Sample records for background biological invasions

  1. Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions

    PubMed Central

    Dickie, Ian A.; Wingfield, Michael J.; Hirsch, Heidi; Crous, Casparus J.; Meyerson, Laura A.; Burgess, Treena I.; Zimmermann, Thalita G.; Klock, Metha M.; Siemann, Evan; Erfmeier, Alexandra; Aragon, Roxana; Montti, Lia; Le Roux, Johannes J.

    2017-01-01

    Abstract Evolutionary processes greatly impact the outcomes of biological invasions. An extensive body of research suggests that invasive populations often undergo phenotypic and ecological divergence from their native sources. Evolution also operates at different and distinct stages during the invasion process. Thus, it is important to incorporate evolutionary change into frameworks of biological invasions because it allows us to conceptualize how these processes may facilitate or hinder invasion success. Here, we review such processes, with an emphasis on tree invasions, and place them in the context of the unified framework for biological invasions. The processes and mechanisms described are pre-introduction evolutionary history, sampling effect, founder effect, genotype-by-environment interactions, admixture, hybridization, polyploidization, rapid evolution, epigenetics and second-genomes. For the last, we propose that co-evolved symbionts, both beneficial and harmful, which are closely physiologically associated with invasive species, contain critical genetic traits that affect the evolutionary dynamics of biological invasions. By understanding the mechanisms underlying invasion success, researchers will be better equipped to predict, understand and manage biological invasions. PMID:28039118

  2. Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions.

    PubMed

    Zenni, Rafael Dudeque; Dickie, Ian A; Wingfield, Michael J; Hirsch, Heidi; Crous, Casparus J; Meyerson, Laura A; Burgess, Treena I; Zimmermann, Thalita G; Klock, Metha M; Siemann, Evan; Erfmeier, Alexandra; Aragon, Roxana; Montti, Lia; Le Roux, Johannes J

    2016-12-30

    Evolutionary processes greatly impact the outcomes of biological invasions. An extensive body of research suggests that invasive populations often undergo phenotypic and ecological divergence from their native sources. Evolution also operates at different and distinct stages during the invasion process. Thus, it is important to incorporate evolutionary change into frameworks of biological invasions because it allows us to conceptualize how these processes may facilitate or hinder invasion success. Here, we review such processes, with an emphasis on tree invasions, and place them in the context of the unified framework for biological invasions. The processes and mechanisms described are pre-introduction evolutionary history, sampling effect, founder effect, genotype-by-environment interactions, admixture, hybridization, polyploidization, rapid evolution, epigenetics, and second-genomes. For the last, we propose that co-evolved symbionts, both beneficial and harmful, which are closely physiologically associated with invasive species, contain critical genetic traits that affect the evolutionary dynamics of biological invasions. By understanding the mechanisms underlying invasion success, researchers will be better equipped to predict, understand, and manage biological invasions. Published by Oxford University Press on behalf of the Annals of Botany Company.

  3. Fast economic development accelerates biological invasions in China.

    PubMed

    Lin, Wen; Zhou, Guofa; Cheng, Xinyue; Xu, Rumei

    2007-11-21

    Increasing levels of global trade and intercontinental travel have been cited as the major causes of biological invasion. However, indirect factors such as economic development that affect the intensity of invasion have not been quantitatively explored. Herein, using principal factor analysis, we investigated the relationship between biological invasion and economic development together with climatic information for China from the 1970s to present. We demonstrate that the increase in biological invasion is coincident with the rapid economic development that has occurred in China over the past three decades. The results indicate that the geographic prevalence of invasive species varies substantially on the provincial scale, but can be surprisingly well predicted using the combination of economic development (R(2) = 0.378) and climatic factors (R(2) = 0.347). Economic factors are proven to be at least equal to if not more determinant of the occurrence of invasive species than climatic factors. International travel and trade are shown to have played a less significant role in accounting for the intensity of biological invasion in China. Our results demonstrate that more attention should be paid to economic factors to improve the understanding, prediction and management of biological invasions.

  4. A systematic review of context bias in invasion biology.

    PubMed

    Warren, Robert J; King, Joshua R; Tarsa, Charlene; Haas, Brian; Henderson, Jeremy

    2017-01-01

    The language that scientists use to frame biological invasions may reveal inherent bias-including how data are interpreted. A frequent critique of invasion biology is the use of value-laden language that may indicate context bias. Here we use a systematic study of language and interpretation in papers drawn from invasion biology to evaluate whether there is a link between the framing of papers and the interpretation of results. We also examine any trends in context bias in biological invasion research. We examined 651 peer-reviewed invasive species competition studies and implemented a rigorous systematic review to examine bias in the presentation and interpretation of native and invasive competition in invasion biology. We predicted that bias in the presentation of invasive species is increasing, as suggested by several authors, and that bias against invasive species would result in misinterpreting their competitive dominance in correlational observational studies compared to causative experimental studies. We indeed found evidence of bias in the presentation and interpretation of invasive species research; authors often introduced research with invasive species in a negative context and study results were interpreted against invasive species more in correlational studies. However, we also found a distinct decrease in those biases since the mid-2000s. Given that there have been several waves of criticism from scientists both inside and outside invasion biology, our evidence suggests that the subdiscipline has somewhat self-corrected apparent biases.

  5. A systems biology approach to invasive behavior: comparing cancer metastasis and suburban sprawl development

    PubMed Central

    2010-01-01

    Background Despite constant progress, cancer remains the second leading cause of death in the United States. The ability of tumors to metastasize is central to this dilemma, as many studies demonstrate successful treatment correlating to diagnosis prior to cancer spread. Hence a better understanding of cancer invasiveness and metastasis could provide critical insight. Presentation of the hypothesis We hypothesize that a systems biology-based comparison of cancer invasiveness and suburban sprawl will reveal similarities that are instructive. Testing the hypothesis We compare the structure and behavior of invasive cancer to suburban sprawl development. While these two systems differ vastly in dimension, they appear to adhere to scale-invariant laws consistent with invasive behavior in general. We demonstrate that cancer and sprawl have striking similarities in their natural history, initiating factors, patterns of invasion, vessel distribution and even methods of causing death. Implications of the hypothesis We propose that metastatic cancer and suburban sprawl provide striking analogs in invasive behavior, to the extent that conclusions from one system could be predictive of behavior in the other. We suggest ways in which this model could be used to advance our understanding of cancer biology and treatment. PMID:20181145

  6. Unveiling an ancient biological invasion: molecular analysis of an old European alien, the crested porcupine (Hystrix cristata).

    PubMed

    Trucchi, Emiliano; Sbordoni, Valerio

    2009-05-18

    Biological invasions can be considered one of the main threats to biodiversity, and the recognition of common ecological and evolutionary features among invaders can help developing a predictive framework to control further invasions. In particular, the analysis of successful invasive species and of their autochthonous source populations by means of genetic, phylogeographic and demographic tools can provide novel insights into the study of biological invasion patterns. Today, long-term dynamics of biological invasions are still poorly understood and need further investigations. Moreover, distribution and molecular data on native populations could contribute to the recognition of common evolutionary features of successful aliens. We analyzed 2,195 mitochondrial base pairs, including Cytochrome b, Control Region and rRNA 12S, in 161 Italian and 27 African specimens and assessed the ancient invasive origin of Italian crested porcupine (Hystrix cristata) populations from Tunisia. Molecular coalescent-based Bayesian analyses proposed the Roman Age as a putative timeframe of introduction and suggested a retention of genetic diversity during the early phases of colonization. The characterization of the native African genetic background revealed the existence of two differentiated clades: a Mediterranean group and a Sub-Saharan one. Both standard population genetic and advanced molecular demography tools (Bayesian Skyline Plot) did not evidence a clear genetic signature of the expected increase in population size after introduction. Along with the genetic diversity retention during the bottlenecked steps of introduction, this finding could be better described by hypothesizing a multi-invasion event. Evidences of the ancient anthropogenic invasive origin of the Italian Hystrix cristata populations were clearly shown and the native African genetic background was preliminary described. A more complex pattern than a simple demographic exponential growth from a single propagule

  7. Invasion Ecology and School Biology--Part II.

    ERIC Educational Resources Information Center

    Wells, R. V.

    1981-01-01

    Suggests that invasion biology can supply subject matter for teaching evolution, genetics, ecological relationships, and conservation. Describes flowering and non-flowering plant invaders, vertebrates and invertebrates, and two ecological invasions on the southern coast of England. (JN)

  8. Biological invasions, climate change and genomics

    PubMed Central

    Chown, Steven L; Hodgins, Kathryn A; Griffin, Philippa C; Oakeshott, John G; Byrne, Margaret; Hoffmann, Ary A

    2015-01-01

    The rate of biological invasions is expected to increase as the effects of climate change on biological communities become widespread. Climate change enhances habitat disturbance which facilitates the establishment of invasive species, which in turn provides opportunities for hybridization and introgression. These effects influence local biodiversity that can be tracked through genetic and genomic approaches. Metabarcoding and metagenomic approaches provide a way of monitoring some types of communities under climate change for the appearance of invasives. Introgression and hybridization can be followed by the analysis of entire genomes so that rapidly changing areas of the genome are identified and instances of genetic pollution monitored. Genomic markers enable accurate tracking of invasive species’ geographic origin well beyond what was previously possible. New genomic tools are promoting fresh insights into classic questions about invading organisms under climate change, such as the role of genetic variation, local adaptation and climate pre-adaptation in successful invasions. These tools are providing managers with often more effective means to identify potential threats, improve surveillance and assess impacts on communities. We provide a framework for the application of genomic techniques within a management context and also indicate some important limitations in what can be achieved. PMID:25667601

  9. Perspectives on trans-Pacific biological invasions

    USGS Publications Warehouse

    Guo, Q.

    2002-01-01

    Trans-Pacific biological invasion is one of the most striking and influential biological phenomena occurring in modern times and the process is still accelerating, and the associated invasives form neo-disjuncts (cf. many well-known paleo-disjuncts) between eastern Asia and North America. To better understand this phenomenon and the related taxa, I address the following questions: 1) what types of species (e.g., life/growth form) have been, or are likely to be, associated with trans-Pacific (eastern Asia, North America) invasions; 2) what has happened or may happen to these species after their remote geographic separation, and 3) what aspects of these species and their native and non-native habitats should be better understood for improved control. To answer these questions, comparisons of the invasive species' characteristics in their native and invaded habitats need to be examined, including: l) genetics, 2) life history/morphology (e.g., plant size, seed size, etc.), 3) ecology (e.g., life/growth forms, pollinators, competitors), 4) distributions (e.g., range size, shape, latitude) in their native (source) and introduced (target) ranges or habitats, and 5) physical factors such as soil, water, and climate. The purpose of these studies is 1) to identify the limiting factors that restrict the distributions of exotic species in native ranges, 2) to understand why invasive species are successful in the introduced ranges, 3) to predict possible future invasions, and, ultimately, 4) to provide information for more efficient and effective management.

  10. Rapid response to changing environments during biological invasions: DNA methylation perspectives.

    PubMed

    Huang, Xuena; Li, Shiguo; Ni, Ping; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2017-12-01

    Dissecting complex interactions between species and their environments has long been a research hot spot in the fields of ecology and evolutionary biology. The well-recognized Darwinian evolution has well-explained long-term adaptation scenarios; however, "rapid" processes of biological responses to environmental changes remain largely unexplored, particularly molecular mechanisms such as DNA methylation that have recently been proposed to play crucial roles in rapid environmental adaptation. Invasive species, which have capacities to successfully survive rapidly changing environments during biological invasions, provide great opportunities to study molecular mechanisms of rapid environmental adaptation. Here, we used the methylation-sensitive amplified polymorphism (MSAP) technique in an invasive model ascidian, Ciona savignyi, to investigate how species interact with rapidly changing environments at the whole-genome level. We detected quite rapid DNA methylation response: significant changes of DNA methylation frequency and epigenetic differentiation between treatment and control groups occurred only after 1 hr of high-temperature exposure or after 3 hr of low-salinity challenge. In addition, we detected time-dependent hemimethylation changes and increased intragroup epigenetic divergence induced by environmental stresses. Interestingly, we found evidence of DNA methylation resilience, as most stress-induced DNA methylation variation maintained shortly (~48 hr) and quickly returned back to the control levels. Our findings clearly showed that invasive species could rapidly respond to acute environmental changes through DNA methylation modifications, and rapid environmental changes left significant epigenetic signatures at the whole-genome level. All these results provide fundamental background to deeply investigate the contribution of DNA methylation mechanisms to rapid contemporary environmental adaptation. © 2017 John Wiley & Sons Ltd.

  11. Freshwater ecosystems and aquatic insects: a paradox in biological invasions.

    PubMed

    Fenoglio, Stefano; Bonada, Núria; Guareschi, Simone; López-Rodríguez, Manuel J; Millán, Andrés; Tierno de Figueroa, J Manuel

    2016-04-01

    Biological invasions have increased significantly in response to global change and constitute one of the major causes of biodiversity loss. Insects make up a large fraction of invasive species, in general, and freshwaters are among the most invaded ecosystems on our planet. However, even though aquatic insects dominate most inland waters, have unparalleled taxonomic diversity and occupy nearly all trophic niches, there are almost no invasive insects in freshwaters. We present some hypotheses regarding why aquatic insects are not common among aquatic invasive organisms, suggesting that it may be the result of a suite of biological, ecological and anthropogenic factors. Such specific knowledge introduces a paradox in the current scientific discussion on invasive species; therefore, a more in-depth understanding could be an invaluable aid to disentangling how and why biological invasions occur. © 2016 The Author(s).

  12. Economic Analysis of Biological Invasions in Forests

    Treesearch

    Tomas P. Holmes; Julian Aukema; Jeffrey Englin; Robert G. Haight; Kent Kovacs; Brian Leung

    2014-01-01

    Biological invasions of native forests by nonnative pests result from complex stochastic processes that are difficult to predict. Although economic optimization models describe efficient controls across the stages of an invasion, the ability to calibrate such models is constrained by lack of information on pest population dynamics and consequent economic damages. Here...

  13. Global patterns in threats to vertebrates by biological invasions

    PubMed Central

    Bellard, C.; Genovesi, P.; Jeschke, J. M.

    2016-01-01

    Biological invasions as drivers of biodiversity loss have recently been challenged. Fundamentally, we must know where species that are threatened by invasive alien species (IAS) live, and the degree to which they are threatened. We report the first study linking 1372 vertebrates threatened by more than 200 IAS from the completely revised Global Invasive Species Database. New maps of the vulnerability of threatened vertebrates to IAS permit assessments of whether IAS have a major influence on biodiversity, and if so, which taxonomic groups are threatened and where they are threatened. We found that centres of IAS-threatened vertebrates are concentrated in the Americas, India, Indonesia, Australia and New Zealand. The areas in which IAS-threatened species are located do not fully match the current hotspots of invasions, or the current hotspots of threatened species. The relative importance of biological invasions as drivers of biodiversity loss clearly varies across regions and taxa, and changes over time, with mammals from India, Indonesia, Australia and Europe are increasingly being threatened by IAS. The chytrid fungus primarily threatens amphibians, whereas invasive mammals primarily threaten other vertebrates. The differences in IAS threats between regions and taxa can help efficiently target IAS, which is essential for achieving the Strategic Plan 2020 of the Convention on Biological Diversity. PMID:26817767

  14. Invasive and non-invasive measurement in medicine and biology: calibration issues

    NASA Astrophysics Data System (ADS)

    Rolfe, P.; Zhang, Yan; Sun, Jinwei; Scopesi, F.; Serra, G.; Yamakoshi, K.; Tanaka, S.; Yamakoshi, T.; Yamakoshi, Y.; Ogawa, M.

    2010-08-01

    Invasive and non-invasive measurement sensors and systems perform vital roles in medical care. Devices are based on various principles, including optics, photonics, and plasmonics, electro-analysis, magnetics, acoustics, bio-recognition, etc. Sensors are used for the direct insertion into the human body, for example to be in contact with blood, which constitutes Invasive Measurement. This approach is very challenging technically, as sensor performance (sensitivity, response time, linearity) can deteriorate due to interactions between the sensor materials and the biological environment, such as blood or interstitial fluid. Invasive techniques may also be potentially hazardous. Alternatively, sensors or devices may be positioned external to the body surface, for example to analyse respired breath, thereby allowing safer Non-Invasive Measurement. However, such methods, which are inherently less direct, often requiring more complex calibration algorithms, perhaps using chemometric principles. This paper considers and reviews the issue of calibration in both invasive and non-invasive biomedical measurement systems. Systems in current use usually rely upon periodic calibration checks being performed by clinical staff against a variety of laboratory instruments and QC samples. These procedures require careful planning and overall management if reliable data are to be assured.

  15. Biological invasions in forest ecosystems

    Treesearch

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Susan Kalisz; Martin A. Nuñez; David A. Wardle; Michael J. Wingfield

    2017-01-01

    Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of...

  16. Biological invasions, ecological resilience and adaptive governance

    USGS Publications Warehouse

    Chaffin, Brian C.; Garmestani, Ahjond S.; Angeler, David G.; Herrmann, Dustin L.; Stow, Craig A.; Nystrom, Magnus; Sendzimir, Jan; Hopton, Matthew E.; Kolasa, Jurek; Allen, Craig R.

    2016-01-01

    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services.

  17. Biological invasions, ecological resilience and adaptive governance.

    PubMed

    Chaffin, Brian C; Garmestani, Ahjond S; Angeler, David G; Herrmann, Dustin L; Stow, Craig A; Nyström, Magnus; Sendzimir, Jan; Hopton, Matthew E; Kolasa, Jurek; Allen, Craig R

    2016-12-01

    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much of the societal response to invasive species to date has been associated with negative economic consequences of invasions. This response has shaped a war-like approach to addressing invasions, one with an agenda of eradications and intense ecological restoration efforts towards prior or more desirable ecological regimes. This trajectory often ignores the concept of ecological resilience and associated approaches of resilience-based governance. We argue that the relationship between ecological resilience and invasive species has been understudied to the detriment of attempts to govern invasions, and that most management actions fail, primarily because they do not incorporate adaptive, learning-based approaches. Invasive species can decrease resilience by reducing the biodiversity that underpins ecological functions and processes, making ecosystems more prone to regime shifts. However, invasions do not always result in a shift to an alternative regime; invasions can also increase resilience by introducing novelty, replacing lost ecological functions or adding redundancy that strengthens already existing structures and processes in an ecosystem. This paper examines the potential impacts of species invasions on the resilience of ecosystems and suggests that resilience-based approaches can inform policy by linking the governance of biological invasions to the negotiation of tradeoffs between ecosystem services. Copyright © 2016. Published by Elsevier Ltd.

  18. A global picture of biological invasion threat on islands.

    PubMed

    Bellard, Céline; Rysman, Jean-François; Leroy, Boris; Claud, Chantal; Mace, Georgina M

    2017-12-01

    Biological invasions are among the main drivers of biodiversity losses. As threats from biological invasions increase, one of the most urgent tasks is to identify areas of high vulnerability. However, the lack of comprehensive information on the impacts of invasive alien species (IAS) is a problem especially on islands, where most of the recorded extinctions associated with IAS have occurred. Here we provide a global, network-oriented analysis of IAS on islands. Using network analysis, we structured 27,081 islands and 437 threatened vertebrates into 21 clusters, based on their profiles in term of invasiveness and shared vulnerabilities. These islands are mainly located in the Southern Hemisphere and many are in biodiversity hotspots. Some of the islands share similar characteristics regarding their connectivity that could be useful for understanding their response to invasive species. The major invaders found in these clusters of islands are feral cats, feral dogs, pigs and rats. Our analyses reveal those IAS that systematically act alone or in combination, and the pattern of shared IAS among threatened species, providing new information to implement effective eradication strategies. Combined with further local, contextual information this can contribute to global strategies to deal with IAS.

  19. Will extreme climatic events facilitate biological invasions?

    USDA-ARS?s Scientific Manuscript database

    Extreme climatic events, such as intense heat waves, hurricanes, floods and droughts, can dramatically affect ecological and evolutionary processes, and more extreme events are projected with ongoing climate change. However, the implications of these events for biological invasions, which themselves...

  20. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  1. Human-aided admixture may fuel ecosystem transformation during biological invasions: theoretical and experimental evidence.

    PubMed

    Molofsky, Jane; Keller, Stephen R; Lavergne, Sébastien; Kaproth, Matthew A; Eppinga, Maarten B

    2014-04-01

    Biological invasions can transform our understanding of how the interplay of historical isolation and contemporary (human-aided) dispersal affects the structure of intraspecific diversity in functional traits, and in turn, how changes in functional traits affect other scales of biological organization such as communities and ecosystems. Because biological invasions frequently involve the admixture of previously isolated lineages as a result of human-aided dispersal, studies of invasive populations can reveal how admixture results in novel genotypes and shifts in functional trait variation within populations. Further, because invasive species can be ecosystem engineers within invaded ecosystems, admixture-induced shifts in the functional traits of invaders can affect the composition of native biodiversity and alter the flow of resources through the system. Thus, invasions represent promising yet under-investigated examples of how the effects of short-term evolutionary changes can cascade across biological scales of diversity. Here, we propose a conceptual framework that admixture between divergent source populations during biological invasions can reorganize the genetic variation underlying key functional traits, leading to shifts in the mean and variance of functional traits within invasive populations. Changes in the mean or variance of key traits can initiate new ecological feedback mechanisms that result in a critical transition from a native ecosystem to a novel invasive ecosystem. We illustrate the application of this framework with reference to a well-studied plant model system in invasion biology and show how a combination of quantitative genetic experiments, functional trait studies, whole ecosystem field studies and modeling can be used to explore the dynamics predicted to trigger these critical transitions.

  2. Biological invasions on oceanic islands: Implications for island ecosystems and avifauna

    Treesearch

    Dean E. Pearson

    2009-01-01

    Biological invasions present a global threat to biodiversity, but oceanic islands are the systems hardest hit by invasions. Islands are generally depauperate in species richness, trophic complexity, and functional diversity relative to comparable mainland ecosystems. This situation results in low biotic resistance to invasion and many empty niches for invaders to...

  3. Biological invasions in forest ecosystems: a global problem requiring international and multidisciplinary integration

    Treesearch

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Martin A. Nuñez

    2017-01-01

    The world's forests are crucial biological resources that provide a variety of ecosystem services such as nutrient cycling and provisioning of resources to society. But forests are particularly affected by biological invasions, with regions around the world experiencing invasions by species from virtually every kingdom. Many of these species have severely...

  4. Exploiting Allee effects for managing biological invasions

    Treesearch

    Patrick C. Tobin; Ludek Berec; Andrew M. Liebhold

    2011-01-01

    Biological invasions are a global and increasing threat to the function and diversity of ecosystems. Allee effects (positive density dependence) have been shown to play an important role in the establishment and spread of non-native species. Although Allee effects can be considered a bane in conservation efforts, they can be a benefit in attempts to manage non-native...

  5. Biological control of invasive plant species: a reassessment for the Anthropocene.

    PubMed

    Seastedt, Timothy R

    2015-01-01

    The science of finding, testing and releasing herbivores and pathogens to control invasive plant species has achieved a level of maturity and success that argues for continued and expanded use of this program. The practice, however, remains unpopular with some conservationists, invasion biologists, and stakeholders. The ecological and economic benefits of controlling densities of problematic plant species using biological control agents can be quantified, but the risks and net benefits of biological control programs are often derived from social or cultural rather than scientific criteria. Management of invasive plants is a 'wicked problem', and local outcomes to wicked problems have both positive and negative consequences differentially affecting various groups of stakeholders. The program has inherent uncertainties; inserting species into communities that are experiencing directional or even transformational changes can produce multiple outcomes due to context-specific factors that are further confounded by environmental change drivers. Despite these uncertainties, biological control could play a larger role in mitigation and adaptation strategies used to maintain biological diversity as well as contribute to human well-being by protecting food and fiber resources. © 2014 The Author New Phytologist © 2014 New Phytologist Trust.

  6. Biology and invasive species in the western U.S

    USGS Publications Warehouse

    ,

    2005-01-01

    The diversity of environments that characterizes the West is responsible for the region's rich biological heritage. This ecological diversity also means that opportunities for invasive species are many, varied, and complex. Island ecosystems are notoriously vulnerable to invaders as demonstrated in Hawaii and West Coast offshore islands. Aquatic invaders impose high economic and environmental costs in systems as varied as San Francisco Bay and desert springs in the Great Basin. Although the West's arid and montane ecosystems may seem resistant to plant and animal invaders, we now know that ex-otic species have altered physical processes related to fire and hydrology in a manner favoring further expansion and persis-tence of invaders. Natural resource managers value analytical, mapping, and genetics tools developed by USGS scientists to monitor invasive species and help conserve biological systems. USGS biologists conduct research to assist land and water managers' efforts to control invasive species and restore natural systems. Throughout the West, the USGS carries out studies for early detection and rapid assessment of invaders. The following are some examples of how the USGS is making a difference in the western United States.

  7. Realized niche shift during a global biological invasion

    PubMed Central

    Tingley, Reid; Vallinoto, Marcelo; Sequeira, Fernando; Kearney, Michael R.

    2014-01-01

    Accurate forecasts of biological invasions are crucial for managing invasion risk but are hampered by niche shifts resulting from evolved environmental tolerances (fundamental niche shifts) or the presence of novel biotic and abiotic conditions in the invaded range (realized niche shifts). Distinguishing between these kinds of niche shifts is impossible with traditional, correlative approaches to invasion forecasts, which exclusively consider the realized niche. Here we overcome this challenge by combining a physiologically mechanistic model of the fundamental niche with correlative models based on the realized niche to study the global invasion of the cane toad Rhinella marina. We find strong evidence that the success of R. marina in Australia reflects a shift in the species’ realized niche, as opposed to evolutionary shifts in range-limiting traits. Our results demonstrate that R. marina does not fill its fundamental niche in its native South American range and that areas of niche unfilling coincide with the presence of a closely related species with which R. marina hybridizes. Conversely, in Australia, where coevolved taxa are absent, R. marina largely fills its fundamental niche in areas behind the invasion front. The general approach taken here of contrasting fundamental and realized niche models provides key insights into the role of biotic interactions in shaping range limits and can inform effective management strategies not only for invasive species but also for assisted colonization under climate change. PMID:24982155

  8. The biology and mathematical modelling of glioma invasion: a review

    PubMed Central

    Talkenberger, K.; Seifert, M.; Klink, B.; Hawkins-Daarud, A.; Swanson, K. R.; Hatzikirou, H.

    2017-01-01

    Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion. PMID:29118112

  9. The Invasive Species Forecasting System: A Space-Based Decision Support Infrastructure for Managing Biological Invasions

    NASA Astrophysics Data System (ADS)

    Most, N. N.; Kendig, D.; Wichman, K.; Pollack, N.; Ilagan, A.; Morisette, J. T.; Pedelty, J. A.; Tilmes, C.; Smith, J. A.; Pfister, R.; Schnase, J. L.; Stohgren, T. J.; Crosier, C.; Graham, J.; Newman, G.; Kalkhan, M. A.; Reich, R.

    2004-12-01

    The spread of invasive species is one of the most daunting environmental, economic, and human-health problems facing the United States and the World today. It is one of several grand challenge environmental problems being addressed by NASA's Science Mission Directorate through a national application partnership with the US Geological Survey. NASA and USGS are working together to develop a National Invasive Species Forecasting System (ISFS) for the management and control of invasive species on Department of Interior and adjacent lands. As part of this effort, we are using NASA's EOS Clearing House (ECHO) framework to create an Invasive Species Data Service (ISDS). The ISDS will be a networked service that integrates a suite of NASA remote sensing data providers with the ecological field data resources of the National Biological Information Infrastructure (NBII). Aggregated ISDS data will feed directly into ISFS analysis routines to produce landscape-scale predictive maps of species distributions. ISDS and the ECHO framework thus provide an efficient interface between existing NASA data systems and decision support systems that are the province of federal agencies and other national organizations. The effort significantly broadens the use of NASA data in managing the Nation's invasive species threat. In this talk, we will describe the NASA/USGS invasive species partnership, provide an overview of the Invasive Species Forecasting System, and show how we are using ECHO technologies as the middle-ware framework for a comprehensive Invasive Species Data Service.

  10. Genetic bottlenecks and successful biological invasions: the case of a recent Lessepsian migrant.

    PubMed

    Golani, Daniel; Azzurro, Ernesto; Corsini-Foka, Maria; Falautano, Manuela; Andaloro, Franco; Bernardi, Giacomo

    2007-10-22

    Our current understanding of the mechanisms that lead to successful biological invasions is limited. Although adaptations play a central role in biological invasions, genetic studies have so far failed to produce a unified theory. The bluespotted cornetfish, a recent Red Sea invader in the Mediterranean Sea via the Suez Canal, provides an ideal case study for research in the mechanisms of invasive genetics. In this study, we show that the invading bluespotted cornetfish underwent a severe population bottleneck that reduced the genetic diversity of this immigrant to only two mitochondrial haplotypes. Although loss of genetic diversity is considered detrimental to the need to adapt to new environments, bluespotted cornetfish experienced an unprecedented success and rapid spread across the Mediterranean.

  11. Risk analysis for biological hazards: What we need to know about invasive species

    USGS Publications Warehouse

    Stohlgren, T.J.; Schnase, J.L.

    2006-01-01

    Risk analysis for biological invasions is similar to other types of natural and human hazards. For example, risk analysis for chemical spills requires the evaluation of basic information on where a spill occurs; exposure level and toxicity of the chemical agent; knowledge of the physical processes involved in its rate and direction of spread; and potential impacts to the environment, economy, and human health relative to containment costs. Unlike typical chemical spills, biological invasions can have long lag times from introduction and establishment to successful invasion, they reproduce, and they can spread rapidly by physical and biological processes. We use a risk analysis framework to suggest a general strategy for risk analysis for invasive species and invaded habitats. It requires: (1) problem formation (scoping the problem, defining assessment endpoints); (2) analysis (information on species traits, matching species traits to suitable habitats, estimating exposure, surveys of current distribution and abundance); (3) risk characterization (understanding of data completeness, estimates of the “potential” distribution and abundance; estimates of the potential rate of spread; and probable risks, impacts, and costs); and (4) risk management (containment potential, costs, and opportunity costs; legal mandates and social considerations and information science and technology needs).

  12. Using counterfactuals to evaluate the cost-effectiveness of controlling biological invasions.

    PubMed

    McConnachie, Matthew M; van Wilgen, Brian W; Ferraro, Paul J; Forsyth, Aurelia T; Richardson, David M; Gaertner, Mirijam; Cowling, Richard M

    2016-03-01

    Prioritizing limited conservation funds for controlling biological invasions requires accurate estimates of the effectiveness of interventions to remove invasive species and their cost-effectiveness (cost per unit area or individual). Despite billions of dollars spent controlling biological invasions worldwide, it is unclear whether those efforts are effective, and cost-effective. The paucity of evidence results from the difficulty in measuring the effect of invasive species removal: a researcher must estimate the difference in outcomes (e.g. invasive species cover) between where the removal program intervened and what might have been observed if the program had not intervened. In the program evaluation literature, this is called a counterfactual analysis, which formally compares what actually happened and what would have happened in the absence of an intervention. When program implementation is not randomized, estimating counterfactual outcomes is especially difficult. We show how a thorough understanding of program implementation, combined with a matching empirical design can improve the way counterfactual outcomes are estimated in nonexperimental contexts. As a practical demonstration, we estimated the cost-effectiveness of South Africa's Working for Water program, arguably the world's most ambitious invasive species control program, in removing invasive alien trees from different land use types, across a large area in the Cape Floristic Region. We estimated that the proportion of the treatment area covered by invasive trees would have been 49% higher (5.5% instead of 2.7% of the grid cells occupied) had the program not intervened. Our estimates of cost per hectare to remove invasive species, however, are three to five times higher than the predictions made when the program was initiated. Had there been no control (counter-factual), invasive trees would have spread on untransformed land, but not on land parcels containing plantations or land transformed by

  13. Effects of saltcedar invasion and biological control on small mammals

    USDA-ARS?s Scientific Manuscript database

    Effects of invasive saltcedars (Tamarix spp.) on bird populations and communities have received considerable interest, but impacts on other vertebrate taxa have received less attention. Moreover, only one published study examined effects on vertebrates of biological control efforts directed at saltc...

  14. Radiofrequency ablation of liver tumors (I): biological background.

    PubMed

    Vanagas, Tomas; Gulbinas, Antanas; Pundzius, Juozas; Barauskas, Giedrius

    2010-01-01

    Majority of patients suffering from liver tumors are not candidates for surgery. Currently, minimal invasive techniques have become available for local destruction of hepatic tumors. Radiofrequency ablation is based on biological response to tissue hyperthermia. The aim of this article is to review available biological data on tissue destruction mechanisms. Experimental evidence shows that tissue injury following thermal ablation occurs in two distinct phases. The initial phase is direct injury, which is determined by energy applied, tumor biology, and tumor microenvironment. The temperature varies along the ablation zone and this is reflected by different morphological changes in affected tissues. The local hyperthermia alters metabolism, exacerbates tissue hypoxia, and increases thermosensitivity. The second phase - indirect injury - is observed after the cessation of heat stimulus. This phase represents a balance of several promoting and inhibiting mechanisms, such as induction of apoptosis, heat shock proteins, Kupffer cell activation, stimulation of the immune response, release of cytokines, and ischemia-reperfusion injury. A deeper understanding of the underlying mechanisms may possibly lead to refinements in radiofrequency ablation technology, resulting in advanced local tumor control and prolonged overall survival.

  15. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species.

    PubMed

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability.

  16. The Human Release Hypothesis for biological invasions: human activity as a determinant of the abundance of invasive plant species

    PubMed Central

    Zimmermann, Heike; Brandt, Patric; Fischer, Joern; Welk, Erik; von Wehrden, Henrik

    2014-01-01

    Research on biological invasions has increased rapidly over the past 30 years, generating numerous explanations of how species become invasive. While the mechanisms of invasive species establishment are well studied, the mechanisms driving abundance patterns (i.e. patterns of population density and population size) remain poorly understood. It is assumed that invasive species typically have higher abundances in their new environments than in their native ranges, and patterns of invasive species abundance differ between invaded regions. To explain differences in invasive species abundance, we propose the Human Release Hypothesis. In parallel to the established Enemy Release Hypothesis, this hypothesis states that the differences in abundance of invasive species are found between regions because population expansion is reduced in some regions through continuous land management and associated cutting of the invasive species. The Human Release Hypothesis does not negate other important drivers of species invasions, but rather should be considered as a potentially important complementary mechanism. We illustrate the hypothesis via a case study on an invasive rose species, and hypothesize which locations globally may be most likely to support high abundances of invasive species. We propose that more extensive empirical work on the Human Release Hypothesis could be useful to test its general applicability. PMID:25352979

  17. Enhancing the effectiveness of biological control programs of invasive species through a more comprehensive pest management approach.

    PubMed

    DiTomaso, Joseph M; Van Steenwyk, Robert A; Nowierski, Robert M; Vollmer, Jennifer L; Lane, Eric; Chilton, Earl; Burch, Patrick L; Cowan, Phil E; Zimmerman, Kenneth; Dionigi, Christopher P

    2017-01-01

    Invasive species are one of the greatest economic and ecological threats to agriculture and natural areas in the US and the world. Among the available management tools, biological control provides one of the most economical and long-term effective strategies for managing widespread and damaging invasive species populations of nearly all taxa. However, integrating biological control programs in a more complete integrated pest management approach that utilizes increased information and communication, post-release monitoring, adaptive management practices, long-term stewardship strategies, and new and innovative ecological and genetic technologies can greatly improve the effectiveness of biological control. In addition, expanding partnerships among relevant national, regional, and local agencies, as well as academic scientists and land managers, offers far greater opportunities for long-term success in the suppression of established invasive species. In this paper we direct our recommendations to federal agencies that oversee, fund, conduct research, and develop classical biological control programs for invasive species. By incorporating these recommendations into adaptive management strategies, private and public land managers will have far greater opportunities for long-term success in suppression of established invasive species. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.).

    PubMed

    Adkins, Steve; Shabbir, Asad

    2014-07-01

    Parthenium weed (Parthenium hysterophorus L.) is one of the most aggressive invasive weeds, threatening natural ecosystems and agroecosystems in over 30 countries worldwide. Parthenium weed causes losses of crops and pastures, degrading the biodiversity of natural plant communities, causing human and animal health hazards and resulting in serious economic losses to people and their interests in many countries around the globe. Several of its biological and ecological attributes contribute towards its invasiveness. Various management approaches (namely cultural, mechanical, chemical and biological control) have been used to minimise losses caused by this weed, but most of these approaches are ineffective and uneconomical and/or have limitations. Although chemical control using herbicides and biological control utilising exotic insects and pathogens have been found to contribute to the management of the weed, the weed nevertheless remains a significant problem. An integrated management approach is proposed here for the effective management of parthenium weed on a sustainable basis. © 2014 Society of Chemical Industry.

  19. Mating disruption by aerial application of sex pheromone against the invasive light brown apple moth and implications for the management of biological invasions

    USDA-ARS?s Scientific Manuscript database

    Biological invasions resulting from international trade can have major ecological and economic impacts. Eradication can be a viable strategy during the early stage of an invasion but there is a need for the development of suitable tactics that are both effective and have minimal non-target effects. ...

  20. Confronting challenges to economic analysis of biological invasions in forests

    Treesearch

    Thomas P Holmes

    2010-01-01

    Biological invasions of forests by non-indigenous organisms present a complex, persistent, and largely irreversible threat to forest ecosystems around the globe. Rigorous assessments of the economic impacts of introduced species, at a national scale, are needed to provide credible information to policy makers. It is proposed here that microeconomic models of damage due...

  1. Invasion Biology on Your Campus: Investigating the Red Imported Fire Ant in the Southeastern United States.

    ERIC Educational Resources Information Center

    Forys, Elizabeth A.; Kelly, William B.; Ward, David T.

    2003-01-01

    Describes a laboratory activity on invasion biology to improve students' cognitive skills as well as manual skills. Requires students to develop hypotheses in which a common invasive species will succeed. Focuses on the red imported fire ant in the Southeastern United States, which is a non-native invasive species. (Contains 17 references.) (YDS)

  2. Matrix metalloproteinase-9, a potential biological marker in invasive pituitary adenomas.

    PubMed

    Gong, Jian; Zhao, Yunge; Abdel-Fattah, Rana; Amos, Samson; Xiao, Aizhen; Lopes, M Beatriz S; Hussaini, Isa M; Laws, Edward R

    2008-01-01

    We analyzed MMP-9 expression using mRNA and protein level determinations and explored the possibility that matrix metalloproteinase-9 (MMP-9) is a potential biological marker of pituitary adenoma invasiveness and whether MMP-9 could be used to discriminate the extent of invasiveness among different hormonal subtypes, tumor sizes, growth characteristics, and primary versus recurrent tumors. 73 pituitary tumor specimens were snap frozen in liquid nitrogen immediately after surgical resection. RNA and protein were extracted. MMP-9 mRNA transcripts were analyzed by quantitative RT-PCR. MMP-9 protein activity was analyzed by gelatin zymography and validated by western blot analysis. Immunohistochemistry was performed to identify the presence and localization of MMP-9 in pituitary adenomas. Statistical differences between results were determined using Student's t-test or one way ANOVA. Comparing different hormonal subtypes of noninvasive and invasive pituitary tumors, MMP-9 mRNA expression was significantly increased in the majority of invasive adenomas. Considering the protein levels, our data also showed a significant increase in MMP-9 activity in the majority of invasive adenomas and these differences were confirmed by western blot analysis and immunohistochemistry. In addition, consistent differences in MMP-9 expression levels were found according to tumor subtype, tumor size, tumor extension and primary versus redo-surgery. MMP-9 expression can consistently distinguish invasive pituitary tumors from noninvasive pituitary tumors and would reflect the extent of invasiveness in pituitary tumors according to tumor subtype, size, tumor extension, primary and redo surgery, even at early stages of invasiveness. MMP-9 may be considered a potential biomarker to determine and predict the invasive nature of pituitary tumors.

  3. Response of an invasive liana to simulated herbivory: implications for its biological control

    NASA Astrophysics Data System (ADS)

    Raghu, S.; Dhileepan, K.; Treviño, M.

    2006-05-01

    Pre-release evaluation of the efficacy of biological control agents is often not possible in the case of many invasive species targeted for biocontrol. In such circumstances simulating herbivory could yield significant insights into plant response to damage, thereby improving the efficiency of agent prioritisation, increasing the chances of regulating the performance of invasive plants through herbivory and minimising potential risks posed by release of multiple herbivores. We adopted this approach to understand the weaknesses herbivores could exploit, to manage the invasive liana, Macfadyena unguis-cati. We simulated herbivory by damaging the leaves, stem, root and tuber of the plant, in isolation and in combination. We also applied these treatments at multiple frequencies. Plant response in terms of biomass allocation showed that at least two severe defoliation treatments were required to diminish this liana's climbing habit and reduce its allocation to belowground tuber reserves. Belowground damage appears to have negligible effect on the plant's biomass production and tuber damage appears to trigger a compensatory response. Plant response to combinations of different types of damage did not differ significantly to that from leaf damage. This suggests that specialist herbivores in the leaf-feeding guild capable of removing over 50% of the leaf tissue may be desirable in the biological control of this invasive species.

  4. Terahertz time-domain spectroscopy for non-invasive assessment of water content in biological samples.

    PubMed

    Borovkova, Mariia; Khodzitsky, Mikhail; Demchenko, Petr; Cherkasova, Olga; Popov, Alexey; Meglinski, Igor

    2018-05-01

    We apply terahertz time-domain spectroscopy for the quantitative non-invasive assessment of the water content in biological samples, such as Carpinus caroliniana tree leaves and pork muscles. The developed experimental terahertz time-domain spectroscopy system operates both in transmission and reflection modes. The Landau-Looyenga-Lifshitz-based model is used for the calculation of the water concentration within the samples. The results of the water concentration measurements are compared with the results of the gravimetric measurements. The obtained results show that the water content in biological samples can be measured non-invasively, with a high accuracy, utilizing terahertz waves in transmission and reflection modes.

  5. Risk assessment, eradication, and biological control: global efforts to limit Australian acacia invasions

    USGS Publications Warehouse

    Wilson, John R.U.; Gairifo, Carla; Gibson, Michelle R.; Arianoutsou, Margarita; Bakar, Baki B.; Baret, Stephane; Celesti-Grapow, Laura; DiTomaso, Joseph M.; Dufour-Dror, Jean-Marc; Kueffer, Christoph; Kull, Christian A.; Hoffman, John H.; Impson, Fiona A.C.; Loope, Lloyd L.; Marchante, Elizabete; Harchante, Helia; Moore, Joslin L.; Murphy, Daniel J.; Tassin, Jacques; Witt, Arne; Zenni, Rafael D.; Richardson, David M.

    2011-01-01

    Aim Many Australian Acacia species have been planted around the world, some are highly valued, some are invasive, and some are both highly valued and invasive. We review global efforts to minimize the risk and limit the impact of invasions in this widely used plant group. Location Global. Methods Using information from literature sources, knowledge and experience of the authors, and the responses from a questionnaire sent to experts around the world, we reviewed: (1) a generalized life cycle of Australian acacias and how to control each life stage, (2) different management approaches and (3) what is required to help limit or prevent invasions. Results Relatively few Australian acacias have been introduced in large numbers, but all species with a long and extensive history of planting have become invasive somewhere. Australian acacias, as a group, have a high risk of becoming invasive and causing significant impacts as determined by existing assessment schemes. Moreover, in most situations, long-lived seed banks mean it is very difficult to control established infestations. Control has focused almost exclusively on widespread invaders, and eradication has rarely been attempted. Classical biological control is being used in South Africa with increasing success. Main conclusions A greater emphasis on pro-active rather than reactive management is required given the difficulties managing established invasions of Australian acacias. Adverse effects of proposed new introductions can be minimized by conducting detailed risk assessments in advance, planning for on-going monitoring and management, and ensuring resources are in place for long-term mitigation. Benign alternatives (e.g. sterile hybrids) could be developed to replace existing utilized taxa. Eradication should be set as a management goal more often to reduce the invasion debt. Introducing classical biological control agents that have a successful track-record in South Africa to other regions and identifying new

  6. Potential classical biological control of invasive Himalayan yellow raspberry, Rubus ellipticus

    USDA-ARS?s Scientific Manuscript database

    Rubus ellipticus is one of the world's worst invasive alien species. It is a serious problem in Hawaii and Queensland and has naturalized in many other countries. Biological control is being considered as a means to suppress it by introducing natural enemies from Asia, its native region. In this pap...

  7. Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid.

    PubMed

    de Souza, Tancredo Augusto Feitosa; de Andrade, Leonaldo Alves; Freitas, Helena; da Silva Sandim, Aline

    2017-05-30

    Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed ) and native (I unaltered ) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered . For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed ) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.

  8. Evaluating efficacy of an environmental policy to prevent biological invasions.

    PubMed

    Bailey, Sarah A; Deneau, Matthew G; Jean, Laurent; Wiley, Chris J; Leung, Brian; MacIsaac, Hugh J

    2011-04-01

    Enactment of any environmental policy should be followed by an evaluation of its efficacy to ensure optimal utilization of limited resources, yet measuring the success of these policies can be a challenging task owing to a dearth of data and confounding factors. We examine the efficacy of ballast water policies enacted to prevent biological invasions in the Laurentian Great Lakes. We utilize four criteria to assess the efficacy of this environmental regulation: (1) Is the prescribed management action demonstrably effective? (2) Is the management action effective under operational conditions? (3) Can compliance be achieved on a broad scale? (4) Are desired changes observed in the environment? The four lines of evidence resulting from this analysis indicate that the Great Lakes ballast water management program provides robust, but not complete, protection against ship-mediated biological invasions. Our analysis also indicates that corresponding inspection and enforcement efforts should be undertaken to ensure that environmental policies translate into increased environmental protection. Similar programs could be implemented immediately around the world to protect the biodiversity of the many freshwater ecosystems which receive ballast water discharges by international vessels. This general framework can be extended to evaluate efficacy of other environmental policies.

  9. Status of biological control projects on terrestrial invasive alien weeds in California

    USDA-ARS?s Scientific Manuscript database

    In cooperation with foreign scientists, we are currently developing new classical biological control agents for five species of invasive alien terrestrial weeds. Cape-Ivy. A gall-forming fly, Parafreutreta regalis, and a stem-boring moth, Digitivalva delaireae, have been favorably reviewed by TAG...

  10. Remote analysis of biological invasion and biogeochemical change

    PubMed Central

    Asner, Gregory P.; Vitousek, Peter M.

    2005-01-01

    We used airborne imaging spectroscopy and photon transport modeling to determine how biological invasion altered the chemistry of forest canopies across a Hawaiian montane rain forest landscape. The nitrogen-fixing tree Myrica faya doubled canopy nitrogen concentrations and water content as it replaced native forest, whereas the understory herb Hedychium gardnerianum reduced nitrogen concentrations in the forest overstory and substantially increased aboveground water content. This remote sensing approach indicates the geographic extent, intensity, and biogeochemical impacts of two distinct invaders; its wider application could enhance the role of remote sensing in ecosystem analysis and management. PMID:15761055

  11. Evidence for rapid evolutionary change in an invasive plant in response to biological control.

    PubMed

    Stastny, M; Sargent, R D

    2017-05-01

    We present evidence that populations of an invasive plant species that have become re-associated with a specialist herbivore in the exotic range through biological control have rapidly evolved increased antiherbivore defences compared to populations not exposed to biocontrol. We grew half-sib families of the invasive plant Lythrum salicaria sourced from 17 populations near Ottawa, Canada, that differed in their history of exposure to a biocontrol agent, the specialist beetle Neogalerucella calmariensis. In a glasshouse experiment, we manipulated larval and adult herbivory to examine whether a population's history of biocontrol influenced plant defence and growth. Plants sourced from populations with a history of biocontrol suffered lower defoliation than naïve, previously unexposed populations, strongly suggesting they had evolved higher resistance. Plants from biocontrol-exposed populations were also larger and produced more branches in response to herbivory, regrew faster even in the absence of herbivory and were better at compensating for the impacts of herbivory on growth (i.e. they exhibited increased tolerance). Furthermore, resistance and tolerance were positively correlated among genotypes with a history of biocontrol but not among naïve genotypes. Our findings suggest that biocontrol can rapidly select for increased defences in an invasive plant and may favour a mixed defence strategy of resistance and tolerance without an obvious cost to plant vigour. Although rarely studied, such evolutionary responses in the target species have important implications for the long-term efficacy of biocontrol programmes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  12. The role of population inertia in predicting the outcome of stage-structured biological invasions.

    PubMed

    Guiver, Chris; Dreiwi, Hanan; Filannino, Donna-Maria; Hodgson, Dave; Lloyd, Stephanie; Townley, Stuart

    2015-07-01

    Deterministic dynamic models for coupled resident and invader populations are considered with the purpose of finding quantities that are effective at predicting when the invasive population will become established asymptotically. A key feature of the models considered is the stage-structure, meaning that the populations are described by vectors of discrete developmental stage- or age-classes. The vector structure permits exotic transient behaviour-phenomena not encountered in scalar models. Analysis using a linear Lyapunov function demonstrates that for the class of population models considered, a large so-called population inertia is indicative of successful invasion. Population inertia is an indicator of transient growth or decline. Furthermore, for the class of models considered, we find that the so-called invasion exponent, an existing index used in models for invasion, is not always a reliable comparative indicator of successful invasion. We highlight these findings through numerical examples and a biological interpretation of why this might be the case is discussed. Copyright © 2015. Published by Elsevier Inc.

  13. Adaptive invasive species distribution models: A framework for modeling incipient invasions

    USGS Publications Warehouse

    Uden, Daniel R.; Allen, Craig R.; Angeler, David G.; Corral, Lucia; Fricke, Kent A.

    2015-01-01

    The utilization of species distribution model(s) (SDM) for approximating, explaining, and predicting changes in species’ geographic locations is increasingly promoted for proactive ecological management. Although frameworks for modeling non-invasive species distributions are relatively well developed, their counterparts for invasive species—which may not be at equilibrium within recipient environments and often exhibit rapid transformations—are lacking. Additionally, adaptive ecological management strategies address the causes and effects of biological invasions and other complex issues in social-ecological systems. We conducted a review of biological invasions, species distribution models, and adaptive practices in ecological management, and developed a framework for adaptive, niche-based, invasive species distribution model (iSDM) development and utilization. This iterative, 10-step framework promotes consistency and transparency in iSDM development, allows for changes in invasive drivers and filters, integrates mechanistic and correlative modeling techniques, balances the avoidance of type 1 and type 2 errors in predictions, encourages the linking of monitoring and management actions, and facilitates incremental improvements in models and management across space, time, and institutional boundaries. These improvements are useful for advancing coordinated invasive species modeling, management and monitoring from local scales to the regional, continental and global scales at which biological invasions occur and harm native ecosystems and economies, as well as for anticipating and responding to biological invasions under continuing global change.

  14. A first step in understanding an invasive weed through its genes: an EST analysis of invasive Centaurea maculosa

    PubMed Central

    Broz, Amanda K; Broeckling, Corey D; He, Ji; Dai, Xinbin; Zhao, Patrick X; Vivanco, Jorge M

    2007-01-01

    Background The economic and biological implications of plant invasion are overwhelming; however, the processes by which plants become successful invaders are not well understood. Limited genetic resources are available for most invasive and weedy species, making it difficult to study molecular and genetic aspects that may be associated with invasion. Results As an initial step towards understanding the molecular mechanisms by which plants become invasive, we have generated a normalized Expressed Sequence Tag (EST) library comprising seven invasive populations of Centaurea maculosa, an invasive aster in North America. Seventy-seven percent of the 4423 unique transcripts showed significant similarity to existing proteins in the NCBI database and could be grouped based on gene ontology assignments. Conclusion The C. maculosa EST library represents an initial step towards looking at gene-specific expression in this species, and will pave the way for creation of other resources such as microarray chips that can help provide a view of global gene expression in invasive C. maculosa and its native counterparts. To our knowledge, this is the first published set of ESTs derived from an invasive weed that will be targeted to study invasive behavior. Understanding the genetic basis of evolution for increased invasiveness in exotic plants is critical to understanding the mechanisms through which exotic invasions occur. PMID:17524143

  15. Biological invasion hotspots: a trait-based perspective reveals new sub-continental patterns

    Treesearch

    Basil V. Iannone III; Kevin M. Potter; Qinfeng Guo; Andrew M. Liebhold; Bryan C. Pijanowski; Christopher M. Oswalt; Songlin Fei

    2015-01-01

    Invader traits (including plant growth form) may play an important, and perhaps overlooked, role in determining macroscale patterns of biological invasions and therefore warrant greater consideration in future investigations aimed at understanding these patterns. To assess this need, we used empirical data from a national-level survey of forest in the contiguous 48...

  16. Guiding Classical Biological Control of an Invasive Mealybug Using Integrative Taxonomy

    PubMed Central

    Beltrà, Aleixandre; Addison, Pia; Ávalos, Juan Antonio; Crochard, Didier; Garcia-Marí, Ferran; Guerrieri, Emilio; Giliomee, Jan H.; Malausa, Thibaut; Navarro-Campos, Cristina; Palero, Ferran; Soto, Antonia

    2015-01-01

    Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) is a mealybug of Southern African origin that has recently been introduced into Eastern Spain. It causes severe distortions on young citrus fruits and represents a growing threat to Mediterranean citrus production. So far, biological control has proven unsatisfactory due to the absence of efficient natural enemies in Spain. Hence, the management of this pest currently relies only on chemical control. The introduction of natural enemies of D. aberiae from the native area of the pest represents a sustainable and economically viable alternative to reduce the risks linked to pesticide applications. Since biological control of mealybugs has been traditionally challenged by taxonomic misidentification, an intensive survey of Delottococcus spp. and their associated parasitoids in South Africa was required as a first step towards a classical biological control programme. Combining morphological and molecular characterization (integrative taxonomy) a total of nine mealybug species were identified in this study, including three species of Delottococcus. Different populations of D. aberiae were found on wild olive trees, in citrus orchards and on plants of Chrysanthemoides monilifera, showing intra-specific divergences according to their host plants. Interestingly, the invasive mealybug populations from Spanish orchards clustered together with the population on citrus from Limpopo Province (South Africa), sharing COI haplotypes. This result pointed to an optimum location to collect natural enemies against the invasive mealybug. A total of 14 parasitoid species were recovered from Delottococcus spp. and identified to genus and species level, by integrating morphological and molecular data. A parasitoid belonging to the genus Anagyrus, collected from D. aberiae in citrus orchards in Limpopo, is proposed here as a good biological control agent to be introduced into Spain. PMID:26047349

  17. Effects of biological control agents and exotic plant invasion on deer mouse populations

    Treesearch

    Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey

    2004-01-01

    Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...

  18. Invasive forest species

    Treesearch

    Barbara L. Illman

    2006-01-01

    Nonnative organisms that cause a major change to native ecosystems-once called foreign species, biological invasions, alien invasives, exotics, or biohazards–are now generally referred to as invasive species or invasives. invasive species of insects, fungi, plants, fish, and other organisms present a rising threat to natural forest ecosystems worldwide. Invasive...

  19. A spatial-dynamic value transfer model of economic losses from a biological invasion

    Treesearch

    Thomas P. Holmes; Andrew M. Liebhold; Kent F. Kovacs; Betsy Von Holle

    2010-01-01

    Rigorous assessments of the economic impacts of introduced species at broad spatial scales are required to provide credible information to policy makers. We propose that economic models of aggregate damages induced by biological invasions need to link microeconomic analyses of site-specific economic damages with spatial-dynamic models of value change associated with...

  20. Epidemiology of Invasive Mold Infections in Allogeneic Stem Cell Transplant Recipients: Biological Risk Factors for Infection According to Time after Transplantation

    PubMed Central

    Garcia-Vidal, Carol; Upton, Arlo; Kirby, Katharine A.; Marr, Kieren A.

    2009-01-01

    Background Invasive mold infections (IMIs) are common in individuals who have undergone hematopoietic stem cell transplantation (HSCT). We sought to determine clinical and biological risk factors for different IMIs during each period (early and late) after allogeneic HSCT. Methods Cases of proven and probable IMI diagnosed in HSCT recipients at the Fred Hutchinson Cancer Research Center (Seattle, WA) from 1 January 1998 through 31 December 2002 were included. Survival was estimated with Kaplan-Meier curves, and Cox regression models were used for multivariable analyses. Results During the study period, 1248 patients underwent allogeneic HSCT; 163 (13.1%) received a diagnosis of probable or proven IMI. The majority of cases were caused by Aspergillus species (88%). The incidence of IMI caused by other molds remained low (<2%) over the 4-year study period. Risk factors for IMI early after HSCT and late after HSCT differed, with host variables (age) and transplant variables (human leukocyte antigen match) predominating as early risk factors and other clinical complications (graft-versus-host disease and cytomegalovirus disease) predominating later. Biological risk factors that were important during all periods included multiple cytopenias (neutropenia, lymphopenia, and monocytopenia) and iron overload. Conclusions Risk factors for invasive aspergillosis after allogeneic HSCT are multifactorial and differ according to timing after HSCT. Increased attention should be placed on understanding the immunopathogenesis of fungal disease after HSCT. PMID:18781877

  1. Book review: Encyclopedia of biological invasions

    Treesearch

    Qinfeng Guo

    2011-01-01

    Species introductions and consequent biotic invasions and homogenization are major components of global change that are drawing increasing concern and various levels of actions and reactions around the world. Invasion ecology has advanced rapidly during the last few decades, and the discipline is now increasingly integrated with the social and economic sciences. A...

  2. A unified approach for quantifying invasibility and degree of invasion

    Treesearch

    Qinfeng Guo; Songlin Fei; Jeffrey S. Dukes; Christopher M. Oswalt; Basil V. Iannone III; Kevin M. Potter

    2015-01-01

    Habitat invasibility is a central focus of invasion biology, with implications for basic ecological patterns and processes and for effective invasion management. ‘‘Invasibility’’ is, however, one of the most elusive metrics and misused terms in ecology. Empirical studies and meta-analyses of invasibility have produced inconsistent and even conflicting results. This ...

