility Locus Identifies Candidate Susceptibility Alleles within an HLA-C Enhancer Element

    PubMed Central

    Clop, Alex; Bertoni, Anna; Spain, Sarah L.; Simpson, Michael A.; Pullabhatla, Venu; Tonda, Raul; Hundhausen, Christian; Di Meglio, Paola; De Jong, Pieter; Hayday, Adrian C.; Nestle, Frank O.; Barker, Jonathan N.; Bell, Robert J. A.; Capon, Francesca; Trembath, Richard C.

    2013-01-01

    Psoriasis is an immune-mediated skin disorder that is inherited as a complex genetic trait. Although genome-wide association scans (GWAS) have identified 36 disease susceptibility regions, more than 50% of the genetic variance can be attributed to a single Major Histocompatibility Complex (MHC) locus, known as PSORS1. Genetic studies indicate that HLA-C is the strongest PSORS1 candidate gene, since markers tagging HLA-Cw*0602 consistently generate the most significant association signals in GWAS. However, it is unclear whether HLA-Cw*0602 is itself the causal PSORS1 allele, especially as the role of SNPs that may affect its expression has not been investigated. Here, we have undertaken an in-depth molecular characterization of the PSORS1 interval, with a view to identifying regulatory variants that may contribute to disease susceptibility. By analysing high-density SNP data, we refined PSORS1 to a 179 kb region encompassing HLA-C and the neighbouring HCG27 pseudogene. We compared multiple MHC sequences spanning this refined locus and identified 144 candidate susceptibility variants, which are unique to chromosomes bearing HLA-Cw*0602. In parallel, we investigated the epigenetic profile of the critical PSORS1 interval and uncovered three enhancer elements likely to be active in T lymphocytes. Finally we showed that nine candidate susceptibility SNPs map within a HLA-C enhancer and that three of these variants co-localise with binding sites for immune-related transcription factors. These data indicate that SNPs affecting HLA-Cw*0602 expression are likely to contribute to psoriasis susceptibility and highlight the importance of integrating multiple experimental approaches in the investigation of complex genomic regions such as the MHC. PMID:23990973

  17. Is susceptibility to tuberculosis acquired or inherited?

    PubMed

    Schurr, E

    2007-02-01

    Tuberculosis is an ongoing major public health problem on a global scale. One of the striking features of the disease is that only an estimated 10% of immunocompetent persons infected by the causative pathogen Mycobacterium tuberculosis will develop clinical signs of disease. This well-established epidemiological observation has prompted an intense search for the factors that trigger advancement of infection to disease in the small proportion of susceptible individuals. Central to this search is the questions if tuberculosis patients are inherently susceptible to the disease or if disease development is promoted by specific environmental factors. It is known that genetic and non-genetic factors of both the bacterium and the host have impact on the host response to M. tuberculosis. Yet, little is known about the interaction of these different factors and the resulting impact on disease development. Recent work suggests that in addition to common host susceptibility genes a second group of susceptibility loci exists the action of which strongly depends on the individual's clinical and exposure history. The latter genes may have a very strong effect on promoting advancement from infection to disease only in specific epidemiological settings. These findings suggest that a more detailed knowledge of gene-environment interactions in tuberculosis is necessary to understand why a small proportion of individuals are susceptible to the disease whilst the majority of humans are naturally resistant to tuberculosis.

  18. Genetic determinants for gestational diabetes mellitus and related metabolic traits in Mexican women.

    PubMed

    Huerta-Chagoya, Alicia; Vázquez-Cárdenas, Paola; Moreno-Macías, Hortensia; Tapia-Maruri, Leonardo; Rodríguez-Guillén, Rosario; López-Vite, Erika; García-Escalante, Guadalupe; Escobedo-Aguirre, Fernando; Parra-Covarrubias, Adalberto; Cordero-Brieño, Roberto; Manzo-Carrillo, Lizette; Zacarías-Castillo, Rogelio; Vargas-García, Carlos; Aguilar-Salinas, Carlos; Tusié-Luna, Teresa

    2015-01-01

    Epidemiological and physiological similarities among Gestational Diabetes Mellitus (GDM) and Type 2 Diabetes (T2D) suggest that both diseases, share a common genetic background. T2D risk variants have been associated to GDM susceptibility. However, the genetic architecture of GDM is not yet completely understood. We analyzed 176 SNPs for 115 loci previously associated to T2D, GDM and body mass index (BMI), as well as a set of 118 Ancestry Informative Markers (AIMs), in 750 pregnant Mexican women. Association with GDM was found for two of the most frequently replicated T2D loci: a TCF7L2 haplotype (CTTC: rs7901695, rs4506565, rs7903146, rs12243326; P=2.16 x 10(-06); OR=2.95) and a KCNQ1 haplotype (TTT: rs2237892, rs163184, rs2237897; P=1.98 x 10(-05); OR=0.55). In addition, we found two loci associated to glycemic traits: CENTD2 (60' OGTT glycemia: rs1552224, P=0.03727) and MTNR1B (HOMA B: rs1387153, P=0.05358). Remarkably, a major susceptibility SLC16A11 locus for T2D in Mexicans was not shown to play a role in GDM risk. The fact that two of the main T2D associated loci also contribute to the risk of developing GDM in Mexicans, confirm that both diseases share a common genetic background. However, lack of association with a Native American contribution T2D risk haplotype, SLC16A11, suggests that other genetic mechanisms may be in play for GDM.

  19. Genetic Determinants for Gestational Diabetes Mellitus and Related Metabolic Traits in Mexican Women

    PubMed Central

    Huerta-Chagoya, Alicia; Vázquez-Cárdenas, Paola; Moreno-Macías, Hortensia; Tapia-Maruri, Leonardo; Rodríguez-Guillén, Rosario; López-Vite, Erika; García-Escalante, Guadalupe; Escobedo-Aguirre, Fernando; Parra-Covarrubias, Adalberto; Cordero-Brieño, Roberto; Manzo-Carrillo, Lizette; Zacarías-Castillo, Rogelio; Aguilar-Salinas, Carlos; Tusié-Luna, Teresa

    2015-01-01

    Epidemiological and physiological similarities among Gestational Diabetes Mellitus (GDM) and Type 2 Diabetes (T2D) suggest that both diseases, share a common genetic background. T2D risk variants have been associated to GDM susceptibility. However, the genetic architecture of GDM is not yet completely understood. We analyzed 176 SNPs for 115 loci previously associated to T2D, GDM and body mass index (BMI), as well as a set of 118 Ancestry Informative Markers (AIMs), in 750 pregnant Mexican women. Association with GDM was found for two of the most frequently replicated T2D loci: a TCF7L2 haplotype (CTTC: rs7901695, rs4506565, rs7903146, rs12243326; P=2.16x10-06; OR=2.95) and a KCNQ1 haplotype (TTT: rs2237892, rs163184, rs2237897; P=1.98x10-05; OR=0.55). In addition, we found two loci associated to glycemic traits: CENTD2 (60’ OGTT glycemia: rs1552224, P=0.03727) and MTNR1B (HOMA B: rs1387153, P=0.05358). Remarkably, a major susceptibility SLC16A11 locus for T2D in Mexicans was not shown to play a role in GDM risk. The fact that two of the main T2D associated loci also contribute to the risk of developing GDM in Mexicans, confirm that both diseases share a common genetic background. However, lack of association with a Native American contribution T2D risk haplotype, SLC16A11, suggests that other genetic mechanisms may be in play for GDM. PMID:25973943

  20. Genetic susceptibility of postmenopausal osteoporosis on sulfide quinone reductase-like gene.

    PubMed

    Cai, X; Yi, X; Zhang, Y; Zhang, D; Zhi, L; Liu, H

    2018-05-31

    Postmenopausal osteoporosis is a major health problem with important genetic factors in postmenopausal women. We explored the relationship between SQRDL and osteoporosis in a cohort of 1006 patients and 2027 controls from Han Chinese postmenopausal women. Our evidence supported the significant role of SQRDL in the etiology of postmenopausal osteoporosis. Postmenopausal osteoporosis (PMOP) is a metabolic bone disease leading to progressive bone loss and the deterioration of the bone microarchitecture. The sulfide-quinone reductase-like protein is an important enzyme regulating the cellular hydrogen sulfide levels, and it can regulate bone metabolism balance in postmenopausal women. In this study, we aimed to investigate whether SQRDL is associated with susceptibility to PMOP in the Han Chinese population. A total of 3033 postmenopausal women, comprised of 1006 cases and 2027 controls, were recruited in the study. Twenty-two SNPs were selected for genotyping to evaluate the association of SQRDL gene with BMD and PMOP. Association analyses in both single marker and haplotype levels were performed for PMOP. Bone mineral density (BMD) was also utilized as a quantitative phenotype in further analyses. Bioinformatics tools were applied to predict the functional consequences of targeted polymorphisms in SQRDL. The SNP rs1044032 (P = 6.42 × 10 -5 , OR = 0.80) was identified as significantly associated with PMOP. Three SNPs (rs1044032, rs2028589, and rs12913151) were found to be significantly associated with BMD. Although limited functional significance can be obtained for these polymorphisms, significant hits for association with PMOP were found. Moreover, further association analyses with BMD identified three SNPs with significantly independent effects. Our evidence supported the significant role of SQRDL in the etiology of PMOP and suggest that it may be a genetic risk factor for BMD and osteoporosis in Han Chinese postmenopausal women.

  1. Genome-wide association study of colorectal cancer identifies six new susceptibility loci.

    PubMed

    Schumacher, Fredrick R; Schmit, Stephanie L; Jiao, Shuo; Edlund, Christopher K; Wang, Hansong; Zhang, Ben; Hsu, Li; Huang, Shu-Chen; Fischer, Christopher P; Harju, John F; Idos, Gregory E; Lejbkowicz, Flavio; Manion, Frank J; McDonnell, Kevin; McNeil, Caroline E; Melas, Marilena; Rennert, Hedy S; Shi, Wei; Thomas, Duncan C; Van Den Berg, David J; Hutter, Carolyn M; Aragaki, Aaron K; Butterbach, Katja; Caan, Bette J; Carlson, Christopher S; Chanock, Stephen J; Curtis, Keith R; Fuchs, Charles S; Gala, Manish; Giovannucc, Edward L; Giocannucci, Edward L; Gogarten, Stephanie M; Hayes, Richard B; Henderson, Brian; Hunter, David J; Jackson, Rebecca D; Kolonel, Laurence N; Kooperberg, Charles; Küry, Sébastien; Kury, Sebastian; LaCroix, Andrea; Laurie, Cathy C; Laurie, Cecelia A; Lemire, Mathieu; Lemire, Mathiew; Levine, David; Ma, Jing; Makar, Karen W; Qu, Conghui; Taverna, Darin; Ulrich, Cornelia M; Wu, Kana; Kono, Suminori; West, Dee W; Berndt, Sonja I; Bezieau, Stéphane; Brenner, Hermann; Campbell, Peter T; Chan, Andrew T; Chang-Claude, Jenny; Coetzee, Gerhard A; Conti, David V; Duggan, David; Figueiredo, Jane C; Fortini, Barbara K; Gallinger, Steven J; Gauderman, W James; Giles, Graham; Green, Roger; Haile, Robert; Harrison, Tabitha A; Hoffmeister, Michael; Hopper, John L; Hudson, Thomas J; Jacobs, Eric; Iwasaki, Motoki; Jee, Sun Ha; Jenkins, Mark; Jia, Wei-Hua; Joshi, Amit; Li, Li; Lindor, Noralene M; Matsuo, Keitaro; Moreno, Victor; Mukherjee, Bhramar; Newcomb, Polly A; Potter, John D; Raskin, Leon; Rennert, Gad; Rosse, Stephanie; Severi, Gianluca; Schoen, Robert E; Seminara, Daniela; Shu, Xiao-Ou; Slattery, Martha L; Tsugane, Shoichiro; White, Emily; Xiang, Yong-Bing; Zanke, Brent W; Zheng, Wei; Le Marchand, Loic; Casey, Graham; Gruber, Stephen B; Peters, Ulrike

    2015-07-07

    Genetic susceptibility to colorectal cancer is caused by rare pathogenic mutations and common genetic variants that contribute to familial risk. Here we report the results of a two-stage association study with 18,299 cases of colorectal cancer and 19,656 controls, with follow-up of the most statistically significant genetic loci in 4,725 cases and 9,969 controls from two Asian consortia. We describe six new susceptibility loci reaching a genome-wide threshold of P<5.0E-08. These findings provide additional insight into the underlying biological mechanisms of colorectal cancer and demonstrate the scientific value of large consortia-based genetic epidemiology studies.

  2. The genetic architecture of susceptibility to parasites.

    PubMed

    Wilfert, Lena; Schmid-Hempel, Paul

    2008-06-30

    The antagonistic co-evolution of hosts and their parasites is considered to be a potential driving force in maintaining host genetic variation including sexual reproduction and recombination. The examination of this hypothesis calls for information about the genetic basis of host-parasite interactions - such as how many genes are involved, how big an effect these genes have and whether there is epistasis between loci. We here examine the genetic architecture of quantitative resistance in animal and plant hosts by concatenating published studies that have identified quantitative trait loci (QTL) for host resistance in animals and plants. Collectively, these studies show that host resistance is affected by few loci. We particularly show that additional epistatic interactions, especially between loci on different chromosomes, explain a majority of the effects. Furthermore, we find that when experiments are repeated using different host or parasite genotypes under otherwise identical conditions, the underlying genetic architecture of host resistance can vary dramatically - that is, involves different QTLs and epistatic interactions. QTLs and epistatic loci vary much less when host and parasite types remain the same but experiments are repeated in different environments. This pattern of variability of the genetic architecture is predicted by strong interactions between genotypes and corroborates the prevalence of varying host-parasite combinations over varying environmental conditions. Moreover, epistasis is a major determinant of phenotypic variance for host resistance. Because epistasis seems to occur predominantly between, rather than within, chromosomes, segregation and chromosome number rather than recombination via cross-over should be the major elements affecting adaptive change in host resistance.

  3. Evaluation of polymorphisms in pbp4 gene and genetic diversity in penicillin-resistant, ampicillin-susceptible Enterococcus faecalis from hospitals in different states in Brazil.

    PubMed

    Infante, Victor Hugo Pacagnelli; Conceição, Natália; de Oliveira, Adriana Gonçalves; Darini, Ana Lúcia da Costa

    2016-04-01

    The aim of the present study was to verify whether penicillin-resistant, ampicillin-susceptible Enterococcus faecalis (PRASEF) occurred in Brazil prior to the beginning of the 21st century, and to verify whether ampicillin susceptibility can predict susceptibility to other β-lactams in E. faecalis with this inconsistent phenotype. The presence of polymorphisms in the pbp4 gene and genetic diversity among the isolates were investigated. Of 21 PRASEF analyzed, 5 (23.8%) and 4 (19.0%) were imipenem and piperacillin resistant simultaneously by disk diffusion and broth dilution respectively, contradicting the current internationally accepted standards of susceptibility testing. Sequencing of pbp4 gene revealed an amino acid substitution (Asp-573→Glu) in all PRASEF isolates but not in the penicillin-susceptible, ampicillin-susceptible E. faecalis. Most PRASEF (90.5%) had related pulsed-field gel electrophoresis profiles, but were different from other PRASEF described to date. Results demonstrate that penicillin-resistant, ampicillin-susceptible phenotype was already a reality in the 1990s in E. faecalis isolates in different Brazilian states, and some of these isolates were also imipenem- and piperacillin-resistant; therefore, internationally accepted susceptibility criteria cannot be applied to these isolates. According to pbp4 gene sequencing, this study suggests that a specific amino acid substitution in pbp4 gene found in all PRASEF analyzed is associated with penicillin resistance. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results

    PubMed Central

    Plon, Sharon E.; Eccles, Diana M.; Easton, Douglas; Foulkes, William D.; Genuardi, Maurizio; Greenblatt, Marc S.; Hogervorst, Frans B.L.; Hoogerbrugge, Nicoline; Spurdle, Amanda B.; Tavtigian, Sean

    2011-01-01

    Genetic testing of cancer susceptibility genes is now widely applied in clinical practice to predict risk of developing cancer. In general, sequence-based testing of germline DNA is used to determine whether an individual carries a change that is clearly likely to disrupt normal gene function. Genetic testing may detect changes that are clearly pathogenic, clearly neutral or variants of unclear clinical significance. Such variants present a considerable challenge to the diagnostic laboratory and the receiving clinician in terms of interpretation and clear presentation of the implications of the result to the patient. There does not appear to be a consistent approach to interpreting and reporting the clinical significance of variants either among genes or among laboratories. The potential for confusion among clinicians and patients is considerable and misinterpretation may lead to inappropriate clinical consequences. In this article we review the current state of sequence-based genetic testing, describe other standardized reporting systems used in oncology and propose a standardized classification system for application to sequence based results for cancer predisposition genes. We suggest a system of five classes of variants based on the degree of likelihood of pathogenicity. Each class is associated with specific recommendations for clinical management of at-risk relatives that will depend on the syndrome. We propose that panels of experts on each cancer predisposition syndrome facilitate the classification scheme and designate appropriate surveillance and cancer management guidelines. The international adoption of a standardized reporting system should improve the clinical utility of sequence-based genetic tests to predict cancer risk. PMID:18951446

  5. Colorectal cancer-susceptibility single-nucleotide polymorphisms in Korean population.

    PubMed

    Hong, Sung Noh; Park, Changho; Kim, Jong-Il; Kim, Duk-Hwan; Kim, Hee Cheol; Chang, Dong Kyung; Rhee, Poong-Lyul; Kim, Jae J; Rhee, Jong Chul; Son, Hee Jung; Kim, Young-Ho

    2015-05-01

    Considering the significant racial and ethnic diversity in genetic variation, it is unclear whether the genome-wide association studies-identified colorectal cancer (CRC)-susceptibility single-nucleotide polymorphisms (SNPs) discovered in European populations are also relevant to the Korean population. However, studies on CRC-susceptibility SNPs in Koreans are limited. To investigate the racial and ethnic diversity of CRC-susceptibility genetic variants, we genotyped for the established European CRC-susceptibility SNPs in 198 CRC cases and 329 controls in Korea. To identify novel genetic variants using genome-wide screening in Korea, Illumina HumanHap 370K/610K BeadChips were performed on 105 CRC patients, and candidate CRC-susceptibility SNPs were selected. Subsequently, genotyping for replication was done in 189 CRC cases and 190 controls. Among the European CRC-susceptibility SNPs, rs4939827 in SMAD7 was associated with a significant decreased risk of Korean CRC (age-/gender-adjusted odds ratio [95% confidence interval]: additive model, 0.67 [95% CI, 0.47-0.95]; dominant model, 0.59 [95% CI, 0.39-0.91]). rs4779584 and rs10795668 were associated with CRC risk in females and males, respectively. Among candidate CRC-susceptibility SNPs selected from genome-wide screening, novel SNP, rs17051076, was found to be associated with a significantly increased risk of microsatellite instability-high CRC (age-/gender-adjusted odds ratio [95% confidence interval]: additive model, 4.25 [95% CI, 1.51-11.98]; dominant model, 3.52 [95% CI, 1.13-10.94]) in the replication study. rs4939827, rs4779584, and rs10795668 may contribute to the risk of CRC in the Korean population as well as in European populations. Novel rs17051076 could be associated with microsatellite instability-high CRC in Koreans. These associations support the ethnic diversity of CRC-susceptibility SNPs and should be taken into account in large-scale studies. © 2013 Journal of Gastroenterology and Hepatology

  6. TS Gene Polymorphisms Correlate with Susceptibility to Acute Lymphocytic Leukemia in Children.

    PubMed

    Zou, Runyin; He, Xiangling; Wu, Yanpeng; Tian, Xin; You, Yalan; Zheng, Mincui; Li, Wanli; Zou, Hui; Liu, Hua; Zhu, Xiujuan; Zhu, Chengguang

    2017-06-24

    BACKGROUND Acute lymphocytic leukemia (ALL) in children is a clonal disease of bone marrow hematopoietic stem cells. This study aimed to explore the associations between MTHFR or TS genetic polymorphisms and susceptibility to acute lymphocytic leukemia (ALL) in children. MATERIAL AND METHODS This case-control study included 79 ALL patients (case group) and 102 non-ALL patients (control group). Post-PCR genomic DNA sequencing revealed MTHFR C677T and MTHFR A1298C genotypes and TS polymorphisms. The χ² test was used to compare differences in MTHFR and TS polymorphisms (including genotypic and allelic distributions) between groups. Logistic regression analysis was used to determine genetic polymorphisms and ALL risk associations. RESULTS The results indicated that TS 3R allele frequency was significantly higher in the case group than in the control group (χ²=7.45, P<0.05). The MTHFR C677T and MTHFR A1298C polymorphisms were not associated with ALL risk. Compared to the TS 2R/2R genotype, subjects carrying TS 2R/3R were twice as likely to develop ALL, and the TS 3R/3R+3R/4R genotype carried a 4-fold higher risk of developing ALL (OR=1.96, CI: 1.14-3.36). CONCLUSIONS The TS genetic polymorphisms increase the ALL risk. The TS 3R allele was a risk factor for ALL. There were no associations between MTHFR C677T or MTHFR A1298C polymorphisms and ALL susceptibility.

  7. Insecticide susceptibility of Anopheles mosquitoes changes in response to variations in the larval environment.

    PubMed

    Owusu, Henry F; Chitnis, Nakul; Müller, Pie

    2017-06-16

    Insecticide resistance threatens the success achieved through vector control in reducing the burden of malaria. An understanding of insecticide resistance mechanisms would help to develop novel tools and strategies to restore the efficacy of insecticides. Although we have substantially improved our understanding of the genetic basis of insecticide resistance over the last decade, we still know little of how environmental variations influence the mosquito phenotype. Here, we measured how variations in larval rearing conditions change the insecticide susceptibility phenotype of adult Anopheles mosquitoes. Anopheles gambiae and A. stephensi larvae were bred under different combinations of temperature, population density and nutrition, and the emerging adults were exposed to permethrin. Mosquitoes bred under different conditions showed considerable changes in mortality rates and body weight, with nutrition being the major factor. Weight is a strong predictor of insecticide susceptibility and bigger mosquitoes are more likely to survive insecticide treatment. The changes can be substantial, such that the same mosquito colony may be considered fully susceptible or highly resistant when judged by World Health Organization discriminatory concentrations. The results shown here emphasise the importance of the environmental background in developing insecticide resistance phenotypes, and caution for the interpretation of data generated by insecticide susceptibility assays.

  8. Novel Disease Susceptibility Factors for Fungal Necrotrophic Pathogens in Arabidopsis

    PubMed Central

    García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-01-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens. PMID:25830627

  9. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    PubMed

    Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-04-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  10. Cancer resistance of SR/CR mice in the genetic knockout backgrounds of leukocyte effector mechanisms: determinations for functional requirements.

    PubMed

    Sanders, Anne M; Stehle, John R; Blanks, Michael J; Riedlinger, Gregory; Kim-Shapiro, Jung W; Monjazeb, Arta M; Adams, Jonathan M; Willingham, Mark C; Cui, Zheng

    2010-03-31

    Spontaneous Regression/Complete Resistant (SR/CR) mice are a colony of cancer-resistant mice that can detect and rapidly destroy malignant cells with innate cellular immunity, predominately mediated by granulocytes. Our previous studies suggest that several effector mechanisms, such as perforin, granzymes, or complements, may be involved in the killing of cancer cells. However, none of these effector mechanisms is known as critical for granulocytes. Additionally, it is unclear which effector mechanisms are required for the cancer killing activity of specific leukocyte populations and the survival of SR/CR mice against the challenges of lethal cancer cells. We hypothesized that if any of these effector mechanisms was required for the resistance to cancer cells, its functional knockout in SR/CR mice should render them sensitive to cancer challenges. This was tested by cross breeding SR/CR mice into the individual genetic knockout backgrounds of perforin (Prf-/-), superoxide (Cybb-/), or inducible nitric oxide (Nos2-/). SR/CR mice were bred into individual Prf-/-, Cybb-/-, or Nos2-/- genetic backgrounds and then challenged with sarcoma 180 (S180). Their overall survival was compared to controls. The cancer killing efficiency of purified populations of macrophages and neutrophils from these immunodeficient mice was also examined. When these genetically engineered mice were challenged with cancer cells, the knockout backgrounds of Prf-/-, Cybb-/-, or Nos2-/- did not completely abolish the SR/CR cancer resistant phenotype. However, the Nos2-/- background did appear to weaken the resistance. Incidentally, it was also observed that the male mice in these immunocompromised backgrounds tended to be less cancer-resistant than SR/CR controls. Despite the previously known roles of perforin, superoxide or nitric oxide in the effector mechanisms of innate immune responses, these effector mechanisms were not required for cancer-resistance in SR/CR mice. The resistance was

  11. SAP modulates B cell functions in a genetic background-dependent manner.

    PubMed

    Detre, Cynthia; Yigit, Burcu; Keszei, Marton; Castro, Wilson; Magelky, Erica M; Terhorst, Cox

    2013-06-01

    Mutations affecting the SLAM-associated protein (SAP) are responsible for the X-linked lympho-proliferative syndrome (XLP), a severe primary immunodeficiency syndrome with disease manifestations that include fatal mononucleosis, B cell lymphoma and dysgammaglobulinemia. It is well accepted that insufficient help by SAP-/- CD4+ T cells, in particular during the germinal center reaction, is a component of dysgammaglobulinemia in XLP patients and SAP-/- animals. It is however not well understood whether in XLP patients and SAP-/- mice B cell functions are affected, even though B cells themselves do not express SAP. Here we report that B cell intrinsic responses to haptenated protein antigens are impaired in SAP-/- mice and in Rag-/- mice into which B cells derived from SAP-/- mice together with wt CD4+ T cells had been transferred. This impaired B cells functions are in part depending on the genetic background of the SAP-/- mouse, which affects B cell homeostasis. Surprisingly, stimulation with an agonistic anti-CD40 causes strong in vivo and in vitro B cell responses in SAP-/- mice. Taken together, the data demonstrate that genetic factors play an important role in the SAP-related B cell functions. The finding that anti-CD40 can in part restore impaired B cell responses in SAP-/- mice, suggests potentially novel therapeutic interventions in subsets of XLP patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Genetic susceptibility to type 2 diabetes and obesity: follow-up of findings from genome-wide association studies.

    PubMed

    Basile, Kevin J; Johnson, Matthew E; Xia, Qianghua; Grant, Struan F A

    2014-01-01

    Elucidating the underlying genetic variations influencing various complex diseases is one of the major challenges currently facing clinical genetic research. Although these variations are often difficult to uncover, approaches such as genome-wide association studies (GWASs) have been successful at finding statistically significant associations between specific genomic loci and disease susceptibility. GWAS has been especially successful in elucidating genetic variants that influence type 2 diabetes (T2D) and obesity/body mass index (BMI). Specifically, several GWASs have confirmed that a variant in transcription factor 7-like 2 (TCF7L2) confers risk for T2D, while a variant in fat mass and obesity-associated protein (FTO) confers risk for obesity/BMI; indeed both of these signals are considered the most statistically associated loci discovered for these respective traits to date. The discovery of these two key loci in this context has been invaluable for providing novel insight into mechanisms of heritability and disease pathogenesis. As follow-up studies of TCF7L2 and FTO have typically lead the way in how to follow up a GWAS discovery, we outline what has been learned from such investigations and how they have implications for the myriad of other loci that have been subsequently reported in this disease context.

  13. The Correlation between the CLEC16A Gene and Genetic Susceptibility to Type 1 Diabetes in Chinese Children.

    PubMed

    Sang, Yanmei; Zong, Wei; Yan, Jie; Liu, Min

    2012-01-01

    Objective. The CLEC16A gene is related to the genetic susceptibility to T1DM with racial variability. This study investigated the association between CLEC16A gene polymorphisms and T1DM in Chinese children. Methods. 131 Chinese children with T1DM were selected for study, and 121 healthy adult blood donors were selected as normal controls. PCR and mass spectrometry was used to study the distributions of 17 CLEC16A alleles in patients and controls. The relationship between CLEC16A gene polymorphisms and T1DM was studied. Results. The distributions of two polymorphisms (rs12921922, rs12931878) of CLEC16A in T1DM and healthy controls were significantly different, while the distributions of other CLEC16A polymorphisms show no significant differences. The alleles of rs12921922 are C and T. The frequency of the T allele was significantly increased in patients versus healthy controls. The alleles of rs12931878 are A and C. The frequencies of the A allele are significantly increased in T1DM patients versus healthy controls. Conclusion. Two polymorphisms in the CLEC16A gene correlate with increased susceptibility to T1DM in Chinese children, revealing that it was another new gene that correlates with susceptibility to T1DM in multiple populations.

  14. Genetic susceptibility to chronic wasting disease in free-ranging white-tailed deer: complement component C1q and Prnp polymorphisms

    USGS Publications Warehouse

    Blanchong, Julie A.; Heisey, Dennis M.; Scribner, Kim T.; Libants, Scot V.; Johnson, Chad; Aiken, Judd M.; Langenberg, Julia A.; Samuel, Michael D.

    2009-01-01

    The genetic basis of susceptibility to chronic wasting disease (CWD) in free-ranging cervids is of great interest. Association studies of disease susceptibility in free-ranging populations, however, face considerable challenges including: the need for large sample sizes when disease is rare, animals of unknown pedigree create a risk of spurious results due to population admixture, and the inability to control disease exposure or dose. We used an innovative matched case–control design and conditional logistic regression to evaluate associations between polymorphisms of complement C1q and prion protein (Prnp) genes and CWD infection in white-tailed deer from the CWD endemic area in south-central Wisconsin. To reduce problems due to admixture or disease-risk confounding, we used neutral genetic (microsatellite) data to identify closely related CWD-positive (n = 68) and CWD-negative (n = 91) female deer to serve as matched cases and controls. Cases and controls were also matched on factors (sex, location, age) previously demonstrated to affect CWD infection risk. For Prnp, deer with at least one Serine (S) at amino acid 96 were significantly less likely to be CWD-positive relative to deer homozygous for Glycine (G). This is the first characterization of genes associated with the complement system in white-tailed deer. No tests for association between any C1q polymorphism and CWD infection were significant at p < 0.05. After controlling for Prnp, we found weak support for an elevated risk of CWD infection in deer with at least one Glycine (G) at amino acid 56 of the C1qC gene. While we documented numerous amino acid polymorphisms in C1q genes none appear to be strongly associated with CWD susceptibility.

