Sample records for background cancer stem

  1. Cancer stem cells and differentiation therapy.

    PubMed

    Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-10-01

    Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."

  2. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    PubMed

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  3. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells

    PubMed Central

    Torquato, Heron F.V.; Goettert, Márcia I.; Justo, Giselle Z.; Paredes-Gamero, Edgar J.

    2017-01-01

    Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers. PMID:28367074

  4. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030

    PubMed Central

    Lin, L; Liu, Y; Li, H; Li, P-K; Fuchs, J; Shibata, H; Iwabuchi, Y; Lin, J

    2011-01-01

    Background: Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown. Methods: Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulations (ALDH+/CD133+). The levels of STAT3 phosphorylation and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined. Results: Our results observed that ALDH+/CD133+ colon cancer cells expressed higher levels of phosphorylated STAT3 than ALDH-negative/CD133-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed tumour growth of cancer stem cells from both SW480 and HCT-116 colon cancer cell lines in the mouse model. Conclusion: Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer. PMID:21694723

  5. Cancer stem cells, cancer cell plasticity and radiation therapy.

    PubMed

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Peptide-targeted, stimuli-responsive polymersomes for delivering a cancer stemness inhibitor to cancer stem cell microtumors.

    PubMed

    Karandish, Fataneh; Froberg, James; Borowicz, Pawel; Wilkinson, John C; Choi, Yongki; Mallik, Sanku

    2018-03-01

    Often cancer relapses after an initial response to chemotherapy because of the tumor's heterogeneity and the presence of progenitor stem cells, which can renew. To overcome drug resistance, metastasis, and relapse in cancer, a promising approach is the inhibition of cancer stemness. In this study, the expression of the neuropilin-1 receptor in both pancreatic and prostate cancer stem cells was identified and targeted with a stimuli-responsive, polymeric nanocarrier to deliver a stemness inhibitor (napabucasin) to cancer stem cells. Reduction-sensitive amphiphilic block copolymers PEG 1900 -S-S-PLA 6000 and the N 3 -PEG 1900 -PLA 6000 were synthesized. The tumor penetrating iRGD peptide-hexynoic acid conjugate was linked to the N 3 -PEG 1900 -PLA 6000 polymer via a Cu 2+ catalyzed "Click" reaction. Subsequently, this peptide-polymer conjugate was incorporated into polymersomes for tumor targeting and tissue penetration. We prepared polymersomes containing 85% PEG 1900 -S-S-PLA 6000 , 10% iRGD-polymer conjugate, and 5% DPPE-lissamine rhodamine dye. The iRGD targeted polymersomes encapsulating the cancer stemness inhibitor napabucasin were internalized in both prostate and pancreatic cancer stem cells. The napabucasin encapsulated polymersomes significantly (p < .05) reduced the viability of both prostate and pancreatic cancer stem cells and decreased the stemness protein expression notch-1 and nanog compared to the control and vesicles without any drug. The napabucasin encapsulated polymersome formulations have the potential to lead to a new direction in prostate and pancreatic cancer therapy by penetrating deeply into the tumors, releasing the encapsulated stemness inhibitor, and killing cancer stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells

    PubMed Central

    2011-01-01

    Background Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. Methods MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. Results MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. Conclusion These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through

  8. Extinction models for cancer stem cell therapy

    PubMed Central

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  9. Extinction models for cancer stem cell therapy.

    PubMed

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S; Lange, Kenneth L

    2011-12-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth-death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  10. Epigenetics in cancer stem cells.

    PubMed

    Toh, Tan Boon; Lim, Jhin Jieh; Chow, Edward Kai-Hua

    2017-02-01

    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.