  3. Drivers of Non-Native Aquatic Species Invasions across the Continental U.S: A Macroscale Assessment

    EPA Science Inventory

    Background/Question/Methods Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scale...

  4. Classical Biological Control of Invasive Legacy Crop Pests: New Technologies Offer Opportunities to Revisit Old Pest Problems in Perennial Tree Crops

    PubMed Central

    Hoddle, Mark S.; Warner, Keith; Steggall, John; Jetter, Karen M.

    2014-01-01

    Advances in scientific disciplines that support classical biological control have provided “new tools” that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting “legacy pests”, even if they have been targets of previously unsuccessful biocontrol projects. Examples of “new tools” include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using “new tools” for developing biological control programs for “legacy pests” could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect. PMID:26463063

  5. Biological Invasions: A Challenge In Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Schnase, J. L.; Smith, J. A.; Stohlgren, T. J.; Graves, S.; Trees, C.; Rood, Richard (Technical Monitor)

    2002-01-01

    The spread of invasive species is one of the most daunting environmental, economic, and human-health problems facing the United States and the World today. It is one of several grand challenge environmental problems being considered by NASA's Earth Science Vision for 2025. The invasive species problem is complex and presents many challenges. Developing an invasive species predictive capability could significantly advance the science and technology of ecological forecasting.

  6. Invasive Australian Acacia seed banks: Size and relationship with stem diameter in the presence of gall-forming biological control agents.

    PubMed

    Strydom, Matthys; Veldtman, Ruan; Ngwenya, Mzabalazo Z; Esler, Karen J

    2017-01-01

    Australian Acacia are invasive in many parts of the world. Despite significant mechanical and biological efforts to control their invasion and spread, soil-stored seed banks prevent their effective and sustained removal. In response South Africa has had a strong focus on employing seed reducing biological control agents to deal with Australian Acacia invasion, a programme that is considered as being successful. To provide a predictive understanding for their management, seed banks of four invasive Australian acacia species (Acacia longifolia, A. mearnsii, A. pycnantha and A. saligna) were studied in the Western Cape of South Africa. Across six to seven sites for each species, seed bank sizes were estimated from dense, monospecific stands by collecting 30 litter and soil samples. Average estimated seed bank size was large (1017 to 17261 seed m-2) as was annual input into the seed bank, suggesting that these seed banks are not residual but are replenished in size annually. A clear relationship between seed bank size and stem diameter was established indicating that mechanical clearing should be conducted shortly after fire-stimulated recruitment events or within old populations when seed banks are small. In dense, monospecific stands seed-feeding biological control agents are not effective in reducing seed bank size.

  7. Factors influencing plant invasiveness

    Treesearch

    Yvette Ortega; Dean Pearson

    2009-01-01

    Invasiveness of spotted knapweed and biological control agents. Dean and Yvette are examining the influence of drought on the invasiveness of spotted knapweed (Centaurea maculosa) and its susceptibility to herbivory by biological control agents. In collaboration with the University of Montana and Forest Health Protection, researchers have constructed 150...

  8. Some perspectives on the risks and benefits of biological control of invasive alien plants in the management of natural ecosystems.

    PubMed

    van Wilgen, B W; Moran, V C; Hoffmann, J H

    2013-09-01

    Globally, invasions by alien plants are rapidly increasing in extent and severity, leading to large-scale ecosystem degradation. Weed biological control offers opportunities to arrest or even reverse these trends and, although it is not always effective or appropriate as a management strategy, this practice has an excellent record of safety and many notable successes over two centuries. In recent years, growing concerns about the potential for unintended, non-target damage by biological control agents, and fears about other unpredictable effects on ecosystems, have created an increasingly demanding risk-averse regulatory environment. This development may be counter-productive because it tends to overemphasize potential problems and ignores or underestimates the benefits of weed biological control; it offers no viable alternatives; and it overlooks the inherent risks of a decision not to use biological control. The restoration of badly degraded ecosystems to a former pristine condition is not a realistic objective, but the protection of un-invaded or partial restoration of invaded ecosystems can be achieved safely, at low cost and sustainably through the informed and responsible application of biological control. This practice should therefore be given due consideration when management of invasive alien plants is being planned. This discussion paper provides a perspective on the risks and benefits of classical weed biological control, and it is aimed at assisting environmental managers in their deliberations on whether or not to use this strategy in preference, or as a supplement to other alien invasive plant control practices.

  9. Some Perspectives on the Risks and Benefits of Biological Control of Invasive Alien Plants in the Management of Natural Ecosystems

    NASA Astrophysics Data System (ADS)

    van Wilgen, B. W.; Moran, V. C.; Hoffmann, J. H.

    2013-09-01

    Globally, invasions by alien plants are rapidly increasing in extent and severity, leading to large-scale ecosystem degradation. Weed biological control offers opportunities to arrest or even reverse these trends and, although it is not always effective or appropriate as a management strategy, this practice has an excellent record of safety and many notable successes over two centuries. In recent years, growing concerns about the potential for unintended, non-target damage by biological control agents, and fears about other unpredictable effects on ecosystems, have created an increasingly demanding risk-averse regulatory environment. This development may be counter-productive because it tends to overemphasize potential problems and ignores or underestimates the benefits of weed biological control; it offers no viable alternatives; and it overlooks the inherent risks of a decision not to use biological control. The restoration of badly degraded ecosystems to a former pristine condition is not a realistic objective, but the protection of un-invaded or partial restoration of invaded ecosystems can be achieved safely, at low cost and sustainably through the informed and responsible application of biological control. This practice should therefore be given due consideration when management of invasive alien plants is being planned. This discussion paper provides a perspective on the risks and benefits of classical weed biological control, and it is aimed at assisting environmental managers in their deliberations on whether or not to use this strategy in preference, or as a supplement to other alien invasive plant control practices.

  10. Urbanization and biological invasion shape animal personalities.

    PubMed

    Lapiedra, Oriol; Chejanovski, Zachary; Kolbe, Jason J

    2017-02-01

    Novel selective pressures derived from human activities challenge the persistence of animal populations worldwide. Behavior is expected to be a major factor driving animals' responses to global change because it largely determines how animals interact with the environment. However, the role of individual variation in behavior to facilitate the persistence of animals in changing environments remains poorly understood. Here, we adopted an animal personality approach to investigate whether different behavioral traits allow animals to deal with two major components of global change: urbanization and biological invasions. By studying six populations of Anolis sagrei lizards, we found for the first time that anoles vary consistently in their behavior across different times and contexts. Importantly, these animal personalities were consistent in the wild and in captivity. We investigated whether behavioral traits are pulled in different directions by different components of global change. On the one hand, we found that lizards from urban areas differ from nearby forest lizards in that they were more tolerant of humans, less aggressive, bolder after a simulated predator attack, and they spent more time exploring new environments. Several of these risk-taking behaviors constituted a behavioral syndrome that significantly differed between urban and forest populations. On the other hand, the behavior of urban A. sagrei coexisting with the invasive predatory lizard Leiocephalus carinatus was associated with dramatic changes in their foraging niche. Overall, we provide evidence that differences in animal personalities facilitate the persistence of animals under novel selective regimes by producing adaptive behaviors relevant to their ecology such as predator avoidance. Our results suggest that natural selection can favor certain behaviors over others when animals are confronted with different ecological challenges posed by global change. Therefore, we underscore the need to

  11. Evidence of Adaptive Evolutionary Divergence during Biological Invasion

    PubMed Central

    Lucek, Kay; Sivasundar, Arjun; Seehausen, Ole

    2012-01-01

    Rapid phenotypic diversification during biological invasions can either arise by adaptation to alternative environments or by adaptive phenotypic plasticity. Where experimental evidence for adaptive plasticity is common, support for evolutionary diversification is rare. Here, we performed a controlled laboratory experiment using full-sib crosses between ecologically divergent threespine stickleback populations to test for a genetic basis of adaptation. Our populations are from two very different habitats, lake and stream, of a recently invaded range in Switzerland and differ in ecologically relevant morphological traits. We found that in a lake-like food treatment lake fish grow faster than stream fish, resembling the difference among wild type individuals. In contrast, in a stream-like food treatment individuals from both populations grow similarly. Our experimental data suggest that genetically determined diversification has occurred within less than 140 years after the arrival of stickleback in our studied region. PMID:23152900

  12. Analysis of the Transcriptional Differences between Indigenous and Invasive Whiteflies Reveals Possible Mechanisms of Whitefly Invasion

    PubMed Central

    Wang, Yong-Liang; Wang, Yu-Jun; Luan, Jun-Bo; Yan, Gen-Hong; Liu, Shu-Sheng; Wang, Xiao-Wei

    2013-01-01

    Background The whitefly Bemisa tabaci is a species complex of more than 31 cryptic species which include some of the most destructive invasive pests of crops worldwide. Among them, Middle East-Asia Minor 1 (MEAM1) and Mediterranean have invaded many countries and displaced the native whitefly species. The successful invasion of the two species is largely due to their wide range of host plants, high resistance to insecticides and remarkable tolerance to environmental stresses. However, the molecular differences between invasive and indigenous whiteflies remain largely unknown. Methodology/Principal Findings Here the global transcriptional difference between the two invasive whitefly species (MEAM1, MED) and one indigenous whitefly species (Asia II 3) were analyzed using the Illumina sequencing. Our analysis indicated that 2,422 genes between MEAM1 and MED; 3,073 genes between MEAM1 and Asia II 3; and 3,644 genes between MED and Asia II 3 were differentially expressed. Gene Ontology enrichment analysis revealed that the differently expressed genes between the invasive and indigenous whiteflies were significantly enriched in the term of ‘oxidoreductase activity’. Pathway enrichment analysis showed that carbohydrate, amino acid and glycerolipid metabolisms were more active in MEAM1 and MED than in Asia II 3, which may contribute to their differences in biological characteristics. Our analysis also illustrated that the majority of genes involved in ‘drug metabolic pathway’ were expressed at a higher level in MEAM1 and MED than in Asia II 3. Taken together, these results revealed that the genes related to basic metabolism and detoxification were expressed at an elevated level in the invasive whiteflies, which might be responsible for their higher resistance to insecticides and environmental stresses. Conclusions/Significance The extensive comparison of MEAM1, MED and Asia II 3 gene expression may serve as an invaluable resource for revealing the molecular

  13. Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent

    USGS Publications Warehouse

    Williams, Wyatt I.; Friedman, Jonathan M.; Gaskin, John F.; Norton, Andrew P.

    2014-01-01

    Evolution has contributed to the successful invasion of exotic plant species in their introduced ranges, but how evolution affects particular control strategies is still under evaluation. For instance, classical biological control, a common strategy involving the utilization of highly specific natural enemies to control exotic pests, may be negatively affected by host hybridization because of shifts in plant traits, such as root allocation or chemical constituents. We investigated introgression between two parent species of the invasive shrub tamarisk (Tamarix spp.) in the western United States, and how differences in plant traits affect interactions with a biological control agent. Introgression varied strongly with latitude of origin and was highly correlated with plant performance. Increased levels of T. ramosissima introgression resulted in both higher investment in roots and tolerance to defoliation and less resistance to insect attack. Because tamarisk hybridization occurs predictably on the western U.S. landscape, managers may be able to exploit this information to maximize control efforts. Genetic differentiation in plant traits in this system underpins the importance of plant hybridization and may explain why some biological control releases are more successful than others.

  14. Host range of the inadvertent biological control agent Caloptilia triadicae: an invasive herbivore of Chinese tallowtree

    USDA-ARS?s Scientific Manuscript database

    An inadvertent biological control agent of the invasive weed Chinese tallowtree (Triadica sebifera) first appeared in North America in 2004. Identified as a Caloptilia triadicae, this leaf miner was found damaging T. sebifera saplings. In Gainesville, FL we exposed naturalized populations of C. tria...

  15. Invasive Species Science Branch: research and management tools for controlling invasive species

    USGS Publications Warehouse

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  16. Invasive species in agriculture

    USDA-ARS?s Scientific Manuscript database

    Agricultural production of food, feed, fiber or fuel is a local human activity with global ecological impacts, including the potential to foster invasions. Agriculture plays an unusual role in biological invasions, in that it is both a source of non-indigenous invasive species (NIS) and especially s...

  17. A subcontinental view of forest plant invasions

    Treesearch

    Christopher M. Oswalt; Songlin Fei; Qinfeng Guo; Basil V. Iannone III; Sonja N. Oswalt; Bryan C. Pijanowski; Kevin M. Potter

    2015-01-01

    Over the last few decades, considerable attention has focused on small-scale studies of invasive plants and invaded systems. Unfortunately, small scale studies rarely provide comprehensive insight into the complexities of biological invasions at macroscales. Systematic and repeated monitoring of biological invasions at broad scales are rare. In this report, we...

  18. Over-invasion by functionally equivalent invasive species.

    PubMed

    Russell, James C; Sataruddin, Nurul S; Heard, Allison D

    2014-08-01

    Multiple invasive species have now established at most locations around the world, and the rate of new species invasions and records of new invasive species continue to grow. Multiple invasive species interact in complex and unpredictable ways, altering their invasion success and impacts on biodiversity. Incumbent invasive species can be replaced by functionally similar invading species through competitive processes; however the generalized circumstances leading to such competitive displacement have not been well investigated. The likelihood of competitive displacement is a function of the incumbent advantage of the resident invasive species and the propagule pressure of the colonizing invasive species. We modeled interactions between populations of two functionally similar invasive species and indicated the circumstances under which dominance can be through propagule pressure and incumbent advantage. Under certain circumstances, a normally subordinate species can be incumbent and reject a colonizing dominant species, or successfully colonize in competition with a dominant species during simultaneous invasion. Our theoretical results are supported by empirical studies of the invasion of islands by three invasive Rattus species. Competitive displacement is prominent in invasive rats and explains the replacement of R. exulans on islands subsequently invaded by European populations of R. rattus and R. norvegicus. These competition outcomes between invasive species can be found in a broad range of taxa and biomes, and are likely to become more common. Conservation management must consider that removing an incumbent invasive species may facilitate invasion by another invasive species. Under very restricted circumstances of dominant competitive ability but lesser impact, competitive displacement may provide a novel method of biological control.

  19. Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions

    PubMed Central

    Heimpel, George E.; Yang, Yi; Hill, Jason D.; Ragsdale, David W.

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions. PMID:23977273

  20. Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions.

    PubMed

    Heimpel, George E; Yang, Yi; Hill, Jason D; Ragsdale, David W

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions.

  1. Disentangling the role of environmental and human pressures on biological invasions across Europe

    PubMed Central

    Pyšek, Petr; Jarošík, Vojtěch; Hulme, Philip E.; Kühn, Ingolf; Wild, Jan; Arianoutsou, Margarita; Bacher, Sven; Chiron, Francois; Didžiulis, Viktoras; Essl, Franz; Genovesi, Piero; Gherardi, Francesca; Hejda, Martin; Kark, Salit; Lambdon, Philip W.; Desprez-Loustau, Marie-Laure; Nentwig, Wolfgang; Pergl, Jan; Poboljšaj, Katja; Rabitsch, Wolfgang; Roques, Alain; Roy, David B.; Shirley, Susan; Solarz, Wojciech; Vilà, Montserrat; Winter, Marten

    2010-01-01

    The accelerating rates of international trade, travel, and transport in the latter half of the twentieth century have led to the progressive mixing of biota from across the world and the number of species introduced to new regions continues to increase. The importance of biogeographic, climatic, economic, and demographic factors as drivers of this trend is increasingly being realized but as yet there is no consensus regarding their relative importance. Whereas little may be done to mitigate the effects of geography and climate on invasions, a wider range of options may exist to moderate the impacts of economic and demographic drivers. Here we use the most recent data available from Europe to partition between macroecological, economic, and demographic variables the variation in alien species richness of bryophytes, fungi, vascular plants, terrestrial insects, aquatic invertebrates, fish, amphibians, reptiles, birds, and mammals. Only national wealth and human population density were statistically significant predictors in the majority of models when analyzed jointly with climate, geography, and land cover. The economic and demographic variables reflect the intensity of human activities and integrate the effect of factors that directly determine the outcome of invasion such as propagule pressure, pathways of introduction, eutrophication, and the intensity of anthropogenic disturbance. The strong influence of economic and demographic variables on the levels of invasion by alien species demonstrates that future solutions to the problem of biological invasions at a national scale lie in mitigating the negative environmental consequences of human activities that generate wealth and by promoting more sustainable population growth. PMID:20534543

  2. Isolation of invasive Plasmodium yoelii merozoites with a long half-life to evaluate invasion dynamics and potential invasion inhibitors.

    PubMed

    Mutungi, Joe Kimanthi; Yahata, Kazuhide; Sakaguchi, Miako; Kaneko, Osamu

    2015-11-01

    Malaria symptoms and pathogenesis are caused by blood stage parasite burdens of Plasmodium spp., for which invasion of red blood cells (RBCs) by merozoites is essential. Successful targeting by either drugs or vaccines directed against the whole merozoite or its antigens during its transient extracellular status would contribute to malaria control by impeding RBC invasion. To understand merozoite invasion biology and mechanisms, it is desired to obtain merozoites that retain their invasion activity in vitro. Accordingly, methods have been developed to isolate invasive Plasmodium knowlesi and Plasmodium falciparum merozoites. Rodent malaria parasite models offer ease in laboratory maintenance and experimental genetic modifications; however, no methods have been reported regarding isolation of high numbers of invasive rodent malaria merozoites. In this study, Plasmodium yoelii-infected RBCs were obtained from infected mice, and mature schizont-infected RBCs enriched via Histodenz™ density gradients. Merozoites retaining invasion activity were then isolated by passing the preparations through a filter membrane. RBC-invaded parasites developed to mature stages in vitro in a synchronous manner. Isolated merozoites were evaluated for retention of invasion activity following storage at different temperatures prior to incubation with uninfected mouse RBCs. Isolated merozoites retained their invasion activity 4h after isolation at 10 or 15 °C, whereas their invasion activity reduced to 0-10% within 30 min when incubated on ice or at 37 °C prior to RBC invasion assay. Images of merozoites at successive steps during RBC invasion were captured by light and transmission electron microscopy. Synthetic peptides derived from the amino acid sequence of the P. yoelii invasion protein RON2 efficiently inhibited RBC invasion. The developed method to isolate and keep invasive P. yoelii merozoites for up to 4h is a powerful tool to study the RBC invasion biology of this parasite

  3. Geographical and taxonomic biases in invasion ecology.

    PubMed

    Pysek, Petr; Richardson, David M; Pergl, Jan; Jarosík, Vojtech; Sixtová, Zuzana; Weber, Ewald

    2008-05-01

    Invasive alien species come from most taxonomic groups, and invasion biology is searching for robust cross-taxon generalizations and principles. An analysis of 2,670 papers dealing with 892 invasive species showed that all major groups of invaders are well studied, but that most information on the mechanisms of invasion has emerged from work on a limited number of the most harmful invaders. A strong geographical bias, with Africa and Asia understudied, inhibits a balanced understanding of invasion, because we might be lacking knowledge of specific invasion mechanisms from poorly studied, regionally specific habitats. International cooperation is required to achieve a more geographically balanced picture of biological invasions. Invasive species with the greatest impact are best studied, but more studies of species that are naturalized but not (yet) invasive are needed to improve understanding of the mechanisms acting during the naturalization phase of invasions and leading to successful invasion.

  4. A Review of the Integration of Classical Biological Control with other Management Techniques to Manage Invasive Weeds in Natural Areas and Rangelands

    USDA-ARS?s Scientific Manuscript database

    Integrating classical biological control with other management techniques such as herbicide, fire, mechanical control, grazing, or plant competition, can be the most effective way to manage invasive weeds in natural areas and rangelands. Biological control agents can be protected from potential nega...

  5. Fluorescence background removal method for biological Raman spectroscopy based on empirical mode decomposition.

    PubMed

    Leon-Bejarano, Maritza; Dorantes-Mendez, Guadalupe; Ramirez-Elias, Miguel; Mendez, Martin O; Alba, Alfonso; Rodriguez-Leyva, Ildefonso; Jimenez, M

    2016-08-01

    Raman spectroscopy of biological tissue presents fluorescence background, an undesirable effect that generates false Raman intensities. This paper proposes the application of the Empirical Mode Decomposition (EMD) method to baseline correction. EMD is a suitable approach since it is an adaptive signal processing method for nonlinear and non-stationary signal analysis that does not require parameters selection such as polynomial methods. EMD performance was assessed through synthetic Raman spectra with different signal to noise ratio (SNR). The correlation coefficient between synthetic Raman spectra and the recovered one after EMD denoising was higher than 0.92. Additionally, twenty Raman spectra from skin were used to evaluate EMD performance and the results were compared with Vancouver Raman algorithm (VRA). The comparison resulted in a mean square error (MSE) of 0.001554. High correlation coefficient using synthetic spectra and low MSE in the comparison between EMD and VRA suggest that EMD could be an effective method to remove fluorescence background in biological Raman spectra.

  6. Biological control of sentinel egg masses of the exotic invasive stink bug halyomorpha halys (Stål) in Mid-Atlantic USA ornamental landscapes

    USDA-ARS?s Scientific Manuscript database

    Biological invasions have far reaching effects on native plant and arthropod communities. This study evaluated the effect of natural enemies on eggs of the exotic invasive stink bug Halyomorpha halys (Stål) in experimental plots comprising species pairs of 16 ornamental trees and shrub genera from e...

  7. Understanding the biological invasion risk posed by the global wildlife trade: propagule pressure drives the introduction and establishment of Nearctic turtles.

    PubMed

    García-Díaz, Pablo; Ross, Joshua V; Ayres, César; Cassey, Phillip

    2015-03-01

    Biological invasions are a key component of human-induced global change. The continuing increase in global wildlife trade has raised concerns about the parallel increase in the number of new invasive species. However, the factors that link the wildlife trade to the biological invasion process are still poorly understood. Moreover, there are analytical challenges in researching the role of global wildlife trade in biological invasions, particularly issues related to the under-reporting of introduced and established populations in areas with reduced sampling effort. In this work, we use high-quality data on the international trade in Nearctic turtles (1999-2009) coupled with a statistical modelling framework, which explicitly accounts for detection, to investigate the factors that influence the introduction (release, or escape into the wild) of globally traded Nearctic turtles and the establishment success (self-sustaining exotic populations) of slider turtles (Trachemys scripta), the most frequently traded turtle species. We found that the introduction of a species was influenced by the total number of turtles exported to a jurisdiction and the age at maturity of the species, while the establishment success of slider turtles was best associated with the propagule number (number of release events), and the number of native turtles in the jurisdiction of introduction. These results indicate both a direct and indirect association between the wildlife trade and the introduction of turtles and establishment success of slider turtles, respectively. Our results highlight the existence of gaps in the number of globally recorded introduction events and established populations of slider turtles, although the expected bias is low. We emphasize the importance of researching independently the factors that affect the different stages of the invasion pathway. Critically, we observe that the number of traded individuals might not always be an adequate proxy for propagule pressure

  8. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach.

    PubMed

    Mech, Franziska; Wilson, Duncan; Lehnert, Teresa; Hube, Bernhard; Thilo Figge, Marc

    2014-02-01

    Candida albicans is the most common opportunistic fungal pathogen of the human mucosal flora, frequently causing infections. The fungus is responsible for invasive infections in immunocompromised patients that can lead to sepsis. The yeast to hypha transition and invasion of host-tissue represent major determinants in the switch from benign colonizer to invasive pathogen. A comprehensive understanding of the infection process requires analyses at the quantitative level. Utilizing fluorescence microscopy with differential staining, we obtained images of C. albicans undergoing epithelial invasion during a time course of 6 h. An image-based systems biology approach, combining image analysis and mathematical modeling, was applied to quantify the kinetics of hyphae development, hyphal elongation, and epithelial invasion. The automated image analysis facilitates high-throughput screening and provided quantities that allow for the time-resolved characterization of the morphological and invasive state of fungal cells. The interpretation of these data was supported by two mathematical models, a kinetic growth model and a kinetic transition model, that were developed using differential equations. The kinetic growth model describes the increase in hyphal length and revealed that hyphae undergo mass invasion of epithelial cells following primary hypha formation. We also provide evidence that epithelial cells stimulate the production of secondary hyphae by C. albicans. Based on the kinetic transition model, the route of invasion was quantified in the state space of non-invasive and invasive fungal cells depending on their number of hyphae. This analysis revealed that the initiation of hyphae formation represents an ultimate commitment to invasive growth and suggests that in vivo, the yeast to hypha transition must be under exquisitely tight negative regulation to avoid the transition from commensal to pathogen invading the epithelium. © 2013 International Society for

  9. Invasive Blackberry Species in Oregon, USA: Their Identity and Susceptibility to Rust Disease, and Implications for Biological Control

    USDA-ARS?s Scientific Manuscript database

    Two of five species of European blackberry (Rubus fruticosus L. Aggregate) along the West Coast of the United States are invasive, and they are also similar in appearance. Biological control by Phragmidium violaceum, causal agent of a rust disease, was under consideration when rust-diseased blackber...

  10. Climate change and biological invasions: evidence, expectations, and response options.

    PubMed

    Hulme, Philip E

    2017-08-01

    A changing climate may directly or indirectly influence biological invasions by altering the likelihood of introduction or establishment, as well as modifying the geographic range, environmental impacts, economic costs or management of alien species. A comprehensive assessment of empirical and theoretical evidence identified how each of these processes is likely to be shaped by climate change for alien plants, animals and pathogens in terrestrial, freshwater and marine environments of Great Britain. The strongest contemporary evidence for the potential role of climate change in the establishment of new alien species is for terrestrial arthropods, as a result of their ectothermic physiology, often high dispersal rate and their strong association with trade as well as commensal relationships with human environments. By contrast, there is little empirical support for higher temperatures increasing the rate of alien plant establishment due to the stronger effects of residence time and propagule pressure. The magnitude of any direct climate effect on the number of new alien species will be small relative to human-assisted introductions driven by socioeconomic factors. Casual alien species (sleepers) whose population persistence is limited by climate are expected to exhibit greater rates of establishment under climate change assuming that propagule pressure remains at least at current levels. Surveillance and management targeting sleeper pests and diseases may be the most cost-effective option to reduce future impacts under climate change. Most established alien species will increase their distribution range in Great Britain over the next century. However, such range increases are very likely be the result of natural expansion of populations that have yet to reach equilibrium with their environment, rather than a direct consequence of climate change. To assess the potential realised range of alien species will require a spatially explicit approach that not only

  11. Pollination of a native plant changes with distance and density of invasive plants in a simulated biological invasion.

    PubMed

    Bruckman, Daniela; Campbell, Diane R

    2016-08-01

    Effects of an exotic plant on pollination may change as the invasive increases in density. Quantity of pollinator visits to a native may increase, decrease, or change nonlinearly, while visit quality is likely to decrease with greater interspecific pollen movement. How visit quantity and quality contribute to the effect on reproductive success at each invasion stage has not been measured. We simulated four stages of invasion by Brassica nigra by manipulating the neighborhood of potted plants of the native Phacelia parryi in a field experiment. Stages were far from the invasion, near the invasion, intermixed with the invasive at low density, and intermixed at high density. We measured pollinator visitation, conspecific and invasive pollen deposition, and seed set for P. parryi at each stage. Native individuals near invasive plants and within areas of low invasive density showed greatest seed production, as expected from concurrent changes in conspecific and invasive pollen deposition. Those plants experienced facilitation of visits and received more conspecific pollen relative to plants farther from invasives. Native individuals within high invasive density also received frequent visits by many pollinators (although not honeybees), but the larger receipt of invasive pollen predicted interference with pollen tubes that matched patterns in seed set. Pollinator visitation was highest when exotic plants were nearby. Detrimental effects of heterospecific pollen deposition were highest at high exotic density. Our study quantified how reproduction benefits from near proximity to a showy invasive, but is still vulnerable when the invasive reaches high density. © 2016 Botanical Society of America.

  12. Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications.

    PubMed

    Kornis, M S; Mercado-Silva, N; Vander Zanden, M J

    2012-02-01

    are presented; most pressing are evaluating the economic effects of N. melanostomus invasion, determining long-term population level effects of egg predation on game-fish recruitment and comparing several variables (density, ecological effects morphology and life history) among invaded ecosystems. This review provides a central reference as researchers continue studying N. melanostomus, often as examples for advancing basic ecology and invasion biology. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  13. Common Ground for Managing Invasive Annual Grasses

    USDA-ARS?s Scientific Manuscript database

    Invasive annual grasses often reach their full biological potential in ecosystems of the western United States. This suggests that crucial ecosystem "checks and balances" are not functioning. In other words, invasion occurs because ecosystems have lost resistance to invasion, and invasive plants a...

  14. How biological background assumptions influence scientific risk evaluation of stacked genetically modified plants: an analysis of research hypotheses and argumentations.

    PubMed

    Rocca, Elena; Andersen, Fredrik

    2017-08-14

    Scientific risk evaluations are constructed by specific evidence, value judgements and biological background assumptions. The latter are the framework-setting suppositions we apply in order to understand some new phenomenon. That background assumptions co-determine choice of methodology, data interpretation, and choice of relevant evidence is an uncontroversial claim in modern basic science. Furthermore, it is commonly accepted that, unless explicated, disagreements in background assumptions can lead to misunderstanding as well as miscommunication. Here, we extend the discussion on background assumptions from basic science to the debate over genetically modified (GM) plants risk assessment. In this realm, while the different political, social and economic values are often mentioned, the identity and role of background assumptions at play are rarely examined. We use an example from the debate over risk assessment of stacked genetically modified plants (GM stacks), obtained by applying conventional breeding techniques to GM plants. There are two main regulatory practices of GM stacks: (i) regulate as conventional hybrids and (ii) regulate as new GM plants. We analyzed eight papers representative of these positions and found that, in all cases, additional premises are needed to reach the stated conclusions. We suggest that these premises play the role of biological background assumptions and argue that the most effective way toward a unified framework for risk analysis and regulation of GM stacks is by explicating and examining the biological background assumptions of each position. Once explicated, it is possible to either evaluate which background assumptions best reflect contemporary biological knowledge, or to apply Douglas' 'inductive risk' argument.

  15. Egg Parasitoids from Pakistan as possible classical biological control agents of the invasive pest, Bagrada hilaris (Heteroptera: Pentatomidae)

    USDA-ARS?s Scientific Manuscript database

    The newly invasive pest stink bug, Bagrada hilaris, threatens the cole crop industry and certain ornamentals in the U.S. Without its co-evolved natural enemies, it is likely to spread from the Southwest U.S. to the east coast, requiring millions more dollars to control it. If key biological control ...

  16. Stress in biological invasions: Introduced invasive grey squirrels increase physiological stress in native Eurasian red squirrels.

    PubMed

    Santicchia, Francesca; Dantzer, Ben; van Kesteren, Freya; Palme, Rupert; Martinoli, Adriano; Ferrari, Nicola; Wauters, Lucas Armand

    2018-05-23

    Invasive alien species can cause extinction of native species through processes including predation, interspecific competition for resources or disease-mediated competition. Increases in stress hormones in vertebrates may be associated with these processes and contribute to the decline in survival or reproduction of the native species. Eurasian red squirrels (Sciurus vulgaris) have gone extinct across much of the British Isles and parts of Northern Italy following the introduction of North American invasive grey squirrels (Sciurus carolinensis). We extracted glucocorticoid metabolites from faecal samples to measure whether the presence of the invasive species causes an increase in physiological stress in individuals of the native species. We show that native red squirrels in seven sites where they co-occurred with invasive grey squirrels had glucocorticoid concentrations that were three times higher than those in five sites without the invasive species. Moreover, in a longitudinal study, stress hormones in native red squirrels increased after colonisation by grey squirrels. When we experimentally reduced the abundance of the invasive grey squirrels, the concentration of faecal glucocorticoid metabolites in co-occurring red squirrels decreased significantly between pre- and postremoval periods. Hence, we found that the invasive species acts as a stressor which significantly increases the concentrations of glucocorticoids in the native species. Given that sustained elevations in glucocorticoids could reduce body growth and reproductive rate, our results are consistent with previous studies where the co-occurrence of the invasive grey squirrel was associated with smaller size and lower reproductive output in red squirrels. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  17. Invasive plants affect prairie soil biology

    USDA-ARS?s Scientific Manuscript database

    Non-native or exotic plants often cause ecological and environmental damage in ecosystems where they invade and become established. These invasive plants may be the most serious threat to plant diversity in prairies, especially those in scattered remnants, which may be particularly vulnerable to rap...

  18. Biological Invasions of Geminiviruses: Case Study of TYLCV and Bemisia tabaci in Reunion Island

    PubMed Central

    Péréfarres, Frédéric; Thierry, Magali; Becker, Nathalie; Lefeuvre, Pierre; Reynaud, Bernard; Delatte, Hélène; Lett, Jean-Michel

    2012-01-01

    In the last 20 years, molecular ecology approaches have proven to be extremely useful to identify and assess factors associated with viral emerging diseases, particularly in economically and socially important tropical crops such as maize (maize streak disease) and cassava (cassava mosaic disease). Molecular ecology approaches were applied in Reunion Island to analyze the epidemic of tomato yellow leaf curl disease, which has been affecting the island since the end of the 1990s. Before the invasive biotype B (currently known as Middle East-Asia Minor 1 cryptic species) of Bemisia tabaci spread across the world, Reunion Island (South West Indian Ocean) only hosted an indigenous biotype of B. tabaci, Ms (currently known as Indian Ocean cryptic species). Wild hybrids between invasive and indigenous species were subsequently characterized over multiple generations. Endosymbiont analysis of the hybrid population indicated that matings were non-random. Similarly, while no indigenous begomoviruses have ever been reported on Reunion Island, the two main strains of one of the most damaging and emerging plant viruses in the world, the Mild and Israel strains of the Tomato yellow leaf curl virus (TYLCV-Mld and TYLCV-IL), were introduced in 1997 and 2004 respectively. While these introductions extensively modified the agricultural landscape of Reunion Island, they also provided an invaluable opportunity to study the ecological and genetic mechanisms involved in biological invasion and competition. PMID:23235470

  19. Economic aspects of invasive forest pest management

    Treesearch

    Thomas P. Holmes; Kathleen P. Bell; Brenna Byrne; Jeremy S. Wilson

    2008-01-01

    The past decade has evidenced growing concern with the causes and consequences of biological invasions, many of which are economic in nature(Perrings et al. 2002). The risk of a new pest introduction is positively correlated with world trade flows (Costello and McAusland 2003, Margolis et al. 2005) and new invasions threaten the productivity and biological diversity of...

  20. Classical biological control of an invasive forest pest: a world perspective of the management of Sirex noctilio using the parasitoid Ibalia leucospoides (Hymenoptera: Ibaliidae).

    PubMed

    Fischbein, D; Corley, J C

    2015-02-01

    Classical biological control is a key method for managing populations of pests in long-lived crops such as plantation forestry. The execution of biological control programmes in general, as the evaluation of potential natural enemies remains, to a large extent, an empirical endeavour. Thus, characterizing specific cases to determine patterns that may lead to more accurate predictions of success is an important goal of the much applied ecological research. We review the history of introduction, ecology and behaviour of the parasitoid Ibalia leucospoides. The species is a natural enemy of Sirex noctilio, one of the most important pests of pine afforestation worldwide. We use an invasion ecology perspective given the analogy between the main stages involved in classical biological control and the biological invasion processes. We conclude that success in the establishment, a common reason of failure in biocontrol, is not a limiting factor of success by I. leucospoides. A mismatch between the spread capacity of the parasitoid and that of its host could nevertheless affect control at a regional scale. In addition, we suggest that given its known life history traits, this natural enemy may be a better regulator than suppressor of the host population. Moreover, spatial and temporal refuges of the host population that may favour the local persistence of the interaction probably reduce the degree to which S. noctilio population is suppressed by the parasitoid. We emphasize the fact that some of the biological attributes that promote establishment may negatively affect suppression levels achieved. Studies on established non-native pest-parasitoid interactions may contribute to defining selection criteria for classical biological control which may prove especially useful in integrated pest management IPM programmes of invasive forest insects.

  1. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder

    PubMed Central

    Carrick, Hunter J.; Cavaletto, Joann; Chiang, Edna; Johengen, Thomas H.; Vanderploeg, Henry A.

    2017-01-01

    ABSTRACT One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptible to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions. IMPORTANCE Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a

  2. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder.

    PubMed

    Denef, Vincent J; Carrick, Hunter J; Cavaletto, Joann; Chiang, Edna; Johengen, Thomas H; Vanderploeg, Henry A

    2017-01-01

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptible to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions. IMPORTANCE Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  3. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denef, Vincent J.; Carrick, Hunter J.; Cavaletto, Joann

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptiblemore » to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions.Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  4. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder

    DOE PAGES

    Denef, Vincent J.; Carrick, Hunter J.; Cavaletto, Joann; ...

    2017-05-31

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptiblemore » to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions.Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  5. Can species distribution models really predict the expansion of invasive species?

    PubMed

    Barbet-Massin, Morgane; Rome, Quentin; Villemant, Claire; Courchamp, Franck

    2018-01-01

    Predictive studies are of paramount importance for biological invasions, one of the biggest threats for biodiversity. To help and better prioritize management strategies, species distribution models (SDMs) are often used to predict the potential invasive range of introduced species. Yet, SDMs have been regularly criticized, due to several strong limitations, such as violating the equilibrium assumption during the invasion process. Unfortunately, validation studies-with independent data-are too scarce to assess the predictive accuracy of SDMs in invasion biology. Yet, biological invasions allow to test SDMs usefulness, by retrospectively assessing whether they would have accurately predicted the latest ranges of invasion. Here, we assess the predictive accuracy of SDMs in predicting the expansion of invasive species. We used temporal occurrence data for the Asian hornet Vespa velutina nigrithorax, a species native to China that is invading Europe with a very fast rate. Specifically, we compared occurrence data from the last stage of invasion (independent validation points) to the climate suitability distribution predicted from models calibrated with data from the early stage of invasion. Despite the invasive species not being at equilibrium yet, the predicted climate suitability of validation points was high. SDMs can thus adequately predict the spread of V. v. nigrithorax, which appears to be-at least partially-climatically driven. In the case of V. v. nigrithorax, SDMs predictive accuracy was slightly but significantly better when models were calibrated with invasive data only, excluding native data. Although more validation studies for other invasion cases are needed to generalize our results, our findings are an important step towards validating the use of SDMs in invasion biology.

  6. Can species distribution models really predict the expansion of invasive species?

    PubMed Central

    Rome, Quentin; Villemant, Claire; Courchamp, Franck

    2018-01-01

    Predictive studies are of paramount importance for biological invasions, one of the biggest threats for biodiversity. To help and better prioritize management strategies, species distribution models (SDMs) are often used to predict the potential invasive range of introduced species. Yet, SDMs have been regularly criticized, due to several strong limitations, such as violating the equilibrium assumption during the invasion process. Unfortunately, validation studies–with independent data–are too scarce to assess the predictive accuracy of SDMs in invasion biology. Yet, biological invasions allow to test SDMs usefulness, by retrospectively assessing whether they would have accurately predicted the latest ranges of invasion. Here, we assess the predictive accuracy of SDMs in predicting the expansion of invasive species. We used temporal occurrence data for the Asian hornet Vespa velutina nigrithorax, a species native to China that is invading Europe with a very fast rate. Specifically, we compared occurrence data from the last stage of invasion (independent validation points) to the climate suitability distribution predicted from models calibrated with data from the early stage of invasion. Despite the invasive species not being at equilibrium yet, the predicted climate suitability of validation points was high. SDMs can thus adequately predict the spread of V. v. nigrithorax, which appears to be—at least partially–climatically driven. In the case of V. v. nigrithorax, SDMs predictive accuracy was slightly but significantly better when models were calibrated with invasive data only, excluding native data. Although more validation studies for other invasion cases are needed to generalize our results, our findings are an important step towards validating the use of SDMs in invasion biology. PMID:29509789

  7. Risk analysis and bioeconomics of invasive species to inform policy and management

    Treesearch

    David M. Lodge; Paul W. Simonin; Stanley W. Burgiel; Reuben P. Keller; Jonathan M. Bossenbroek; Christopher L. Jerde; Andrew M. Kramer; Edward S. Rutherford; Matthew A. Barnes; Marion E. Wittmann; W. Lindsay Chadderton; Jenny L. Apriesnig; Dmitry Beletsky; Roger M. Cooke; John M. Drake; Scott P. Egan; David C. Finnoff; Crysta A. Gantz; Erin K. Grey; Michael H. Hoff; Jennifer G. Howeth; Richard A. Jensen; Eric R. Larson; Nicholas E. Mandrak; Doran M. Mason; Felix A. Martinez; Tammy J. Newcomb; John D. Rothlisberger; Andrew J. Tucker; Travis W. Warziniack; Hongyan Zhang

    2016-01-01

    Risk analysis of species invasions links biology and economics, is increasingly mandated by international and national policies, and enables improved management of invasive species. Biological invasions proceed through a series of transition probabilities (i.e., introduction, establishment, spread, and impact), and each of these presents opportunities for...

  8. Factors promoting marine invasions: A chemoecological approach

    PubMed Central

    Mollo, Ernesto; Gavagnin, Margherita; Carbone, Marianna; Castelluccio, Francesco; Pozone, Ferdinando; Roussis, Vassilios; Templado, José; Ghiselin, Michael T.; Cimino, Guido

    2008-01-01

    The Mediterranean Sea is losing its biological distinctiveness, and the same phenomenon is occurring in other seas. It gives urgency to a better understanding of the factors that affect marine biological invasions. A chemoecological approach is proposed here to define biotic conditions that promote biological invasions in terms of enemy escape and resource opportunities. Research has focused on the secondary metabolite composition of three exotic sea slugs found in Greece that have most probably entered the Mediterranean basin by Lessepsian migration, an exchange that contributes significantly to Mediterranean biodiversity. We have found toxic compounds with significant activity as feeding deterrents both in the cephalaspidean Haminoea cyanomarginata and in the nudibranch Melibe viridis. These findings led us to propose aposematism in the former and dietary autonomy in producing defensive metabolites in the latter case, as predisposing factors to the migration. In the third mollusk investigated, the anaspidean Syphonota geographica, the topic of marine invasions has been approached through a study of its feeding biology. The identification of the same compounds from both the viscera of each individual, separately analyzed, and their food, the seagrass Halophila stipulacea, implies a dietary dependency. The survival of S. geographica in the Mediterranean seems to be related to the presence of H. stipulacea. The initial invasion of this exotic pest would seem to have paved the way for the subsequent invasion of a trophic specialist that takes advantage of niche opportunities. PMID:18337492

  9. What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world's worst weeds.

    PubMed

    Bajwa, Ali Ahsan; Chauhan, Bhagirath Singh; Farooq, Muhammad; Shabbir, Asad; Adkins, Steve William

    2016-07-01

    This review provides an insight into alien plant invasion taking into account the invasion mechanism of parthenium weed ( Parthenium hysterophorus L.). A multi-lateral understanding of the invasion biology of this weed has pragmatic implications for weed ecology and management. Biological invasions are one of the major drivers of restructuring and malfunctioning of ecosystems. Invasive plant species not only change the dynamics of species composition and biodiversity but also hinder the system productivity and efficiency in invaded regions. Parthenium weed, a well-known noxious invasive species, has invaded diverse climatic and biogeographic regions in more than 40 countries across five continents. Efforts are under way to minimize the parthenium weed-induced environmental, agricultural, social, and economic impacts. However, insufficient information regarding its invasion mechanism and interference with ecosystem stability is available. It is hard to devise effective management strategies without understanding the invasion process. Here, we reviewed the mechanism of parthenium weed invasion. Our main conclusions are: (1) morphological advantages, unique reproductive biology, competitive ability, escape from natural enemies in non-native regions, and a C3/C4 photosynthesis are all likely to be involved in parthenium weed invasiveness. (2) Tolerance to abiotic stresses and ability to grow in wide range of edaphic conditions are thought to be additional invasion tools on a physiological front. (3) An allelopathic potential of parthenium weed against crop, weed and pasture species, with multiple modes of allelochemical expression, may also be responsible for its invasion success. Moreover, the release of novel allelochemicals in non-native environments might have a pivotal role in parthenium weed invasion. (4) Genetic diversity found among different populations and biotypes of parthenium weed, based on geographic, edaphic, climatic, and ecological ranges, might also

  10. Tortricid moths (Lepidopotera: Tortricidae) reared from the invasive weed Parkinsonia aculeta (Fabaceae), with comments on their host specificity, biology, and geographic distribution

    USDA-ARS?s Scientific Manuscript database

    During efforts to identify native herbivores of Parkinsonia aculeata L. (Fabaceae: Caesalpiniodeae) as potential biological control agents against this invasive weed in Australia, seven species of Tortricidae were reared in Mexico, Guatemala, Nicaragua, and Venezuela: Amorbia concavana (Zeller), Pla...

  11. Rate of biological invasions is lower in coastal marine protected areas.

    PubMed

    Ardura, A; Juanes, F; Planes, S; Garcia-Vazquez, E

    2016-09-09

    Marine biological invasions threaten biodiversity worldwide. Here we explore how Marine Protected areas, by reducing human use of the coast, confer resilience against the introduction of non-indigenous species (NIS), using two very different Pacific islands as case studies for developing and testing mathematical models. We quantified NIS vectors and promoters on Vancouver (Canada) and Moorea (French Polynesia) islands, sampled and barcoded NIS, and tested models at different spatial scales with different types of interaction among vectors and between marine protection and NIS frequency. In our results NIS were negatively correlated with the dimension of the protected areas and the intensity of the protection. Small to medium geographical scale protection seemed to be efficient against NIS introductions. The likely benefit of MPAs was by exclusion of aquaculture, principally in Canada. These results emphasize the importance of marine protected areas for biodiversity conservation, and suggest that small or medium protected zones would confer efficient protection against NIS introduction.

  12. Invasive species and climate change (Chapter 7)

    Treesearch

    Justin B. Runyon; Jack L. Butler; Megan M. Friggens; Susan E. Meyer; Sharlene E. Sing

    2012-01-01

    Invasive species present one of the greatest threats to the health and sustainability of ecosystems worldwide. Invasive plants, animals, and diseases are known to have significant negative effects on biological diversity and the ecological structure and functions of native ecosystems. Moreover, the economic cost imposed by invasive species is enormous—the damage...

  13. Biological invasions, ecological resilience and adaptive governance

    EPA Science Inventory

    In a world of increasing interconnections in global trade as well as rapid change in climate and land cover, the accelerating introduction and spread of invasive species is a critical concern due to associated negative social and ecological impacts, both real and perceived. Much...

  14. Modelling biological invasions: species traits, species interactions, and habitat heterogeneity.

    PubMed

    Cannas, Sergio A; Marco, Diana E; Páez, Sergio A

    2003-05-01

    In this paper we explore the integration of different factors to understand, predict and control ecological invasions, through a general cellular automaton model especially developed. The model includes life history traits of several species in a modular structure interacting multiple cellular automata. We performed simulations using field values corresponding to the exotic Gleditsia triacanthos and native co-dominant trees in a montane area. Presence of G. triacanthos juvenile bank was a determinant condition for invasion success. Main parameters influencing invasion velocity were mean seed dispersal distance and minimum reproductive age. Seed production had a small influence on the invasion velocity. Velocities predicted by the model agreed well with estimations from field data. Values of population density predicted matched field values closely. The modular structure of the model, the explicit interaction between the invader and the native species, and the simplicity of parameters and transition rules are novel features of the model.

  15. Biological studies and field observations in Europe of Lasioptera donacis potential biological control agent of giant reed, Arundo donax, an invasive weed of the Rio Grande Basin of Texas and Mexico

    USDA-ARS?s Scientific Manuscript database

    Giant reed, Arundo donax L. (Poaceae; Arundinoideae), is a clonal reed grass that is native from the western Mediterranean to India and invasive in North America and other arid temperate/subtropical parts of the world, including the Rio Grande Basin of Texas and Mexico. A biological control of gian...

  16. The effects of insect biological control on a Tamarix invaded ecosystem: ecosystem water and carbon fluxes and plant-level responses

    USDA-ARS?s Scientific Manuscript database

    Background / Questions / Methods: Tamarix spp. (saltcedar) has invaded many river systems in the western United States with detrimental impacts to flora and fauna. Traditional methods of invasive plant control have been ineffective or costly. Therefore, insect biological control of Tamarix with Di...

  17. E-commerce trade in invasive plants.

    PubMed

    Humair, Franziska; Humair, Luc; Kuhn, Fabian; Kueffer, Christoph

    2015-12-01

    Biological invasions are a major concern in conservation, especially because global transport of species is still increasing rapidly. Conservationists hope to anticipate and thus prevent future invasions by identifying and regulating potentially invasive species through species risk assessments and international trade regulations. Among many introduction pathways of non-native species, horticulture is a particularly important driver of plant invasions. In recent decades, the horticultural industry expanded globally and changed structurally through the emergence of new distribution channels, including internet trade (e-commerce). Using an automated search algorithm, we surveyed, on a daily basis, e-commerce trade on 10 major online auction sites (including eBay) of approximately three-fifths of the world's spermatophyte flora. Many recognized invasive plant species (>500 species) (i.e., species associated with ecological or socio-economic problems) were traded daily worldwide on the internet. A markedly higher proportion of invasive than non-invasive species were available online. Typically, for a particular plant family, 30-80% of recognized invasive species were detected on an auction site, but only a few percentages of all species in the plant family were detected on a site. Families that were more traded had a higher proportion of invasive species than families that were less traded. For woody species, there was a significant positive relationship between the number of regions where a species was sold and the number of regions where it was invasive. Our results indicate that biosecurity is not effectively regulating online plant trade. In the future, automated monitoring of e-commerce may help prevent the spread of invasive species, provide information on emerging trade connectivity across national borders, and be used in horizon scanning exercises for early detection of new species and their geographic source areas in international trade. © 2015 Society for

  18. Diversity and distribution of genetic variation in gammarids: Comparing patterns between invasive and non-invasive species.

    PubMed

    Baltazar-Soares, Miguel; Paiva, Filipa; Chen, Yiyong; Zhan, Aibin; Briski, Elizabeta

    2017-10-01

    Biological invasions are worldwide phenomena that have reached alarming levels among aquatic species. There are key challenges to understand the factors behind invasion propensity of non-native populations in invasion biology. Interestingly, interpretations cannot be expanded to higher taxonomic levels due to the fact that in the same genus, there are species that are notorious invaders and those that never spread outside their native range. Such variation in invasion propensity offers the possibility to explore, at fine-scale taxonomic level, the existence of specific characteristics that might predict the variability in invasion success. In this work, we explored this possibility from a molecular perspective. The objective was to provide a better understanding of the genetic diversity distribution in the native range of species that exhibit contrasting invasive propensities. For this purpose, we used a total of 784 sequences of the cytochrome c oxidase subunit I of mitochondrial DNA (mtDNA-COI) collected from seven Gammaroidea, a superfamily of Amphipoda that includes species that are both successful invaders ( Gammarus tigrinus , Pontogammarus maeoticus, and Obesogammarus crassus ) and strictly restricted to their native regions ( Gammarus locusta , Gammarus salinus , Gammarus zaddachi, and Gammarus oceanicus ). Despite that genetic diversity did not differ between invasive and non-invasive species, we observed that populations of non-invasive species showed a higher degree of genetic differentiation. Furthermore, we found that both geographic and evolutionary distances might explain genetic differentiation in both non-native and native ranges. This suggests that the lack of population genetic structure may facilitate the distribution of mutations that despite arising in the native range may be beneficial in invasive ranges. The fact that evolutionary distances explained genetic differentiation more often than geographic distances points toward that deep lineage

  19. Is salinity an obstacle for biological invasions?

    PubMed

    Paiva, Filipa; Barco, Andrea; Chen, Yiyong; Mirzajani, Alireza; Chan, Farrah T; Lauringson, Velda; Baltazar-Soares, Miguel; Zhan, Aibin; Bailey, Sarah A; Javidpour, Jamileh; Briski, Elizabeta

    2018-06-01

    Invasions of freshwater habitats by marine and brackish species have become more frequent in recent years with many of those species originating from the Ponto-Caspian region. Populations of Ponto-Caspian species have successfully established in the North and Baltic Seas and their adjoining rivers, as well as in the Great Lakes-St. Lawrence River region. To determine if Ponto-Caspian taxa more readily acclimatize to and colonize diverse salinity habitats than taxa from other regions, we conducted laboratory experiments on 22 populations of eight gammarid species native to the Ponto-Caspian, Northern European and Great Lakes-St. Lawrence River regions. In addition, we conducted a literature search to survey salinity ranges of these species worldwide. Finally, to explore evolutionary relationships among examined species and their populations, we sequenced the mitochondrial cytochrome c oxidase subunit I gene (COI) from individuals used for our experiments. Our study revealed that all tested populations tolerate wide ranges of salinity, however, different patterns arose among species from different regions. Ponto-Caspian taxa showed lower mortality in fresh water, while Northern European taxa showed lower mortality in fully marine conditions. Genetic analyses showed evolutionary divergence among species from different regions. Due to the geological history of the two regions, as well as high tolerance of Ponto-Caspian species to fresh water, whereas Northern European species are more tolerant of fully marine conditions, we suggest that species originating from the Ponto-Caspian and Northern European regions may be adapted to freshwater and marine environments, respectively. Consequently, the perception that Ponto-Caspian species are more successful colonizers might be biased by the fact that areas with highest introduction frequency of NIS (i.e., shipping ports) are environmentally variable habitats which often include freshwater conditions that cannot be tolerated by

  20. Interrelationships among invasive and non-invasive indicators of biological maturation in adolescent male soccer players.

    PubMed

    Malina, Robert M; Coelho E Silva, Manuel J; Figueiredo, António J; Carling, Christopher; Beunen, Gaston P

    2012-01-01

    The relationships among indicators of biological maturation were evaluated and concordance between classifications of maturity status in two age groups of youth soccer players examined (11-12 years, n = 87; 13-14 years, n = 93). Data included chronological age (CA), skeletal age (SA, Fels method), stage of pubic hair, predicted age at peak height velocity, and percent of predicted adult height. Players were classified as on time, late or early in maturation using the SA-CA difference, predicted age at peak height velocity, and percent of predicted mature height. Factor analyses indicated two factors in players aged 11-12 years (maturity status: percent of predicted mature height, stage of pubic hair, 59% of variance; maturity timing: SA/CA ratio, predicted age at peak height velocity, 26% of variance), and one factor in players aged 13-14 years (68% of variance). Kappa coefficients were low (0.02-0.23) and indicated poor agreement between maturity classifications. Spearman rank-order correlations between categories were low to moderate (0.16-0.50). Although the indicators were related, concordance of maturity classifications between skeletal age and predicted age at peak height velocity and percent predicted mature height was poor. Talent development programmes call for the classification of youth as early, average, and late maturing for the purpose of designing training and competition programmes. Non-invasive indicators of maturity status have limitations for this purpose.

  1. Establishing Research and Management Priorities for Invasive Water Primroses (Ludwigia spp.)

    DTIC Science & Technology

    2016-02-01

    among the most aggressive aquatic invasive plant invaders in the world. These aquatic Ludwigia species can impart severe ecological , economic, and...global trade and projected climate change. This technical report presents an overview of the biology and ecology of these invasive plant species, along...primrose species, like other invasive plants , must be grounded in basic knowledge of the biology and ecology of the species and their responses to

  2. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    USGS Publications Warehouse

    Simpson, Annie; Jarnevich, Catherine S.; Madsen, John; Westbrooks, Randy G.; Fournier, Christine; Mehrhoff, Les; Browne, Michael; Graham, Jim; Sellers, Elizabeth A.

    2009-01-01

    Accurate analysis of present distributions and effective modeling of future distributions of invasive alien species (IAS) are both highly dependent on the availability and accessibility of occurrence data and natural history information about the species. Invasive alien species monitoring and detection networks (such as the Invasive Plant Atlas of New England and the Invasive Plant Atlas of the MidSouth) generate occurrence data at local and regional levels within the United States, which are shared through the US National Institute of Invasive Species Science. The Inter-American Biodiversity Information Network's Invasives Information Network (I3N), facilitates cooperation on sharing invasive species occurrence data throughout the Western Hemisphere. The I3N and other national and regional networks expose their data globally via the Global Invasive Species Information Network (GISIN). International and interdisciplinary cooperation on data sharing strengthens cooperation on strategies and responses to invasions. However, limitations to effective collaboration among invasive species networks leading to successful early detection and rapid response to invasive species include: lack of interoperability; data accessibility; funding; and technical expertise. This paper proposes various solutions to these obstacles at different geographic levels and briefly describes success stories from the invasive species information networks mentioned above. Using biological informatics to facilitate global information sharing is especially critical in invasive species science, as research has shown that one of the best indicators of the invasiveness of a species is whether it has been invasive elsewhere. Data must also be shared across disciplines because natural history information (e.g. diet, predators, habitat requirements, etc.) about a species in its native range is vital for effective prevention, detection, and rapid response to an invasion. Finally, it has been our

  3. Book review: Biology and management of invasive quagga and zebra mussels in the western United States

    USGS Publications Warehouse

    Benson, Amy J.

    2017-01-01

    Water is a precious and limited commodity in the western United States and its conveyance is extremely important. Therefore, it is critical to do as much as possible to prevent the spread of two species of dreissenid mussels, both non-native and highly invasive aquatic species already well-established in the eastern half of the United States. This book addresses the occurrences of the two dreissenid mussels in the West, the quagga mussel and the zebra mussel, that are both known to negatively impact water delivery systems and natural ecosystems. It is edited by two researchers whom have extensive experience working with the mussels in the West and is composed of 34 chapters, or articles, written by a variety of experts.Book information: Biology and Management of Invasive Quagga and Zebra Mussels in the Western United States. Edited by Wai Hing Wong and Shawn L. Gerstenberger. Boca Raton (Florida): CRC Press (Taylor & Francis Group). $149.95. xx + 545 p.; ill.; index. ISBN: 978-1-4665-9561-3. [Compact Disc included.] 2015.