  15. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs

    PubMed Central

    Barbary, Arnaud; Djian-Caporalino, Caroline; Marteu, Nathalie; Fazari, Ariane; Caromel, Bernard; Castagnone-Sereno, Philippe; Palloix, Alain

    2016-01-01

    With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS–LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes. PMID:27242835

  16. Genetics of reflex seizures and epilepsies in humans and animals.

    PubMed

    Italiano, Domenico; Striano, Pasquale; Russo, Emilio; Leo, Antonio; Spina, Edoardo; Zara, Federico; Striano, Salvatore; Gambardella, Antonio; Labate, Angelo; Gasparini, Sara; Lamberti, Marco; De Sarro, Giovambattista; Aguglia, Umberto; Ferlazzo, Edoardo

    2016-03-01

    Reflex seizures are epileptic events triggered by specific motor, sensory or cognitive stimulation. This comprehensive narrative review focuses on the role of genetic determinants in humans and animal models of reflex seizures and epilepsies. References were mainly identified through MEDLINE searches until August 2015 and backtracking of references in pertinent studies. Autosomal dominant inheritance with reduced penetrance was proven in several families with photosensitivity. Molecular genetic studies on EEG photoparoxysmal response identified putative loci on chromosomes 6, 7, 13 and 16 that seem to correlate with peculiar seizure phenotype. No specific mutation has been found in Papio papio baboon, although a genetic etiology is likely. Mutation in synaptic vesicle glycoprotein 2A was found in another animal model of photosensitivity (Fayoumi chickens). Autosomal dominant inheritance with incomplete penetrance overlapping with a genetic background for IGE was proposed for some families with primary reading epilepsy. Musicogenic seizures usually occur in patients with focal symptomatic or cryptogenic epilepsies, but they have been reported in rare genetic epilepsies such as Dravet syndrome. A single LGI1 mutation has been described in a girl with seizures evoked by auditory stimuli. Interestingly, heterozygous knockout (Lgi1(+/-)) mice show susceptibility to sound-triggered seizures. Moreover, in Frings and Black Swiss mice, the spontaneous mutations of MASS1 and JAMS1 genes, respectively, have been linked to audiogenic seizures. Eating seizures usually occur in symptomatic epilepsies but evidences for a genetic susceptibility were mainly provided by family report from Sri Lanka. Eating seizures were also reported in rare patients with MECP2 duplication or mutation. Hot water seizures are genetically heterogeneous but two loci at chromosomes 4 and 10 were identified in families with likely autosomal dominant inheritance. Startle-induced seizures usually occur in

  17. How biological background assumptions influence scientific risk evaluation of stacked genetically modified plants: an analysis of research hypotheses and argumentations.

    PubMed

    Rocca, Elena; Andersen, Fredrik

    2017-08-14

    Scientific risk evaluations are constructed by specific evidence, value judgements and biological background assumptions. The latter are the framework-setting suppositions we apply in order to understand some new phenomenon. That background assumptions co-determine choice of methodology, data interpretation, and choice of relevant evidence is an uncontroversial claim in modern basic science. Furthermore, it is commonly accepted that, unless explicated, disagreements in background assumptions can lead to misunderstanding as well as miscommunication. Here, we extend the discussion on background assumptions from basic science to the debate over genetically modified (GM) plants risk assessment. In this realm, while the different political, social and economic values are often mentioned, the identity and role of background assumptions at play are rarely examined. We use an example from the debate over risk assessment of stacked genetically modified plants (GM stacks), obtained by applying conventional breeding techniques to GM plants. There are two main regulatory practices of GM stacks: (i) regulate as conventional hybrids and (ii) regulate as new GM plants. We analyzed eight papers representative of these positions and found that, in all cases, additional premises are needed to reach the stated conclusions. We suggest that these premises play the role of biological background assumptions and argue that the most effective way toward a unified framework for risk analysis and regulation of GM stacks is by explicating and examining the biological background assumptions of each position. Once explicated, it is possible to either evaluate which background assumptions best reflect contemporary biological knowledge, or to apply Douglas' 'inductive risk' argument.

  18. Tim-3 is differently expressed in genetically susceptible C57BL/6 and resistant BALB/c mice during oral infection with Toxoplasma gondii

    PubMed Central

    Berrocal Almanza, L. C.; Muñoz, M.; Kühl, A. A.; Kamradt, T.; Heimesaat, M. M.

    2013-01-01

    Tim-3 has opposing roles in innate and adaptive immunities. It not only dampens CD4+ and CD8+ T cells responses but also enhances the ability of macrophages to eliminate intracellular pathogens. After peroral infection with 100 cysts of Toxoplasma gondii genetically susceptible C57BL/6 mice develop an unchecked Th1 response associated with the development of small intestinal immunopathology. Here we report that upon infection with T. gondii, both susceptible C57BL/6 and resistant BALB/c mice exhibit increased frequencies of Tim-3+ cells in spleens and mesenteric lymph nodes. The number of Tim-3+ cells was significantly higher in C57BL/6 than in BALB/c mice. Tim-3 was expressed by macrophages, dendritic, natural killer, as well as CD4+ and CD8+ T cells. Highest frequencies of Tim-3+ cells were observed at the peak of Th1 responses (day 7 post infection) concurrent with the development of ileal immunopathology. Infected Tim-3-deficient BALB/c mice did not develop ileal immunopathology nor did their parasite loads differ from those in wildtype BALB/c mice. Thus, although Tim-3 is markedly upregulated upon infection and differentially regulated in susceptible and resistant mice upon infection with T. gondii, the absence of Tim-3 is not sufficient to overcome the genetic resistance of BALB/c mice to the development of Th1-driven small intestinal immunopathology. PMID:24265941

  19. Tim-3 is differently expressed in genetically susceptible C57BL/6 and resistant BALB/c mice during oral infection with Toxoplasma gondii.

    PubMed

    Berrocal Almanza, L C; Muñoz, M; Kühl, A A; Kamradt, T; Heimesaat, M M; Liesenfeld, O

    2013-09-01

    Tim-3 has opposing roles in innate and adaptive immunities. It not only dampens CD4+ and CD8+ T cells responses but also enhances the ability of macrophages to eliminate intracellular pathogens. After peroral infection with 100 cysts of Toxoplasma gondii genetically susceptible C57BL/6 mice develop an unchecked Th1 response associated with the development of small intestinal immunopathology. Here we report that upon infection with T. gondii, both susceptible C57BL/6 and resistant BALB/c mice exhibit increased frequencies of Tim-3+ cells in spleens and mesenteric lymph nodes. The number of Tim-3+ cells was significantly higher in C57BL/6 than in BALB/c mice. Tim-3 was expressed by macrophages, dendritic, natural killer, as well as CD4+ and CD8+ T cells. Highest frequencies of Tim-3+ cells were observed at the peak of Th1 responses (day 7 post infection) concurrent with the development of ileal immunopathology. Infected Tim-3-deficient BALB/c mice did not develop ileal immunopathology nor did their parasite loads differ from those in wildtype BALB/c mice. Thus, although Tim-3 is markedly upregulated upon infection and differentially regulated in susceptible and resistant mice upon infection with T. gondii, the absence of Tim-3 is not sufficient to overcome the genetic resistance of BALB/c mice to the development of Th1-driven small intestinal immunopathology.

  20. Factors that Impact Susceptibility to Fiber-Induced Health Effects

    PubMed Central

    Below, Jennifer E.; Cox, Nancy J.; Fukagawa, Naomi K.; Hirvonen, Ari; Testa, Joseph R.

    2011-01-01

    Asbestos and related fibers are associated with a number of adverse health effects, including malignant mesothelioma (MM), an aggressive cancer that generally develops in the surface serosal cells of the pleural, pericardial, and peritoneal cavities. Although approximately 80% of individuals with MM are exposed to asbestos, fewer than 5% of asbestos workers develop MM. In addition to asbestos, other mineralogical, environmental, genetic, and possibly viral factors might contribute to MM susceptibility. Given this complex etiology of MM, understanding susceptibility to MM needs to be a priority for investigators in order to reduce exposure of those most at risk to known environmental carcinogens. In this review, the current body of literature related to fiber-associated disease susceptibility including age, sex, nutrition, genetics, asbestos, and other mineral exposure is addressed with a focus on MM, and critical areas for further study are recommended. PMID:21534090

  1. Innate Resistance and Susceptibility to Norovirus Infection

    DOE PAGES

    Nordgren, Johan; Sharma, Sumit; Kambhampati, Anita; ...

    2016-04-26

    The notion that certain individuals appear more or less susceptible to infections or to specific microbes is not new, but, until recently, it was assumed that clinical outcome of an infection was mainly owing to virulence factors of the microorganism. Relatively little attention has been given to host genetic factors involved in innate or adaptive immunity or expression of pathogen receptors. A remarkable example of susceptibility dependence is the strong Mendelian trait resistance to the most common noroviruses among individuals with a nonsense mutation in chromosome 19. Norovirus is recognized as the leading cause of gastroenteritis worldwide, affecting children andmore » adults alike. Noroviruses are highly contagious and genetically diverse RNA viruses, but not all individuals are susceptible to infection to the same norovirus genotypes. Presence of histo-blood group antigens (HBGAs) on gut epithelial surfaces is essential for susceptibility to many norovirus genotypes. The synthesis of these HBGAs, specifically of the ABH and Lewis families, requires the use of several fucosyl and glycosyltransferases encoded by the FUT2, FUT3, and ABH genes. Polymorphisms in these genes vary considerably depending on ethnicity, with a homozygous nonsense mutation (individuals called non-secretors) in the FUT2 gene occurring in approximately 5%–50% of different populations worldwide. Secretor status also affects gut microbiota composition, including HBGA-expressing bacteria and bacteria inducing fucosylation in the gut. These could be intermediary factors that govern norovirus susceptibility.« less

  2. Innate Resistance and Susceptibility to Norovirus Infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordgren, Johan; Sharma, Sumit; Kambhampati, Anita

    The notion that certain individuals appear more or less susceptible to infections or to specific microbes is not new, but, until recently, it was assumed that clinical outcome of an infection was mainly owing to virulence factors of the microorganism. Relatively little attention has been given to host genetic factors involved in innate or adaptive immunity or expression of pathogen receptors. A remarkable example of susceptibility dependence is the strong Mendelian trait resistance to the most common noroviruses among individuals with a nonsense mutation in chromosome 19. Norovirus is recognized as the leading cause of gastroenteritis worldwide, affecting children andmore » adults alike. Noroviruses are highly contagious and genetically diverse RNA viruses, but not all individuals are susceptible to infection to the same norovirus genotypes. Presence of histo-blood group antigens (HBGAs) on gut epithelial surfaces is essential for susceptibility to many norovirus genotypes. The synthesis of these HBGAs, specifically of the ABH and Lewis families, requires the use of several fucosyl and glycosyltransferases encoded by the FUT2, FUT3, and ABH genes. Polymorphisms in these genes vary considerably depending on ethnicity, with a homozygous nonsense mutation (individuals called non-secretors) in the FUT2 gene occurring in approximately 5%–50% of different populations worldwide. Secretor status also affects gut microbiota composition, including HBGA-expressing bacteria and bacteria inducing fucosylation in the gut. These could be intermediary factors that govern norovirus susceptibility.« less

  3. Leisure time activities in adolescence in the presence of susceptibility genes for obesity: risk or resilience against overweight in adulthood? The HUNT study

    PubMed Central

    2012-01-01

    Background Environment, health behavior, and genetic background are important in the development of obesity. Adolescents spend substantial part of daily leisure time on cultural and social activities, but knowledge about the effects of participation in such activities on weight is limited. Methods A number of 1450 adolescents from the Norwegian HUNT study (1995–97) were followed-up in 2006–08 as young adults. Phenotypic data on lifestyle and anthropometric measures were assessed using questionnaires and standardized clinical examinations. Genotypic information on 12 established obesity-susceptibility loci were available for analyses. Generalized estimating equations were used to examine the associations between cultural and social activities in adolescence and adiposity measures in young adulthood. In addition, interaction effects of a genetic predisposition score by leisure time activities were tested. Results In girls, participation in cultural activities was negatively associated with waist circumference (WC) (B = −0.04, 95%CI: -0.08 to −0.00) and with waist-hip ratio (WHR) (B = −0.058, 95%CI: -0.11 to −0.01). However, participation in social activities was positively associated with WC (B = 0.040, CI: 0.00 to 0.08) in girls and with BMI (B = 0.027, CI: 0.00 to 0.05) in boys. The effect of the obesity-susceptibility genetic variants on anthropometric measures was lower in adolescents with high participation in cultural activities compared to adolescents with low participation. Conclusion This study suggests that the effects of cultural activities on body fat are different from the effects of participation in social activities. The protective influence of cultural activities in female adolescents against overweight in adulthood and their moderating effect on obesity-susceptibility genes suggest that even cultural activities may be useful in public health strategies against obesity. PMID:22998931

  4. Gene and environment interaction: is the differential susceptibility hypothesis relevant for obesity?

    PubMed Central

    Dalle Molle, Roberta; Fatemi, Hajar; Dagher, Alain; Levitan, Robert D.; Silveira, Patricia P.; Dubé, Laurette

    2017-01-01

    The differential susceptibility model states that a given genetic variant is associated with an increased risk of pathology in negative environments but greater than average resilience in enriched ones. While this theory was first implemented in psychiatric-genetic research, it may also help us to unravel the complex ways that genes and environments interact to influence feeding behavior and obesity. We reviewed evidence on gene vs. environment interactions that influence obesity development, aiming to support the applicability of the differential susceptibility model for this condition, and propose that various environmental “layers” relevant for human development should be considered when bearing the differential susceptibility model in mind. Mother-child relationship, socioeconomic status and individual's response are important modifiers of BMI and food intake when interacting with gene variants, “for better and for worse”. While only a few studies to date have investigated obesity outcomes using this approach, we propose that the differential susceptibility hypothesis is in fact highly applicable to the study of genetic and environmental influences on feeding behavior and obesity risk. PMID:28024828

  5. Takayasu arteritis and ulcerative colitis: high rate of co-occurrence and genetic overlap.

    PubMed

    Terao, Chikashi; Matsumura, Takayoshi; Yoshifuji, Hajime; Kirino, Yohei; Maejima, Yasuhiro; Nakaoka, Yoshikazu; Takahashi, Meiko; Amiya, Eisuke; Tamura, Natsuko; Nakajima, Toshiki; Origuchi, Tomoki; Horita, Tetsuya; Matsukura, Mitsuru; Kochi, Yuta; Ogimoto, Akiyoshi; Yamamoto, Motohisa; Takahashi, Hiroki; Nakayamada, Shingo; Saito, Kazuyoshi; Wada, Yoko; Narita, Ichiei; Kawaguchi, Yasushi; Yamanaka, Hisashi; Ohmura, Koichiro; Atsumi, Tatsuya; Tanemoto, Kazuo; Miyata, Tetsuro; Kuwana, Masataka; Komuro, Issei; Tabara, Yasuharu; Ueda, Atsuhisa; Isobe, Mitsuaki; Mimori, Tsuneyo; Matsuda, Fumihiko

    2015-05-01

    Takayasu arteritis (TAK) is a systemic vasculitis affecting large arteries and large branches of the aorta. Ulcerative colitis (UC) is a prevalent autoimmune colitis. Since TAK and UC share HLA-B*52:01 and IL12B as genetic determinants, and since there are case reports of the co-occurrence of these diseases, we hypothesized that UC is a common complication of TAK. We undertook this study to perform a large-scale analysis of TAK, both to evaluate the prevalence of concurrent cases of TAK and UC and to identify and estimate susceptibility genes shared between the 2 diseases. We analyzed a total of 470 consecutive patients with TAK from 14 institutions. We characterized patients with TAK and UC by analyzing clinical manifestations and genetic components. Genetic overlapping of TAK and UC was evaluated with the use of UC susceptibility single-nucleotide polymorphisms by comparing risk directions and effect sizes between susceptibility to the 2 diseases. Thirty of 470 patients with TAK had UC (6.4% [95% confidence interval 4.3-9.0]). This percentage was strikingly higher than that expected from the prevalence of UC in Japan. Patients with TAK complicated with UC developed TAK at an earlier stage of life (P = 0.0070) and showed significant enrichment of HLA-B*52:01 compared to TAK patients without UC (P = 1.0 × 10(-5) ) (odds ratio 12.14 [95% confidence interval 2.96-107.23]). The 110 non-HLA markers of susceptibility to UC significantly displayed common risk directions with susceptibility to TAK (P = 0.0054) and showed significant departure of permutation P values from expected P values (P < 1.0 × 10(-10) ). UC is a major complication of TAK. These 2 diseases share a significant proportion of their genetic background, and HLA-B*52:01 may play a central role in their co-occurrence. © 2015, American College of Rheumatology.

  6. The Genetics of Major Depression

    PubMed Central

    Flint, Jonathan; Kendler, Kenneth S.

    2014-01-01

    Major depression is the commonest psychiatric disorder and in the U.S. has the greatest impact of all biomedical diseases on disability. Here we review evidence of the genetic contribution to disease susceptibility and the current state of molecular approaches. Genome-wide association and linkage results provide constraints on the allele frequencies and effect sizes of susceptibility loci, which we use to interpret the voluminous candidate gene literature. We consider evidence for the genetic heterogeneity of the disorder and the likelihood that subtypes exist that represent more genetically homogenous conditions than have hitherto been analyzed. PMID:24507187

  7. Genetic Testing for Rare Cancer: The Wider Issues.

    PubMed

    Jacobs, Chris; Pichert, Gabriella

    2016-01-01

    Identification of a potential genetic susceptibility to cancer and confirmation of a pathogenic gene mutation raises a number of challenging issues for the patient with cancer, their relatives and the health professionals caring for them. The specific risks and management issues associated with rare cancer types have been addressed in the earlier chapters. This chapter considers the wider issues involved in genetic counselling and genetic testing for a genetic susceptibility to cancer for patients, families and health professionals. The first part of the chapter will present the issues raised by the current practice in genetic counselling and genetic testing for cancer susceptibility. The second part of the chapter will address some of the issues raised by the advances in genetic testing technology and the future opportunities provided by personalised medicine and targeted cancer therapy. Facilitating these developments requires closer integration of genomics into mainstream cancer care, challenging the existing paradigm of genetic medicine, adding additional layers of complexity to the risk assessment and management of cancer and presenting wider issues for patients, families, health professionals and clinical services.

  8. Progress on low susceptibility mechanisms of transmissible spongiform encephalopathies

    PubMed Central

    QING, Li-Li; ZHAO, Hui; LIU, Lin-Lin

    2014-01-01

    Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative diseases detected in a wide range of mammalian species. The “protein-only” hypothesis of TSE suggests that prions are transmissible particles devoid of nucleic acid and the primary pathogenic event is thought to be the conversion of cellular prion protein (PrPC) into the disease-associated isoform (PrPSc). According to susceptibility to TSEs, animals can be classified into susceptible species and low susceptibility species. In this review we focus on several species with low susceptibility to TSEs: dogs, rabbits, horses and buffaloes. We summarize recent studies into the characteristics of low susceptibility regarding protein structure, and biochemical and genetic properties. PMID:25297084

  9. Understanding the role of epigenomic, genomic and genetic alterations in the development of endometriosis (review).

    PubMed

    Kobayashi, Hiroshi; Imanaka, Shogo; Nakamura, Haruki; Tsuji, Ayumi

    2014-05-01

    Endometriosis is a complex disease influenced by genetic, epigenetic and environmental factors. The aim of the present study was to describe genomic instability, genetic polymorphisms and their haplotype, epigenetic alterations associated with predisposition to endometriosis, and the key factors associated with endometriosis-related ovarian neoplasms. Focus has been given on the developing paradigm that epigenetic alterations or genetic mutations in endometriosis may start in utero or in adolescent and young adults. A search was conducted between 1966 and 2010 through the English language literature (online Medline PubMed database) using the keywords endometriosis combined with epigenetic, genetic and environment. Genetic/epigenetic alterations include single‑nucleotide polymorphisms (SNPs), copy number variation, loss of heterozygosity (LOH), and promoter methylation. Several genes with genetic polymorphisms analyzed in the present study tended to overlap previously reported endometriosis susceptibility genes. Retrograde menstruation leads to iron overload, which facilitates the accumulation of somatic mutations through Fenton reaction-mediated oxidative stress. The epigenetic disruption of gene expression plays an important role in the development of endometriosis through interaction with environmental changes. There seems to be at least three spatiotemporally distinct phases of the development of endometriosis: the initial phase of genetic background inherited from parents; followed by epigenetic modifications in the female offspring; and iron overload, which is subject to dynamic modulation later in life. In conclusion, the marked regulation of endometriosis susceptibility genes may stem from a mechanism responsible for epigenetic and genetic mutations based on the microenvironmental changes.

  10. Genetics and epigenetics of rheumatoid arthritis

    PubMed Central

    Viatte, Sebastien; Plant, Darren; Raychaudhuri, Soumya

    2013-01-01

    Investigators have made key advances in rheumatoid arthritis (RA) genetics in the past 10 years. Although genetic studies have had limited influence on clinical practice and drug discovery, they are currently generating testable hypotheses to explain disease pathogenesis. Firstly, we review here the major advances in identifying RA genetic susceptibility markers both within and outside of the MHC. Understanding how genetic variants translate into pathogenic mechanisms and ultimately into phenotypes remains a mystery for most of the polymorphisms that confer susceptibility to RA, but functional data are emerging. Interplay between environmental and genetic factors is poorly understood and in need of further investigation. Secondly, we review current knowledge of the role of epigenetics in RA susceptibility. Differences in the epigenome could represent one of the ways in which environmental exposures translate into phenotypic outcomes. The best understood epigenetic phenomena include post-translational histone modifications and DNA methylation events, both of which have critical roles in gene regulation. Epigenetic studies in RA represent a new area of research with the potential to answer unsolved questions. PMID:23381558

  11. A model to estimate effects of SNPs on host susceptibility and infectivity for an endemic infectious disease.

    PubMed

    Biemans, Floor; de Jong, Mart C M; Bijma, Piter

    2017-06-30

    Infectious diseases in farm animals affect animal health, decrease animal welfare and can affect human health. Selection and breeding of host individuals with desirable traits regarding infectious diseases can help to fight disease transmission, which is affected by two types of (genetic) traits: host susceptibility and host infectivity. Quantitative genetic studies on infectious diseases generally connect an individual's disease status to its own genotype, and therefore capture genetic effects on susceptibility only. However, they usually ignore variation in exposure to infectious herd mates, which may limit the accuracy of estimates of genetic effects on susceptibility. Moreover, genetic effects on infectivity will exist as well. Thus, to design optimal breeding strategies, it is essential that genetic effects on infectivity are quantified. Given the potential importance of genetic effects on infectivity, we set out to develop a model to estimate the effect of single nucleotide polymorphisms (SNPs) on both host susceptibility and host infectivity. To evaluate the quality of the resulting SNP effect estimates, we simulated an endemic disease in 10 groups of 100 individuals, and recorded time-series data on individual disease status. We quantified bias and precision of the estimates for different sizes of SNP effects, and identified the optimum recording interval when the number of records is limited. We present a generalized linear mixed model to estimate the effect of SNPs on both host susceptibility and host infectivity. SNP effects were on average slightly underestimated, i.e. estimates were conservative. Estimates were less precise for infectivity than for susceptibility. Given our sample size, the power to estimate SNP effects for susceptibility was 100% for differences between genotypes of a factor 1.56 or more, and was higher than 60% for infectivity for differences between genotypes of a factor 4 or more. When disease status was recorded 11 times on each

  12. Identification of genetic factors associated with susceptibility to angiotensin-converting enzyme inhibitors-induced cough.

    PubMed

    Grilo, Antonio; Sáez-Rosas, María P; Santos-Morano, Juan; Sánchez, Elena; Moreno-Rey, Concha; Real, Luis M; Ramírez-Lorca, Reposo; Sáez, María E

    2011-01-01

    Angiotensin-converting enzyme inhibitors (ACEi) are the first selected drugs for hypertensive patients because of its protective properties against heart and kidney diseases. Persistent cough is a common adverse reaction associated with ACEi, which can bind to the treatment cessation, but its etiology remains an unresolved issue. The most accepted mechanism is that the inhibition of ACEi increases kinins levels, resulting in the activation of proinflammatory mechanisms and nitric oxide generation. However, relatively little is known about the genetic susceptibility to ACEi-induced cough in hypertensive patients. We carried out a monogenic association analysis of 39 polymorphisms and haplotypes in genes encoding key proteins related to ACEi activity with the occurrence of ACEi-induced cough. We also carried out a digenic association analysis and investigated the existence of epistatic interactions between the analyzed polymorphisms using a logistic regression procedure. Finally, we investigated the predictive value of the identified associations for ACEi-induced cough. We found that genetic polymorphisms in MME [rs2016848, P=0.002, odds ratio (OR)=1.795], BDKRB2 (rs8012552, P=0.012, OR=1.609), PTGER3 (rs11209716, P=0.002, OR=0.565), and ACE (rs4344) genes are associated with ACEi-related cough. For the latter, the effect is sex specific, having a protective effect in males (P=0.027, OR=0.560) and increasing the risk in females (P=0.031, OR=1.847). In addition, genetic interactions between peptidases involved in kinins levels (CPN1 and XPNPEP1) and proteins related to prostaglandin metabolism (PTGIS and PTGIR) strongly modify the risk of ACEi-induced cough presentation (0.102≤OR≤0.384 for protective combinations and 2.732≤OR≤7.216 for risk combinations). These results are consistent with the hypothesis that the mechanism of cough is related to the accumulation of bradykinin, substance P, and prostaglandins.

  13. Genetic susceptibility to the cross-reactivity of aromatic antiepileptic drugs-induced cutaneous adverse reactions.

    PubMed

    Wang, Wei; Hu, Fa-Yun; Wu, Xin-Tong; An, Dong-Mei; Yan, Bo; Zhou, Dong

    2014-08-01

    The cross-allergic reactions among aromatic antiepileptic drugs (AEDs) are common, but little is known about the genetic mechanisms. The aim of this study was to investigate the genetic associations of the human leukocyte antigen (HLA) genes with the cross-reactivity of cutaneous adverse drug reactions (cADRs) induced by different aromatic AEDs. We reviewed 60 Chinese patients with a history of cADRs induced by an aromatic AED, and which re-challenged other aromatic AEDs as an alternative to the causative AED owing to some particular reasons. According to whether developing another episode of cADRs, these patients were automatically divided into the cross-reactivity group and tolerant control group. High-resolution HLA-A, -B, -DRB1 genotyping were performed for each patient. One out of 10 patients (10%, 1/10) carried the HLA-A*2402 allele in the cross-reactivity group. However, 23 patients (46%, 23/50) carried this allele in the tolerant control group. The difference of the HLA-A*2402 allele between the two groups is statistically significant (P=0.040, OR=0.130, 95% CI: 0.015-1.108). In addition, the frequency differences of other HLA alleles between the two groups, including the HLA-B*1502 allele, did not reach statistical significance (P>0.05). The HLA genes contribute to the genetic susceptibility of the cross-reactivity of cADRs among aromatic AEDs. Our results suggest that HLA-B*1502 is not a major responsible allele for the cross-reactivity of cADRs to aromatic AEDs, but the HLA-A*2402 allele may be a protective marker for the cross-allergic reactions among aromatic AEDs in Han Chinese. Further studies are warranted to test the potential predictive value of the HLA-A*2402 allele in future. Copyright © 2014. Published by Elsevier B.V.

  14. Genetic variants associated with susceptibility to psychosis in late-onset Alzheimer's disease families.

    PubMed

    Barral, Sandra; Vardarajan, Badri N; Reyes-Dumeyer, Dolly; Faber, Kelley M; Bird, Thomas D; Tsuang, Debby; Bennett, David A; Rosenberg, Roger; Boeve, Bradley F; Graff-Radford, Neill R; Goate, Alison M; Farlow, Martin; Lantigua, Rafael; Medrano, Martin Z; Wang, Xinbing; Kamboh, M Ilyas; Barmada, Mahmud Muhiedine; Schaid, Daniel J; Foroud, Tatiana M; Weamer, Elise A; Ottman, Ruth; Sweet, Robert A; Mayeux, Richard

    2015-11-01

    Psychotic symptoms are frequent in late-onset Alzheimer's disease (LOAD) patients. Although the risk for psychosis in LOAD is genetically mediated, no genes have been identified. To identify loci potentially containing genetic variants associated with risk of psychosis in LOAD, a total of 263 families from the National Institute of Aging-LOAD cohort were classified into psychotic (LOAD+P, n = 215) and nonpsychotic (LOAD-P, n = 48) families based on the presence/absence of psychosis during the course of LOAD. The LOAD+P families yielded strong evidence of linkage on chromosome 19q13 (two-point [2-pt] ​logarithm of odds [LOD] = 3.8, rs2285513 and multipoint LOD = 2.7, rs541169). Joint linkage and association in 19q13 region detected strong association with rs2945988 (p = 8.7 × 10(-7)). Linkage results for the LOAD-P families yielded nonsignificant 19q13 LOD scores. Several 19q13 single-nucleotide polymorphisms generalized the association of LOAD+P in a Caribbean Hispanic (CH) cohort, and the strongest signal was rs10410711 (pmeta = 5.1 × 10(-5)). A variant located 24 kb upstream of rs10410711 and rs10421862 was strongly associated with LOAD+P (pmeta = 1.0 × 10(-5)) in a meta-analysis of the CH cohort and an additional non-Hispanic Caucasian dataset. Identified variants rs2945988 and rs10421862 affect brain gene expression levels. Our results suggest that genetic variants in genes on 19q13, some of which are involved in brain development and neurodegeneration, may influence the susceptibility to psychosis in LOAD patients. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. BRCA1/2 genetic background-based therapeutic tailoring of human ovarian cancer: hope or reality?

    PubMed Central

    Tagliaferri, Pierosandro; Ventura, Monica; Baudi, Francesco; Cucinotto, Iole; Arbitrio, Mariamena; Di Martino, Maria Teresa; Tassone, Pierfrancesco

    2009-01-01

    Ovarian epithelial tumors are an hallmark of hereditary cancer syndromes which are related to the germ-line inheritance of cancer predisposing mutations in BRCA1 and BRCA2 genes. Although these genes have been associated with multiple different physiologic functions, they share an important role in DNA repair mechanisms and therefore in the whole genomic integrity control. These findings have risen a variety of issues in terms of treatment and prevention of breast and ovarian tumors arising in this context. Enhanced sensitivity to platinum-based anticancer drugs has been related to BRCA1/2 functional loss. Retrospective studies disclosed differential chemosensitivity profiles of BRCA1/2-related as compared to "sporadic" ovarian cancer and led to the identification of a "BRCA-ness" phenotype of ovarian cancer, which includes inherited BRCA1/2 germ-line mutations, a serous high grade histology highly sensitive to platinum derivatives. Molecularly-based tailored treatments of human tumors are an emerging issue in the "era" of molecular targeted drugs and molecular profiling technologies. We will critically discuss if the genetic background of ovarian cancer can indeed represent a determinant issue for decision making in the treatment selection and how the provocative preclinical findings might be translated in the therapeutic scenario. The presently available preclinical and clinical evidence clearly indicates that genetic background has an emerging role in treatment individualization for ovarian cancer patients. PMID:19825178

  16. High-Density Genetic Mapping Identifies New Susceptibility Variants in Sarcoidosis Phenotypes and Shows Genomic-driven Phenotypic Differences

    PubMed Central

    Ronninger, Marcus; Shchetynsky, Klementy; Franke, Andre; Nöthen, Markus M.; Müller-Quernheim, Joachim; Schreiber, Stefan; Adrianto, Indra; Karakaya, Bekir; van Moorsel, Coline H. M.; Navratilova, Zdenka; Kolek, Vitezslav; Rybicki, Benjamin A.; Iannuzzi, Michael C.; Petrek, Martin; Grutters, Jan C.; Montgomery, Courtney; Fischer, Annegret; Eklund, Anders; Padyukov, Leonid; Grunewald, Johan

    2016-01-01

    Rationale: Sarcoidosis is a multisystem disease of unknown cause. Löfgren’s syndrome (LS) is a characteristic subgroup of sarcoidosis that is associated with a good prognosis in sarcoidosis. However, little is known about its genetic architecture or its broader phenotype, non-LS sarcoidosis. Objectives: To address the genetic architecture of sarcoidosis phenotypes, LS and non-LS. Methods: An association study in a white Swedish cohort of 384 LS, 664 non-LS, and 2,086 control subjects, totaling 3,134 subjects using a fine-mapping genotyping platform was conducted. Replication was performed in four independent cohorts, three of white European descent (Germany, n = 4,975; the Netherlands, n = 613; and Czech Republic, n = 521), and one of black African descent (United States, n = 1,657), totaling 7,766 subjects. Measurements and Main Results: A total of 727 LS-associated variants expanding throughout the extended major histocompatibility complex (MHC) region and 68 non-LS–associated variants located in the MHC class II region were identified and confirmed. A shared overlap between LS and non-LS defined by 17 variants located in the MHC class II region was found. Outside the MHC region, two LS-associated loci, in ADCY3 and between CSMD1 and MCPH1, were observed and replicated. Conclusions: Comprehensive and integrative analyses of genetics, transcription, and pathway modeling on LS and non-LS indicates that these sarcoidosis phenotypes have different genetic susceptibility, genomic distributions, and cellular activities, suggesting distinct molecular mechanisms in pathways related to immune response with a common region. PMID:26651848

  17. Mediterranean Diet Adherence and Genetic Background Roles within a Web-Based Nutritional Intervention: The Food4Me Study.