  4. Density dependence in demography and dispersal generates fluctuating invasion speeds

    PubMed Central

    Li, Bingtuan; Miller, Tom E. X.

    2017-01-01

    Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities—i.e., an Allee effect—combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting. PMID:28442569

  5. Biological traits explain the distribution and colonisation ability of the invasive shore crab Hemigrapsus takanoi

    NASA Astrophysics Data System (ADS)

    Gothland, M.; Dauvin, J. C.; Denis, L.; Dufossé, F.; Jobert, S.; Ovaert, J.; Pezy, J. P.; Tous Rius, A.; Spilmont, N.

    2014-04-01

    Comprehending marine invasions requires a better knowledge of the biological traits of invasive species, and the future spread of invasive species may be predicted through comprehensive overviews of their distribution. This study thus presents the current distribution of a non-indigenous species, the Asian shore crab Hemigrapsus takanoi, as well as the species population characteristics (size distribution and cohorts), based on a five-year survey (2008-2012) along the French coast of the English Channel. Two large populations were found near harbours: one on the Opal Coast (where density reached 61 ± 22 ind.m-2, mean ± s.d., in Dunkirk harbour) and one on the Calvados coast (density up to 26 ± 6 ind.m-2, mean ± s.d, in Honfleur harbour). H. takanoi exhibited a short life cycle, a rapid growth, an early sexual maturity and a high adult mortality. These features, combined with previously described high fecundity and high dispersal ability, endow this species with an 'r-selected strategy'. This strategy, which usually characterises species with a high colonisation ability, would explain the success of H. takanoi for colonising the French coast of the Channel. However, the species was found only in harbours and their vicinity; H. takanoi thus exhibited a discontinuous distribution along the 700 km of coastline. These results are discussed regarding sediment preference and potential introduction vectors. Hemigrapsus takanoi is now considered as established on the French coast and further studies are needed to evaluate the consequences of its introduction on the structure and functioning of the impacted shores.

  6. Biological invasions as disruptors of plant reproductive mutualisms.

    PubMed

    Traveset, Anna; Richardson, David M

    2006-04-01

    Invasive alien species affect the composition and functioning of invaded ecosystems in many ways, altering ecological interactions that have arisen over evolutionary timescales. Specifically, disruptions to pollination and seed-dispersal mutualistic interactions are often documented, although the profound implications of such impacts are not widely recognized. Such disruptions can occur via the introduction of alien pollinators, seed dispersers, herbivores, predators or plants, and we define here the many potential outcomes of each situation. The frequency and circumstances under which each category of mechanisms operates are also poorly known. Most evidence is from population-level studies, and the implications for global biodiversity are difficult to predict. Further insights are needed on the degree of resilience in interaction networks, but the preliminary picture suggests that invasive species frequently cause profound disruptions to plant reproductive mutualisms.

  7. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block

    PubMed Central

    Hu, Yu-Feng; Dawkins, James Frederick; Cho, Hee Cheol; Marbán, Eduardo; Cingolani, Eugenio

    2016-01-01

    Somatic reprogramming by reexpression of the embryonic transcription factor T-box 18 (TBX18) converts cardiomyocytes into pacemaker cells. We hypothesized that this could be a viable therapeutic avenue for pacemaker-dependent patients afflicted with device-related complications, and therefore tested whether adenoviral TBX18 gene transfer could create biological pacemaker activity in vivo in a large-animal model of complete heart block. Biological pacemaker activity, originating from the intramyocardial injection site, was evident in TBX18-transduced animals starting at day 2 and persisted for the duration of the study (14 days) with minimal backup electronic pacemaker use. Relative to controls transduced with a reporter gene, TBX18-transduced animals exhibited enhanced autonomic responses and physiologically superior chronotropic support of physical activity. Induced sinoatrial node cells could be identified by their distinctive morphology at the site of injection in TBX18-transduced animals, but not in controls. No local or systemic safety concerns arose. Thus, minimally invasive TBX18 gene transfer creates physiologically relevant pacemaker activity in complete heart block, providing evidence for therapeutic somatic reprogramming in a clinically relevant disease model. PMID:25031269

  8. Region-specific patterns and drivers of macroscale forest plant invasions

    Treesearch

    Basil V. Iannone; Christopher M. Oswalt; Andrew M. Liebhold; Qinfeng Guo; Kevin M. Potter; Gabriela C. Nunez-Mir; Sonja N. Oswalt; Bryan C. Pijanowski; Songlin Fei; Bethany Bradley

    2015-01-01

    Aim Stronger inferences about biological invasions may be obtained when accounting for multiple invasion measures and the spatial heterogeneity occurring across large geographic areas. We pursued this enquiry by utilizing a multimeasure, multiregional framework to investigate forest plant invasions at a subcontinental scale. ...

  9. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling.

    PubMed

    Mainali, Kumar P; Warren, Dan L; Dhileepan, Kunjithapatham; McConnachie, Andrew; Strathie, Lorraine; Hassan, Gul; Karki, Debendra; Shrestha, Bharat B; Parmesan, Camille

    2015-12-01

    Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships for Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (absence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved using a global dataset for model training, rather than restricting data input to the species' native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post hoc test conducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our 'best' model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for parthenium

  10. Invasive plants and their ecological strategies: Prediction and explanation of woody plant invasion in New England

    USGS Publications Warehouse

    Herron, P.M.; Martine, C.T.; Latimer, A.M.; Leicht-Young, S. A.

    2007-01-01

    Effective management of introduced species requires the early identification of species that pose a significant threat of becoming invasive. To better understand the invasive ecology of species in New England, USA, we compiled a character data set with which to compare non-native species that are known invaders to non-native species that are not currently known to be invasive. In contrast to previous biological trait-based models, we employed a Bayesian hierarchical analysis to identify sets of plant traits associated with invasiveness for each of three growth forms (vines, shrubs, and trees). The resulting models identify a suite of 'invasive traits' highlighting the ecology associated with invasiveness for each of three growth forms. The most effective predictors of invasiveness that emerged from our model were 'invasive elsewhere', 'fast growth rate', 'native latitudinal range', and 'growth form'. The contrast among growth forms was pronounced. For example, 'wind dispersal' was positively correlated with invasiveness in trees, but negatively correlated in shrubs and vines. The predictive model was able to correctly classify invasive plants 67% of the time (22/33), and non-invasive plants 95% of the time (204/215). A number of potential future invasive species in New England that deserve management consideration were identified. ?? 2007 The Authors.

  11. Geographic distribution and regional impacts of Oxyops vitiosa (Coleoptera: Curculionidae) and Boreioglycaspis melaleucae (Hemiptera: Psyllidae), biological control agents of the invasive tree Melaleuca quinquenervia

    USDA-ARS?s Scientific Manuscript database

    The invasive tree Melaleuca quinquenervia (Cav.) Blake is widely distributed throughout peninsular Florida, USA and poses a significant threat to species diversity in the wetland systems of the Everglades. Mitigation of this threat includes the areawide release campaign of the biological control age...

  12. The more the better? The role of polyploidy in facilitating plant invasions

    PubMed Central

    te Beest, Mariska; Le Roux, Johannes J.; Richardson, David M.; Brysting, Anne K.; Suda, Jan; Kubešová, Magdalena; Pyšek, Petr

    2012-01-01

    Background Biological invasions are a major ecological and socio-economic problem in many parts of the world. Despite an explosion of research in recent decades, much remains to be understood about why some species become invasive whereas others do not. Recently, polyploidy (whole genome duplication) has been proposed as an important determinant of invasiveness in plants. Genome duplication has played a major role in plant evolution and can drastically alter a plant's genetic make-up, morphology, physiology and ecology within only one or a few generations. This may allow some polyploids to succeed in strongly fluctuating environments and/or effectively colonize new habitats and, thus, increase their potential to be invasive. Scope We synthesize current knowledge on the importance of polyploidy for the invasion (i.e. spread) of introduced plants. We first aim to elucidate general mechanisms that are involved in the success of polyploid plants and translate this to that of plant invaders. Secondly, we provide an overview of ploidal levels in selected invasive alien plants and explain how ploidy might have contributed to their success. Conclusions Polyploidy can be an important factor in species invasion success through a combination of (1) ‘pre-adaptation’, whereby polyploid lineages are predisposed to conditions in the new range and, therefore, have higher survival rates and fitness in the earliest establishment phase; and (2) the possibility for subsequent adaptation due to a larger genetic diversity that may assist the ‘evolution of invasiveness’. Alternatively, polyploidization may play an important role by (3) restoring sexual reproduction following hybridization or, conversely, (4) asexual reproduction in the absence of suitable mates. We, therefore, encourage invasion biologists to incorporate assessments of ploidy in their studies of invasive alien species. PMID:22040744

  13. Review on Invasive Tree of Heaven (Ailanthus altissima (Mill.) Swingle) Conflicting Values: Assessment of Its Ecosystem Services and Potential Biological Threat.

    PubMed

    Sladonja, Barbara; Sušek, Marta; Guillermic, Julia

    2015-10-01

    Globally, invasions by alien plants are rapidly increasing in extent and severity, leading to large-scale ecosystem degradation. One of the most widespread invasive alien plant species in Europe and North America, Tree of Heaven (Ailanthus altissima (Mill.) Swingle) was introduced intentionally for use as an ornamental plant in the 18th century. Since then, it has spread and is now frequently found in a number of countries. Today, Tree of Heaven is considered one of the worst invasive plant species in Europe and is also listed as invasive in North America and many other countries. Millennium Ecosystem Assessment is one of many systems trying to list and categorize biological services to humans and to provide a tool for identifying services delivered by natural ecosystems. Invasive species have generally caused degradation of the services, have a major impact on the environment, and are threatening biodiversity and reducing overall species abundance and diversity. On the other hand, some invasive species can provide services useful to human well-being. In the present review A. altissima impacts on ecosystems are identified and positive influences on some ecosystem services are weighed against the negative effects on the environment and human health. The aim of the present review is to resume the general knowledge of A. altissima, group available references on distribution and ecology according to countries, compare ecosystem services provided or enhanced by A. altissima presence and the negative effects it causes, identify gaps in current knowledge, and give recommendations for future lines of research.

  14. Review on Invasive Tree of Heaven ( Ailanthus altissima (Mill.) Swingle) Conflicting Values: Assessment of Its Ecosystem Services and Potential Biological Threat

    NASA Astrophysics Data System (ADS)

    Sladonja, Barbara; Sušek, Marta; Guillermic, Julia

    2015-10-01

    Globally, invasions by alien plants are rapidly increasing in extent and severity, leading to large-scale ecosystem degradation. One of the most widespread invasive alien plant species in Europe and North America, Tree of Heaven ( Ailanthus altissima (Mill.) Swingle) was introduced intentionally for use as an ornamental plant in the 18th century. Since then, it has spread and is now frequently found in a number of countries. Today, Tree of Heaven is considered one of the worst invasive plant species in Europe and is also listed as invasive in North America and many other countries. Millennium Ecosystem Assessment is one of many systems trying to list and categorize biological services to humans and to provide a tool for identifying services delivered by natural ecosystems. Invasive species have generally caused degradation of the services, have a major impact on the environment, and are threatening biodiversity and reducing overall species abundance and diversity. On the other hand, some invasive species can provide services useful to human well-being. In the present review A. altissima impacts on ecosystems are identified and positive influences on some ecosystem services are weighed against the negative effects on the environment and human health. The aim of the present review is to resume the general knowledge of A. altissima, group available references on distribution and ecology according to countries, compare ecosystem services provided or enhanced by A. altissima presence and the negative effects it causes, identify gaps in current knowledge, and give recommendations for future lines of research.

  15. Applications of Remote Sensing to Alien Invasive Plant Studies

    PubMed Central

    Huang, Cho-ying; Asner, Gregory P.

    2009-01-01

    Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions. PMID:22408558

  16. Diversity-invasibility across an experimental disturbance gradient in Appalachian forests

    Treesearch

    R. Travis Belote; Robert H. Jones; Sharon M. Hood; Bryan W. Wender

    2008-01-01

    Research examining the relationship between community diversity and invasions by nonnative species has raised new questions about the theory and management of biological invasions. Ecological theory predicts, and small-scale experiments confirm, lower levels of nonnative species invasion into species-rich compared to species-poor communities, but observational studies...

  17. Invasion Biology of Aedes japonicus japonicus (Diptera: Culicidae)

    PubMed Central

    Fonseca, Dina M.

    2014-01-01

    Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) has recently expanded beyond its native range of Japan and Korea into large parts of North America and Central Europe. Population genetic studies begun immediately after the species was detected in North America revealed genetically distinct introductions that subsequently merged, likely contributing to the successful expansion. Interactions, particularly in the larval stage, with other known disease vectors give this invasive subspecies the potential to influence local disease dynamics. Its successful invasion likely does not involve superior direct competitive abilities, but it is associated with the use of diverse larval habitats and a cold tolerance that allows an expanded seasonal activity range in temperate climates. We predict a continued but slower expansion of Ae. j. japonicus in North America and a continued rapid expansion into other areas as this mosquito will eventually be considered a permanent resident of much of North America, Europe, Asia, and parts of Hawaii. PMID:24397520

  18. Can the invasive earthworm, Amynthas agrestis, be controlled with prescribed fire?

    Treesearch

    Hiroshi Ikeda; Mac A. Callaham Jr.; Joseph J. O' Brien; Benjamin S. Hornsby; Evelyn S. Wenk

    2015-01-01

    Biological invasions are one of the most significant global-scale problems caused by human activities. Earthworms function as ecosystem engineers in soil ecosystems because their feeding and burrowing activities fundamentally change the physical and biological characteristics of the soils they inhabit. As a result of this “engineering,” earthworm invasions can have...

  19. Climate warming affects biological invasions by shifting interactions of plants and herbivores.

    PubMed

    Lu, Xinmin; Siemann, Evan; Shao, Xu; Wei, Hui; Ding, Jianqing

    2013-08-01

    Plants and herbivorous insects can each be dramatically affected by temperature. Climate warming may impact plant invasion success directly but also indirectly through changes in their natural enemies. To date, however, there are no tests of how climate warming shifts the interactions among invasive plants and their natural enemies to affect invasion success. Field surveys covering the full latitudinal range of invasive Alternanthera philoxeroides in China showed that a beetle introduced for biocontrol was rare or absent at higher latitudes. In contrast, plant cover and mass increased with latitude. In a 2-year field experiment near the northern limit of beetle distribution, we found the beetle sustained populations across years under elevated temperature, dramatically decreasing A. philoxeroides growth, but it failed to overwinter in ambient temperature. Together, these results suggest that warming will allow the natural enemy to expand its range, potentially benefiting biocontrol in regions that are currently too cold for the natural enemy. However, the invader may also expand its range further north in response to warming. In such cases where plants tolerate cold better than their natural enemies, the geographical gap between plant and herbivorous insect ranges may not disappear but will shift to higher latitudes, leading to a new zone of enemy release. Therefore, warming will not only affect plant invasions directly but also drive either enemy release or increase that will result in contrasting effects on invasive plants. The findings are also critical for future management of invasive species under climate change. © 2013 John Wiley & Sons Ltd.

  20. Species pool, human population, and global versus regional invasion patterns

    Treesearch

    Qinfeng Guo; Basil V. Iannone III; Gabriela C. Nunez-Mir; Kevin M. Potter; Christopher M. Oswalt; Songlin Fei

    2017-01-01

    Context Biological invasions are among the greatest global and regional threats to biomes in the Anthropocene. Islands, in particular, have been perceived to have higher vulnerability to invasions. Because of the dynamic nature of ongoing invasions, distinguishing regional patterns from global patterns and their underlying determinants remains a challenge. Objectives...

  1. Invasion of exotic earthworms into ecosystems inhabited by native earthworms

    Treesearch

    P.F. Hendrix; G.H. Baker; M.A. Jr. Callaham; G.A. Damoff; C. Fragoso; G. Gonzalez; S.W. James; S.L. Lachnicht; T. Winsome; X. Zou

    2006-01-01

    The most conspicuous biological invasions in terrestrial ecosystems have been by exotic plants, insects and vertebrates. Invasions by exotic earthworms, although not as well studied, may be increasing with global commerce in agriculture, waste management and bioremediation. A number of cases has documented where invasive earthworms have caused significant changes in...

  2. Nuclear Matrix Association: Switching to the Invasive Cytotrophoblast

    PubMed Central

    Drennan, Kathryn J.; Linnemann, Amelia K.; Platts, Adrian E.; Heng, Henry H.; Armant, D. Randall; Krawetz, Stephen A.

    2010-01-01

    Abnormal trophoblast invasion is associated with the most common and most severe complications of human pregnancy. The biology of invasion, as well as the etiology of abnormal invasion remains poorly understood. The aim of this study was to characterize the transcriptome of the HTR-8/SVneo human cytotrophoblast cell line which displays well characterized invasive and non-invasive behavior, and to correlate the activity of the transcriptome with nuclear matrix attachment and cell phenotype. Comparison of the invasive to non-invasive HTR transcriptomes was unremarkable. In contrast, comparison of the MARs on chromosomes 14–18 revealed an increased number of MARs associated with the invasive phenotype. These attachment areas were more likely to be associated with silent rather than actively transcribed genes. This study supports that view that that nuclear matrix attachment may play an important role in cytotrophoblast invasion by ensuring specific silencing that facilitates invasion. PMID:20346505

  3. Hydrogen Isotopes as a Sentinel of Biological Invasion by the Japanese Beetle, Popillia japonica (Newman)

    PubMed Central

    Ogle, Kiona; Caron, Melanie; Marks, Jane C.; Rogg, Helmuth W.

    2016-01-01

    Invasive species alter ecosystems, threaten native and endangered species, and have negative economic impacts. Knowing where invading individuals are from and when they arrive to a new site can guide management. Here, we evaluated how well the stable hydrogen isotope composition (δ2H) records the recent origin and time since arrival of specimens of the invasive Japanese beetle (Popillia japonica Newman) captured near the Portland International Airport (Oregon, U.S.A.). The δ2H of Japanese beetle specimens collected from sites across the contiguous U.S.A. reflected the δ2H of local precipitation, a relationship similar to that documented for other organisms, and one confirming the utility of δ2H as a geographic fingerprint. Within weeks after experimental relocation to a new isotopic environment, the δ2H of beetles changed linearly with time, demonstrating the potential for δ2H to also mark the timing of arrival to a new location. We used a hierarchical Bayesian model to estimate the recent geographical origin and timing of arrival of each specimen based on its δ2H value. The geographic resolution was broad, with values consistent with multiple regions of origin in the eastern U.S.A., slightly favoring the southeastern U.S.A. as the more likely source. Beetles trapped from 2007–2010 had arrived 30 or more days prior to trapping, whereas the median time since arrival declined to 3–7 days for beetles trapped from 2012–2014. This reduction in the time between arrival and trapping at the Portland International Airport supports the efficacy of trapping and spraying to prevent establishment. More generally, our analysis shows how stable isotopes can serve as sentinels of biological invasions, verifying the efficacy of control measures, or, alternatively, indicating when those measures show signs of failure. PMID:26959686

  4. Alien invasions in aquatic ecosystems: toward an understanding of brook trout invasions and potential impacts on inland cutthroat trout in western North America

    Treesearch

    Jason B. Dunham; Susan B. Adams; Robert E. Schroeter; Douglas C. Novinger

    2002-01-01

    Experience from case studies of biological invasions in aquatic ecosystems has motivated a set of proposed empirical “rules” for understanding patterns of invasion and impacts on native species. Further evidence is needed to better understand these patterns, and perhaps contribute to a useful predictive theory of invasions. We reviewed the case of brook trout (

  5. Drivers of Non-Native Aquatic Species Invasions across the ...

    EPA Pesticide Factsheets

    Background/Question/Methods Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to a single taxa, missing the opportunity to observe and understand the drivers of macroscale invasion patterns at sub-continental or continental scales. Here we map the distribution of exotic freshwater species richness across the continental United States using publicly accessible species occurrence data (e.g GBIF) and investigate the role of human activity in driving macroscale patterns of aquatic invasion. Using a dasymetric model of human population density and a spatially explicit model of recreational freshwater fishing demand, we analyzed the effect of these metrics of human influence on non-native aquatic species richness at the watershed scale, while controlling for spatial and sampling bias. We also assessed the effects that a temporal mismatch between occurrence data (collected since 1815) and cross-sectional predictors (developed using 2010 data) may have on model fit. Results/Conclusions Our results indicated that non-native aquatic species richness exhibits a highly patchy distribution, with hotspots in the Northeast, Great Lakes, Florida, and human population centers on the Pacific coast. These richness patterns are correlated with population density, but are m

  6. Dispersal polymorphism in an invasive forest pest affects its ability to establish

    Treesearch

    Christelle Robinet; Andrew M. Liebhold

    2009-01-01

    Given the increasing number of biological invasions, there is a crucial need to identify life history traits that promote invasion. Invasiveness reflects capabilities for both establishment after introduction and spread following establishment. In this paper, we explore, via simulation, the interacting effects of dispersal and Allee effects on both invasion processes....

  7. Invasive plants transform the three-dimensional structure of rain forests

    Treesearch

    Gegory P. Asner; R. Flint Hughes; Peter M. Vitousek; David E. Knapp; Ty Kennedy-Bowdoin; Joseph Boardman; Roberta E. Martin; Michael Eastwood; Robert O. Green

    2008-01-01

    Biological invasions contribute to global environmental change, but the dynamics and consequences of most invasions are difficult to assess at regional scales. We deployed an airborne remote sensing system that mapped the location and impacts of five highly invasive plant species across 221,875 ha of Hawaiian ecosystems, identifying four distinct ways that these...

  8. Parasites and marine invasions

    USGS Publications Warehouse

    Torchin, M.E.; Lafferty, K.D.; Kuris, A.M.

    2002-01-01

    Introduced marine species are a major environmental and economic problem. The rate of these biological invasions has substantially increased in recent years due to the globalization of the world's economies. The damage caused by invasive species is often a result of the higher densities and larger sizes they attain compared to where they are native. A prominent hypothesis explaining the success of introduced species is that they are relatively free of the effects of natural enemies. Most notably, they may encounter fewer parasites in their introduced range compared to their native range. Parasites are ubiquitous and pervasive in marine systems, yet their role in marine invasions is relatively unexplored. Although data on parasites of marine organisms exist, the extent to which parasites can mediate marine invasions, or the extent to which invasive parasites and pathogens are responsible for infecting or potentially decimating native marine species have not been examined. In this review, we present a theoretical framework to model invasion success and examine the evidence for a relationship between parasite presence and the success of introduced marine species. For this, we compare the prevalence and species richness of parasites in several introduced populations of marine species with populations where they are native. We also discuss the potential impacts of introduced marine parasites on native ecosystems.

  9. Proceedings, 22nd U.S. Department of Agriculture interagency research forum on invasive species 2011

    Treesearch

    Katherine A McManus; Kurt W., eds. Gottschalk

    2011-01-01

    Contains abstracts and papers of 62 oral and poster presentations on invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Invasive Species.

  10. Proceedings 19th U.S. Department of Agriculture Interagency Research Forum on Invasive Species 2008

    Treesearch

    Katherine A. McManus; Kurt W., eds. Gottschalk

    2009-01-01

    Contains abstracts and papers of 67 oral and poster presentations on invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Invasive Species.

  11. Proceedings, 21st U.S. Department of Agriculture interagency research forum on invasive species 2010

    Treesearch

    Katherine A McManus; Kurt W. Gottschalk

    2010-01-01

    Contains abstracts and papers of 95 oral and poster presentations on invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Invasive Species.

  12. Proceedings, 23rd U.S. Department of Agriculture interagency research forum on invasive species 2012

    Treesearch

    Katherine A McManus; Kurt W., eds. Gottschalk

    2013-01-01

    Contains abstracts and papers of 75 oral and poster presentations on invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Invasive Species.

  13. Introducing the Global Register of Introduced and Invasive Species

    PubMed Central

    Pagad, Shyama; Genovesi, Piero; Carnevali, Lucilla; Schigel, Dmitry; McGeoch, Melodie A.

    2018-01-01

    Harmonised, representative data on the state of biological invasions remain inadequate at country and global scales, particularly for taxa that affect biodiversity and ecosystems. Information is not readily available in a form suitable for policy and reporting. The Global Register of Introduced and Invasive Species (GRIIS) provides the first country-wise checklists of introduced (naturalised) and invasive species. GRIIS was conceived to provide a sustainable platform for information delivery to support national governments. We outline the rationale and methods underpinning GRIIS, to facilitate transparent, repeatable analysis and reporting. Twenty country checklists are presented as exemplars; GRIIS Checklists for close to all countries globally will be submitted through the same process shortly. Over 11000 species records are currently in the 20 country exemplars alone, with environmental impact evidence for just over 20% of these. GRIIS provides significant support for countries to identify and prioritise invasive alien species, and establishes national and global baselines. In future this will enable a global system for sustainable monitoring of trends in biological invasions that affect the environment. PMID:29360103

  14. Epigenetic signatures of invasive status in populations of marine invertebrates

    NASA Astrophysics Data System (ADS)

    Ardura, Alba; Zaiko, Anastasija; Morán, Paloma; Planes, Serge; Garcia-Vazquez, Eva

    2017-02-01

    Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced. Decreased methylation was interpreted as a rapid way of increasing phenotypic plasticity that would help invasive populations to thrive. This epigenetic signature of early invasion was stronger than the expected environmental signature of environmental stress in younger populations sampled from ports, otherwise detected in a much older population (>90 year old) of the also invasive tubeworm Ficopomatus enigmaticus established in similar locations. Higher epigenetic than genetic diversity found in X. securis was confirmed from F. enigmaticus samples. As reported for introduced plants and vertebrates, epigenetic variation could compensate for relatively lower genetic variation caused by founder effects. These phenomena were compared with epigenetic mechanisms involved in metastasis, as parallel processes of community (biological invasion) and organism (cancer) invasions.

  15. The indirect effects of cheatgrass invasion: Grasshopper herbivory on native grasses determined by neighboring cheatgrass abundance

    Treesearch

    Julie Beckstead; Susan E. Meyer; Carol K. Augsperger

    2008-01-01

    Invasion biology has focused on the direct effects of plant invasion and has generally overlooked indirect interactions. Here we link theories of invasion biology and herbivory to explore an indirect effect of one invading species on associational herbivory (the effect of neighboring plants on herbivory) of native species. We studied a Great Basin shadscale (...

  16. Ectotherms in Variable Thermal Landscapes: A Physiological Evaluation of the Invasive Potential of Fruit Flies Species

    PubMed Central

    Boher, Francisca; Trefault, Nicole; Estay, Sergio A.; Bozinovic, Francisco

    2016-01-01

    Climate change and biological invasions pose one of the greatest threats to biodiversity. Most analyses of the potential biological impacts have focused on changes in mean temperature, but changes in thermal variance may also impact native and invasive organisms, although differentially. We assessed the combined effects of the mean and the variance of temperature on the expression of heat shock protein (hsp90) in adults of the invasive fruit fly Drosophila melanogaster and the native Drosophila gaucha in Mediterranean habitats of central Chile. We observed that, under these experimental conditions, hsp90 mRNA expression was higher in the invasive species but absent in the native one. Apparently, the biogeographic origin and niche conservatisms are playing a role in the heat shock response of these species under different putative scenarios of climate change. We suggest that in order to develop more realistic predictions about the biological impact of climate change and biological invasions, one must consider the interactions between the mean and variance of climatic variables, as well as the evolutionary original conditions of the native and invasive species. PMID:27486407

  17. Recent introduction of an allodapine bee into Fiji: A new model system for understanding biological invasions by pollinators.

    PubMed

    Groom, Scott V C; Tuiwawa, Marika V; Stevens, Mark I; Schwarz, Michael P

    2015-08-01

    Morphology-based studies have suggested a very depauperate bee fauna for islands in the South West Pacific, and recent genetic studies since have indicated an even smaller endemic fauna with many bee species in this region resulting from human-aided dispersal. These introduced species have the potential to both disrupt native pollinator suites as well as augment crop pollination, but for most species the timings of introduction are unknown. We examined the distribution and nesting biology of the long-tongued bee Braunsapis puangensis that was first recorded from Fiji in 2007. This bee has now become widespread in Fiji and both its local abundance and geographical range are likely to increase dramatically. The impacts of this invasion are potentially enormous for agriculture and native ecosystems, but they also provide opportunities for understanding how social insect species adapt to new environments. We outline the major issues associated with this recent invasion and argue that a long-term monitoring study is needed. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  18. Biological control is more than just natural enemies

    Treesearch

    Dean E. Pearson

    2005-01-01

    The past decade has given rise to exciting new developments in the field of community ecology that have profound implications for biological control. The recognition that biological invasions offer unprecedented opportunities to investigate the nature of community assembly has swept invasive species studies to the forefront of popular ecology. Meanwhile,...

  19. Comparative Effects of Various High School Biology Course-Content Backgrounds on Achievement in College Biology.

    ERIC Educational Resources Information Center

    Garrett, Gordon Ronald

    The purposes of this study are (1) to determine whether college students who have taken Biological Sciences Curriculum Study (BSCS) High School Biology attain significantly different grades in college biology courses at the University of Missouri than do college students who have taken a non-BSCS high school biology course, and (2) to determine if…

  20. A first step in understanding an invasive weed through its genes: an EST analysis of invasive Centaurea maculosa.

    PubMed

    Broz, Amanda K; Broeckling, Corey D; He, Ji; Dai, Xinbin; Zhao, Patrick X; Vivanco, Jorge M

    2007-05-24

    The economic and biological implications of plant invasion are overwhelming; however, the processes by which plants become successful invaders are not well understood. Limited genetic resources are available for most invasive and weedy species, making it difficult to study molecular and genetic aspects that may be associated with invasion. As an initial step towards understanding the molecular mechanisms by which plants become invasive, we have generated a normalized Expressed Sequence Tag (EST) library comprising seven invasive populations of Centaurea maculosa, an invasive aster in North America. Seventy-seven percent of the 4423 unique transcripts showed significant similarity to existing proteins in the NCBI database and could be grouped based on gene ontology assignments. The C. maculosa EST library represents an initial step towards looking at gene-specific expression in this species, and will pave the way for creation of other resources such as microarray chips that can help provide a view of global gene expression in invasive C. maculosa and its native counterparts. To our knowledge, this is the first published set of ESTs derived from an invasive weed that will be targeted to study invasive behavior. Understanding the genetic basis of evolution for increased invasiveness in exotic plants is critical to understanding the mechanisms through which exotic invasions occur.

  1. DNA from lake sediments reveals long-term ecosystem changes after a biological invasion.

    PubMed

    Ficetola, Gentile Francesco; Poulenard, Jérôme; Sabatier, Pierre; Messager, Erwan; Gielly, Ludovic; Leloup, Anouk; Etienne, David; Bakke, Jostein; Malet, Emmanuel; Fanget, Bernard; Støren, Eivind; Reyss, Jean-Louis; Taberlet, Pierre; Arnaud, Fabien

    2018-05-01

    What are the long-term consequences of invasive species? After invasion, how long do ecosystems require to reach a new equilibrium? Answering these questions requires long-term, high-resolution data that are vanishingly rare. We combined the analysis of environmental DNA extracted from a lake sediment core, coprophilous fungi, and sedimentological analyses to reconstruct 600 years of ecosystem dynamics on a sub-Antarctic island and to identify the impact of invasive rabbits. Plant communities remained stable from AD 1400 until the 1940s, when the DNA of invasive rabbits was detected in sediments. Rabbit detection corresponded to abrupt changes of plant communities, with a continuous decline of a dominant plant species. Furthermore, erosion rate abruptly increased with rabbit abundance. Rabbit impacts were very fast and were stronger than the effects of climate change during the 20th century. Lake sediments can allow an integrated temporal analysis of ecosystems, revealing the impact of invasive species over time and improving our understanding of underlying mechanisms.

  2. Indirect effects of host-specific biological control agents

    Treesearch

    Dean E. Pearson; Ragan M. Callaway

    2003-01-01

    Biological control is a crucial tool in the battle against biological invasions, but biocontrol agents can have a deleterious impact on native species. Recognition of risks associated with host shifting has increased the emphasis on host specificity of biocontrol agents for invasive weeds. However, recent studies indicate host-specific biocontrol agents can...

  3. Development of beneficial biological agents for invasive species control.

    DOT National Transportation Integrated Search

    2013-05-01

    Noxious and invasive weeds readily colonize disturbed areas and outcompete and displace native and other desirable vegetation. This can result in a loss of pollinators (i.e. animals such as birds, bees, and other insects that move pollen between plan...

  4. Differential invasion success of salmonids in southern Chile: patterns and hypotheses

    Treesearch

    Ivan Arismendi; Brooke E. Penaluna; Jason B. Dunham; Carlos Garcia de Leaniz; Doris Soto; Ian A. Fleming; Daniel Gomez-Uchida; Gonzalo Gajardo; Pamela V. Varga; Jorge León-Muñoz

    2014-01-01

    Biological invasions create complex ecological and societal issues worldwide. Most of the knowledge about invasions comes only from successful invaders, but less is known about which processes determine the differential success of invasions. In this review, we develop a framework to identify the main dimensions driving the success and failure of invaders, including...

  5. QUANTIFYING AND MODELING THE RISK OF DISTURBANCE TO ECOSYSTEMS CAUSED BY INVASIVE SPECIES

    EPA Science Inventory

    Invasive species are biological pollutants that threaten ecosystem health. Identifying the mechanisms of invasive and developing predictive models of invasion will be critical to developing risk management strategies for limiting the economic and environmental damage caused by i...

  6. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range.

    PubMed

    Zheng, Yulong; Liao, Zhiyong

    2017-11-22

    Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.

  7. Overexpression of miR-9 in mast cells is associated with invasive behavior and spontaneous metastasis

    PubMed Central

    2014-01-01

    Background While microRNA (miRNA) expression is known to be altered in a variety of human malignancies contributing to cancer development and progression, the potential role of miRNA dysregulation in malignant mast cell disease has not been previously explored. The purpose of this study was to investigate the potential contribution of miRNA dysregulation to the biology of canine mast cell tumors (MCTs), a well-established spontaneous model of malignant mast cell disease. Methods We evaluated the miRNA expression profiles from biologically low-grade and biologically high-grade primary canine MCTs using real-time PCR-based TaqMan Low Density miRNA Arrays and performed real-time PCR to evaluate miR-9 expression in primary canine MCTs, malignant mast cell lines, and normal bone marrow-derived mast cells (BMMCs). Mouse mast cell lines and BMMCs were transduced with empty or pre-miR-9 expressing lentiviral constructs and cell proliferation, caspase 3/7 activity, and invasion were assessed. Transcriptional profiling of cells overexpressing miR-9 was performed using Affymetrix GeneChip Mouse Gene 2.0 ST arrays and real-time PCR was performed to validate changes in mRNA expression. Results Our data demonstrate that unique miRNA expression profiles correlate with the biological behavior of primary canine MCTs and that miR-9 expression is increased in biologically high grade canine MCTs and malignant cell lines compared to biologically low grade tumors and normal canine BMMCs. In transformed mouse malignant mast cell lines expressing either wild-type (C57) or activating (P815) KIT mutations and mouse BMMCs, miR-9 overexpression significantly enhanced invasion but had no effect on cell proliferation or apoptosis. Transcriptional profiling of normal mouse BMMCs and P815 cells possessing enforced miR-9 expression demonstrated dysregulation of several genes, including upregulation of CMA1, a protease involved in activation of matrix metalloproteases and extracellular matrix

  8. Evaluating methods to quantify spatial variation in the velocity of biological invasions

    Treesearch

    Clement Tisseuil; Aiko Gryspeirt; Renaud Lancelot; Maryline Pioz; Andrew Liebhold; Marius Gilbert

    2016-01-01

    Invading species rarely spread homogeneously through a landscape and invasion patterns typically display irregular frontal boundaries as the invasion progresses through space. Those irregular patterns are generally produced by local environmental factors that may slow or accelerate movement of the frontal boundary. While there is an abundant literature on species...

  9. Impact of the Invasive Brown Marmorated Stink Bug in North America and Europe: History, Biology, Ecology, and Management.

    PubMed

    Leskey, Tracy C; Nielsen, Anne L

    2018-01-07

    The brown marmorated stink bug (BMSB), Halyomorpha halys (Stål), is an invasive pentatomid introduced from Asia into the United States, Canada, multiple European countries, and Chile. In 2010, BMSB populations in the mid-Atlantic United States reached outbreak levels and subsequent feeding severely damaged tree fruit as well as other crops. Significant nuisance issues from adults overwintering inside homes were common. BMSB is a highly polyphagous species with a strong dispersal capacity and high reproductive output, potentially enabling its spread and success in invaded regions. A greater understanding of BMSB biology and ecology and its natural enemies, the identification of the male-produced aggregation pheromone, and the recognition that BMSB disperses into crops from adjacent wooded habitats have led to the development of behavior-based integrated pest management (IPM) tactics. Much is still unknown about BMSB, and continued long-term collaborative studies are necessary to refine crop-specific IPM programs and enhance biological control across invaded landscapes.

  10. Do native parasitic plants cause more damage to exotic invasive hosts than native non-invasive hosts? An implication for biocontrol.

    PubMed

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community.

  11. Do Native Parasitic Plants Cause More Damage to Exotic Invasive Hosts Than Native Non-Invasive Hosts? An Implication for Biocontrol

    PubMed Central

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community. PMID:22493703

  12. Mediterranean, invasive, woody species grow larger than their less-invasive counterparts under potential global environmental change.

    PubMed

    Erskine-Ogden, Jennifer; Grotkopp, Eva; Rejmánek, Marcel

    2016-04-01

    Revealing biological differences between invasive and noninvasive species is essential for predicting species' distribution changes with global environmental change. While most research has focused on differences between invasive and noninvasive species under favorable conditions using herbaceous species, invasive woody angiosperms are also of great ecological concern. Our study focused on how growth and allocation may change for invasive and noninvasive, mediterranean, woody angiosperms under future conditions caused by global change, specifically increased nitrogen deposition and drought. We tested how seedling functional traits differed between invasive and noninvasive woody angiosperms under different experimental conditions in a greenhouse setting. We compared growth rates and allocation patterns using two levels of soil nitrogen and three levels of watering. We also examined trait log response ratios to increases in nitrogen and increases in water. Our study sampled angiosperm trees and shrubs, incorporating congeneric/confamilial relationships through 13 phylogenetically controlled contrasts. Three functional traits were highly and positively associated with plant invasiveness for most conditions studied: seedling plant mass, leaf area, and height. Invasive species also had significantly higher root mass ratios at low water regardless of nitrogen input. Invasive and noninvasive species had similar log response ratios to increases in nitrogen and watering for studied traits. Mediterranean, woody, invasive species' larger mass, leaf area, and early height advantage under elevated nitrogen input and increased root production in drought conditions may lead to increased invasion of these species with expected global climate change. © 2016 Botanical Society of America.

  13. Conceptual frameworks and methods for advancing invasion ecology.

    PubMed

    Heger, Tina; Pahl, Anna T; Botta-Dukát, Zoltan; Gherardi, Francesca; Hoppe, Christina; Hoste, Ivan; Jax, Kurt; Lindström, Leena; Boets, Pieter; Haider, Sylvia; Kollmann, Johannes; Wittmann, Meike J; Jeschke, Jonathan M

    2013-09-01

    Invasion ecology has much advanced since its early beginnings. Nevertheless, explanation, prediction, and management of biological invasions remain difficult. We argue that progress in invasion research can be accelerated by, first, pointing out difficulties this field is currently facing and, second, looking for measures to overcome them. We see basic and applied research in invasion ecology confronted with difficulties arising from (A) societal issues, e.g., disparate perceptions of invasive species; (B) the peculiarity of the invasion process, e.g., its complexity and context dependency; and (C) the scientific methodology, e.g., imprecise hypotheses. To overcome these difficulties, we propose three key measures: (1) a checklist for definitions to encourage explicit definitions; (2) implementation of a hierarchy of hypotheses (HoH), where general hypotheses branch into specific and precisely testable hypotheses; and (3) platforms for improved communication. These measures may significantly increase conceptual clarity and enhance communication, thus advancing invasion ecology.

  14. Parasite-mediated predation between native and invasive amphipods.

    PubMed Central

    MacNeil, Calum; Dick, Jaimie T A; Hatcher, Melanie J; Terry, Rebecca S; Smith, Judith E; Dunn, Alison M

    2003-01-01

    Parasites can structure biological communities directly through population regulation and indirectly by processes such as apparent competition. However, the role of parasites in the process of biological invasion is less well understood and mechanisms of parasite mediation of predation among hosts are unclear. Mutual predation between native and invading species is an important factor in determining the outcome of invasions in freshwater amphipod communities. Here, we show that parasites mediate mutual intraguild predation among native and invading species and may thereby facilitate the invasion process. We find that the native amphipod Gammarus duebeni celticus is host to a microsporidian parasite, Pleistophora sp. (new species), with a frequency of infection of 0-90%. However, the parasite does not infect three invading species, G. tigrinus, G. pulex and Crangonyx pseudogracilis. In field and laboratory manipulations, we show that the parasite exhibits cryptic virulence: the parasite does not affect host fitness in single-species populations, but virulence becomes apparent when the native and invading species interact. That is, infection has no direct effect on G. d. celticus survivorship, size or fecundity; however, in mixed-species experiments, parasitized natives show a reduced capacity to prey on the smaller invading species and are more likely to be preyed upon by the largest invading species. Thus, by altering dominance relationships and hierarchies of mutual predation, parasitism strongly influences, and has the potential to change, the outcome of biological invasions. PMID:12816645

  15. Specificity of extrafloral nectar induction by herbivores differs among native and invasive populations of tallow tree

    PubMed Central

    Wang, Yi; Carrillo, Juli; Siemann, Evan; Wheeler, Gregory S.; Zhu, Lin; Gu, Xue; Ding, Jianqing

    2013-01-01

    Background and Aims Invasive plants can be released from specialist herbivores and encounter novel generalists in their introduced ranges, leading to variation in defence among native and invasive populations. However, few studies have examined how constitutive and induced indirect defences change during plant invasion, especially during the juvenile stage. Methods Constitutive extrafloral nectar (EFN) production of native and invasive populations of juvenile tallow tree (Triadica sebifera) were compared, and leaf clipping, and damage by a native specialist (Noctuid) and two native generalist caterpillars (Noctuid and Limacodid) were used to examine inducible EFN production. Key results Plants from introduced populations had more leaves producing constitutive EFN than did native populations, but the content of soluble solids of EFN did not differ. Herbivores induced EFN production more than simulated herbivory. The specialist (Noctuid) induced more EFN than either generalist for native populations. The content of soluble solids in EFN was higher (2·1 times), with the specialist vs. the generalists causing the stronger response for native populations, but the specialist response was always comparable with the generalist responses for invasive populations. Conclusions These results suggest that constitutive and induced indirect defences are retained in juvenile plants of invasive populations even during plant establishment, perhaps due to generalist herbivory in the introduced range. However, responses specific to a specialist herbivore may be reduced in the introduced range where specialists are absent. This decreased defence may benefit specialist insects that are introduced for classical biological control of invasive plants. PMID:23761685

  16. Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives

    Treesearch

    Giles C. Thelen; Jorge M. Vivanco; Beth Newingham; William Good; Harsh P. Bais; Peter Landres; Anthony Caesar; Ragan M. Callaway

    2005-01-01

    Exotic invasive plants are often subjected to attack from imported insects as a method of biological control. A fundamental, but rarely explicitly tested, assumption of biological control is that damaged plants are less fit and compete poorly. In contrast, we find that one of the most destructive invasive plants in North America, Centaurea maculosa,...

  17. Five potential consequences of climate change for invasive species.

    PubMed

    Hellmann, Jessica J; Byers, James E; Bierwagen, Britta G; Dukes, Jeffrey S

    2008-06-01

    Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.

  18. Eco-evolutionary responses of Bromus tectorum to climate change: implications for biological invasions

    USGS Publications Warehouse

    Zelikova, Tamara J.; Hufbauer, Ruth A.; Reed, Sasha C.; Wertin, Timothy M.; Fettig, Christa; Belnap, Jayne

    2013-01-01

    How plant populations, communities, and ecosystems respond to climate change is a critical focus in ecology today. The responses of introduced species may be especially rapid. Current models that incorporate temperature and precipitation suggest that future Bromus tectorum invasion risk is low for the Colorado Plateau. With a field warming experiment at two sites in southeastern Utah, we tested this prediction over 4 years, measuring B. tectorum phenology, biomass, and reproduction. In a complimentary greenhouse study, we assessed whether changes in field B. tectorum biomass and reproductive output influence offspring performance. We found that following a wet winter and early spring, the timing of spring growth initiation, flowering, and summer senescence all advanced in warmed plots at both field sites and the shift in phenology was progressively larger with greater warming. Earlier green-up and development was associated with increases in B. tectorum biomass and reproductive output, likely due early spring growth, when soil moisture was not limiting, and a lengthened growing season. Seeds collected from plants grown in warmed plots had higher biomass and germination rates and lower mortality than seeds from ambient plots. However, in the following two dry years, we observed no differences in phenology between warmed and ambient plots. In addition, warming had a generally negative effect on B. tectorum biomass and reproduction in dry years and this negative effect was significant in the plots that received the highest warming treatment. In contrast to models that predict negative responses of B. tectorum to warmer climate on the Colorado Plateau, the effects of warming were more nuanced, relied on background climate, and differed between the two field sites. Our results highlight the importance of considering the interacting effects of temperature, precipitation, and site-specific characteristics such as soil texture, on plant demography and have direct

  19. Eco-evolutionary responses of Bromus tectorum to climate change: implications for biological invasions.

    PubMed

    Zelikova, Tamara J; Hufbauer, Ruth A; Reed, Sasha C; Wertin, Timothy; Fettig, Christa; Belnap, Jayne

    2013-05-01

    How plant populations, communities, and ecosystems respond to climate change is a critical focus in ecology today. The responses of introduced species may be especially rapid. Current models that incorporate temperature and precipitation suggest that future Bromus tectorum invasion risk is low for the Colorado Plateau. With a field warming experiment at two sites in southeastern Utah, we tested this prediction over 4 years, measuring B. tectorum phenology, biomass, and reproduction. In a complimentary greenhouse study, we assessed whether changes in field B. tectorum biomass and reproductive output influence offspring performance. We found that following a wet winter and early spring, the timing of spring growth initiation, flowering, and summer senescence all advanced in warmed plots at both field sites and the shift in phenology was progressively larger with greater warming. Earlier green-up and development was associated with increases in B. tectorum biomass and reproductive output, likely due early spring growth, when soil moisture was not limiting, and a lengthened growing season. Seeds collected from plants grown in warmed plots had higher biomass and germination rates and lower mortality than seeds from ambient plots. However, in the following two dry years, we observed no differences in phenology between warmed and ambient plots. In addition, warming had a generally negative effect on B. tectorum biomass and reproduction in dry years and this negative effect was significant in the plots that received the highest warming treatment. In contrast to models that predict negative responses of B. tectorum to warmer climate on the Colorado Plateau, the effects of warming were more nuanced, relied on background climate, and differed between the two field sites. Our results highlight the importance of considering the interacting effects of temperature, precipitation, and site-specific characteristics such as soil texture, on plant demography and have direct

  20. Redefining Perineural Invasion: Integration of Biology With Clinical Outcome.

    PubMed

    Schmitd, Ligia B; Beesley, Lauren J; Russo, Nickole; Bellile, Emily L; Inglehart, Ronald C; Liu, Min; Romanowicz, Genevieve; Wolf, Gregory T; Taylor, Jeremy M G; D'Silva, Nisha J

    2018-05-22

    A diagnosis of perineural invasion (PNI), defined as cancer within or surrounding at least 33% of the nerve, leads to selection of aggressive treatment in squamous cell carcinoma (SCC). Recent mechanistic studies show that cancer and nerves interact prior to physical contact. The purpose of this study was to explore cancer-nerve interactions relative to clinical outcome. Biopsy specimens from 71 patients with oral cavity SCC were stained with hematoxylin and eosin and immunohistochemical (IHC; cytokeratin, S100, GAP43, Tuj1) stains. Using current criteria, PNI detection was increased with IHC. Overall survival (OS) tended to be poor for patients with PNI (P = .098). OS was significantly lower for patients with minimum tumor-nerve distance smaller than 5 μm (P = .011). The estimated relative death rate decreased as the nerve-tumor distance increased; there was a gradual drop off in death rate from distance equal to zero that stabilized around 500 μm. In PNI-negative patients, nerve diameter was significantly related to OS (HR 2.88, 95%CI[1.11,7.49]). Among PNI-negative nerves, larger nerve-tumor distance and smaller nerve diameter were significantly related to better OS, even when adjusting for T-stage and age (HR 0.82, 95% CI[0.72,0.92]; HR 1.27, 95% CI[1.00,1.62], respectively). GAP43, a marker for neuronal outgrowth, stained less than Tuj1 in nerves at greater distances from tumor (OR 0.76, 95% CI[0.73,0.79]); more GAP43 staining was associated with PNI. Findings from a small group of patients suggest that nerve parameters other than presence of PNI can influence outcome and that current criteria of PNI need to be re-evaluated to integrate recent biological discoveries. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Orchid–pollinator interactions and potential vulnerability to biological invasion

    PubMed Central

    Chupp, Adam D.; Battaglia, Loretta L.; Schauber, Eric M.; Sipes, Sedonia D.

    2015-01-01

    Mutualistic relationships between plants and their pollinators have played a major role in the evolution of biodiversity. While the vulnerability of these relationships to environmental change is a major concern, studies often lack a framework for predicting impacts from emerging threats (e.g. biological invasions). The objective of this study was to determine the reliance of Platanthera ciliaris (orange-fringed orchid) on Papilio palamedes (Palamedes swallowtail butterfly) for pollination and the relative availability of alternative pollinators. Recent declines of P. palamedes larval host plants due to laurel wilt disease (LWD) could endanger P. ciliaris populations that rely heavily on this butterfly for pollination. We monitored pollinator visitation and fruit set and measured nectar spur lengths of P. ciliaris flowers and proboscis lengths of its floral visitors in Jackson County, MS, USA. Papilio palamedes was the primary visitor with minimal visitation by Phoebis sennae (cloudless sulfur butterfly). Lengths of P. ciliaris nectar spurs were similar to proboscis lengths of both pollinator species. Fruit set was moderate with access to pollinators (55 ± 10.8 %), yet failed (0 %) when pollinators were excluded. Visitation increased with inflorescence size, but there was no such pattern in fruit set, indicating that fruit set was not limited by pollinator visitation within the range of visitation rates we observed. Our results are supported by historical data that suggest P. palamedes and P. sennae are important pollinators of P. ciliaris. Although P. sennae may provide supplemental pollination service, this is likely constrained by habitat preferences that do not always overlap with those of P. cilaris. Observed declines of P. palamedes due to LWD could severely limit the reproductive success and persistence of P. ciliaris and similar orchid species populations. This empirical-based prediction is among the first to document exotic forest pests and pathogens as

  2. Ecology, genetics, and biological control of invasive annual grasses in the Great Basin

    USDA-ARS?s Scientific Manuscript database

    Several annual grass species native to Eurasia, including cheatgrass (Bromus tectorum), red brome (B. rubens), and medusahead (Taeniatherum caput-medusae) have become invasive in the western USA. These invasive species degrade rangelands by compromising forage, outcompeting native flora, and exacerb...

  3. Biogeography of plant invasions

    Treesearch

    Dean Pearson; Yvette Ortega

    2013-01-01

    The fact that most of our worst animal and weed pests come from other continents is no coincidence. Biological invasions are fundamentally a biogeographic phenomenon. That is to say, there is something rather significant about taking an organism from a specific evolutionary history and ecological context and casting it into an entirely new environment that can...

  4. Hitting the right target: taxonomic challenges for, and of, plant invasions

    PubMed Central

    Pyšek, Petr; Hulme, Philip E.; Meyerson, Laura A.; Smith, Gideon F.; Boatwright, James S.; Crouch, Neil R.; Figueiredo, Estrela; Foxcroft, Llewellyn C.; Jarošík, Vojtěch; Richardson, David M.; Suda, Jan; Wilson, John R. U.

    2013-01-01

    This paper explores how a lack of taxonomic expertise, and by implication a dearth of taxonomic products such as identification tools, has hindered progress in understanding and managing biological invasions. It also explores how the taxonomic endeavour could benefit from studies of invasive species. We review the literature on the current situation in taxonomy with a focus on the challenges of identifying alien plant species and explore how this has affected the study of biological invasions. Biosecurity strategies, legislation dealing with invasive species, quarantine, weed surveillance and monitoring all depend on accurate and rapid identification of non-native taxa. However, such identification can be challenging because the taxonomic skill base in most countries is diffuse and lacks critical mass. Taxonomic resources are essential for the effective management of invasive plants and incorrect identifications can impede ecological studies. On the other hand, biological invasions have provided important tests of basic theories about species concepts. Better integration of classical alpha taxonomy and modern genetic taxonomic approaches will improve the accuracy of species identification and further refine taxonomic classification at the level of populations and genotypes in the field and laboratory. Modern taxonomy therefore needs to integrate both classical and new concepts and approaches. In particular, differing points of view between the proponents of morphological and molecular approaches should be negotiated because a narrow taxonomic perspective is harmful; the rigour of taxonomic decision-making clearly increases if insights from a variety of different complementary disciplines are combined and confronted. Taxonomy plays a critical role in the study of plant invasions and in turn benefits from the insights gained from these studies.

  5. Essential elements of online information networks on invasive alien species

    USGS Publications Warehouse

    Simpson, A.; Sellers, E.; Grosse, A.; Xie, Y.

    2006-01-01

    In order to be effective, information must be placed in the proper context and organized in a manner that is logical and (preferably) standardized. Recently, invasive alien species (IAS) scientists have begun to create online networks to share their information concerning IAS prevention and control. At a special networking session at the Beijing International Symposium on Biological Invasions, an online Eastern Asia-North American IAS Information Network (EA-NA Network) was proposed. To prepare for the development of this network, and to provide models for other regional collaborations, we compare four examples of global, regional, and national online IAS information networks: the Global Invasive Species Information Network, the Invasives Information Network of the Inter-American Biodiversity Information Network, the Chinese Species Information System, and the Invasive Species Information Node of the US National Biological Information Infrastructure. We conclude that IAS networks require a common goal, dedicated leaders, effective communication, and broad endorsement, in order to obtain sustainable, long-term funding and long-term stability. They need to start small, use the experience of other networks, partner with others, and showcase benefits. Global integration and synergy among invasive species networks will succeed with contributions from both the top-down and the bottom-up. ?? 2006 Springer.

  6. Biological Perspectives of Delayed Fracture Healing

    PubMed Central

    Hankenson, KD; Zmmerman, G; Marcucio, R

    2015-01-01

    Fracture healing is a complex biological process that requires interaction among a series of different cell types. Maintaining the appropriate temporal progression and spatial pattern is essential to achieve robust healing. We can temporally assess the biological phases via gene expression, protein analysis, histologically, or non-invasively using biomarkers as well as imaging techniques. However, determining what leads to normal verses abnormal healing is more challenging. Since the ultimate outcome of the process of fracture healing is to restore the original functions of bone, assessment of fracture healing should include not only monitoring the restoration of structure and mechanical function, but also an evaluation of the restoration of normal bone biology. Currently very few non-invasive measures of the biology of healing exist; however, recent studies that have correlated non-invasive measures with fracture healing outcome in humans have shown that serum TGFbeta1 levels appear to be an indicator of healing vs non-healing. In the future, developing additional serum measures to assess biological healing will improve the reliability and permit us to assess stages of fracture healing. Additionally, new functional imaging technologies could prove useful for better understanding both normal fracture healing and predicting dysfunctional healing in human patients. PMID:24857030

  7. Temporal modelling of ballast water discharge and ship-mediated invasion risk to Australia

    PubMed Central

    Cope, Robert C.; Prowse, Thomas A. A.; Ross, Joshua V.; Wittmann, Talia A.; Cassey, Phillip

    2015-01-01

    Biological invasions have the potential to cause extensive ecological and economic damage. Maritime trade facilitates biological invasions by transferring species in ballast water, and on ships' hulls. With volumes of maritime trade increasing globally, efforts to prevent these biological invasions are of significant importance. Both the International Maritime Organization and the Australian government have developed policy seeking to reduce the risk of these invasions. In this study, we constructed models for the transfer of ballast water into Australian waters, based on historic ballast survey data. We used these models to hindcast ballast water discharge over all vessels that arrived in Australian waters between 1999 and 2012. We used models for propagule survival to compare the risk of ballast-mediated propagule transport between ecoregions. We found that total annual ballast discharge volume into Australia more than doubled over the study period, with the vast majority of ballast water discharge and propagule pressure associated with bulk carrier traffic. As such, the ecoregions suffering the greatest risk are those associated with the export of mining commodities. As global marine trade continues to increase, effective monitoring and biosecurity policy will remain necessary to combat the risk of future marine invasion events. PMID:26064643

  8. A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal.

    PubMed

    Lu, Li-Min; Zhang, Xiao-Bing; Kong, Rong-Mei; Yang, Bin; Tan, Weihong

    2011-08-03

    Many types of fluorescent sensing systems have been reported for biological small molecules. Particularly, several methods have been developed for the recognition of ATP or NAD(+), but they only show moderate sensitivity, and they cannot discriminate either ATP or NAD(+) from their respective analogues. We have addressed these limitations and report here a dual strategy which combines split DNAzyme-based background reduction with catalytic and molecular beacon (CAMB)-based amplified detection to develop a ligation-triggered DNAzyme cascade, resulting in ultrahigh sensitivity. First, the 8-17 DNAzyme is split into two separate oligonucleotide fragments as the building blocks for the DNA ligation reaction, thereby providing a zero-background signal to improve overall sensitivity. Next, a CAMB strategy is further employed for amplified signal detection achieved through cycling and regenerating the DNAzyme to realize the true enzymatic multiple turnover (one enzyme catalyzes the cleavage of several substrates) of catalytic beacons. This combination of zero-background signal and signal amplification significantly improves the sensitivity of the sensing systems, resulting in detection limits of 100 and 50 pM for ATP and NAD(+), respectively, much lower than those of previously reported biosensors. Moreover, by taking advantage of the highly specific biomolecule-dependence of the DNA ligation reaction, the developed DNAzyme cascades show significantly high selectivity toward the target cofactor (ATP or NAD(+)), and the target biological small molecule can be distinguished from its analogues. Therefore, as a new and universal platform for the design of DNA ligation reaction-based sensing systems, this novel ligation-triggered DNAzyme cascade method may find a broad spectrum of applications in both environmental and biomedical fields.

  9. Allee effects and pulsed invasion by the gypsy moth

    Treesearch

    Derk M. Johnson; Andrew M. Liebhold; Patrick C. Tobin; Ottar N. Bjornstad

    2006-01-01

    Biological invasions pose considerable threats to the world's ecosystems and cause substantial economic losses. A prime example is the invasion of the gypsy moth in the United States, for which more than $194 million was spent on management and monitoring between 1985 and 2004 alone. The spread of the gypsy moth across eastern North America is, perhaps, the most...

  10. Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities

    Treesearch

    Anthony Ricciardi; Tim M. Blackburn; James T. Carlton; Jaimie T.A. Dick; Philip E. Hulme; Josephine C. Iacarella; Jonathan M. Jeschke; Andrew M. Liebhold; Julie L. Lockwood; Hugh J. MacIsaac; Petr Pyšek; David M. Richardson; Gregory M. Ruiz; Daniel Simberloff; William J. Sutherland; David A. Wardle; David C. Aldridge

    2017-01-01

    We identified emerging scientific, technological, and sociopolitical issues likely to affect how biological invasions are studied and managed over the next two decades. Issues were ranked according to their probability of emergence, pervasiveness, potential impact, and novelty. Top-ranked issues include the application of genomic modification tools to control invasions...

  11. Dynamics of cancerous tissue correlates with invasiveness

    NASA Astrophysics Data System (ADS)

    West, Ann-Katrine Vransø; Wullkopf, Lena; Christensen, Amalie; Leijnse, Natascha; Tarp, Jens Magelund; Mathiesen, Joachim; Erler, Janine Terra; Oddershede, Lene Broeng

    2017-03-01

    Two of the classical hallmarks of cancer are uncontrolled cell division and tissue invasion, which turn the disease into a systemic, life-threatening condition. Although both processes are studied, a clear correlation between cell division and motility of cancer cells has not been described previously. Here, we experimentally characterize the dynamics of invasive and non-invasive breast cancer tissues using human and murine model systems. The intrinsic tissue velocities, as well as the divergence and vorticity around a dividing cell correlate strongly with the invasive potential of the tissue, thus showing a distinct correlation between tissue dynamics and aggressiveness. We formulate a model which treats the tissue as a visco-elastic continuum. This model provides a valid reproduction of the cancerous tissue dynamics, thus, biological signaling is not needed to explain the observed tissue dynamics. The model returns the characteristic force exerted by an invading cell and reveals a strong correlation between force and invasiveness of breast cancer cells, thus pinpointing the importance of mechanics for cancer invasion.

  12. Housing is positively associated with invasive exotic plant species richness in New England, USA

    Treesearch

    Gregorio I. Gavier-Pizarro; Volker C. Radeloff; Susan I. Stewart; Cynthia D. Huebner; Nicholas S. Keuler

    2010-01-01

    Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating...

  13. Proceedings, U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species 2002

    Treesearch

    Sandra L. C. Fosbroke; Kurt W. Gottschalk; [Editors

    2003-01-01

    Contains 75 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species.

  14. Proceedings, U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species 2003

    Treesearch

    Kurt W., ed. Gottschalk

    2004-01-01

    Contains 56 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species.

  15. Proceedings, U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species 2001

    Treesearch

    Sandra L.C. Fosbroke; Kurt W., Gottschalk

    2001-01-01

    Contains 68 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture interagency research forum of gypsy moth and other invasive species.

  16. Treatment of non-muscle invasive bladder cancer with Bacillus Calmette–Guerin (BCG): Biological markers and simulation studies

    PubMed Central

    Kiselyov, Alex; Bunimovich-Mendrazitsky, Svetlana; Startsev, Vladimir

    2015-01-01

    Intravesical Bacillus Calmette–Guerin (BCG) vaccine is the preferred first line treatment for non-muscle invasive bladder carcinoma (NMIBC) in order to prevent recurrence and progression of cancer. There is ongoing need for the rational selection of i) BCG dose, ii) frequency of BCG administration along with iii) synergistic adjuvant therapy and iv) a reliable set of biochemical markers relevant to tumor response. In this review we evaluate cellular and molecular markers pertinent to the immunological response triggered by the BCG instillation and respective mathematical models of the treatment. Specific examples of markers include diverse immune cells, genetic polymorphisms, miRNAs, epigenetics, immunohistochemistry and molecular biology ‘beacons’ as exemplified by cell surface proteins, cytokines, signaling proteins and enzymes. We identified tumor associated macrophages (TAMs), human leukocyte antigen (HLA) class I, a combination of Ki-67/CK20, IL-2, IL-8 and IL-6/IL-10 ratio as the most promising markers for both pre-BCG and post-BCG treatment suitable for the simulation studies. The intricate and patient-specific nature of these data warrants the use of powerful multi-parametral mathematical methods in combination with molecular/cellular biology insight and clinical input. PMID:26673853

  17. New biological information on the invasive swallow-worts (Vincetoxicum spp.)

    USDA-ARS?s Scientific Manuscript database

    Vincetoxicum nigrum (L.) Moench [Cynanchum louiseae Kartesz & Gandhi] (black swallow-wort) and V. rossicum (Kleopow) Barbar. [Cynanchum rossicum (Kleopow) Borhidi] (pale swallow-wort) are herbaceous perennial vines in the Apocynaceae native to Europe. Both species are considered invasive in their in...

  18. Genetic analysis reveals multiple cryptic invasive species of the hydrozoan gene Cordylophora

    EPA Science Inventory

    Understanding the patterns and dynamics of biological invasions is a crucial prerequisite to predicting and mitigating their potential ecological and economic impacts. Unfortunately, in many cases such understanding is limited not only by ignorance of invasion history, but also b...

  19. Improving Transferability of Introduced Species’ Distribution Models: New Tools to Forecast the Spread of a Highly Invasive Seaweed

    PubMed Central

    Verbruggen, Heroen; Tyberghein, Lennert; Belton, Gareth S.; Mineur, Frederic; Jueterbock, Alexander; Hoarau, Galice; Gurgel, C. Frederico D.; De Clerck, Olivier

    2013-01-01

    The utility of species distribution models for applications in invasion and global change biology is critically dependent on their transferability between regions or points in time, respectively. We introduce two methods that aim to improve the transferability of presence-only models: density-based occurrence thinning and performance-based predictor selection. We evaluate the effect of these methods along with the impact of the choice of model complexity and geographic background on the transferability of a species distribution model between geographic regions. Our multifactorial experiment focuses on the notorious invasive seaweed Caulerpacylindracea (previously Caulerpa racemosa var. cylindracea ) and uses Maxent, a commonly used presence-only modeling technique. We show that model transferability is markedly improved by appropriate predictor selection, with occurrence thinning, model complexity and background choice having relatively minor effects. The data shows that, if available, occurrence records from the native and invaded regions should be combined as this leads to models with high predictive power while reducing the sensitivity to choices made in the modeling process. The inferred distribution model of Caulerpacylindracea shows the potential for this species to further spread along the coasts of Western Europe, western Africa and the south coast of Australia. PMID:23950789

  20. [Markers of stromal invasion during background and precancerous changes of the glandular epithelium and in adenocarcinoma of the cervix uteri].

    PubMed

    Danilova, N V; Andreeva, Iu Iu; Zavalishina, L É; Mal'kov, P G

    2012-01-01

    It is very difficult to identify stromal invasion when the glandular epithelium of the cervix uteri is involved. It is necessary to draw a clear distinction between its glandular structures and adenocarcinoma in situ, involving the preexisting crypts and invasive glands. An attempt was made to assess the possibilities of using as markers of invasion the following stromal proteins and adhesion molecules: CD44, E-cadherin, beta-catenin, tenascin, and laminin. Fifty-three cases of benign glandular changes, 66 cases of dysplasias and adenocarcinomas in situ, and 47 cases of invasive adenocarcinoma were examined. An immunohistochemical study was performed according to the standard protocol using the antibodies to CD44, laminin, tenascin, E-cadherin, and beta-catenin and a semiquantitative assessment of results was made. CD44 was found to be redistributed from the cells to the tumor stroma. CD44 was not detected in the stroma surrounding the intact glands, so were benign epithelial changes. In the tumor environment, there was, on the contrary, a reaction with CD44 in 74.5% of invasive adenocarcinomas cases (p < 0.05). The expression of tenascin in the invasive adenocarcinomas and around the foci of early stromal invasion significantly exceeded that in the stroma around the intact glands and dysplastic changes (p < 0.05). All the study groups showed a membrane reaction with E-cadherin and beta-catenin, which probably suggested that changes were absent in the Wnt signaling pathway. In 70.2% of invasive adenocarcinomas, laminin demonstrated a significant cytoplasmic expression in 5-30% of the tumor cells predominantly located along the tumor invasion area or in the deepest tumor complexes (p > 0.05). CD44 and tenascin are of great diagnostic value in examining invasive and microinvasive adenocarcinomas of the cervix uteri. E-cadherin and beta-catenin are of no diagnostic value in the study groups of pathological processes. Laminin is a potential marker of stromal invasion

  1. Establishing research and management priorities for invasive water primroses (Ludwigia spp.)

    USDA-ARS?s Scientific Manuscript database

    This technical report provides background information on invasive, aquatic Ludwigia species to assist aquatic resource managers. The report includes a description of the problems caused by these invasive plant species and why their current aggressive spread should concern resource managers and poli...

  2. Ancestral origins and invasion pathways in a globally invasive bird correlate with climate and influences from bird trade

    PubMed Central

    Jackson, Hazel; Strubbe, Diederik; Tollington, Simon; Prys-Jones, Robert; Matthysen, Erik; Groombridge, Jim J

    2015-01-01

    Invasive species present a major threat to global biodiversity. Understanding genetic patterns and evolutionary processes that reinforce successful establishment is paramount for elucidating mechanisms underlying biological invasions. Among birds, the ring-necked parakeet (Psittacula krameri) is one of the most successful invasive species, established in over 35 countries. However, little is known about the evolutionary genetic origins of this species and what population genetic signatures tell us about patterns of invasion. We reveal the ancestral origins of populations across the invasive range and explore the potential influence of climate and propagule pressure from the pet trade on observed genetic patterns. Ring-necked parakeet samples representing the ancestral native range (n = 96) were collected from museum specimens, and modern samples from the invasive range (n = 855) were gathered from across Europe, Mauritius and Seychelles, and sequenced for two mitochondrial DNA markers comprising 868 bp of cytochrome b and control region, and genotyped at 10 microsatellite loci. Invasive populations comprise birds that originate predominantly from Pakistan and northern areas of India. Haplotypes associated with more northerly distribution limits in the ancestral native range were more prevalent in invasive populations in Europe, and the predominance of Asian haplotypes in Europe is consistent with the higher number of Asian birds transported by the pet trade outside the native range. Successful establishment of invasive species is likely to be underpinned by a combination of environmental and anthropogenic influences. PMID:26172573

  3. Ancestral origins and invasion pathways in a globally invasive bird correlate with climate and influences from bird trade.

    PubMed

    Jackson, Hazel; Strubbe, Diederik; Tollington, Simon; Prys-Jones, Robert; Matthysen, Erik; Groombridge, Jim J

    2015-08-01

    Invasive species present a major threat to global biodiversity. Understanding genetic patterns and evolutionary processes that reinforce successful establishment is paramount for elucidating mechanisms underlying biological invasions. Among birds, the ring-necked parakeet (Psittacula krameri) is one of the most successful invasive species, established in over 35 countries. However, little is known about the evolutionary genetic origins of this species and what population genetic signatures tell us about patterns of invasion. We reveal the ancestral origins of populations across the invasive range and explore the potential influence of climate and propagule pressure from the pet trade on observed genetic patterns. Ring-necked parakeet samples representing the ancestral native range (n = 96) were collected from museum specimens, and modern samples from the invasive range (n = 855) were gathered from across Europe, Mauritius and Seychelles, and sequenced for two mitochondrial DNA markers comprising 868 bp of cytochrome b and control region, and genotyped at 10 microsatellite loci. Invasive populations comprise birds that originate predominantly from Pakistan and northern areas of India. Haplotypes associated with more northerly distribution limits in the ancestral native range were more prevalent in invasive populations in Europe, and the predominance of Asian haplotypes in Europe is consistent with the higher number of Asian birds transported by the pet trade outside the native range. Successful establishment of invasive species is likely to be underpinned by a combination of environmental and anthropogenic influences. © 2015 John Wiley & Sons Ltd.

  4. Non-invasive reproductive and stress endocrinology in amphibian conservation physiology

    PubMed Central

    Narayan, E. J.

    2013-01-01

    Non-invasive endocrinology utilizes non-invasive biological samples (such as faeces, urine, hair, aquatic media, and saliva) for the quantification of hormones in wildlife. Urinary-based enzyme immunoassay (EIA) and radio-immunoassay have enabled the rapid quantification of reproductive and stress hormones in amphibians (Anura: Amphibia). With minimal disturbance, these methods can be used to assess the ovarian and testicular endocrine functions as well as physiological stress in captive and free-living populations. Non-invasive endocrine monitoring has therefore greatly advanced our knowledge of the functioning of the stress endocrine system (the hypothalamo–pituitary–interrenal axis) and the reproductive endocrine system (the hypothalamo–pituitary–gonadal axis) in the amphibian physiological stress response, reproductive ecology, health and welfare, and survival. Biological (physiological) validation is necessary for obtaining the excretory lag time of hormone metabolites. Urinary-based EIA for the major reproductive hormones, estradiol and progesterone in females and testosterone in males, can be used to track the reproductive hormone profiles in relationship to reproductive behaviour and environmental data in free-living anurans. Urinary-based corticosterone metabolite EIA can be used to assess the sublethal impacts of biological stressors (such as invasive species and pathogenic diseases) as well as anthropogenic induced environmental stressors (e.g. extreme temperatures) on free-living populations. Non-invasive endocrine methods can also assist in the diagnosis of success or failure of captive breeding programmes by measuring the longitudinal patterns of changes in reproductive hormones and corticosterone within captive anurans and comparing the endocrine profiles with health records and reproductive behaviour. This review paper focuses on the reproductive and the stress endocrinology of anurans and demonstrates the uses of non-invasive endocrinology

  5. Calculating background levels for ecological risk parameters in toxic harbor sediment

    USGS Publications Warehouse

    Leadon, C.J.; McDonnell, T.R.; Lear, J.; Barclift, D.

    2007-01-01

    Establishing background levels for biological parameters is necessary in assessing the ecological risks from harbor sediment contaminated with toxic chemicals. For chemicals in sediment, the term contaminated is defined as having concentrations above background and significant human health or ecological risk levels. For biological parameters, a site could be considered contaminated if levels of the parameter are either more or less than the background level, depending on the specific parameter. Biological parameters can include tissue chemical concentrations in ecological receptors, bioassay responses, bioaccumulation levels, and benthic community metrics. Chemical parameters can include sediment concentrations of a variety of potentially toxic chemicals. Indirectly, contaminated harbor sediment can impact shellfish, fish, birds, and marine mammals, and human populations. This paper summarizes the methods used to define background levels for chemical and biological parameters from a survey of ecological risk investigations of marine harbor sediment at California Navy bases. Background levels for regional biological indices used to quantify ecological risks for benthic communities are also described. Generally, background stations are positioned in relatively clean areas exhibiting the same physical and general chemical characteristics as nearby areas with contaminated harbor sediment. The number of background stations and the number of sample replicates per background station depend on the statistical design of the sediment ecological risk investigation, developed through the data quality objective (DQO) process. Biological data from the background stations can be compared to data from a contaminated site by using minimum or maximum background levels or comparative statistics. In Navy ecological risk assessments (ERA's), calculated background levels and appropriate ecological risk screening criteria are used to identify sampling stations and sites with contaminated

  6. Population genetic dynamics of an invasion reconstructed from the sediment egg bank.

    PubMed

    Möst, Markus; Oexle, Sarah; Marková, Silvia; Aidukaite, Dalia; Baumgartner, Livia; Stich, Hans-Bernd; Wessels, Martin; Martin-Creuzburg, Dominik; Spaak, Piet

    2015-08-01

    Biological invasions are a global issue with far-reaching consequences for single species, communities and whole ecosystems. Our understanding of modes and mechanisms of biological invasions requires knowledge of the genetic processes associated with successful invasions. In many instances, this information is particularly difficult to obtain as the initial phases of the invasion process often pass unnoticed and we rely on inferences from contemporary population genetic data. Here, we combined historic information with the genetic analysis of resting eggs to reconstruct the invasion of Daphnia pulicaria into Lower Lake Constance (LLC) in the 1970s from the resting egg bank in the sediments. We identified the invader as 'European D. pulicaria' originating from meso- and eutrophic lowland lakes and ponds in Central Europe. The founding population was characterized by extremely low genetic variation in the resting egg bank that increased considerably over time. Furthermore, strong evidence for selfing and/or biparental inbreeding was found during the initial phase of the invasion, followed by a drop of selfing rate to low levels in subsequent decades. Moreover, the increase in genetic variation was most pronounced during early stages of the invasion, suggesting additional introductions during this period. Our study highlights that genetic data covering the entire invasion process from its beginning can be crucial to accurately reconstruct the invasion history of a species. We show that propagule banks can preserve such information enabling the study of population genetic dynamics and sources of genetic variation in successful invasive populations. © 2015 John Wiley & Sons Ltd.

  7. Enhanced identification and biological validation of differential gene expression via Illumina whole-genome expression arrays through the use of the model-based background correction methodology

    PubMed Central

    Ding, Liang-Hao; Xie, Yang; Park, Seongmi; Xiao, Guanghua; Story, Michael D.

    2008-01-01

    Despite the tremendous growth of microarray usage in scientific studies, there is a lack of standards for background correction methodologies, especially in single-color microarray platforms. Traditional background subtraction methods often generate negative signals and thus cause large amounts of data loss. Hence, some researchers prefer to avoid background corrections, which typically result in the underestimation of differential expression. Here, by utilizing nonspecific negative control features integrated into Illumina whole genome expression arrays, we have developed a method of model-based background correction for BeadArrays (MBCB). We compared the MBCB with a method adapted from the Affymetrix robust multi-array analysis algorithm and with no background subtraction, using a mouse acute myeloid leukemia (AML) dataset. We demonstrated that differential expression ratios obtained by using the MBCB had the best correlation with quantitative RT–PCR. MBCB also achieved better sensitivity in detecting differentially expressed genes with biological significance. For example, we demonstrated that the differential regulation of Tnfr2, Ikk and NF-kappaB, the death receptor pathway, in the AML samples, could only be detected by using data after MBCB implementation. We conclude that MBCB is a robust background correction method that will lead to more precise determination of gene expression and better biological interpretation of Illumina BeadArray data. PMID:18450815

  8. Intracoastal shipping drives patterns of regional population expansion by an invasive marine invertebrate

    EPA Science Inventory

    Understanding the factors contributing to expansion of non-native populations is a critical step toward accurate risk assessment and effective management of biological invasions. Numerous studies have attempted to predict spread of invasive populations by assessing habitat suitab...

  9. Large-scale removal of invasive honeysuckle decreases mosquito and avian host abundance

    USDA-ARS?s Scientific Manuscript database

    Invasive species rank second only to habitat destruction as a threat to native biodiversity. One consequence of biological invasions is altered risk of exposure to infectious diseases in human and animal populations. The distribution and prevalence of mosquito-borne diseases depend on the complex in...

  10. INVASION DYNAMICS OF RED SHINER (CYPRINELLA LUTRENSIS) ACROSS SOUTHEASTERN U.S. WATERSHEDS

    EPA Science Inventory

    Biological invasions are one of the foremost threats to the integrity of aquatic ecosystems in the U.S., but little is known regarding the invasion dynamics of non-indigenous fishes in streams. Southeastern streams, renowned for their exceptional levels of fish endemism and dive...

  11. Orchid-pollinator interactions and potential vulnerability to biological invasion.

    PubMed

    Chupp, Adam D; Battaglia, Loretta L; Schauber, Eric M; Sipes, Sedonia D

    2015-08-17

    Mutualistic relationships between plants and their pollinators have played a major role in the evolution of biodiversity. While the vulnerability of these relationships to environmental change is a major concern, studies often lack a framework for predicting impacts from emerging threats (e.g. biological invasions). The objective of this study was to determine the reliance of Platanthera ciliaris (orange-fringed orchid) on Papilio palamedes (Palamedes swallowtail butterfly) for pollination and the relative availability of alternative pollinators. Recent declines of P. palamedes larval host plants due to laurel wilt disease (LWD) could endanger P. ciliaris populations that rely heavily on this butterfly for pollination. We monitored pollinator visitation and fruit set and measured nectar spur lengths of P. ciliaris flowers and proboscis lengths of its floral visitors in Jackson County, MS, USA. Papilio palamedes was the primary visitor with minimal visitation by Phoebis sennae (cloudless sulfur butterfly). Lengths of P. ciliaris nectar spurs were similar to proboscis lengths of both pollinator species. Fruit set was moderate with access to pollinators (55 ± 10.8 %), yet failed (0 %) when pollinators were excluded. Visitation increased with inflorescence size, but there was no such pattern in fruit set, indicating that fruit set was not limited by pollinator visitation within the range of visitation rates we observed. Our results are supported by historical data that suggest P. palamedes and P. sennae are important pollinators of P. ciliaris. Although P. sennae may provide supplemental pollination service, this is likely constrained by habitat preferences that do not always overlap with those of P. cilaris. Observed declines of P. palamedes due to LWD could severely limit the reproductive success and persistence of P. ciliaris and similar orchid species populations. This empirical-based prediction is among the first to document exotic forest pests and pathogens as

  12. Classical biological control of invasive species: fighting fire with fire

    USDA-ARS?s Scientific Manuscript database

    Invasive species cost the US over $130 billion in losses and control costs every year. Exotic insects, weeds and pathogens are the primary invaders that frequently move across continents, exploding in numbers in areas where they have been newly introduced. There are many reasons that these pests r...

  13. Googling trends in conservation biology.

    PubMed

    Proulx, Raphaël; Massicotte, Philippe; Pépino, Marc

    2014-02-01

    Web-crawling approaches, that is, automated programs data mining the internet to obtain information about a particular process, have recently been proposed for monitoring early signs of ecosystem degradation or for establishing crop calendars. However, lack of a clear conceptual and methodological framework has prevented the development of such approaches within the field of conservation biology. Our objective was to illustrate how Google Trends, a freely accessible web-crawling engine, can be used to track changes in timing of biological processes, spatial distribution of invasive species, and level of public awareness about key conservation issues. Google Trends returns the number of internet searches that were made for a keyword in a given region of the world over a defined period. Using data retrieved online for 13 countries, we exemplify how Google Trends can be used to study the timing of biological processes, such as the seasonal recurrence of pollen release or mosquito outbreaks across a latitudinal gradient. We mapped the spatial extent of results from Google Trends for 5 invasive species in the United States and found geographic patterns in invasions that are consistent with their coarse-grained distribution at state levels. From 2004 through 2012, Google Trends showed that the level of public interest and awareness about conservation issues related to ecosystem services, biodiversity, and climate change increased, decreased, and followed both trends, respectively. Finally, to further the development of research approaches at the interface of conservation biology, collective knowledge, and environmental management, we developed an algorithm that allows the rapid retrieval of Google Trends data. © 2013 Society for Conservation Biology.

  14. Constructing an Invasion Machine: The Rapid Evolution of a Dispersal-Enhancing Phenotype During the Cane Toad Invasion of Australia.

    PubMed

    Hudson, C M; McCurry, M R; Lundgren, P; McHenry, C R; Shine, R

    Biological invasions can induce rapid evolutionary change. As cane toads (Rhinella marina) have spread across tropical Australia over an 80-year period, their rate of invasion has increased from around 15 to 60 km per annum. Toads at the invasion front disperse much faster and further than conspecifics from range-core areas, and their offspring inherit that rapid dispersal rate. We investigated morphological changes that have accompanied this dramatic acceleration, by conducting three-dimensional morphometric analyses of toads from both range-core and invasion-front populations. Morphology of heads, limbs, pectoral girdles and pelvic girdles differed significantly between toads from the two areas, ranging from 0.5% to 16.5% difference in mean bone dimensions between populations, with invasion-front toads exhibiting wider forelimbs, narrower hindlimbs and more compact skulls. Those changes plausibly reflect an increased reliance on bounding (multiple short hops in quick succession) rather than separate large leaps. Within an 80-year period, invasive cane toads have converted the basic anuran body plan - which evolved for occasional large leaps to evade predators - into a morphotype better-suited to sustained long-distance travel.

  15. Positive diversity–invasibility relationship in species-rich semi-natural grassland at the neighbourhood scale

    PubMed Central

    Zeiter, Michaela; Stampfli, Andreas

    2012-01-01

    Background and Aims Attempts to answer the old question of whether high diversity causes high invasion resistance have resulted in an invasion paradox: while large-scale studies often find a positive relationship between diversity and invasibility, small-scale experimental studies often find a negative relationship. Many of the small-scale studies are conducted in artificial communities of even-aged plants. Species in natural communities, however, do not represent one simultaneous cohort and occur at various levels of spatial aggregation at different scales. This study used natural patterns of diversity to assess the relationship between diversity and invasibility within a uniformly managed, semi-natural community. Methods In species-rich grassland, one seed of each of ten species was added to each of 50 contiguous 16 cm2 quadrats within seven plots (8 × 100 cm). The emergence of these species was recorded in seven control plots, and establishment success was measured in relation to the species diversity of the resident vegetation at two spatial scales, quadrat (64 cm2) within plots (800 cm2) and between plots within the site (approx. 400 m2) over 46 months. Key Results Invader success was positively related to resident species diversity and richness over a range of 28–37 species per plot. This relationship emerged 7 months after seed addition and remained over time despite continuous mortality of invaders. Conclusions Biotic resistance to plant invasion may play only a sub-ordinate role in species-rich, semi-natural grassland. As possible alternative explanations for the positive diversity–invasibility relationship are not clear, it is recommended that future studies elaborate fine-scale environmental heterogeneity in resource supplies or potential resource flows from resident species to seedlings by means of soil biological networks established by arbuscular mycorrhizal fungi. PMID:22956533

  16. Lianas as invasive species in North America: Chapter 28

    USGS Publications Warehouse

    Leicht-Young, Stacey A.; Pavlovic, Noel B.

    2015-01-01

    Liana diversity is typically low in the temperate zones; however, the influx of non-native invasive liana species in North America has increased local diversity at the expense of native habitats and species. Some of the most illustrative studies of invasive lianas in temperate North America compared the biological traits of invasive lianas with native congeners or ecological analogs. The majority of these studies focused on two species, Celastrus orbiculatus (oriental bittersweet) and Lonicera japonica (Japanese honeysuckle). Temperate zone lianas generally have higher photosynthetic rates than other early successional species and their host trees. Invasive lianas are having an increasing impact on the dynamics and trajectories of North American plant communities. They often exhibit superior growth and survival compared to their native counterparts, and in some cases, invasive lianas may directly contribute to the decline of their native correlates.

  17. Globalization and Invasive Species Issues in Hawaii: Role-Playing Some Local Perspectives

    ERIC Educational Resources Information Center

    Fox, Alison M.; Loope, Lloyd L.

    2007-01-01

    Increasingly recognized as having significant economic and ecological impacts, non-native invasive species have become an important interdisciplinary topic in biological and social science courses. Oceanic island systems like Hawaii have been particularly susceptible to invaders and efforts to prevent further invasions focus on reducing the…

  18. Effects of nonindigenous invasive species on water quality and quantity

    Treesearch

    Frank H. McCormick; Glen C. Contreras; Sherri L. Johnson

    2010-01-01

    Physical and biological disruptions of aquatic systems caused by invasive species alter water quantity and water quality. Recent evidence suggests that water is a vector for the spread of Sudden Oak Death disease and Port-Orfordcedar root disease. Since the 1990s, the public has become increasingly aware of the presence of invasive species in the Nation’s waters. Media...

  19. Genetic signatures of historical dispersal of fish threatened by biological invasions: the case of galaxiids in South America

    USGS Publications Warehouse

    Vanhaecke, Delphine; Garcia de Leaniz, Carlos; Gajardo, Gonzalo; Dunham, Jason; Giannico, Guillermo; Consegura, Sofia

    2015-01-01

    Aim The ecological effects of biological invasions are well documented, but little is known about the effects of invaders on the genetic structure of native species. We examined the phylogeography, genetic variation and population structuring of two galaxiid fishes, Aplochiton zebraand A. taeniatus, threatened by non-native salmonids, and whose conservation is complicated by misidentification and limited knowledge of their genetic diversity. Location Chile and the Falkland Islands. Methods We combined microsatellite and mitochondrial DNA (16S rDNA and COI) markers to compare genetic diversity, effective population size and gene flow of Aplochiton spp. populations differentially affected by salmonid presence. Results We identified two 16S rDNA haplotypes among A. zebra – one dominant in coastal populations and another dominant in inland populations. Populations living on the island of Chiloé displayed a mixture of coastal and inland haplotypes, as well as high microsatellite diversity, as one would expect if the island had been a refugium during the Last Glacial Maximum, or a contact zone among populations. Microsatellite data revealed strong population structuring, indicative of current isolation patterns, and a negative correlation between the genetic diversity of A. zebra and the relative abundance of invasive salmonids. Main conclusions Our study indicates that population structuring of A. zebra reflects the influence of historical patterns of migration, but also the current levels of reduced gene flow among watersheds. Invasive salmonids, known to compete with and prey on native galaxiids, may have had negative impacts on the genetic diversity of Aplochiton spp. The low genetic variation found in some populations, coupled with potential biases in abundance estimates due to species misidentification, highlight the urgent need for more research into the conservation status of the two species of Aplochiton.

  20. Ecological invasion, roughened fronts, and a competitor's extreme advance: integrating stochastic spatial-growth models.

    PubMed

    O'Malley, Lauren; Korniss, G; Caraco, Thomas

    2009-07-01

    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibits universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.

  1. Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions.

    PubMed

    Lagos, Marcelo E; Barneche, Diego R; White, Craig R; Marshall, Dustin J

    2017-06-01

    Biological invasions are one of the biggest threats to global biodiversity. Marine artificial structures are proliferating worldwide and provide a haven for marine invasive species. Such structures disrupt local hydrodynamics, which can lead to the formation of oxygen-depleted microsites. The extent to which native fauna can cope with such low oxygen conditions, and whether invasive species, long associated with artificial structures in flow-restricted habitats, have adapted to these conditions remains unclear. We measured water flow and oxygen availability in marinas and piers at the scales relevant to sessile marine invertebrates (mm). We then measured the capacity of invasive and native marine invertebrates to maintain metabolic rates under decreasing levels of oxygen using standard laboratory assays. We found that marinas reduce water flow relative to piers, and that local oxygen levels can be zero in low flow conditions. We also found that for species with erect growth forms, invasive species can tolerate much lower levels of oxygen relative to native species. Integrating the field and laboratory data showed that up to 30% of available microhabitats within low flow environments are physiologically stressful for native species, while only 18% of the same habitat is physiologically stressful for invasive species. These results suggest that invasive species have adapted to low oxygen habitats associated with manmade habitats, and artificial structures may be creating niche opportunities for invasive species. © 2017 John Wiley & Sons Ltd.

  2. Proceedings, 18th U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species 2007

    Treesearch

    Kurt W., ed. Gottschalk

    2008-01-01

    Contains 60 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species.

  3. Proceedings, 16th U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species 2005

    Treesearch

    Kurt W. Gottschalk

    2005-01-01

    Contains 61 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U. S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species.

  4. Overview of saltcedar biological control

    Treesearch

    C. Jack DeLoach; Lindsey R. Milbrath; Ray Carruthers; Allen E. Knutson; Fred Nibling; Debra Eberts; David C. Thompson; David J. Kazmer; Tom L. Dudley; Dan W. Bean; Jeff B. Knight

    2006-01-01

    Biological control has successfully controlled 10 exotic, invasive weeds of rangelands and natural ecosystems in the United States since 1945, and control of others is in progress. We initiated biological control of saltcedar (Tamarix spp.) in 1987, using host-specific insect herbivores that regulate saltcedar populations in the Old World. We did a...

  5. Impacts of biological control and invasive species on a non-target native Hawaiian insect.

    PubMed

    Johnson, M Tracy; Follett, Peter A; Taylor, Andrew D; Jones, Vincent P

    2005-02-01

    The potential for classical biological control to cause unintended harm to native species was evaluated in the case of the endemic Hawaiian koa bug, Coleotichus blackburniae White (Hemiptera: Scutelleridae), and parasitoids introduced to Hawaii for control of an agricultural pest, the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae). Parasitism of C. blackburniae eggs, nymphs and adults by biocontrol agents was quantified across a wide range of habitats and compared to other sources of mortality. Egg mortality due to the biocontrol agent Trissolcus basalis Wollaston (Hymenoptera: Scelionidae) was low (maximum 26%) and confined to elevations below 500 m on a single host plant. Predation, mainly by alien spiders and ants, was the greatest source of egg mortality (maximum 87%). Parasitism of adult C. blackburniae by the biocontrol agent Trichopoda pilipes (F.) (Diptera: Tachinidae) was near zero at 21 of 24 sites surveyed. Three sites with high bug density had higher levels of T. pilipes parasitism, reaching maxima of 70% among adult female bugs, 100% among males and 50% among fifth instars. Male-biased parasitism indicated that T. pilipes is adapted to using male aggregation pheromone for finding C. blackburniae hosts. The relative impacts of biocontrol agents and other sources of mortality were compared using life tables. Invasive species, particularly generalist egg predators, had the greatest impacts on C. blackburniae populations. Effects of intentionally introduced parasitoids were relatively minor, although the tachinid T. pilipes showed potential for large impacts at individual sites. In retrospect, non-target attacks by biological control agents on C. blackburniae were predictable, but the environmental range and magnitude of impacts would have been difficult to foresee.

  6. Biology and host range of Heterapoderopsis bicallosicollis; a potential biological control agent for Chinese tallow Triadica sebifera

    USDA-ARS?s Scientific Manuscript database

    Chinese tallow, Triadica sebifera, is an invasive weed that infests natural and agricultural areas of the southeastern USA. A candidate for biological control of Chinese tallow has been studied under quarantine conditions. The biology and host range of a primitive leaf feeding beetle, Heterapoderops...

  7. The effect of invasive hybrid taxa on the ecological succession of coastal marshes

    USDA-ARS?s Scientific Manuscript database

    Hybridization following colonization of invasive species in novel environments frequently results in offspring with improved biological and competitive functions referred to as heterosis or hybrid vigor. However, little is known about the effect of these invasive hybrids on the structuring and funct...

  8. Multiple expression patterns of biopathological markers in primary invasive breast carcinoma: a useful tool for elucidating its biological behaviour.

    PubMed

    Ceccarelli, C; Santini, D; Chieco, P; Taffurelli, M; Marrano, D; Mancini, A M

    1995-03-01

    Commonly used clinical and morphologic criteria have been reported to be of limited value in predicting the outcome of malignant tumours of the breast. Integrated information from the quantitative analysis in tumour tissue of biological parameters such as oestrogen and progesterone receptors (ER and PGR), proliferative activity, and proto-oncogene p53, c-erB2, and bcl-2 expression, may be useful for defining the biology of growth of breast carcinoma and to plan effective therapeutic strategies. Immunohistochemistry with antibodies recognizing ER, PGR, Ki-67, and the p53, c-erbB2, and bcl-2 encoded proteins was performed on 291 primary breast carcinomas. Results were integrated with clinico-pathological indicators and examined with multivariate statistical procedures and modeling. P53, c-erbB2, and bcl-2 gene products were detected, respectively, in 30.6%, 31.6%, and 85.9% of the examined invasive breast carcinomas, revealing variable associations with cellular differentiation and proliferation as defined by ER/PGR status, Ki-67, tumour mass and histologic and nuclear grading. A multivariate graphical display on a subset of the most informative cases revealed that bcl-2 expression parallels ER/PGR status and is of importance in separating tumour clusters with different degrees of aggressiveness. The results of this study indicate that multivariate explorative analyses conducted on biological and clinico-pathological parameters might constitute an integrated approach to data analysis useful for distinguishing different biological behaviours and therapeutic groups in breast carcinoma. Our findings also suggest that bcl-2 expression may play a pivotal role in tumours lacking ER-mediated growth regulation.

  9. The ecology of forest insect invasions and advances in their management

    Treesearch

    Eckehard G. Brockerhoff; Andrew M. Liebhold; Herv& #233; Jactel

    2006-01-01

    Invasions by nonindigenous forest insects can have spectacular effects on the biodiversity, ecology, and economy of affected areas. This introduction explores several critical issues that are generally relevant to invasions by forest insects to provide an extended background for this special issue of the Canadian Journal of Forest Research and...

  10. Invasive Plant Management in the United States National Wildlife Refuge

    USGS Publications Warehouse

    Lusk, Michael; Ericson, Jenny

    2011-01-01

    Invasive species pose a significant challenge to the National Wildlife Refuge System and have been identified as the single most important threat to habitat management on refuges. At present, it is estimated that over 2 million acres of refuge lands are invaded by invasive plants. The current and potential costs of controlling invasive plants, as well as monitoring and restoring refuge lands, are significant both financially and ecologically. Budgetary expenditures for invasive species projects in FY 2009 totaled $18.4 million. A number of strategies are used to confront this threat and have resulted in success on a variety of levels. The Refuge System utilizes key partnerships, invasive species strike teams, and a dedicated cadre of volunteers to implement projects that incorporate mechanical, chemical and biological control methods.

  11. Community and ecosystem consequences of Microstegium vimineum invasions in eastern forests

    Treesearch

    S. Luke. Flory

    2011-01-01

    Over the past two decades, biological invasions have come to the forefront as a major factor driving global environmental change. Introduced species can reduce biodiversity, inhibit the natural process of succession, and alter ecosystem functions such as nutrient and carbon cycling. There is an urgent need to understand the effects of invasions on native systems in...

  12. Testing genotypic variation of an invasive plant species in response to soil disturbance and herbivory.

    PubMed

    Bayliss, Shannon L J; terHorst, Casey P; Lau, Jennifer A

    2017-04-01

    Herbivores, competitors, and predators can inhibit biological invasions ("biotic resistance" sensu Elton 1959), while disturbance typically promotes biological invasions. Although biotic resistance and disturbance are often considered separately in the invasion literature, these two forces may be linked. One mechanism by which disturbance may facilitate biological invasions is by decreasing the effectiveness of biotic resistance. The effects of both disturbance and biotic resistance may vary across invading genotypes, and genetic variation in the invasive propagule pool may increase the likelihood that some genotypes can overcome biotic resistance or take greater advantage of disturbance. We conducted an experimental field trial in which we manipulated soil disturbance (thatch removal and loosening soil) and the presence of insect herbivores and examined their effects on the invasion success of 44 Medicago polymorpha genotypes. As expected, insecticide reduced leaf damage and increased Medicago fecundity, suggesting that insect herbivores in this system provide some biotic resistance. Soil disturbance increased Medicago fecundity, but did not alter the effectiveness of biotic resistance by insect herbivores. We found significant genetic variation in Medicago in response to disturbance, but not in response to insect herbivores. These results suggest that the ability of Medicago to invade particular habitats depends on the amount of insect herbivory, the history of disturbance in the habitat, and how the specific genotypes in the invader pool respond to these factors.

  13. Germination Biology of Two Invasive Physalis Species and Implications for Their Management in Arid and Semi-arid Regions.

    PubMed

    Ozaslan, Cumali; Farooq, Shahid; Onen, Huseyin; Ozcan, Selcuk; Bukun, Bekir; Gunal, Hikmet

    2017-12-05

    Two Solanaceae invasive plant species (Physalis angulata L. and P. philadelphica Lam. var. immaculata Waterfall) infest several arable crops and natural habitats in Southeastern Anatolia region, Turkey. However, almost no information is available regarding germination biology of both species. We performed several experiments to infer the effects of environmental factors on seed germination and seedling emergence of different populations of both species collected from various locations with different elevations and habitat characteristics. Seed dormancy level of all populations was decreased with increasing age of the seeds. Seed dormancy of freshly harvested and aged seeds of all populations was effectively released by running tap water. Germination was slightly affected by photoperiods, which suggests that seeds are slightly photoblastic. All seeds germinated under wide range of temperature (15-40 °C), pH (4-10), osmotic potential (0 to -1.2 MPa) and salinity (0-400 mM sodium chloride) levels. The germination ability of both plant species under wide range of environmental conditions suggests further invasion potential towards non-infested areas in the country. Increasing seed burial depth significantly reduced the seedling emergence, and seeds buried below 4 cm of soil surface were unable to emerge. In arable lands, soil inversion to maximum depth of emergence (i.e., 6 cm) followed by conservational tillage could be utilized as a viable management option.

  14. Glioma Invasiveness Responds Variably to Irradiation in a Co-Culture Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Jean L.; Haas-Kogan, Daphne A.; Department of Neurological Surgery, University of California-San Francisco, San Francisco, CA

    2007-11-01

    Purpose: We developed a co-culture system to quantitate the growth and invasion of human malignant gliomas into a background of confluent normal human astrocytes, then used this assay to assess independently the effects of irradiating both cell types on glioma invasion. Methods and Materials: Enhanced green fluorescent protein (EGFP)-labeled immortalized human astrocytes, human malignant glioma cells, or transformed human astrocytes were focally plated onto a confluent layer of normal human astrocytes, and the invasiveness of EGFP-labeled cells was scored after 96 h. To address the consequences of irradiation on glioma invasion, the invasiveness of irradiated glioma cell lines and irradiatedmore » astrocytic backgrounds was assessed. Fluorescence-activated cell sorting was used to quantitate the total number of EGFP-labeled cells. Results: Growth in the co-culture assay consistently reflected transformation states of the plated cells. Immortalized, but untransformed human astrocytes failed even to establish growth on confluent normal human astrocytes. In contrast, all malignant human glioma cell lines and transformed human astrocytes demonstrated various degrees of infiltration into the astrocytic bed. Irradiation failed to alter the invasiveness of U87, A172, and U373. A 1-Gy dose slightly reduced the invasiveness of U251 MG by 75% (p < 0.05 by one-way analysis of variance and post hoc Neuman-Keuls), without reducing total cell numbers. Independently irradiating the human astrocytic bed did not alter the invasiveness of nonirradiated U251, whereas the matrix metalloproteinase (MMP) inhibitor GM6001 reduced U251 invasiveness in the co-culture assay. Conclusions: Growth in the co-culture assay reflects the transformation status and provides a useful in vitro model for assessing invasiveness. Human glioma invasiveness in the co-culture model responds variably to single low-dose fractions. MMP activity promotes invasiveness in the co-culture model. Reduced

  15. Ecosystem and immune systems: Hierarchial response provides resilience against invasions

    USGS Publications Warehouse

    Allen, Craig R.

    2001-01-01

    Janssen (2001) provides the stimulus for thoughtful comparison and consideration of the ranges of responses exhibited by immune systems and ecological systems in the face of perturbations such as biological invasions. It may indeed be informative to consider the similarities of the responses to invasions exhibited by immune systems and ecological systems. Clearly, both types of systems share a general organizational structure with all other complex hierarchical systems. Their organization provides these systems with resilience. However, when describing the response of ecological-economic systems to invasions, Janssen emphasizes the human-economic response. I would like to expand on his comparison by focusing on how resilience is maintained in complex systems under the threat of invasion.

  16. Academic Preparation in Biology and Advocacy for Teaching Evolution: Biology versus Non-Biology Teachers

    ERIC Educational Resources Information Center

    Nehm, Ross H.; Kim, Sun Young; Sheppard, Keith

    2009-01-01

    Despite considerable focus on evolution knowledge-belief relationships, little research has targeted populations with strong content backgrounds, such as undergraduate degrees in biology. This study (1) measured precertified biology and non-biology teachers' (n = 167) knowledge of evolution and the nature of science; (2) quantified teacher…

  17. Evidence of biotic resistance to invasions in forests of the Eastern USA

    Treesearch

    Basil V. Iannone III; Kevin M. Potter; Kelly-Ann Dixon Hamil; Whitney Huang; Hao Zhang; Qinfeng Guo; Christopher M. Oswalt; Christopher W. Woodall; Songlin Fei

    2016-01-01

    Context Detecting biotic resistance to biological invasions across large geographic areas may require acknowledging multiple metrics of niche usage and potential spatial heterogeneity in associations between invasive and native species diversity and dominance.Objectives Determine (1) if native communities are ...

  18. A global assessment of a large monocot family highlights the need for group-specific analyses of invasiveness

    PubMed Central

    Moodley, Desika; Procheş, Şerban; Wilson, John R. U.

    2016-01-01

    Significant progress has been made in understanding biological invasions recently, and one of the key findings is that the determinants of naturalization and invasion success vary from group to group. Here, we explore this variation for one of the largest plant families in the world, the Araceae. This group provides an excellent opportunity for identifying determinants of invasiveness in herbaceous plants, since it is one of the families most popular with horticulturalists, with species occupying various habitats and comprising many different life forms. We first developed a checklist of 3494 species of Araceae using online databases and literature sources. We aimed to determine whether invasiveness across the introduction–naturalization–invasion continuum is associated to particular traits within the family, and whether analyses focussed on specific life forms can reveal any mechanistic correlates. Boosted regression tree models were based on species invasion statuses as the response variables, and traits associated with human use, biological characteristics and distribution as the explanatory variables. The models indicate that biological traits such as plant life form and pollinator type are consistently strong correlates of invasiveness. Additionally, large-scale correlates such as the number of native floristic regions and number of introduced regions are also influential at particular stages in the invasion continuum. We used these traits to build a phenogram showing groups defined by the similarity of characters. We identified nine groups that have a greater tendency to invasiveness (including Alocasia, the Lemnoideae and Epipremnum). From this, we propose a list of species that are not currently invasive for which we would recommend a precautionary approach to be taken. The successful management of plant invasions will depend on understanding such context-dependent effects across taxonomic groups, and across the different stages of the invasion process

  19. Transatlantic invasion routes and adaptive potential in North American populations of the invasive glossy buckthorn, Frangula alnus

    PubMed Central

    De Kort, Hanne; Mergeay, Joachim; Jacquemyn, Hans; Honnay, Olivier

    2016-01-01

    Background and Aims Many invasive species severely threaten native biodiversity and ecosystem functioning. One of the most prominent questions in invasion genetics is how invasive populations can overcome genetic founder effects to establish stable populations after colonization of new habitats. High native genetic diversity and multiple introductions are expected to increase genetic diversity and adaptive potential in the invasive range. Our aim was to identify the European source populations of Frangula alnus (glossy buckthorn), an ornamental and highly invasive woody species that was deliberately introduced into North America at the end of the 18th century. A second aim of this study was to assess the adaptive potential as an explanation for the invasion success of this species. Methods Using a set of annotated single-nucleotide polymorphisms (SNPs) that were assigned a putative function based on sequence comparison with model species, a total of 38 native European and 21 invasive North American populations were subjected to distance-based structure and assignment analyses combined with population genomic tools. Genetic diversity at SNPs with ecologically relevant functions was considered as a proxy for adaptive potential. Key Results Patterns of invasion coincided with early modern transatlantic trading routes. Multiple introductions through transatlantic trade from a limited number of European port regions to American urban areas led to the establishment of bridgehead populations with high allelic richness and expected heterozygosity, allowing continuous secondary migration to natural areas. Conclusions Targeted eradication of the urban populations, where the highest genetic diversity and adaptive potential were observed, offers a promising strategy to arrest further invasion of native American prairies and forests. PMID:27539599

  20. Protected areas offer refuge from invasive species spreading under climate change.

    PubMed

    Gallardo, Belinda; Aldridge, David C; González-Moreno, Pablo; Pergl, Jan; Pizarro, Manuel; Pyšek, Petr; Thuiller, Wilfried; Yesson, Christopher; Vilà, Montserrat

    2017-12-01

    Protected areas (PAs) are intended to provide native biodiversity and habitats with a refuge against the impacts of global change, particularly acting as natural filters against biological invasions. In practice, however, it is unknown how effective PAs will be in shielding native species from invasions under projected climate change. Here, we investigate the current and future potential distributions of 100 of the most invasive terrestrial, freshwater, and marine species in Europe. We use this information to evaluate the combined threat posed by climate change and invasions to existing PAs and the most susceptible species they shelter. We found that only a quarter of Europe's marine and terrestrial areas protected over the last 100 years have been colonized by any of the invaders investigated, despite offering climatically suitable conditions for invasion. In addition, hotspots of invasive species and the most susceptible native species to their establishment do not match at large continental scales. Furthermore, the predicted richness of invaders is 11%-18% significantly lower inside PAs than outside them. Invasive species are rare in long-established national parks and nature reserves, which are actively protected and often located in remote and pristine regions with very low human density. In contrast, the richness of invasive species is high in the more recently designated Natura 2000 sites, which are subject to high human accessibility. This situation may change in the future, since our models anticipate important shifts in species ranges toward the north and east of Europe at unprecedented rates of 14-55 km/decade, depending on taxonomic group and scenario. This may seriously compromise the conservation of biodiversity and ecosystem services. This study is the first comprehensive assessment of the resistance that PAs provide against biological invasions and climate change on a continental scale and illustrates their strategic value in safeguarding native

  1. A functional trait perspective on plant invasion

    PubMed Central

    Drenovsky, Rebecca E.; Grewell, Brenda J.; D'Antonio, Carla M.; Funk, Jennifer L.; James, Jeremy J.; Molinari, Nicole; Parker, Ingrid M.; Richards, Christina L.

    2012-01-01

    Background and Aims Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management. Scope We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change. Conclusions To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels. PMID:22589328

  2. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    PubMed

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. © 2012 Blackwell Publishing Ltd.

  3. Biological Control of Southern Pine Beetle

    Treesearch

    Fred M. Stephen; C. Wayne Berisford

    2011-01-01

    Exotic invasive forest insects are frequently managed through classical biological control, which involves searching for, introducing, and establishing their exotic natural enemies. Biological control of native bark beetles, including the southern pine beetle (SPB), has been primarily attempted by conserving and manipulating their natural enemies. Knowledge of the role...

  4. Toward a comprehensive information system to assist invasive species management in Hawaii and Pacific Islands

    USGS Publications Warehouse

    Fornwall, M.; Loope, L.

    2004-01-01

    The need for coordinated regional and global electronic databases to assist prevention, early detection, rapid response, and control of biological invasions is well accepted. The Pacific Basin Information Node (PBIN), a node of the National Biological Information Infrastructure, has been increasingly engaged in the invasive species enterprise since its establishment in 2001. Since this time, PBIN has sought to support frontline efforts at combating invasions, through working with stakeholders in conservation, agriculture, forestry, health, and commerce to support joint information needs. Although initial emphasis has been on Hawaii, cooperative work with other Pacific islands and countries of the Pacific Rim is already underway and planned.

  5. The role of hybridization in facilitating tree invasion

    PubMed Central

    2017-01-01

    Abstract Hybridization events can generate additional genetic diversity upon which natural selection can act and at times enhance invasiveness of the species. Invasive tree species are a growing ecological concern worldwide, and some of these invasions involve hybridization events pre- or post-introduction. There are 20 hybrid invasive tree taxa in 15 genera (11 plant families) discussed here. When reported, abundance of hybrids comprised 10–100 % of an invasion, the remainder being parental taxa. In seven hybrid taxa, researchers identified phenotypes that may make hybrids better invaders. Twelve hybrid tree taxa involved introgression and more hybrids involved all non-native taxa than native × non-native taxa. Three hybrid tree taxa were the result of intentional crosses, and all hybrid taxa involved intentional introduction of either one or more parental taxon or the hybrid itself. The knowledge gaps present in some hybrid tree taxa can weaken our effectiveness in predicting and controlling invasions, as hybrids can add a level of complexity to an invasion by being morphologically cryptic, causing genetic pollution of a native parental taxon, presenting novel genotypes for which there may not be coevolved biological control agents, or evolving adaptive traits through increased genetic variation. PMID:28028055

  6. Assessing biological invasions in European Seas: Biological traits of the most widespread non-indigenous species

    NASA Astrophysics Data System (ADS)

    Cardeccia, Alice; Marchini, Agnese; Occhipinti-Ambrogi, Anna; Galil, Bella; Gollasch, Stephan; Minchin, Dan; Narščius, Aleksas; Olenin, Sergej; Ojaveer, Henn

    2018-02-01

    The biological traits of the sixty-eight most widespread multicellular non-indigenous species (MWNIS) in European Seas: Baltic Sea, Western European Margin of the Atlantic Ocean and the Mediterranean Sea were examined. Data for nine biological traits was analyzed, and a total of 41 separate categories were used to describe the biological and ecological functions of these NIS. Our findings show that high dispersal ability, high reproductive rate and ecological generalization are the biological traits commonly associated with MWNIS. The functional groups that describe most of the 68 MWNIS are: photoautotrophic, zoobenthic (both sessile and motile) and nektonic predatory species. However, these 'most widespread' species comprise a wide range of taxa and biological trait profiles; thereby a clear "identikit of a perfect invader" for marine and brackish environments is difficult to define. Some traits, for example: "life form", "feeding method" and "mobility", feature multiple behaviours and strategies. Even species introduced by a single pathway, e.g. vessels, feature diverse biological trait profiles. MWNIS likely to impact community organization, structure and diversity are often associated with brackish environments. For many traits ("life form", "sociability", "reproductive type", "reproductive frequency", "haploid and diploid dispersal" and "mobility"), the categories mostly expressed by the impact-causing MWNIS do not differ substantially from the whole set of MWNIS.

  7. Proceedings, XV U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species 2004

    Treesearch

    Kurt W., ed. Gottschalk

    2005-01-01

    Contains 61 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U. S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species. The online version contains two additional papers that were not available at...

  8. Niche conservatism and the invasive potential of the wild boar.

    PubMed

    Sales, Lilian Patrícia; Ribeiro, Bruno R; Hayward, Matt Warrington; Paglia, Adriano; Passamani, Marcelo; Loyola, Rafael

    2017-09-01

    Niche conservatism, i.e. the retention of a species' fundamental niche through evolutionary time, is cornerstone for biological invasion assessments. The fact that species tend to maintain their original climate niche allows predictive maps of invasion risk to anticipate potential invadable areas. Unravelling the mechanisms driving niche shifts can shed light on the management of invasive species. Here, we assessed niche shifts in one of the world's worst invasive species: the wild boar Sus scrofa. We also predicted potential invadable areas based on an ensemble of three ecological niche modelling methods, and evaluated the performance of models calibrated with native vs. pooled (native plus invaded) species records. By disentangling the drivers of change on the exotic wild boar population's niches, we found strong evidence for niche conservatism during biological invasion. Ecological niche models calibrated with both native and pooled range records predicted convergent areas. Also, observed niche shifts are mostly explained by niche unfilling, i.e. there are unoccupied areas in the exotic range where climate is analogous to the native range. Niche unfilling is expected as result of recent colonization and ongoing dispersal, and was potentially stronger for the Neotropics, where a recent wave of introductions for pig-farming and game-hunting has led to high wild boar population growth rates. The invasive potential of wild boar in the Neotropics is probably higher than in other regions, which has profound management implications if we are to prevent their invasion into species-rich areas, such as Amazonia, coupled with expansion of African swine fever and possibly great economic losses. Although the originally Eurasian-wide distribution suggests a pre-adaptation to a wide array of climates, the wild boar world-wide invasion does not exhibit evidence of niche evolution. The invasive potential of the wild boar therefore probably lies on the reproductive, dietary and

  9. Per capita invasion probabilities: an empirical model to predict rates of invasion via ballast water

    USGS Publications Warehouse

    Reusser, Deborah A.; Lee, Henry; Frazier, Melanie; Ruiz, Gregory M.; Fofonoff, Paul W.; Minton, Mark S.; Miller, A. Whitman

    2013-01-01

    Ballast water discharges are a major source of species introductions into marine and estuarine ecosystems. To mitigate the introduction of new invaders into these ecosystems, many agencies are proposing standards that establish upper concentration limits for organisms in ballast discharge. Ideally, ballast discharge standards will be biologically defensible and adequately protective of the marine environment. We propose a new technique, the per capita invasion probability (PCIP), for managers to quantitatively evaluate the relative risk of different concentration-based ballast water discharge standards. PCIP represents the likelihood that a single discharged organism will become established as a new nonindigenous species. This value is calculated by dividing the total number of ballast water invaders per year by the total number of organisms discharged from ballast. Analysis was done at the coast-wide scale for the Atlantic, Gulf, and Pacific coasts, as well as the Great Lakes, to reduce uncertainty due to secondary invasions between estuaries on a single coast. The PCIP metric is then used to predict the rate of new ballast-associated invasions given various regulatory scenarios. Depending upon the assumptions used in the risk analysis, this approach predicts that approximately one new species will invade every 10–100 years with the International Maritime Organization (IMO) discharge standard of 50 μm per m3 of ballast. This approach resolves many of the limitations associated with other methods of establishing ecologically sound discharge standards, and it allows policy makers to use risk-based methodologies to establish biologically defensible discharge standards.

  10. Exotic invasive plants in southeastern forests

    Treesearch

    James H. Miller

    1998-01-01

    Invasive exotic plants usurp forest productivity, hinder forest-use activities, and limit diversity on millions of acres of forest land in the Southeast Infestations of these plants and their range are constantly expanding, This paper examines the various aspects of the problem. Outlined are the biology, origin, range, uses, and herbicide control for 14 of the most...

  11. Are genes faster than crabs? Mitochondrial introgression exceeds larval dispersal during population expansion of the invasive crab Carcinus maenas.