    PubMed

    San-Cristobal, Rodrigo; Navas-Carretero, Santiago; Livingstone, Katherine M; Celis-Morales, Carlos; Macready, Anna L; Fallaize, Rosalind; O'Donovan, Clare B; Lambrinou, Christina P; Moschonis, George; Marsaux, Cyril F M; Manios, Yannis; Jarosz, Miroslaw; Daniel, Hannelore; Gibney, Eileen R; Brennan, Lorraine; Drevon, Christian A; Gundersen, Thomas E; Gibney, Mike; Saris, Wim H M; Lovegrove, Julie A; Grimaldi, Keith; Parnell, Laurence D; Bouwman, Jildau; Van Ommen, Ben; Mathers, John C; Martinez, J Alfredo

    2017-10-11

    Mediterranean Diet (MedDiet) adherence has been proven to produce numerous health benefits. In addition, nutrigenetic studies have explained some individual variations in the response to specific dietary patterns. The present research aimed to explore associations and potential interactions between MedDiet adherence and genetic background throughout the Food4Me web-based nutritional intervention. Dietary, anthropometrical and biochemical data from volunteers of the Food4Me study were collected at baseline and after 6 months. Several genetic variants related to metabolic risk features were also analysed. A Genetic Risk Score (GRS) was derived from risk alleles and a Mediterranean Diet Score (MDS), based on validated food intake data, was estimated. At baseline, there were no interactions between GRS and MDS categories for metabolic traits. Linear mixed model repeated measures analyses showed a significantly greater decrease in total cholesterol in participants with a low GRS after a 6-month period, compared to those with a high GRS. Meanwhile, a high baseline MDS was associated with greater decreases in Body Mass Index (BMI), waist circumference and glucose. There also was a significant interaction between GRS and the MedDiet after the follow-up period. Among subjects with a high GRS, those with a high MDS evidenced a highly significant reduction in total carotenoids, while among those with a low GRS, there was no difference associated with MDS levels. These results suggest that a higher MedDiet adherence induces beneficial effects on metabolic outcomes, which can be affected by the genetic background in some specific markers.

  18. Background nuclei measurements and implications for cavitation inception in hydrodynamic test facilities

    NASA Astrophysics Data System (ADS)

    Venning, J. A.; Khoo, M. T.; Pearce, B. W.; Brandner, P. A.

    2018-04-01

    Water susceptibility and background nuclei content in a water tunnel are investigated using a cavitation susceptibility meter. The measured cumulative histogram of nuclei concentration against critical pressure shows a power law dependence over a large range of concentrations and pressures. These results show that the water strength is not characterised by a single tension but is susceptible to `all' tensions depending on the relevant timescale. This background nuclei population is invariant to tunnel conditions showing that it is stabilised against dissolution. Consideration of a practical cavitating flow about a sphere shows that although background nuclei may be activated, their numbers are so few compared with other sources that they are insignificant for this case.

  19. A Neonate with Susceptibility to Long QT Syndrome Type 6 who Presented with Ventricular Fibrillation and Sudden Unexpected Infant Death.

    PubMed

    Sauer, Charles W; Marc-Aurele, Krishelle L

    2016-07-28

    BACKGROUND This is a case of a neonate with susceptibility to long QT syndrome (LQTS) who presented with a sudden unexpected infant death. Experts continue to debate whether universal electrocardiogram (ECG) screening of all newborns is feasible, practical, and cost-effective. CASE REPORT A 19-day-old neonate was found unresponsive by her mother. ECG showed ventricular fibrillation and a combination of a lidocaine drip plus multiple defibrillations converted the rhythm to normal sinus. Unfortunately, MRI brain imaging showed multiple infarcts and EEG showed burst suppression pattern with frequent seizures; life supportive treatment was stopped and the infant died. Genetic testing revealed two mutations in the KCNE2 gene consistent with susceptibility to LQTS type 6. CONCLUSIONS We believe this case is the first to demonstrate both a precipitating electrocardiographic and genetic cause of death for an infant with LQTS, showing a cause-and-effect relationship between LQTS mutation, ventricular arrhythmia, and death. We wonder whether universal ECG newborn screening to prevent LQTS death could have saved this baby.

  20. Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance.

    PubMed

    Rasmussen, Angela L; Okumura, Atsushi; Ferris, Martin T; Green, Richard; Feldmann, Friederike; Kelly, Sara M; Scott, Dana P; Safronetz, David; Haddock, Elaine; LaCasse, Rachel; Thomas, Matthew J; Sova, Pavel; Carter, Victoria S; Weiss, Jeffrey M; Miller, Darla R; Shaw, Ginger D; Korth, Marcus J; Heise, Mark T; Baric, Ralph S; de Villena, Fernando Pardo-Manuel; Feldmann, Heinz; Katze, Michael G

    2014-11-21

    Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation nor death from shock, thus restricting pathogenesis studies to nonhuman primates. Here we show that mice from the Collaborative Cross panel of recombinant inbred mice exhibit distinct disease phenotypes after mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, probably mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever. Copyright © 2014, American Association for the Advancement of Science.

  1. Candidate genes implicated in type 1 diabetes susceptibility.

    PubMed

    Aribi, Mourad

    2008-05-01

    Type 1 diabetes (T1D) is an autoimmune disease resulting from pancreatic beta-cells destruction, often appearing on a genetic ground susceptibility under the influence of one or more environmental factors. Multiplex families studies, using genetic markers allowed the identification of various genes, including HLA, insulin, SUMO-4 and CTLA-4 all being linked with different degrees to disease risk. The MIF gene was also suggested, although its role has yet to be established on family or twin studies. The difference in susceptibility among T1D patients suggest the development of the disease as resulting from the interaction between genetic and environmental factors. This review emphasizes the importance of identifying the genes that have a direct impact on the autoimmune process, while recalling the different strategies that are followed. The style of writing should appeal to those with strong interests in molecular biology with an equal balance of immunology and molecular epidemiology.

  2. Strain Background Modifies Phenotypes in the ATP8B1-Deficient Mouse

    PubMed Central

    Vargas, Julie C.; Xu, Hongmei; Groen, Annamiek; Paulusma, Coen C.; Grenert, James P.; Pawlikowska, Ludmila; Sen, Saunak; Elferink, Ronald P. J. Oude; Bull, Laura N.

    2010-01-01

    Background Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficiency. Methodology/Principal Findings We investigated the effect of genetic background on phenotypes of ATP8B1-deficient and wild-type mice, using C57Bl/6 (B6), 129, and (B6-129) F1 strain backgrounds. B6 background resulted in greater abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels, higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of differing strains. Conclusions/Significance Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of liver disease. PMID:20126555

  3. Is Genetic Background Important in Lung Cancer Survival?

    PubMed Central

    Lindström, Linda S.; Hall, Per; Hartman, Mikael; Wiklund, Fredrik; Czene, Kamila

    2009-01-01

    Background In lung cancer, a patient's survival is poor with a wide variation in survival within the stage of disease. The aim of this study was to investigate the familial concordance in lung cancer survival by means of analyses of pairs with different degrees of familial relationships. Methods Our population-based Swedish family database included three million families and over 58 100 lung cancer patients. We modelled the proband (parent, sibling, spouse) survival utilizing a multivariate proportional hazard (Cox) model adjusting for possible confounders of survival. Subsequently, the survival in proband's relative (child, sibling, spouse) was analysed with a Cox model. Findings By use of Cox modelling with 5 years follow-up, we noted a decreased hazard ratio for death in children with good parental survival (Hazard Ratio [HR] = 0.71, 95% CI = 0.51 to 0.99), compared to those with poor parental survival. Also for siblings, a very strong protective effect was seen (HR = 0.14, 95% CI = 0.030 to 0.65). Finally, in spouses no correlation in survival was found. Interpretation Our findings suggest that genetic factors are important in lung cancer survival. In a clinical setting, information on prognosis in a relative may be vital in foreseeing the survival in an individual newly diagnosed with lung cancer. Future molecular studies enhancing the understanding of the underlying mechanisms and pathways are needed. PMID:19478952

  4. Susceptibility to SLE in South Indian Tamils may be influenced by genetic selection pressure on TLR2 and TLR9 genes.

    PubMed

    Devaraju, Panneer; Gulati, Reena; Antony, Paul T; Mithun, C B; Negi, Vir S

    2015-03-01

    Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder with complex etiology. Genetics plays an important role in lupus pathogenesis through its influence on clinical and autoantibody phenotype of the disease. Toll like receptors (TLR) recognize molecular patterns of pathogens and activate the innate immune system. Their ability to identify nucleic acids makes them suitable candidates for investigation of their role in lupus pathogenesis. Hence, this study was carried out to analyze the G to A and C to T transitions in TLR2 and TLR9 genes respectively and to test their association with lupus susceptibility, clinical and autoantibody phenotypes in South Indian Tamils. Three hundred SLE patients fulfilling ACR 2012 criteria for SLE and 460 age, sex similar, ethnicity matched controls were recruited as cases and controls. TLR2 (R753Q) and TLR9 (-1237C/T) polymorphisms were analyzed by real time PCR. The TLR2 gene remained monomorphic in patients and controls, the frequency of the homozygous wild type allele being 100% and 99.6% respectively. Hence, it did not confer susceptibility to SLE. The more frequent T allele of TLR9 gene conferred a significant risk to develop SLE (p=0.011, OR 1.69, 95% CI 1.1-2.6). Both the polymorphisms did not influence clinical or autoantibody phenotype of the disease. Prevailing endemic infections in the Indian subcontinent may have exerted a selection pressure resulting in TLR2 gene remaining monomorphic and the TLR9 adapting to a mutation for its increased expression. These may have an additive effect in the presence of other genetic and environmental risk factors to confer susceptibility to SLE in South Indian Tamils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The Genetic Background of Neonatal Disease.

    PubMed

    Göpel, Wolfgang; Westermann, Eva; Pagel, Friederike

    2018-01-01

    More than 27,000 human genes have been sequenced and described. Only a few of these genes are relevant for common human diseases with regard to diagnostic or therapeutic purposes. This review describes the genetics of common traits and diseases with a particular focus on perspectives for drug discovery and drug therapy in neonates. © 2018 S. Karger AG, Basel.

  6. Recent human evolution has shaped geographical differences in susceptibility to disease

    PubMed Central

    2011-01-01

    Background Searching for associations between genetic variants and complex diseases has been a very active area of research for over two decades. More than 51,000 potential associations have been studied and published, a figure that keeps increasing, especially with the recent explosion of array-based Genome-Wide Association Studies. Even if the number of true associations described so far is high, many of the putative risk variants detected so far have failed to be consistently replicated and are widely considered false positives. Here, we focus on the world-wide patterns of replicability of published association studies. Results We report three main findings. First, contrary to previous results, genes associated to complex diseases present lower degrees of genetic differentiation among human populations than average genome-wide levels. Second, also contrary to previous results, the differences in replicability of disease associated-loci between Europeans and East Asians are highly correlated with genetic differentiation between these populations. Finally, highly replicated genes present increased levels of high-frequency derived alleles in European and Asian populations when compared to African populations. Conclusions Our findings highlight the heterogeneous nature of the genetic etiology of complex disease, confirm the importance of the recent evolutionary history of our species in current patterns of disease susceptibility and could cast doubts on the status as false positives of some associations that have failed to replicate across populations. PMID:21261943

  7. Life extension and the position of the hormetic zone depends on sex and genetic background in Drosophila melanogaster.

    PubMed

    Sarup, Pernille; Loeschcke, Volker

    2011-04-01

    Hormesis, the beneficial effect of a mild stress, has been proposed as a means to prolong the period of healthy ageing as it can increase the average lifespan of a cohort. However, if we want to use hormesis therapeutically it is important that the treatment is beneficial on the individual level and not just on average at the population level. Long lived lines have been shown not to benefit from a, in other lines, hormesis inducing heat treatment in Drosophila melanogaster, D. buzzatii and mice. Also in many experiments hormesis has been reported to occur in one sex only, usually males but not in females. Here we investigated the interaction between the hormetic response and genetic background, sex and duration of a mild heat stress in D. melanogaster, using three replicate lines that have been selected for increased longevity and their respective control lines. We found that genetic background influences the position of the hormetic zone. The implication of this result could be that in a genetically diverse populations a treatment that is life prolonging in one individual could be life shortening in other individuals. However, we did find a hormetic response in all combinations of line and sex in at least one of the experiments which suggests that if it is possible to identify the optimal hormetic dose individually hormesis might become a therapeutic treatment.

  8. The genetic predisposition and the interplay of host genetics and gut microbiome in Crohn disease.

    PubMed

    Jianzhong, Hu

    2014-12-01

    Extensive genetic studies have identified more than 140 loci predisposing to Crohn disease (CD). Several major CD susceptibility genes have been shown to impair biological function with regard to immune response to recognizing and clearance of bacterial infection. Recent human microbiome studies suggest that the gut microbiome composition is differentiated in carriers of many risk variants of major CD susceptibility genes. This interplay between host genetics and its associated gut microbiome may play an essential role in the pathogenesis of CD. The ongoing microbiome research is aimed to investigate the detailed host genetics-microbiome interacting mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Exposure to wood smoke, HPV infection, and genetic susceptibility for cervical neoplasia among women in Colombia.

    PubMed

    Sierra-Torres, Carlos H; Arboleda-Moreno, Yexania Y; Orejuela-Aristizabal, Leonora

    2006-08-01

    Cervical cancer is the second leading cause of death from cancer among women in Colombia (16/100,000). Infection with high-risk human papillomavirus (HPV) plays a major role in the etiology of high-grade squamous intraepithelial lesions (HSILs). Exposure to chemical agents may be a cofactor for tumor induction, and individual genetic differences in the metabolism of these chemical agents may affect the susceptibility of individuals towards the development of HSIL. In this case-control study, a total of 91 cases with HSIL and 92 healthy controls, frequency-matched by age and place of origin, were recruited, and their frequencies of CYP2E1, GSTM1, and GSTT1 polymorphism were determined. We then evaluated the association of these polymorphisms, by themselves and in combination with wood smoke exposure and HPV-infection status, with the risk of HSIL. The results indicate that GSTM1 and GSTT1 polymorphism were not associated with HSIL, although a small increase in risk was observed for individuals who were GSTT1 null (OR = 1.4, 95% CI = 0.57-3.44). Contrary to other investigations, the c2/c2 variant of the CYP2E1 gene was associated with a significant increase in risk after adjusting for wood smoke exposure (OR = 6.3, 95% CI = 1.10-36.38) or wood smoke exposure and HPV-infection status (OR = 10.7, 95% CI = 1.76-65.58). Wood smoke exposure also increased the risk of HSIL among CYP2E1 c2/c2 HPV-positive women (OR = 3.3, CI = 0.50-22.50); however, the increase did not achieve statistical significance. Our study provides tantalizing evidence that genetic differences in the metabolism of wood smoke carcinogens, particularly metabolism by CYP2E1, may confer susceptibility for HSIL development. Further investigations with larger populations will be needed to confirm this association, which may provide important information for improving cervical cancer prevention programs.

  10. The OncoArray Consortium: a Network for Understanding the Genetic Architecture of Common Cancers

    PubMed Central

    Amos, Christopher I.; Dennis, Joe; Wang, Zhaoming; Byun, Jinyoung; Schumacher, Fredrick R.; Gayther, Simon A.; Casey, Graham; Hunter, David J.; Sellers, Thomas A.; Gruber, Stephen B.; Dunning, Alison M.; Michailidou, Kyriaki; Fachal, Laura; Doheny, Kimberly; Spurdle, Amanda B.; Li, Yafang; Xiao, Xiangjun; Romm, Jane; Pugh, Elizabeth; Coetzee, Gerhard A.; Hazelett, Dennis J.; Bojesen, Stig E.; Caga-Anan, Charlisse; Haiman, Christopher A.; Kamal, Ahsan; Luccarini, Craig; Tessier, Daniel; Vincent, Daniel; Bacot, François; Van Den Berg, David J.; Nelson, Stefanie; Demetriades, Stephen; Goldgar, David E.; Couch, Fergus J.; Forman, Judith L.; Giles, Graham G.; Conti, David V.; Bickeböller, Heike; Risch, Angela; Waldenberger, Melanie; Brüske, Irene; Hicks, Belynda D.; Ling, Hua; McGuffog, Lesley; Lee, Andrew; Kuchenbaecker, Karoline B.; Soucy, Penny; Manz, Judith; Cunningham, Julie M.; Butterbach, Katja; Kote-Jarai, Zsofia; Kraft, Peter; FitzGerald, Liesel M.; Lindström, Sara; Adams, Marcia; McKay, James D.; Phelan, Catherine M.; Benlloch, Sara; Kelemen, Linda E.; Brennan, Paul; Riggan, Marjorie; O’Mara, Tracy A.; Shen, Hongbin; Shi, Yongyong; Thompson, Deborah J.; Goodman, Marc T.; Nielsen, Sune F.; Berchuck, Andrew; Laboissiere, Sylvie; Schmit, Stephanie L.; Shelford, Tameka; Edlund, Christopher K.; Taylor, Jack A.; Field, John K.; Park, Sue K.; Offit, Kenneth; Thomassen, Mads; Schmutzler, Rita; Ottini, Laura; Hung, Rayjean J.; Marchini, Jonathan; Al Olama, Ali Amin; Peters, Ulrike; Eeles, Rosalind A.; Seldin, Michael F.; Gillanders, Elizabeth; Seminara, Daniela; Antoniou, Antonis C.; Pharoah, Paul D.; Chenevix-Trench, Georgia; Chanock, Stephen J.; Simard, Jacques; Easton, Douglas F.

    2016-01-01

    Background Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers and cancer related traits. Methods The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. Results The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Conclusions Results from these analyses will enable researchers to identify new susceptibility loci, perform fine mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental and lifestyle related exposures. Impact Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. PMID:27697780

  11. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers

    PubMed Central

    Schwarz, Ryan S.; Moran, Nancy A.; Evans, Jay D.

    2016-01-01

    Microbial symbionts living within animal guts are largely composed of resident bacterial species, forming communities that often provide benefits to the host. Gut microbiomes of adult honey bees (Apis mellifera) include core residents such as the betaproteobacterium Snodgrassella alvi, alongside transient parasites such as the protozoan Lotmaria passim. To test how these species affect microbiome composition and host physiology, we administered S. alvi and/or L. passim inocula to newly emerged worker bees from four genetic backgrounds (GH) and reared them in normal (within hives) or stressed (protein-deficient, asocial) conditions. Microbiota acquired by normal bees were abundant but quantitatively differed across treatments, indicating treatment-associated dysbiosis. Pretreatment with S. alvi made normal bees more susceptible to L. passim and altered developmental and detoxification gene expression. Stressed bees were more susceptible to L. passim and were depauperate in core microbiota, yet supplementation with S. alvi did not alter this susceptibility. Microbiomes were generally more variable by GH in stressed bees, which also showed opposing and comparatively reduced modulation of gene expression responses to treatments compared with normal bees. These data provide experimental support for a link between altered gut microbiota and increased parasite and pathogen prevalence, as observed from honey bee colony collapse disorder. PMID:27482088

  12. Lymnaea schirazensis, an Overlooked Snail Distorting Fascioliasis Data: Genotype, Phenotype, Ecology, Worldwide Spread, Susceptibility, Applicability

    PubMed Central

    Bargues, María Dolores; Artigas, Patricio; Khoubbane, Messaoud; Flores, Rosmary; Glöer, Peter; Rojas-García, Raúl; Ashrafi, Keyhan; Falkner, Gerhard; Mas-Coma, Santiago

    2011-01-01

    Background Lymnaeid snails transmit medical and veterinary important trematodiases, mainly fascioliasis. Vector specificity of fasciolid parasites defines disease distribution and characteristics. Different lymnaeid species appear linked to different transmission and epidemiological patterns. Pronounced susceptibility differences to absolute resistance have been described among lymnaeid populations. When assessing disease characteristics in different endemic areas, unexpected results were obtained in studies on lymnaeid susceptibility to Fasciola. We undertook studies to understand this disease transmission heterogeneity. Methodology/Principal Findings A ten-year study in Iran, Egypt, Spain, the Dominican Republic, Mexico, Venezuela, Ecuador and Peru, demonstrated that such heterogeneity is not due to susceptibility differences, but to a hitherto overlooked cryptic species, Lymnaea schirazensis, confused with the main vector Galba truncatula and/or other Galba/Fossaria vectors. Nuclear rDNA and mtDNA sequences and phylogenetic reconstruction highlighted an old evolutionary divergence from other Galba/Fossaria species, and a low intraspecific variability suggesting a recent spread from one geographical source. Morphometry, anatomy and egg cluster analyses allowed for phenotypic differentiation. Selfing, egg laying, and habitat characteristics indicated a migration capacity by passive transport. Studies showed that it is not a vector species (n = 8572 field collected, 20 populations): snail finding and penetration by F. hepatica miracidium occur but never lead to cercarial production (n = 338 experimentally infected). Conclusions/Significance This species has been distorting fasciolid specificity/susceptibility and fascioliasis geographical distribution data. Hence, a large body of literature on G. truncatula should be revised. Its existence has henceforth to be considered in research. Genetic data on livestock, archeology and history along the 10,000-year

  13. GAB2 as an Alzheimer Disease Susceptibility Gene

    PubMed Central

    Schjeide, Brit-Maren M.; Hooli, Basavaraj; Parkinson, Michele; Hogan, Meghan F.; DiVito, Jason; Mullin, Kristina; Blacker, Deborah; Tanzi, Rudolph E.; Bertram, Lars

    2009-01-01

    Background Genomewide association (GWA) studies have recently implicated 4 novel Alzheimer disease (AD) susceptibility loci (GAB2, GOLM1, and 2 uncharacterized loci to date on chromosomes 9p and 15q). To our knowledge, these findings have not been independently replicated. Objective To assess these GWA findings in 4 large data sets of families affected by AD. Design Follow-up of genetic association findings in previous studies. Setting Academic research. Participants More than 4000 DNA samples from almost 1300 families affected with AD. Main Outcome Measures Genetic association analysis testing of 4 GWA signals (rs7101429 [GAB2], rs7019241 [GOLM1], rs10519262 [chromosome 15q], and rs9886784 [chromosome 9p]) using family-based methods. Results In the combined analyses, only rs7101429 in GAB2 yielded significant evidence of association with the same allele as in the original GWA study (P = .002). The results are in agreement with recent meta-analyses of this and other GAB2 polymorphisms suggesting approximately a 30% decrease in risk for AD among carriers of the minor alleles. None of the other 3 tested loci showed consistent evidence for association with AD across the investigated data sets. Conclusions GAB2 contains genetic variants that may lead to a modest change in the risk for AD. Despite these promising results, more data from independent samples are needed to better evaluate the potential contribution of GAB2 to AD risk in the general population. PMID:19204163

  14. Can Genetic Analysis of Putative Blood Alzheimer's Disease Biomarkers Lead to Identification of Susceptibility Loci?

    PubMed

    Barber, Robert C; Phillips, Nicole R; Tilson, Jeffrey L; Huebinger, Ryan M; Shewale, Shantanu J; Koenig, Jessica L; Mitchel, Jeffrey S; O'Bryant, Sid E; Waring, Stephen C; Diaz-Arrastia, Ramon; Chasse, Scott; Wilhelmsen, Kirk C

    2015-01-01

    Although 24 Alzheimer's disease (AD) risk loci have been reliably identified, a large portion of the predicted heritability for AD remains unexplained. It is expected that additional loci of small effect will be identified with an increased sample size. However, the cost of a significant increase in Case-Control sample size is prohibitive. The current study tests whether exploring the genetic basis of endophenotypes, in this case based on putative blood biomarkers for AD, can accelerate the identification of susceptibility loci using modest sample sizes. Each endophenotype was used as the outcome variable in an independent GWAS. Endophenotypes were based on circulating concentrations of proteins that contributed significantly to a published blood-based predictive algorithm for AD. Endophenotypes included Monocyte Chemoattractant Protein 1 (MCP1), Vascular Cell Adhesion Molecule 1 (VCAM1), Pancreatic Polypeptide (PP), Beta2 Microglobulin (B2M), Factor VII (F7), Adiponectin (ADN) and Tenascin C (TN-C). Across the seven endophenotypes, 47 SNPs were associated with outcome with a p-value ≤1x10(-7). Each signal was further characterized with respect to known genetic loci associated with AD. Signals for several endophenotypes were observed in the vicinity of CR1, MS4A6A/MS4A4E, PICALM, CLU, and PTK2B. The strongest signal was observed in association with Factor VII levels and was located within the F7 gene. Additional signals were observed in MAP3K13, ZNF320, ATP9B and TREM1. Conditional regression analyses suggested that the SNPs contributed to variation in protein concentration independent of AD status. The identification of two putatively novel AD loci (in the Factor VII and ATP9B genes), which have not been located in previous studies despite massive sample sizes, highlights the benefits of an endophenotypic approach for resolving the genetic basis for complex diseases. The coincidence of several of the endophenotypic signals with known AD loci may point to novel

  15. Weight gain in mice on a high caloric diet and chronically treated with omeprazole depends on sex and genetic background.

    PubMed

    Saqui-Salces, Milena; Tsao, Amy C; Gillilland, Merritt G; Merchant, Juanita L

    2017-01-01

    The impact of omeprazole (OM), a widely used over-the-counter proton pump inhibitor, on weight gain has not been extensively explored. We examined what factors, e.g., diet composition, microbiota, genetic strain, and sex, might affect weight gain in mice fed a high caloric diet while on OM. Inbred C57BL/6J strain, a 50:50 hybrid (B6SJLF1/J) strain, and mice on a highly mixed genetic background were fed four diets: standard chow (STD, 6% fat), STD with 200 ppm OM (STD + O), a high-energy chow (HiE, 11% fat), and HiE chow with OM (HiE + O) for 17 wk. Metabolic analysis, body composition, and fecal microbiota composition were analyzed in C57BL/6J mice. Oral glucose tolerance tests were performed using mice on the mixed background. After 8 wk, female and male C57BL/6J mice on the HiE diets ate less, whereas males on the HiE diets compared with the STD diets gained weight. All diet treatments reduced energy expenditure in females but in males only those on the HiE + O diet. Gut microbiota composition differed in the C57BL/6J females but not the males. Hybrid B6SJLF1/J mice showed similar weight gain on all test diets. In contrast, mixed strain male mice fed a HiE + O diet gained ∼40% more weight than females on the same diet. In addition to increased weight gain, mixed genetic mice on the HiE + O diet cleared glucose normally but secreted more insulin. We concluded that sex and genetic background define weight gain and metabolic responses of mice on high caloric diets and OM. Copyright © 2017 the American Physiological Society.

  16. Weight gain in mice on a high caloric diet and chronically treated with omeprazole depends on sex and genetic background

    PubMed Central

    Tsao, Amy C.; Gillilland, Merritt G.; Merchant, Juanita L.

    2016-01-01

    The impact of omeprazole (OM), a widely used over-the-counter proton pump inhibitor, on weight gain has not been extensively explored. We examined what factors, e.g., diet composition, microbiota, genetic strain, and sex, might affect weight gain in mice fed a high caloric diet while on OM. Inbred C57BL/6J strain, a 50:50 hybrid (B6SJLF1/J) strain, and mice on a highly mixed genetic background were fed four diets: standard chow (STD, 6% fat), STD with 200 ppm OM (STD + O), a high-energy chow (HiE, 11% fat), and HiE chow with OM (HiE + O) for 17 wk. Metabolic analysis, body composition, and fecal microbiota composition were analyzed in C57BL/6J mice. Oral glucose tolerance tests were performed using mice on the mixed background. After 8 wk, female and male C57BL/6J mice on the HiE diets ate less, whereas males on the HiE diets compared with the STD diets gained weight. All diet treatments reduced energy expenditure in females but in males only those on the HiE + O diet. Gut microbiota composition differed in the C57BL/6J females but not the males. Hybrid B6SJLF1/J mice showed similar weight gain on all test diets. In contrast, mixed strain male mice fed a HiE + O diet gained ∼40% more weight than females on the same diet. In addition to increased weight gain, mixed genetic mice on the HiE + O diet cleared glucose normally but secreted more insulin. We concluded that sex and genetic background define weight gain and metabolic responses of mice on high caloric diets and OM. PMID:27810953

  17. Segregation of a Latent High Adiposity Phenotype in Families with a History of Type 2 Diabetes Mellitus Implicates Rare Obesity-Susceptibility Genetic Variants with Large Effects in Diabetes-Related Obesity

    PubMed Central

    Jenkins, Arthur B.; Batterham, Marijka; Samocha-Bonet, Dorit; Tonks, Katherine; Greenfield, Jerry R.; Campbell, Lesley V.

    2013-01-01

    Background We recently reported significantly greater weight gain in non-diabetic healthy subjects with a 1st degree family history (FH+) of type 2 diabetes mellitus (T2DM) than in a matched control group without such history (FH−) during voluntary overfeeding, implying co-inheritance of susceptibilities to T2DM and obesity. We have estimated the extent and mode of inheritance of susceptibility to increased adiposity in FH+. Methods Normoglycaemic participants were categorised either FH+ (≥1 1st degree relative with T2DM, 50F/30M, age 45±14 (SD) yr) or FH− (71F/51M, age 43±14 yr). Log-transformed anthropometric measurements (height, hip and waist circumferences) and lean, bone and fat mass (Dual Energy X-ray Absorptiometry) data were analysed by rotated Factor Analysis. The age- and gender-adjusted distributions of indices of adiposity in FH+ were assessed by fits to a bimodal model and by relative risk ratios (RR, FH+/FH−) and interpreted in a purely genetic model of FH effects. Results The two orthogonal factors extracted, interpretable as Frame and Adiposity accounted for 80% of the variance in the input data. FH+ was associated with significantly higher Adiposity scores (p<0.01) without affecting Frame scores. Adiposity scores in FH+ conformed to a bimodal normal distribution, consistent with dominant expression of major susceptibility genes with 59% (95% CI 40%, 74%) of individuals under the higher mode. Calculated risk allele frequencies were 0.09 (0.02, 0.23) in FH−, 0.36 (0.22, 0.48) in FH+ and 0.62 (0.36, 0.88) in unobserved T2DM-affected family members. Conclusions The segregation of Adiposity in T2DM-affected families is consistent with dominant expression of rare risk variants with major effects, which are expressed in over half of FH+ and which can account for most T2DM-associated obesity in our population. The calculated risk allele frequency in FH− suggests that rare genetic variants could also account for a substantial fraction of the

  18. Genetic Diversity Influences the Response of the Brain to Developmental Lead Exposure

    PubMed Central

    Schneider, Jay S.; Talsania, Keyur; Mettil, William; Anderson, David W.

    2014-01-01

    Although extrinsic factors, such as nutritional status, and some intrinsic genetic factors may modify susceptibility to developmental lead (Pb) poisoning, no studies have specifically examined the influence of genetic background on outcomes from Pb exposure. In this study, we used gene microarray profiling to identify Pb-responsive genes in rats of different genetic backgrounds, including inbred (Fischer 344 (F344)) and outbred (Long Evans (LE), Sprague Dawley (SD)) strains, to investigate the role that genetic variation may play in influencing outcomes from developmental Pb exposure. Male and female animals received either perinatal (gestation through lactation) or postnatal (birth through weaning) exposure to Pb in food (0, 250, or 750 ppm). RNA was extracted from the hippocampus at day 55 and hybridized to Affymetrix Rat Gene 1.0 ST Arrays. There were significant strain-specific effects of Pb on the hippocampal transcriptome with 978 transcripts differentially expressed in LE rats across all experimental groups, 269 transcripts differentially expressed in F344 rats, and only 179 transcripts differentially expressed in SD rats. These results were not due to strain-related differences in brain accumulation of Pb. Further, no genes were consistently differentially regulated in all experimental conditions. There was no set of “Pb toxicity” genes that are a molecular signature for Pb neurotoxicity that transcended sex, exposure condition, and strain. These results demonstrate the influence that strain and genetic background play in modifying the brain's response to developmental Pb exposure and may have relevance for better understanding the molecular underpinnings of the lack of a neurobehavioral signature in childhood Pb poisoning. PMID:24913800

  19. Routine Discovery of Complex Genetic Models using Genetic Algorithms

    PubMed Central

    Moore, Jason H.; Hahn, Lance W.; Ritchie, Marylyn D.; Thornton, Tricia A.; White, Bill C.

    2010-01-01

    Simulation studies are useful in various disciplines for a number of reasons including the development and evaluation of new computational and statistical methods. This is particularly true in human genetics and genetic epidemiology where new analytical methods are needed for the detection and characterization of disease susceptibility genes whose effects are complex, nonlinear, and partially or solely dependent on the effects of other genes (i.e. epistasis or gene-gene interaction). Despite this need, the development of complex genetic models that can be used to simulate data is not always intuitive. In fact, only a few such models have been published. We have previously developed a genetic algorithm approach to discovering complex genetic models in which two single nucleotide polymorphisms (SNPs) influence disease risk solely through nonlinear interactions. In this paper, we extend this approach for the discovery of high-order epistasis models involving three to five SNPs. We demonstrate that the genetic algorithm is capable of routinely discovering interesting high-order epistasis models in which each SNP influences risk of disease only through interactions with the other SNPs in the model. This study opens the door for routine simulation of complex gene-gene interactions among SNPs for the development and evaluation of new statistical and computational approaches for identifying common, complex multifactorial disease susceptibility genes. PMID:20948983

  20. Antibiotic Susceptibilities of Genetically Characterized Streptococcus milleri Group Strains

    PubMed Central

    Tracy, Michael; Wanahita, Anna; Shuhatovich, Yevgeny; Goldsmith, Elizabeth A.; Clarridge, Jill E.; Musher, Daniel M.

    2001-01-01

    Previous studies of the antibiotic susceptibility of Streptococcus milleri group organisms have distinguished among species by using phenotypic techniques. Using 44 isolates that were speciated by 16S rRNA gene sequencing, we studied the MICs and minimum bactericidal concentrations of penicillin, ampicillin, ceftriaxone, and clindamycin for Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus. None of the organisms was resistant to beta-lactam antibiotics, although a few isolates were intermediately resistant; one strain of S. anginosus was tolerant to ampicillin, and another was tolerant to ceftriaxone. Six isolates were resistant to clindamycin, with representation from each of the three species. Relatively small differences in antibiotic susceptibilities among species of the S. milleri group show that speciation is unlikely to be important in selecting an antibiotic to treat infection caused by one of these isolates. PMID:11302819

  1. Dusp3 and Psme3 Are Associated with Murine Susceptibility to Staphylococcus aureus Infection and Human Sepsis

    PubMed Central

    Yan, Qin; Sharma-Kuinkel, Batu K.; Deshmukh, Hitesh; Tsalik, Ephraim L.; Cyr, Derek D.; Lucas, Joseph; Woods, Christopher W.; Scott, William K.; Sempowski, Gregory D.; Thaden, Joshua; Rude, Thomas H.; Ahn, Sun Hee; Fowler, Vance G.

    2014-01-01

    Using A/J mice, which are susceptible to Staphylococcus aureus, we sought to identify genetic determinants of susceptibility to S. aureus, and evaluate their function with regard to S. aureus infection. One QTL region on chromosome 11 containing 422 genes was found to be significantly associated with susceptibility to S. aureus infection. Of these 422 genes, whole genome transcription profiling identified five genes (Dcaf7, Dusp3, Fam134c, Psme3, and Slc4a1) that were significantly differentially expressed in a) S. aureus –infected susceptible (A/J) vs. resistant (C57BL/6J) mice and b) humans with S. aureus blood stream infection vs. healthy subjects. Three of these genes (Dcaf7, Dusp3, and Psme3) were down-regulated in susceptible vs. resistant mice at both pre- and post-infection time points by qPCR. siRNA-mediated knockdown of Dusp3 and Psme3 induced significant increases of cytokine production in S. aureus-challenged RAW264.7 macrophages and bone marrow derived macrophages (BMDMs) through enhancing NF-κB signaling activity. Similar increases in cytokine production and NF-κB activity were also seen in BMDMs from CSS11 (C57BL/6J background with chromosome 11 from A/J), but not C57BL/6J. These findings suggest that Dusp3 and Psme3 contribute to S. aureus infection susceptibility in A/J mice and play a role in human S. aureus infection. PMID:24901344

  2. Genetic Factors of Autoimmune Thyroid Diseases in Japanese

    PubMed Central

    Ban, Yoshiyuki

    2012-01-01

    Autoimmune thyroid diseases (AITDs), including Graves' disease (GD) and Hashimoto's thyroiditis (HT), are caused by immune response to self-thyroid antigens and affect approximately 2–5% of the general population. Genetic susceptibility in combination with external factors, such as smoking, viral/bacterial infection, and chemicals, is believed to initiate the autoimmune response against thyroid antigens. Abundant epidemiological data, including family and twin studies, point to a strong genetic influence on the development of AITDs. Various techniques have been employed to identify genes contributing to the etiology of AITDs, including candidate gene analysis and whole genome screening. These studies have enabled the identification of several loci (genetic regions) that are linked to AITDs, and, in some of these loci, putative AITD susceptibility genes have been identified. Some of these genes/loci are unique to GD and HT and some are common to both diseases, indicating that there is a shared genetic susceptibility to GD and HT. Known AITD-susceptibility genes are classified into three groups: HLA genes, non-HLA immune-regulatory genes (e.g., CTLA-4, PTPN22, and CD40), and thyroid-specific genes (e.g., TSHR and Tg). In this paper, we will summarize the latest findings on AITD susceptibility genes in Japanese. PMID:22242199

  3. Both qualitative and quantitative genetic variation of MHC class II molecules may influence susceptibility to autoimmune diseases: the case of endemic pemphigus foliaceus.

    PubMed

    Piovezan, Bruno Zagonel; Petzl-Erler, Maria Luiza

    2013-09-01

    The MHC class II transactivator (CIITA) is a key regulator in expression of the HLA class II genes. It is well known that HLA-DRB1 genotypes have a strong influence on the risk of multifactorial autoimmune diseases, but the effect of CIITA genotypes remains controversial. We tested in a case-control study whether CIITA polymorphisms influence the risk of developing endemic pemphigus foliaceus (EPF) and whether CIITA and HLA-DRB1 interact as regards susceptibility to the disease. The rs4774 SNP is not associated to EPF, while rs3087456 in the CIITA gene promoter is associated with susceptibility [odds ratio (OR) = 2.6, p < 0.001 and OR = 2.0 p = 0.003 for genotypes G/G and G/A, respectively]. We suggest that the associations result from the effect of genetically controlled levels of CIITA on expression of the susceptible and protective HLA class II molecules. Remarkably, the interaction between CIITA and HLA-DRB1 genotypes is strong and additive. The OR for individuals having two susceptible HLA-DRB1 alleles is 14.1 in presence of the susceptible CIITA G/G or G/A genotypes and much lower (2.2) in presence of the protective CIITA A/A genotype. We conclude that quantitative as well as qualitative variation of HLA class II molecules have an effect on the risk of an individual developing EPF. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  4. Human genetic variation in VAC14 regulates Salmonella invasion and typhoid fever through modulation of cholesterol.

    PubMed

    Alvarez, Monica I; Glover, Luke C; Luo, Peter; Wang, Liuyang; Theusch, Elizabeth; Oehlers, Stefan H; Walton, Eric M; Tram, Trinh Thi Bich; Kuang, Yu-Lin; Rotter, Jerome I; McClean, Colleen M; Chinh, Nguyen Tran; Medina, Marisa W; Tobin, David M; Dunstan, Sarah J; Ko, Dennis C

    2017-09-12

    Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi ( S Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches.

  5. Human genetic variation in VAC14 regulates Salmonella invasion and typhoid fever through modulation of cholesterol

    PubMed Central

    Alvarez, Monica I.; Glover, Luke C.; Luo, Peter; Wang, Liuyang; Theusch, Elizabeth; Oehlers, Stefan H.; Walton, Eric M.; Tram, Trinh Thi Bich; Kuang, Yu-Lin; Rotter, Jerome I.; McClean, Colleen M.; Chinh, Nguyen Tran; Medina, Marisa W.; Dunstan, Sarah J.

    2017-01-01

    Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi (S. Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S. Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches. PMID:28827342

  6. LTF and DEFB1 polymorphisms are associated with susceptibility toward chronic periodontitis development.

    PubMed

    Zupin, L; Robino, A; Navarra, C O; Pirastu, N; Di Lenarda, R; Gasparini, P; Crovella, S; Bevilacqua, L

    2017-10-01

    Chronic periodontitis is a common pathological condition that affects the supporting tissue of the teeth, leading to progressive alveolar bone destruction and teeth loss. The disease is caused by bacteria and derives from an altered host immune and inflammatory response, also involving different factors such as the oral hygiene, smoking, and genetic background. The innate immune response, the first line of host defense, could also play an important role in the susceptibility to chronic periodontitis. In this study, we evaluated the possible association between periodontal disease and seven genetic variations within DEFB1 and LTF genes, encoding for β-defensins 1 and lactoferrin (two members of oral innate immune system), in an Italian isolated population. DEFB1 5'UTR g. -52G>A (rs1799946), g. -44C>G (rs1800972), g. -20G>A (rs11362), 3'UTR c*5G>A (rs1047031), c*87A>G (rs1800971), LTF p.Ala29Thr (rs1126477), and p.Lys47Arg (rs1126478) single nucleotide polymorphisms (SNPs) were analyzed in 155 healthy individuals and 439 chronic periodontitis patients from North-East Italy. Significant associations were found between periodontitis and g. -20G>A (rs11362) and g. -44C>G (rs1800972) SNPs in DEFB1 gene as well as p.Ala29Thr (rs1126477) and p.Lys47Arg (rs1126478) SNPs in LTF gene. Our results suggest the involvement of DEFB1 and LTF genetic variations in the susceptibility toward development of periodontitis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  7. A unifying theory for genetic epidemiological analysis of binary disease data.

    PubMed

    Lipschutz-Powell, Debby; Woolliams, John A; Doeschl-Wilson, Andrea B

    2014-02-19

    Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. We have derived a genetic-epidemiological function for quantitative genetic analyses of binary

  8. Juvenile-onset myasthenia gravis: autoantibody status, clinical characteristics and genetic polymorphisms.

    PubMed

    Hong, Yu; Skeie, Geir Olve; Zisimopoulou, Paraskevi; Karagiorgou, Katerina; Tzartos, Socrates J; Gao, Xiang; Yue, Yao-Xian; Romi, Fredrik; Zhang, Xu; Li, Hai-Feng; Gilhus, Nils Erik

    2017-05-01

    Myasthenia gravis (MG) is an autoimmune disorder mediated by antibodies against proteins at the neuromuscular junction. Juvenile-onset MG (JMG) has been reported to have special characteristics. It is still unclear whether there are any pathogenic and genetic differences between juvenile and adult MG. In this study, we evaluated the clinical characteristics, autoantibody status (antibodies against AChR, MuSK, LRP4, titin and RyR) and genetic susceptibility (CHRNA1, CTLA4 and AIRE) in 114 Chinese JMG patients, and compared with 207 young adult MG patients (onset age 18-40 years). JMG patients were classified into two subgroups: the very early onset group (<8 years) and puberty onset group (8-18 years). The very early onset MG patients had a higher proportion of ocular MG and thymus hyperplasia, compared with puberty onset MG and young adult MG (P < 0.05). AChR antibodies were found in majority of JMG patients and were associated with more severe disease (P < 0.05), while other antibodies were rare in JMG. Moreover, the very early onset MG had a more prominent genetic predisposition than puberty and adult MG, affecting the susceptible genes CHRNA1 and CTLA4. JMG has the same pathogenic background as adult MG, but has typical clinical features and a prominent genetic predisposition in very early onset patients (<8 years). Specific therapeutic considerations are needed.

  9. Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility.

    PubMed

    Snijders, Antoine M; Marchetti, Francesco; Bhatnagar, Sandhya; Duru, Nadire; Han, Ju; Hu, Zhi; Mao, Jian-Hua; Gray, Joe W; Wyrobek, Andrew J

    2012-01-01

    High dose ionizing radiation (IR) is a well-known risk factor for breast cancer but the health effects after low-dose (LD, <10 cGy) exposures remain highly uncertain. We explored a systems approach that compared LD-induced chromosome damage and transcriptional responses in strains of mice with genetic differences in their sensitivity to radiation-induced mammary cancer (BALB/c and C57BL/6) for the purpose of identifying mechanisms of mammary cancer susceptibility. Unirradiated mammary and blood tissues of these strains differed significantly in baseline expressions of DNA repair, tumor suppressor, and stress response genes. LD exposures of 7.5 cGy (weekly for 4 weeks) did not induce detectable genomic instability in either strain. However, the mammary glands of the sensitive strain but not the resistant strain showed early transcriptional responses involving: (a) diminished immune response, (b) increased cellular stress, (c) altered TGFβ-signaling, and (d) inappropriate expression of developmental genes. One month after LD exposure, the two strains showed opposing responses in transcriptional signatures linked to proliferation, senescence, and microenvironment functions. We also discovered a pre-exposure expression signature in both blood and mammary tissues that is predictive for poor survival among human cancer patients (p = 0.0001), and a post-LD-exposure signature also predictive for poor patient survival (p<0.0001). There is concordant direction of expression in the LD-exposed sensitive mouse strain, in biomarkers of human DCIS and in biomarkers of human breast tumors. Our findings support the hypothesis that genetic mechanisms that determine susceptibility to LD radiation induced mammary cancer in mice are similar to the tissue mechanisms that determine poor-survival in breast cancer patients. We observed non-linearity of the LD responses providing molecular evidence against the LNT risk model and obtained new evidence that LD responses are strongly

  10. Application Form for NCI Cancer Genetics Services Directory

    Cancer.gov

    Professionals who provide services related to cancer genetics (cancer risk assessment, genetic counseling, genetic susceptibility testing, and others) may fill out this application form to be listed in the National Cancer Institute's Cancer Genetics Services Directory.

  11. Inclusion Criteria for NCI Cancer Genetics Services Directory

    Cancer.gov

    Professionals who provide services related to cancer genetics (cancer risk assessment, genetic counseling, genetic susceptibility testing, and others) must meet these criteria before applying to be listed in the National Cancer Institute's Cancer Genetics Services Directory.

  12. Extended biofilm susceptibility assay for Staphylococcus aureus bovine mastitis isolates: evidence for association between genetic makeup and biofilm susceptibility.

    PubMed

    Melchior, M B; van Osch, M H J; Lam, T J G M; Vernooij, J C M; Gaastra, W; Fink-Gremmels, J

    2011-12-01

    Staphylococcus aureus is one of the most prevalent causes of bovine mastitis. The antimicrobial treatment of this disease is currently based on antimicrobial susceptibility tests according to Clinical and Laboratory Standards Institute standards. However, various authors have shown a discrepancy between the results of this standard susceptibility test and the actual cure rate of the applied antimicrobial treatment. Increasing evidence suggests that in vivo biofilm formation by Staph. aureus, which is not assessed in the antimicrobial susceptibility tests, is associated with this problem, resulting in disappointing cure rates, especially for infections of longer duration. Previous data obtained with a limited number of strains showed that the extended biofilm antimicrobial susceptibility (EBS) assay reveals differences between strains, which cannot be derived from a standard susceptibility test or from a 24-h biofilm susceptibility test. The objective of this study was to test a collection of Staph. aureus bovine mastitis strains in the EBS assay and to model the effect of antimicrobial exposure, duration of antimicrobial exposure, and genotype profile of the strains on antimicrobial susceptibility. With the results from a previous study with the same collection of strains, the effect of genotype represented by accessory gene regulator gene (agr-type), the presence of insertional sequence 257 (IS257), intercellular adhesion (ica), and the β-lactamase (blaZ) gene were entered as explanatory factors in a logistic regression model. The agr locus of Staph. aureus controls the expression of most of the virulence factors, represses the transcription of several cell wall-associated proteins, and activates several exoproteins during the post-exponential phase. The IS257 gene has been related to biofilm formation in vitro and was found earlier in 50% of the agr-type 2 strains. The ica gene cluster encodes for the production of an extracellular polysaccharide adhesin, termed

  13. Association between TLR2 and TLR4 Gene Polymorphisms and the Susceptibility to Inflammatory Bowel Disease: A Meta-Analysis

    PubMed Central

    Huang, Xiuping; Zhang, Wei; Han, Zelong; Liu, Side

    2015-01-01

    Background The associations between toll-like receptor 2 (TLR2) and toll-like receptor 4(TLR4) polymorphisms and inflammatory bowel disease (IBD) susceptibility remain controversial. A meta-analysis was performed to assess these associations. Methods A systematic search was performed to identify all relevant studies relating TLR2 and TLR4 polymorphisms and IBD susceptibility. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Subgroup analyses were performed by ethnicity and publication quality. Results Thirty-eight eligible studies, assessing 10970 cases and 7061 controls were included. No TLR2 Arg677Trp polymorphism was found. No significant association was observed between TLR2 Arg753Gln polymorphism and Crohn’s disease (CD) or ulcerative colitis (UC) in all genetic models. Interestingly, TLR4 Asp299Gly polymorphism was significantly associated with increased risk of CD and UC in all genetic models, except for the additive one in CD. In addition, a statistically significant association between TLR4 Asp299Gly polymorphism and IBD was observed among high quality studies evaluating Caucasians, but not Asians. Associations between TLR4 Thr399Ile polymorphisms and CD risk were found only in the allele and dominant models. The TLR4 Thr399Ile polymorphism was associated with UC risk in pooled results as well as subgroup analysis of high quality publications assessing Caucasians, in allele and dominant models. Conclusions The meta-analysis provides evidence that TLR2 Arg753Gln is not associated with CD and UC susceptibility in Asians; TLR4 Asp299Gly is associated with CD and UC susceptibility in Caucasians, but not Asians. TLR4 Thr399Ile may be associated with IBD susceptibility in Caucasians only. Additional well-powered studies of Asp299Gly and other TLR4 variants are warranted. PMID:26023918

  14. Endoscopic features and genetic background of inflammatory bowel disease complicated with Takayasu arteritis.

    PubMed

    Akiyama, Shintaro; Fujii, Toshimitsu; Matsuoka, Katsuyoshi; Yusuke, Ebana; Negi, Mariko; Takenaka, Kento; Nagahori, Masakazu; Ohtsuka, Kazuo; Isobe, Mitsuaki; Watanabe, Mamoru

    2017-05-01

    Takayasu arteritis (TA) is occasionally complicated with inflammatory bowel disease (IBD). This study assessed the endoscopic and genetic features of IBD complicated with TA (IBD-TA). This study retrospectively reviewed the clinical charts of 142 TA patients (14 men and 128 women; median age 48.5 years [range, 18-97 years]). Human lymphocyte antigen (HLA) types and a single-nucleotide polymorphism rs6871626 in the IL12B gene were assessed in 101 and 81 patients with TA, respectively. Inflammatory bowel disease was diagnosed in 13 (9.2%) of the 142 patients. The endoscopic features of IBD-TA at initial diagnosis (n = 8) showed discontinuous and focal mucosal inflammations (n = 7, 87.5%), and only one case was diagnosed as ulcerative colitis (UC) at the first colonoscopy. In the genetic comparison of HLA class I between TA patients with IBD and those without IBD, HLA-B*52:01 and C*12:02 were more frequent in the IBD-TA group (P = 0.001 and P = 0.009, respectively). Meanwhile, HLA-DRB-1*15:02, DQA-1*01:03, DQB-1*06:01, and DPB-1*09:01 as HLA class II were positively associated with IBD-TA (P = 0.004, P = 0.019, P = 0.019, and P = 0.002, respectively). IL12B rs6871626 did not show an association with IBD-TA compared with that with TA without IBD. The endoscopic findings of IBD-TA at initial diagnosis were atypical for UC or Crohn's disease. IBD-TA possessed the HLA haplotype, which had a susceptible effect on UC. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  15. Genetic diversity and antibiotic susceptibility of Staphylococcus aureus isolates from wild boars.

    PubMed

    Seinige, D; Von Altrock, A; Kehrenberg, C

    2017-10-01

    We here report the occurrence of S. aureus in wild boars and characterize isolates genotypically and phenotypically in order to get knowledge about the occurrence of clonal lineages and genotypes in free-living wild animals. Forty-one S. aureus isolates obtained from 111 wild boars hunted in Lower Saxony, Germany, were investigated and compared to human and livestock isolates. The S. aureus belonged to multilocus sequence types ST1, ST7, ST30, ST133, ST425, ST804, ST890 and to the new ST3237, ST3238, ST3255 and ST3369. The livestock associated CC398-MRSA lineage, however, was not found. In addition to well-known spa types, the new types t14999, t15000, t15001 and t15002 were detected. Macrorestriction analysis revealed a variety of different SmaI fragment patterns. Most isolates were susceptible to all antimicrobials tested, including methicillin, and resistance was detected only to ampicillin, penicillin and erythromycin. PCR analysis confirmed the presence of staphylococcal enterotoxin genes (seh) in all t127-ST1 isolates. A high degree of genetic diversity was detected with many spa types and clonal lineages previously reported in humans and livestock animals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Social Environmental Variation, Plasticity Genes, and Aggression: Evidence for the Differential Susceptibility Hypothesis

    PubMed Central

    Simons, Ronald L.; Lei, Man Kit; Beach, Steven R.H.; Brody, Gene H.; Philibert, Robert A.; Gibbons, Frederick X.

    2011-01-01

    Although G×E studies are typically based on the assumption that some individuals possess genetic variants that enhance their vulnerability to environmental adversity, the differential susceptibility perspective posits that these individuals are simply more susceptible to environmental influence than others. An important implication of this model is that those persons most vulnerable to adverse social environments are the same ones who reap the most benefit from environmental support. The present study tested several implications of this proposition. Using longitudinal data from a sample of several hundred African Americans, we found that relatively common variants of the dopamine receptor gene and the serotonin transporter gene interact with social environmental conditions to predict aggression in a manner consonant with differential susceptibility. When the social environment was adverse, individuals with these genetic variants manifested more aggression than other genotypes, whereas when the environment was supportive they demonstrated less aggression than other genotypes. Further, we found that these genetic variants interact with environmental conditions to foster various cognitive schemas and emotions in a manner consistent with differential susceptibility and that a latent construct formed by these schemas and emotions mediated the effect of gene by environment interaction on aggression. PMID:22199399

  17. Impact of the HIV-1 genetic background and HIV-1 population size on the evolution of raltegravir resistance.

    PubMed

    Fun, Axel; Leitner, Thomas; Vandekerckhove, Linos; Däumer, Martin; Thielen, Alexander; Buchholz, Bernd; Hoepelman, Andy I M; Gisolf, Elizabeth H; Schipper, Pauline J; Wensing, Annemarie M J; Nijhuis, Monique

    2018-01-05

    Emergence of resistance against integrase inhibitor raltegravir in human immunodeficiency virus type 1 (HIV-1) patients is generally associated with selection of one of three signature mutations: Y143C/R, Q148K/H/R or N155H, representing three distinct resistance pathways. The mechanisms that drive selection of a specific pathway are still poorly understood. We investigated the impact of the HIV-1 genetic background and population dynamics on the emergence of raltegravir resistance. Using deep sequencing we analyzed the integrase coding sequence (CDS) in longitudinal samples from five patients who initiated raltegravir plus optimized background therapy at viral loads > 5000 copies/ml. To investigate the role of the HIV-1 genetic background we created recombinant viruses containing the viral integrase coding region from pre-raltegravir samples from two patients in whom raltegravir resistance developed through different pathways. The in vitro selections performed with these recombinant viruses were designed to mimic natural population bottlenecks. Deep sequencing analysis of the viral integrase CDS revealed that the virological response to raltegravir containing therapy inversely correlated with the relative amount of unique sequence variants that emerged suggesting diversifying selection during drug pressure. In 4/5 patients multiple signature mutations representing different resistance pathways were observed. Interestingly, the resistant population can consist of a single resistant variant that completely dominates the population but also of multiple variants from different resistance pathways that coexist in the viral population. We also found evidence for increased diversification after stronger bottlenecks. In vitro selections with low viral titers, mimicking population bottlenecks, revealed that both recombinant viruses and HXB2 reference virus were able to select mutations from different resistance pathways, although typically only one resistance pathway

  18. Discovery of susceptibility loci associated with tuberculosis in Han Chinese.

    PubMed

    Qi, Hui; Zhang, Yong-Biao; Sun, Lin; Chen, Cheng; Xu, Biao; Xu, Fang; Liu, Jia-Wen; Liu, Jin-Cheng; Chen, Chen; Jiao, Wei-Wei; Shen, Chen; Xiao, Jing; Li, Jie-Qiong; Guo, Ya-Jie; Wang, Yong-Hong; Li, Qin-Jing; Yin, Qing-Qin; Li, Ying-Jia; Wang, Ting; Wang, Xing-Yun; Gu, Ming-Liang; Yu, Jun; Shen, A-Dong

    2017-12-01

    Genome-wide association studies (GWASs) have revealed the worldwide heterogeneity of genetic factors in tuberculosis (TB) susceptibility. Despite having the third highest global TB burden, no TB-related GWAS has been performed in China. Here, we performed the first three-stage GWAS on TB in the Han Chinese population. In the stage 1 (discovery stage), after quality control, 691 388 SNPs present in 972 TB patients and 1537 controls were retained. After replication on an additional 3460 TB patients and 4862 controls (stages 2 and 3), we identified three significant loci associated with TB, the most significant of which was rs4240897 (logistic regression P = 1.41 × 10-11, odds ratio = 0.79). The aforementioned three SNPs were harbored by MFN2, RGS12 and human leukocyte antigen class II beta chain paralogue encoding genes, all of which are candidate immune genes associated with TB. Our findings provide new insight into the genetic background of TB in the Han Chinese population. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Genetic variation and co-variation for fitness between intra-population and inter-population backgrounds in the red flour beetle, Tribolium castaneum

    PubMed Central

    Drury, Douglas W.; Wade, Michael J.

    2010-01-01

    Hybrids from crosses between populations of the flour beetle, Tribolium castaneum, express varying degrees of inviability and morphological abnormalities. The proportion of allopatric population hybrids exhibiting these negative hybrid phenotypes varies widely, from 3% to 100%, depending upon the pair of populations crossed. We crossed three populations and measured two fitness components, fertility and adult offspring numbers from successful crosses, to determine how genes segregating within populations interact in inter-population hybrids to cause the negative phenotypes. With data from crosses of 40 sires from each of three populations to groups of 5 dams from their own and two divergent populations, we estimated the genetic variance and covariance for breeding value of fitness between the intra- and inter-population backgrounds and the sire × dam-population interaction variance. The latter component of the variance in breeding values estimates the change in genic effects between backgrounds owing to epistasis. Interacting genes with a positive effect, prior to fixation, in the sympatric background but a negative effect in the hybrid background cause reproductive incompatibility in the Dobzhansky-Muller speciation model. Thus, the sire × dam-population interaction provides a way to measure the progress toward speciation of genetically differentiating populations on a trait by trait basis using inter-population hybrids. PMID:21044199

  20. Selective breeding for susceptibility to myopia reveals a gene-environment interaction.

    PubMed

    Chen, Yen-Po; Hocking, Paul M; Wang, Ling; Povazay, Boris; Prashar, Ankush; To, Chi-Ho; Erichsen, Jonathan T; Feldkaemper, Marita; Hofer, Bernd; Drexler, Wolfgang; Schaeffel, Frank; Guggenheim, Jeremy A

    2011-06-08

    Purpose. To test whether the interanimal variability in susceptibility to visually induced myopia is genetically determined. Methods. Monocular deprivation of sharp vision (DSV) was induced in outbred White Leghorn chicks aged 4 days. After 4 days' DSV, myopia susceptibility was quantified by the relative changes in axial length and refraction. Chicks in the extreme tails of the distribution of susceptibility to DSV were kept and paired for breeding (high- and low-susceptibility lines). A second round of selection was then performed. The third generation of chicks, derived from the selected parents, was assessed after either monocular DSV (4 or 10 days) or lens wear. Results. After two rounds of selective breeding, the chicks from the high-susceptibility line developed approximately twice as much myopia in response to 4 days' DSV as did those from the low-susceptibility line (P < 0.001). All ocular component dimensions differed significantly (P < 0.001) between the two selected lines, both before treatment and in the responses of the treated eye. When DSV was conducted for 10 days, the relative changes in axial length and refractive error were still significantly different between the high and low lines (P < 0.001). The chicks bred for high or low susceptibility to DSV also showed significantly different responses to minus lens wear, but not to plus lens wear. Additive genetic effects explained ∼50% of the interanimal variability in response to DSV. Conclusions. Genes and environment interact to shape refractive development in chicks.