    PubMed

    Darling, John A; Tsai, Yi-Hsin Erica; Blakeslee, April M H; Roman, Joe

    2014-10-01

    Biological invasions offer unique opportunities to investigate evolutionary dynamics at the peripheries of expanding populations. Here, we examine genetic patterns associated with admixture between two distinct invasive lineages of the European green crab, Carcinus maenas L., independently introduced to the northwest Atlantic. Previous investigations based on mitochondrial DNA sequences demonstrated that larval dispersal driven by advective currents could explain observed southward displacement of an admixture zone between the two invasions. Comparison of published mitochondrial results with new nuclear data from nine microsatellite loci, however, reveals striking discordance in their introgression patterns. Specifically, introgression of mitochondrial genomes relative to nuclear background suggests that demographic processes such as sex-biased reproductive dynamics and population size imbalances-and not solely larval dispersal-play an important role in driving the evolution of the genetic cline. In particular, the unpredicted introgression of mitochondrial alleles against the direction of mean larval dispersal in the region is consistent with recent models invoking similar demographic processes to explain movements of genes into invading populations. These observations have important implications for understanding historical shifts in C. maenas range limits, and more generally for inferences of larval dispersal based on genetic data.

  12. Are genes faster than crabs? Mitochondrial introgression exceeds larval dispersal during population expansion of the invasive crab Carcinus maenas

    PubMed Central

    Darling, John A.; Tsai, Yi-Hsin Erica; Blakeslee, April M. H.; Roman, Joe

    2014-01-01

    Biological invasions offer unique opportunities to investigate evolutionary dynamics at the peripheries of expanding populations. Here, we examine genetic patterns associated with admixture between two distinct invasive lineages of the European green crab, Carcinus maenas L., independently introduced to the northwest Atlantic. Previous investigations based on mitochondrial DNA sequences demonstrated that larval dispersal driven by advective currents could explain observed southward displacement of an admixture zone between the two invasions. Comparison of published mitochondrial results with new nuclear data from nine microsatellite loci, however, reveals striking discordance in their introgression patterns. Specifically, introgression of mitochondrial genomes relative to nuclear background suggests that demographic processes such as sex-biased reproductive dynamics and population size imbalances—and not solely larval dispersal—play an important role in driving the evolution of the genetic cline. In particular, the unpredicted introgression of mitochondrial alleles against the direction of mean larval dispersal in the region is consistent with recent models invoking similar demographic processes to explain movements of genes into invading populations. These observations have important implications for understanding historical shifts in C. maenas range limits, and more generally for inferences of larval dispersal based on genetic data. PMID:26064543

  13. Do novel genotypes drive the success of an invasive bark beetle–fungus complex? Implications for potential reinvasion

    Treesearch

    Min Lu; Michael J. Wingfield; Nancy Gillette; Jiang-Hua Sun

    2011-01-01

    Novel genotypes often arise during biological invasions, but their role in invasion success has rarely been elucidated. Here we examined the population genetics and behavior of the fungus, Leptographium procerum, vectored by a highly invasive bark beetle, Dendroctonus valens, to determine whether genetic changes in the fungus...

  14. Invasive Species Distribution Modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?

    Treesearch

    Tomáš Václavík; Ross K. Meentemeyer

    2009-01-01

    Species distribution models (SDMs) based on statistical relationships between occurrence data and underlying environmental conditions are increasingly used to predict spatial patterns of biological invasions and prioritize locations for early detection and control of invasion outbreaks. However, invasive species distribution models (iSDMs) face special challenges...

  15. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung

    2016-12-01

    Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.

  16. A safety rule approach to surveillance and eradication of biological invasions

    PubMed Central

    Haight, Robert G.; Koch, Frank H.; Venette, Robert; Studens, Kala; Fournier, Ronald E.; Swystun, Tom; Turgeon, Jean J.

    2017-01-01

    Uncertainty about future spread of invasive organisms hinders planning of effective response measures. We present a two-stage scenario optimization model that accounts for uncertainty about the spread of an invader, and determines survey and eradication strategies that minimize the expected program cost subject to a safety rule for eradication success. The safety rule includes a risk standard for the desired probability of eradication in each invasion scenario. Because the risk standard may not be attainable in every scenario, the safety rule defines a minimum proportion of scenarios with successful eradication. We apply the model to the problem of allocating resources to survey and eradicate the Asian longhorned beetle (ALB, Anoplophora glabripennis) after its discovery in the Greater Toronto Area, Ontario, Canada. We use historical data on ALB spread to generate a set of plausible invasion scenarios that characterizes the uncertainty of the beetle’s extent. We use these scenarios in the model to find survey and tree removal strategies that minimize the expected program cost while satisfying the safety rule. We also identify strategies that reduce the risk of very high program costs. Our results reveal two alternative strategies: (i) delimiting surveys and subsequent tree removal based on the surveys' outcomes, or (ii) preventive host tree removal without referring to delimiting surveys. The second strategy is more likely to meet the stated objectives when the capacity to detect an invader is low or the aspirations to eradicate it are high. Our results provide practical guidelines to identify the best management strategy given aspirational targets for eradication and spending. PMID:28759584

  17. Tumor invasion unit in gastric cancer revealed by QDs-based in situ molecular imaging and multispectral analysis.

    PubMed

    Hu, Wen-Qing; Fang, Min; Zhao, Hao-Liang; Yan, Shu-Guang; Yuan, Jing-Ping; Peng, Chun-Wei; Yang, Gui-Fang; Li, Yan; Li, Jian-Ding

    2014-04-01

    In tumor tissues, cancer cells, tumor infiltrating macrophages and tumor neo-vessels in close spatial vicinity with one another form tumor invasion unit, which is a biologically important tumor microenvironment of metastasis to facilitate cancer invasion and metastasis. Establishing an in situ molecular imaging technology to simultaneously reveal these three components is essential for the in-depth investigation of tumor invasion unit. In this report, we have developed a computer-aided algorithm by quantum dots (QDs)-based multiplexed molecular imaging technique for such purpose. A series of studies on gastric cancer tumor tissues demonstrated that the tumor invasion unit was correlated with major unfavorable pathological features and worse clinical outcomes, which illustrated the significantly negative impacts and predictive power of tumor invasion unit on patient overall survival. This study confirmed the technical advantages of QDs-based in situ and simultaneous molecular imaging of key cancer molecules to gain deeper insights into the biology of cancer invasion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Proceedings, 17th U.S. Department of Agriculture interagency research forum on gypsy moth and other invasive species 2006

    Treesearch

    Kurt W., ed. Gottschalk

    2007-01-01

    Contains three abstracts and papers from the 2005 Forum and 70 abstracts and papers of oral and poster presentations on gypsy moth and other invasive species biology, molecular biology, ecology, impacts, and management presented at the annual U.S. Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species.

  19. Developing Pupils' Performance in Team Invasion Games

    ERIC Educational Resources Information Center

    Gray, Shirley; Sproule, John

    2011-01-01

    Background: To develop pupils' team invasion games (TIG) performance within physical education (PE), practitioners have traditionally adopted teacher-centred, skill-focused approaches. Teaching Games for Understanding and the Tactical approach are alternative approaches to TIG teaching that aim to develop overall game performance, including…

  20. Effects of invasive plants on arthropods.

    PubMed

    Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L

    2014-12-01

    Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to

  1. INVASIVE PLANTS HARBOR HUNGRY DETRITIVORES THAT ALTER ECOSYSTEM FUNCTION

    EPA Science Inventory

    Ecosystems are expected to function more efficiently in response to a diverse community of inhabitants. However, biological invasions may change expected relationships between ecosystem function and diversity. We observed increased decomposition, a measure of ecosystem function...

  2. Control of invasive weeds with prescribed burning

    USGS Publications Warehouse

    DiTomaso, Joseph M.; Brooks, Matthew L.; Allen, Edith B.; Minnich, Ralph; Rice, Peter M.; Kyser, Guy B.

    2006-01-01

    Prescribed burning has primarily been used as a tool for the control of invasive late-season annual broadleaf and grass species, particularly yellow starthistle, medusahead, barb goatgrass, and several bromes. However, timely burning of a few invasive biennial broadleaves (e.g., sweetclover and garlic mustard), perennial grasses (e.g., bluegrasses and smooth brome), and woody species (e.g., brooms and Chinese tallow tree) also has been successful. In many cases, the effectiveness of prescribed burning can be enhanced when incorporated into an integrated vegetation management program. Although there are some excellent examples of successful use of prescribed burning for the control of invasive species, a limited number of species have been evaluated. In addition, few studies have measured the impact of prescribed burning on the long-term changes in plant communities, impacts to endangered plant species, effects on wildlife and insect populations, and alterations in soil biology, including nutrition, mycorrhizae, and hydrology. In this review, we evaluate the current state of knowledge on prescribed burning as a tool for invasive weed management.

  3. Clarifying values, risk perceptions, and attitudes to resolve or avoid social conflicts in invasive species management.

    PubMed

    Estévez, Rodrigo A; Anderson, Christopher B; Pizarro, J Cristobal; Burgman, Mark A

    2015-02-01

    Decision makers and researchers recognize the need to effectively confront the social dimensions and conflicts inherent to invasive species research and management. Yet, despite numerous contentious situations that have arisen, no systematic evaluation of the literature has examined the commonalities in the patterns and types of these emergent social issues. Using social and ecological keywords, we reviewed trends in the social dimensions of invasive species research and management and the sources and potential solutions to problems and conflicts that arise around invasive species. We integrated components of cognitive hierarchy theory and risk perceptions theory to provide a conceptual framework to identify, distinguish, and provide understanding of the driving factors underlying disputes associated with invasive species. In the ISI Web of Science database, we found 15,915 peer-reviewed publications on biological invasions, 124 of which included social dimensions of this phenomenon. Of these 124, 28 studies described specific contentious situations. Social approaches to biological invasions have emerged largely in the last decade and have focused on both environmental social sciences and resource management. Despite being distributed in a range of journals, these 124 articles were concentrated mostly in ecology and conservation-oriented outlets. We found that conflicts surrounding invasive species arose based largely on differences in value systems and to a lesser extent stakeholder and decision maker's risk perceptions. To confront or avoid such situations, we suggest integrating the plurality of environmental values into invasive species research and management via structured decision making techniques, which enhance effective risk communication that promotes trust and confidence between stakeholders and decision makers. © 2014 Society for Conservation Biology.

  4. Applying ecological concepts to the management of widespread grass invasions [Chapter 7

    Treesearch

    Carla M. D' Antonio; Jeanne C. Chambers; Rhonda Loh; J. Tim Tunison

    2009-01-01

    The management of plant invasions has typically focused on the removal of invading populations or control of existing widespread species to unspecified but lower levels. Invasive plant management typically has not involved active restoration of background vegetation to reduce the likelihood of invader reestablishment. Here, we argue that land managers could benefit...

  5. Parasites and genetic diversity in an invasive bumblebee.

    PubMed

    Jones, Catherine M; Brown, Mark J F

    2014-11-01

    Biological invasions are facilitated by the global transportation of species and climate change. Given that invasions may cause ecological and economic damage and pose a major threat to biodiversity, understanding the mechanisms behind invasion success is essential. Both the release of non-native populations from natural enemies, such as parasites, and the genetic diversity of these populations may play key roles in their invasion success. We investigated the roles of parasite communities, through enemy release and parasite acquisition, and genetic diversity in the invasion success of the non-native bumblebee, Bombus hypnorum, in the United Kingdom. The invasive B. hypnorum had higher parasite prevalence than most, or all native congeners for two high-impact parasites, probably due to higher susceptibility and parasite acquisition. Consequently parasites had a higher impact on B. hypnorum queens' survival and colony-founding success than on native species. Bombus hypnorum also had lower functional genetic diversity at the sex-determining locus than native species. Higher parasite prevalence and lower genetic diversity have not prevented the rapid invasion of the United Kingdom by B. hypnorum. These data may inform our understanding of similar invasions by commercial bumblebees around the world. This study suggests that concerns about parasite impacts on the small founding populations common to re-introduction and translocation programs may be less important than currently believed. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  6. Complex genetic patterns in closely related colonizing invasive species

    EPA Science Inventory

    Anthropogenic activities frequently result in both rapidly changing environments and translocation of species from their native ranges (i.e., biological invasions). Empirical studies suggest that many factors associated with these changes can lead to complex genetic patterns, par...

  7. Funding needed for assessments of weed biological control

    Treesearch

    John L. Maron; Dean E. Pearson; Stephen M. Hovick; Walter P. Carson

    2010-01-01

    Invasive non-native plants are a serious economic and ecological problem worldwide, and major efforts are therefore devoted to reducing weed abundance in agricultural and natural settings. Effective options for reducing invasive abundance and spread are few, although one common approach is biological control - the introduction of specialist herbivores or pathogens from...

  8. Assessing Biofuel Crop Invasiveness: A Case Study

    PubMed Central

    Buddenhagen, Christopher Evan; Chimera, Charles; Clifford, Patti

    2009-01-01

    Background There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. Methodology/Principal Findings Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. Conclusions/Significance Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the “polluter-pays” principle. PMID:19384412

  9. Ecology of invasive mosquitoes: effects on resident species and on human health

    PubMed Central

    Juliano, Steven A.; Lounibos, L. Philip

    2007-01-01

    Investigations of biological invasions focus on patterns and processes that are related to introduction, establishment, spread and impacts of introduced species. This review focuses on the ecological interactions operating during invasions by the most prominent group of insect vectors of disease, mosquitoes. First, we review characteristics of non-native mosquito species that have established viable populations, and those invasive species that have spread widely and had major impacts, testing whether biotic characteristics are associated with the transition from established non-native to invasive. Second, we review the roles of interspecific competition, apparent competition, predation, intraguild predation and climatic limitation as causes of impacts on residents or as barriers to invasion. We concentrate on the best-studied invasive mosquito, Aedes albopictus, evaluating the application of basic ecological theory to invasions by Aedes albopictus. We develop a model based on observations of Aedes albopictus for effects of resource competition and predation as barriers to invasion, evaluating which community and ecosystem characteristics favour invasion. Third, we evaluate the ways in which invasive mosquitoes have contributed to outbreaks of human and animal disease, considering specifically whether invasive mosquitoes create novel health threats, or modify disease transmission for existing pathogen–host systems. PMID:17637849

  10. Conspecific plasticity and invasion: invasive populations of Chinese tallow (Triadica sebifera) have performance advantage over native populations only in low soil salinity.

    PubMed

    Chen, Leiyi; Tiu, Candice J; Peng, Shaolin; Siemann, Evan

    2013-01-01

    Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the "Master-of-some" pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas.

  11. Infrared thermography: A non-invasive window into thermal physiology.

    PubMed

    Tattersall, Glenn J

    2016-12-01

    Infrared thermography is a non-invasive technique that measures mid to long-wave infrared radiation emanating from all objects and converts this to temperature. As an imaging technique, the value of modern infrared thermography is its ability to produce a digitized image or high speed video rendering a thermal map of the scene in false colour. Since temperature is an important environmental parameter influencing animal physiology and metabolic heat production an energetically expensive process, measuring temperature and energy exchange in animals is critical to understanding physiology, especially under field conditions. As a non-contact approach, infrared thermography provides a non-invasive complement to physiological data gathering. One caveat, however, is that only surface temperatures are measured, which guides much research to those thermal events occurring at the skin and insulating regions of the body. As an imaging technique, infrared thermal imaging is also subject to certain uncertainties that require physical modelling, which is typically done via built-in software approaches. Infrared thermal imaging has enabled different insights into the comparative physiology of phenomena ranging from thermogenesis, peripheral blood flow adjustments, evaporative cooling, and to respiratory physiology. In this review, I provide background and guidelines for the use of thermal imaging, primarily aimed at field physiologists and biologists interested in thermal biology. I also discuss some of the better known approaches and discoveries revealed from using thermal imaging with the objective of encouraging more quantitative assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Biology of the invasive ascidian Ascidiella aspersa in its native habitat: Reproductive patterns and parasite load

    NASA Astrophysics Data System (ADS)

    Lynch, Sharon A.; Darmody, Grainne; O'Dwyer, Katie; Gallagher, Mary Catherine; Nolan, Sinead; McAllen, Rob; Culloty, Sarah C.

    2016-11-01

    The European sea squirt Ascidiella aspersa is a solitary tunicate native to the northeastern Atlantic, commonly found in shallow and sheltered marine ecosystems where it is capable of forming large clumps and outcompeting other invertebrate fauna at settlement. To date, there have been relatively few studies looking at the reproductive biology and health status of this invasive species. Between 2006 and 2010 sampling of a native population took place to investigate gametogenesis and reproductive cycle and to determine the impact of settlement depth on reproduction. In addition, parasite diversity and impact was assessed. A staging system to assess reproductive development was determined. The study highlighted that from year to year the tunicate could change its reproductive strategy from single sex to hermaphrodite, with spawning possible throughout the year. Depth did not impact on sex determination, however, gonad maturation and spawning occurred earlier in individuals in deeper waters compared to shallow depth and it also occurred later in A. aspersa at sites further away from the open sea. Four significant parasite groups including eugregarines, ciliates, trematodes and turbellarians were detected and prevalence of parasite infections increased in A. aspersa at sites with a reduced water flow rate. This study demonstrates the high biotic potential of this ascidian bioinvader to have a negative impact on native fauna in an introduced ecosystem, due to its highly efficient reproductive and resource allocation strategies. Artificial structures such as mooring lines can harbour large aggregations of A. aspersa, however, these manmade habitats may facilitate the colonisation and establishment of this invasive species in the benthos. Additionally, the parasite communities that A. aspersa harbour may also exacerbate its negative impact, both ecologically and economically, in an introduced area by possibly leading to the emergence of new disease in native species i

  13. Synergies between climate anomalies and hydrological modifications facilitate estuarine biotic invasions.

    PubMed

    Winder, Monika; Jassby, Alan D; Mac Nally, Ralph

    2011-08-01

    Environmental perturbation, climate change and international commerce are important drivers for biological invasions. Climate anomalies can further increase levels of habitat disturbance and act synergistically to elevate invasion risk. Herein, we use a historical data set from the upper San Francisco Estuary to provide the first empirical evidence for facilitation of invasions by climate extremes. Invasive zooplankton species did not become established in this estuary until the 1970s when increasing propagule pressure from Asia coincided with extended drought periods. Hydrological management exacerbated the effects of post-1960 droughts and reduced freshwater inflow even further, increasing drought severity and allowing unusually extreme salinity intrusions. Native zooplankton experienced unprecedented conditions of high salinity and intensified benthic grazing, and life history attributes of invasive zooplankton were advantageous enough during droughts to outcompete native species and colonise the system. Extreme climatic events can therefore act synergistically with environmental perturbation to facilitate the establishment of invasive species. © 2011 Blackwell Publishing Ltd/CNRS.

  14. MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines

    PubMed Central

    Lopez, Cecilia M.; Yu, Peter Y.; Zhang, Xiaoli; Yilmaz, Ayse Selen; London, Cheryl A.

    2018-01-01

    Background Osteosarcoma (OSA) is the most common bone tumor in children and dogs; however, no substantial improvement in clinical outcome has occurred in either species over the past 30 years. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and play a fundamental role in cancer. The purpose of this study was to investigate the potential contribution of miR-34a loss to the biology of canine OSA, a well-established spontaneous model of the human disease. Methodology and principal findings RT-qPCR demonstrated that miR-34a expression levels were significantly reduced in primary canine OSA tumors and canine OSA cell lines as compared to normal canine osteoblasts. In canine OSA cell lines stably transduced with empty vector or pre-miR-34a lentiviral constructs, overexpression of miR-34a inhibited cellular invasion and migration but had no effect on cell proliferation or cell cycle distribution. Transcriptional profiling of canine OSA8 cells possessing enforced miR-34a expression demonstrated dysregulation of numerous genes, including significant down-regulation of multiple putative targets of miR-34a. Moreover, gene ontology analysis of down-regulated miR-34a target genes showed enrichment of several biological processes related to cell invasion and motility. Lastly, we validated changes in miR-34a putative target gene expression, including decreased expression of KLF4, SEM3A, and VEGFA transcripts in canine OSA cells overexpressing miR-34a and identified KLF4 and VEGFA as direct target genes of miR-34a. Concordant with these data, primary canine OSA tumor tissues demonstrated increased expression levels of putative miR-34a target genes. Conclusions These data demonstrate that miR-34a contributes to invasion and migration in canine OSA cells and suggest that loss of miR-34a may promote a pattern of gene expression contributing to the metastatic phenotype in canine OSA. PMID:29293555

  15. Invasive species in southern Nevada [Chapter 4

    Treesearch

    Mathew L. Brooks; Steven M. Ostoja; Jeanne C. Chambers

    2013-01-01

    Southern Nevada contains a wide range of topographies, elevations, and climatic zones emblematic of its position at the ecotone between the Mojave Desert, Great Basin, and Colorado Plateau ecoregions. These varied environmental conditions support a high degree of biological diversity (Chapter 1), but they also provide opportunities for a wide range of invasive species...

  16. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish.

    PubMed

    Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K

    2017-06-01

    Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the

  17. Elevated expression of LSD1 (Lysine-specific demethylase 1) during tumour progression from pre-invasive to invasive ductal carcinoma of the breast

    PubMed Central

    2012-01-01

    Background Lysine-specific demethylase1 (LSD1) is a nuclear protein which belongs to the aminooxidase-enzymes playing an important role in controlling gene expression. It has also been found highly expressed in several human malignancies including breast carcinoma. Our aim was to detect LSD1 expression also in pre-invasive neoplasias of the breast. In the current study we therefore analysed LSD1 protein expression in ductal carcinoma in situ (DCIS) in comparison to invasive ductal breast cancer (IDC). Methods Using immunohistochemistry we systematically analysed LSD1 expression in low grade DCIS (n = 27), intermediate grade DCIS (n = 30), high grade DCIS (n = 31) and in invasive ductal breast cancer (n = 32). SPSS version 18.0 was used for statistical analysis. Results LSD1 was differentially expressed in DCIS and invasive ductal breast cancer. Interestingly, LSD1 was significantly overexpressed in high grade DCIS versus low grade DCIS. Differences in LSD1 expression levels were also statistically significant between low/intermediate DCIS and invasive ductal breast carcinoma. Conclusions LSD1 is also expressed in pre-invasive neoplasias of the breast. Additionally, there is a gradual increase of LSD1 expression within tumour progression from pre-invasive DCIS to invasive ductal breast carcinoma. Therefore upregulation of LSD1 may be an early tumour promoting event. PMID:22920283

  18. Public Perception of Invasive Plant Species: Assessing the Impact of Workshop Activities to Promote Young Students' Awareness

    ERIC Educational Resources Information Center

    Schreck Reis, Catarina; Marchante, Helia; Freitas, Helena; Marchante, Elizabete

    2013-01-01

    Invasive species are one of the main threats to biodiversity worldwide. Even though they are identified and recognized as such by the Portuguese law, the majority of the population is not yet aware of this problem. Aiming to increase awareness about biological invasions among young students, a workshop on Invasive Plant Species was organized at…

  19. A safety rule approach to surveillance and eradication of biological invasions

    Treesearch

    Denys Yemshanov; Robert G. Haight; Frank H. Koch; Robert Venette; Kala Studens; Ronald E. Fournier; Tom Swystun; Jean J. Turgeon; Yulin Gao

    2017-01-01

    Uncertainty about future spread of invasive organisms hinders planning of effective response measures. We present a two-stage scenario optimization model that accounts for uncertainty about the spread of an invader, and determines survey and eradication strategies that minimize the expected program cost subject to a safety rule for eradication success. The safety rule...

  20. Invasive scotch broom alters soil chemical properties in Douglas-fir forests of the Pacific Northwest, USA

    Treesearch

    Robert A. Slesak; Timothy B. Harrington; Anthony W. D′Amato

    2016-01-01

    Backgrounds and aims Scotch broom is an N-fixing invasive species that has high potential to alter soil properties. We compared soil from areas of Scotch broom invasion with nearby areas that had no evidence of invasion to assess the influence of broom on soil P fractions and other chemical properties. Methods The study was...

  1. Exploring the dynamics of research collaborations by mapping social networks in invasion science.

    PubMed

    Abrahams, B; Sitas, N; Esler, K J

    2018-06-19

    Moving towards more integrative approaches within the invasion sciences has been recognized as a means of improving linkages between science, policy, and practice. Yet despite the recognition that biological invasions pose complex social-ecological challenges, the invasion literature poorly covers social-ecological or distinctly integrative research. Various initiatives and investments have been made towards building research capacity and conducting more integrative research aimed at improving the management of biological invasions. Using a combination of social network and thematic analysis approaches, and the South African Working for Water (WfW) program as a case study for the management of invasive species, we identify and explore the roles of core authors in shaping collaboration networks and research outputs, based on bibliographic records. We found that research produced under the auspices of WfW is authored by a handful of core authors, conducting primarily ecologically-focused research, with social research significantly underrepresented. Core authors identified in this study play an essential role in mediating relationships between researchers, in addition to potentially controlling access to those seeking to form collaborations, maintaining network cohesion and connectivity across institutional and disciplinary boundaries. Research projects should be designed to span disciplines and institutions if they are to adequately address complex challenges. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. [Correlations between MRI apparent diffusion coefficient and histological grade and molecular biology of breast invasive ductal carcinoma].

    PubMed

    Yu, Xuejuan; Liu, Shangang; Chen, Zhaoqiu; Zhang, Pinliang; Zhang, Jianbo; Xu, Liang; Liu, Zengjun; Ren, Ruimei

    2014-08-01

    To study the correlation between the MRI apparent diffusion coefficient (ADC) value and histological grade and molecular biology of breast invasive ductal carcinoma (IDC). This retrospective study included 125 patients with IDC verified by pathology from February 2010 to February 2013. Conventional MRI and diffusion-weighted imaging (DWI) examination were performed using a 3.0T scanner with diffusion factor of 0 and 800 s/mm(2). The region of interest (ROI) was drawn on the largest lesion and/or its two adjacent slices. The ADC value of the whole tumor was calculated as the mean ADC value. The correlation between mean ADCs and histological grade and biological factors was analyzed. The mean ADC of pathological grade I, II and III IDC was (1.152 ± 0.072)×10(-3) mm(2)/s, (1.102 ± 0.101)×10(-3) mm(2)/s, and (1.035 ± 0.107)×10(-3) mm(2)/s, respectively. There was a statistically significant difference among them (P = 0.003). Statistically a significant difference was observed between grade III and I (P = 0.034), grade III and II (P = 0.006), but not between grade I and II (P = 0.741). A significant correlation was observed between ADC value and pathological grade (r = -0.342, P < 0.001). The median ADC values were significantly higher in the ER-negative than in the ER-positive cases [(1.130 ± 0.115)×10(-3) mm(2)/s vs. (1.060 ± 0.089) ×10(-3) mm(2)/s, P < 0.001)], in PR-negative than in PR-positive cases [(1.121 ± 0.106)×10(-3) mm(2)/s vs. (1.055 ± 0.096) ×10(-3) mm(2)/s, P < 0.001)], and in Ki-67-negative than in Ki-67-positive cases [(1.153 ± 0.090)×10(-3) mm(2)/s vs. (1.063 ± 0.101) ×10(-3) mm(2)/s, P < 0.001]. A statistically significant correlation was observed between ADC value and expressions of ER, PR, and Ki-67 (r = -0.311, r = -0.317, r = -0.414, P < 0.001). ADC value of breast invasive ductal carcinoma is correlated with histological grade, and expression of ER, PR and Ki-67.

  3. Deformational mass transport and invasive processes in soil evolution

    NASA Technical Reports Server (NTRS)

    Brimhall, George H.; Chadwick, Oliver A.; Lewis, Chris J.; Compston, William; Williams, Ian S.; Danti, Kathy J.; Dietrich, William E.; Power, Mary E.; Hendricks, David; Bratt, James

    1992-01-01

    Channels left in soil by decayed roots and burrowing animals allow organic and inorganic precipitates and detritus to move through soil from above, to depths at which the minuteness of pores restricts further passage. Consecutive translocation-and-root-growth phases stir the soil, constituting an invasive, dilatational process which generates cumulative strains. Below the depths thus affected, mineral dissolution by descending organic acids leads to internal collapse; this softened/condensed precursor horizon is then transformed into soil via biological activity that mixes and expands the evolving residuum through root and micropore-network invasion.

  4. Invasion strategies in round goby (Neogobius melanostomus): Is bigger really better?

    PubMed Central

    Schliewen, Ulrich K.

    2018-01-01

    Few studies have systematically investigated mid- or long-term temporal changes of biological characteristics in invasive alien species considering the different phases of an invasion. We studied the invasion performance of one of the most invasive species worldwide, the round goby Neogobius melanostomus, from total absence over first occurrence until establishment from 2010 to 2015 in the upper Danube River. After an upstream movement of the invasion front of about 30 river km within four years, the pattern that round goby pioneering populations significantly differ from longer established ones has been confirmed: Pioneering populations at the invasion front comprised more females than males, and adult specimens with a larger body size compared to those at longer inhabited areas. On the population-level, the proportion of juveniles increased with time since invasion. The results of this study provide support for the previously postulated ´bigger is better´ and ´individual trait utility´ hypotheses explaining invasion success in round goby. Pioneering invaders with their greater exploratory behavior, highly adaptive phenotypic plasticity and increased competitive ability seem to act as prime emperors of new habitats, strongly following and benefiting from man-made river-bank structures. PMID:29304159

  5. The role of international organisations in controlling invasive species and preserving biodiversity.

    PubMed

    Shimura, J; Coates, D; Mulongoy, J K

    2010-08-01

    Invasive alien species spread through the environment and threaten native biodiversity, assisted by the absence of natural enemies. Alien species may also carry pathogens, which can be transmitted to native species. About half of the known endangered species are under threat from invasive alien species. The Conference of the Parties to the Convention on Biological Diversity in 2008 invited relevant international organisations to work together to fill the gap in the international regulatory framework on invasive alien species. The Convention also reaffirmed the need for capacity and expertise to deal with invasive alien species in many countries, especially in developing countries. In this paper, the authors review the findings of this project.

  6. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    ERIC Educational Resources Information Center

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  7. Marine molecular biology: an emerging field of biological sciences.

    PubMed

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  8. Global synthesis suggests that food web connectance correlates to invasion resistance.

    PubMed

    Smith-Ramesh, Lauren M; Moore, Alexandria C; Schmitz, Oswald J

    2017-02-01

    Biological invasions are a key component of global change, and understanding the drivers of global invasion patterns will aid in assessing and mitigating the impact of invasive species. While invasive species are most often studied in the context of one or two trophic levels, in reality species invade communities comprised of complex food webs. The complexity and integrity of the native food web may be a more important determinant of invasion success than the strength of interactions between a small subset of species within a larger food web. Previous efforts to understand the relationship between food web properties and species invasions have been primarily theoretical and have yielded mixed results. Here, we present a synthesis of empirical information on food web connectance and species invasion success gathered from different sources (estimates of food web connectance from the primary literature and estimates of invasion success from the Global Invasive Species Database as well as the primary literature). Our results suggest that higher-connectance food webs tend to host fewer invaders and exert stronger biotic resistance compared to low-connectance webs. We argue that while these correlations cannot be used to infer a causal link between food web connectance and habitat invasibility, the promising findings beg for further empirical research that deliberately tests for relationships between food web connectance and invasion. © 2016 John Wiley & Sons Ltd.

  9. The Politics of Invasive Weed Management: Gender, Race, and Risk Perception in Rural California

    ERIC Educational Resources Information Center

    Norgaard, Kari Marie

    2007-01-01

    "Biological invasions" are now recognized as the cause of significant ecological and economic damage. They also raise a series of less visible social issues. Management of invasive species is often a political process raising questions such as who decides which organisms are to be managed, and who benefits or is affected by different…

  10. Conspecific Plasticity and Invasion: Invasive Populations of Chinese Tallow (Triadica sebifera) Have Performance Advantage over Native Populations Only in Low Soil Salinity

    PubMed Central

    Chen, Leiyi; Tiu, Candice J.; Peng, Shaolin; Siemann, Evan

    2013-01-01

    Global climate change may increase biological invasions in part because invasive species may have greater phenotypic plasticity than native species. This may be especially important for abiotic stresses such as salt inundation related to increased hurricane activity or sea level rise. If invasive species indeed have greater plasticity, this may reflect genetic differences between populations in the native and introduced ranges. Here, we examined plasticity of functional and fitness-related traits of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges that were grown along a gradient of soil salinity (control: 0 ppt; Low: 5 ppt; Medium: 10 ppt; High: 15 ppt) in a greenhouse. We used both norm reaction and plasticity index (PIv) to estimate the conspecific phenotypic plasticity variation between invasive and native populations. Overall, invasive populations had higher phenotypic plasticity of height growth rate (HGR), aboveground biomass, stem biomass and specific leaf area (SLA). The plasticity Index (PIv) of height growth rate (HGR) and SLA each were higher for plants from invasive populations. Absolute performance was always comparable or greater for plants from invasive populations versus native populations with the greatest differences at low stress levels. Our results were consistent with the “Master-of-some” pattern for invasive plants in which the fitness of introduced populations was greater in more benign conditions. This suggests that the greater conspecific phenotypic plasticity of invasive populations compared to native populations may increase invasion success in benign conditions but would not provide a potential interspecific competitive advantage in higher salinity soils that may occur with global climate change in coastal areas. PMID:24040366

  11. Plant invasions, generalist herbivores, and novel defense weapons

    Treesearch

    Urs Schaffner; Wendy M. Ridenour; Vera C. Wolf; Thomas Bassett; Caroline Muller; Heinz Muller-Scharer; Steve Sutherland; Christopher J. Lortie; Ragan M. Callaway

    2011-01-01

    One commonly accepted mechanism for biological invasions is that species, after introduction to a new region, leave behind their natural enemies and therefore increase in distribution and abundance. However, which enemies are escaped remains unclear. Escape from specialist invertebrate herbivores has been examined in detail, but despite the profound effects of...

  12. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation.

    PubMed

    Colautti, Robert I; Lau, Jennifer A

    2015-05-01

    Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change. © 2015 John Wiley & Sons Ltd.

  13. The role of adaptive trans-generational plasticity in biological invasions of plants

    USDA-ARS?s Scientific Manuscript database

    Trans-generational plasticity (TGP) that confers greater offspring fitness is likely to be an important mechanism contributing to the spread of some invasive plant species. TGP is predicted for populations found in habitats with predictable spatial or temporal resource heterogeneity, and that have ...

  14. A decade of a thrips invasion in China: lessons learned.

    PubMed

    Wu, Shengyong; Tang, Liangde; Zhang, Xingrui; Xing, Zhenlong; Lei, Zhongren; Gao, Yulin

    2017-10-11

    The Western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) is an invasive polyphagous pest with an expanding global range that damages a wide variety of crops. F. occidentalis was first reported in China from Yunnan province during 2000, and has rapidly expanded its range since then. It is currently distributed across at least 10 provinces in China and has become a particularly devastating pest, causing substantial damage and economic losses. At present, the still heavy reliance on frequent use of insecticides for control of F. occidentalis, has lead to a series of ecological problems stemming from insecticide resistance, interspecific displacement and non-target effects. Thus, integrated pest management (IPM) programmes, multiple complementary tactics, including preventive tactics, biological controls, and judicious use of insecticides will likely provide a viable IPM strategy for control of F. occidentalis in the near future. This review provides an overview for information gained during the 10+ years since the invasion of F. occidentalis into China, reviews lessons that have been learned enhancing our overall understanding of the biology and ecology of F. occidentalis and discusses IPM practices relative to this widespread invasive insect pest.

  15. Apparent competition with an invasive plant hastens the extinction of an endangered lupine.

    PubMed

    Dangremond, Emily M; Pardini, Eleanor A; Knight, Tiffany M

    2010-08-01

    Invasive plants may compete with native plants by increasing the pressure of native consumers, a mechanism known as "apparent competition." Apparent competition can be as strong as or stronger than direct competition, but the role of apparent competition has rarely been examined in biological invasions. We used four years of demographic data and seed-removal experiments to determine if introduced grasses caused elevated levels of seed consumption on native plant species in a coastal dune system in California, USA. We show that the endangered, coastal dune plant Lupinus tidestromii experiences high levels of pre-dispersal seed consumption by the native rodent Peromyscus maniculatus due to its proximity to the invasive grass, Ammophila arenaria. We use stage-structured, stochastic population models to project that two of three study populations will decline toward extinction under ambient levels of consumption. For one of these declining populations, a relatively small decrease in consumption pressure should allow for persistence. We show that apparent competition with an invasive species significantly decreases the population growth rate and persistence of a native species. We expect that apparent competition is an important mechanism in other ecosystems because invasive plants often change habitat structure and plant-consumer interactions. Possible implications of the apparent-competition mechanism include selective extinction of species preferred by seed consumers in the presence of an invasive species and biological homogenization of communities toward non-preferred native plant species.

  16. Computer controlled multisensor thermocouple apparatus for invasive measurement of temperature.

    PubMed

    Hanus, J; Záhora, J; Volenec, K

    1996-01-01

    The computer controlled apparatus for invasive measurement of temperature profile of biological systems based on original miniature multithermocouple probe is described in this article. The main properties of measuring system were verified by using the original testing device.

  17. Invasive Processes, Mosaics and the Structure of Helminth Parasite Faunas

    USDA-ARS?s Scientific Manuscript database

    The biosphere in evolutionary and ecological time has been structured by episodes of geographic and host colonization that have determined distributions for complex assemblages of microparasites and macroparasites including helminths circulating among vertebrates. Biological invasion is an intricat...

  18. Changing Brain Networks Through Non-invasive Neuromodulation

    PubMed Central

    To, Wing Ting; De Ridder, Dirk; Hart Jr., John; Vanneste, Sven

    2018-01-01

    Background/Objective: Non-invasive neuromodulation techniques, such as repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS), have increasingly been investigated for their potential as treatments for neurological and psychiatric disorders. Despite widespread dissemination of these techniques, the underlying therapeutic mechanisms and the ideal stimulation site for a given disorder remain unknown. Increasing evidence support the possibility of non-invasive neuromodulation affecting a brain network rather than just the local stimulation target. In this article, we present evidence in a clinical setting to support the idea that non-invasive neuromodulation changes brain networks. Method: This article addresses the idea that non-invasive neuromodulation modulates brain networks, rather than just the local stimulation target, using neuromodulation studies in tinnitus and major depression as examples. We present studies that support this hypothesis from different perspectives. Main Results/Conclusion: Studies stimulating the same brain region, such as the dorsolateral prefrontal cortex (DLPFC), have shown to be effective for several disorders and studies using different stimulation sites for the same disorder have shown similar results. These findings, as well as results from studies investigating brain network connectivity on both macro and micro levels, suggest that non-invasive neuromodulation affects a brain network rather than just the local stimulation site targeted. We propose that non-invasive neuromodulation should be approached from a network perspective and emphasize the therapeutic potential of this approach through the modulation of targeted brain networks. PMID:29706876

  19. Changing Brain Networks Through Non-invasive Neuromodulation.

    PubMed

    To, Wing Ting; De Ridder, Dirk; Hart, John; Vanneste, Sven

    2018-01-01

    Background/Objective : Non-invasive neuromodulation techniques, such as repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS), have increasingly been investigated for their potential as treatments for neurological and psychiatric disorders. Despite widespread dissemination of these techniques, the underlying therapeutic mechanisms and the ideal stimulation site for a given disorder remain unknown. Increasing evidence support the possibility of non-invasive neuromodulation affecting a brain network rather than just the local stimulation target. In this article, we present evidence in a clinical setting to support the idea that non-invasive neuromodulation changes brain networks. Method : This article addresses the idea that non-invasive neuromodulation modulates brain networks, rather than just the local stimulation target, using neuromodulation studies in tinnitus and major depression as examples. We present studies that support this hypothesis from different perspectives. Main Results/Conclusion : Studies stimulating the same brain region, such as the dorsolateral prefrontal cortex (DLPFC), have shown to be effective for several disorders and studies using different stimulation sites for the same disorder have shown similar results. These findings, as well as results from studies investigating brain network connectivity on both macro and micro levels, suggest that non-invasive neuromodulation affects a brain network rather than just the local stimulation site targeted. We propose that non-invasive neuromodulation should be approached from a network perspective and emphasize the therapeutic potential of this approach through the modulation of targeted brain networks.

  20. Population dynamics of an invasive forest insect and associated natural enemies in the aftermath of invasion: implications for biological control

    USDA-ARS?s Scientific Manuscript database

    Understanding the population dynamics of exotic pests and associated natural enemies is important in developing sound management strategies in invaded forest ecosystems. The emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive phloem-feeding beetle that h...

  1. Probabilistic BPRRC: Robust Change Detection against Illumination Changes and Background Movements

    NASA Astrophysics Data System (ADS)

    Yokoi, Kentaro

    This paper presents Probabilistic Bi-polar Radial Reach Correlation (PrBPRRC), a change detection method that is robust against illumination changes and background movements. Most of the traditional change detection methods are robust against either illumination changes or background movements; BPRRC is one of the illumination-robust change detection methods. We introduce a probabilistic background texture model into BPRRC and add the robustness against background movements including foreground invasions such as moving cars, walking people, swaying trees, and falling snow. We show the superiority of PrBPRRC in the environment with illumination changes and background movements by using three public datasets and one private dataset: ATON Highway data, Karlsruhe traffic sequence data, PETS 2007 data, and Walking-in-a-room data.

  2. Invasive plants transform the three-dimensional structure of rain forests

    PubMed Central

    Asner, Gregory P.; Hughes, R. Flint; Vitousek, Peter M.; Knapp, David E.; Kennedy-Bowdoin, Ty; Boardman, Joseph; Martin, Roberta E.; Eastwood, Michael; Green, Robert O.

    2008-01-01

    Biological invasions contribute to global environmental change, but the dynamics and consequences of most invasions are difficult to assess at regional scales. We deployed an airborne remote sensing system that mapped the location and impacts of five highly invasive plant species across 221,875 ha of Hawaiian ecosystems, identifying four distinct ways that these species transform the three-dimensional (3D) structure of native rain forests. In lowland to montane forests, three invasive tree species replace native midcanopy and understory plants, whereas one understory invader excludes native species at the ground level. A fifth invasive nitrogen-fixing tree, in combination with a midcanopy alien tree, replaces native plants at all canopy levels in lowland forests. We conclude that this diverse array of alien plant species, each representing a different growth form or functional type, is changing the fundamental 3D structure of native Hawaiian rain forests. Our work also demonstrates how an airborne mapping strategy can identify and track the spread of certain invasive plant species, determine ecological consequences of their proliferation, and provide detailed geographic information to conservation and management efforts. PMID:18316720

  3. Environment shapes the fecal microbiome of invasive carp species.

    PubMed

    Eichmiller, Jessica J; Hamilton, Matthew J; Staley, Christopher; Sadowsky, Michael J; Sorensen, Peter W

    2016-08-12

    Although the common, silver, and bighead carps are native and sparsely distributed in Eurasia, these fish have become abundant and invasive in North America. An understanding of the biology of these species may provide insights into sustainable control methods. The animal-associated microbiome plays an important role in host health. Characterization of the carp microbiome and the factors that affect its composition is an important step toward understanding the biology and interrelationships between these species and their environments. We compared the fecal microbiomes of common, silver, and bighead carps from wild and laboratory environments using Illumina sequencing of bacterial 16S ribosomal RNA (rRNA). The fecal bacterial communities of fish were diverse, with Shannon indices ranging from 2.3 to 4.5. The phyla Proteobacteria, Firmicutes, and Fusobacteria dominated carp guts, comprising 76.7 % of total reads. Environment played a large role in shaping fecal microbial community composition, and microbiomes among captive fishes were more similar than among wild fishes. Although differences among wild fishes could be attributed to feeding preferences, diet did not strongly affect microbial community structure in laboratory-housed fishes. Comparison of wild- and lab-invasive carps revealed five shared OTUs that comprised approximately 40 % of the core fecal microbiome. The environment is a dominant factor shaping the fecal bacterial communities of invasive carps. Captivity alters the microbiome community structure relative to wild fish, while species differences are pronounced within habitats. Despite the absence of a true stomach, invasive carp species exhibited a core microbiota that warrants future study.

  4. The effects of turbidity and an invasive species on foraging success of rosyside dace (Clinostomus funduloides)

    Treesearch

    Peter D. Hazelton; Gary D. Grossman

    2009-01-01

    Habitat degradation and biological invasions are important threats to fish diversity worldwide. We experimentally examined the effects of turbidity, velocity and intra- and interspecific competition on prey capture location, reactive distance and prey capture success of native rosyside dace (Clinostomus funduloides) and invasive yellowfin shiners (Notropis lutipinnis)...

  5. Evidence of niche shift and invasion potential of Lithobates catesbeianus in the habitat of Mexican endemic frogs

    PubMed Central

    Becerra López, Jorge Luis; Romero Méndez, Ulises; Sigala Rodríguez, José Jesús; Mayer Goyenechea, Irene Goyenechea; Castillo Cerón, Jesús Martín

    2017-01-01

    Invasive alien species are one of most severe threats to biodiversity and natural resources. These biological invasions have been studied from the niche conservatism and niche shifts perspective. Niche differentiation may result from changes in fundamental niche or realized niche or both; in biological invasions, niche differences between native and non-native ranges can appear through niche expansion, niche unfilling and niche stability. The American bullfrog Lithobates catesbeianus is an invasive species that can have negative impacts on native amphibian populations. This research examines the climate niche shifts of this frog, its potential range of expansion in Mexico and the risk of invasion by bullfrog in the habitats of 82 frog species endemic to Mexico, that based on their climatic niche similarity were divided in four ecological groups. The results indicate that species in two ecological groups were the most vulnerable to invasion by bullfrog. However, the climate niche shifts of L. catesbeianus may allow it to adapt to new environmental conditions, so species from the two remaining groups cannot be dismissed as not vulnerable. This information is valuable for decision making in prioritizing areas for conservation of Mexican endemic frogs. PMID:28953907

  6. Evidence of niche shift and invasion potential of Lithobates catesbeianus in the habitat of Mexican endemic frogs.

    PubMed

    Becerra López, Jorge Luis; Esparza Estrada, Citlalli Edith; Romero Méndez, Ulises; Sigala Rodríguez, José Jesús; Mayer Goyenechea, Irene Goyenechea; Castillo Cerón, Jesús Martín

    2017-01-01

    Invasive alien species are one of most severe threats to biodiversity and natural resources. These biological invasions have been studied from the niche conservatism and niche shifts perspective. Niche differentiation may result from changes in fundamental niche or realized niche or both; in biological invasions, niche differences between native and non-native ranges can appear through niche expansion, niche unfilling and niche stability. The American bullfrog Lithobates catesbeianus is an invasive species that can have negative impacts on native amphibian populations. This research examines the climate niche shifts of this frog, its potential range of expansion in Mexico and the risk of invasion by bullfrog in the habitats of 82 frog species endemic to Mexico, that based on their climatic niche similarity were divided in four ecological groups. The results indicate that species in two ecological groups were the most vulnerable to invasion by bullfrog. However, the climate niche shifts of L. catesbeianus may allow it to adapt to new environmental conditions, so species from the two remaining groups cannot be dismissed as not vulnerable. This information is valuable for decision making in prioritizing areas for conservation of Mexican endemic frogs.

  7. Biological control agents elevate hantavirus by subsidizing deer mouse populations

    Treesearch

    Dean E. Pearson; Ragan M. Callaway

    2006-01-01

    Biological control of exotic invasive plants using exotic insects is practiced under the assumption that biological control agents are safe if they do not directly attack non-target species. We tested this assumption by evaluating the potential for two host-specific biological control agents (Urophora spp.), widely established in North America for spotted...

  8. Habitat affinity of resident natural enemies of the invasive Aphis glycines (Hemiptera: Aphididae), on soybean, with comments on biological control.

    PubMed

    Brewer, Michael J; Noma, Takuji

    2010-06-01

    We integrated a natural enemy survey of the broader landscape into a more traditional survey for Aphis glycines Matsumura (Hemiptera: Aphididae), parasitoids and predatory flies on soybean using A. glycines-infested soybean, Glycine max (L.) Merr., placed in cropped and noncropped plant systems to complement visual field observations. Across three sites and 5 yr, 18 parasitoids and predatory flies in total (Hymenoptera: Aphelinidae [two species] and Bracondae [seven species], Diptera: Cecidomyiidae [one species], Syrphidae [seven species], Chamaemyiidae [one species]) were detected, with significant variability in recoveries detected across plant system treatments and strong contrasts in habitat affinity detected among species. Lysiphlebus testaceipes Cresson was the most frequently detected parasitoid, and no differences in abundance were detected in cropped (soybean, wheat [Triticum aestivum L.], corn [Zea mays L.], and alfalfa [Medicago sativa L.]) and noncropped (poplar [Populus euramericana (Dode) Guinier] and early successional vegetation) areas. In contrast, Binodoxys kelloggensis Pike, Starý & Brewer had strong habitat affinity for poplar and early successional vegetation. The low recoveries seasonally and across habitats of Aphelinus asychis Walker, Aphelinus sp., and Aphidius colemoni Viereck make their suitability to A. glycines on soybean highly suspect. The widespread occurrence of many of the flies reflects their broad habitat affinity and host aphid ranges. The consistent low field observations of parasitism and predation suggest that resident parasitoids and predatory flies are unlikely to contribute substantially to A. glycines suppression, at least during the conventional time period early in the pest invasion when classical biological control activities are considered. For selected species that were relatively well represented across plant systems (i.e., L. testaceipes and Aphidoletes aphidimyza Rondani), conservation biological control efforts

  9. The challenge of modelling and mapping the future distribution and impact of invasive alien species

    Treesearch

    Robert C. Venette

    2015-01-01

    Invasions from alien species can jeopardize the economic, environmental or social benefits derived from biological systems. Biosecurity measures seek to protect those systems from accidental or intentional introductions of species that might become injurious. Pest risk maps convey how the probability of invasion by an alien species or the potential consequences of that...

  10. Fruit Flies Provide New Insights in Low-Radiation Background Biology at the INFN Underground Gran Sasso National Laboratory (LNGS).

    PubMed

    Morciano, Patrizia; Cipressa, Francesca; Porrazzo, Antonella; Esposito, Giuseppe; Tabocchini, Maria Antonella; Cenci, Giovanni

    2018-06-04

    Deep underground laboratories (DULs) were originally created to host particle, astroparticle or nuclear physics experiments requiring a low-background environment with vastly reduced levels of cosmic-ray particle interference. More recently, the range of science projects requiring an underground experiment site has greatly expanded, thus leading to the recognition of DULs as truly multidisciplinary science sites that host important studies in several fields, including geology, geophysics, climate and environmental sciences, technology/instrumentation development and biology. So far, underground biology experiments are ongoing or planned in a few of the currently operating DULs. Among these DULs is the Gran Sasso National Laboratory (LNGS), where the majority of radiobiological data have been collected. Here we provide a summary of the current scenario of DULs around the world, as well as the specific features of the LNGS and a summary of the results we obtained so far, together with other findings collected in different underground laboratories. In particular, we focus on the recent results from our studies of Drosophila melanogaster, which provide the first evidence of the influence of the radiation environment on life span, fertility and response to genotoxic stress at the organism level. Given the increasing interest in this field and the establishment of new projects, it is possible that in the near future more DULs will serve as sites of radiobiology experiments, thus providing further relevant biological information at extremely low-dose-rate radiation. Underground experiments can be nicely complemented with above-ground studies at increasing dose rate. A systematic study performed in different exposure scenarios provides a potential opportunity to address important radiation protection questions, such as the dose/dose-rate relationship for cancer and non-cancer risk, the possible existence of dose/dose-rate threshold(s) for different biological systems and

  11. Differences in evolutionary history translate into differences in invasion success of alien mammals in South Africa

    PubMed Central

    Yessoufou, Kowiyou; Gere, Jephris; Daru, Barnabas H; van der Bank, Michelle

    2014-01-01

    Attempts to investigate the drivers of invasion success are generally limited to the biological and evolutionary traits distinguishing native from introduced species. Although alien species introduced to the same recipient environment differ in their invasion intensity – for example, some are “strong invaders”; others are “weak invaders” – the factors underlying the variation in invasion success within alien communities are little explored. In this study, we ask what drives the variation in invasion success of alien mammals in South Africa. First, we tested for taxonomic and phylogenetic signal in invasion intensity. Second, we reconstructed predictive models of the variation in invasion intensity among alien mammals using the generalized linear mixed-effects models. We found that the family Bovidae and the order Artiodactyla contained more “strong invaders” than expected by chance, and that such taxonomic signal did not translate into phylogenetic selectivity. In addition, our study indicates that latitude, gestation length, social group size, and human population density are only marginal determinant of the variation in invasion success. However, we found that evolutionary distinctiveness – a parameter characterising the uniqueness of each alien species – is the most important predictive variable. Our results indicate that the invasive behavior of alien mammals may have been “fingerprinted” in their evolutionary past, and that evolutionary history might capture beyond ecological, biological and life-history traits usually prioritized in predictive modeling of invasion success. These findings have applicability to the management of alien mammals in South Africa. PMID:25360253

  12. Population ecology of insect invasions and their management

    Treesearch

    Andrew M. Liebhold; Patrick C. Tobin

    2008-01-01

    During the establishment phase of a biological invasion, population dynamics are strongly influenced by Allee effects and stochastic dynamics, both of which may lead to extinction of low-density populations. Allee effects refer to a decline in population growth rate with a decline in abundance and can arise from various mechanisms. Strategies to eradicate newly...

  13. Reconciling an invasive plant’s role in aquatic food webs: a case study of an adaptive management process for water hyacinth

    USDA-ARS?s Scientific Manuscript database

    1. Globally, invasive species have a multitude of ecological and socio-economic impacts. However, invasive species can provide novel structure and habitat for native species. The growing rate of biological invasions world-wide presents an urgent dilemma: how can natural resource managers minimize ne...

  14. Phosphatidylcholine-specific phospholipase C inhibition down- regulates CXCR4 expression and interferes with proliferation, invasion and glycolysis in glioma cells

    PubMed Central

    Ricci, Alessandro; Pacella, Aurora; Cigliana, Giovanni; Bozzuto, Giuseppina; Podo, Franca; Carpinelli, Giulia

    2017-01-01

    Background The chemokine receptor CXCR4 plays a crucial role in tumors, including glioblastoma multiforme (GBM), the most aggressive glioma. Phosphatidylcholine-specific phospholipase C (PC-PLC), a catabolic enzyme of PC metabolism, is involved in several aspects of cancer biology and its inhibition down-modulates the expression of growth factor membrane receptors interfering with their signaling pathways. In the present work we investigated the possible interplay between CXCR4 and PC-PLC in GBM cells. Methods Confocal microscopy, immunoprecipitation, western blot analyses, and the evaluation of migration and invasion potential were performed on U87MG cells after PC-PLC inhibition with the xanthate D609. The intracellular metabolome was investigated by magnetic resonance spectroscopy; lactate levels and lactate dehydrogenase (LDH) activity were analyzed by colorimetric assay. Results Our studies demonstrated that CXCR4 and PC-PLC co-localize and are associated on U87MG cell membrane. D609 reduced CXCR4 expression, cell proliferation and invasion, interfering with AKT and EGFR activation and expression. Metabolic analyses showed a decrease in intracellular lactate concentration together with a decrement in LDH activity. Conclusions Our data suggest that inhibition of PC-PLC could represent a new molecular approach in glioma biology not only for its ability in modulating cell metabolism, glioma growth and motility, but also for its inhibitory effect on crucial molecules involved in cancer progression. PMID:28423060

  15. Biologic Profiles of Invasive Breast Cancers Detected Only With Digital Breast Tomosynthesis.

    PubMed

    Kim, Jin You; Kang, Hyun Jung; Shin, Jong Ki; Lee, Nam Kyung; Song, You Seon; Nam, Kyung Jin; Choo, Ki Seok

    2017-12-01

    The purpose of this study was to analyze the clinicopathologic and immunohistochemical features of invasive breast cancers detected only with digital breast tomosynthesis (DBT), compared with those of cancers detected with both DBT and full-field digital mammography (FFDM). The medical records of 261 women (108 without and 153 with symptoms) with invasive breast cancers who underwent FFDM and DBT between April 2015 and June 2016 were retrospectively reviewed. To assess detectability, all DBT and FFDM images were reviewed independently by three radiologists blinded to clinicopathologic information. The reference standard was established by an unblinded consensus review of all images. Clinicopathologic and immunohistochemical features were analyzed according to the detectability status. Of the 261 cancers, 223 (85.4%) were detected with both DBT and FFDM (both-detected group). Twenty-four cancers (9.2%) not detected with FFDM (DBT-only group) were classified by DBT as a mass (58.3%), architectural distortion (33.3%), or asymmetry (8.3%). The remaining 14 cancers (5.4%) were not detected with either DBT or FFDM (both-occult group). On multivariate analysis, a dense breast parenchyma (p = 0.007), small tumor size (≤ 2 cm; p = 0.027), and luminal A-like subtype (estrogen receptor positive or progesterone receptor positive or both, human epidermal growth factor receptor 2 negative, and Ki-67 expression < 14%; p = 0.008) were significantly associated with the DBT-only group. For 108 screening-detected cancers, a dense breast parenchyma (p = 0.007) and luminal A-like subtype (p = 0.008) also maintained significance. The addition of DBT to FFDM in screening would aid in the detection of less-aggressive subtypes of invasive breast cancers in women with dense breasts.

  16. Invasion success in Cogongrass (Imperata cylindrica): A population genetic approach exploring genetic diversity and historical introductions

    Treesearch

    Rima D. Lucardi; Lisa E. Wallace; Gary N. Ervin

    2014-01-01

    Propagule pressure significantly contributes to and limits the potential success of a biological invasion, especially during transport, introduction, and establishment. Events such as multiple introductions of foreign parent material and gene flow among them can increase genetic diversity in founding populations, often leading to greater invasion success. We applied...

  17. Using forest inventory and analysis data to understand biotic resistance to plant invasions across the Eastern United States

    Treesearch

    Basil V. III Iannone; Kevin M. Potter; Hao Zhang; Christopher M. Guo Oswalt; Christopher W. Woodall; Songlin Fei

    2015-01-01

    Biological invasions and their impacts are likely to increase with the expansion of global commerce, making the need to identify key drivers and regulators of invasion perhaps greater than ever. One of the most enduring, and tested, hypotheses for explaining invasions is the “biotic resistance hypothesis.” Broadly, this hypothesis states that communities having greater...