  1. Genetic bases of the nutritional approach to migraine.

    PubMed

    De Marchis, Maria Laura; Guadagni, Fiorella; Silvestris, Erica; Lovero, Domenica; Della-Morte, David; Ferroni, Patrizia; Barbanti, Piero; Palmirotta, Raffaele

    2018-03-08

    Migraine is a common multifactorial and polygenic neurological disabling disorder characterized by a genetic background and associated to environmental, hormonal and food stimulations. A large series of evidence suggest a strong correlation between nutrition and migraine and indicates several commonly foods, food additives and beverages that may be involved in the mechanisms triggering the headache attack in migraine-susceptible persons. There are foods and drinks, or ingredients of the same, that can trigger the migraine crisis as well as some foods play a protective function depending on the specific genetic sensitivity of the subject. The recent biotechnological advances have enhanced the identification of some genetic factors involved in onset diseases and the identification of sequence variants of genes responsible for the individual sensitivity to migraine trigger-foods. Therefore many studies are aimed at the analysis of polymorphisms of genes coding for the enzymes involved in the metabolism of food factors in order to clarify the different ways in which people respond to foods based on their genetic constitution. This review discusses the latest knowledge and scientific evidence of the role of gene variants and nutrients, food additives and nutraceuticals interactions in migraine.

  2. The genetics of Takayasu arteritis.

    PubMed

    Renauer, Paul; Sawalha, Amr H

    Takayasu arteritis (TAK) is a rare systemic vasculitis that is characterized by granulomatous inflammation of the aorta and its major branches. The cellular and biochemical processes involved in the pathogenesis of TAK are beginning to be elucidated, and implicate both cell and antibody-mediated autoimmune mechanisms. In addition, the underlying etiology to TAK may be explained, at least in part, by a complex genetic contribution. The most well-recognized genetic susceptibility locus for the disease is the classical HLA allele, HLA-B*52, which has been confirmed in several ethnicities. The genetic susceptibility with HLA-B*52, as well as additional classical alleles and loci, implicate both HLA class I and class II involvement in TAK. Furthermore, genetic associations with genes encoding immune response regulators, pro-inflammatory cytokines and mediators of humoral immunity may directly relate to disease mechanisms. Non-HLA susceptibility loci that have been recently established for TAK with a genome-wide level of significance include FCGR2A/FCGR3A, IL12B, IL6, RPS9/LILRB3, and a locus on chromosome 21 near PSMG1. In this review, we present the complex genetic predisposition to TAK and discuss how recent findings identified potential targets in the pathogenesis and treatment of the disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Prioritization of Disease Susceptibility Genes Using LSM/SVD.

    PubMed

    Gong, Lejun; Yang, Ronggen; Yan, Qin; Sun, Xiao

    2013-12-01

    Understanding the role of genetics in diseases is one of the most important tasks in the postgenome era. It is generally too expensive and time consuming to perform experimental validation for all candidate genes related to disease. Computational methods play important roles for prioritizing these candidates. Herein, we propose an approach to prioritize disease genes using latent semantic mapping based on singular value decomposition. Our hypothesis is that similar functional genes are likely to cause similar diseases. Measuring the functional similarity between known disease susceptibility genes and unknown genes is to predict new disease susceptibility genes. Taking autism as an instance, the analysis results of the top ten genes prioritized demonstrate they might be autism susceptibility genes, which also indicates our approach could discover new disease susceptibility genes. The novel approach of disease gene prioritization could discover new disease susceptibility genes, and latent disease-gene relations. The prioritized results could also support the interpretive diversity and experimental views as computational evidence for disease researchers.

  4. Identification of QTL affecting resistance/susceptibility to acute Actinobacillus pleuropneumoniae infection in swine.

    PubMed

    Reiner, Gerald; Bertsch, Natalie; Hoeltig, Doris; Selke, Martin; Willems, Hermann; Gerlach, Gerald Friedrich; Tuemmler, Burkhard; Probst, Inga; Herwig, Ralf; Drungowski, Mario; Waldmann, Karl Heinz

    2014-04-01

    Actinobacillus pleuropneumoniae is among the most important pathogens worldwide in pig production. The agent can cause severe economic losses due to decreased performance, acute or chronic pleuropneumonia and an increased incidence of death. Therapeutics cannot be used in a sustainable manner, and vaccination is not always available, but discovering more about host defence and disease mechanisms might lead to new methods of prophylaxis. The aim of the present study was to detect quantitative trait loci (QTL) associated with resistance/susceptibility to A. pleuropneumoniae. Under controlled conditions, 170 F2 animals of a Hampshire/Landrace family, with known differences in founder populations regarding A. pleuropneumoniae resistance, were challenged with an A. pleuropneumoniae serotype 7 aerosol followed by a detailed clinical, radiographic, ultrasonographic, pathological and bacteriological examination. F2 pigs were genotyped with 159 microsatellite markers. Significant QTL were identified on Sus scrofa chromosomes (SSC) 2, 6, 12, 13, 16, 17 and 18. They explained 6-22% of phenotypic variance. One QTL on SSC2 reached significance on a genome-wide level for five associated phenotypic traits. A multiple regression analysis revealed a combinatory effect of markers SWR345 (SSC2) and S0143 (SSC12) on Respiratory Health Score, Clinical Score and the occurrence of death. The results indicate the genetic background of A. pleuropneumoniae resistance in swine and provide new insights into the genetic architecture of resistance/susceptibility to porcine pleuropneumonia. The results will be helpful in identifying the underlying genes and mechanisms.

  5. Genome-wide association study identifies novel breast cancer susceptibility loci

    PubMed Central

    Easton, Douglas F.; Pooley, Karen A.; Dunning, Alison M.; Pharoah, Paul D. P.; Thompson, Deborah; Ballinger, Dennis G.; Struewing, Jeffery P.; Morrison, Jonathan; Field, Helen; Luben, Robert; Wareham, Nicholas; Ahmed, Shahana; Healey, Catherine S.; Bowman, Richard; Meyer, Kerstin B.; Haiman, Christopher A.; Kolonel, Laurence K.; Henderson, Brian E.; Marchand, Loic Le; Brennan, Paul; Sangrajrang, Suleeporn; Gaborieau, Valerie; Odefrey, Fabrice; Shen, Chen-Yang; Wu, Pei-Ei; Wang, Hui-Chun; Eccles, Diana; Evans, D. Gareth; Peto, Julian; Fletcher, Olivia; Johnson, Nichola; Seal, Sheila; Stratton, Michael R.; Rahman, Nazneen; Chenevix-Trench, Georgia; Bojesen, Stig E.; Nordestgaard, Børge G.; Axelsson, Christen K.; Garcia-Closas, Montserrat; Brinton, Louise; Chanock, Stephen; Lissowska, Jolanta; Peplonska, Beata; Nevanlinna, Heli; Fagerholm, Rainer; Eerola, Hannaleena; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Hunter, David J.; Hankinson, Susan E.; Cox, David G.; Hall, Per; Wedren, Sara; Liu, Jianjun; Low, Yen-Ling; Bogdanova, Natalia; Schürmann, Peter; Dörk, Thilo; Tollenaar, Rob A. E. M.; Jacobi, Catharina E.; Devilee, Peter; Klijn, Jan G. M.; Sigurdson, Alice J.; Doody, Michele M.; Alexander, Bruce H.; Zhang, Jinghui; Cox, Angela; Brock, Ian W.; MacPherson, Gordon; Reed, Malcolm W. R.; Couch, Fergus J.; Goode, Ellen L.; Olson, Janet E.; Meijers-Heijboer, Hanne; van den Ouweland, Ans; Uitterlinden, André; Rivadeneira, Fernando; Milne, Roger L.; Ribas, Gloria; Gonzalez-Neira, Anna; Benitez, Javier; Hopper, John L.; McCredie, Margaret; Southey, Melissa; Giles, Graham G.; Schroen, Chris; Justenhoven, Christina; Brauch, Hiltrud; Hamann, Ute; Ko, Yon-Dschun; Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Mannermaa, Arto; Kosma, Veli-Matti; Kataja, Vesa; Hartikainen, Jaana; Day, Nicholas E.; Cox, David R.; Ponder, Bruce A. J.; Luccarini, Craig; Conroy, Don; Shah, Mitul; Munday, Hannah; Jordan, Clare; Perkins, Barbara; West, Judy; Redman, Karen; Driver, Kristy; Aghmesheh, Morteza; Amor, David; Andrews, Lesley; Antill, Yoland; Armes, Jane; Armitage, Shane; Arnold, Leanne; Balleine, Rosemary; Begley, Glenn; Beilby, John; Bennett, Ian; Bennett, Barbara; Berry, Geoffrey; Blackburn, Anneke; Brennan, Meagan; Brown, Melissa; Buckley, Michael; Burke, Jo; Butow, Phyllis; Byron, Keith; Callen, David; Campbell, Ian; Chenevix-Trench, Georgia; Clarke, Christine; Colley, Alison; Cotton, Dick; Cui, Jisheng; Culling, Bronwyn; Cummings, Margaret; Dawson, Sarah-Jane; Dixon, Joanne; Dobrovic, Alexander; Dudding, Tracy; Edkins, Ted; Eisenbruch, Maurice; Farshid, Gelareh; Fawcett, Susan; Field, Michael; Firgaira, Frank; Fleming, Jean; Forbes, John; Friedlander, Michael; Gaff, Clara; Gardner, Mac; Gattas, Mike; George, Peter; Giles, Graham; Gill, Grantley; Goldblatt, Jack; Greening, Sian; Grist, Scott; Haan, Eric; Harris, Marion; Hart, Stewart; Hayward, Nick; Hopper, John; Humphrey, Evelyn; Jenkins, Mark; Jones, Alison; Kefford, Rick; Kirk, Judy; Kollias, James; Kovalenko, Sergey; Lakhani, Sunil; Leary, Jennifer; Lim, Jacqueline; Lindeman, Geoff; Lipton, Lara; Lobb, Liz; Maclurcan, Mariette; Mann, Graham; Marsh, Deborah; McCredie, Margaret; McKay, Michael; McLachlan, Sue Anne; Meiser, Bettina; Milne, Roger; Mitchell, Gillian; Newman, Beth; O'Loughlin, Imelda; Osborne, Richard; Peters, Lester; Phillips, Kelly; Price, Melanie; Reeve, Jeanne; Reeve, Tony; Richards, Robert; Rinehart, Gina; Robinson, Bridget; Rudzki, Barney; Salisbury, Elizabeth; Sambrook, Joe; Saunders, Christobel; Scott, Clare; Scott, Elizabeth; Scott, Rodney; Seshadri, Ram; Shelling, Andrew; Southey, Melissa; Spurdle, Amanda; Suthers, Graeme; Taylor, Donna; Tennant, Christopher; Thorne, Heather; Townshend, Sharron; Tucker, Kathy; Tyler, Janet; Venter, Deon; Visvader, Jane; Walpole, Ian; Ward, Robin; Waring, Paul; Warner, Bev; Warren, Graham; Watson, Elizabeth; Williams, Rachael; Wilson, Judy; Winship, Ingrid; Young, Mary Ann; Bowtell, David; Green, Adele; deFazio, Anna; Chenevix-Trench, Georgia; Gertig, Dorota; Webb, Penny

    2009-01-01

    Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2>0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P<10−7). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P<0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach. PMID:17529967

  6. Genetic variants in GCKR and PNPLA3 confer susceptibility to nonalcoholic fatty liver disease in obese individuals.

    PubMed

    Lin, Yu-Cheng; Chang, Pi-Feng; Chang, Mei-Hwei; Ni, Yen-Hsuan

    2014-04-01

    A genome-wide association study identified variants in or near patatin-like phospholipase domain-containing-3 (PNPLA3), neurocan (NCAN), lysophospholipase-like 1 (LYPLAL1), glucokinase regulatory protein (GCKR), and protein phosphatase 1 regulatory subunit 3b (PPP1R3B) that were strongly associated with nonalcoholic fatty liver disease (NAFLD) in adults of European ancestry. We examined these genetic variants in obese children and tested whether their effects on NAFLD are significant in the Taiwanese Han Chinese population. We genotyped PNPLA3 rs738409, NCAN rs2228603, LYPLAL1 rs12137855, GCKR rs780094, and PPP1R3B rs4240624 in 797 obese children aged 7-18 y. NAFLD was identified by liver ultrasonography. We analyzed the effect of these genetic variants on NAFLD. NAFLD was identified in 24% of the recruited obese children. We found significant associations with NAFLD at variants in PNPLA3 and GCKR but not in NCAN, LYPLAL1, and PPP1R3B. Multiple logistic regression analysis showed that, after control for the effects of age- and sex-adjusted body mass index, waist-to-hip ratio, sex, and PNPLA3 rs738409 polymorphism, the variant GCKR rs780094 TT genotype independently increased the OR of NAFLD by 1.997 (95% CI: 1.196, 3.335; P = 0.008) compared with the CC genotype. Subjects with the variant GCKR rs780094 TT genotype had a higher mean serum alanine aminotransferase concentration than did those with the CC genotype (30.8 ± 34.7 compared with 22.2 ± 18.6 IU/L; P = 0.01). By studying the genetic variants of obese Taiwanese children, we confirmed that the genetic variants in GCKR rs780094 and PNPLA3 rs738409, but not in NCAN rs2228603, LYPLAL1 rs12137855, and PPP1R3B rs4240624, are associated with an increased risk of NAFLD. GCKR and PNPLA3 variants are the common genetic factors that may confer susceptibility to NAFLD in obese individuals across multiple ethnic groups.

  7. Using genetics to predict the natural history of asthma?

    PubMed

    Holloway, John W; Arshad, Syed H; Holgate, Stephen T

    2010-08-01

    Clinical practice reminds us that there is considerable variability in the course of asthma over time. Treatment of patients with asthma would be considerably improved if one could accurately predict the likely course of disease over the life course. Recently, with the advent of the era of genome-wide association studies, there has been a monumental shift in our understanding of the genetic factors that underlie inherited susceptibility to asthma. Genes have been identified that modulate many aspects of the natural history of asthma, such as susceptibility to atopy, altered lung development, and susceptibility to more severe disease. Heritability studies have even suggested a role for genetic factors in remission of asthma. However, although the discovery of novel genetic factors underlying disease susceptibility has undoubtedly improved our understanding of disease pathogenesis, whether these advances have improved the ability to predict the natural history in individual patients is questionable, and the application of genetic testing to clinical practice remains some way off. Copyright 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  8. A strabismus susceptibility locus on chromosome 7p

    PubMed Central

    Parikh, Vaishali; Shugart, Yin Yao; Doheny, Kimberly F.; Zhang, Jie; Li, Lan; Williams, John; Hayden, David; Craig, Brian; Capo, Hilda; Chamblee, Denise; Chen, Cathy; Collins, Mary; Dankner, Stuart; Fiergang, Dean; Guyton, David; Hunter, David; Hutcheon, Marcia; Keys, Marshall; Morrison, Nancy; Munoz, Michelle; Parks, Marshall; Plotsky, David; Protzko, Eugene; Repka, Michael X.; Sarubbi, Maria; Schnall, Bruce; Siatkowski, R. Michael; Traboulsi, Elias; Waeltermann, Joanne; Nathans, Jeremy

    2003-01-01

    Strabismus has been known to have a significant genetic component, but the mode of inheritance and the identity of the relevant genes have been enigmatic. This paper reports linkage analysis of nonsyndromic strabismus. The principal results of this study are: (i) the demonstrated feasibility of identifying and recruiting large families in which multiple members have (or had) strabismus; (ii) the linkage in one large family of a presumptive strabismus susceptibility locus to 7p22.1 with a multipoint logarithm of odds score of 4.51 under a model of recessive inheritance; and (iii) the failure to observe significant linkage to 7p in six other multiplex families, consistent with genetic heterogeneity among families. These findings suggest that it will be possible to localize and ultimately identify strabismus susceptibility genes by linkage analysis and mutation screening of candidate genes. PMID:14519848

  9. Integrative analyses of leprosy susceptibility genes indicate a common autoimmune profile.

    PubMed

    Zhang, Deng-Feng; Wang, Dong; Li, Yu-Ye; Yao, Yong-Gang

    2016-04-01

    Leprosy is an ancient chronic infection in the skin and peripheral nerves caused by Mycobacterium leprae. The development of leprosy depends on genetic background and the immune status of the host. However, there is no systematic view focusing on the biological pathways, interaction networks and overall expression pattern of leprosy-related immune and genetic factors. To identify the hub genes in the center of leprosy genetic network and to provide an insight into immune and genetic factors contributing to leprosy. We retrieved all reported leprosy-related genes and performed integrative analyses covering gene expression profiling, pathway analysis, protein-protein interaction network, and evolutionary analyses. A list of 123 differentially expressed leprosy related genes, which were enriched in activation and regulation of immune response, was obtained in our analyses. Cross-disorder analysis showed that the list of leprosy susceptibility genes was largely shared by typical autoimmune diseases such as lupus erythematosus and arthritis, suggesting that similar pathways might be affected in leprosy and autoimmune diseases. Protein-protein interaction (PPI) and positive selection analyses revealed a co-evolution network of leprosy risk genes. Our analyses showed that leprosy associated genes constituted a co-evolution network and might undergo positive selection driven by M. leprae. We suggested that leprosy may be a kind of autoimmune disease and the development of leprosy is a matter of defect or over-activation of body immunity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Neuropeptide Y-Y2 receptor knockout mice: influence of genetic background on anxiety-related behaviors.

    PubMed

    Zambello, E; Zanetti, L; Hédou, G F; Angelici, O; Arban, R; Tasan, R O; Sperk, G; Caberlotto, L

    2011-03-10

    Neuropeptide Y (NPY) has been extensively studied in relation to anxiety and depression but of the seven NPY receptors known to date, it is not yet clear which one is mainly involved in mediating its effects in emotional behavior. Mice lacking the NPY-Y2 receptors were previously shown to be less anxious due to their improved ability to cope with stressful situations. In the present study, the behavioral phenotype including the response to challenges was analyzed in NPY-Y2 knockout (KO) mice backcrossed in to congenic C57BL/6 background. In the elevated plus-maze (EPM) and the forced swim test (FST), the anxiolytic-like or antidepressant-like phenotype of the NPY-Y2 KO mice could not be confirmed, although this study differs from the previous one only with regard to the genetic background of the mice. In addition, no differences in response to acute stress or to the antidepressant desipramine in the FST were detected between wild type (WT) and NPY-Y2 KO animals. These results suggest that the genetic background of the animals appears to have a strong influence on the behavioral phenotype of NPY-Y2 KO mice. Additionally, to further characterize the animals by their biochemical response to a challenge, the neurochemical changes induced by the anxiogenic compound yohimbine were measured in the medial prefrontal cortex (mPFC) of NPY-Y2 KO and compared to WT mice. Dopamine (DA) levels were significantly increased by yohimbine in the WT but unaffected in the KO mice, suggesting that NPY-Y2 receptor exerts a direct control over both the tonic and phasic release of DA and that, although the anxiety-like behavior of these NPY-Y2 KO mice is unaltered, there are clear modifications of DA dynamics. However, yohimbine led to a significant increase in noradrenaline (NA) concentration and a slight reduction in serotonin concentration that were identical for both phenotypes. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus.

    PubMed

    Franzin, Alessandra Mara; Maruyama, Sandra Regina; Garcia, Gustavo Rocha; Oliveira, Rosane Pereira; Ribeiro, José Marcos Chaves; Bishop, Richard; Maia, Antônio Augusto Mendes; Moré, Daniela Dantas; Ferreira, Beatriz Rossetti; Santos, Isabel Kinney Ferreira de Miranda

    2017-01-31

    Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more

  12. The effect of genetic selection for Johne's disease resistance in dairy cattle: Results of a genetic-epidemiological model.

    PubMed

    van Hulzen, K J E; Koets, A P; Nielen, M; Heuven, H C M; van Arendonk, J A M; Klinkenberg, D

    2014-03-01

    The objective of this study was to model genetic selection for Johne's disease resistance and to study the effect of different selection strategies on the prevalence in the dairy cattle population. In the Netherlands, a certification-and-surveillance program is in use to reduce prevalence and presence of sources of infection in milk by culling ELISA-positive dairy cows in infected herds. To investigate the additional genetic effect of this program, a genetic-epidemiological model was developed to assess the effect of selection of cows that test negative for Johne's disease (dam selection). The genetic effect of selection at the sire level was also considered (sire selection), assuming selection of 80% of sires producing the most resistant offspring based on their breeding values, as well as the combined effect. Parameters assumed to be affected by genetic selection were the length of the latent period, susceptibility (i.e., the number of infectious doses needed to become infected), or the length of susceptible period as a calf. The effect of selection was measured by the time in years required to eliminate infection. Sensitivity analysis was performed for heritability, accuracy of selection, and intensity of selection. For dam selection, responses to selection were small, requiring 379 to 702 yr for elimination. For sire selection, responses were much larger, although elimination still required 147 to 223 yr. The response to selection was largest if genetic selection affected the length of the susceptible period, followed by the susceptibility, and finally the length of the latent period. Genetic selection for Johne's disease resistance by certification and surveillance is too slow for practical purpose, but that selection on the sire level is able to contribute to the control of Johne's disease in the long run. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Novel Susceptibility Variants at 10p12.31-12.2 for Childhood Acute Lymphoblastic Leukemia in Ethnically Diverse Populations

    PubMed Central

    2013-01-01

    Background Acute lymphoblastic leukemia (ALL) is the most common cancer in children and the incidence of ALL varies by ethnicity. Although accumulating evidence indicates inherited predisposition to ALL, the genetic basis of ALL susceptibility in diverse ancestry has not been comprehensively examined. Methods We performed a multiethnic genome-wide association study in 1605 children with ALL and 6661 control subjects after adjusting for population structure, with validation in three replication series of 845 case subjects and 4316 control subjects. Association was tested by two-sided logistic regression. Results A novel ALL susceptibility locus at 10p12.31-12.2 (BMI1-PIP4K2A, rs7088318, P = 1.1×10−11) was identified in the genome-wide association study, with independent replication in European Americans, African Americans, and Hispanic Americans (P = .001, .009, and .04, respectively). Association was also validated at four known ALL susceptibility loci: ARID5B, IKZF1, CEBPE, and CDKN2A/2B. Associations at ARID5B, IKZF1, and BMI1-PIP4K2A variants were consistent across ethnicity, with multiple independent signals at IKZF1 and BMI1-PIP4K2A loci. The frequency of ARID5B and BMI1-PIP4K2A variants differed by ethnicity, in parallel with ethnic differences in ALL incidence. Suggestive evidence for modifying effects of age on genetic predisposition to ALL was also observed. ARID5B, IKZF1, CEBPE, and BMI1-PIP4K2A variants cumulatively conferred strong predisposition to ALL, with children carrying six to eight copies of risk alleles at a ninefold (95% confidence interval = 6.9 to 11.8) higher ALL risk relative to those carrying zero to one risk allele at these four single nucleotide polymorphisms. Conclusions These findings indicate strong associations between inherited genetic variation and ALL susceptibility in children and shed new light on ALL molecular etiology in diverse ancestry. PMID:23512250

  14. Antibiotic Resistance, Virulence, and Genetic Background of Community-Acquired Uropathogenic Escherichia coli from Algeria.

    PubMed

    Yahiaoui, Merzouk; Robin, Frédéric; Bakour, Rabah; Hamidi, Moufida; Bonnet, Richard; Messai, Yamina

    2015-10-01

    The aim of the study was to investigate antibiotic resistance mechanisms, virulence traits, and genetic background of 150 nonrepetitive community-acquired uropathogenic Escherichia coli (CA-UPEC) from Algeria. A rate of 46.7% of isolates was multidrug resistant. bla genes detected were blaTEM (96.8% of amoxicillin-resistant isolates), blaCTX-M-15 (4%), overexpressed blaAmpC (4%), blaSHV-2a, blaTEM-4, blaTEM-31, and blaTEM-35 (0.7%). All tetracycline-resistant isolates (51.3%) had tetA and/or tetB genes. Sulfonamides and trimethoprim resistance genes were sul2 (60.8%), sul1 (45.9%), sul3 (6.7%), dfrA14 (25.4%), dfrA1 (18.2%), dfrA12 (16.3%), and dfrA25 (5.4%). High-level fluoroquinolone resistance (22.7%) was mediated by mutations in gyrA (S83L-D87N) and parC (S80I-E84G/V or S80I) genes. qnrB5, qnrS1, and aac(6')-Ib-cr were rare (5.3%). Class 1 and/or class 2 integrons were detected (40.7%). Isolates belonged to phylogroups B2+D (50%), A+B1 (36%), and F+C+Clade I (13%). Most of D (72.2%) and 38.6% of B2 isolates were multidrug resistant; they belong to 14 different sequence types, including international successful ST131, ST73, and ST69, reported for the first time in the community in Algeria and new ST4494 and ST4529 described in this study. Besides multidrug resistance, B2 and D isolates possessed virulence factors of colonization, invasion, and long-term persistence. The study highlighted multidrug-resistant CA-UPEC with high virulence traits and an epidemic genetic background.

  15. A Rb1 promoter variant with reduced activity contributes to osteosarcoma susceptibility in irradiated mice

    PubMed Central

    2014-01-01

    Background Syndromic forms of osteosarcoma (OS) account for less than 10% of all recorded cases of this malignancy. An individual OS predisposition is also possible by the inheritance of low penetrance alleles of tumor susceptibility genes, usually without evidence of a syndromic condition. Genetic variants involved in such a non-syndromic form of tumor predisposition are difficult to identify, given the low incidence of osteosarcoma cases and the genetic heterogeneity of patients. We recently mapped a major OS susceptibility QTL to mouse chromosome 14 by comparing alpha-radiation induced osteosarcoma in mouse strains which differ in their tumor susceptibility. Methods Tumor-specific allelic losses in murine osteosacoma were mapped along chromosome 14 using microsatellite markers and SNP allelotyping. Candidate gene search in the mapped interval was refined using PosMed data mining and mRNA expression analysis in normal osteoblasts. A strain-specific promoter variant in Rb1 was tested for its influence on mRNA expression using reporter assay. Results A common Rb1 allele derived from the BALB/cHeNhg strain was identified as the major determinant of radiation-induced OS risk at this locus. Increased OS-risk is linked with a hexanucleotide deletion in the promoter region which is predicted to change WT1 and SP1 transcription factor-binding sites. Both in-vitro reporter and in-vivo expression assays confirmed an approx. 1.5 fold reduced gene expression by this promoter variant. Concordantly, the 50% reduction in Rb1 expression in mice bearing a conditional hemizygous Rb1 deletion causes a significant rise of OS incidence following alpha-irradiation. Conclusion This is the first experimental demonstration of a functional and genetic link between reduced Rb1 expression from a common promoter variant and increased tumor risk after radiation exposure. We propose that a reduced Rb1 expression by common variants in regulatory regions can modify the risk for a malignant

  16. Wild rodents as a model to discover genes and pathways underlying natural variation in infectious disease susceptibility.

    PubMed

    Turner, A K; Paterson, S

    2013-11-01

    Individuals vary in their susceptibility to infectious disease, and it is now well established that host genetic factors form a major component of this variation. The discovery of genes underlying susceptibility has the potential to lead to improved disease control, through the identification and management of vulnerable individuals and the discovery of novel therapeutic targets. Laboratory rodents have proved invaluable for ascertaining the function of genes involved in immunity to infection. However, these captive animals experience conditions very different to the natural environment, lacking the genetic diversity and environmental pressures characteristic of natural populations, including those of humans. It has therefore often proved difficult to translate basic laboratory research to the real world. In order to further our understanding of the genetic basis of infectious disease resistance, and the evolutionary forces that drive variation in susceptibility, we propose that genetic research traditionally conducted on laboratory animals is expanded to the more ecologically valid arena of natural populations. In this article, we highlight the potential of using wild rodents as a new resource for biomedical research, to link the functional genetic knowledge gained from laboratory rodents with the variation in infectious disease susceptibility observed in humans and other natural populations. © 2013 John Wiley & Sons Ltd.

  17. The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background

    PubMed Central

    Marsh, Sharon; Hu, Junbo; Feng, Wenke

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and it comprises a spectrum of hepatic abnormalities from simple hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, and liver cancer. While the pathogenesis of NAFLD remains incompletely understood, a multihit model has been proposed that accommodates causal factors from a variety of sources, including intestinal and adipose proinflammatory stimuli acting on the liver simultaneously. Prior cellular and molecular studies of patient and animal models have characterized several common pathogenic mechanisms of NAFLD, including proinflammation cytokines, lipotoxicity, oxidative stress, and endoplasmic reticulum stress. In recent years, gut microbiota has gained much attention, and dysbiosis is recognized as a crucial factor in NAFLD. Moreover, several genetic variants have been identified through genome-wide association studies, particularly rs738409 (Ile748Met) in PNPLA3 and rs58542926 (Glu167Lys) in TM6SF2, which are critical risk alleles of the disease. Although a high-fat diet and inactive lifestyles are typical risk factors for NAFLD, the interplay between diet, gut microbiota, and genetic background is believed to be more important in the development and progression of NAFLD. This review summarizes the common pathogenic mechanisms, the gut microbiota relevant mechanisms, and the major genetic variants leading to NAFLD and its progression. PMID:27247565

  18. Can Genetic Analysis of Putative Blood Alzheimer’s Disease Biomarkers Lead to Identification of Susceptibility Loci?

    PubMed Central

    Huebinger, Ryan M.; Shewale, Shantanu J.; Koenig, Jessica L.; Mitchel, Jeffrey S.; O’Bryant, Sid E.; Waring, Stephen C.; Diaz-Arrastia, Ramon; Chasse, Scott

    2015-01-01

    Although 24 Alzheimer’s disease (AD) risk loci have been reliably identified, a large portion of the predicted heritability for AD remains unexplained. It is expected that additional loci of small effect will be identified with an increased sample size. However, the cost of a significant increase in Case-Control sample size is prohibitive. The current study tests whether exploring the genetic basis of endophenotypes, in this case based on putative blood biomarkers for AD, can accelerate the identification of susceptibility loci using modest sample sizes. Each endophenotype was used as the outcome variable in an independent GWAS. Endophenotypes were based on circulating concentrations of proteins that contributed significantly to a published blood-based predictive algorithm for AD. Endophenotypes included Monocyte Chemoattractant Protein 1 (MCP1), Vascular Cell Adhesion Molecule 1 (VCAM1), Pancreatic Polypeptide (PP), Beta2 Microglobulin (B2M), Factor VII (F7), Adiponectin (ADN) and Tenascin C (TN-C). Across the seven endophenotypes, 47 SNPs were associated with outcome with a p-value ≤1x10-7. Each signal was further characterized with respect to known genetic loci associated with AD. Signals for several endophenotypes were observed in the vicinity of CR1, MS4A6A/MS4A4E, PICALM, CLU, and PTK2B. The strongest signal was observed in association with Factor VII levels and was located within the F7 gene. Additional signals were observed in MAP3K13, ZNF320, ATP9B and TREM1. Conditional regression analyses suggested that the SNPs contributed to variation in protein concentration independent of AD status. The identification of two putatively novel AD loci (in the Factor VII and ATP9B genes), which have not been located in previous studies despite massive sample sizes, highlights the benefits of an endophenotypic approach for resolving the genetic basis for complex diseases. The coincidence of several of the endophenotypic signals with known AD loci may point to novel

  19. Genetics of Prion Disease in Cattle

    PubMed Central

    Murdoch, Brenda M.; Murdoch, Gordon K.

    2015-01-01

    Bovine spongiform encephalopathy (BSE) is a prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. As a transmissible disease of livestock, it has impacted food safety, production practices, global trade, and profitability. Genetic polymorphisms that alter the prion protein in humans and sheep are associated with transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that nonsynonymous mutations in the bovine prion gene (PRNP) are associated with classical BSE (C-BSE) disease susceptibility, though two bovine PRNP insertion/deletion polymorphisms, in the putative region, are associated with susceptibility to C-BSE. However, these associations do not explain the full extent of BSE susceptibility, and loci outside of PRNP appear to be associated with disease incidence in some cattle populations. This article provides a review of the current state of genetic knowledge regarding prion diseases in cattle. PMID:26462233

  20. Genetic susceptibility to bilateral tinnitus in a Swedish twin cohort.

    PubMed

    Maas, Iris Lianne; Brüggemann, Petra; Requena, Teresa; Bulla, Jan; Edvall, Niklas K; Hjelmborg, Jacob V B; Szczepek, Agnieszka J; Canlon, Barbara; Mazurek, Birgit; Lopez-Escamez, Jose A; Cederroth, Christopher R

    2017-09-01

    Genetic contributions to tinnitus have been difficult to determine due to the heterogeneity of the condition and its broad etiology. Here, we evaluated the genetic and nongenetic influences on self-reported tinnitus from the Swedish Twin Registry (STR). Cross-sectional data from the STR was obtained. Casewise concordance rates (the risk of one twin being affected given that his/her twin partner has tinnitus) were compared for monozygotic (MZ) and dizygotic (DZ) twin pairs (N = 10,464 concordant and discordant twin pairs) and heritability coefficients (the proportion of the total variance attributable to genetic factors) were calculated using biometrical model fitting procedures. Stratification of tinnitus cases into subtypes according to laterality (unilateral versus bilateral) revealed that heritability of bilateral tinnitus was 0.56; however, it was 0.27 for unilateral tinnitus. Heritability was greater in men (0.68) than in women (0.41). However, when female pairs younger than 40 years of age were selected, heritability of 0.62 was achieved with negligible effects of shared environment. Unlike unilateral tinnitus, bilateral tinnitus is influenced by genetic factors and might constitute a genetic subtype. Overall, our study provides the initial evidence for a tinnitus phenotype with a genetic influence.Genet Med advance online publication 23 March 2017.

  1. Prevalence and Spectrum of Large Deletions or Duplications in the Major Long QT Syndrome-Susceptibility Genes and Implications for Long QT Syndrome Genetic Testing

    PubMed Central

    Tester, David J.; Benton, Amber J.; Train, Laura; Deal, Barbara; Baudhuin, Linnea M.; Ackerman, Michael J.

    2010-01-01

    Long QT Syndrome (LQTS) is a cardiac channelopathy associated with syncope, seizures, and sudden death. Approximately 75% of LQTS is due to mutations in genes encoding for three cardiac ion channel alpha-subunits (LQT1-3). However, traditional mutational analyses have limited detection capabilities for atypical mutations such as large gene rearrangements. Here, we set out to determine the prevalence and spectrum of large deletions/duplications in the major LQTS-susceptibility genes among unrelated patients who were mutation-negative following point mutation analysis of LQT1-12-susceptibility genes. Forty-two unrelated clinically strong LQTS patients were analyzed using multiplex ligation-dependent probe amplification (MLPA), a quantitative fluorescent technique for detecting multiple exon deletions and duplications. The SALSA-MLPA LQTS Kit from MRC-Holland was used to analyze the three major LQTS-associated genes: KCNQ1, KCNH2, and SCN5A and the two minor genes: KCNE1 and KCNE2. Overall, 2 gene rearrangements were found in 2/42 (4.8%, CI, 1.7–11%) unrelated patients. A deletion of KCNQ1 exon 3 was identified in a 10 year-old Caucasian boy with a QTc of 660 milliseconds (ms), a personal history of exercise-induced syncope, and a family history of syncope. A deletion of KCNQ1 exon 7 was identified in a 17 year-old Caucasian girl with a QTc of 480 ms, a personal history of exercise-induced syncope, and a family history of sudden cardiac death. In conclusion, since nearly 5% of patients with genetically elusive LQTS had large genomic rearrangements involving the canonical LQTS-susceptibility genes, reflex genetic testing to investigate genomic rearrangements may be of clinical value. PMID:20920651

  2. Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background

    PubMed Central

    Liorzou, Mathilde; Pernet, Alix; Li, Shubin; Chastellier, Annie; Thouroude, Tatiana; Michel, Gilles; Malécot, Valéry; Gaillard, Sylvain; Briée, Céline; Foucher, Fabrice; Oghina-Pavie, Cristiana; Clotault, Jérémy; Grapin, Agnès

    2016-01-01

    Hybridization with introduced genetic resources is commonly practiced in ornamental plant breeding to introgress desired traits. The 19th century was a golden age for rose breeding in France. The objective here was to study the evolution of rose genetic diversity over this period, which included the introduction of Asian genotypes into Europe. A large sample of 1228 garden roses encompassing the conserved diversity cultivated during the 18th and 19th centuries was genotyped with 32 microsatellite primer pairs. Its genetic diversity and structure were clarified. Wide diversity structured in 16 genetic groups was observed. Genetic differentiation was detected between ancient European and Asian accessions, and a temporal shift from a European to an Asian genetic background was observed in cultivated European hybrids during the 19th century. Frequent crosses with Asian roses throughout the 19th century and/or selection for Asiatic traits may have induced this shift. In addition, the consistency of the results with respect to a horticultural classification is discussed. Some horticultural groups, defined according to phenotype and/or knowledge of their pedigree, seem to be genetically more consistent than others, highlighting the difficulty of classifying cultivated plants. Therefore, the horticultural classification is probably more appropriate for commercial purposes rather than genetic relatedness, especially to define preservation and breeding strategies. PMID:27406785

  3. A Hypothesis for Using Pathway Genetic Load Analysis for Understanding Complex Outcomes in Bilirubin Encephalopathy

    PubMed Central

    Riordan, Sean M.; Bittel, Douglas C.; Le Pichon, Jean-Baptiste; Gazzin, Silvia; Tiribelli, Claudio; Watchko, Jon F.; Wennberg, Richard P.; Shapiro, Steven M.

    2016-01-01

    Genetic-based susceptibility to bilirubin neurotoxicity and chronic bilirubin encephalopathy (kernicterus) is still poorly understood. Neonatal jaundice affects 60–80% of newborns, and considerable effort goes into preventing this relatively benign condition from escalating into the development of kernicterus making the incidence of this potentially devastating condition very rare in more developed countries. The current understanding of the genetic background of kernicterus is largely comprised of mutations related to alterations of bilirubin production, elimination, or both. Less is known about mutations that may predispose or protect against CNS bilirubin neurotoxicity. The lack of a monogenetic source for this risk of bilirubin neurotoxicity suggests that disease progression is dependent upon an overall decrease in the functionality of one or more essential genetically controlled metabolic pathways. In other words, a “load” is placed on key pathways in the form of multiple genetic variants that combine to create a vulnerable phenotype. The idea of epistatic interactions creating a pathway genetic load (PGL) that affects the response to a specific insult has been previously reported as a PGL score. We hypothesize that the PGL score can be used to investigate whether increased susceptibility to bilirubin-induced CNS damage in neonates is due to a mutational load being placed on key genetic pathways important to the central nervous system's response to bilirubin neurotoxicity. We propose a modification of the PGL score method that replaces the use of a canonical pathway with custom gene lists organized into three tiers with descending levels of evidence combined with the utilization of single nucleotide polymorphism (SNP) causality prediction methods. The PGL score has the potential to explain the genetic background of complex bilirubin induced neurological disorders (BIND) such as kernicterus and could be the key to understanding ranges of outcome severity

  4. Genetic variation in arthropod vectors of disease-causing organisms: obstacles and opportunities.

    PubMed Central

    Gooding, R H

    1996-01-01

    An overview of the genetic variation in arthropods that transmit pathogens to vertebrates is presented, emphasizing the genetics of vector-pathogen relationships and the biochemical genetics of vectors. Vector-pathogen interactions are reviewed briefly as a prelude to a discussion of the genetics of susceptibility and refractoriness in vectors. Susceptibility to pathogens is controlled by maternally inherited factors, sex-linked dominant alleles, and dominant and recessive autosomal genes. There is widespread interpopulation (including intercolony) and temporal variation in susceptibility to pathogens. The amount of biochemical genetic variation in vectors is similar to that found in other invertebrates. However, the amount varies widely among species, among populations within species, and temporally within populations. Biochemical genetic studies show that there is considerable genetic structuring of many vectors at the local, regional, and global levels. It is argued that genetic variation in vectors is critical in understanding vector-pathogen interactions and that genetic variation in vectors creates both obstacles to and opportunities for application of genetic techniques to the control of vectors. PMID:8809462

  5. Dopamine Transporter Genetic Variants and Pesticides in Parkinson’s Disease

    PubMed Central

    Ritz, Beate R.; Manthripragada, Angelika D.; Costello, Sadie; Lincoln, Sarah J.; Farrer, Matthew J.; Cockburn, Myles; Bronstein, Jeff

    2009-01-01

    Background Research suggests that independent and joint effects of genetic variability in the dopamine transporter (DAT) locus and pesticides may influence Parkinson’s disease (PD) risk. Materials Methods: In 324 incident PD patients and 334 population controls from our rural California case–control study, we genotyped rs2652510, rs2550956 (for the DAT 5′ clades), and the 3′ variable number of tandem repeats (VNTR). Using geographic information system methods, we determined residential exposure to agricultural maneb and paraquat applications. We also collected occupational pesticide use data. Employing logistic regression, we calculated odds ratios (ORs) for clade diplotypes, VNTR genotype, and number of susceptibility (A clade and 9-repeat) alleles and assessed susceptibility allele–pesticide interactions. Results PD risk was increased separately in DAT A clade diplotype carriers [AA vs. BB: OR = 1.66; 95% confidence interval (CI), 1.08–2.57] and 3′ VNTR 9/9 carriers (9/9 vs. 10/10: OR = 1.8; 95% CI, 0.96–3.57), and our data suggest a gene dosing effect. Importantly, high exposure to paraquat and maneb in carriers of one susceptibility allele increased PD risk 3-fold (OR = 2.99; 95% CI, 0.88–10.2), and in carriers of two or more alleles more than 4-fold (OR = 4.53; 95% CI, 1.70–12.1). We obtained similar results for occupational pesticide measures. Discussion Using two independent pesticide measures, we a) replicated previously reported gene–environment interactions between DAT genetic variants and occupational pesticide exposure in men and b) overcame previous limitations of nonspecific pesticide measures and potential recall bias by employing state records and computer models to estimate residential pesticide exposure. Conclusion Our results suggest that DAT genetic variability and pesticide exposure interact to increase PD risk. PMID:19590691

  6. Recovery of Native Genetic Background in Admixed Populations Using Haplotypes, Phenotypes, and Pedigree Information – Using Cika Cattle as a Case Breed

    PubMed Central

    Simčič, Mojca; Smetko, Anamarija; Sölkner, Johann; Seichter, Doris; Gorjanc, Gregor; Kompan, Dragomir; Medugorac, Ivica

    2015-01-01

    The aim of this study was to obtain unbiased estimates of the diversity parameters, the population history, and the degree of admixture in Cika cattle which represents the local admixed breeds at risk of extinction undergoing challenging conservation programs. Genetic analyses were performed on the genome-wide Single Nucleotide Polymorphism (SNP) Illumina Bovine SNP50 array data of 76 Cika animals and 531 animals from 14 reference populations. To obtain unbiased estimates we used short haplotypes spanning four markers instead of single SNPs to avoid an ascertainment bias of the BovineSNP50 array. Genome-wide haplotypes combined with partial pedigree and type trait classification show the potential to improve identification of purebred animals with a low degree of admixture. Phylogenetic analyses demonstrated unique genetic identity of Cika animals. Genetic distance matrix presented by rooted Neighbour-Net suggested long and broad phylogenetic connection between Cika and Pinzgauer. Unsupervised clustering performed by the admixture analysis and two-dimensional presentation of the genetic distances between individuals also suggest Cika is a distinct breed despite being similar in appearance to Pinzgauer. Animals identified as the most purebred could be used as a nucleus for a recovery of the native genetic background in the current admixed population. The results show that local well-adapted strains, which have never been intensively managed and differentiated into specific breeds, exhibit large haplotype diversity. They suggest a conservation and recovery approach that does not rely exclusively on the search for the original native genetic background but rather on the identification and removal of common introgressed haplotypes would be more powerful. Successful implementation of such an approach should be based on combining phenotype, pedigree, and genome-wide haplotype data of the breed of interest and a spectrum of reference breeds which potentially have had

  7. Genetics of SLE: evidence from mouse models.

    PubMed

    Morel, Laurence

    2010-06-01

    Great progress has been made in the field of lupus genetics in the past few years, notably with the publication of genome-wide association studies in humans and the identification of susceptibility genes (including Fcgr2b, Ly108, Kallikrein genes and Coronin-1A) in mouse models of spontaneous lupus. This influx of new information has revealed an ever-increasing interdependence between the mouse and human systems for unraveling the genetic basis of lupus susceptibility. Studies in the 1980s and 1990s established that mice prone to spontaneous lupus constitute excellent models of the genetic architecture of human systemic lupus erythematosus (SLE). This notion has been greatly strengthened by the convergence of the functional pathways that are defective in both human and murine lupus. Within these pathways, variants in a number of genes have now been shown to be directly associated with lupus in both species. Consequently, mouse models will continue to serve a pre-eminent role in lupus genetics research, with an increased emphasis on mechanistic and molecular studies of human susceptibility alleles.

  8. Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria.

    PubMed

    Żur, Joanna; Piński, Artur; Marchlewicz, Ariel; Hupert-Kocurek, Katarzyna; Wojcieszyńska, Danuta; Guzik, Urszula

    2018-06-19

    Currently, analgesics and nonsteroidal anti-inflammatory drugs (NSAIDs) are classified as one of the most emerging group of xenobiotics and have been detected in various natural matrices. Among them, monocyclic paracetamol and ibuprofen, widely used to treat mild and moderate pain are the most popular. Since long-term adverse effects of these xenobiotics and their biological and pharmacokinetic activity especially at environmentally relevant concentrations are better understood, degradation of such contaminants has become a major concern. Moreover, to date, conventional wastewater treatment plants (WWTPs) are not fully adapted to remove that kind of micropollutants. Bioremediation processes, which utilize bacterial strains with increased degradation abilities, seem to be a promising alternative to the chemical methods used so far. Nevertheless, despite the wide prevalence of paracetamol and ibuprofen in the environment, toxicity and mechanism of their microbial degradation as well as genetic background of these processes remain not fully characterized. In this review, we described the current state of knowledge about toxicity and biodegradation mechanisms of paracetamol and ibuprofen and provided bioinformatics analysis concerning the genetic bases of these xenobiotics decomposition.

  9. Genetic Associations With White Matter Hyperintensities Confer Risk of Lacunar Stroke

    PubMed Central

    Rutten-Jacobs, Loes C.A.; Thijs, Vincent; Holliday, Elizabeth G.; Levi, Chris; Bevan, Steve; Malik, Rainer; Boncoraglio, Giorgio; Sudlow, Cathie; Rothwell, Peter M.; Dichgans, Martin; Markus, Hugh S.

    2016-01-01

    Background and Purpose— White matter hyperintensities (WMH) are increased in patients with lacunar stroke. Whether this is because of shared pathogenesis remains unknown. Using genetic data, we evaluated whether WMH-associated genetic susceptibility factors confer risk of lacunar stroke, and therefore whether they share pathogenesis. Methods— We used a genetic risk score approach to test whether single nucleotide polymorphisms associated with WMH in community populations were associated with magnetic resonance imaging–confirmed lacunar stroke (n=1,373), as well as cardioembolic (n=1,331) and large vessel (n=1,472) Trial of Org 10172 in Acute Stroke Treatment subtypes, against 9,053 controls. Second, we separated lacunar strokes into those with WMH (n=568) and those without (n=787) and tested for association with the risk score in these 2 groups. In addition, we evaluated whether WMH-associated single nucleotide polymorphisms are associated with lacunar stroke, or in the 2 groups. Results— The WMH genetic risk score was associated with lacunar stroke (odds ratio [OR; 95% confidence interval [CI

  10. Genetic changes associated with testicular cancer susceptibility.

    PubMed

    Pyle, Louise C; Nathanson, Katherine L

    2016-10-01

    Testicular germ cell tumor (TGCT) is a highly heritable cancer primarily affecting young white men. Genome-wide association studies (GWAS) have been particularly effective in identifying multiple common variants with strong contribution to TGCT risk. These loci identified through association studies have implicated multiple genes as associated with TGCT predisposition, many of which are unique among cancer types, and regulate processes such as pluripotency, sex specification, and microtubule assembly. Together these biologically plausible genes converge on pathways involved in male germ cell development and maturation, and suggest that perturbation of them confers susceptibility to TGCT, as a developmental defect of germ cell differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Meta-analysis of human leukocyte antigen genetic polymorphisms and susceptibility to chronic myelogenous leukemia in Chinese population.

    PubMed

    Zhang, Min-Yue; Chen, Fang-Yuan; Zhong, Hua

    2011-12-01

    Human leukocyte antigen (HLA) genetic polymorphisms are assumed to be correlated to the risk of chronic myelogenous leukemia (CML) in various ethnicities. Up to now, no clear consensus has been reached. Our goal is to address this issue in Chinese population. By searching the data in PubMed, Embase and four Chinese databases (prior to July 2010), the association of HLA genetic polymorphisms with CML has been fixed as the research objective. We studied a totality of 12 studies, comprising 2281 CML cases and 41000 health controls. The data demonstrated that HLA-A*11, A*74, HLA-B*40, B*47, B*55 and B*81 alleles were correlated with the increasing risk of CML. Nevertheless, HLA-DRB1*13 allele seemed to contribute to the genetic protection to CML. Conclusively we suggested that certain HLA alleles might be in association with the pathogenesis of CML in Chinese population. Due to little statistical scale, larger studies and particularly in a mono-people background, our hypothesis need to be further investigated in the future. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Genetics of Paget's disease of bone

    PubMed Central

    Albagha, Omar ME

    2015-01-01

    Paget's disease of bone (PDB) is a common metabolic bone disease characterised by focal areas of increased bone turnover, which primarily affects people over the age of 55 years. Genetic factors have a fundamental role in the pathogenesis of PDB and are probably the main predisposing factor for the disease. The genetic contribution to PDB susceptibility ranges from rare pathogenic mutations in the single gene SQSTM1 to more common, small effect variants in at least seven genetic loci that predispose to the disease. These loci have additive effects on disease susceptibility and interact with SQSTM1 mutations to affect disease severity, making them a potentially useful tool in predicting disease risk and complication and in managing treatments. Many of these loci harbour genes that have important function in osteoclast differentiation such as CSF1, DCSTAMP and TNFRSF11A. Other susceptibility loci have highlighted new molecular pathways that have not been previously implicated in regulation of bone metabolism such as OPTN, which was recently found to negatively regulate osteoclast differentiation. PDB-susceptibility variants exert their effect either by affecting the protein coding sequence such as variants found in SQSTM1 and RIN3 or by influencing gene expression such as those found in OPTN and DCSTAMP. Epidemiological studies indicate that environmental triggers also have a key role in PDB and interact with genetic factors to influence manifestation and severity of the disease; however, further studies are needed to identify these triggers. PMID:26587225

  13. Role of T cell receptor delta gene in susceptibility to celiac disease.

    PubMed

    Roschmann, E; Wienker, T F; Volk, B A

    1996-02-01

    There is a strong genetic influence on the susceptibility to celiac disease. Although in the vast majority of patients with celiac disease, the HLA-DQ(alpha1*0501, beta1*0201) heterodimer encoded by the alleles HLA-DQA1*0501 and HLA-DQB1*0201 seems to confer the primary disease susceptibility, it cannot be excluded that other genes contribute to disease susceptibility, as indicated by the difference in concordance rates between monozygotic twins and HLA identical siblings (70% vs. 30%). Obviously other genes involved in the genetic control of T cell mediated immune response could potentially influence susceptibility to celiac disease. The density of T cells using the gammadelta T cell receptor (TCR) is considerably increased in the jejunal epithelium of patients with celiac disease, an abnormality considered to be specific for celiac disease. This suggests an involvement of gammadelta T cells in the pathogenesis of the disease. To ascertain whether the TCR delta (TCRD) gene contributes to celiac disease susceptibility we carried out an association study and genetic linkage analysis using a highly polymorphic microsatellite marker at the TCRD locus on chromosome 14q11.2. The association study demonstrated no significant difference in allele frequencies of the TCRD gene marker between celiac disease patients and controls; accordingly, the relative risk estimates did not reach the level of statistical significance. In the linkage analysis, performed in 23 families, the logarithm of the odds (LOD) scores calculated for celiac disease versus the TCRD gene marker excluded linkage, suggesting that there is no determinant contributing to celiac disease status at or 5 cM distant to the analyzed TCRD gene marker. In conclusion, the results of the present study provide no evidence that the analyzed TCRD gene contributes substantially to celiac disease susceptibility.

  14. Association of VAMP5 and MCC genetic polymorphisms with increased risk of Hirschsprung disease susceptibility in Southern Chinese children.

    PubMed

    Zhao, Jinglu; Xie, Xiaoli; Yao, Yuxiao; He, Qiuming; Zhang, Ruizhong; Xia, Huimin; Zhang, Yan

    2018-04-25

    Hirschsprung disease (HSCR) is a genetic disorder characterized by the absence of neural crest cells in parts of the intestine. This study aims to investigate the association of vesicle-associated membrane protein 5 ( VAMP5 ) and mutated in colorectal cancer ( MCC ) genetic polymorphisms and their correlated risks with HSCR. We examined the association in four polymorphisms (rs10206961, rs1254900 and rs14242 in VAMP5 , rs11241200 in MCC ) and HSCR susceptibility in a Southern Chinese population composed of 1473 cases and 1469 controls. Two variants in VAMP5 were replicated as associated with HSCR. Interestingly, we clarified SNPs rs10206961 and rs1254900 in VAMP5 are more essential for patients with long-segment aganglionosis (LHSCR). Relatively high expression correlation was observed between VAMP5 and MCC using data from public database showing there may exist potential genetic interactions. SNP interaction was cross-examined by logistic regression and multifactor dimensionality reduction analysis revealing that VAMP5 rs1254900 and MCC rs11241200 were interacting significantly, thereby contributing to the risk of HSCR. The results suggest that significant associations of the rs10206961 and rs14242 in VAMP5 with an increased risk of HSCR in Southern Chinese, especially in LHSCR patients. This study provided new evidence of epistatic association of VAMP5 and MCC with increased risk of HSCR.

  15. Common Breast Cancer Susceptibility Variants in LSP1 and RAD51L1 Are Associated with Mammographic Density Measures that Predict Breast Cancer Risk

    PubMed Central

    Vachon, Celine M.; Scott, Christopher G.; Fasching, Peter A.; Hall, Per; Tamimi, Rulla M.; Li, Jingmei; Stone, Jennifer; Apicella, Carmel; Odefrey, Fabrice; Gierach, Gretchen L.; Jud, Sebastian M.; Heusinger, Katharina; Beckmann, Matthias W.; Pollan, Marina; Fernández-Navarro, Pablo; González-Neira, Anna; Benítez, Javier; van Gils, Carla H.; Lokate, Mariëtte; Onland-Moret, N. Charlotte; Peeters, Petra H.M.; Brown, Judith; Leyland, Jean; Varghese, Jajini S.; Easton, Douglas F.; Thompson, Deborah J.; Luben, Robert N.; Warren, Ruth ML; Wareham, Nicholas J.; Loos, Ruth JF; Khaw, Kay-Tee; Ursin, Giske; Lee, Eunjung; Gayther, Simon A.; Ramus, Susan J.; Eeles, Rosalind A.; Leach, Martin O.; Kwan-Lim, Gek; Couch, Fergus J.; Giles, Graham G.; Baglietto, Laura; Krishnan, Kavitha; Southey, Melissa C.; Le Marchand, Loic; Kolonel, Laurence N.; Woolcott, Christy; Maskarinec, Gertraud; Haiman, Christopher A; Walker, Kate; Johnson, Nichola; McCormack, Valerie A.; Biong, Margarethe; Alnæs, Grethe I.G.; Gram, Inger Torhild; Kristensen, Vessela N.; Børresen-Dale, Anne-Lise; Lindström, Sara; Hankinson, Susan E.; Hunter, David J.; Andrulis, Irene L.; Knight, Julia A.; Boyd, Norman F.; Figueroa, Jonine D.; Lissowska, Jolanta; Wesolowska, Ewa; Peplonska, Beata; Bukowska, Agnieszka; Reszka, Edyta; Liu, JianJun; Eriksson, Louise; Czene, Kamila; Audley, Tina; Wu, Anna H.; Pankratz, V. Shane; Hopper, John L.; dos-Santos-Silva, Isabel

    2013-01-01

    Background Mammographic density adjusted for age and body mass index (BMI) is a heritable marker of breast cancer susceptibility. Little is known about the biological mechanisms underlying the association between mammographic density and breast cancer risk. We examined whether common low-penetrance breast cancer susceptibility variants contribute to inter-individual differences in mammographic density measures. Methods We established an international consortium (DENSNP) of 19 studies from 10 countries, comprising 16,895 Caucasian women, to conduct a pooled cross-sectional analysis of common breast cancer susceptibility variants in 14 independent loci and mammographic density measures. Dense and non-dense areas, and percent density, were measured using interactive-thresholding techniques. Mixed linear models were used to assess the association between genetic variants and the square roots of mammographic density measures adjusted for study, age, case status, body mass index (BMI) and menopausal status. Results Consistent with their breast cancer associations, the C-allele of rs3817198 in LSP1 was positively associated with both adjusted dense area (p=0.00005) and adjusted percent density (p=0.001) whereas the A-allele of rs10483813 in RAD51L1 was inversely associated with adjusted percent density (p=0.003), but not with adjusted dense area (p=0.07). Conclusion We identified two common breast cancer susceptibility variants associated with mammographic measures of radio-dense tissue in the breast gland. Impact We examined the association of 14 established breast cancer susceptibility loci with mammographic density phenotypes within a large genetic consortium and identified two breast cancer susceptibility variants, LSP1-rs3817198 and RAD51L1-rs10483813, associated with mammographic measures and in the same direction as the breast cancer association. PMID:22454379

  16. Association of multiple genetic variants with chronic obstructive pulmonary disease susceptibility in Hainan region.

    PubMed

    Ding, Yipeng; Niu, Huan; Zhou, Long; Zhou, Wenjing; Chen, Jiannan; Xie, Shiliang; Geng, Tingting; Ouyang, Yanhong; He, Ping; Sun, Pei; Feng, Tian; Jin, Tianbo

    2017-11-01

    Recent genome-wide association studies have shown associations between variants in loci (4q28.1, 6p21.32, 6p21.1, 6q16.1, 10q22.1 and 10q22.3) and chronic obstructive pulmonary disease (COPD) or smoking behaviors. The objective of this study was to look for associations between 16 single nucleotide polymorphisms (SNP) at these six loci and COPD susceptibility in Hainan region. A case-control cohort was composed of 200 COPD cases and 401 controls that were genotyped and analyzed statistically. Odds ratios (OR) and 95% confidence intervals (CIs) were computed by chi-square (χ 2 ) test and genetic models by unconditional logistic regression. After Hardy-Weinberg equilibrium (HWE) P value screening, we excluded the SNP rs12220777 with P < 0.001. By χ 2 test only rs9296092 which located on 6p21.32 was provided the strongest evidence of an increasing risk of COPD with an OR of 3.28 (95% CI = 1.03 - 2.32; P = 0.003) between cases and controls. By genetic models analysis, we not only found rs9296092 increased COPD risk, but also found in the over-dominant model the genotype 'C/T' (OR = 0.55; 95% CI = 0.33 - 0.93; P = 0.023) of rs950063 was proved to be associated with decreased COPD risk. This study is the first to provide evidence of importance of rs9296092 and rs950063 for risk of COPD in Hainan Province. Further studies are needed to characterize the functional sequences that cause COPD. © 2015 John Wiley & Sons Ltd.

  17. Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia

    PubMed Central

    Yamada, Kazuo; Gerber, David J.; Iwayama, Yoshimi; Ohnishi, Tetsuo; Ohba, Hisako; Toyota, Tomoko; Aruga, Jun; Minabe, Yoshio; Tonegawa, Susumu; Yoshikawa, Takeo

    2007-01-01

    The calcineurin cascade is central to neuronal signal transduction, and genes in this network are intriguing candidate schizophrenia susceptibility genes. To replicate and extend our previously reported association between the PPP3CC gene, encoding the calcineurin catalytic γ-subunit, and schizophrenia, we examined 84 SNPs from 14 calcineurin-related candidate genes for genetic association by using 124 Japanese schizophrenic pedigrees. Four of these genes (PPP3CC, EGR2, EGR3, and EGR4) showed nominally significant association with schizophrenia. In a postmortem brain study, EGR1, EGR2, and EGR3 transcripts were shown to be down-regulated in the prefrontal cortex of schizophrenic, but not bipolar, patients. These findings raise a potentially important role for EGR genes in schizophrenia pathogenesis. Because EGR3 is an attractive candidate gene based on its chromosomal location close to PPP3CC within 8p21.3 and its functional link to dopamine, glutamate, and neuregulin signaling, we extended our analysis by resequencing the entire EGR3 genomic interval and detected 15 SNPs. One of these, IVS1 + 607A→G SNP, displayed the strongest evidence for disease association, which was confirmed in 1,140 independent case-control samples. An in vitro promoter assay detected a possible expression-regulatory effect of this SNP. These findings support the previous genetic association of altered calcineurin signaling with schizophrenia pathogenesis and identify EGR3 as a compelling susceptibility gene. PMID:17360599

  18. Genetics of Vitiligo

    PubMed Central

    Spritz, Richard; Andersen, Genevieve

    2016-01-01

    Synopsis Vitiligo is “complex disorder” (also termed polygenic and multifactorial), reflecting simultaneous contributions of multiple genetic risk factors and environmental triggers. Large-scale genome-wide association studies, principally in European-derived whites and in Chinese, have discovered approximately 50 different genetic loci that contribute to vitiligo risk, some of which also contribute to other autoimmune diseases that are epidemiologically associated with vitiligo. At many of these vitiligo susceptibility loci the corresponding relevant genes have now been identified, and for some of these genes the specific DNA sequence variants that contribute to vitiligo risk are also now known. A large fraction of these genes encode proteins involved in immune regulation, a number of others play roles in cellular apoptosis, and still others are involved in regulating functions of melanocytes. For this last group, there appears to be an opposite relationship between susceptibility to vitiligo and susceptibility to melanoma, suggesting that vitiligo may engage a normal mechanism of immune surveillance for melanoma. While many of the specific biologic mechanisms through which these genetic factors operate to cause vitiligo remain to be elucidated, it is now clear that vitiligo is an autoimmune disease involving a complex relationship between programming and function of the immune system, aspects of the melanocyte autoimmune target, and dysregulation of the immune response. PMID:28317533

  19. Gender Differences in Cancer Susceptibility: An Inadequately Addressed Issue

    PubMed Central

    Dorak, M. Tevfik; Karpuzoglu, Ebru

    2012-01-01

    The gender difference in cancer susceptibility is one of the most consistent findings in cancer epidemiology. Hematologic malignancies are generally more common in males and this can be generalized to most other cancers. Similar gender differences in non-malignant diseases including autoimmunity, are attributed to hormonal or behavioral differences. Even in early childhood, however, where these differences would not apply, there are differences in cancer incidence between males and females. In childhood, few cancers are more common in females, but overall, males have higher susceptibility. In Hodgkin lymphoma, the gender ratio reverses toward adolescence. The pattern that autoimmune disorders are more common in females, but cancer and infections in males suggests that the known differences in immunity may be responsible for this dichotomy. Besides immune surveillance, genome surveillance mechanisms also differ in efficiency between males and females. Other obvious differences include hormonal ones and the number of X chromosomes. Some of the differences may even originate from exposures during prenatal development. This review will summarize well-documented examples of gender effect in cancer susceptibility, discuss methodological issues in exploration of gender differences, and present documented or speculated mechanisms. The gender differential in susceptibility can give important clues for the etiology of cancers and should be examined in all genetic and non-genetic association studies. PMID:23226157

  20. Genetic susceptibility to interstitial pulmonary fibrosis in mice induced by vanadium pentoxide (V2O5)

    PubMed Central

    Walters, Dianne M.; White, Kevin M.; Patel, Ushma; Davis, Martin J.; Veluci-Marlow, Roberta M.; Bhupanapadu Sunkesula, Solomon Raju; Bonner, James C.; Martin, Jessica R.; Gladwell, Wes; Kleeberger, Steven R.