  18. [Correlations between apparent diffusion coefficient in diffusion?weighted magnetic resonance imaging and molecular subtypes of invasive breast cancer masses].

    PubMed

    Shang, Liu-Tong; Yang, Jia-Fei; Lu, Jing; Wang, Ting-Ting; Zhou, Ying; Xing, Xin-Bo; Wang, Xin-Kun; Yang, Shu-Hui; Hu, Ming-Yan

    2017-10-20

    To study the correlation of apparent diffusion coefficient (ADC) measured by diffusion-weighted magnetic resonance imaging (MRI) with the molecular subtypes and biological prognostic factors of invasive breast cancer masses. Breast MRI data (including dynamic enhanced and diffusion-weighted imaging) were collected from 64 patients with pathologically confirmed invasive breast cancer masses (a total of 69 lesions). The mean ADC values of the lesions were calculated and their correlations were analyzed with the 5 molecular subtypes of invasive breast cancer and the biological prognostic factors including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 (HER2), and Ki-67 index. The ADC values did not differ significantly among the 5 molecular subtypes of invasive breast cancer masses (P>0.05) or among lesions with different ER, PR, or HER2 status (P>0.05). The mean ADC values were significantly higher in Ki-67-positive lesions than in the negative lesions (P=0.023 and negatively correlated with the expressions of Ki-67 (r=-0.249). ADC value can not be used to identify the molecular subtypes of invasive breast cancer masses or to evaluate the biological prognosis of the lesions, but its correlation with Ki-67 expression may help in prognostic evaluation and guiding clinical therapy of the tumors.

  19. Allelochemical Control of Non-Indigenous Invasive Plant Species Affecting Military Testing and Training Activities

    DTIC Science & Technology

    2010-10-01

    Evolution in invasive plants : implications for biological control. Trends in Ecology & Evolution . 19:417-422. Newingham, B.A. and R.M. Callaway...2008. Soil ecological interactions of spotted knapweed and native plant species. M.S. Thesis. Colorado State University. Fort Collins, CO...weapons and exotic plant invasions. NSF workshop on ecology and biochemical interactions , Lima. Peru. May. Keynote presentation. Callaway, R.M

  20. Biological invasion of oxeye daisy (Leucanthemum vulgare) in North America: Pre-adaptation, post-introduction evolution, or both?

    PubMed

    Stutz, Sonja; Mráz, Patrik; Hinz, Hariet L; Müller-Schärer, Heinz; Schaffner, Urs

    2018-01-01

    Species may become invasive after introduction to a new range because phenotypic traits pre-adapt them to spread and become dominant. In addition, adaptation to novel selection pressures in the introduced range may further increase their potential to become invasive. The diploid Leucanthemum vulgare and the tetraploid L. ircutianum are native to Eurasia and have been introduced to North America, but only L. vulgare has become invasive. To investigate whether phenotypic differences between the two species in Eurasia could explain the higher abundance of L. vulgare in North America and whether rapid evolution in the introduced range may have contributed to its invasion success, we grew 20 L. vulgare and 21 L. ircutianum populations from Eurasia and 21 L. vulgare populations from North America under standardized conditions and recorded performance and functional traits. In addition, we recorded morphological traits to investigate whether the two closely related species can be clearly distinguished by morphological means and to what extent morphological traits have changed in L. vulgare post-introduction. We found pronounced phenotypic differences between L. vulgare and L. ircutianum from the native range as well as between L. vulgare from the native and introduced ranges. The two species differed significantly in morphology but only moderately in functional or performance traits that could have explained the higher invasion success of L. vulgare in North America. In contrast, leaf morphology was similar between L. vulgare from the native and introduced range, but plants from North America flowered later, were larger and had more and larger flower heads than those from Eurasia. In summary, we found litte evidence that specific traits of L. vulgare may have pre-adapted this species to become more invasive than L. ircutianum, but our results indicate that rapid evolution in the introduced range likely contributed to the invasion success of L. vulgare.

  1. Global population genomics and comparisons of selective signatures from two invasions of melon fly, Zeugodacus cucurbitae (Diptera: Tephritidae)

    USDA-ARS?s Scientific Manuscript database

    Population genetics is a powerful tool for invasion biology and pest management, from tracing invasion pathways to informing management decisions with inference of population demographics. Genomics greatly increases the resolution of population-scale analyses, yet outside of model species with exten...

  2. Understanding the side effects of classical biological control

    Treesearch

    Dean Pearson

    2008-01-01

    Classical biological control involves the use of imported natural enemies to suppress or control populations of the target pest species below an economically or ecologically relevant threshold. Biological control is a useful tool for mitigating the impacts of exotic invasive plants; however, its application is not without risk (see Carruthers and D’Antonio...

  3. Population dynamics of an invasive forest insect and associated natural enemies in the aftermath of invasion: implications for biological control

    Treesearch

    Jian J. Duan; Leah S. Bauer; Kristopher J. Abell; Michael D. Ulyshen; Roy G. Van Driesche

    2015-01-01

    1. Understanding the population dynamics of exotic pests and associated natural enemies is important in developing sound management strategies in invaded forest ecosystems. The emerald ash borer (EAB) Agrilus planipennis Fairmaire is an invasive phloem-feeding beetle that has killed tens of millions of ash Fraxinus trees in North...

  4. Intravital third harmonic generation microscopy of collective melanoma cell invasion

    PubMed Central

    Weigelin, Bettina; Bakker, Gert-Jan; Friedl, Peter

    2012-01-01

    Cancer cell invasion is an adaptive process based on cell-intrinsic properties to migrate individually or collectively, and their adaptation to encountered tissue structure acting as barrier or providing guidance. Whereas molecular and physical mechanisms of cancer invasion are well-studied in 3D in vitro models, their topographic relevance, classification and validation toward interstitial tissue organization in vivo remain incomplete. Using combined intravital third and second harmonic generation (THG, SHG), and three-channel fluorescence microscopy in live tumors, we here map B16F10 melanoma invasion into the dermis with up to 600 µm penetration depth and reconstruct both invasion mode and tissue tracks to establish invasion routes and outcome. B16F10 cells preferentially develop adaptive invasion patterns along preformed tracks of complex, multi-interface topography, combining single-cell and collective migration modes, without immediate anatomic tissue remodeling or destruction. The data suggest that the dimensionality (1D, 2D, 3D) of tissue interfaces determines the microanatomy exploited by invading tumor cells, emphasizing non-destructive migration along microchannels coupled to contact guidance as key invasion mechanisms. THG imaging further detected the presence and interstitial dynamics of tumor-associated microparticles with submicron resolution, revealing tumor-imposed conditioning of the microenvironment. These topographic findings establish combined THG, SHG and fluorescence microscopy in intravital tumor biology and provide a template for rational in vitro model development and context-dependent molecular classification of invasion modes and routes. PMID:29607252

  5. Leptin enhances the invasive ability of glioma stem-like cells depending on leptin receptor expression.

    PubMed

    Han, Guosheng; Zhao, Wenyuan; Wang, Laixing; Yue, Zhijian; Zhao, Rui; Li, Yanan; Zhou, Xiaoping; Hu, Xiaowu; Liu, Jianmin

    2014-01-16

    Glioma stem-like cells have been demonstrated to have highly invasive activity, which is the major cause of glioma recurrence after therapy. Leptin plays a role in glioma invasion, however, whether and how leptin contributes to the biological properties of glioma stem-like cells, such as invasion, remains to be explored. In the current study, we aimed to explore the role of leptin during glioma stem-like cells invasion as well as the signaling pathway. We found that glioma stem-like cells exhibited high invasive potential, especially in the presence of leptin, Ob-R coexpressed with CD133 in glioma stem-like cells was showed to be responsible for leptin mediated invasion of glioma stem-like cells. Our results indicated that leptin served as a key intermediary linking the accumulation of excess adipokine to the invasion of glioma stem-like cells, which may be a novel therapeutic target for suppressing tumor invasion and recurrence. © 2013 Published by Elsevier B.V.

  6. Fibronectin matrix-mediated cohesion suppresses invasion of prostate cancer cells.

    PubMed

    Jia, Dongxuan; Entersz, Ildiko; Butler, Christine; Foty, Ramsey A

    2012-03-20

    Invasion is an important early step in the metastatic cascade and is the primary cause of death of prostate cancer patients. In order to invade, cells must detach from the primary tumor. Cell-cell and cell-ECM interactions are important regulators of cohesion--a property previously demonstrated to mediate cell detachment and invasion. The studies reported here propose a novel role for α5β1 integrin--the principle mediator of fibronectin matrix assembly (FNMA)--as an invasion suppressor of prostate cancer cells. Using a combination of biophysical and cell biological methods, and well-characterized prostate cancer cell lines of varying invasiveness, we explore the relationship between cohesion, invasiveness, and FNMA. We show that cohesion is inversely proportional to invasive capacity. We also show that more invasive cells express lower levels of α5β1 integrin and lack the capacity for FNMA. Cells were generated to over-express either wild-type α5 integrin or an integrin in which the cytoplasmic domain of α5 was replaced with that of α2. The α2 construct does not promote FNMA. We show that only wild-type α5 integrin promotes aggregate compaction, increases cohesion, and reduces invasion of the more aggressive cells, and that these effects can be blocked by the 70-kDa fibronectin fragment. We propose that restoring capacity for FNMA in deficient cells can increase tumor intercellular cohesion to a point that significantly reduces cell detachment and subsequent invasion. In prostate cancer, this could be of therapeutic benefit by blocking an early key step in the metastatic cascade.

  7. The complexity underlying invasiveness precludes the identification of invasive traits: A comparative study of invasive and non-invasive heterocarpic Atriplex congeners

    PubMed Central

    Doudová, Jana; Douda, Jan; Mandák, Bohumil

    2017-01-01

    Heterocarpy enables species to effectively spread under unfavourable conditions by producing two or more types of fruit differing in ecological characteristics. Although it is frequent in annuals occupying disturbed habitats that are vulnerable to invasion, there is still a lack of congeneric studies addressing the importance of heterocarpy for species invasion success. We compared two pairs of heterocarpic Atriplex species, each of them comprising one invasive and one non-invasive non-native congener. In two common garden experiments, we (i) simulated the influence of different levels of nutrients and population density on plants grown from different types of fruits and examined several traits that are generally positively associated with invasion success, and (ii) grew plants in a replacement series experiment to evaluate resource partitioning between them and to compare their competitive ability. We found that specific functional traits or competitiveness of species cannot explain the invasiveness of Atriplex species, indicating that species invasiveness involves more complex interactions of traits that are important only in certain ecological contexts, i.e. in specific environmental conditions and only some habitats. Interestingly, species trait differences related to invasion success were found between plants growing from the ecologically most contrasting fruit types. We suggest that fruit types differing in ecological behaviour may be essential in the process of invasion or in the general spreading of heterocarpic species, as they either the maximize population growth (type C fruit) or enhance the chance of survival of new populations (type A fruit). Congeners offer the best available methodical framework for comparing traits among phylogenetically closely related invasive and non-invasive species. However, as indicated by our results, this approach is unlikely to reveal invasive traits because of the complexity underlying invasiveness. PMID:28445514

  8. Invasional meltdown in northern lakes: Common carp invasion ...

    EPA Pesticide Factsheets

    Disturbances can lead to nonrandom changes in community composition due to interactions between the disturbance and the characteristics of species found in the community or available to colonize, producing both winners and losers of disturbance. When the disturbance is a biological invasion, it has been proposed that other nonnative species may be facilitated, producing positive feedbacks that drive an “invasional meltdown.” We investigated this phenomenon in Minnesota, where 100+ years of Cyprinus carpio (common carp) invasion have fundamentally altered the condition of many lakes. Common carp disturb macrophytes through foraging and bioturbation that causes nutrient loading and low water clarity. We evaluated effects of common carp on lake plant communities and tested whether carp were associated with increased occurrence of nonnative plant species. We hypothesized that there would be strong shifts in plant community composition associated with carp invasion and that plant species would be differentially sensitive to carp, with nonnative plant species more likely to be tolerant. We tested these hypotheses using vegetation, fish, and environmental data collected from 913 lakes over 20 years (1993–2012). This work describes an analysis of the effects of carp invasion on aquatic plant communities in glacial lakes. The results will provide a historical perspective on ecosystem effects of this invasive species that will inform management of aquatic plants, c

  9. Apparatus for eliminating background interference in fluorescence measurements

    DOEpatents

    Martin, J.C.; Jett, J.H.

    1984-01-06

    The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser which excites a different stained component of the same biological particle.

  10. Apparatus for eliminating background interference in fluorescence measurements

    DOEpatents

    Martin, John C.; Jett, James H.

    1986-01-01

    The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser, which excites a different stained component of the same biological particle.

  11. Apparatus for eliminating background interference in fluorescence measurements

    DOEpatents

    Martin, J.C.; Jett, J.H.

    1986-03-04

    The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser, which excites a different stained component of the same biological particle. 8 figs.

  12. Deciphering the Routes of invasion of Drosophila suzukii by Means of ABC Random Forest.

    PubMed

    Fraimout, Antoine; Debat, Vincent; Fellous, Simon; Hufbauer, Ruth A; Foucaud, Julien; Pudlo, Pierre; Marin, Jean-Michel; Price, Donald K; Cattel, Julien; Chen, Xiao; Deprá, Marindia; François Duyck, Pierre; Guedot, Christelle; Kenis, Marc; Kimura, Masahito T; Loeb, Gregory; Loiseau, Anne; Martinez-Sañudo, Isabel; Pascual, Marta; Polihronakis Richmond, Maxi; Shearer, Peter; Singh, Nadia; Tamura, Koichiro; Xuéreb, Anne; Zhang, Jinping; Estoup, Arnaud

    2017-04-01

    Deciphering invasion routes from molecular data is crucial to understanding biological invasions, including identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23 worldwide sampling locations). To do this, we use approximate Bayesian computation (ABC), which has improved the reconstruction of invasion routes, but can be computationally expensive. We use our study to illustrate the use of a new, more efficient, ABC method, ABC random forest (ABC-RF) and compare it to a standard ABC method (ABC-LDA). We find that Japan emerges as the most probable source of the earliest recorded invasion into Hawaii. Southeast China and Hawaii together are the most probable sources of populations in western North America, which then in turn served as sources for those in eastern North America. European populations are genetically more homogeneous than North American populations, and their most probable source is northeast China, with evidence of limited gene flow from the eastern US as well. All introduced populations passed through bottlenecks, and analyses reveal five distinct admixture events. These findings can inform hypotheses concerning how this species evolved between different and independent source and invasive populations. Methodological comparisons indicate that ABC-RF and ABC-LDA show concordant results if ABC-LDA is based on a large number of simulated datasets but that ABC-RF out-performs ABC-LDA when using a comparable and more manageable number of simulated datasets, especially when analyzing complex introduction scenarios. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions.

    PubMed

    De Barro, Paul; Ahmed, Muhammad Z

    2011-01-01

    A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East - Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available genetic diversity.

  14. Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions.

    PubMed

    Stachowicz, John J; Terwin, Jeffrey R; Whitlatch, Robert B; Osman, Richard W

    2002-11-26

    The spread of exotic species and climate change are among the most serious global environmental threats. Each independently causes considerable ecological damage, yet few data are available to assess whether changing climate might facilitate invasions by favoring introduced over native species. Here, we compare our long-term record of weekly sessile marine invertebrate recruitment with interannual variation in water temperature to assess the likely effect of climate change on the success and spread of introduced species. For the three most abundant introduced species of ascidian (sea squirt), the timing of the initiation of recruitment was strongly negatively correlated with winter water temperature, indicating that invaders arrived earlier in the season in years with warmer winters. Total recruitment of introduced species during the following summer also was positively correlated with winter water temperature. In contrast, the magnitude of native ascidian recruitment was negatively correlated with winter temperature (more recruitment in colder years) and the timing of native recruitment was unaffected. In manipulative laboratory experiments, two introduced compound ascidians grew faster than a native species, but only at temperatures near the maximum observed in summer. These data suggest that the greatest effects of climate change on biotic communities may be due to changing maximum and minimum temperatures rather than annual means. By giving introduced species an earlier start, and increasing the magnitude of their growth and recruitment relative to natives, global warming may facilitate a shift to dominance by nonnative species, accelerating the homogenization of the global biota.

  15. Global invasion history of the tropical fire ant: a stowaway on the first global trade routes.

    PubMed

    Gotzek, Dietrich; Axen, Heather J; Suarez, Andrew V; Helms Cahan, Sara; Shoemaker, DeWayne

    2015-01-01

    Biological invasions are largely thought to be contemporary, having recently increased sharply in the wake of globalization. However, human commerce had already become global by the mid-16th century when the Spanish connected the New World with Europe and Asia via their Manila galleon and West Indies trade routes. We use genetic data to trace the global invasion of one of the world's most widespread and invasive pest ants, the tropical fire ant, Solenopsis geminata. Our results reveal a pattern of introduction of Old World populations that is highly consistent with historical trading routes suggesting that Spanish trade introduced the tropical fire ant to Asia in the 16th century. We identify southwestern Mexico as the most likely source for the invasive populations, which is consistent with the use of Acapulco as the major Spanish port on the Pacific Ocean. From there, the Spanish galleons brought silver to Manila, which served as a hub for trade with China. The genetic data document a corresponding spread of S. geminata from Mexico via Manila to Taiwan and from there, throughout the Old World. Our descriptions of the worldwide spread of S. geminata represent a rare documented case of a biological invasion of a highly invasive and globally distributed pest species due to the earliest stages of global commerce. © 2014 John Wiley & Sons Ltd.

  16. Pepducin Based Intervention of Breast Cancer Invasion

    DTIC Science & Technology

    2006-08-01

    low amounts in normal and premalignant atypical intraductal hyperplasia . PAR1 expression levels increased by up to 10-fold in 106 invasive ductal and 17...found in infiltrating ductal carcinomas and very low amounts in normal and premalignant atypical intraductal hyperplasia . PAR1 expression levels...chronic inflammatory conditions (Nelken et al., 1992).Summary Beyond its roles in vascular biology and tissue re- modeling, PAR1 was identified as an

  17. Non-invasive prenatal diagnosis.

    PubMed

    Meaney, Cathy; Norbury, Gail

    2011-01-01

    The discovery of cell-free fetal DNA in the maternal plasma of pregnant women has facilitated the development of non-invasive prenatal diagnosis (NIPD). This has been successfully implemented in diagnostic laboratories for Rhesus typing and fetal sex determination for X-linked disorders and congenital adrenal hyperplasia (CAH) from 7 weeks gestation. Using real-time PCR, fluorescently labelled target gene specific probes can identify and quantify low copy number fetal-specific sequences in a high background of maternal DNA in the cell-free DNA extracted from maternal plasma.NIPD to detect specific fetal mutations in single gene disorders, currently by standard PCR techniques, can only be undertaken for paternally derived or de novo mutations because of the background maternal DNA. For routine use, this testing is limited by the large amounts of cell-free maternal DNA in the sample, the lack of universal fetal markers, and appropriate reference materials.

  18. Tolerance and resistance of invasive and native Eupatorium species to generalist herbivore insects

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Fang; Feng, Yu-Long

    2016-11-01

    Invasive plants are exotic species that escape control by native specialist enemies. However, exotic plants may still be attacked by locally occurring generalist enemies, which can influence the dynamics of biological invasions. If invasive plants have greater defensive (resistance and tolerance) capabilities than indigenous plants, they may experience less damage from native herbivores. In the present study, we tested this prediction using the invasive plant Eupatorium adenophorum and two native congeners under simulated defoliation and generalist herbivore insect (Helicoverpa armigera and Spodoptera litura) treatments. E. adenophorum was less susceptible and compensated more quickly to damages in biomass production from both treatments compared to its two congeners, exhibiting greater herbivore tolerance. This strong tolerance to damage was associated with greater resource allocation to aboveground structures, leading to a higher leaf area ratio and a lower root: crown mass ratio than those of its native congeners. E. adenophorum also displayed a higher resistance index (which integrates acid detergent fiber, nitrogen content, carbon/nitrogen ratio, leaf mass per area, toughness, and trichome density) than its two congeners. Thus, H. armigera and S. litura performed poorly on E. adenophorum, with less leaf damage, a lengthened insect developmental duration, and decreased pupating: molting ratios compared to those of the native congeners. Strong tolerance and resistance traits may facilitate the successful invasion of E. adenophorum in China and may decrease the efficacy of leaf-feeding biocontrol agents. Our results highlight both the need for further research on defensive traits and their role in the invasiveness and biological control of exotic plants, and suggest that biocontrol of E. adenophorum in China would require damage to the plant far in excess of current levels.

  19. Invasive species in southern Nevada [Chapter 4] (Executive Summary)

    Treesearch

    Matthew L. Brooks; Steven M. Ostoja; Jeanne C. Chambers

    2013-01-01

    Southern Nevada contains a wide range of topographies, elevations, and climatic zones that are emblematic of its position at the ecotone between the Mojave Desert, Great Basin, and Colorado Plateau ecoregions. These varied environmental conditions support a high degree of biological diversity, but they also provide opportunities for a wide range of invasive species. In...

  20. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny.

    PubMed

    Gallagher, R V; Randall, R P; Leishman, M R

    2015-04-01

    The ability to predict which alien plants will transition from naturalized to invasive prior to their introduction to novel regions is a key goal for conservation and has the potential to increase the efficacy of weed risk assessment (WRA). However, multiple factors contribute to plant invasion success (e.g., functional traits, range characteristics, residence time, phylogeny), and they all must be taken into account simultaneously in order to identify meaningful correlates of invasion success. We compiled 146 pairs of phylogenetically paired (congeneric) naturalized and invasive plant species in Australia with similar minimum residence times (i.e., time since introduction in years). These pairs were used to test for differences in 5 functional traits (flowering duration, leaf size, maximum height, specific leaf area [SLA], seed mass) and 3 characteristics of species' native ranges (biome occupancy, mean annual temperature, and rainfall breadth) between naturalized and invasive species. Invasive species, on average, had larger SLA, longer flowering periods, and were taller than their congeneric naturalized relatives. Invaders also exhibited greater tolerance for different environmental conditions in the native range, where they occupied more biomes and a wider breadth of rainfall and temperature conditions than naturalized congeners. However, neither seed mass nor leaf size differed between pairs of naturalized and invasive species. A key finding was the role of SLA in distinguishing between naturalized and invasive pairs. Species with high SLA values were typically associated with faster growth rates, more rapid turnover of leaf material, and shorter lifespans than those species with low SLA. This suite of characteristics may contribute to the ability of a species to transition from naturalized to invasive across a wide range of environmental contexts and disturbance regimes. Our findings will help in the refinement of WRA protocols, and we advocate the inclusion

  1. Inferring the origin of populations introduced from a genetically structured native range by approximate Bayesian computation: case study of the invasive ladybird Harmonia axyridis

    USDA-ARS?s Scientific Manuscript database

    The correct identification of the source population of an invasive species is a prerequisite for defining and testing different hypotheses concerning the environmental and evolutionary factors responsible for biological invasions. The native area of invasive species may be large, barely known and/or...

  2. Pythium invasion of plant-based life support systems: biological control and sources

    NASA Technical Reports Server (NTRS)

    Jenkins, D. G.; Cook, K. L.; Garland, J. L.; Board, K. F.; Sager, J. C. (Principal Investigator)

    2000-01-01

    Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.

  3. Parasites and marine invasions: Ecological and evolutionary perspectives

    NASA Astrophysics Data System (ADS)

    Goedknegt, M. Anouk; Feis, Marieke E.; Wegner, K. Mathias; Luttikhuizen, Pieternella C.; Buschbaum, Christian; Camphuysen, Kees (C. J.); van der Meer, Jaap; Thieltges, David W.

    2016-07-01

    marine invasions for parasite-host interactions and suggests that parasite-mediated impacts should be integrated in assessing the risks and consequences of biological invasions.

  4. The need for spatially explicit quantification of benefits in invasive-species management.

    PubMed

    Januchowski-Hartley, Stephanie R; Adams, Vanessa M; Hermoso, Virgilio

    2018-04-01

    Worldwide, invasive species are a leading driver of environmental change across terrestrial, marine, and freshwater environments and cost billions of dollars annually in ecological damages and economic losses. Resources limit invasive-species control, and planning processes are needed to identify cost-effective solutions. Thus, studies are increasingly considering spatially variable natural and socioeconomic assets (e.g., species persistence, recreational fishing) when planning the allocation of actions for invasive-species management. There is a need to improve understanding of how such assets are considered in invasive-species management. We reviewed over 1600 studies focused on management of invasive species, including flora and fauna. Eighty-four of these studies were included in our final analysis because they focused on the prioritization of actions for invasive species management. Forty-five percent (n = 38) of these studies were based on spatial optimization methods, and 35% (n = 13) accounted for spatially variable assets. Across all 84 optimization studies considered, 27% (n = 23) explicitly accounted for spatially variable assets. Based on our findings, we further explored the potential costs and benefits to invasive species management when spatially variable assets are explicitly considered or not. To include spatially variable assets in decision-making processes that guide invasive-species management there is a need to quantify environmental responses to invasive species and to enhance understanding of potential impacts of invasive species on different natural or socioeconomic assets. We suggest these gaps could be filled by systematic reviews, quantifying invasive species impacts on native species at different periods, and broadening sources and enhancing sharing of knowledge. © 2017 Society for Conservation Biology.

  5. Investigating Invasives

    ERIC Educational Resources Information Center

    Lightbody, Mary

    2008-01-01

    Invasive species, commonly known as "invasives," are nonnative plants, animals, and microbes that completely take over and change an established ecosystem. The consequences of invasives' spread are significant. In fact, many of the species that appear on the Endangered Species list are threatened by invasives. Therefore, the topic of invasive…

  6. Employing spatial information technologies to monitor biological control of saltcedar in West Texas

    USDA-ARS?s Scientific Manuscript database

    The saltcedar leaf beetle (Diorhadha spp.) has shown promise as a biocontrol agent for saltcedar (Tamarix spp.) invasions in the United States. In Texas, natural resource managers need assistance in monitoring biological control of invasive saltcedars. This study describes application of a medium fo...

  7. Laryngeal closure impedes non-invasive ventilation at birth

    PubMed Central

    Crawshaw, Jessica R; Kitchen, Marcus J; Binder-Heschl, Corinna; Thio, Marta; Wallace, Megan J; Kerr, Lauren T; Roehr, Charles C; Lee, Katie L; Buckley, Genevieve A; Davis, Peter G; Flemmer, Andreas; te Pas, Arjan B; Hooper, Stuart B

    2018-01-01

    Background Non-invasive ventilation is sometimes unable to provide the respiratory needs of very premature infants in the delivery room. While airway obstruction is thought to be the main problem, the site of obstruction is unknown. We investigated whether closure of the larynx and epiglottis is a major site of airway obstruction. Methods We used phase contrast X-ray imaging to visualise laryngeal function in spontaneously breathing premature rabbits immediately after birth and at approximately 1 hour after birth. Non-invasive respiratory support was applied via a facemask and images were analysed to determine the percentage of the time the glottis and the epiglottis were open. Hypothesis Immediately after birth, the larynx is predominantly closed, only opening briefly during a breath, making non-invasive intermittent positive pressure ventilation (iPPV) ineffective, whereas after lung aeration, the larynx is predominantly open allowing non-invasive iPPV to ventilate the lung. Results The larynx and epiglottis were predominantly closed (open 25.5%±1.1% and 17.1%±1.6% of the time, respectively) in pups with unaerated lungs and unstable breathing patterns immediately after birth. In contrast, the larynx and the epiglottis were mostly open (90.5%±1.9% and 72.3%±2.3% of the time, respectively) in pups with aerated lungs and stable breathing patterns irrespective of time after birth. Conclusion Laryngeal closure impedes non-invasive iPPV at birth and may reduce the effectiveness of non-invasive respiratory support in premature infants immediately after birth. PMID:29054974

  8. Optimal surveillance and eradication of invasive species in heterogeneous landscapes

    Treesearch

    Rebecca S. Epanchin-Niell; Robert G. Haight; Ludek Berec; John M. Kean; Andrew M. Liebhold

    2012-01-01

    Cost-effective surveillance strategies are needed for efficient responses to biological invasions and must account for the trade-offs between surveillance effort and management costs. Less surveillance may allow greater population growth and spread prior to detection, thereby increasing the costs of damages and control. In addition, surveillance strategies are usually...

  9. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs

    PubMed Central

    Pschernig, Elisabeth; Wallner, Bernard; Millesi, Eva

    2016-01-01

    Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals’ natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating

  10. A DYNAMIC MODEL OF AN ESTUARINE INVASION BY A NON-NATIVE SEAGRASS

    EPA Science Inventory

    Mathematical and simulation models provide an excellent tool for examining and predicting biological invasions in time and space; however, traditional models do not incorporate dynamic rates of population growth, which limits their realism. We developed a spatially explicit simul...

  11. Prioritizing islands for the eradication of invasive vertebrates in the United Kingdom overseas territories.

    PubMed

    Dawson, Jeffrey; Oppel, Steffen; Cuthbert, Richard J; Holmes, Nick; Bird, Jeremy P; Butchart, Stuart H M; Spatz, Dena R; Tershy, Bernie

    2015-02-01

    Invasive alien species are one of the primary threats to native biodiversity on islands worldwide. Consequently, eradicating invasive species from islands has become a mainstream conservation practice. Deciding which islands have the highest priority for eradication is of strategic importance to allocate limited resources to achieve maximum conservation benefit. Previous island prioritizations focused either on a narrow set of native species or on a small geographic area. We devised a prioritization approach that incorporates all threatened native terrestrial vertebrates and all invasive terrestrial vertebrates occurring on 11 U.K. overseas territories, which comprise over 2000 islands ranging from the sub-Antarctic to the tropics. Our approach includes eradication feasibility and distinguishes between the potential and realistic conservation value of an eradication, which reflects the benefit that would accrue following eradication of either all invasive species or only those species for which eradication techniques currently exist. We identified the top 25 priority islands for invasive species eradication that together would benefit extant populations of 155 native species including 45 globally threatened species. The 5 most valuable islands included the 2 World Heritage islands Gough (South Atlantic) and Henderson (South Pacific) that feature unique seabird colonies, and Anegada, Little Cayman, and Guana Island in the Caribbean that feature a unique reptile fauna. This prioritization can be rapidly repeated if new information or techniques become available, and the approach could be replicated elsewhere in the world. © 2014 Crown copyright. Conservation Biology © 2014 Society for Conservation Biology.

  12. Neurophotonics: non-invasive optical techniques for monitoring brain functions

    PubMed Central

    Torricelli, Alessandro; Contini, Davide; Mora, Alberto Dalla; Pifferi, Antonio; Re, Rebecca; Zucchelli, Lucia; Caffini, Matteo; Farina, Andrea; Spinelli, Lorenzo

    2014-01-01

    Summary The aim of this review is to present the state of the art of neurophotonics, a recently founded discipline lying at the interface between optics and neuroscience. While neurophotonics also includes invasive techniques for animal studies, in this review we focus only on the non-invasive methods that use near infrared light to probe functional activity in the brain, namely the fast optical signal, diffuse correlation spectroscopy, and functional near infrared spectroscopy methods. We also present an overview of the physical principles of light propagation in biological tissues, and of the main physiological sources of signal. Finally, we discuss the open issues in models, instrumentation, data analysis and clinical approaches. PMID:25764252

  13. Are Hong Kong and Taiwan stepping-stones for invasive species to the mainland of China?

    PubMed

    Lu, Jianbo; Li, Shao-Peng; Wu, Yujia; Jiang, Lin

    2018-02-01

    Understanding the origins and introduction pathways of invasive species is a fundamental issue for invasion biology, which is necessary for predicting and preventing future invasion. Once an invasive species is established in a new location, this location could serve as a stepping-stone for further invasions. However, such "stepping-stone" effect has not been widely investigated. Using the published literature and records, we compiled the first found locations of 127 top invasive species in China. Our study showed that the most common landing spots of these invasive species were Hong Kong (22 species) and Taiwan (20 species), which accounted for one-third of the invasive species in China. Our analysis revealed that the invasive species in mainland China were more likely to transport from Hong Kong than Macau, a neighboring region with a similar area and colonial history. Similarly, more invasive species were also first landed on Taiwan than Hainan, a nearby island sharing similar climate conditions. Together, our findings indicate that Hong Kong and Taiwan are the most important stepping-stones for invasive species to the mainland of China and suggesting that the increasing trade exchange of China's coastal ports constitutes a potential risk for the spread of more invasive species. We suppose that they would be the future stepping-stones for invasive species to the mainland of China and these coastal ports regions where improved biosecurity is needed now.

  14. Biology and host range of Omolabus piceus, a weevil rejected for biological control for Schinus terebinthifolius in the USA

    USDA-ARS?s Scientific Manuscript database

    Surveys for biological control agents of the invasive weed Schinus terebinthifolius (Anacardiaceae) discovered two Omolabus weevils (Coleoptera: Attelabidae) feeding on the plant in its native range. Molecular and morphological analysis indicated that one of these species consistently fed on the tar...

  15. Genome-wide single nucleotide polymorphisms (SNPs) for a model invasive ascidian Botryllus schlosseri.

    PubMed

    Gao, Yangchun; Li, Shiguo; Zhan, Aibin

    2018-04-01

    Invasive species cause huge damages to ecology, environment and economy globally. The comprehensive understanding of invasion mechanisms, particularly genetic bases of micro-evolutionary processes responsible for invasion success, is essential for reducing potential damages caused by invasive species. The golden star tunicate, Botryllus schlosseri, has become a model species in invasion biology, mainly owing to its high invasiveness nature and small well-sequenced genome. However, the genome-wide genetic markers have not been well developed in this highly invasive species, thus limiting the comprehensive understanding of genetic mechanisms of invasion success. Using restriction site-associated DNA (RAD) tag sequencing, here we developed a high-quality resource of 14,119 out of 158,821 SNPs for B. schlosseri. These SNPs were relatively evenly distributed at each chromosome. SNP annotations showed that the majority of SNPs (63.20%) were located at intergenic regions, and 21.51% and 14.58% were located at introns and exons, respectively. In addition, the potential use of the developed SNPs for population genomics studies was primarily assessed, such as the estimate of observed heterozygosity (H O ), expected heterozygosity (H E ), nucleotide diversity (π), Wright's inbreeding coefficient (F IS ) and effective population size (Ne). Our developed SNP resource would provide future studies the genome-wide genetic markers for genetic and genomic investigations, such as genetic bases of micro-evolutionary processes responsible for invasion success.

  16. Submucosal invasion and risk of lymph node invasion in early Barrett’s cancer: potential impact of different classification systems on patient management

    PubMed Central

    Fotis, Dimitrios; Doukas, Michael; Wijnhoven, Bas PL; Didden, Paul; Biermann, Katharina; Bruno, Marco J

    2015-01-01

    Background Due to the high mortality and morbidity rates of esophagectomy, endoscopic mucosal resection (EMR) is increasingly used for the curative treatment of early low risk Barrett’s adenocarcinoma. Objective This retrospective cohort study aimed to assess the prevalence of lymph node metastases (LNM) in submucosal (T1b) esophageal adenocarcinomas (EAC) in relation to the absolute depth of submucosal tumor invasion and demonstrate the efficacy of EMR for low risk (well and moderately differentiated without lymphovascular invasion) EAC with sm1 invasion (submucosal invasion ≤500 µm) according to the Paris classification. Methods The pathology reports of patients undergoing endoscopic resection and surgery from January 1994 until December 2013 at one center were reviewed and 54 patients with submucosal invasion were included. LNM were evaluated in surgical specimens and by follow up examinations in case of EMR. Results No LNM were observed in 10 patients with sm1 adenocarcinomas that underwent endoscopic resection. Three of them underwent supplementary endoscopic eradication therapy with a median follow up of 27 months for patients with sm1 tumors. In the surgical series two patients (29%) with sm1 invasion according to the pragmatic classification (subdivision of the submucosa into three equal thirds), staged as sm2-3 in the Paris classification, had LNM. The rate of LNM for surgical patients with low risk sm1 tumors was 10% according to the pragmatic classification and 0% according to Paris classification. Conclusion Different classifications of the tumor invasion depth lead to different LNM risks and treatment strategies for sm1 adenocarcinomas. Patients with low risk sm1 adenocarcinomas appear to be suitable candidates for EMR. PMID:26668743

  17. Curvilinear Effects of Invasive Plants on Plant Diversity: Plant Community Invaded by Sphagneticola trilobata

    PubMed Central

    Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants. PMID:25426856

  18. Curvilinear effects of invasive plants on plant diversity: plant community invaded by Sphagneticola trilobata.

    PubMed

    Qi, Shan-Shan; Dai, Zhi-Cong; Zhai, De-Li; Chen, Si-Chong; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Zhong, Qiong-Xin; Du, Dao-Lin

    2014-01-01

    The effects of invasive plants on the species diversity of plant communities are controversial, showing either a positive or negative linear relationship. Based on community data collected from forty 5 m×5 m plots invaded by Sphagneticola trilobata in eight cities across Hainan Island, China, we found S. trilobata decreased plant community diversity once its cover was beyond 10%. We demonstrated that the effects of invasive/native plants on the plant diversity of communities invaded by S. trilobata were curvilinear. These effects, which showed peaks under different degrees of vegetation cover, appeared not only for S. trilobata and all invasive plants, but also for all native plants. Invasive plants primarily had negative effects on plant diversity when they became abundant at a much lower cover level (less than 35%), compared with the native plants (over 60%). Thus, it is necessary to distinguish a range for assessing the effects of plants, especially invasive plants. Our results also confirmed that the invasion intensity of invasive alien plants increased with the intensity of local economic development. We highlight and further discuss the critical importance of curvilinear effects of biological invasion to provide ideas regarding the conservation of local biodiversity and the management of invasive plants.

  19. A New Method for Post-introduction Risk Assessment of Biological Invasions Among Introduced Shrubs in Developing Countries.

    PubMed

    Seburanga, J L; Bizuru, E; Mwavu, E N; Kampungu, K G; Gatesire, T; Kaplin, B A

    2016-03-01

    Risk-assessment methods are useful in collecting data that can help decision making to prevent the introduction of new species that have the potential of invading as well as in management of established taxa. Not only the complexity and unaffordability of available pre-introduction risk-assessment models make them rarely or inconsistently applied in the least-developed countries, but also there is lack of tools to assess the status of already introduced plant species. In this study, an affordable and rapid method of assessment of invasiveness among introduced plant species was developed and tested in Rwanda. This method defines three invasion stages (potential, effective, and suppressive invaders) and four levels of risk assessment: post-introduction assessment of species inherent invasive potential (Level 1), post-establishment assessment of species capacity of regeneration (Level 2), post-naturalization assessment of species range of occurrence and ability for long-distance dispersal (Level 3), and post-naturalization assessment of species ability to outcompete other plants in the community and transform the landscape (Level 4). A review of invasive species in Rwanda was developed through desk review, examination of herbarium records, and vegetation surveys. This method should be applicable in other countries that lack the means for a more conventional scientific investigation or under any circumstance where a quick and inexpensive assessment is needed. The method could be useful to environmental managers for timely intervention with strategies specific to different stages of invasion (post-introduction, post-establishment, or post-naturalization) and allocate resources accordingly.

  20. A New Method for Post-introduction Risk Assessment of Biological Invasions Among Introduced Shrubs in Developing Countries

    NASA Astrophysics Data System (ADS)

    Seburanga, J. L.; Bizuru, E.; Mwavu, E. N.; Kampungu, K. G.; Gatesire, T.; Kaplin, B. A.

    2016-03-01

    Risk-assessment methods are useful in collecting data that can help decision making to prevent the introduction of new species that have the potential of invading as well as in management of established taxa. Not only the complexity and unaffordability of available pre-introduction risk-assessment models make them rarely or inconsistently applied in the least-developed countries, but also there is lack of tools to assess the status of already introduced plant species. In this study, an affordable and rapid method of assessment of invasiveness among introduced plant species was developed and tested in Rwanda. This method defines three invasion stages (potential, effective, and suppressive invaders) and four levels of risk assessment: post-introduction assessment of species inherent invasive potential ( Level 1), post-establishment assessment of species capacity of regeneration ( Level 2), post-naturalization assessment of species range of occurrence and ability for long-distance dispersal ( Level 3), and post-naturalization assessment of species ability to outcompete other plants in the community and transform the landscape ( Level 4). A review of invasive species in Rwanda was developed through desk review, examination of herbarium records, and vegetation surveys. This method should be applicable in other countries that lack the means for a more conventional scientific investigation or under any circumstance where a quick and inexpensive assessment is needed. The method could be useful to environmental managers for timely intervention with strategies specific to different stages of invasion (post-introduction, post-establishment, or post-naturalization) and allocate resources accordingly.

  1. Progranulin and its biological effects in cancer.

    PubMed

    Arechavaleta-Velasco, Fabian; Perez-Juarez, Carlos Eduardo; Gerton, George L; Diaz-Cueto, Laura

    2017-11-07

    Cancer cells have defects in regulatory mechanisms that usually control cell proliferation and homeostasis. Different cancer cells share crucial alterations in cell physiology, which lead to malignant growth. Tumorigenesis or tumor growth requires a series of events that include constant cell proliferation, promotion of metastasis and invasion, stimulation of angiogenesis, evasion of tumor suppressor factors, and avoidance of cell death pathways. All these events in tumor progression may be regulated by growth factors produced by normal or malignant cells. The growth factor progranulin has significant biological effects in different types of cancer. This protein is a regulator of tumorigenesis because it stimulates cell proliferation, migration, invasion, angiogenesis, malignant transformation, resistance to anticancer drugs, and immune evasion. This review focuses on the biological effects of progranulin in several cancer models and provides evidence that this growth factor should be considered as a potential biomarker and target in cancer treatment.

  2. Live-cell imaging of invasion and intravasation in an artificial microvessel platform.

    PubMed

    Wong, Andrew D; Searson, Peter C

    2014-09-01

    Methods to visualize metastasis exist, but additional tools to better define the biologic and physical processes underlying invasion and intravasation are still needed. One difficulty in studying metastasis stems from the complexity of the interface between the tumor microenvironment and the vascular system. Here, we report the development of an investigational platform that positions tumor cells next to an artificial vessel embedded in an extracellular matrix. On this platform, we used live-cell fluorescence microscopy to analyze the complex interplay between metastatic cancer cells and a functional artificial microvessel that was lined with endothelial cells. The platform recapitulated known interactions, and its use demonstrated the capabilities for a systematic study of novel physical and biologic parameters involved in invasion and intravasation. In summary, our work offers an important new tool to advance knowledge about metastasis and candidate antimetastatic therapies. ©2014 American Association for Cancer Research.

  3. Synthesis and biological activity of chloroethyl pyrimidine nucleosides.

    PubMed

    Colombeau, Ludovic; Teste, Karine; Hadj-Bouazza, Amel; Chaleix, Vincent; Zerrouki, Rachida; Kraemer, Michel; Catherine, Odile Sainte

    2008-02-01

    The synthesis and biological activity of chloroethyl pyrimidine nucleosides is presented. One of these new nucleosides analogues significantly inhibited cell proliferation, migration and invasion as tested in vitro on the A431 vulvar epidermal carcinoma cell line.

  4. Critical roles of chemokine receptor CCR5 in regulating glioblastoma proliferation and invasion.

    PubMed

    Zhao, Lanfu; Wang, Yuan; Xue, Yafei; Lv, Wenhai; Zhang, Yufu; He, Shiming

    2015-11-01

    Glioblastoma (GBM) is the most prevalent malignant primary brain tumor in adults and exhibits a spectrum of aberrantly aggressive phenotype. Tumor cell proliferation and invasion are critically regulated by chemokines and their receptors. Recent studies have shown that the chemokine CCL5 and its receptor CCR5 play important roles in tumor invasion and metastasis. Nonetheless, the roles of the CCR5 in GBM still remain unclear. The present study provides the evidence that the chemokine receptor CCR5 is highly expressed and associated with poor prognosis in human GBM. Mechanistically, CCL5-CCR5 mediates activation of Akt, and subsequently induces proliferation and invasive responses in U87 and U251 cells. Moreover, down-regulation of CCR5 significantly inhibited the growth of glioma in U87 tumor xenograft mouse model. Finally, high CCR5 expression in GBM is correlated with increased p-Akt expression in patient samples. Together, these findings suggest that the CCR5 is a critical molecular event associated with gliomagenesis. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  5. Call transmission efficiency in native and invasive anurans: competing hypotheses of divergence in acoustic signals.

    PubMed

    Llusia, Diego; Gómez, Miguel; Penna, Mario; Márquez, Rafael

    2013-01-01

    Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2-5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a less

  6. Call Transmission Efficiency in Native and Invasive Anurans: Competing Hypotheses of Divergence in Acoustic Signals

    PubMed Central

    Llusia, Diego; Gómez, Miguel; Penna, Mario; Márquez, Rafael

    2013-01-01

    Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2–5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a

  7. Testing Carea varipes and Neostauropus alternus as biological control agents for the Florida invasive plant species Rhodomyrtus tomentosa.

    USDA-ARS?s Scientific Manuscript database

    Rhodomyrtus tomentosa (RT) a native plant to Southeastern Asia, commonly known as downy rose myrtle, is invasive to the regions of Central and South Florida. Introduced in the early 1920’s, this weed is currently considered a Category I invasive species by the Florida Exotic Pest Plant Council. RT...

  8. Is invasion success of Australian trees mediated by their native biogeography, phylogenetic history, or both?

    PubMed

    Miller, Joseph T; Hui, Cang; Thornhill, Andrew; Gallien, Laure; Le Roux, Johannes J; Richardson, David M

    2016-12-30

    For a plant species to become invasive it has to progress along the introduction-naturalization-invasion (INI) continuum which reflects the joint direction of niche breadth. Identification of traits that correlate with and drive species invasiveness along the continuum is a major focus of invasion biology. If invasiveness is underlain by heritable traits, and if such traits are phylogenetically conserved, then we would expect non-native species with different introduction status (i.e. position along the INI continuum) to show phylogenetic signal. This study uses two clades that contain a large number of invasive tree species from the genera Acacia and Eucalyptus to test whether geographic distribution and a novel phylogenetic conservation method can predict which species have been introduced, became naturalized, and invasive. Our results suggest that no underlying phylogenetic signal underlie the introduction status for both groups of trees, except for introduced acacias. The more invasive acacia clade contains invasive species that have smoother geographic distributions and are more marginal in the phylogenetic network. The less invasive eucalyptus group contains invasive species that are more clustered geographically, more centrally located in the phylogenetic network and have phylogenetic distances between invasive and non-invasive species that are trending toward the mean pairwise distance. This suggests that highly invasive groups may be identified because they have invasive species with smoother and faster expanding native distributions and are located more to the edges of phylogenetic networks than less invasive groups. Published by Oxford University Press on behalf of the Annals of Botany Company.

  9. Minimally Invasive Surgery in Gastrointestinal Cancer: Benefits, Challenges, and Solutions for Underutilization

    PubMed Central

    Gusani, Niraj J.; Kimchi, Eric T.; Kavic, Stephen M.

    2014-01-01

    Background and Objectives: After the widespread application of minimally invasive surgery for benign diseases and given its proven safety and efficacy, minimally invasive surgery for gastrointestinal cancer has gained substantial attention in the past several years. Despite the large number of publications on the topic and level I evidence to support its use in colon cancer, minimally invasive surgery for most gastrointestinal malignancies is still underused. Methods: We explore some of the challenges that face the fusion of minimally invasive surgery technology in the management of gastrointestinal malignancies and propose solutions that may help increase the utilization in the future. These solutions are based on extensive literature review, observation of current trends and practices in this field, and discussion made with experts in the field. Results: We propose 4 different solutions to increase the use of minimally invasive surgery in the treatment of gastrointestinal malignancies: collaboration between surgical oncologists/hepatopancreatobiliary surgeons and minimally invasive surgeons at the same institution; a single surgeon performing 2 fellowships in surgical oncology/hepatopancreatobiliary surgery and minimally invasive surgery; establishing centers of excellence in minimally invasive gastrointestinal cancer management; and finally, using robotic technology to help with complex laparoscopic skills. Conclusions: Multiple studies have confirmed the utility of minimally invasive surgery techniques in dealing with patients with gastrointestinal malignancies. However, training continues to be the most important challenge that faces the use of minimally invasive surgery in the management of gastrointestinal malignancy; implementation of our proposed solutions may help increase the rate of adoption in the future. PMID:25489209

  10. The Impact of Non-Lethal Single-Dose Radiation on Tumor Invasion and Cytoskeletal Properties.

    PubMed

    Hohmann, Tim; Grabiec, Urszula; Vogel, Carolin; Ghadban, Chalid; Ensminger, Stephan; Bache, Matthias; Vordermark, Dirk; Dehghani, Faramarz

    2017-09-18

    Irradiation is the standard therapy for glioblastoma multiforme. Glioblastoma are highly resistant to radiotherapy and the underlying mechanisms remain unclear. To better understand the biological effects of irradiation on glioblastoma cells, we tested whether nonlethal irradiation influences the invasiveness, cell stiffness, and actin cytoskeleton properties. Two different glioblastoma cell lines were irradiated with 2 Gy and changes in mechanical and migratory properties and alterations in the actin structure were measured. The invasiveness of cell lines was determined using a co-culture model with organotypic hippocampal slice cultures. Irradiation led to changes in motility and a less invasive phenotype in both investigated cell lines that were associated with an increase in a "generalized stiffness" and changes in the actin structure. In this study we demonstrate that irradiation can induce changes in the actin cytoskeleton and motility, which probably results in reduced invasiveness of glioblastoma cell lines. Furthermore, "generalized stiffness" was shown to be a profound marker of the invasiveness of a tumor cell population in our model.

  11. Interactive effect of herbivory and competition on the invasive plant Mikania micrantha.

    PubMed

    Li, Junmin; Xiao, Tao; Zhang, Qiong; Dong, Ming

    2013-01-01

    A considerable number of host-specific biological control agents fail to control invasive plants in the field, and exploring the mechanism underlying this phenomenon is important and helpful for the management of invasive plants. Herbivory and competition are two of the most common biotic stressors encountered by invasive plants in their recipient communities. We predicted that the antagonistic interactive effect between herbivory and competition would weaken the effect of herbivory on invasive plants and result in the failure of herbivory to control invasive plants. To examine this prediction, thus, we conducted an experiment in which both invasive Mikania micrantha and native Coix lacryma-job i were grown together and subjected to herbivory-mimicking defoliation. Both defoliation and competition had significantly negative effects on the growth of the invader. However, the negative effect of 75% respective defoliation on the above- and below-ground biomass of Mikania micrantha was alleviated by presence of Coix lacryma-jobi. The negative effect of competition on the above- and below-ground biomass was equally compensated at 25%, 50% and 100% defoliation and overcompensated at 75% defoliation. The interactive effect was antagonistic and dependent on the defoliation intensity, with the maximum effect at 75% defoliation. The antagonistic interaction between defoliation and competition appears to be able to release the invader from competition, thus facilitating the invasiveness of Mikania, a situation that might make herbivory fail to inhibit the growth of invasive Mikania in the invaded community.

  12. Invasion and Persistence of a Selfish Gene in the Cnidaria

    PubMed Central

    Goddard, Matthew R.; Leigh, Jessica; Roger, Andrew J; Pemberton, Andrew J

    2006-01-01

    Background Homing endonuclease genes (HEGs) are superfluous, but are capable of invading populations that mix alleles by biasing their inheritance patterns through gene conversion. One model suggests that their long-term persistence is achieved through recurrent invasion. This circumvents evolutionary degeneration, but requires reasonable rates of transfer between species to maintain purifying selection. Although HEGs are found in a variety of microbes, we found the previous discovery of this type of selfish genetic element in the mitochondria of a sea anemone surprising. Methods/Principal Findings We surveyed 29 species of Cnidaria for the presence of the COXI HEG. Statistical analyses provided evidence for HEG invasion. We also found that 96 individuals of Metridium senile, from five different locations in the UK, had identical HEG sequences. This lack of sequence divergence illustrates the stable nature of Anthozoan mitochondria. Our data suggests this HEG conforms to the recurrent invasion model of evolution. Conclusions Ordinarily such low rates of HEG transfer would likely be insufficient to enable major invasion. However, the slow rate of Anthozoan mitochondrial change lengthens greatly the time to HEG degeneration: this significantly extends the periodicity of the HEG life-cycle. We suggest that a combination of very low substitution rates and rare transfers facilitated metazoan HEG invasion. PMID:17183657

  13. [Paediatric Invasive Pneumococcal Disease Before Universal Vaccination: 1995 - 2015].

    PubMed

    Ferreira, Muriel; Oliveira, Henrique; Silva, Nuno Costa; Januário, Luís; Rodrigues, Fernanda

    2017-06-30

    Pneumococcal conjugate vaccine was introduced in the private market in Portugal in 2001, reaching over the years a moderately high coverage. In July 2015, it was included in the National Immunisation Program. The aim of this study was to characterize invasive pneumococcal disease in a pediatric hospital before universal use of the vaccine. Retrospective analysis of medical records of all children with Streptococcus pneumoniae identified by culture and/or molecular biology (available since 2008), in products obtained from sterile sites, from January 1995 to June 2015. We evaluated demographic, clinical and microbiological data. Serotype results are available since 2004. Over those 20 years, 112 invasive pneumococcal disease cases were identified, with a median age of 15 months (1 month - 15 years). The median number of cases /year was 4, the highest between 2001 - 2002 (8/year) and 2007 - 2012 (7 - 11/year). The identification occurred mostly in blood culture (72), cerebrospinal fluid (24), pleural fluid (11) an others (5). The most frequent diagnoses were pneumonia (38%), occult bacteraemia (34%) and meningitis (21%). Over the period under review, there was an increase of pneumonia and slight increase of OB, with meningitis cases remaining relatively unchanged. In the last two decades, there was no reduction in the number of cases of invasive pneumococcal disease. There was an increase in isolates from pneumonia and occult bacteraemia that might be due to the introduction of molecular biological methods for Streptococcus pneumoniae detection. Vaccine serotypes were predominant. This retrospective analysis before universal vaccination will contribute to evaluate the impact of vaccination in the Portuguese pediatric population.

  14. Invasive species in the northwestern United States: threats to wildlife, and Defenders of Wildlife's recommendation for prevention policies.

    Treesearch

    Aimee Delach

    2006-01-01

    Invasive alien species have long been recognized as a leading threat to biological diversity, contributing to the decline of nearly half of the imperiled species in the United States for which threat information is available. This paper discusses some of the invasive species that threaten imperiled wildlife in the western United States, including endemic birds in San...

  15. Intracoastal shipping drives patterns of regional population expansion by an invasive marine invertebrate.

    PubMed

    Darling, John A; Herborg, Leif-Matthias; Davidson, Ian C

    2012-10-01

    Understanding the factors contributing to expansion of nonnative populations is a critical step toward accurate risk assessment and effective management of biological invasions. Nevertheless, few studies have attempted explicitly to test hypotheses regarding factors driving invasive spread by seeking correlations between patterns of vector movement and patterns of genetic connectivity. Herein, we describe such an attempt for the invasive tunicate Styela clava in the northeastern Pacific. We utilized microsatellite data to estimate gene flow between samples collected throughout the known range of S. clava in the region, and assessed correlation of these estimates with patterns of intracoastal commercial vessel traffic. Our results suggest that recent shipping patterns have contributed to the contemporary distribution of genetic variation. However, the analysis also indicates that other factors-including a complex invasion history and the influence of other vectors-have partially obscured genetic patterns associated with intracoastal population expansion.

  16. The thermal dependency of locomotor performance evolves rapidly within an invasive species.

    PubMed

    Kosmala, Georgia K; Brown, Gregory P; Christian, Keith A; Hudson, Cameron M; Shine, Richard

    2018-05-01

    Biological invasions can stimulate rapid shifts in organismal performance, via both plasticity and adaptation. We can distinguish between these two proximate mechanisms by rearing offspring from populations under identical conditions and measuring their locomotor abilities in standardized trials. We collected adult cane toads ( Rhinella marina ) from invasive populations that inhabit regions of Australia with different climatic conditions. We bred those toads and raised their offspring under common-garden conditions before testing their locomotor performance. At high (but not low) temperatures, offspring of individuals from a hotter location (northwestern Australia) outperformed offspring of conspecifics from a cooler location (northeastern Australia). This disparity indicates that, within less than 100 years, thermal performance in cane toads has adapted to the novel abiotic challenges that cane toads have encountered during their invasion of tropical Australia.

  17. Annual grass invasion in sagebrush-steppe: The relative importance of climate, soil properties and biotic interactions

    USGS Publications Warehouse

    Bansal, Sheel; Sheley, Roger L.

    2016-01-01

    The invasion by winter-annual grasses (AGs) such as Bromus tectorum into sagebrush steppe throughout the western USA is a classic example of a biological invasion with multiple, interacting climate, soil and biotic factors driving the invasion, although few studies have examined all components together. Across a 6000-km2 area of the northern Great Basin, we conducted a field assessment of 100 climate, soil, and biotic (functional group abundances, diversity) factors at each of 90 sites that spanned an invasion gradient ranging from 0 to 100 % AG cover. We first determined which biotic and abiotic factors had the strongest correlative relationships with AGs and each resident functional group. We then used regression and structural equation modeling to explore how multiple ecological factors interact to influence AG abundance. Among biotic interactions, we observed negative relationships between AGs and biodiversity, perennial grass cover, resident species richness, biological soil crust cover and shrub density, whereas perennial and annual forb cover, tree cover and soil microbial biomass had no direct linkage to AG. Among abiotic factors, AG cover was strongly related to climate (increasing cover with increasing temperature and aridity), but had weak relationships with soil factors. Our structural equation model showed negative effects of perennial grasses and biodiversity on AG cover while integrating the negative effects of warmer climate and positive influence of belowground processes on resident functional groups. Our findings illustrate the relative importance of biotic interactions and climate on invasive abundance, while soil properties appear to have stronger relationships with resident biota than with invasives.

  18. Reproductive isolation and the expansion of an invasive hybrid swarm

    USGS Publications Warehouse

    Blum, Michael J.; Walters, David M.; Burkhead, Noel M.; Freeman, Byron J.; Porter, Brady A.

    2010-01-01

    Biological invasions involving hybridization proceed according to prezygotic and postzygotic reproductive isolating mechanisms. Yet few comparisons of reproductive isolation have been carried out to understand how different mechanisms prevent or promote invasions involving hybridization. Here we present a study of prezygotic and postzygotic isolation between non-native red shiner (Cyprinella lutrensis) and native blacktail shiner (C. venusta stigmatura) from the Coosa River basin (USA) to better understand the formation and expansion of invasive hybrid swarms. We conducted spawning trials to measure mating preferences and raised broods from crosses to assay hybrid viability through early juvenile development. Females of both species were more responsive to conspecific mates, although blacktail shiner females responded more often to heterospecific mates than did red shiner females. Fecundity of red shiner females was also higher than blacktail shiner females. Heterospecific crosses resulted in lower fertilization and egg hatching rates, but we found no other evidence of inviability. Rather, we found comparatively low larval mortality of F1 hybrids, which is suggestive of heterosis. These findings support prior inferences of assortative mating from genetic descriptions of hybridization, and that the invasion in the Coosa River is likely proceeding due to interspecific competition and intrinsic hybrid viability.

  19. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    ERIC Educational Resources Information Center

    Chiel, Hillel J.; McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge…

  20. Commonly rare and rarely common: comparing population abundance of invasive and native aquatic species.

    PubMed

    Hansen, Gretchen J A; Vander Zanden, M Jake; Blum, Michael J; Clayton, Murray K; Hain, Ernie F; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S; McIntyre, Peter B; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies.

  1. Commonly Rare and Rarely Common: Comparing Population Abundance of Invasive and Native Aquatic Species

    PubMed Central

    Hansen, Gretchen J. A.; Vander Zanden, M. Jake; Blum, Michael J.; Clayton, Murray K.; Hain, Ernie F.; Hauxwell, Jennifer; Izzo, Marit; Kornis, Matthew S.; McIntyre, Peter B.; Mikulyuk, Alison; Nilsson, Erika; Olden, Julian D.; Papeş, Monica; Sharma, Sapna

    2013-01-01

    Invasive species are leading drivers of environmental change. Their impacts are often linked to their population size, but surprisingly little is known about how frequently they achieve high abundances. A nearly universal pattern in ecology is that species are rare in most locations and abundant in a few, generating right-skewed abundance distributions. Here, we use abundance data from over 24,000 populations of 17 invasive and 104 native aquatic species to test whether invasive species differ from native counterparts in statistical patterns of abundance across multiple sites. Invasive species on average reached significantly higher densities than native species and exhibited significantly higher variance. However, invasive and native species did not differ in terms of coefficient of variation, skewness, or kurtosis. Abundance distributions of all species were highly right skewed (skewness>0), meaning both invasive and native species occurred at low densities in most locations where they were present. The average abundance of invasive and native species was 6% and 2%, respectively, of the maximum abundance observed within a taxonomic group. The biological significance of the differences between invasive and native species depends on species-specific relationships between abundance and impact. Recognition of cross-site heterogeneity in population densities brings a new dimension to invasive species management, and may help to refine optimal prevention, containment, control, and eradication strategies. PMID:24194883

  2. 76 FR 18575 - Nominations of New Members to the Invasive Species Advisory Committee (ISAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ..., outreach, and public relations experts; coordinating diverse groups of stakeholders to resolve complex... assessment, biological control of invasive species, public health/epidemiology, industry activities...., agriculture, fisheries, public utilities, recreational users, tourism, etc.); representing sectors of the...

  3. lnvasive pests ('biological pollutants') and US forests: whose problem, who pays?

    Treesearch

    W.E. Wallner

    1996-01-01

    Invasive pests, or 'biological pollutants' are among the most serious threats to biological diversity in the forest ecosystems of the USA. Additionally, they can disrupt forest management practices and cause enormous financial losses. In the USA, as elsewhere, the receiving country inherits the problem and, along with its citizenry, bears the permanent...

  4. Canal construction destroys the barrier between major European invasion lineages of the zebra mussel.

    PubMed Central

    Müller, Jakob C; Hidde, Dennis; Seitz, Alfred

    2002-01-01

    Since the mid-1980s the zebra mussel, Dreissena polymorpha, Pallas 1771, has become the protagonist of a spectacular freshwater invasion in North America due to its large economic and biological impact. Several genetic studies on American populations have failed to detect any large-scale geographical patterns. In western Europe, where D. polymorpha has been a classical invader from the Pontocaspian since the early 19th century, the situation is strikingly different. Here, we show with genetic markers that two major western European invasion lineages with lowered genetic variability within and among populations can be discriminated. These two invasion lineages correspond with two separate navigable waterways to western Europe. We found a rapid and asymmetrical genetic interchange of the two invasion lines after the construction of the Main-Danube canal in 1992, which interconnected the two waterways across the main watershed. PMID:12061957

  5. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate.

    PubMed

    Lee, Henry; Reusser, Deborah A; Olden, Julian D; Smith, Scott S; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S; Piorkowski, Robert J; McPhedran, John

    2008-06-01

    Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change.

  6. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate

    USGS Publications Warehouse

    Lee, Henry; Reusser, Deborah A.; Olden, Julian D.; Smith, Scott S.; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S.; Piorkowski, Robert J.; Mcphedran, John

    2008-01-01

    Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change

  7. Invasion biology in non-free-living species: interactions between abiotic (climatic) and biotic (host availability) factors in geographical space in crayfish commensals (Ostracoda, Entocytheridae)

    PubMed Central

    Mestre, Alexandre; Aguilar-Alberola, Josep A; Baldry, David; Balkis, Husamettin; Ellis, Adam; Gil-Delgado, Jose A; Grabow, Karsten; Klobučar, Göran; Kouba, Antonín; Maguire, Ivana; Martens, Andreas; Mülayim, Ayşegül; Rueda, Juan; Scharf, Burkhard; Soes, Menno; S Monrós, Juan; Mesquita-Joanes, Francesc

    2013-01-01

    In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement-related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non-free-living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum-Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum-Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This

  8. Invasion biology in non-free-living species: interactions between abiotic (climatic) and biotic (host availability) factors in geographical space in crayfish commensals (Ostracoda, Entocytheridae).

    PubMed

    Mestre, Alexandre; Aguilar-Alberola, Josep A; Baldry, David; Balkis, Husamettin; Ellis, Adam; Gil-Delgado, Jose A; Grabow, Karsten; Klobučar, Göran; Kouba, Antonín; Maguire, Ivana; Martens, Andreas; Mülayim, Ayşegül; Rueda, Juan; Scharf, Burkhard; Soes, Menno; S Monrós, Juan; Mesquita-Joanes, Francesc

    2013-12-01

    In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement-related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non-free-living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum-Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum-Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This

  9. Biological invasion by a benthivorous fish reduced the cover and species richness of aquatic plants in most lakes of a large North American ecoregion.

    PubMed

    Bajer, Przemyslaw G; Beck, Marcus W; Cross, Timothy K; Koch, Justine D; Bartodziej, William M; Sorensen, Peter W

    2016-12-01

    Biological invasions are projected to be the main driver of biodiversity and ecosystem function loss in lakes in the 21st century. However, the extent of these future losses is difficult to quantify because most invasions are recent and confounded by other stressors. In this study, we quantified the outcome of a century-old invasion, the introduction of common carp to North America, to illustrate potential consequences of introducing non-native ecosystem engineers to lakes worldwide. We used the decline in aquatic plant richness and cover as an index of ecological impact across three ecoregions: Great Plains, Eastern Temperate Forests and Northern Forests. Using whole-lake manipulations, we demonstrated that both submersed plant cover and richness declined exponentially as carp biomass increased such that plant cover was reduced to <10% and species richness was halved in lakes in which carp biomass exceeded 190 kg ha -1 . Using catch rates amassed from 2000+ lakes, we showed that carp exceeded this biomass level in 70.6% of Great Plains lakes and 23.3% of Eastern Temperate Forests lakes, but 0% of Northern Forests lakes. Using model selection analysis, we showed that carp was a key driver of plant species richness along with Secchi depth, lake area and human development of lake watersheds. Model parameters showed that carp reduced species richness to a similar degree across lakes of various Secchi depths and surface areas. In regions dominated by carp (e.g., Great Plains), carp had a stronger impact on plant richness than human watershed development. Overall, our analysis shows that the introduction of common carp played a key role in driving a severe reduction in plant cover and richness in a majority of Great Plains lakes and a large portion of Eastern Temperate Forests lakes in North America. © 2016 John Wiley & Sons Ltd.

  10. Community-based participatory research helps farmers and scientists to manage invasive pests in the Ecuadorian Andes.

    PubMed

    Dangles, O; Carpio, F C; Villares, M; Yumisaca, F; Liger, B; Rebaudo, F; Silvain, J F

    2010-06-01

    Participatory research has not been a conspicuous methodology in developing nations for studying invasive pests, an increasing threat to the sustainable development in the tropics. Our study presents a community-based monitoring system that focuses on three invasive potato tuber moth species (PTM). The monitoring was developed and implemented by young farmers in a remote mountainous area of Ecuador. Local participants collected data from the PTM invasion front, which revealed clear connection between the abundance of one of the species (Tecia solanivora) and the remoteness to the main market place. This suggests that mechanisms structuring invasive populations at the invasion front are different from those occurring in areas invaded for longer period. Participatory monitoring with local people may serve as a cost-effective early warning system to detect and control incipient invasive pest species in countries where the daily management of biological resources is largely in the hands of poor rural people.

  11. A non-invasive technique for rapid extraction of DNA from fish scales.

    PubMed

    Kumar, Ravindra; Singh, Poonam Jayant; Nagpure, N S; Kushwaha, Basdeo; Srivastava, S K; Lakra, W S

    2007-11-01

    DNA markers are being increasingly used in studies related to population genetics and conservation biology of endangered species. DNA isolation for such studies requires a source of biological material that is easy to collect, non-bulky and reliable. Further, the sampling strategies based on non-invasive procedures are desirable, especially for the endangered fish species. In view of above, a rapid DNA extraction method from fish scales has been developed with the use of a modified lysis buffer that require about 2 hr duration. This methodology is non-invasive, less expensive and reproducible with high efficiency of DNA recovery. The DNA extracted by this technique, have been found suitable for performing restriction enzyme digestion and PCR amplification. Therefore, the present DNA extraction procedure can be used as an alternative technique in population genetic studies pertaining to endangered fish species. The technique was also found equally effective for DNA isolation from fresh, dried and ethanol preserved scales.

  12. Economic impacts of invasive species in forest past, present, and future

    Treesearch

    Thomas P. Holmes; Juliann E. Aukema; Betsy Von Holle; Andrew Liebhold; Erin Sills

    2009-01-01

    Biological invasions by nonnative species are a by-product of economic activities, with the vast majority of nonnative species introduced by trade and transport of products and people. Although most introduced species are relatively innocuous, a few species ultimately cause irreversible economic and ecological impacts, such as the chestnut blight that functionally...

  13. Invasion of Flukes of the Echinostomatidae Family in Racing Pigeon ( Columba livia var. domestica) Lofts.

    PubMed

    Ledwoń, Aleksandra; Dolka, Beata; Piasecki, Tomasz; Dolka, Izabella; Szeleszczuk, Piotr

    2016-06-01

    Over 4 years, only two known cases of fluke invasions were diagnosed in racing pigeons ( Columba livia ) originating from different regions of Poland. In both cases, the invasion was characterized by a very high mortality (approximately 70%), and the source of the infestation was snails of the Lymnaeidae family eaten by pigeons. Fluke invasions in pigeons are extremely rare and to date have not been described in Poland. Therefore, the occurrence of the symptoms of hemorrhagic diarrhea and sudden deaths of either adult pigeons or nestlings were suspected to be associated with poisoning. Autopsy revealed an invasion of flukes causing hemorrhagic enteritis. Renal failure and spleen atrophy were also found in the birds. Using molecular biology techniques, infestation with the fluke Echinostoma revolutum was determined in the second case.

  14. Analysis of a native whitefly transcriptome and its sequence divergence with two invasive whitefly species

    PubMed Central

    2012-01-01

    Background Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. Results More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of

  15. Invasive lionfish preying on critically endangered reef fish

    NASA Astrophysics Data System (ADS)

    Rocha, Luiz A.; Rocha, Claudia R.; Baldwin, Carole C.; Weigt, Lee A.; McField, Melanie

    2015-09-01

    Caribbean coral reef ecosystems are at the forefront of a global decline and are now facing a new threat: elimination of vulnerable species by the invasive lionfish ( Pterois spp.). In addition to being threatened by habitat destruction and pollution, the critically endangered social wrasse ( Halichoeres socialis), endemic to Belize's inner barrier reef, has a combination of biological traits (small size, schooling, and hovering behavior) that makes it a target for the invasive lionfish. Based on stomach content analyses, this small fish comprises almost half of the lionfish diet at the inner barrier reef in Belize. The combination of lionfish predation, limited range, and ongoing habitat destruction makes the social wrasse the most threatened coral reef fish in the world. Other species with small range and similar traits occur elsewhere in the Caribbean and face similar risks.

  16. Reproductive effort in invasive and non-invasive Rubus.

    PubMed

    McDowell, Susan C; Turner, David P

    2002-10-01

    We quantified the physiological costs and the total amount of resources allocated to reproduction in two closely related species of Rubus, one of which is invasive. These two species share several morphological and life-history characteristics and grow together in the Pacific Northwestern United States. Reproductive effort was manipulated in canes of both species by removing flower buds. The non-invasive species, R. ursinus, exhibited significantly greater water stress in the reproductive canes, as indicated by lower leaf water potential (Ψ) and reduced stomatal conductance (g s ). This species also showed a reduction in leaf nitrogen concentration ([N]) associated with reproduction. Combined, these factors led to reduced photosynthesis (A) on a diurnal basis, lower water-use efficiency as inferred from δ 13 C, and reduced photosynthetic capacity. All of these effects were more pronounced during the fruiting stage than in the flowering stage. The invasive species, R. discolor, showed no changes in water stress, [N], δ 13 C, or A associated with reproduction. A model was used to estimate total gross photosynthesis (A gross ) for reproductive and non-reproductive canes of both species over cane lifetime. Reproduction was associated with a greater decline in A gross for the non-invasive R. ursinus than for the invasive R. discolor. Although R. discolor allocated more resources directly to flowers and fruit than R. ursinus, the invasive species had significantly lower reproductive effort, or total amount of resources diverted from vegetative activity to reproduction, than the non-invasive species. By minimizing the reduction of photosynthesis associated with reproduction, this invasive species may be able to minimize the trade-offs commonly associated with reproduction.

  17. Optically modulated fluorescence bioimaging: visualizing obscured fluorophores in high background.

    PubMed

    Hsiang, Jung-Cheng; Jablonski, Amy E; Dickson, Robert M

    2014-05-20

    Fluorescence microscopy and detection have become indispensible for understanding organization and dynamics in biological systems. Novel fluorophores with improved brightness, photostability, and biocompatibility continue to fuel further advances but often rely on having minimal background. The visualization of interactions in very high biological background, especially for proteins or bound complexes at very low copy numbers, remains a primary challenge. Instead of focusing on molecular brightness of fluorophores, we have adapted the principles of high-sensitivity absorption spectroscopy to improve the sensitivity and signal discrimination in fluorescence bioimaging. Utilizing very long wavelength transient absorptions of kinetically trapped dark states, we employ molecular modulation schemes that do not simultaneously modulate the background fluorescence. This improves the sensitivity and ease of implementation over high-energy photoswitch-based recovery schemes, as no internal dye reference or nanoparticle-based fluorophores are needed to separate the desired signals from background. In this Account, we describe the selection process for and identification of fluorophores that enable optically modulated fluorescence to decrease obscuring background. Differing from thermally stable photoswitches using higher-energy secondary lasers, coillumination at very low energies depopulates transient dark states, dynamically altering the fluorescence and giving characteristic modulation time scales for each modulatable emitter. This process is termed synchronously amplified fluorescence image recovery (SAFIRe) microscopy. By understanding and optically controlling the dye photophysics, we selectively modulate desired fluorophore signals independent of all autofluorescent background. This shifts the fluorescence of interest to unique detection frequencies with nearly shot-noise-limited detection, as no background signals are collected. Although the fluorescence brightness is

  18. Alien plant invasions and native plant extinctions: a six-threshold framework

    PubMed Central

    Downey, Paul O.; Richardson, David M.

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat—in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the ‘extinction trajectory’, global extinction being the final threshold. Although there are no documented examples of either ‘in the wild’ (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1–3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader

  19. Banker Plants: Using a systems approach for dealing with exotic invasives in Florida

    USDA-ARS?s Scientific Manuscript database

    As new invasive species are detected scientists mount two fronts of attack: remedial pesticide treatments and implementing biological control programs in areas where chemical controls are not feasible. Both tactics are generally problematic with organisms that little is known about and when imported...

  20. Impact of Abrostola asclepiadis and plant competition on invasive swallow-worts (Vincetoxicum spp.)

    USDA-ARS?s Scientific Manuscript database

    Pale and black swallow-wort (Vincetoxicum rossicum and V. nigrum; Apocynaceae, subfamily Asclepiadoideae) are perennial vines from Europe that have become invasive in various terrestrial habitats in the northeastern USA and southeastern Canada. A classical weed biological control program has been in...

  1. Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ satellite data and support vector machines in Cordoba, Argentina

    Treesearch

    Gregorio I. Gavier-Pizarro; Tobias Kuemmerle; Laura E. Hoyos; Susan I. Stewart; Cynthia D. Huebner; Nicholas S. Keuler; Volker C. Radeloff

    2012-01-01

    In central Argentina, the Chinese tree glossy privet (Ligustrum lucidum) is an aggressive invasive species replacing native forests, forming dense stands, and is thus a major conservation concern. Mapping the spread of biological invasions is a necessary first step toward understanding the factors determining invasion patterns. Urban areas may...

  2. A highly aggregated geographical distribution of forest pest invasions in the USA

    Treesearch

    Andrew M. Liebhold; Deborah G. McCullough; Laura M. Blackburn; Susan J. Frankel; Betsy Von Holle; Juliann E. Aukema

    2013-01-01

    Geographical variation in numbers of established non-native species provides clues to the underlying processes driving biological invasions. Specifically, this variation reflects landscape characteristics that drive non-native species arrival, establishment and spread. Here, we investigate spatial variation in damaging non-native forest insect and pathogen species to...

  3. Housing is positively associated with invasive exotic plant species richness in New England, USA.

    PubMed

    Gavier-Pizarro, Gregorio I; Radeloff, Volker C; Stewart, Susan I; Huebner, Cynthia D; Keuler, Nicholas S

    2010-10-01

    Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating dispersal of propagules along roads. To evaluate relationships between housing and the distribution of invasive exotic plants, we asked (1) how strongly is housing associated with the spatial distribution of invasive exotic plants compared to other anthropogenic and environmental factors; (2) what type of housing pattern is related to the richness of invasive exotic plants; and (3) do invasive plants represent ecological traits associated with specific housing patterns? Using two types of regression analysis (best subset analysis and hierarchical partitioning analysis), we found that invasive exotic plant richness was equally or more strongly related to housing variables than to other human (e.g., mean income and roads) and environmental (e.g., topography and forest cover) variables at the county level across New England. Richness of invasive exotic plants was positively related to area of wildland-urban interface (WUI), low-density residential areas, change in number of housing units between 1940 and 2000, mean income, plant productivity (NDVI), and altitudinal range and rainfall; it was negatively related to forest area and connectivity. Plant life history traits were not strongly related to housing patterns. We expect the number of invasive exotic plants to increase as a result of future housing growth and suggest that housing development be considered a primary factor in plans to manage and monitor invasive exotic plant species.

  4. Biology, host specificity tests, and risk assessment of the sawfly Heteroperreyia hubrichi, a potential biological control agent of Schinus terebinthifolius in Hawaii

    USDA-ARS?s Scientific Manuscript database

    Abstract. Heteroperreyia hubrichi Malaise (Hymenoptera: Pergidae), a foliage feeding sawfly of Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae), was studied to assess its suitability as a classical biological control agent of this invasive weed in Hawaii. Nochoice host-specificity tests we...

  5. [Theory and practice of minimally invasive endodontics].

    PubMed

    Jiang, H W

    2016-08-01

    The primary goal of modern endodontic therapy is to achieve the long-term retention of a functional tooth by preventing or treating pulpitis or apical periodontitis is. The long-term retention of endodontically treated tooth is correlated with the remaining amount of tooth tissue and the quality of the restoration after root canal filling. In recent years, there has been rapid progress and development in the basic research of endodontic biology, instrument and applied materials, making treatment procedures safer, more accurate, and more efficient. Thus, minimally invasive endodontics(MIE)has received increasing attention at present. MIE aims to preserve the maximum of tooth structure during root canal therapy, and the concept covers the whole process of diagnosis and treatment of teeth. This review article focuses on describing the minimally invasive concepts and operating essentials in endodontics, from diagnosis and treatment planning to the access opening, pulp cavity finishing, root canal cleaning and shaping, 3-dimensional root canal filling and restoration after root canal treatment.

  6. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments

    EPA Science Inventory

    Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to significantly alleviate difficulties associated with traditional monitoring approac...

  7. Would the control of invasive alien plants reduce malaria transmission? A review.

    PubMed

    Stone, Christopher M; Witt, Arne B R; Walsh, Guillermo Cabrera; Foster, Woodbridge A; Murphy, Sean T

    2018-02-01

    Vector control has been the most effective preventive measure against malaria and other vector-borne diseases. However, due to concerns such as insecticide resistance and budget shortfalls, an integrated control approach will be required to ensure sustainable, long-term effectiveness. An integrated management strategy should entail some aspects of environmental management, relying on coordination between various scientific disciplines. Here, we review one such environmental control tactic: invasive alien plant management. This covers salient plant-mosquito interactions for both terrestrial and aquatic invasive plants and how these affect a vector's ability to transmit malaria. Invasive plants tend to have longer flowering durations, more vigorous growth, and their spread can result in an increase in biomass, particularly in areas where previously little vegetation existed. Some invasive alien plants provide shelter or resting sites for adult mosquitoes and are also attractive nectar-producing hosts, enhancing their vectorial capacity. We conclude that these plants may increase malaria transmission rates in certain environments, though many questions still need to be answered, to determine how often this conclusion holds. However, in the case of aquatic invasive plants, available evidence suggests that the management of these plants would contribute to malaria control. We also examine and review the opportunities for large-scale invasive alien plant management, including options for biological control. Finally, we highlight the research priorities that must be addressed in order to ensure that integrated vector and invasive alien plant management operate in a synergistic fashion.

  8. ISASS Policy 2016 Update – Minimally Invasive Sacroiliac Joint Fusion

    PubMed Central

    Lorio, Morgan P.

    2016-01-01

    Rationale The index 2014 ISASS Policy Statement - Minimally Invasive Sacroiliac Joint Fusion was generated out of necessity to provide an ICD9-based background and emphasize tools to ensure correct diagnosis. A timely ICD10-based 2016 Update provides a granular threshold selection with improved level of evidence and a more robust, relevant database. PMID:27652197

  9. Plant invasions in protected areas of tropical pacific islands, with special reference to Hawaii

    USGS Publications Warehouse

    Hughes, R. Flint; Meyer, Jean-Yves; Loope, Lloyd L.

    2013-01-01

    Isolated tropical islands are notoriously vulnerable to plant invasions. Serious management for protection of native biodiversity in Hawaii began in the 1970s, arguably at Hawaii Volcanoes National Park. Concerted alien plant management began there in the 1980s and has in a sense become a model for protected areas throughout Hawaii and Pacific Island countries and territories. We review the relative successes of their strategies and touch upon how their experience has been applied elsewhere. Protected areas in Hawaii are fortunate in having relatively good resources for addressing plant invasions, but many invasions remain intractable, and invasions from outside the boundaries continue from a highly globalised society with a penchant for horticultural novelty. There are likely few efforts in most Pacific Islands to combat alien plant invasions in protected areas, but such areas may often have fewer plant invasions as a result of their relative remoteness and/or socio-economic development status. The greatest current needs for protected areas in this region may be for establishment of yet more protected areas, for better resources to combat invasions in Pacific Island countries and territories, for more effective control methods including biological control programme to contain intractable species, and for meaningful efforts to address prevention and early detection of potential new invaders.

  10. Response of invasive swallow-worts (Vincetoxicum spp.) to repeated artificial defoliation or clipping

    USDA-ARS?s Scientific Manuscript database

    The Eurasian vines pale swallow-wort (Vincetoxicum rossicum) (PSW) and black swallow-wort (V. nigrum) (BSW) are invasive perennials that have infested natural areas in the northeastern United States and southern Canada. A biological control program is being developed, though it is unclear how thes...

  11. Chick Heart Invasion Assay for Testing the Invasiveness of Cancer Cells and the Activity of Potentially Anti-invasive Compounds.

    PubMed

    Bracke, Marc E; Roman, Bart I; Stevens, Christian V; Mus, Liselot M; Parmar, Virinder S; De Wever, Olivier; Mareel, Marc M

    2015-06-06

    The goal of the chick heart assay is to offer a relevant organ culture method to study tumor invasion in three dimensions. The assay can distinguish between invasive and non-invasive cells, and enables study of the effects of test compounds on tumor invasion. Cancer cells - either as aggregates or single cells - are confronted with fragments of embryonic chick heart. After organ culture in suspension for a few days or weeks the confronting cultures are fixed and embedded in paraffin for histological analysis. The three-dimensional interaction between the cancer cells and the normal tissue is then reconstructed from serial sections stained with hematoxylin-eosin or after immunohistochemical staining for epitopes in the heart tissue or the confronting cancer cells. The assay is consistent with the recent concept that cancer invasion is the result of molecular interactions between the cancer cells and their neighbouring stromal host elements (myofibroblasts, endothelial cells, extracellular matrix components, etc.). Here, this stromal environment is offered to the cancer cells as a living tissue fragment. Supporting aspects to the relevance of the assay are multiple. Invasion in the assay is in accordance with the criteria of cancer invasion: progressive occupation and replacement in time and space of the host tissue, and invasiveness and non-invasiveness in vivo of the confronting cells generally correlates with the outcome of the assay. Furthermore, the invasion pattern of cells in vivo, as defined by pathologists, is reflected in the histological images in the assay. Quantitative structure-activity relation (QSAR) analysis of the results obtained with numerous potentially anti-invasive organic congener compounds allowed the study of structure-activity relations for flavonoids and chalcones, and known anti-metastatic drugs used in the clinic (e.g., microtubule inhibitors) inhibit invasion in the assay as well. However, the assay does not take into account

  12. Analysis of Invasive Activity of CAF Spheroids into Three Dimensional (3D) Collagen Matrices.

    PubMed

    Villaronga, María Ángeles; Teijeiro, Saúl Álvarez; Hermida-Prado, Francisco; Garzón-Arango, Marta; Sanz-Moreno, Victoria; García-Pedrero, Juana María

    2018-01-01

    Tumor growth and progression is the result of a complex process controlled not only by malignant cancer cells but also by the surrounding tumor microenvironment (TME). Cancer associated fibroblasts (CAFs), the most abundant cellular component of TME, play an active role in tumor invasion and metastasis by promoting cancer cell invasion through cell-cell interactions and secretion of pro-invasive factors such as extracellular matrix (ECM)-degrading proteases. Due to their tumor-promoting activities, there is an emerging interest in investigating CAFs biology and its potential as drug targets for cancer therapies. Here we describe an easy and highly reproducible quantitative method to analyze CAF invasive activity by forming multicellular spheroids embedded into a three-dimensional (3D) matrix that mimics in vivo ECM. Subsequently, invasion is monitored over time using a time-lapse microscope. We also provide an automated image analysis system that enables the rapid quantification of the spheroid area increase (invasive area) over time. The use of a 96-well plate format with one CAF spheroid per well and the automated analysis provides a method suitable for drug screening test, such as protease inhibitors.

  13. Classical biological control of invasive teasels (Dipsacus spp.) and other weeds in areas of limited or restricted weed management

    USDA-ARS?s Scientific Manuscript database

    Invasive teasels (Dipsacus spp.) are considered noxious in five states and listed as invasive in more than a dozen others, despite having little effect on agriculture. They are problematic in areas of limited weed management such as along highways and railroads and in ditches, wetlands and parks. A ...

  14. The African honey bee: factors contributing to a successful biological invasion.

    PubMed

    Scott Schneider, Stanley; DeGrandi-Hoffman, Gloria; Smith, Deborah Roan

    2004-01-01

    The African honey bee subspecies Apis mellifera scutellata has colonized much of the Americas in less than 50 years and has largely replaced European bees throughout its range in the New World. The African bee therefore provides an excellent opportunity to examine the factors that influence invasion success. We provide a synthesis of recent research on the African bee, concentrating on its ability to displace European honey bees. Specifically, we consider (a) the genetic composition of the expanding population and the symmetry of gene flow between African and European bees, (b) the mechanisms that favor the preservation of the African genome, and (c) the possible range and impact of the African bee in the United States.

  15. Comprehensive Training Curricula for Minimally Invasive Surgery

    PubMed Central

    Palter, Vanessa N

    2011-01-01

    Background The unique skill set required for minimally invasive surgery has in part contributed to a certain portion of surgical residency training transitioning from the operating room to the surgical skills laboratory. Simulation lends itself well as a method to shorten the learning curve for minimally invasive surgery by allowing trainees to practice the unique motor skills required for this type of surgery in a safe, structured environment. Although a significant amount of important work has been done to validate simulators as viable systems for teaching technical skills outside the operating room, the next step is to integrate simulation training into a comprehensive curriculum. Objectives This narrative review aims to synthesize the evidence and educational theories underlining curricula development for technical skills both in a broad context and specifically as it pertains to minimally invasive surgery. Findings The review highlights the critical aspects of simulation training, such as the effective provision of feedback, deliberate practice, training to proficiency, the opportunity to practice at varying levels of difficulty, and the inclusion of both cognitive teaching and hands-on training. In addition, frameworks for integrating simulation training into a comprehensive curriculum are described. Finally, existing curricula on both laparoscopic box trainers and virtual reality simulators are critically evaluated. PMID:22942951

  16. Utility of Intraoperative Neuromonitoring during Minimally Invasive Fusion of the Sacroiliac Joint.

    PubMed

    Woods, Michael; Birkholz, Denise; MacBarb, Regina; Capobianco, Robyn; Woods, Adam

    2014-01-01

    Study Design. Retrospective case series. Objective. To document the clinical utility of intraoperative neuromonitoring during minimally invasive surgical sacroiliac joint fusion for patients diagnosed with sacroiliac joint dysfunction (as a direct result of sacroiliac joint disruptions or degenerative sacroiliitis) and determine stimulated electromyography thresholds reflective of favorable implant position. Summary of Background Data. Intraoperative neuromonitoring is a well-accepted adjunct to minimally invasive pedicle screw placement. The utility of intraoperative neuromonitoring during minimally invasive surgical sacroiliac joint fusion using a series of triangular, titanium porous plasma coated implants has not been evaluated. Methods. A medical chart review of consecutive patients treated with minimally invasive surgical sacroiliac joint fusion was undertaken at a single center. Baseline patient demographics and medical history, intraoperative electromyography thresholds, and perioperative adverse events were collected after obtaining IRB approval. Results. 111 implants were placed in 37 patients. Sensitivity of EMG was 80% and specificity was 97%. Intraoperative neuromonitoring potentially avoided neurologic sequelae as a result of improper positioning in 7% of implants. Conclusions. The results of this study suggest that intraoperative neuromonitoring may be a useful adjunct to minimally invasive surgical sacroiliac joint fusion in avoiding nerve injury during implant placement.

  17. Geography of invasion in mountain streams: consequences of headwater lake fish introductions

    Treesearch

    Susan B. Adams; Christopher A. Frissell; Bruce E. Rieman

    2001-01-01

    The introduction of fish into high-elevation lakes can provide a geographic and demographic boost to their invasion of stream networks, thereby further endangering the native stream fauna. Increasingly, remaining populations of native salmonids are concentrated in fragmented headwater refugia that are protected by physical or biological barriers from introduced fishes...

  18. The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions

    Treesearch

    Patrick C. Tobin; Christelle Robinet; Derek M. Johnson; Stefanie L. Whitmire; Ottar N. Bjornstad; Andrew M. Liebhold

    2009-01-01

    Allee effects have been applied historically in efforts to understand the low-density population dynamics of rare and endangered species. Many biological invasions likewise experience the phenomenon of decreasing population growth rates at low population densities because most founding populations of introduced nonnative species occur at low densities. In range...

  19. Interactions of climate change with biological invasions and land use in the Hawaiian Islands: Modeling the fate of endemic birds using a geographic information system.

    PubMed

    Benning, Tracy L; LaPointe, Dennis; Atkinson, Carter T; Vitousek, Peter M

    2002-10-29

    The Hawaiian honeycreepers (Drepanidae) represent a superb illustration of evolutionary radiation, with a single colonization event giving rise to 19 extant and at least 10 extinct species [Curnutt, J. & Pimm, S. (2001) Stud. Avian Biol. 22, 15-30]. They also represent a dramatic example of anthropogenic extinction. Crop and pasture land has replaced their forest habitat, and human introductions of predators and diseases, particularly of mosquitoes and avian malaria, has eliminated them from the remaining low- and mid-elevation forests. Landscape analyses of three high-elevation forest refuges show that anthropogenic climate change is likely to combine with past land-use changes and biological invasions to drive several of the remaining species to extinction, especially on the islands of Kauai and Hawaii.

  20. Interactions of climate change with biological invasions and land use in the Hawaiian Islands: Modeling the fate of endemic birds using a geographic information system

    PubMed Central

    Benning, Tracy L.; LaPointe, Dennis; Atkinson, Carter T.; Vitousek, Peter M.

    2002-01-01

    The Hawaiian honeycreepers (Drepanidae) represent a superb illustration of evolutionary radiation, with a single colonization event giving rise to 19 extant and at least 10 extinct species [Curnutt, J. & Pimm, S. (2001) Stud. Avian Biol. 22, 15–30]. They also represent a dramatic example of anthropogenic extinction. Crop and pasture land has replaced their forest habitat, and human introductions of predators and diseases, particularly of mosquitoes and avian malaria, has eliminated them from the remaining low- and mid-elevation forests. Landscape analyses of three high-elevation forest refuges show that anthropogenic climate change is likely to combine with past land-use changes and biological invasions to drive several of the remaining species to extinction, especially on the islands of Kauai and Hawaii. PMID:12374870

  1. Improved understanding of weed biological control safety and impact with chemical ecology: a review

    USDA-ARS?s Scientific Manuscript database

    We review chemical ecology literature as it relates to weed biological control and discuss how this means of controlling invasive plants could be enhanced by the consideration of several well established research developments. The interface between chemical ecology and weed biological control presen...

  2. Intracranial Pressure Monitoring: Invasive versus Non-Invasive Methods—A Review

    PubMed Central

    Raboel, P. H.; Bartek, J.; Andresen, M.; Bellander, B. M.; Romner, B.

    2012-01-01

    Monitoring of intracranial pressure (ICP) has been used for decades in the fields of neurosurgery and neurology. There are multiple techniques: invasive as well as noninvasive. This paper aims to provide an overview of the advantages and disadvantages of the most common and well-known methods as well as assess whether noninvasive techniques (transcranial Doppler, tympanic membrane displacement, optic nerve sheath diameter, CT scan/MRI and fundoscopy) can be used as reliable alternatives to the invasive techniques (ventriculostomy and microtransducers). Ventriculostomy is considered the gold standard in terms of accurate measurement of pressure, although microtransducers generally are just as accurate. Both invasive techniques are associated with a minor risk of complications such as hemorrhage and infection. Furthermore, zero drift is a problem with selected microtransducers. The non-invasive techniques are without the invasive methods' risk of complication, but fail to measure ICP accurately enough to be used as routine alternatives to invasive measurement. We conclude that invasive measurement is currently the only option for accurate measurement of ICP. PMID:22720148

  3. Synthesis and biological activity of mustard derivatives of thymine.

    PubMed

    Hadj-Bouazza, Amel; Teste, Karine; Colombeau, Ludovic; Chaleix, Vincent; Zerrouki, Rachida; Kraemer, Michel; Sainte Catherine, Odile

    2008-05-01

    The synthesis and biological activity of a novel DNA cross-linking antitumor agent is presented. The new alkylating agent significantly inhibited cell proliferation, migration and invasion as tested in vitro on the A431 vulvar epidermal carcinoma cell line.

  4. The Impact of Non-Lethal Single-Dose Radiation on Tumor Invasion and Cytoskeletal Properties

    PubMed Central

    Hohmann, Tim; Grabiec, Urszula; Vogel, Carolin; Ghadban, Chalid; Ensminger, Stephan; Bache, Matthias; Vordermark, Dirk; Dehghani, Faramarz

    2017-01-01

    Irradiation is the standard therapy for glioblastoma multiforme. Glioblastoma are highly resistant to radiotherapy and the underlying mechanisms remain unclear. To better understand the biological effects of irradiation on glioblastoma cells, we tested whether nonlethal irradiation influences the invasiveness, cell stiffness, and actin cytoskeleton properties. Two different glioblastoma cell lines were irradiated with 2 Gy and changes in mechanical and migratory properties and alterations in the actin structure were measured. The invasiveness of cell lines was determined using a co-culture model with organotypic hippocampal slice cultures. Irradiation led to changes in motility and a less invasive phenotype in both investigated cell lines that were associated with an increase in a ”generalized stiffness” and changes in the actin structure. In this study we demonstrate that irradiation can induce changes in the actin cytoskeleton and motility, which probably results in reduced invasiveness of glioblastoma cell lines. Furthermore, “generalized stiffness” was shown to be a profound marker of the invasiveness of a tumor cell population in our model. PMID:28926987

  5. Saussurea lappa extract suppresses TPA-induced cell invasion via inhibition of NF-κB-dependent MMP-9 expression in MCF-7 breast cancer cells

    PubMed Central

    2014-01-01

    Background Saussurea lappa (SL) has been used as a traditional herbal medicine to treat abdominal pain and tenesmus, and has been suggested to possess various biological activities, including anti-tumor, anti-ulcer, anti-inflammatory, anti-viral, and cardiotonic activities. The effect of SL on breast cancer metastasis, however, is unknown. Cell migration and invasion are crucial in neoplastic metastasis. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix, is a major component in cancer cell invasion. Methods Cell viability was examined by MTT assay, whereas cell motility was measured by invasion assay. Western blot, Real-time PCR, and Zymography assays were used to investigate the inhibitory effects of ESL on matrix metalloproteinase-9 (MMP-9) expression level in MCF-7 cells. EMSA confirmed the inhibitory effects of ESL on DNA binding of NF- κB in MCF-7 cells. Results Cells threated with various concentrations of Saussurea lappa (ESL) for 24 h. Concentrations of 2 or 4 μM did not lead to a significant change in cell viability or morphology. Therefore, subsequent experiments utilized the optimal non-toxic concentration (2 or 4 μM) of ESL. In this study, we investigated the inhibitory effect of ethanol extract of ESL on MMP-9 expression and cell invasion in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced MCF-7 cells. ESL inhibited the TPA-induced transcriptional activation of nuclear factor-kappa B (NF-κB). However, this result obtained that ESL did not block the TPA-induced phosphorylation of the kinases: p38, ERK, and JNK. Therefore, ELS-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of NF-kB pathway in MCF-7 cells. Conclusions These results indicate that ELS-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of NF-kB pathway in MCF-7 cells. Thus, ESL has potential for controlling breast cancer invasiveness in vitro. PMID:24885456

  6. Self-reinforcing impacts of plant invasions change over time.

    PubMed

    Yelenik, Stephanie G; D'Antonio, Carla M

    2013-11-28

    Returning native species to habitats degraded by biological invasions is a critical conservation goal. A leading hypothesis poses that exotic plant dominance is self-reinforced by impacts on ecosystem processes, leading to persistent stable states. Invaders have been documented to modify fire regimes, alter soil nutrients or shift microbial communities in ways that feed back to benefit themselves over competitors. However, few studies have followed invasions through time to ask whether ecosystem impacts and feedbacks persist. Here we return to woodland sites in Hawai'i Volcanoes National Park that were invaded by exotic C4 grasses in the 1960s, the ecosystem impacts of which were studied intensively in the 1990s. We show that positive feedbacks between exotic grasses and soil nitrogen cycling have broken down, but rather than facilitating native vegetation, the weakening feedbacks facilitate new exotic species. Data from the 1990s showed that exotic grasses increased nitrogen-mineralization rates by two- to fourfold, but were nitrogen-limited. Thus, the impacts of the invader created a positive feedback early in the invasion. We now show that annual net soil nitrogen mineralization has since dropped to pre-invasion levels. In addition, a seedling outplanting experiment that varied soil nitrogen and grass competition demonstrates that the changing impacts of grasses do not favour native species re-establishment. Instead, decreased nitrogen availability most benefits another aggressive invader, the nitrogen-fixing tree Morella faya. Long-term studies of invasions may reveal that ecosystem impacts and feedbacks shift over time, but that this may not benefit native species recovery.

  7. AXIN2 expression predicts prostate cancer recurrence and regulates invasion and tumor growth.

    PubMed

    Hu, Brian R; Fairey, Adrian S; Madhav, Anisha; Yang, Dongyun; Li, Meng; Groshen, Susan; Stephens, Craig; Kim, Philip H; Virk, Navneet; Wang, Lina; Martin, Sue Ellen; Erho, Nicholas; Davicioni, Elai; Jenkins, Robert B; Den, Robert B; Xu, Tong; Xu, Yucheng; Gill, Inderbir S; Quinn, David I; Goldkorn, Amir

    2016-05-01

    Treatment of prostate cancer (PCa) may be improved by identifying biological mechanisms of tumor growth that directly impact clinical disease progression. We investigated whether genes associated with a highly tumorigenic, drug resistant, progenitor phenotype impact PCa biology and recurrence. Radical prostatectomy (RP) specimens (±disease recurrence, N = 276) were analyzed by qRT-PCR to quantify expression of genes associated with self-renewal, drug resistance, and tumorigenicity in prior studies. Associations between gene expression and PCa recurrence were confirmed by bootstrap internal validation and by external validation in independent cohorts (total N = 675) and in silico. siRNA knockdown and lentiviral overexpression were used to determine the effect of gene expression on PCa invasion, proliferation, and tumor growth. Four candidate genes were differentially expressed in PCa recurrence. Of these, low AXIN2 expression was internally validated in the discovery cohort. Validation in external cohorts and in silico demonstrated that low AXIN2 was independently associated with more aggressive PCa, biochemical recurrence, and metastasis-free survival after RP. Functionally, siRNA-mediated depletion of AXIN2 significantly increased invasiveness, proliferation, and tumor growth. Conversely, ectopic overexpression of AXIN2 significantly reduced invasiveness, proliferation, and tumor growth. Low AXIN2 expression was associated with PCa recurrence after RP in our test population as well as in external validation cohorts, and its expression levels in PCa cells significantly impacted invasiveness, proliferation, and tumor growth. Given these novel roles, further study of AXIN2 in PCa may yield promising new predictive and therapeutic strategies. © 2016 Wiley Periodicals, Inc.

  8. Epigenetic response to environmental change: DNA methylation varies with invasion status.

    PubMed

    Schrey, Aaron W; Robbins, Travis R; Lee, Jacob; Dukes, David W; Ragsdale, Alexandria K; Thawley, Christopher J; Langkilde, Tracy

    2016-04-01

    Epigenetic mechanisms may be important for a native species' response to rapid environmental change. Red Imported Fire Ants ( Solenopsis invicta Santschi, 1916) were recently introduced to areas occupied by the Eastern Fence Lizard ( Sceloporus undulatus Bosc & Daudin, 1801). Behavioral, morphological and physiological phenotypes of the Eastern Fence Lizard have changed following invasion, creating a natural biological system to investigate environmentally induced epigenetic changes. We tested for variation in DNA methylation patterns in Eastern Fence Lizard populations associated with different histories of invasion by Red Imported Fire Ants. At methylation sensitive amplified fragment length polymorphism loci, we detected a higher diversity of methylation in Eastern Fence Lizard populations from Fire Ant uninvaded versus invaded sites, and uninvaded sites had higher methylation. Our results suggest that invasive species may alter methylation frequencies and the pattern of methylation among native individuals. While our data indicate a high level of intrinsic variability in DNA methylation, DNA methylation at some genomic loci may underlie observed phenotypic changes in Eastern Fence Lizard populations in response to invasion of Red Imported Fire Ants. This process may be important in facilitating adaptation of native species to novel pressures imposed by a rapidly changing environment.

  9. Public Perception of Invasive Plant Species: Assessing the impact of workshop activities to promote young students' awareness

    NASA Astrophysics Data System (ADS)

    Schreck Reis, Catarina; Marchante, Hélia; Freitas, Helena; Marchante, Elizabete

    2013-03-01

    Invasive species are one of the main threats to biodiversity worldwide. Even though they are identified and recognized as such by the Portuguese law, the majority of the population is not yet aware of this problem. Aiming to increase awareness about biological invasions among young students, a workshop on Invasive Plant Species was organized at the Botanical Museum of the University of Coimbra. A total of 170 teenager students from five schools participated in the workshop. Three activities were prepared, focusing on: (1) identification of invasive plants, (2) competition between native and invasive plants and (3) control of invasive plants. One year later, questionnaires were sent to the participants, aiming to appraise workshop effectiveness, and this questionnaire revealed that these students know more about invasive plant species than a comparable group of students that did not participate in the workshop. The results clearly showed that practical informal education activities may be effective in raising public awareness. Questionnaires were essential to evaluate the knowledge acquired and retained by the students during the workshop.

  10. Radio frequency energy for non-invasive and minimally invasive skin tightening.

    PubMed

    Mulholland, R Stephen

    2011-07-01

    This article reviews the non-invasive and minimally invasive options for skin tightening, focusing on peer-reviewed articles and presentations and those technologies with the most proven or promising RF non-excisional skin-tightening results for excisional surgeons. RF has been the mainstay of non-invasive skin tightening and has emerged as the "cutting edge" technology in the minimally invasive skin-tightening field. Because these RF skin-tightening technologies are capital equipment purchases with a significant cost associated, this article also discusses some business issues and models that have proven to work in the plastic surgeon's office for non-invasive and minimally invasive skin-tightening technologies. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Biology and impacts of Pacific island invasive species 9. Capra hircus, the feral goat, (Mammalia: Bovidae)

    USGS Publications Warehouse

    Chynoweth, Mark W.; Litton, Creighton M.; Lepczyk, Christopher A.; Hess, Steve A.; Cordell, Susan

    2013-01-01

    Domestic goats, Capra hircus, were intentionally introduced to numerous oceanic islands beginning in the sixteenth century. The remarkable ability of C. hircus to survive in a variety of conditions has enabled this animal to become feral and impact native ecosystems on islands throughout the world. Direct ecological impacts include consumption and trampling of native plants, leading to plant community modification and transformation of ecosystem structure. While the negative impacts of feral goats are well-known and effective management strategies have been developed to control this invasive species, large populations persist on many islands. This review summarizes the impacts of feral goats on Pacific island ecosystems, and the management strategies available to control this invasive species.

  12. Pine invasions in treeless environments: dispersal overruns microsite heterogeneity.

    PubMed

    Pauchard, Aníbal; Escudero, Adrián; García, Rafael A; de la Cruz, Marcelino; Langdon, Bárbara; Cavieres, Lohengrin A; Esquivel, Jocelyn

    2016-01-01

    Understanding biological invasions patterns and mechanisms is highly needed for forecasting and managing these processes and their negative impacts. At small scales, ecological processes driving plant invasions are expected to produce a spatially explicit pattern driven by propagule pressure and local ground heterogeneity. Our aim was to determine the interplay between the intensity of seed rain, using distance to a mature plantation as a proxy, and microsite heterogeneity in the spreading of Pinus contorta in the treeless Patagonian steppe. Three one-hectare plots were located under different degrees of P. contorta invasion (Coyhaique Alto, 45° 30'S and 71° 42'W). We fitted three types of inhomogeneous Poisson models to each pine plot in an attempt for describing the observed pattern as accurately as possible: the "dispersal" models, "local ground heterogeneity" models, and "combined" models, using both types of covariates. To include the temporal axis in the invasion process, we analyzed both the pattern of young and old recruits and also of all recruits together. As hypothesized, the spatial patterns of recruited pines showed coarse scale heterogeneity. Early pine invasion spatial patterns in our Patagonian steppe site is not different from expectations of inhomogeneous Poisson processes taking into consideration a linear and negative dependency of pine recruit intensity on the distance to afforestations. Models including ground-cover predictors were able to describe the point pattern process only in a couple of cases but never better than dispersal models. This finding concurs with the idea that early invasions depend more on seed pressure than on the biotic and abiotic relationships seed and seedlings establish at the microsite scale. Our results show that without a timely and active management, P. contorta will invade the Patagonian steppe independently of the local ground-cover conditions.

  13. Supply-side invasion ecology: characterizing propagule pressure in coastal ecosystems

    PubMed Central

    Verling, Emma; Ruiz, Gregory M; Smith, L. David; Galil, Bella; Miller, A. Whitman; Murphy, Kathleen R

    2005-01-01

    The observed rates and deleterious impacts of biological invasions have caused significant alarm in recent years, driving efforts to reduce the risk (establishment) of new introductions. Characterizing the supply of propagules is key to understanding invasion risk and developing effective management strategies. In coastal ecosystems, ships' ballast water is an important transfer mechanism (vector) for marine and freshwater species. Commercial ships exhibit a high degree of variation in ballast water operations that affect both the quantity and quality of propagule supply, and thereby invasion risk. The per-ship inoculation size from ballast water depends upon both the volume discharged and the organism density. Moreover, propagule quality will vary among source regions (ports) and voyage routes, due to differences in species composition and transport conditions, respectively. We show that significant differences exist in (i) the frequency and volume of ballast water discharge among vessel types, (ii) the frequency of vessel types and routes (source regions) among recipient ports, and (iii) the transit success (survivorship) of zooplankton in ballast tanks among voyage routes. Thus, propagule supply is not a simple function of total ship arrivals. For ships, as well as other vectors, variation in propagule quantity and quality must be explicitly considered to estimate invasion risk and advance predictive ability. PMID:16024389

  14. Optoelectronic system and apparatus for connection to biological systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okandan, Murat; Nielson, Gregory N.

    The present invention relates to a biological probe structure, as well as apparatuses, systems, and methods employing this structure. In particular embodiments, the structure includes a hermetically sealed unit configured to receive and transmit one or more optical signals. Furthermore, the structure can be implanted subcutaneously and interrogated externally. In this manner, a minimally invasive method can be employed to detect, treat, and/or assess the biological target. Additional methods and systems are also provided.

  15. Retrospective Analysis of a Classical Biological Control Programme

    USDA-ARS?s Scientific Manuscript database

    1. Classical biological control has been a key technology in the management of invasive arthropod pests globally for over 120 years, yet rigorous quantitative evaluations of programme success or failure are rare. Here, I used life table and matrix model analyses, and life table response experiments ...

  16. 76 FR 36896 - Salmon-Challis National Forest, ID; Forestwide Invasive Plant Treatment Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Salmon-Challis National Forest, ID; Forestwide Invasive... to the biological diversity and ecological integrity within and outside the Salmon-Challis National... loss of recreational opportunities. Within the 3,108,904 acres of the of the Salmon-Challis National...

  17. Non-invasive imaging methods applied to neo- and paleontological cephalopod research

    NASA Astrophysics Data System (ADS)

    Hoffmann, R.; Schultz, J. A.; Schellhorn, R.; Rybacki, E.; Keupp, H.; Gerden, S. R.; Lemanis, R.; Zachow, S.

    2013-11-01

    Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum-maximum size of objects that can be studied, of the degree of post-processing needed and availability. Main application of the methods is seen in morphometry and volumetry of cephalopod shells in order to improve our understanding of diversity and disparity, functional morphology and biology of extinct and extant cephalopods.

  18. Attacking invasive grasses

    USGS Publications Warehouse

    Keeley, Jon E.

    2015-01-01

    In grasslands fire may play a role in the plant invasion process, both by creating disturbances that potentially favour non-native invasions and as a possible tool for controlling alien invasions. Havill et al. (Applied Vegetation Science, 18, 2015, this issue) determine how native and non-native species respond to different fire regimes as a first step in understanding the potential control of invasive grasses.

  19. Towards the planning and design of disturbance patterns across scales to counter biological invasions

    Treesearch

    Giovanni Zurlini; Irene Petrosillo; Kenneth Bruce Jones; Bai-Lian Li; Kurt Hans Riitters; Pietro Medagli; Silvano Marchiori; Nicola Zaccarelli

    2013-01-01

    The way in which disturbances from human land use are patterned in space across scales can have important consequences for efforts to govern human/environment with regard to, but not only, invasive spread-dispersal processes. In this context, we explore the potential of disturbance patterns along a continuum of scales as proxies for identifying the geographical regions...

  20. Synthetic biology: insights into biological computation.

    PubMed

    Manzoni, Romilde; Urrios, Arturo; Velazquez-Garcia, Silvia; de Nadal, Eulàlia; Posas, Francesc

    2016-04-18

    Organisms have evolved a broad array of complex signaling mechanisms that allow them to survive in a wide range of environmental conditions. They are able to sense external inputs and produce an output response by computing the information. Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology. In this context, biocomputation is the branch of synthetic biology aimed at implementing artificial computational devices using engineered biological motifs as building blocks. Biocomputational devices are defined as biological systems that are able to integrate inputs and return outputs following pre-determined rules. Over the last decade the number of available synthetic engineered devices has increased exponentially; simple and complex circuits have been built in bacteria, yeast and mammalian cells. These devices can manage and store information, take decisions based on past and present inputs, and even convert a transient signal into a sustained response. The field is experiencing a fast growth and every day it is easier to implement more complex biological functions. This is mainly due to advances in in vitro DNA synthesis, new genome editing tools, novel molecular cloning techniques, continuously growing part libraries as well as other technological advances. This allows that digital computation can now be engineered and implemented in biological systems. Simple logic gates can be implemented and connected to perform novel desired functions or to better understand and redesign biological processes. Synthetic biological digital circuits could lead to new therapeutic approaches, as well as new and efficient ways to produce complex molecules such as antibiotics, bioplastics or biofuels. Biological computation not only provides possible biomedical and

  1. Impacts of invasive plants on resident animals across ecosystems, taxa, and feeding types: a global assessment.

    PubMed

    Schirmel, Jens; Bundschuh, Mirco; Entling, Martin H; Kowarik, Ingo; Buchholz, Sascha

    2016-02-01

    As drivers of global change, biological invasions have fundamental ecological consequences. However, it remains unclear how invasive plant effects on resident animals vary across ecosystems, animal classes, and functional groups. We performed a comprehensive meta-analysis covering 198 field and laboratory studies reporting a total of 3624 observations of invasive plant effects on animals. Invasive plants had reducing (56%) or neutral (44%) effects on animal abundance, diversity, fitness, and ecosystem function across different ecosystems, animal classes, and feeding types while we could not find any increasing effect. Most importantly, we found that invasive plants reduced overall animal abundance, diversity and fitness. However, this significant overall effect was contingent on ecosystems, taxa, and feeding types of animals. Decreasing effects of invasive plants were most evident in riparian ecosystems, possibly because frequent disturbance facilitates more intense plant invasions compared to other ecosystem types. In accordance with their immediate reliance on plants for food, invasive plant effects were strongest on herbivores. Regarding taxonomic groups, birds and insects were most strongly affected. In insects, this may be explained by their high frequency of herbivory, while birds demonstrate that invasive plant effects can also cascade up to secondary consumers. Since data on impacts of invasive plants are rather limited for many animal groups in most ecosystems, we argue for overcoming gaps in knowledge and for a more differentiated discussion on effects of invasive plant on native fauna. © 2015 John Wiley & Sons Ltd.

  2. Invasive plants may promote predator-mediated feedback that inhibits further invasion

    PubMed Central

    Smith, Lauren M; Schmitz, Oswald J

    2015-01-01

    Understanding the impacts of invasive species requires placing invasion within a full community context. Plant invaders are often considered in the context of herbivores that may drive invasion by avoiding invaders while consuming natives (enemy escape), or inhibit invasion by consuming invaders (biotic resistance). However, predators that attack those herbivores are rarely considered as major players in invasion. Invasive plants often promote predators, generally by providing improved habitat. Here, we show that predator-promoting invaders may initiate a negative feedback loop that inhibits invasion. By enabling top-down control of herbivores, predator-promoting invaders lose any advantage gained through enemy escape, indirectly favoring natives. In cases where palatable invaders encounter biotic resistance, predator promotion may allow an invader to persist, but not dominate. Overall, results indicate that placing invaders in a full community context may reveal reduced impacts of invaders compared to expectations based on simple plant–plant or plant–herbivore subsystems. PMID:26120430

  3. Cannibalism in invasive, native and biocontrol populations of the harlequin ladybird

    PubMed Central

    2014-01-01

    Background Cannibalism is widespread in both vertebrates and invertebrates but its extent is variable between and within species. Cannibalism depends on population density and nutritional conditions, and could be beneficial during colonisation of new environments. Empirical studies are needed to determine whether this trait might facilitate invasion of a new area in natural systems. We investigated whether the propensity for cannibalism in H. axyridis differs both between native and invasive populations and between invasive populations from the core and from the front of the invasive area in Western Europe. We also compared the propensity for cannibalism of these natural populations with that of laboratory-reared biocontrol populations. We measured the cannibalism rates of eggs by first instar larvae and adult females at two different individual densities of ladybirds from three types of population (invasive, native and biocontrol), in laboratory-controlled conditions. Results Cannibalism was significantly greater in larvae from invasive populations compared to native or biocontrol populations, but there was no difference in cannibalism rates between populations from the core or front of the invaded range. Cannibalism was significantly lower in larvae from biocontrol populations compared to wild (invasive and native) populations. No differences in cannibalism rates of adult females were found between any populations. While high population density significantly increased cannibalism in both larvae and adults, the norm of reaction of cannibalism to individual density did not change significantly during the invasion and/or laboratory rearing processes. Conclusion This study is the first to provide evidence for a higher propensity for cannibalism in invasive populations compared to native ones. Our experiments also shed light on the difference in cannibalism evolution with respect to life stages. However, we are still at an early stage in understanding the underlying

  4. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure

    PubMed Central

    Leung, Brian; Mandrak, Nicholas E

    2007-01-01

    Invasive species are increasingly becoming a policy priority. This has spurred researchers and managers to try to estimate the risk of invasion. Conceptually, invasions are dependent both on the receiving environment (invasibility) and on the ability to reach these new areas (propagule pressure). However, analyses of risk typically examine only one or the other. Here, we develop and apply a joint model of invasion risk that simultaneously incorporates invasibility and propagule pressure. We present arguments that the behaviour of these two elements of risk differs substantially—propagule pressure is a function of time, whereas invasibility is not—and therefore have different management implications. Further, we use the well-studied zebra mussel (Dreissena polymorpha) to contrast predictions made using the joint model to those made by separate invasibility and propagule pressure models. We show that predictions of invasion progress as well as of the long-term invasion pattern are strongly affected by using a joint model. PMID:17711834

  5. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure.