    2014-01-01

    Interstitial lung diseases (ILDs) are characterized by injury, inflammation, and scarring of alveoli, leading to impaired function. The etiology of idiopathic forms of ILD is not understood, making them particularly difficult to study due to the lack of appropriate animal models. Consequently, few effective therapies have emerged. We developed an inbred mouse model of ILD using vanadium pentoxide (V2O5), the most common form of a transition metal found in cigarette smoke, fuel ash, mineral ores, and steel alloys. Pulmonary responses to V2O5, including dose-dependent increases in lung permeability, inflammation, collagen content, and dysfunction, were significantly greater in DBA/2J mice compared to C57BL/6J mice. Inflammatory and fibrotic responses persisted for 4 mo in DBA/2J mice, while limited responses in C57BL/6J mice resolved. We investigated the genetic basis for differential responses through genetic mapping of V2O5-induced lung collagen content in BXD recombinant inbred (RI) strains and identified significant linkage on chromosome 4 with candidate genes that associate with V2O5-induced collagen content across the RI strains. Results suggest that V2O5 may induce pulmonary fibrosis through mechanisms distinct from those in other models of pulmonary fibrosis. These findings should further advance our understanding of mechanisms involved in ILD and thereby aid in identification of new therapeutic targets.—Walters, D. M., White, K. M., Patel, U., Davis, M. J., Veluci-Marlow, R. M., Bhupanapadu Sunkesula, S. R., Bonner, J. C., Martin, J. R., Gladwell, W., Kleeberger, S. R. Genetic susceptibility to interstitial pulmonary fibrosis in mice induced by vanadium pentoxide (V2O5). PMID:24285090

  1. Analyses between Reproductive Behavior, Genetic Diversity and Pythium Responsiveness in Zingiber spp. Reveal an Adaptive Significance for Hemiclonality

    PubMed Central

    Thomas, Geethu E.; Geetha, Kiran A.; Augustine, Lesly; Mamiyil, Sabu; Thomas, George

    2016-01-01

    Mode of reproduction is generally considered to have long-range evolutionary implications on population survival. Because sexual reproduction produces genetically diverse genotypes, this mode of reproduction is predicted to positively influence the success potential of offspring in evolutionary arms race with parasites (Red queen) whereas, without segregation and recombination, the obligate asexual multiplication may push a species into extinction due to the steady accumulation of deleterious mutations (Muller’s ratchet). However, the extent of linearity between reproductive strategies, genetic diversity and population fitness, and the contributions of different breeding strategies to population fitness are yet to be understood clearly. Genus Zingiber belonging to the pan-tropic family Zingiberaceae represents a good system to study contributions of different breeding behavior on genetic diversity and population fitness, as this genus comprises species with contrasting breeding systems. In this study, we analyzed breeding behavior, amplified fragment length polymorphism diversity and response to the soft-rot pathogen Pythium aphanidermatum in 18 natural populations of three wild Zingiber spp.: Z. neesanum, Z. nimmonii, and Z. zerumbet, together with the obligately asexual cultivated congener, ginger (Z. officinale). Ginger showed an exceptionally narrow genetic base, and adding to this, all the tested cultivars were uniformly susceptible to soft-rot. Concordant with the postulates of Muller’s ratchet, the background selection may be continuously pushing ginger into the ancestral state, rendering it inefficient in host-pathogen coevolution. Z. neesanum and Z. nimmonii populations were sexual and genetically diverse; however, contrary to Red Queen expectations, the populations were highly susceptible to soft-rot. Z. zerumbet showed a hemiclonal breeding behavior. The populations inhabiting forest understory were large and continuous, sexual and genetically

  2. Background Selection in Partially Selfing Populations

    PubMed Central

    Roze, Denis

    2016-01-01

    Self-fertilizing species often present lower levels of neutral polymorphism than their outcrossing relatives. Indeed, selfing automatically increases the rate of coalescence per generation, but also enhances the effects of background selection and genetic hitchhiking by reducing the efficiency of recombination. Approximations for the effect of background selection in partially selfing populations have been derived previously, assuming tight linkage between deleterious alleles and neutral loci. However, loosely linked deleterious mutations may have important effects on neutral diversity in highly selfing populations. In this article, I use a general method based on multilocus population genetics theory to express the effect of a deleterious allele on diversity at a linked neutral locus in terms of moments of genetic associations between loci. Expressions for these genetic moments at equilibrium are then computed for arbitrary rates of selfing and recombination. An extrapolation of the results to the case where deleterious alleles segregate at multiple loci is checked using individual-based simulations. At high selfing rates, the tight linkage approximation underestimates the effect of background selection in genomes with moderate to high map length; however, another simple approximation can be obtained for this situation and provides accurate predictions as long as the deleterious mutation rate is not too high. PMID:27075726

  3. Detection and Characterization of Infections and Infection Susceptibility

    ClinicalTrials.gov

    2018-06-26

    Immune Disorders; Chronic Granulomatous Disease; Genetic Immunological Deficiencies; Hyperimmunoglobulin-E Recurrent Infection Syndrome; Recurrent Infections; Unknown Immune Deficiency; GATA2 Deficiency (MonoMAC); Nontuberculous Mycobacterial Infections; Hyper IgE (Job s) Syndrome; Leukocyte Adhesion Deficiency; Susceptibility to Disseminated Infections; Primary Immune Deficiency Disease (PIDD)

  4. Genetic risks and healthy choices: creating citizen-consumers of genetic services through empowerment and facilitation.

    PubMed

    Harvey, Alison

    2010-03-01

    Genetic testing to identify susceptibility to a variety of common complex diseases is increasingly becoming available. In this article, focusing on the development of genetic susceptibility testing for diet-related disease, I examine the emergence of direct-to-the-consumer genetic testing services and the (re)configuration of healthcare provision, both within and outside the specialist genetics service, in the UK. I identify two key techniques within these practices: empowerment and facilitation. Using Foucauldian social theory, I show that empowerment and facilitation are being positioned as tools for the creation of citizen-consumers who will make appropriate dietary choices, based on the results of their genetic analysis. Through these techniques, individuals are transformed into properly entrepreneurial citizens who will, through judicious choices, act to maximise their 'vital capital' (their health) and the capital of the social body. I argue that the user of these services is not purely an economic figure, making rational choices as a consumer, but that her configuration as a citizen-consumer who avails herself of genetic information and services in a proper manner ensures that she is fit to contribute to the economic life of our present.

  5. Practical disk diffusion test for detecting group B streptococcus with reduced penicillin susceptibility.

    PubMed

    Kimura, Kouji; Wachino, Jun-Ichi; Kurokawa, Hiroshi; Suzuki, Satowa; Yamane, Kunikazu; Shibata, Naohiro; Arakawa, Yoshichika

    2009-12-01

    Although group B streptococcus (GBS) has been considered to be uniformly susceptible to beta-lactams, the presence of GBS with reduced penicillin susceptibility (PRGBS) was recently confirmed genetically. We developed a feasible and reliable method for screening PRGBS in clinical microbiology laboratories using a combination of ceftibuten, oxacillin, and ceftizoxime disks.

  6. Biofilms and antibiotic susceptibility of multidrug-resistant bacteria from wild animals

    PubMed Central

    Dias, Carla; Borges, Anabela; Oliveira, Diana; Martinez-Murcia, Antonio; Saavedra, Maria José

    2018-01-01

    Background The “One Health” concept recognizes that human health and animal health are interdependent and bound to the health of the ecosystem in which they (co)exist. This interconnection favors the transmission of bacteria and other infectious agents as well as the flow of genetic elements containing antibiotic resistance genes. This problem is worsened when pathogenic bacteria have the ability to establish as biofilms. Therefore, it is important to understand the characteristics and behaviour of microorganisms in both planktonic and biofilms states from the most diverse environmental niches to mitigate the emergence and dissemination of resistance. Methods The purpose of this work was to assess the antibiotic susceptibility of four bacteria (Acinetobacter spp., Klebsiella pneumoniae, Pseudomonas fluorescens and Shewanella putrefaciens) isolated from wild animals and their ability to form biofilms. The effect of two antibiotics, imipenem (IPM) and ciprofloxacin (CIP), on biofilm removal was also assessed. Screening of resistance genetic determinants was performed by PCR. Biofilm tests were performed by a modified microtiter plate method. Bacterial surface hydrophobicity was determined by sessile drop contact angles. Results The susceptibility profile classified the bacteria as multidrug-resistant. Three genes coding for β-lactamases were detected in K. pneumoniae (TEM, SHV, OXA-aer) and one in P. fluorescens (OXA-aer). K. pneumoniae was the microorganism that carried more β-lactamase genes and it was the most proficient biofilm producer, while P. fluorescens demonstrated the highest adhesion ability. Antibiotics at their MIC, 5 × MIC and 10 × MIC were ineffective in total biofilm removal. The highest biomass reductions were found with IPM (54% at 10 × MIC) against K. pneumoniae biofilms and with CIP (40% at 10 × MIC) against P. fluorescens biofilms. Discussion The results highlight wildlife as important host reservoirs and vectors for the spread of

  7. Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background.

    PubMed

    Liorzou, Mathilde; Pernet, Alix; Li, Shubin; Chastellier, Annie; Thouroude, Tatiana; Michel, Gilles; Malécot, Valéry; Gaillard, Sylvain; Briée, Céline; Foucher, Fabrice; Oghina-Pavie, Cristiana; Clotault, Jérémy; Grapin, Agnès

    2016-08-01

    Hybridization with introduced genetic resources is commonly practiced in ornamental plant breeding to introgress desired traits. The 19th century was a golden age for rose breeding in France. The objective here was to study the evolution of rose genetic diversity over this period, which included the introduction of Asian genotypes into Europe. A large sample of 1228 garden roses encompassing the conserved diversity cultivated during the 18th and 19th centuries was genotyped with 32 microsatellite primer pairs. Its genetic diversity and structure were clarified. Wide diversity structured in 16 genetic groups was observed. Genetic differentiation was detected between ancient European and Asian accessions, and a temporal shift from a European to an Asian genetic background was observed in cultivated European hybrids during the 19th century. Frequent crosses with Asian roses throughout the 19th century and/or selection for Asiatic traits may have induced this shift. In addition, the consistency of the results with respect to a horticultural classification is discussed. Some horticultural groups, defined according to phenotype and/or knowledge of their pedigree, seem to be genetically more consistent than others, highlighting the difficulty of classifying cultivated plants. Therefore, the horticultural classification is probably more appropriate for commercial purposes rather than genetic relatedness, especially to define preservation and breeding strategies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. The influence of PRNP polymorphisms on human prion disease susceptibility: an update.

    PubMed

    Kobayashi, Atsushi; Teruya, Kenta; Matsuura, Yuichi; Shirai, Tsuyoshi; Nakamura, Yoshikazu; Yamada, Masahito; Mizusawa, Hidehiro; Mohri, Shirou; Kitamoto, Tetsuyuki

    2015-08-01

    Two normally occurring polymorphisms of the human PRNP gene, methionine (M)/valine (V) at codon 129 and glutamic acid (E)/lysine (K) at codon 219, can affect the susceptibility to prion diseases. It has long been recognized that 129M/M homozygotes are overrepresented in sporadic Creutzfeldt-Jakob disease (CJD) patients and variant CJD patients, whereas 219E/K heterozygotes are absent in sporadic CJD patients. In addition to these pioneering findings, recent progress in experimental transmission studies and worldwide surveillance of prion diseases have identified novel relationships between the PRNP polymorphisms and the prion disease susceptibility. For example, although 219E/K heterozygosity confers resistance against the development of sporadic CJD, this genotype is not entirely protective against acquired forms (iatrogenic CJD and variant CJD) or genetic forms (genetic CJD and Gerstmann-Sträussler-Scheinker syndrome) of prion diseases. In addition, 129M/V heterozygotes predispose to genetic CJD caused by a pathogenic PRNP mutation at codon 180. These findings show that the effects of the PRNP polymorphisms may be more complicated than previously thought. This review aims to summarize recent advances in our knowledge about the influence of the PRNP polymorphisms on the prion disease susceptibility.

  9. Identification of a herpes simplex labialis susceptibility region on human chromosome 21.

    PubMed

    Hobbs, Maurine R; Jones, Brandt B; Otterud, Brith E; Leppert, Mark; Kriesel, John D

    2008-02-01

    Most of the United States population is infected with either herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2, or both. Reactivations of HSV-1 infection cause herpes simplex labialis (HSL; cold sores or fever blisters), which is the most common recurring viral infection in humans. To investigate the possibility of a human genetic component conferring resistance or susceptibility to cold sores (i.e., a HSL susceptibility gene), we conducted a genetic linkage analysis that included serotyping and phenotyping 421 individuals from 39 families enrolled in the Utah Genetic Reference Project. Linkage analysis identified a 2.5-Mb nonrecombinant region of interest on the long arm of human chromosome 21, with a multipoint logarithm of odds score of 3.9 noted near marker abmc65 (D21S409). Nonparametric linkage analysis of the data also provided strong evidence for linkage (P = .0005). This region of human chromosome 21 contains 6 candidate genes for herpes susceptibility. The development of frequent cold sores is associated with a region on the long arm of human chromosome 21. This region contains several candidate genes that could influence the frequency of outbreaks of HSL.

  10. HLA Class I and Genetic Susceptibility to Type 1 Diabetes

    PubMed Central

    Noble, Janelle A.; Valdes, Ana Maria; Varney, Michael D.; Carlson, Joyce A.; Moonsamy, Priscilla; Fear, Anna Lisa; Lane, Julie A.; Lavant, Eva; Rappner, Rebecca; Louey, Anthony; Concannon, Patrick; Mychaleckyj, Josyf C.; Erlich, Henry A.

    2010-01-01

    OBJECTIVE We report here genotyping data and type 1 diabetes association analyses for HLA class I loci (A, B, and C) on 1,753 multiplex pedigrees from the Type 1 Diabetes Genetics Consortium (T1DGC), a large international collaborative study. RESEARCH DESIGN AND METHODS Complete eight-locus HLA genotyping data were generated. Expected patient class I (HLA-A, -B, and -C) allele frequencies were calculated, based on linkage disequilibrium (LD) patterns with observed HLA class II DRB1-DQA1-DQB1 haplotype frequencies. Expected frequencies were compared to observed allele frequencies in patients. RESULTS Significant type 1 diabetes associations were observed at all class I HLA loci. After accounting for LD with HLA class II, the most significantly type 1 diabetes–associated alleles were B*5701 (odds ratio 0.19; P = 4 × 10−11) and B*3906 (10.31; P = 4 × 10−10). Other significantly type 1 diabetes–associated alleles included A*2402, A*0201, B*1801, and C*0501 (predisposing) and A*1101, A*3201, A*6601, B*0702, B*4403, B*3502, C*1601, and C*0401 (protective). Some alleles, notably B*3906, appear to modulate the risk of all DRB1-DQA1-DQB1 haplotypes on which they reside, suggesting a class I effect that is independent of class II. Other class I type 1 diabetes associations appear to be specific to individual class II haplotypes. Some apparent associations (e.g., C*1601) could be attributed to strong LD to another class I susceptibility locus (B*4403). CONCLUSIONS These data indicate that HLA class I alleles, in addition to and independently from HLA class II alleles, are associated with type 1 diabetes. PMID:20798335

  11. [Issues on business of genetic testing in near future].

    PubMed

    Takada, Fumio

    2009-06-01

    Since 1990's, a business condition that company sells genetic testing services directly to consumers without through medical facility, so called "direct-to-consumers (DTC) genetic testing", has risen. They provide genetic testing for obesity, disease susceptibility or paternity, etc. There are serious problems in this kind of business. Most of the providers do not make sales with face-to-face selling, and do through internet instead. They do not provide genetic counseling by certified genetic counselor or clinical geneticist. Most DTC genetic testing services for disease susceptibility or predispositions including obesity, lack scientific validity, clinical validity and clinical utility. And also including paternity genetic testing, they all have risks of ethical legal and social issues (ELSI) in genetic discrimination and/or eugenics. The specific problem in Japan is that the healthcare section of the government still has not paid attention and not taken seriously the requirement to deploy safety net.

  12. Evaluating the genetic susceptibility to peer reported bullying behaviors.

    PubMed

    Musci, Rashelle J; Bettencourt, Amie F; Sisto, Danielle; Maher, Brion; Uhl, George; Ialongo, Nicholas; Bradshaw, Catherine P

    2018-05-01

    Bullying is a significant public health concern with lasting impacts on youth. Although environmental risk factors for bullying have been well-characterized, genetic influences on bullying are not well understood. This study explored the role of genetics on early childhood bullying behavior. Participants were 561 children who participated in a longitudinal randomized control trial of a preventive intervention beginning in first grade who were present for the first grade peer nominations used to measure early childhood bullying and who provided genetic data during the age 19-21 year follow-up in the form of blood or saliva. Measures included a polygenic risk score (PRS) derived from a conduct disorder genome wide association study. Latent profile analysis identified three profiles of bullying behaviors during early childhood. Results suggest that the PRS was significantly associated with class membership, with individuals in the moderate bully-victim profile having the highest levels of the PRS and those in the high bully-victim profile having the lowest levels. This line of research has important implications for understanding genetic vulnerability to bullying in early childhood. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Allele-specific DNA methylation of disease susceptibility genes in Japanese patients with inflammatory bowel disease.

    PubMed

    Chiba, Hirofumi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Kawai, Yosuke; Watanabe, Kazuhiro; Nagao, Munenori; Naito, Takeo; Onodera, Motoyuki; Moroi, Rintaro; Kuroha, Masatake; Kanazawa, Yoshitake; Kimura, Tomoya; Shiga, Hisashi; Endo, Katsuya; Negoro, Kenichi; Nagasaki, Masao; Unno, Michiaki; Shimosegawa, Tooru

    2018-01-01

    Inflammatory bowel disease (IBD) has an unknown etiology; however, accumulating evidence suggests that IBD is a multifactorial disease influenced by a combination of genetic and environmental factors. The influence of genetic variants on DNA methylation in cis and cis effects on expression have been demonstrated. We hypothesized that IBD susceptibility single-nucleotide polymorphisms (SNPs) regulate susceptibility gene expressions in cis by regulating DNA methylation around SNPs. For this, we determined cis-regulated allele-specific DNA methylation (ASM) around IBD susceptibility genes in CD4+ effector/memory T cells (Tem) in lamina propria mononuclear cells (LPMCs) in patients with IBD and examined the association between the ASM SNP genotype and neighboring susceptibility gene expressions. CD4+ effector/memory T cells (Tem) were isolated from LPMCs in 15 Japanese IBD patients (ten Crohn's disease [CD] and five ulcerative colitis [UC] patients). ASM analysis was performed by methylation-sensitive SNP array analysis. We defined ASM as a changing average relative allele score ([Formula: see text]) >0.1 after digestion by methylation-sensitive restriction enzymes. Among SNPs showing [Formula: see text] >0.1, we extracted the probes located on tag-SNPs of 200 IBD susceptibility loci and around IBD susceptibility genes as candidate ASM SNPs. To validate ASM, bisulfite-pyrosequencing was performed. Transcriptome analysis was examined in 11 IBD patients (seven CD and four UC patients). The relation between rs36221701 genotype and neighboring gene expressions were analyzed. We extracted six candidate ASM SNPs around IBD susceptibility genes. The top of [Formula: see text] (0.23) was rs1130368 located on HLA-DQB1. ASM around rs36221701 ([Formula: see text] = 0.14) located near SMAD3 was validated using bisulfite pyrosequencing. The SMAD3 expression was significantly associated with the rs36221701 genotype (p = 0.016). We confirmed the existence of cis-regulated ASM around

  14. Depression from childhood into late adolescence: Influence of gender, development, genetic susceptibility, and peer stress.

    PubMed

    Hankin, Benjamin L; Young, Jami F; Abela, John R Z; Smolen, Andrew; Jenness, Jessica L; Gulley, Lauren D; Technow, Jessica R; Gottlieb, Andrea Barrocas; Cohen, Joseph R; Oppenheimer, Caroline W

    2015-11-01

    Depression is a debilitating mental illness with clear developmental patterns from childhood through late adolescence. Here, we present data from the Gene Environment Mood (GEM) study, which used an accelerated longitudinal cohort design with youth (N = 665) starting in 3rd, 6th, and 9th grades, and a caretaker, who were recruited from the general community, and were then assessed repeatedly through semistructured diagnostic interviews every 6 months over 3 years (7 waves of data) to establish and then predict trajectories of depression from age 8 to 18. First, we demonstrated that overall prevalence rates of depression over time, by age, gender, and pubertal status, in the GEM study closely match those trajectories previously obtained in past developmental epidemiological research. Second, we tested whether a genetic vulnerability-stress model involving 5-HTTLPR and chronic peer stress was moderated by developmental factors. Results showed that older aged adolescents with SS/SL genotype, who experienced higher peer chronic stress over 3 years, were the most likely to be diagnosed with a depressive episode over time. Girls experiencing greater peer chronic stress were the most likely to develop depression. This study used repeated assessments of diagnostic interviewing in a moderately large sample of youth over 3 years to show that depression rates increase in middle to late adolescence, or postpubertally, and that the gender difference in depression emerges earlier in adolescence (age 12.5), or postpubertally. Additionally, genetically susceptible older adolescents who experience chronic peer stress were the most likely to become depressed over time. (c) 2015 APA, all rights reserved).

  15. Consumers' views of direct-to-consumer genetic information.

    PubMed

    McBride, Colleen M; Wade, Christopher H; Kaphingst, Kimberly A

    2010-01-01

    In this report, we describe the evolution and types of genetic information provided directly to consumers, discuss potential advantages and disadvantages of these products, and review research evaluating consumer responses to direct-to-consumer (DTC) genetic testing. The available evidence to date has focused on predictive tests and does not suggest that individuals, health care providers, or health care systems have been harmed by a DTC provision of genetic information. An understanding of consumer responses to susceptibility tests has lagged behind. The Multiplex Initiative is presented as a case study of research to understand consumers' responses to DTC susceptibility tests. Three priority areas are recommended for accelerated research activities to inform public policy regarding DTC genetic information: (a) exploring consumer's long-term responses to DTC genetic testing on a comprehensive set of outcomes, (b) evaluating optimal services to support decision making about genetic testing, and (c) evaluating best practices in promoting genetic competencies among health providers.

  16. Prevalence and spectrum of large deletions or duplications in the major long QT syndrome-susceptibility genes and implications for long QT syndrome genetic testing.

    PubMed

    Tester, David J; Benton, Amber J; Train, Laura; Deal, Barbara; Baudhuin, Linnea M; Ackerman, Michael J

    2010-10-15

    Long QT syndrome (LQTS) is a cardiac channelopathy associated with syncope, seizures, and sudden death. Approximately 75% of LQTS is due to mutations in genes encoding for 3 cardiac ion channel α-subunits (LQT1 to LQT3). However, traditional mutational analyses have limited detection capabilities for atypical mutations such as large gene rearrangements. We set out to determine the prevalence and spectrum of large deletions/duplications in the major LQTS-susceptibility genes in unrelated patients who were mutation negative after point mutation analysis of LQT1- to LQT12-susceptibility genes. Forty-two unrelated, clinically strong LQTS patients were analyzed using multiplex ligation-dependent probe amplification, a quantitative fluorescent technique for detecting multiple exon deletions and duplications. The SALSA multiplex ligation-dependent probe amplification LQTS kit from MRC-Holland was used to analyze the 3 major LQTS-associated genes, KCNQ1, KCNH2, and SCN5A, and the 2 minor genes, KCNE1 and KCNE2. Overall, 2 gene rearrangements were found in 2 of 42 unrelated patients (4.8%, confidence interval 1.7 to 11). A deletion of KCNQ1 exon 3 was identified in a 10-year-old Caucasian boy with a corrected QT duration of 660 ms, a personal history of exercise-induced syncope, and a family history of syncope. A deletion of KCNQ1 exon 7 was identified in a 17-year-old Caucasian girl with a corrected QT duration of 480 ms, a personal history of exercise-induced syncope, and a family history of sudden cardiac death. In conclusion, because nearly 5% of patients with genetically elusive LQTS had large genomic rearrangements involving the canonical LQTS-susceptibility genes, reflex genetic testing to investigate genomic rearrangements may be of clinical value. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. A novel background field removal method for MRI using projection onto dipole fields (PDF).

    PubMed

    Liu, Tian; Khalidov, Ildar; de Rochefort, Ludovic; Spincemaille, Pascal; Liu, Jing; Tsiouris, A John; Wang, Yi

    2011-11-01

    For optimal image quality in susceptibility-weighted imaging and accurate quantification of susceptibility, it is necessary to isolate the local field generated by local magnetic sources (such as iron) from the background field that arises from imperfect shimming and variations in magnetic susceptibility of surrounding tissues (including air). Previous background removal techniques have limited effectiveness depending on the accuracy of model assumptions or information input. In this article, we report an observation that the magnetic field for a dipole outside a given region of interest (ROI) is approximately orthogonal to the magnetic field of a dipole inside the ROI. Accordingly, we propose a nonparametric background field removal technique based on projection onto dipole fields (PDF). In this PDF technique, the background field inside an ROI is decomposed into a field originating from dipoles outside the ROI using the projection theorem in Hilbert space. This novel PDF background removal technique was validated on a numerical simulation and a phantom experiment and was applied in human brain imaging, demonstrating substantial improvement in background field removal compared with the commonly used high-pass filtering method. Copyright © 2011 John Wiley & Sons, Ltd.

  18. HLA-B*1301 as a Biomarker for Genetic Susceptibility to Hypersensitivity Dermatitis Induced by Trichloroethylene among Workers in China

    PubMed Central

    Li, Haishan; Dai, Yufei; Huang, Hanlin; Li, Laiyu; Leng, Shuguang; Cheng, Juan; Niu, Yong; Duan, Huawei; Liu, Qingjun; Zhang, Xing; Huang, Xianqing; Xie, Jinxin; Feng, Zhiming; Wang, Juncai; He, Jiaxi; Zheng, Yuxin

    2007-01-01

    Background Trichloroethylene (TCE) is used extensively as an industrial solvent and has been recognized as one of the major environmental pollutants. To date, > 200 cases of TCE-induced hypersensitivity dermatitis among exposed workers have been reported worldwide, and TCE exposure has become one of the critical occupational health issues in Asia. Objectives The study aimed to identify genetic susceptible biomarkers associated with the TCE-induced hypersensitivity dermatitis in genes located in the human leukocyte antigen (HLA) region. Methods From 1998 to 2006, 121 cases with TCE-induced hypersensitivity dermatitis and 142 tolerant controls were recruited into the population-based case–control study. We determined HLA alleles B, DRB1, DQA1, and DQB1, by sequence-based typing. p-Values were corrected for comparisons of multiple HLA alleles. In addition, we compared and analyzed the structure character of amino acid residues of HLA molecules found in participants. Results We obtained complete genotyping data of 113 cases and 142 controls. The allele HLA-B*1301 was present in 83 (73.5%) of 113 patients compared with 13 (9.2%) of 142 tolerant workers (odds ratio = 27.5; 95% confidence interval, 13.5–55.7; corrected p = 1.48 × 10−21). In addition, the HLA-B*44 alleles were present in 6.2% (7/113) of patients, but were absent in TCE-tolerant workers. Residue 95 shared by HLA-B*1301 and HLA-B*44 molecules formed a different pocket F than other residues. Conclusions The allele HLA-B*1301 is strongly associated with TCE-induced hypersensitivity dermatitis among exposed workers and might be used as a biomarker to predict high risk individuals to TCE. PMID:18007983

  19. An Evolutionary Perspective on Family Studies: Differential Susceptibility to Environmental Influences.

    PubMed

    Hartman, Sarah; Belsky, Jay

    2016-12-01

    An evolutionary perspective of human development provides the basis for the differential-susceptibility hypothesis which stipulates that individuals should differ in their susceptibility to environmental influences, with some being more affected than others by both positive and negative developmental experiences and environmental exposures. This paper reviews evidence consistent with this claim while revealing that temperamental and genetic characteristics play a role in distinguishing more and less susceptible individuals. The differential-susceptibility framework under consideration is contrasted to the traditional diathesis-stress view that "vulnerability" traits predispose some to being disproportionately affected by (only) adverse experiences. We raise several issues stimulated by the literature that need to be clarified in further research. Lastly, we suggest that therapy may differ in its effects depending on an individual's susceptibility. © 2015 Family Process Institute.