    PubMed

    Leung, Brian; Mandrak, Nicholas E

    2007-10-22

    Invasive species are increasingly becoming a policy priority. This has spurred researchers and managers to try to estimate the risk of invasion. Conceptually, invasions are dependent both on the receiving environment (invasibility) and on the ability to reach these new areas (propagule pressure). However, analyses of risk typically examine only one or the other. Here, we develop and apply a joint model of invasion risk that simultaneously incorporates invasibility and propagule pressure. We present arguments that the behaviour of these two elements of risk differs substantially--propagule pressure is a function of time, whereas invasibility is not--and therefore have different management implications. Further, we use the well-studied zebra mussel (Dreissena polymorpha) to contrast predictions made using the joint model to those made by separate invasibility and propagule pressure models. We show that predictions of invasion progress as well as of the long-term invasion pattern are strongly affected by using a joint model.

  6. An ecological and evolutionary perspective on the parallel invasion of two cross-compatible trees

    PubMed Central

    Besnard, Guillaume; Cuneo, Peter

    2016-01-01

    Invasive trees are generally seen as ecosystem-transforming plants that can have significant impacts on native vegetation, and often require management and control. Understanding their history and biology is essential to guide actions of land managers. Here, we present a summary of recent research into the ecology, phylogeography and management of invasive olives, which are now established outside of their native range as high ecological impact invasive trees. The parallel invasion of European and African olive in different climatic zones of Australia provides an interesting case study of invasion, characterized by early genetic admixture between domesticated and wild taxa. Today, the impact of the invasive olives on native vegetation and ecosystem function is of conservation concern, with European olive a declared weed in areas of South Australia, and African olive a declared weed in New South Wales and Pacific islands. Population genetics was used to trace the origins and invasion of both subspecies in Australia, indicating that both olive subspecies have hybridized early after introduction. Research also indicates that African olive populations can establish from a low number of founder individuals even after successive bottlenecks. Modelling based on distributional data from the native and invasive range identified a shift of the realized ecological niche in the Australian invasive range for both olive subspecies, which was particularly marked for African olive. As highly successful and long-lived invaders, olives offer further opportunities to understand the genetic basis of invasion, and we propose that future research examines the history of introduction and admixture, the genetic basis of adaptability and the role of biotic interactions during invasion. Advances on these questions will ultimately improve predictions on the future olive expansion and provide a solid basis for better management of invasive populations. PMID:27519914

  7. Natural enemy impact on the invasive brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), in organic agroecosystems: A regional assessment

    USDA-ARS?s Scientific Manuscript database

    Understanding natural enemy impacts on the invasive brown marmorated stink bug, Halyomorpha halys (Stål), gives insight into the population dynamics of this invasive pest and the potential for biological control. This two-year study provides a broad-scale assessment of mortality factors affecting s...

  8. Evidence of qualitative differences between soil-occupancy effects of invasive vs. native grassland plant species

    USGS Publications Warehouse

    Jordan, Nicholas R.; Larson, Diane L.; Huerd, Sheri C.

    2011-01-01

    Diversified grasslands that contain native plant species are being recognized as important elements of agricultural landscapes and for production of biofuel feedstocks as well as a variety of other ecosystem services. Unfortunately, establishment of such grasslands is often difficult, unpredictable, and highly vulnerable to interference and invasion by weeds. Evidence suggests that soil-microbial "legacies" of invasive perennial species can inhibit growth of native grassland species. However, previous assessments of legacy effects of soil occupancy by invasive species that invade grasslands have focused on single invasive species and on responses to invasive soil occupancy in only a few species. In this study, we tested the hypothesis that legacy effects of invasive species differ qualitatively from those of native grassland species. In a glasshouse, three invasive and three native grassland perennials and a native perennial mixture were grown separately through three cycles of growth and soil conditioning in soils with and without arbuscular mycorrhizal fungi (AMF), after which we assessed seedling growth in these soils. Native species differed categorically from invasives in their response to soil conditioning by native or invasive species, but these differences depended on the presence of AMF. When AMF were present, native species largely had facilitative effects on invasive species, relative to effects of invasives on other invasives. Invasive species did not facilitate native growth; neutral effects were predominant, but strong soil-mediated inhibitory effects on certain native species occurred. Our results support the hypothesis that successful plant invaders create biological legacies in soil that inhibit native growth, but suggest also this mechanism of invasion will have nuanced effects on community dynamics, as some natives may be unaffected by such legacies. Such native species may be valuable as nurse plants that provide cost-effective restoration of

  9. Large-Scale Removal of Invasive Honeysuckle Decreases Mosquito and Avian Host Abundance.

    PubMed

    Gardner, Allison M; Muturi, Ephantus J; Overmier, Leah D; Allan, Brian F

    2017-12-01

    Invasive species rank second only to habitat destruction as a threat to native biodiversity. One consequence of biological invasions is altered risk of exposure to infectious diseases in human and animal populations. The distribution and prevalence of mosquito-borne diseases depend on the complex interactions between the vector, the pathogen, and the human or wildlife reservoir host. These interactions are highly susceptible to disturbance by invasive species, including terrestrial plants. We conducted a 2-year field experiment using a Before-After/Control-Impact design to examine how removal of invasive Amur honeysuckle (Lonicera maackii) in a forest fragment embedded within a residential neighborhood affects the abundance of mosquitoes, including two of the most important vectors of West Nile virus, Culex pipiens and Cx. restuans. We also assessed any potential changes in avian communities and local microclimate associated with Amur honeysuckle removal. We found that (1) removal of Amur honeysuckle reduces the abundance of both vector and non-vector mosquito species that commonly feed on human hosts, (2) the abundance and composition of avian hosts is altered by honeysuckle removal, and (3) areas invaded with honeysuckle support local microclimates that are favorable to mosquito survival. Collectively, our investigations demonstrate the role of a highly invasive understory shrub in determining the abundance and distribution of mosquitoes and suggest potential mechanisms underlying this pattern. Our results also give rise to additional questions regarding the general impact of invasive plants on vector-borne diseases and the spatial scale at which removal of invasive plants may be utilized to effect disease control.

  10. Microsporidian and viral pathogens for the biological control of imported fire ants: can we walk the talk?

    USDA-ARS?s Scientific Manuscript database

    . Invasive ants are among the most serious of arthropod invaders. These ants infest a wide range of habitats and impact biodiversity, agriculture, and human health. Self-sustaining biological control is one of the few hopes for permanent regional suppression of these established invasive ants. Fo...

  11. Biological invasion by Myrica faya alters ecosystem development in Hawaii

    NASA Technical Reports Server (NTRS)

    Vitousek, Peter M.; Walker, Lawrence R.; Whiteaker, Louis D.; Mueller-Dombois, Dieter; Matson, Pamela A.

    1987-01-01

    The exotic nitrogen-fixing tree Myrica faya invades young volcanic sites where the growth of native plants is limited by a lack of nitrogen. Myrica quadruples the amount of nitrogen entering certain sites and increases the overall biological availability of nitrogen, thereby altering the nature of ecosystem development after volcanic eruptions.

  12. Minimally Invasive Surgery for the Treatment of Colorectal Cancer

    PubMed Central

    Karcz, W. Konrad; von Braun, William

    2016-01-01

    Background Reduction in operative trauma along with an improvement in endoscopic access has undoubtedly occupied surgical minds for at least the past 3 decades. It is not at all surprising that minimally invasive colon surgery has come a long way since the first laparoscopic appendectomy by Semm in 1981. It is common knowledge that the recent developments in video and robotic technologies have significantly furthered advancements in laparoscopic and minimally invasive surgery. This has led to the overall acceptance of the treatment of benign colorectal pathology via the endoscopic route. Malignant disease, however, is still primarily treated by conventional approaches. Methods and Results This review article is based on a literature search pertaining to advances in minimally invasive colorectal surgery for the treatment of malignant pathology, as well as on personal experience in the field over the same period of time. Our search was limited to level I and II clinical papers only, according to the evidence-based medicine guidelines. We attempted to present our unbiased view on the subject relying only on the evidence available. Conclusion Focusing on advances in colorectal minimally invasive surgery, it has to be stated that there are still a number of unanswered questions regarding the surgical management of malignant diseases with this approach. These questions do not only relate to the area of boundaries set for the use of minimally invasive techniques in this field but also to the exact modality best suited to the treatment of every particular case whilst maintaining state-of-the-art oncological principles. PMID:27493947

  13. Urinary long noncoding RNAs in nonmuscle-invasive bladder cancer: new architects in cancer prognostic biomarkers.

    PubMed

    Terracciano, Daniela; Ferro, Matteo; Terreri, Sara; Lucarelli, Giuseppe; D'Elia, Carolina; Musi, Gennaro; de Cobelli, Ottavio; Mirone, Vincenzo; Cimmino, Amelia

    2017-06-01

    Several reports over the last 10 years provided evidence that long noncoding RNAs (lncRNAs) are often altered in bladder cancers. lncRNAs are longer than 200 nucleotides and function as important regulators of gene expression, interacting with the major pathways of cell growth, proliferation, differentiation, and survival. A large number of lncRNAs has oncogenic function and is more expressed in tumor compared with normal tissues. Their overexpression may be associated with tumor formation, progression, and metastasis in a variety of tumors including bladder cancer. Although lncRNAs have been shown to have critical regulatory roles in cancer biology, the biological functions and prognostic values in nonmuscle-invasive bladder cancer remain largely unknown. Nevertheless, a growing body of evidence suggests that several lncRNAs expression profiles in bladder malignancies are associated with poor prognosis, and they can be detected in biological fluids, such as urines. Here, we review current progress in the biology and the implication of lncRNAs associated with bladder cancer, and we discuss their potential use as diagnosis and prognosis biomarkers in bladder malignancies with a focus on their role in high-risk nonmuscle-invasive tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Kudzu (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution.

    PubMed

    Hickman, Jonathan E; Wu, Shiliang; Mickley, Loretta J; Lerdau, Manuel T

    2010-06-01

    The nitrogen-fixing legume kudzu (Pueraria montana) is a widespread invasive plant in the southeastern United States with physiological traits that may lead to important impacts on ecosystems and the atmosphere. Its spread has the potential to raise ozone levels in the region by increasing nitric oxide (NO) emissions from soils as a consequence of increasing nitrogen (N) inputs and cycling in soils. We studied the effects of kudzu invasions on soils and trace N gas emissions at three sites in Madison County, Georgia in 2007 and used the results to model the effects of kudzu invasion on regional air quality. We found that rates of net N mineralization increased by up to 1,000%, and net nitrification increased by up to 500% in invaded soils in Georgia. Nitric oxide emissions from invaded soils were more than 100% higher (2.81 vs. 1.24 ng NO-N cm(-2) h(-1)). We used the GEOS-Chem chemical transport model to evaluate the potential impact of kudzu invasion on regional atmospheric chemistry and air quality. In an extreme scenario, extensive kudzu invasion leads directly to an increase in the number of high ozone events (above 70 ppb) of up to 7 days each summer in some areas, up from 10 to 20 days in a control scenario with no kudzu invasion. These results establish a quantitative link between a biological invasion and ozone formation and suggest that in this extreme scenario, kudzu invasion can overcome some of the air quality benefits of legislative control.

  15. Long Non-Coding RNA (LncRNA) HOXA11-AS Promotes Breast Cancer Invasion and Metastasis by Regulating Epithelial-Mesenchymal Transition

    PubMed Central

    Li, Wenlei; Jia, Guotao; Qu, Yanwen; Du, Qian; Liu, Baoguo; Liu, Bin

    2017-01-01

    Background To detect the expression of lncRNA HOXA11-AS and its biological effect in breast cancer. Material/Methods In this study, fluorescent quantitative real-time PCR (qRT-PCR), MTT assay and clone formation assay, flow cytometry, Transwell assay and wound healing assay, immunofluorescence, and Western blot analysis were conducted to detect the expression of lncRNA HOXA11-AS, cell proliferation activity, cell apoptosis rate and cell cycle distribution, the changes of cell invasion and metastasis capacity, and the expressions of molecular markers of epithelial-mesenchymal transition (EMT), respectively. Additionally, a nude mouse metastatic tumor model was established to study the influence of lncRNA HOXA11-AS on invasion and metastasis capacity of breast cancer cells. Results The qRT-PCR experiment results showed that HOXA11-AS expression in breast cancer tissue of 50 patients was relatively higher than that in tissue adjacent to cancer. MTT assay suggested that tumor cell proliferation capacity was suppressed followed by the knockdown of lncRNA HOXA11-AS expression in MDA-MB-231 and MCF-7 cells; flow cytometry results demonstrated that interfering in lncRNA HOXA11-AS could induce tumor cell apoptosis and promote cell cycle progression to be arrested in G1/G0 stage; experiments in vivo/vitro manifested that interfering in lncRNA HOXA11-AS could inhibit tumor cell invasion and migration capacity by affecting the expressions of EMT-related molecular markers (E-cadherin, N-cadherin, Vimentin). Conclusions High expression of lncRNA HOXA11-AS promotes breast cancer invasion and metastasis by affecting EMT, and interfering in lncRAN HOXA11-AS expression provides a theoretical basis and important molecular target for inhibiting the distant metastasis of breast cancer in clinical practice. PMID:28701685

  16. Mechanical guidance of collective cell migration and invasion

    NASA Astrophysics Data System (ADS)

    Trepat, Xavier

    A broad range of biological processes such as morphogenesis, tissue regeneration, and cancer invasion depend on the collective migration of epithelial cells. Guidance of collective cell migration is commonly attributed to soluble or immobilized chemical gradients. I will present novel mechanisms of collective cellular guidance that are physical in origin rather than chemical. Firstly, I will focus on how the mechanical interaction between the tumor and its stroma guides cancer cell invasion. I will show that cancer associated fibroblasts exert a physical force on cancer cells that enables their collective invasion. In the second part of my talk I will focus on durotaxis, the ability of cells to follow gradients of extracellular matrix stiffness. Durotaxis is well established as a single cell phenomenon but whether it can direct the motion of cell collectives is unknown. I will show that durotaxis emerges in cell collectives even if isolated constituent cells are unable to durotax. Collective durotaxis applies to a broad variety of epithelial cell types and requires the action of myosin motors and the integrity of cell-cell junctions. Collective durotaxis is more efficient than any previous report of single cell durotaxis; it thus emerges as robust mechanism to direct collective cell migration in development and disease.eplace this text with your abstract.

  17. Alien plant invasions and native plant extinctions: a six-threshold framework.

    PubMed

    Downey, Paul O; Richardson, David M

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat-in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the 'extinction trajectory', global extinction being the final threshold. Although there are no documented examples of either 'in the wild' (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1-3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader threat

  18. Marine invasions enter the genomic era: three lessons from the past, and the way forward

    EPA Science Inventory

    The expanding scale and increasing rate of marine biological invasions has been documented since the early 20th century. Besides their global ecological and economic impacts, non-indigenous species (NIS) also have attracted much attention as opportunities to explore important eco...

  19. Extracellular redox state regulates features associated with prostate cancer cell invasion.

    PubMed

    Chaiswing, Luksana; Zhong, Weixiong; Cullen, Joseph J; Oberley, Larry W; Oberley, Terry D

    2008-07-15

    We have examined the possible role of extracellular reduction-oxidation (redox) state in regulation of biological/biochemical features associated with prostate cancer cell invasion. DU145, PC-3, and RWPE1-derived human prostate cancer (WPE1-NB26) cell lines were used for the present in vitro analysis. Increasing levels of nitric oxide using S-nitroso-N-acetylpenicillamine resulted in a decrease in cell invasion ability, whereas increasing levels of extracellular superoxide radical (O(2)(*-)) using xanthine/xanthine oxidase resulted in an increase in cell invasion ability in these three cell lines. WPE1-NB26 cells exhibited an increased glutathione/glutathione disulfide ratio in the medium in comparison with RWPE1 cells (immortalized but nonmalignant prostate epithelial cells), suggesting an alteration of extracellular redox state of WPE1-NB26 cells. We hypothesized that O(2)(*-) production at or near the plasma membrane or in the adjacent extracellular matrix at least partially regulated prostate cancer cell invasion. Using adenovirus-mediated extracellular superoxide dismutase (EC-SOD) gene transduction to enzymatically decrease O(2)(*-) levels, we showed that in the presence of heparin, adenovirus EC-SOD gene transduction resulted in an increase in the expression of EC-SOD outside the cells with resultant inhibition of cell invasion ability. This inhibition correlated with reduced metalloproteinase [matrix metalloproteinase (MMP) 2/membrane type 1-MMP] activities and increased levels of extracellular nitrite. Our results suggest a prominent role of extracellular redox status in regulation of cell invasion, which may provide opportunities for therapeutic interventions.

  20. A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits

    PubMed Central

    Essl, Franz; Dullinger, Stefan

    2016-01-01

    The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value), habitat use (agricultural and ruderal habitats, occurrence under the montane belt), and propagule pressure (frequency) were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties. PMID:27187616

  1. A Source Area Approach Demonstrates Moderate Predictive Ability but Pronounced Variability of Invasive Species Traits.

    PubMed

    Klonner, Günther; Fischer, Stefan; Essl, Franz; Dullinger, Stefan

    2016-01-01

    The search for traits that make alien species invasive has mostly concentrated on comparing successful invaders and different comparison groups with respect to average trait values. By contrast, little attention has been paid to trait variability among invaders. Here, we combine an analysis of trait differences between invasive and non-invasive species with a comparison of multidimensional trait variability within these two species groups. We collected data on biological and distributional traits for 1402 species of the native, non-woody vascular plant flora of Austria. We then compared the subsets of species recorded and not recorded as invasive aliens anywhere in the world, respectively, first, with respect to the sampled traits using univariate and multiple regression models; and, second, with respect to their multidimensional trait diversity by calculating functional richness and dispersion metrics. Attributes related to competitiveness (strategy type, nitrogen indicator value), habitat use (agricultural and ruderal habitats, occurrence under the montane belt), and propagule pressure (frequency) were most closely associated with invasiveness. However, even the best multiple model, including interactions, only explained a moderate fraction of the differences in invasive success. In addition, multidimensional variability in trait space was even larger among invasive than among non-invasive species. This pronounced variability suggests that invasive success has a considerable idiosyncratic component and is probably highly context specific. We conclude that basing risk assessment protocols on species trait profiles will probably face hardly reducible uncertainties.

  2. The influence of biomechanical properties and cannabinoids on tumor invasion

    PubMed Central

    Hohmann, Tim; Grabiec, Urszula; Ghadban, Chalid; Feese, Kerstin; Dehghani, Faramarz

    2017-01-01

    ABSTRACT Background: Cannabinoids are known to have an anti-tumorous effect, but the underlying mechanisms are only sparsely understood. Mechanical characteristics of tumor cells represent a promising marker to distinguish between tumor cells and the healthy tissue. We tested the hypothesis whether cannabinoids influence the tumor cell specific mechanical and migratory properties and if these factors are a prognostic marker for the invasiveness of tumor cells. Methods: 3 different glioblastoma cell lines were treated with cannabinoids and changes of mechanical and migratory properties of single cells were measured using atomic force microscopy and time lapse imaging. The invasiveness of cell lines was determined using a co-culture model with organotypic hippocampal slice cultures. Results: We found that cannabinoids are capable of influencing migratory and mechanical properties in a cell line specific manner. A network analysis revealed a correlation between a “generalized stiffness” and the invasiveness for all tumor cell lines after 3 and 4 d of invasion time: r3d = −0.88 [−0.52;−0.97]; r4d = −0.90 [−0.59;−0.98]. Conclusions: Here we could show that a “generalized stiffness” is a profound marker for the invasiveness of a tumor cell population in our model and thus might be of high clinical relevance for drug testing. Additionally cannabinoids were shown to be of potential use for therapeutic approaches of glioblastoma. PMID:27149140

  3. Designing efficient surveys: spatial arrangement of sample points for detection of invasive species

    Treesearch

    Ludek Berec; John M. Kean; Rebecca Epanchin-Niell; Andrew M. Liebhold; Robert G. Haight

    2015-01-01

    Effective surveillance is critical to managing biological invasions via early detection and eradication. The efficiency of surveillance systems may be affected by the spatial arrangement of sample locations. We investigate how the spatial arrangement of sample points, ranging from random to fixed grid arrangements, affects the probability of detecting a target...

  4. Phylogenetic investigation of the genus Raoiella (Prostigmata: Tenuipalpidae): Diversity, distribution, and world invasions

    USDA-ARS?s Scientific Manuscript database

    The genus Raoiella is most well known because of the red palm mite, R. indica, a major pest of palms spreading aggressively throughout the Americas. Not much was known about the biology, geographic origins, or evolutionary history of the genus when R. indica emerged as a major invasive pest. This pa...

  5. Environmental and biotic correlates to lionfish invasion success in Bahamian coral reefs.

    PubMed

    Anton, Andrea; Simpson, Michael S; Vu, Ivana

    2014-01-01

    Lionfish (Pterois volitans), venomous predators from the Indo-Pacific, are recent invaders of the Caribbean Basin and southeastern coast of North America. Quantification of invasive lionfish abundances, along with potentially important physical and biological environmental characteristics, permitted inferences about the invasion process of reefs on the island of San Salvador in the Bahamas. Environmental wave-exposure had a large influence on lionfish abundance, which was more than 20 and 120 times greater for density and biomass respectively at sheltered sites as compared with wave-exposed environments. Our measurements of topographic complexity of the reefs revealed that lionfish abundance was not driven by habitat rugosity. Lionfish abundance was not negatively affected by the abundance of large native predators (or large native groupers) and was also unrelated to the abundance of medium prey fishes (total length of 5-10 cm). These relationships suggest that (1) higher-energy environments may impose intrinsic resistance against lionfish invasion, (2) habitat complexity may not facilitate the lionfish invasion process, (3) predation or competition by native fishes may not provide biotic resistance against lionfish invasion, and (4) abundant prey fish might not facilitate lionfish invasion success. The relatively low biomass of large grouper on this island could explain our failure to detect suppression of lionfish abundance and we encourage continuing the preservation and restoration of potential lionfish predators in the Caribbean. In addition, energetic environments might exert direct or indirect resistance to the lionfish proliferation, providing native fish populations with essential refuges.

  6. Three-way interaction between biological control insects, a congener and their shared parasitoid: Evidence of biotic resistance

    USDA-ARS?s Scientific Manuscript database

    Invasive plants are one of the strongest drivers of species extinctions. Weed biological control offers a sustainable and safe means of long-term population reduction of their target. Herbivores introduced for the control of invasive plants interact with the native community in addition to the top-d...

  7. Co-introduction vs ecological fitting as pathways to the establishment of effective mutualisms during biological invasions.

    PubMed

    Le Roux, Johannes J; Hui, Cang; Keet, Jan-Hendrik; Ellis, Allan G

    2017-09-01

    Contents 1354 I. 1354 II. 1355 III. 1357 IV. 1357 V. 1359 1359 References 1359 SUMMARY: Interactions between non-native plants and their mutualists are often disrupted upon introduction to new environments. Using legume-rhizobium mutualistic interactions as an example, we discuss two pathways that can influence symbiotic associations in such situations: co-introduction of coevolved rhizobia; and utilization of, and adaptation to, resident rhizobia, hereafter referred to as 'ecological fitting'. Co-introduction and ecological fitting have distinct implications for successful legume invasions and their impacts. Under ecological fitting, initial impacts may be less severe and will accrue over longer periods as novel symbiotic associations and/or adaptations may require fine-tuning over time. Co-introduction will have more profound impacts that will accrue more rapidly as a result of positive feedbacks between densities of non-native rhizobia and their coevolved host plants, in turn enhancing competition between native and non-native rhizobia. Co-introduction can further impact invasion outcomes by the exchange of genetic material between native and non-native rhizobia, potentially resulting in decreased fitness of native legumes. A better understanding of the roles of these two pathways in the invasion dynamics of non-native legumes is much needed, and we highlight some of the exciting research avenues it presents. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. El control biologico de plagas(Biological control of pests)

    USDA-ARS?s Scientific Manuscript database

    In this work some ecological principles that drive applied biocontrol and agent selection are discussed. Subjects such as specificity evaluations, host shifts and species invasiveness are analyzed under the light of ecological theory. The main assertions are: 1. biological control is a safe and bene...

  9. A Review of the Biological Control of Fire Ants

    USDA-ARS?s Scientific Manuscript database

    The suppression of well-established invasive ants will likely require biological control by natural enemies. This approach is self-sustaining and can impact undetected or inaccessible populations that are the source of the continual presence and expansion of the invaders. There is an ongoing effor...

  10. Control of rugose spiraling whitefly using biological insecticides, 2014

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the efficacy of selected biological insecticides against a new invasive whitefly pest, Aleurodicus rugioperculatus Martin, in white bird of paradise under field condition. The trial was conducted at United States Horticultural Research Laboratory in Fort P...

  11. Novel non-invasive biological predictive index for liver fibrosis in hepatitis C virus genotype 4 patients

    PubMed Central

    Khattab, Mahmoud; Sakr, Mohamed Amin; Fattah, Mohamed Abdel; Mousa, Youssef; Soliman, Elwy; Breedy, Ashraf; Fathi, Mona; Gaber, Salwa; Altaweil, Ahmed; Osman, Ashraf; Hassouna, Ahmed; Motawea, Ibrahim

    2016-01-01

    AIM To investigate the diagnostic ability of a non-invasive biological marker to predict liver fibrosis in hepatitis C genotype 4 patients with high accuracy. METHODS A cohort of 332 patients infected with hepatitis C genotype 4 was included in this cross-sectional study. Fasting plasma glucose, insulin, C-peptide, and angiotensin-converting enzyme serum levels were measured. Insulin resistance was mathematically calculated using the homeostasis model of insulin resistance (HOMA-IR). RESULTS Fibrosis stages were distributed based on Metavir score as follows: F0 = 43, F1 = 136, F2 = 64, F3 = 45 and F4 = 44. Statistical analysis relied upon reclassification of fibrosis stages into mild fibrosis (F0-F) = 179, moderate fibrosis (F2) = 64, and advanced fibrosis (F3-F4) = 89. Univariate analysis indicated that age, log aspartate amino transaminase, log HOMA-IR and log platelet count were independent predictors of liver fibrosis stage (P < 0.0001). A stepwise multivariate discriminant functional analysis was used to drive a discriminative model for liver fibrosis. Our index used cut-off values of ≥ 0.86 and ≤ -0.31 to diagnose advanced and mild fibrosis, respectively, with receiving operating characteristics of 0.91 and 0.88, respectively. The sensitivity, specificity, positive predictive value, negative predictive value and positive likelihood ratio were: 73%, 91%, 75%, 90% and 8.0 respectively for advanced fibrosis, and 67%, 88%, 84%, 70% and 4.9, respectively, for mild fibrosis. CONCLUSION Our predictive model is easily available and reproducible, and predicted liver fibrosis with acceptable accuracy. PMID:27917265

  12. Novel non-invasive biological predictive index for liver fibrosis in hepatitis C virus genotype 4 patients.

    PubMed

    Khattab, Mahmoud; Sakr, Mohamed Amin; Fattah, Mohamed Abdel; Mousa, Youssef; Soliman, Elwy; Breedy, Ashraf; Fathi, Mona; Gaber, Salwa; Altaweil, Ahmed; Osman, Ashraf; Hassouna, Ahmed; Motawea, Ibrahim

    2016-11-18

    To investigate the diagnostic ability of a non-invasive biological marker to predict liver fibrosis in hepatitis C genotype 4 patients with high accuracy. A cohort of 332 patients infected with hepatitis C genotype 4 was included in this cross-sectional study. Fasting plasma glucose, insulin, C-peptide, and angiotensin-converting enzyme serum levels were measured. Insulin resistance was mathematically calculated using the homeostasis model of insulin resistance (HOMA-IR). Fibrosis stages were distributed based on Metavir score as follows: F0 = 43, F1 = 136, F2 = 64, F3 = 45 and F4 = 44. Statistical analysis relied upon reclassification of fibrosis stages into mild fibrosis (F0-F) = 179, moderate fibrosis (F2) = 64, and advanced fibrosis (F3-F4) = 89. Univariate analysis indicated that age, log aspartate amino transaminase, log HOMA-IR and log platelet count were independent predictors of liver fibrosis stage ( P < 0.0001). A stepwise multivariate discriminant functional analysis was used to drive a discriminative model for liver fibrosis. Our index used cut-off values of ≥ 0.86 and ≤ -0.31 to diagnose advanced and mild fibrosis, respectively, with receiving operating characteristics of 0.91 and 0.88, respectively. The sensitivity, specificity, positive predictive value, negative predictive value and positive likelihood ratio were: 73%, 91%, 75%, 90% and 8.0 respectively for advanced fibrosis, and 67%, 88%, 84%, 70% and 4.9, respectively, for mild fibrosis. Our predictive model is easily available and reproducible, and predicted liver fibrosis with acceptable accuracy.

  13. Terrestrial animals as invasive species and as species at risk from invasions

    Treesearch

    Deborah M. Finch; Dean Pearson; Joseph Wunderle; Wayne Arendt

    2010-01-01

    Including terrestrial animal species in the invasive species strategy plan is an important step in invasive species management. Invasions by nonindigenous species threaten nearly 50 percent of imperiled native species in the United States and are the Nation's second leading cause of species endangerment. Invasion and conversion of native habitats by exotic species...

  14. Invasion Genetics of Emerald Ash Borer (Agrilus planipennis FAIRMAIRE) in North America

    Treesearch

    Alicia M. Bray; Leah S. Bauer; Robert A. Haack; Therese Poland; James J. Smith

    2007-01-01

    Emerald ash borer (EAB) was first detected in Michigan and Canada in 2002. Efforts by federal and state regulatory agencies to control this destructive pest have been challenged by the biology of the pest and the speed in which it has spread. Invasion dynamics of the beetle and identifying source populations from Asia may help identify geographic localities of...

  15. Trait Values, Not Trait Plasticity, Best Explain Invasive Species' Performance in a Changing Environment

    PubMed Central

    Matzek, Virginia

    2012-01-01

    The question of why some introduced species become invasive and others do not is the central puzzle of invasion biology. Two of the principal explanations for this phenomenon concern functional traits: invasive species may have higher values of competitively advantageous traits than non-invasive species, or they may have greater phenotypic plasticity in traits that permits them to survive the colonization period and spread to a broad range of environments. Although there is a large body of evidence for superiority in particular traits among invasive plants, when compared to phylogenetically related non-invasive plants, it is less clear if invasive plants are more phenotypically plastic, and whether this plasticity confers a fitness advantage. In this study, I used a model group of 10 closely related Pinus species whose invader or non-invader status has been reliably characterized to test the relative contribution of high trait values and high trait plasticity to relative growth rate, a performance measure standing in as a proxy for fitness. When grown at higher nitrogen supply, invaders had a plastic RGR response, increasing their RGR to a much greater extent than non-invaders. However, invasive species did not exhibit significantly more phenotypic plasticity than non-invasive species for any of 17 functional traits, and trait plasticity indices were generally weakly correlated with RGR. Conversely, invasive species had higher values than non-invaders for 13 of the 17 traits, including higher leaf area ratio, photosynthetic capacity, photosynthetic nutrient-use efficiency, and nutrient uptake rates, and these traits were also strongly correlated with performance. I conclude that, in responding to higher N supply, superior trait values coupled with a moderate degree of trait variation explain invasive species' superior performance better than plasticity per se. PMID:23119098

  16. Introduction to the special issue: Tree invasions: towards a better understanding of their complex evolutionary dynamics.

    PubMed

    Hirsch, Heidi; Richardson, David M; Le Roux, Johannes J

    2017-05-01

    Many invasive plants show evidence of trait-based evolutionary change, but these remain largely unexplored for invasive trees. The increasing number of invasive trees and their tremendous impacts worldwide, however, illustrates the urgent need to bridge this knowledge gap to apply efficient management. Consequently, an interdisciplinary workshop, held in 2015 at Stellenbosch University in Stellenbosch, South Africa, brought together international researchers to discuss our understanding of evolutionary dynamics in invasive trees. The main outcome of this workshop is this Special Issue of AoB PLANTS . The collection of papers in this issue has helped to identify and assess the evolutionary mechanisms that are likely to influence tree invasions. It also facilitated expansion of the unified framework for biological invasions to incorporate key evolutionary processes. The papers cover a wide range of evolutionary mechanisms in tree genomes (adaptation), epigenomes (phenotypic plasticity) and their second genomes (mutualists), and show how such mechanisms can impact tree invasion processes and management. The special issue provides a comprehensive overview of the factors that promote and mitigate the invasive success of tree species in many parts of the world. It also shows that incorporating evolutionary concepts is crucial for understanding the complex drivers of tree invasions and has much potential to improve management. The contributions of the special issue also highlight many priorities for further work in the face of ever-increasing tree invasions; the complexity of this research needs calls for expanded interdisciplinary research collaborations.

  17. The fluctuating resource hypothesis explains invasibility, but not exotic advantage following disturbance.

    PubMed

    Pearson, Dean E; Ortega, Yvette K; Villarreal, Diego; Lekberg, Ylva; Cock, Marina C; Eren, Özkan; Hierro, José L

    2018-06-01

    vs. native species pools. We attribute this provenance bias to extrinsic biogeographic factors such as disparate evolutionary histories and/or introduction filters selecting for traits that favor exotics following disturbance. Our results suggest that (1) invasibility is an emergent property best explained by a community's efficiency in utilizing resources, as predicted by FRH but (2) understanding provenance biases in biological invasions requires moving beyond FRH to incorporate extrinsic biogeographic factors that may favor exotics in community assembly. © 2018 by the Ecological Society of America.

  18. Clinico-pathological and biological prognostic variables in squamous cell carcinoma of the vulva.

    PubMed

    Gadducci, Angiolo; Tana, Roberta; Barsotti, Cecilia; Guerrieri, Maria Elena; Genazzani, Andrea Riccardo

    2012-07-01

    Several clinical-pathological parameters have been related to survival of patients with invasive squamous cell carcinoma of the vulva, whereas few studies have investigated the ability of biological variables to predict the clinical outcome of these patients. The present paper reviews the literature data on the prognostic relevance of lymph node-related parameters, primary tumor-related parameters, FIGO stage, blood variables, and tissue biological variables. Regarding these latter, the paper takes into account the analysis of DNA content, cell cycle-regulatory proteins, apoptosis-related proteins, epidermal growth factor receptor [EGFR], and proteins that are involved in tumor invasiveness, metastasis and angiogenesis. At present, the lymph node status and FIGO stage according to the new 2009 classification system are the main predictors for vulvar squamous cell carcinoma, whereas biological variables do not have yet a clinical relevance and their role is still investigational. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Invasive Procedures in Preterm Children: Brain and Cognitive Development at School Age

    PubMed Central

    Vinall, Jillian; Miller, Steven P.; Bjornson, Bruce H.; Fitzpatrick, Kevin P.V.; Poskitt, Kenneth J.; Brant, Rollin; Synnes, Anne R.; Cepeda, Ivan L.

    2014-01-01

    BACKGROUND: Very preterm infants (born 24–32 weeks’ gestation) undergo numerous invasive procedures during neonatal care. Repeated skin-breaking procedures in rodents cause neuronal cell death, and in human preterm neonates higher numbers of invasive procedures from birth to term-equivalent age are associated with abnormal brain development, even after controlling for other clinical risk factors. It is unknown whether higher numbers of invasive procedures are associated with long-term alterations in brain microstructure and cognitive outcome at school age in children born very preterm. METHODS: Fifty children born very preterm underwent MRI and cognitive testing at median age 7.6 years (interquartile range, 7.5–7.7). T1- and T2-weighted images were assessed for the severity of brain injury. Magnetic resonance diffusion tensor sequences were used to measure fractional anisotropy (FA), an index of white matter (WM) maturation, from 7 anatomically defined WM regions. Child cognition was assessed using the Wechsler Intelligence Scale for Children–IV. Multivariate modeling was used to examine relationships between invasive procedures, brain microstructure, and cognition, adjusting for clinical confounders (eg, infection, ventilation, brain injury). RESULTS: Greater numbers of invasive procedures were associated with lower FA values of the WM at age 7 years (P = .01). The interaction between the number of procedures and FA was associated with IQ (P = .02), such that greater numbers of invasive procedures and lower FA of the superior WM were related to lower IQ. CONCLUSIONS: Invasive procedures during neonatal care contribute to long-term abnormalities in WM microstructure and lower IQ. PMID:24534406

  20. Warming shifts 'worming': effects of experimental warming on invasive earthworms in northern North America.

    PubMed

    Eisenhauer, Nico; Stefanski, Artur; Fisichelli, Nicholas A; Rice, Karen; Rich, Roy; Reich, Peter B

    2014-11-03

    Climate change causes species range shifts and potentially alters biological invasions. The invasion of European earthworm species across northern North America has severe impacts on native ecosystems. Given the long and cold winters in that region that to date supposedly have slowed earthworm invasion, future warming is hypothesized to accelerate earthworm invasions into yet non-invaded regions. Alternatively, warming-induced reductions in soil water content (SWC) can also decrease earthworm performance. We tested these hypotheses in a field warming experiment at two sites in Minnesota, USA by sampling earthworms in closed and open canopy in three temperature treatments in 2010 and 2012. Structural equation modeling revealed that detrimental warming effects on earthworm densities and biomass could indeed be partly explained by warming-induced reductions in SWC. The direction of warming effects depended on the current average SWC: warming had neutral to positive effects at high SWC, whereas the opposite was true at low SWC. Our results suggest that warming limits the invasion of earthworms in northern North America by causing less favorable soil abiotic conditions, unless warming is accompanied by increased and temporally even distributions of rainfall sufficient to offset greater water losses from higher evapotranspiration.

  1. The rationale for fundamental research in space biology - Introduction and background

    NASA Technical Reports Server (NTRS)

    Halstead, T. W.; Krauss, R. W.

    1992-01-01

    An overview is presented of the concept and development of SSF and the unique opportunities offered by SSF to take advantage of the greater space, the increased power, and especially the long duration of the station for a cascade of innovative experiments in fundamental science. It is emphasized that this space environment will provide new dimensions for approaching some of the most challenging problems still facing modern biology.

  2. Disturbance is the key to plant invasions in cold environments.

    PubMed

    Lembrechts, Jonas J; Pauchard, Aníbal; Lenoir, Jonathan; Nuñez, Martín A; Geron, Charly; Ven, Arne; Bravo-Monasterio, Pablo; Teneb, Ernesto; Nijs, Ivan; Milbau, Ann

    2016-12-06

    Until now, nonnative plant species were rarely found at high elevations and latitudes. However, partly because of climate warming, biological invasions are now on the rise in these extremely cold environments. These plant invasions make it timely to undertake a thorough experimental assessment of what has previously been holding them back. This knowledge is key to developing efficient management of the increasing risks of cold-climate invasions. Here, we integrate human interventions (i.e., disturbance, nutrient addition, and propagule input) and climatic factors (i.e., temperature) into one seed-addition experiment across two continents: the subantarctic Andes and subarctic Scandinavian mountains (Scandes), to disentangle their roles in limiting or favoring plant invasions. Disturbance was found as the main determinant of plant invader success (i.e., establishment, growth, and flowering) along the entire cold-climate gradient, explaining 40-60% of the total variance in our models, with no indication of any facilitative effect from the native vegetation. Higher nutrient levels additionally stimulated biomass production and flowering. Establishment and flowering displayed a hump-shaped response with increasing elevation, suggesting that competition is the main limit on invader success at low elevations, as opposed to low-growing-season temperatures at high elevations. Our experiment showed, however, that nonnative plants can establish, grow, and flower well above their current elevational limits in high-latitude mountains. We thus argue that cold-climate ecosystems are likely to see rapid increases in plant invasions in the near future as a result of a synergistic interaction between increasing human-mediated disturbances and climate warming.

  3. Removal of Multiple Contaminants: Biological Treatment

    EPA Science Inventory

    This presentation contains (1) background material on nitrate, perchlorate and ammonia contamination in the continental US; (2) scientific background on biological drinking water treatment; (3) results of bench-scale anaerobic and aerobic treatment studies; (4) results of pilot-s...

  4. Geographic Proximity Not a Prerequisite for Invasion: Hawaii Not the Source of California Invasion by Light Brown Apple Moth (Epiphyas postvittana)

    PubMed Central

    Rubinoff, Daniel; Holland, Brenden S.; San Jose, Michael; Powell, Jerry A.

    2011-01-01

    Background The light brown apple moth (LBAM), Epiphyas postvittana (Walker), is native to Australia but invaded England, New Zealand, and Hawaii more than 100 years ago. In temperate climates, LBAM can be a major agricultural pest. In 2006 LBAM was discovered in California, instigating eradication efforts and quarantine against Hawaiian agriculture, the assumption being that Hawaii was the source of the California infestation. Genetic relationships among populations in Hawaii, California, and New Zealand are crucial to understanding LBAM invasion dynamics across the Pacific. Methodology/Principal Findings We sequenced mitochondrial DNA (mtDNA) from 1293 LBAM individuals from California (695), Hawaii (448), New Zealand (147), and Australia (3) to examine haplotype diversity and structure among introduced populations, and evaluate the null hypothesis that invasive populations are from a single panmictic source. However, invasive populations in California and New Zealand harbor deep genetic diversity, whereas Hawaii shows low level, shallow diversity. Conclusions/Significance LBAM recently has established itself in California, but was in Hawaii and New Zealand for hundreds of generations, yet California and New Zealand show similar levels of genetic diversity relative to Hawaii. Thus, there is no clear relationship between duration of invasion and genetic structure. Demographic statistics suggest rapid expansion occurring in California and past expansions in New Zealand; multiple introductions of diverse, genetically fragmented lineages could contribute to these patterns. Hawaii and California share no haplotypes, therefore, Hawaii is not the source of the California introduction. Paradoxically, Hawaii and California share multiple haplotypes with New Zealand. New Zealand may be the source for the California and Hawaii infestations, but the introductions were independent, and Hawaii was invaded only once. This has significant implications for quarantine, and suggests

  5. Why minimally invasive skin sampling techniques? A bright scientific future.

    PubMed

    Wang, Christina Y; Maibach, Howard I

    2011-03-01

    There is increasing interest in minimally invasive skin sampling techniques to assay markers of molecular biology and biochemical processes. This overview examines methodology strengths and limitations, and exciting developments pending in the scientific community. Publications were searched via PubMed, the U.S. Patent and Trademark Office Website, the DermTech Website and the CuDerm Website. The keywords used were noninvasive skin sampling, skin stripping, skin taping, detergent method, ring method, mechanical scrub, reverse iontophoresis, glucose monitoring, buccal smear, hair root sampling, mRNA, DNA, RNA, and amino acid. There is strong interest in finding methods to access internal biochemical, molecular, and genetic processes through noninvasive and minimally invasive external means. Minimally invasive techniques include the widely used skin tape stripping, the abrasion method that includes scraping and detergent, and reverse iontophoresis. The first 2 methods harvest largely the stratum corneum. Hair root sampling (material deeper than the epidermis), buccal smear, shave biopsy, punch biopsy, and suction blistering are also methods used to obtain cellular material for analysis, but involve some degree of increased invasiveness and thus are only briefly mentioned. Existing and new sampling methods are being refined and validated, offering exciting, different noninvasive means of quickly and efficiently obtaining molecular material with which to monitor bodily functions and responses, assess drug levels, and follow disease processes without subjecting patients to unnecessary discomfort and risk.

  6. Biology of the invasive banded elm bark beetle (Coleoptera: Scolytidae) in the western United States

    Treesearch

    Jana C. Lee; Jose F. Negron; Sally J. McElwey; Livy Williams; Jeffrey J. Witcosky; John B. Popp; Steven J. Seybold

    2011-01-01

    The banded elm bark beetle, Scolytus schevyrewi Semenov (Coleoptera: Scolytidae), native to Asia, was detected in the United States in 2003, and as of 2011 it is known to occur in 28 states and four Canadian provinces. S. schevyrewi infests the same elm (Ulmus spp.) hosts as the longestablished invasive...

  7. Sensitivity to dietary phosphorus limitation in native vs. invasive lineages of a New Zealand freshwater snail.

    PubMed

    Neiman, Maurine; Krist, Amy

    2016-10-01

    Why some species and lineages are more likely to be invasive than others is one of the most important unanswered questions in basic and applied biology. In particular, the relative contributions to the invasion process of factors like pre-adaptation to invasiveness in the native range, evolution post-colonization, and random vs. non-random sampling of colonist lineages remain unclear. We use a powerful common garden approach to address the potential for a role for sensitivity to nutrient limitation in determining the invasiveness of particular lineages of Potamopyrgus antipodarum, a New Zealand freshwater snail that has become globally invasive. We quantified specific growth rate (SGR), an important fitness-related trait in this species, under high phosphorus (P) vs. low-P conditions for a diverse set of native and invasive P. antipodarum. This experiment revealed that native-range P. antipodarum experience a more severe decline in SGR in low-P conditions relative to SGR in high-P conditions than their invasive range counterparts. Although these results suggest resilience to P limitation in invasive lineages, the absence of significant absolute differences in SGR between native and invasive lineages indicates that a straightforward connection between response to P limitation and invasiveness in P. antipodarum is unlikely. Regardless, our data demonstrate that invasive vs. native lineages of P. antipodarum exhibit consistently different responses to an important environmental variable that is rarely studied in the context of invasion success. Further studies directed at exploring and disentangling the roles of sampling effects, selection on preexisting variation, and evolution after colonization will be required to provide a comprehensive picture of the role (or lack thereof) of nutrient limitation in the global invasion of P. antipodarum, as well for as other invasive taxa. © 2016 by the Ecological Society of America.

  8. Invasive Candidiasis

    MedlinePlus

    ... Invasive candidiasis is an infection caused by a yeast (a type of fungus) called Candida . Unlike Candida ... mouth and throat (also called “thrush”) or vaginal “yeast infections,” invasive candidiasis is a serious infection that ...

  9. Genotyping approach for non-invasive foetal RHD detection in an admixed population

    PubMed Central

    Boggione, Carolina Trucco; Luján Brajovich, Melina E.; Mattaloni, Stella M.; Di Mónaco, René A.; García Borrás, Silvia E.; Biondi, Claudia S.; Cotorruelo, Carlos M.

    2017-01-01

    Background Non-invasive foetal RHD genotyping can predict haemolytic disease of the foetus and the newborn in pregnancies with anti-D alloantibodies and also avoid antenatal anti-D prophylaxis in pregnant women carrying an RHD negative foetus. Considering that the Argentine genetic background is the result of generations of intermixing between several ethnic groups, we evaluated the diagnostic performance of a non-invasive foetal RHD determination strategy to guide targeted antenatal RhD immunoprophylaxis. This algorithm is based on the analysis of four regions of the RHD gene in cell-free foetal DNA in maternal plasma and maternal and paternal RHD genotyping. Materials and methods DNA from 298 serologically D negative pregnant women between 19–28 weeks gestation were RHD genotyped. Foetal RHD status was determined by real-time PCR in 296 maternal plasma samples. In particular cases, RHDΨ and RHD-CE-Ds alleles were investigated in paternal DNA. Umbilical cord blood was collected at birth, and serological and molecular studies were performed. Results Of the 298 maternal samples, 288 were D−/RHD− and 10 D−/RHD+ (2 RHD*DAR; 5 RHD-CE-Ds; 3 RHDΨ). Plasma from RHD*DAR carriers was not analysed. Real-time PCR showed 210 RHD+ and 78 RHD− foetuses and 8 inconclusive results. In this latter group, paternal molecular studies were useful to report a RHD negative status in 5 foetuses while only 3 remained inconclusive. All the results, except one false positive due to a silent allele (RHD[581insG]), agreed with the neonatal typing performed in cord blood. Discussion The protocol used for non-invasive prenatal RHD genotyping proved to be suitable to determine foetal RHD status in our admixed population. The knowledge of the genetic background of the population under study and maternal and paternal molecular analysis can reduce the number of inconclusive results when investigating foetal RHD status. PMID:27136427

  10. A Landscape Approach to Invasive Species Management.

    PubMed

    Lurgi, Miguel; Wells, Konstans; Kennedy, Malcolm; Campbell, Susan; Fordham, Damien A

    2016-01-01

    Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our

  11. Microneedle-based minimally-invasive measurement of puncture resistance and fracture toughness of sclera.

    PubMed

    Park, Seung Hyun; Lee, Kang Ju; Lee, JiYong; Yoon, Jae Hyoung; Jo, Dong Hyun; Kim, Jeong Hun; Kang, Keonwook; Ryu, WonHyoung

    2016-10-15

    The sclera provides the structural support of the eye and protects the intraocular contents. Since it covers a large portion of the eye surface and has relatively high permeability for most drugs, the sclera has been used as a major pathway for drug administration. Recently, microneedle (MN) technology has shown the possibility of highly local and minimally-invasive drug delivery to the eye by MN insertion through the sclera or the suprachoroidal space. Although ocular MN needs to be inserted through the sclera, there has been no systematic study to understand the mechanical properties of the sclera, which are important to design ocular MNs. In this study, we investigated a MN-based method to measure the puncture resistance and fracture toughness of the sclera. To reflect the conditions of MN insertion into the sclera, force-displacement curves obtained from MN-insertion tests were used to estimate the puncture resistance and fracture toughness of sclera tissue. To understand the effect of the insertion conditions, dependency of the mechanical properties on insertion speeds, pre-strain of the sclera, and MN sizes were analyzed and discussed. Measurement of mechanical property of soft biological tissue is challenging due to variations between tissue samples or lack of well-defined measurement techniques. Although non-invasive measurement techniques such as nano/micro indentation were employed to locally measure the elastic modulus of soft biological materials, mechanical properties such as puncture resistance or fracture toughness, which requires "invasive" measurement and is important for the application of "microneedles or hypodermic needles", has not been well studied. In this work, we report minimally-invasive measurement of puncture resistance and fracture toughness of sclera using a double MN insertion method. Parametric studies showed that use of MN proved to be advantageous because of minimally-invasive insertion into tissue as well as higher sensitivity to

  12. Review of Invasive Riparian Trees that Impact USACE Ecosystem Restoration Projects

    DTIC Science & Technology

    2016-08-01

    Center (ERDC), Environmental Laboratory (EL) developed this technical note to describe invasive woody trees and shrubs that negatively affect USACE...riparian habitats. BACKGROUND: Non-native species introduced intentionally, or otherwise, have affected native flora and fauna communities throughout...North America. Whether these species are plants, animals, or pathogens (e.g., fungi , bacteria), costs from damages and losses, and costs of efforts

  13. Surface Molecules Released by Trypanosoma cruzi Metacyclic Forms Downregulate Host Cell Invasion

    PubMed Central

    Clemente, Tatiana Mordente; Cortez, Cristian; Novaes, Antônio da Silva; Yoshida, Nobuko

    2016-01-01

    Background The question whether metacylic trypomastigote (MT) forms of different T. cruzi strains differentially release surface molecules, and how they affect host cell invasion, remains to be fully clarified. We addressed that question using T. cruzi strains that differ widely in the ability to invade cells. Methodology/Principal Findings Metacyclic forms were incubated at 37°C for 1 h in complete D10 medium or in nutrient-deprived PBS containing Ca2+ and Mg2+ (PBS++). The conditioned medium (CM), collected after parasite centrifugation, was used for cell invasion assays and Western blot analysis, using monoclonal antibodies directed to gp82 and gp90, the MT surface molecules that promote and negatively regulate invasion, respectively. CM of poorly invasive G strain (G-CM) contained high amounts of gp90 and gp82, either in vesicles or as soluble molecules. CM of highly invasive CL strain (CL-CM) contained gp90 and gp82 at very low levels. HeLa cells were incubated for 1 h with CL strain MT in D10, in absence or in the presence of G-CM or CL-CM. Parasite invasion was significantly inhibited by G-CM, but not by CL-CM. As G strain MT invasion rate in D10 is very low, assays with this strain were performed in PBS++, which induces invasion-promoting lysosome-spreading. G-CM, but not CL-CM, significantly inhibited G strain internalization, effect that was counteracted by preincubating G-CM with an anti-gp90 monoclonal antibody or anti-gp82 polyclonal antibody that do not recognize live MT. G strain CM generated in PBS++ contained much lower amounts of gp90 and gp82 as compared to CM produced in D10, and exhibited lower inhibitory effect on host cell invasion. Conclusion/Significance Our data suggest that the surface molecules spontaneously released by MT impair parasite-host cell interaction, gp82 presumably competing with the molecule expressed on MT surface for the host cell receptor, and gp90 further contributing to down modulate invasion. PMID:27483135

  14. Population genetics and biological control of goldspotted oak borer, an invasive pest of California oaks

    Treesearch

    Vanessa Lopez; Paul F. Rugman-Jones; Tom W. Coleman; Richard Stouthamer; Mark Hoddle

    2015-01-01

    California’s oak woodlands are threatened by the recent introduction of goldspotted oak borer (Agrilus auroguttatus). This invasive wood-borer is indigenous to mountain ranges in southern Arizona where its low population densities may be due to the presence of co-evolved, host-specific natural enemies. Reuniting A. auroguttatus...

  15. Supplemental invasion of Salmonella from the perspective of Salmonella enterica serovars Kentucky and Typhimurium

    USDA-ARS?s Scientific Manuscript database

    Background: Critical to the development of Salmonellosis in humans is the interaction of the bacterium with the epithelial lining of the gastrointestinal tract. Traditional scientific reasoning held type III secretion system (T3SS) as the virulence factor responsible for bacterial invasion. In this ...

  16. Modeling Invasion Dynamics with Spatial Random-Fitness Due to Micro-Environment

    PubMed Central

    Manem, V. S. K.; Kaveh, K.; Kohandel, M.; Sivaloganathan, S.

    2015-01-01

    Numerous experimental studies have demonstrated that the microenvironment is a key regulator influencing the proliferative and migrative potentials of species. Spatial and temporal disturbances lead to adverse and hazardous microenvironments for cellular systems that is reflected in the phenotypic heterogeneity within the system. In this paper, we study the effect of microenvironment on the invasive capability of species, or mutants, on structured grids (in particular, square lattices) under the influence of site-dependent random proliferation in addition to a migration potential. We discuss both continuous and discrete fitness distributions. Our results suggest that the invasion probability is negatively correlated with the variance of fitness distribution of mutants (for both advantageous and neutral mutants) in the absence of migration of both types of cells. A similar behaviour is observed even in the presence of a random fitness distribution of host cells in the system with neutral fitness rate. In the case of a bimodal distribution, we observe zero invasion probability until the system reaches a (specific) proportion of advantageous phenotypes. Also, we find that the migrative potential amplifies the invasion probability as the variance of fitness of mutants increases in the system, which is the exact opposite in the absence of migration. Our computational framework captures the harsh microenvironmental conditions through quenched random fitness distributions and migration of cells, and our analysis shows that they play an important role in the invasion dynamics of several biological systems such as bacterial micro-habitats, epithelial dysplasia, and metastasis. We believe that our results may lead to more experimental studies, which can in turn provide further insights into the role and impact of heterogeneous environments on invasion dynamics. PMID:26509572

  17. Illuminating Cell Biology

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  18. Simulations of population dynamics of hemlock woolly adelgid and potential impact of biological control agents

    Treesearch

    Joseph S. Elkinton; Robert T. Trotter; Ann F. Paradis

    2011-01-01

    The hemlock woolly adelgid (Adelges tsugae) is a small invasive Hemipteran herbivore that threatens the continued presence and abundance of hemlock in eastern North America. Efforts to control the adelgid have focused on the introduction of classical biological control agents. These biological controls include six different species of predatory...

  19. Characterisation of a novel transmission Raman spectroscopy platform for non-invasive detection of breast micro-calcifications

    NASA Astrophysics Data System (ADS)

    Ghita, Adrian; Matousek, Pavel; Stone, Nick

    2018-02-01

    Our work focuses on the development of a medical Raman spectroscopy based platform to non-invasively detect and determine in-vivo molecular information deep inside biological tissues by monitoring the chemical composition of breast calcifications. The ultimate goal is to replace a needle biopsy which typically follows the detection of an abnormality in mammographic images. Here we report the non-invasive detection of calcium oxalate monohydrate in tissue through 40 mm of phantom tissues using our recently developed advanced Raman instrument complementing our previous detection of calcium hydroxyapatite through this thickness of tissue. The ability to detect these two key types of calcifications opens avenues for the development of non-invasive in-vivo breast cancer diagnostic tool in the future.

  20. Invasive Species Biology, Control, and Research. Part 1: Kudzu (Pueraria montana)

    DTIC Science & Technology

    2008-11-01

    Synonymy: Pueraria lobata (Willd.), P. tunbergiana (Sieb. & Zucc.) Benth. Family: Fabaceae (Leguminosae)/Pea Family. U.S. Department of...Virginia. Biology Description Kudzu (Pueraria montana) is in the Family Fabaceae (Pea Family, leg- ume). Kudzu is a perennial, high-climbing