  20. Genetic predispositions and childhood cancer.

    PubMed Central

    Shannon, K

    1998-01-01

    This article provides an overview of the problem of genetic susceptibility to childhood cancer with a particular emphasis on problems with ascertaining inherited cancer risk and the role of tumor-suppressor gene mutations in cancer predispositions. The association between neurofibromatosis type 1 and childhood leukemia is used to illustrate some of the issues faced by molecular biologists and genetic epidemiologists in identifying and analyzing at-risk individuals. The problem of incomplete penetrance in cancer susceptibility is presented and potential models are discussed. The article concludes with a number of tentative conclusions from existing data and speculations for future studies. Images Figure 1 PMID:9646040

  1. Genetic variations in MTHFR and esophageal squamous cell carcinoma susceptibility in Chinese Han population.

    PubMed

    Tang, Weifeng; Zhang, Sheng; Qiu, Hao; Wang, Lixin; Sun, Bin; Yin, Jun; Gu, Haiyong

    2014-05-01

    Esophageal cancer is the sixth most common cancer worldwide. Esophageal squamous cell carcinoma (ESCC) is a fatal malignancy associated with low 5-year survival rate. The aim of this study was to assess the association between methylenetetrahydrofolate reductase (MTHFR) tagging single nucleotide polymorphisms (SNPs) rs1801133 C>T, rs3753584 A>G, rs4845882 G>A, rs4846048 A>G and rs9651118 T>C genotypes and ESCC susceptibility in a hospital-based case-control study. We conducted genotyping analyses for these five SNPs with 629 ESCC cases and 686 controls in a Chinese Han population. Ligation detection reaction method was used to identify genotypes of these MTHFR SNPs. Our results demonstrated that MTHFR rs1801133 C>T was associated with the risk of ESCC; however, MTHFR rs4845882 G>A and rs4846048 A>G SNPs were associated with the decreased risk of ESCC, and MTHFR rs3753584 A>G and rs9651118 T>C SNPs were not associated with ESCC risk. Our findings suggests that MTHFR rs1801133 C>T, rs4845882 G>A and rs4846048 A>G SNPs may be genetic modifiers for developing ESCC in Chinese Han population.

  2. Principles in genetic risk assessment.

    PubMed

    Baptista, Pedro Viana

    2005-03-01

    Risk assessment constitutes an essential component of genetic counseling and testing, and the genetic risk should be estimated as accurately as possible for individual and family decision making. All relevant information retrieved from population studies and pedigree and genetic testing enhances the accuracy of the assessment of an individual's genetic risk. This review will focus on the following general aspects implicated in risk assessment: the increasing genetic information regarding disease; complex traits versus Mendelian disorders; and the influence of the environment and disease susceptibility. The influence of these factors on risk assessment will be discussed.

  3. Implications of sex-specific selection for the genetic basis of disease.

    PubMed

    Morrow, Edward H; Connallon, Tim

    2013-12-01

    Mutation and selection are thought to shape the underlying genetic basis of many common human diseases. However, both processes depend on the context in which they occur, such as environment, genetic background, or sex. Sex has widely known effects on phenotypic expression of genotype, but an analysis of how it influences the evolutionary dynamics of disease-causing variants has not yet been explored. We develop a simple population genetic model of disease susceptibility and evaluate it using a biologically plausible empirically based distribution of fitness effects among contributing mutations. The model predicts that alleles under sex-differential selection, including sexually antagonistic alleles, will disproportionately contribute to genetic variation for disease predisposition, thereby generating substantial sexual dimorphism in the genetic architecture of complex (polygenic) diseases. This is because such alleles evolve into higher population frequencies for a given effect size, relative to alleles experiencing equally strong purifying selection in both sexes. Our results provide a theoretical justification for expecting a sexually dimorphic genetic basis for variation in complex traits such as disease. Moreover, they suggest that such dimorphism is interesting - not merely something to control for - because it reflects the action of natural selection in molding the evolution of common disease phenotypes.

  4. High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington's disease CAG knock-in mice across multiple genetic backgrounds.

    PubMed

    Ament, Seth A; Pearl, Jocelynn R; Grindeland, Andrea; St Claire, Jason; Earls, John C; Kovalenko, Marina; Gillis, Tammy; Mysore, Jayalakshmi; Gusella, James F; Lee, Jong-Min; Kwak, Seung; Howland, David; Lee, Min Young; Baxter, David; Scherler, Kelsey; Wang, Kai; Geman, Donald; Carroll, Jeffrey B; MacDonald, Marcy E; Carlson, George; Wheeler, Vanessa C; Price, Nathan D; Hood, Leroy E

    2017-03-01

    Huntington's disease is a dominantly inherited neurodegenerative disease caused by the expansion of a CAG repeat in the HTT gene. In addition to the length of the CAG expansion, factors such as genetic background have been shown to contribute to the age at onset of neurological symptoms. A central challenge in understanding the disease progression that leads from the HD mutation to massive cell death in the striatum is the ability to characterize the subtle and early functional consequences of the CAG expansion longitudinally. We used dense time course sampling between 4 and 20 postnatal weeks to characterize early transcriptomic, molecular and cellular phenotypes in the striatum of six distinct knock-in mouse models of the HD mutation. We studied the effects of the HttQ111 allele on the C57BL/6J, CD-1, FVB/NCr1, and 129S2/SvPasCrl genetic backgrounds, and of two additional alleles, HttQ92 and HttQ50, on the C57BL/6J background. We describe the emergence of a transcriptomic signature in HttQ111/+  mice involving hundreds of differentially expressed genes and changes in diverse molecular pathways. We also show that this time course spanned the onset of mutant huntingtin nuclear localization phenotypes and somatic CAG-length instability in the striatum. Genetic background strongly influenced the magnitude and age at onset of these effects. This work provides a foundation for understanding the earliest transcriptional and molecular changes contributing to HD pathogenesis. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Is early-onset microsatellite and chromosomally stable colorectal cancer a hallmark of a genetic susceptibility syndrome?

    PubMed

    Kets, C M; van Krieken, J H J M; van Erp, P E J; Feuth, T; Jacobs, Y H A; Brunner, H G; Ligtenberg, M J L; Hoogerbrugge, N

    2008-02-15

    Most colorectal cancers show either microsatellite or chromosomal instability. A subset of colorectal cancers, especially those diagnosed at young age, is known to show neither of these forms of genetic instability and thus might have a distinct pathogenesis. Colorectal cancers diagnosed at young age are suggestive for hereditary predisposition. We investigate whether such early-onset microsatellite and chromosomally stable colorectal cancers are a hallmark of a genetic susceptibility syndrome. The ploidy status of microsatellite stable (familial) colorectal cancers of patients diagnosed before age 50 (n = 127) was analyzed in relation to the histopathological characteristics and family history. As a control the ploidy status of sporadic colorectal cancer, with normal staining of mismatch repair proteins, diagnosed at the age of 69 years or above (n = 70) was determined. A diploid DNA content was used as a marker for chromosomal stability. Within the group of patients with (familial) early onset microsatellite stable colorectal cancer the chromosomally stable tumors did not differ from chromosomally unstable tumors with respect to mean age at diagnosis, fulfillment of Amsterdam criteria or pathological characteristics. Segregation analysis did not reveal any family with microsatellite and chromosomally stable colorectal cancer in 2 relatives. The prevalence of microsatellite and chromosomally stable colorectal cancer was not significantly different for the early and late onset group (28 and 21%, respectively). We find no evidence that early-onset microsatellite and chromosomally stable colorectal cancer is a hallmark of a hereditary colorectal cancer syndrome. (c) 2007 Wiley-Liss, Inc.

  6. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    PubMed Central

    Tabor, Ala E.; Ali, Abid; Rehman, Gauhar; Rocha Garcia, Gustavo; Zangirolamo, Amanda Fonseca; Malardo, Thiago; Jonsson, Nicholas N.

    2017-01-01

    Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites), blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding), infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also contained higher

  7. Racial differences in cancer susceptibility and survival: More than the color of the skin?

    PubMed Central

    Özdemir, Berna C.; Dotto, Gian-Paolo

    2017-01-01

    Epidemiological studies point to race as a determining factor in cancer susceptibility. In US registries recording cancer incidence and survival by race (distinguishing “Black versus White”), individuals of African ancestry have a globally increased risk of malignancies compared to Caucasians and Asian Americans. Differences in socioeconomic status and health care access play a key role. However, the lesser disease susceptibility of Hispanic populations with comparable life-styles and socioeconomic status as African Americans, (“Hispanic paradox”) points to the concomitant importance of genetic determinants. Here, we overview the molecular basis of racial disparity in cancer susceptibility ranging from genetic polymorphisms and cancer-driver gene mutations to obesity, chronic inflammation and immune responses. We discuss implications for race-adapted cancer screening programs and clinical trials to reduce disparities in cancer burden. PMID:28718431

  8. Meta-analysis of the association between COL9A2 genetic polymorphisms and lumbar disc disease susceptibility.

    PubMed

    Zhang, Zhaobo; Zhang, Jingsheng; Ding, Lingzhi; Teng, Xiao

    2014-09-15

    Meta-analysis to collect all the relevant studies to date to further investigate whether or not the COL9A2 gene rs12077871, rs12722877, and rs7533552 polymorphism are associated with susceptibility to lumbar disc disease (LDD). The aim of this study was to assess the association between the COL9A2 gene rs12077871, rs12722877, and rs7533552 and LDD. LDD is a common musculoskeletal disease with strong genetic determinants. COL9A2 encodes the α2 (IX) chain of type IX collagen, which is the major collagen component of the hyaline cartilage. Growing numbers of studies have revealed the association between COL9A2 polymorphisms and susceptibility to LDD. However, those studies have yielded contradictory results. Data were collected from the following electronic databases: PubMed, Web of Knowledge, and China National Knowledge Infrastructure, with the last report up to November 30, 2013. The odds ratio (OR) and 95% confidence interval (CI) were used to assess the strength of association under the allelic genetic model. We summarized the data on the association between COL9A2 rs12077871, rs12722877, and rs7533552 polymorphism and LDD in the overall studies. Nine case-control studies, including 1522 LDD cases and 1646 controls, were identified. The results indicated that the rs12077871, rs12722877, and rs7533552 variants in COL9A2 were not associated with LDD (rs12077871: C vs. T, OR = 0.541, 95% CI = 0.256-1.147, P = 0.109; rs12722877: C vs. G, OR = 1.199, 95% CI = 0.992-1.448, P = 0.06; rs7533552: A vs. G, OR = 0.993, 95% CI = 0.815-1.069, P = 0.320). Furthermore, the Egger test and the Begg funnel plot did not show any evidence of publication bias. Our results suggest that the COL9A2 rs12077871, rs12722877, and rs7533552 polymorphisms may not be associated with LDD. More studies based on larger sample sizes and homogeneous samples of patients with LDD are needed to confirm these findings. 2.

  9. KCNA5 gene is not confirmed as a systemic sclerosis-related pulmonary arterial hypertension genetic susceptibility factor

    PubMed Central

    2012-01-01

    Introduction Potassium voltage-gated channel shaker-related subfamily member 5 (KCNA5) is implicated in vascular tone regulation, and its inhibition during hypoxia produces pulmonary vasoconstriction. Recently, a protective association of the KCNA5 locus with systemic sclerosis (SSc) patients with pulmonary arterial hypertension (PAH) was reported. Hence, the aim of this study was to replicate these findings in an independent multicenter Caucasian SSc cohort. Methods The 2,343 SSc cases (179 PAH positive, confirmed by right-heart catheterization) and 2,690 matched healthy controls from five European countries were included in this study. Rs10744676 single-nucleotide polymorphism (SNP) was genotyped by using a TaqMan SNP genotyping assay. Results Individual population analyses of the selected KCNA5 genetic variant did not show significant association with SSc or any of the defined subsets (for example, limited cutaneous SSc, diffuse cutaneous SSc, anti-centromere autoantibody positive and anti-topoisomerase autoantibody positive). Furthermore, pooled analyses revealed no significant evidence of association with the disease or any of the subsets, not even the PAH-positive group. The comparison of PAH-positive patients with PAH-negative patients showed no significant differences among patients. Conclusions Our data do not support an important role of KCNA5 as an SSc-susceptibility factor or as a PAH-development genetic marker for SSc patients. PMID:23270786

  10. Genetic Susceptible Locus in NOTCH2 Interacts with Arsenic in Drinking Water on Risk of Type 2 Diabetes

    PubMed Central

    Pan, Wen-Chi; Kile, Molly L.; Seow, Wei Jie; Lin, Xihong; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Mostofa, Golam; Lu, Quan; Christiani, David C.

    2013-01-01

    Background Chronic exposure to arsenic in drinking water is associated with increased risk of type 2 diabetes mellitus (T2DM) but the underlying molecular mechanism remains unclear. Objectives This study evaluated the interaction between single nucleotide polymorphisms (SNPs) in genes associated with diabetes and arsenic exposure in drinking water on the risk of developing T2DM. Methods In 2009–2011, we conducted a follow up study of 957 Bangladeshi adults who participated in a case-control study of arsenic-induced skin lesions in 2001–2003. Logistic regression models were used to evaluate the association between 38 SNPs in 18 genes and risk of T2DM measured at follow up. T2DM was defined as having a blood hemoglobin A1C level greater than or equal to 6.5% at follow-up. Arsenic exposure was characterized by drinking water samples collected from participants' tubewells. False discovery rates were applied in the analysis to control for multiple comparisons. Results Median arsenic levels in 2001–2003 were higher among diabetic participants compared with non-diabetic ones (71.6 µg/L vs. 12.5 µg/L, p-value <0.001). Three SNPs in ADAMTS9 were nominally associated with increased risk of T2DM (rs17070905, Odds Ratio (OR)  = 2.30, 95% confidence interval (CI) 1.17–4.50; rs17070967, OR = 2.02, 95%CI 1.00–4.06; rs6766801, OR = 2.33, 95%CI 1.18–4.60), but these associations did not reach the statistical significance after adjusting for multiple comparisons. A significant interaction between arsenic and NOTCH2 (rs699780) was observed which significantly increased the risk of T2DM (p for interaction = 0.003; q-value = 0.021). Further restricted analysis among participants exposed to water arsenic of less than 148 µg/L showed consistent results for interaction between the NOTCH2 variant and arsenic exposure on T2DM (p for interaction  = 0.048; q-value = 0.004). Conclusions These findings suggest that genetic variation in NOTCH2 increased

  11. 6.3 Incorporating Susceptibility Information into Cumulative ...

    EPA Pesticide Factsheets

    In recent years, there has been an increased focus on understanding the differential health effects of environmental chemical exposures and on incorporating this information into risk assessments for environmental chemicals. Susceptibility is defined as increased likelihood of an adverse effect or an exposure, often discussed in terms of the relationship to a factor that can be used to describe a human subpopulation (e.g., lifestage, demographic feature, or genetic characteristic). In 1996, the Food Quality Protection Act (FQPA) mandated that EPA consider possible increased susceptibility of infants and children in the risk assessments of food use pesticides, and the Safe Drinking Water Act (SDWA) Amendments required EPA to consider susceptible populations in risk assessments used in support of regulations for drinking water contaminants. More recently, the National Research Council (NRC) report, Science and Decisions: Advancing Risk Assessment (NRC, 2008), states that “Variability in human susceptibility has not received sufficient or consistent attention in many EPA health risk assessments,” and the NRC provides specific recommendations for increasing the adequacy and consistency of the ways in which human variability is addressed in EPA human health risk assessments. Therefore, we need to develop an understanding of how to evaluate and apply the various types (intrinsic [biological] and extrinsic [stressors]) of susceptibility information most effectivel

  12. Classification and Reporting of Potentially Proarrhythmic Common Genetic Variation in Long QT Syndrome Genetic Testing.

    PubMed

    Giudicessi, John R; Roden, Dan M; Wilde, Arthur A M; Ackerman, Michael J

    2018-02-06

    The acquired and congenital forms of long QT syndrome represent 2 distinct but clinically and genetically intertwined disorders of cardiac repolarization characterized by the shared final common pathway of QT interval prolongation and risk of potentially life-threatening arrhythmias. Over the past 2 decades, our understanding of the spectrum of genetic variation that (1) perturbs the function of cardiac ion channel macromolecular complexes and intracellular calcium-handling proteins, (2) underlies acquired/congenital long QT syndrome susceptibility, and (3) serves as a determinant of QT interval duration in the general population has grown exponentially. In turn, these molecular insights led to the development and increased utilization of clinically impactful genetic testing for congenital long QT syndrome. However, the widespread adoption and potential misinterpretation of the 2015 American College of Medical Genetics and Genomics variant classification and reporting guidelines may have contributed unintentionally to the reduced reporting of common genetic variants, with compelling epidemiological and functional evidence to support a potentially proarrhythmic role in patients with congenital and acquired long QT syndrome. As a result, some genetic testing reports may fail to convey the full extent of a patient's genetic susceptibility for a potentially life-threatening arrhythmia to the ordering healthcare professional. In this white paper, we examine the current classification and reporting (or lack thereof) of potentially proarrhythmic common genetic variants and investigate potential mechanisms to facilitate the reporting of these genetic variants without increasing the risk of diagnostic miscues. © 2018 American Heart Association, Inc.

  13. COGENT (COlorectal cancer GENeTics) revisited

    PubMed Central

    Houlston, Richard S.

    2012-01-01

    Many colorectal cancers (CRCs) develop in genetically susceptible individuals most of whom are not carriers of germ line mismatch repair or APC gene mutations and much of the heritable risk of CRC appears to be attributable to the co-inheritance of multiple low-risk variants. The accumulated experience to date in identifying this class of susceptibility allele has highlighted the need to conduct statistically and methodologically rigorous studies and the need for the multi-centre collaboration. This has been the motivation for establishing the COGENT (COlorectal cancer GENeTics) consortium which now includes over 20 research groups in Europe, Australia, the Americas, China and Japan actively working on CRC genetics. Here, we review the rationale for identifying low-penetrance variants for CRC and the current and future challenges for COGENT. PMID:22294761

  14. Association genetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration

    PubMed Central

    2011-01-01

    Background Most agronomic plant traits result from complex molecular networks involving multiple genes and from environmental factors. One such trait is the enzymatic discoloration of fruit and tuber tissues initiated by mechanical impact (bruising). Tuber susceptibility to bruising is a complex trait of the cultivated potato (Solanum tuberosum) that is crucial for crop quality. As phenotypic evaluation of bruising is cumbersome, the application of diagnostic molecular markers would empower the selection of low bruising potato varieties. The genetic factors and molecular networks underlying enzymatic tissue discoloration are sparsely known. Hitherto there is no association study dealing with tuber bruising and diagnostic markers for enzymatic discoloration are rare. Results The natural genetic diversity for bruising susceptibility was evaluated in elite middle European potato germplasm in order to elucidate its molecular basis. Association genetics using a candidate gene approach identified allelic variants in genes that function in tuber bruising and enzymatic browning. Two hundred and five tetraploid potato varieties and breeding clones related by descent were evaluated for two years in six environments for tuber bruising susceptibility, specific gravity, yield, shape and plant maturity. Correlations were found between different traits. In total 362 polymorphic DNA fragments, derived from 33 candidate genes and 29 SSR loci, were scored in the population and tested for association with the traits using a mixed model approach, which takes into account population structure and kinship. Twenty one highly significant (p < 0.001) and robust marker-trait associations were identified. Conclusions The observed trait correlations and associated marker fragments provide new insight in the molecular basis of bruising susceptibility and its natural variation. The markers diagnostic for increased or decreased bruising susceptibility will facilitate the combination of superior

  15. Structured populations of Sulfolobus acidocaldarius with susceptibility to mobile genetic elements

    USGS Publications Warehouse

    Anderson, Rika E.; Kouris, Angela; Seward, Christopher H.; Campbell, Kate M.; Whitaker, Rachel J.

    2017-01-01

    The impact of a structured environment on genome evolution can be determined through comparative population genomics of species that live in the same habitat. Recent work comparing three genome sequences of Sulfolobus acidocaldarius suggested that highly structured, extreme, hot spring environments do not limit dispersal of this thermoacidophile, in contrast to other co-occurring Sulfolobus species. Instead, a high level of conservation among these three S. acidocaldarius genomes was hypothesized to result from rapid, global-scale dispersal promoted by low susceptibility to viruses that sets S. acidocaldarius apart from its sister Sulfolobus species. To test this hypothesis, we conducted a comparative analysis of 47 genomes of S. acidocaldarius from spatial and temporal sampling of two hot springs in Yellowstone National Park. While we confirm the low diversity in the core genome, we observe differentiation among S. acidocaldarius populations, likely resulting from low migration among hot spring “islands” in Yellowstone National Park. Patterns of genomic variation indicate that differing geological contexts result in the elimination or preservation of diversity among differentiated populations. We observe multiple deletions associated with a large genomic island rich in glycosyltransferases, differential integrations of the Sulfolobus turreted icosahedral virus, as well as two different plasmid elements. These data demonstrate that neither rapid dispersal nor lack of mobile genetic elements result in low diversity in the S. acidocaldariusgenomes. We suggest instead that significant differences in the recent evolutionary history, or the intrinsic evolutionary rates, of sister Sulfolobusspecies result in the relatively low diversity of the S. acidocaldarius genome.

  16. Identification and Characterization of Fluoroquinolone Non-susceptible Streptococcus pyogenes Clones Harboring Tetracycline and Macrolide Resistance in Shanghai, China

    PubMed Central

    Shen, Yinfang; Cai, Jiehao; Davies, Mark R.; Zhang, Chi; Gao, Kun; Qiao, Dan; Jiang, Haoqin; Yao, Weilei; Li, Yuefang; Zeng, Mei; Chen, Mingliang

    2018-01-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is one of the top 10 infectious causes of death worldwide. Macrolide and tetracycline resistant GAS has emerged as a major health concern in China coinciding with an ongoing scarlet fever epidemic. Furthermore, increasing rates of fluoroquinolone (FQ) non-susceptibility within GAS from geographical regions outside of China has also been reported. Fluoroquinolones are the third most commonly prescribed antibiotic in China and is an therapeutic alternative for multi-drug resistant GAS. The purpose of this study was to investigate the epidemiological and molecular features of GAS fluoroquinolone (FQ) non-susceptibility in Shanghai, China. GAS (n = 2,258) recovered between 2011 and 2016 from children and adults were tested for FQ-non-susceptibility. Efflux phenotype and mutations in parC, parE, gyrA, and gyrB were investigated and genetic relationships were determined by emm typing, pulsed-field gel electrophoresis and phylogenetic analysis. The frequency of GAS FQ-non-susceptibility was 1.3% (30/2,258), with the phenotype more prevalent in GAS isolated from adults (14.3%) than from children (1.2%). Eighty percent (24/30) of FQ-non-susceptible isolates were also resistant to both macrolides (ermB) and tetracycline (tetM) including the GAS sequence types emm12, emm6, emm11, and emm1. Genomic fingerprinting analysis of the 30 isolates revealed that non-susceptibility may arise in various genetic backgrounds even within a single emm type. No efflux phenotype was observed in FQ non-susceptible isolates, and molecular analysis of the quinolone resistance-determining regions (QRDRs) identified several sequence polymorphisms in ParC and ParE, and none in GyrA and GyrB. Expansion of this analysis to 152 publically available GAS whole genome sequences from Hong Kong predicted 7.9% (12/152) of Hong Kong isolates harbored a S79F ParC mutation, of which 66.7% (8/12) were macrolide and tetracycline resistant

  17. Strain, Sex, and Open-Field Behavior: Factors Underlying the Genetic Susceptibility to Helplessness

    PubMed Central

    Padilla, Eimeira; Barrett, Douglas W.; Shumake, Jason D.; Gonzalez-Lima, F.

    2009-01-01

    Learned helplessness represents a failure to escape after exposure to inescapable stress and may model human psychiatric disorders related to stress. Previous work has demonstrated individual differences in susceptibility to learned helplessness. In this study, we assessed different factors associated with this susceptibility, including strain, sex, and open-field behavior. Testing of three rat strains (Holtzman, Long-Evans, and Sprague-Dawley) revealed that Holtzman rats were the most susceptible to helplessness. Holtzman rats not only had the longest escape latencies following inescapable shock, but also showed spontaneous escape deficits in the absence of prior shock when tested with a fixed-ratio 2 (FR2) running response. Moreover, when tested with fixed-ratio 1 (FR1) running—an easy response normally unaffected by helplessness training in rats—inescapable shock significantly increased the escape latencies of Holtzman rats. Within the Holtzman strain, we confirmed recent findings that females showed superior escape performance and therefore appeared more resistant to helplessness than males. However, regression and covariance analyses suggest that this sex difference may be explained by more baseline ambulatory activity among females. In addition, some indices of novelty reactivity (greater exploration of novel vs. familiar open-field) predicted subsequent helpless behavior. In conclusion, Holtzman rats, and especially male Holtzman rats, have a strong predisposition to become immobile when stressed which interferes with their ability to learn active escape responses. The Holtzman strain therefore appears to be a commercially available model for studying susceptibility to helplessness in males, and novelty-seeking may be a marker of this susceptibility. PMID:19428642

  18. Triglyceride level affecting shared susceptibility genes in metabolic syndrome and coronary artery disease.

    PubMed

    Kisfali, P; Polgár, N; Sáfrány, E; Sümegi, K; Melegh, B I; Bene, J; Wéber, A; Hetyésy, K; Melegh, B

    2010-01-01

    Metabolic syndrome is characterized primarily by abdominal obesity, high triglyceride- and low HDL cholesterol levels, elevated blood pressure, and increased fasting glucose levels, which are often associated with coronary heart diseases. Several factors, such as physical inactivity, age, and several endocrine and genetic factors can increase the risk of the development of the disease. Gathered evidence shows, that metabolic syndrome is not only a risk factor for cardiovascular disease, but often both of them have the same shared susceptibility genes, as several genetic variants have shown a predisposition to both diseases. Due to the spread of robust genome wide association studies, the number of candidate genes in metabolic syndrome and coronary heart disease susceptibility increases very rapidly. From the growing spectrum of the genes influencing lipid metabolism (like the LPL; PPARA; APOE; APOAI/CIII/AIV genecluster and APOAS5), the current review focuses on shared susceptibility variants involved in triglyceride metabolism and consequently the effects on the circulating triglyceride levels. As the elevated levels of triglycerides can be associated with disease phenotypes, some of these SNPs can have susceptibility features in both metabolic syndrome and in coronary heart disease, thereby some of them can even represent a kind of susceptibility link between metabolic syndrome and coronary artery disease.

  19. A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson's disease

    PubMed Central

    Holmans, Peter; Moskvina, Valentina; Jones, Lesley; Sharma, Manu; Vedernikov, Alexey; Buchel, Finja; Sadd, Mohamad; Bras, Jose M.; Bettella, Francesco; Nicolaou, Nayia; Simón-Sánchez, Javier; Mittag, Florian; Gibbs, J. Raphael; Schulte, Claudia; Durr, Alexandra; Guerreiro, Rita; Hernandez, Dena; Brice, Alexis; Stefánsson, Hreinn; Majamaa, Kari; Gasser, Thomas; Heutink, Peter; Wood, Nicholas W.; Martinez, Maria; Singleton, Andrew B.; Nalls, Michael A.; Hardy, John; Morris, Huw R.; Williams, Nigel M.; Arepalli, Sampath; Barker, Roger; Barrett, Jeffrey; Ben-Shlomo, Yoav; Berendse, Henk W.; Berg, Daniela; Bhatia, Kailash; de Bie, Rob M.A.; Biffi, Alessandro; Bloem, Bas; Brice, Alexis; Bochdanovits, Zoltan; Bonin, Michael; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Cooper, Jonathan M.; Corvol, Jen-Christophe; Counsell, Carl; Damier, Philippe; Dartigues, Jean Francois; Deloukas, Panagiotis; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Durif, Frank; Durr, Alexandra; Edkins, Sarah; Evans, Jonathan R.; Foltynie, Thomas; Gao, Jianjun; Gardner, Michelle; Gasser, Thomas; Gibbs, J. Raphael; Goate, Alison; Gray, Emma; Guerreiro, Rita; Gústafsson, Ómar; Hardy, John; Harris, Clare; Hernandez, Dena G.; Heutink, Peter; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holmans, Peter; Holton, Janice; Hu, Michele; Huber, Heiko; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Langford, Cordelia; Lees, Andrew; Lesage, Suzanne; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; Martinez, Maria; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morris, Huw; Morrison, Karen E.; Moskvina, Valentina; Mudanohwo, Ese; Nalls, Michael A.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Plagnol, Vincent; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Saad, Mohamad; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Sharma, Manu; Shaw, Karen; Sheerin, Una-Marie; Shoulson, Ira; Schulte, Claudia; Sidransky, Ellen; Simón-Sánchez, Javier; Singleton, Andrew B.; Smith, Colin; Stefánsson, Hreinn; Stefánsson, Kári; Steinberg, Stacy; Stockton, Joanna D.; Sveinbjornsdottir, Sigurlaug; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Tison, François; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Vidailhet, Marie; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams, Nigel; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Wood, Nicholas

    2013-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease affecting 1–2% in people >60 and 3–4% in people >80. Genome-wide association (GWA) studies have now implicated significant evidence for association in at least 18 genomic regions. We have studied a large PD-meta analysis and identified a significant excess of SNPs (P < 1 × 10−16) that are associated with PD but fall short of the genome-wide significance threshold. This result was independent of variants at the 18 previously implicated regions and implies the presence of additional polygenic risk alleles. To understand how these loci increase risk of PD, we applied a pathway-based analysis, testing for biological functions that were significantly enriched for genes containing variants associated with PD. Analysing two independent GWA studies, we identified that both had a significant excess in the number of functional categories enriched for PD-associated genes (minimum P = 0.014 and P = 0.006, respectively). Moreover, 58 categories were significantly enriched for associated genes in both GWA studies (P < 0.001), implicating genes involved in the ‘regulation of leucocyte/lymphocyte activity’ and also ‘cytokine-mediated signalling’ as conferring an increased susceptibility to PD. These results were unaltered by the exclusion of all 178 genes that were present at the 18 genomic regions previously reported to be strongly associated with PD (including the HLA locus). Our findings, therefore, provide independent support to the strong association signal at the HLA locus and imply that the immune-related genetic susceptibility to PD is likely to be more widespread in the genome than previously appreciated. PMID:23223016

  20. Genetic association studies of obesity in Africa: a systematic review.

    PubMed

    Yako, Y Y; Echouffo-Tcheugui, J B; Balti, E V; Matsha, T E; Sobngwi, E; Erasmus, R T; Kengne, A P

    2015-03-01

    Obesity is increasing in Africa, but the underlying genetic background largely remains unknown. We assessed existing evidence on genetic determinants of obesity among populations within Africa. MEDLINE and EMBASE were searched and the bibliographies of retrieved articles were examined. Included studies had to report on the association of a genetic marker with obesity indices and the presence/occurrence of obesity/obesity trait. Data were extracted on study design and characteristics, genetic determinants and effect estimates of associations with obesity indices. According to this data, over 300 polymorphisms in 42 genes have been studied in various population groups within Africa mostly through the candidate gene approach. Polymorphisms in genes such as ACE, ADIPOQ, ADRB2, AGRP, AR, CAPN10, CD36, C7orf31, DRD4, FTO, MC3R, MC4R, SGIP1 and LEP were found to be associated with various measures of obesity. Of the 36 polymorphisms previously validated by genome-wide association studies (GWAS) elsewhere, only FTO and MC4R polymorphisms showed significant associations with obesity in black South Africans, Nigerians and Ghanaians. However, these data are insufficient to establish the true nature of genetic susceptibility to obesity in populations within Africa. There has been recent progress in describing the genetic architecture of obesity among populations within Africa. This effort needs to be sustained via GWAS studies. © 2015 World Obesity.