  11. Stemming Colorectal Cancer Growth and Metastasis: HOXA5 Forces Cancer Stem Cells to Differentiate.

    PubMed

    Tan, Si Hui; Barker, Nick

    2015-12-14

    Wnt signaling drives colorectal cancer stem cells, but effective therapeutics targeting these cells and their signaling pathways are lacking. In this issue of Cancer Cell, Ordóñez-Morán and colleagues describe a promising therapeutic intervention for colorectal cancers that selectively induces cancer stem cell differentiation through HOXA5 expression and Wnt signaling inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Gastric cancer stem cells: A novel therapeutic target

    PubMed Central

    Singh, Shree Ram

    2013-01-01

    Gastric cancer remains one of the leading causes of global cancer mortality. Multipotent gastric stem cells have been identified in both mouse and human stomachs, and they play an essential role in the self-renewal and homeostasis of gastric mucosa. There are several environmental and genetic factors known to promote gastric cancer. In recent years, numerous in vitro and in vivo studies suggest that gastric cancer may originate from normal stem cells or bone marrow–derived mesenchymal cells, and that gastric tumors contain cancer stem cells. Cancer stem cells are believed to share a common microenvironment with normal niche, which play an important role in gastric cancer and tumor growth. This mini-review presents a brief overview of the recent developments in gastric cancer stem cell research. The knowledge gained by studying cancer stem cells in gastric mucosa will support the development of novel therapeutic strategies for gastric cancer. PMID:23583679

  13. 3D modeling of cancer stem cell niche

    PubMed Central

    He, Jun; Xiong, Li; Li, Qinglong; Lin, Liangwu; Miao, Xiongying; Yan, Shichao; Hong, Zhangyong; Yang, Leping; Wen, Yu; Deng, Xiyun

    2018-01-01

    Cancer stem cells reside in a distinct microenvironment called niche. The reciprocal interactions between cancer stem cells and niche contribute to the maintenance and enrichment of cancer stem cells. In order to simulate the interactions between cancer stem cells and niche, three-dimensional models have been developed. These in vitro culture systems recapitulate the spatial dimension, cellular heterogeneity, and the molecular networks of the tumor microenvironment and show great promise in elucidating the pathophysiology of cancer stem cells and designing more clinically relavant treatment modalites. PMID:29416698

  14. On the Stem Cell Origin of Cancer

    PubMed Central

    Sell, Stewart

    2010-01-01

    In each major theory of the origin of cancer—field theory, chemical carcinogenesis, infection, mutation, or epigenetic change—the tissue stem cell is involved in the generation of cancer. Although the cancer type is identified by the more highly differentiated cells in the cancer cell lineage or hierarchy (transit-amplifying cells), the property of malignancy and the molecular lesion of the cancer exist in the cancer stem cell. In the case of teratocarcinomas, normal germinal stem cells have the potential to become cancers if placed in an environment that allows expression of the cancer phenotype (field theory). In cancers due to chemically induced mutations, viral infections, somatic and inherited mutations, or epigenetic changes, the molecular lesion or infection usually first occurs in the tissue stem cells. Cancer stem cells then give rise to transit-amplifying cells and terminally differentiated cells, similar to what happens in normal tissue renewal. However, the major difference between cancer growth and normal tissue renewal is that whereas normal transit amplifying cells usually differentiate and die, at various levels of differentiation, the cancer transit-amplifying cells fail to differentiate normally and instead accumulate (ie, they undergo maturation arrest), resulting in cancer growth. PMID:20431026

  15. Biliary tract cancer stem cells - translational options and challenges

    PubMed Central

    Mayr, Christian; Ocker, Matthias; Ritter, Markus; Pichler, Martin; Neureiter, Daniel; Kiesslich, Tobias

    2017-01-01

    Management of biliary tract cancer remains challenging. Tumors show high recurrence rates and therapeutic resistance, leading to dismal prognosis and short survival. The cancer stem cell model states that a tumor is a heterogeneous conglomerate of cells, in which a certain subpopulation of cells - the cancer stem cells - possesses stem cell properties. Cancer stem cells have high clinical relevance due to their potential contributions to development, progression and aggressiveness as well as recurrence and metastasis of malignant tumors. Consequently, reliable identification of as well as pharmacological intervention with cancer stem cells is an intensively investigated and promising research field. The involvement of cancer stem cells in biliary tract cancer is likely as a number of studies demonstrated their existence and the obvious clinical relevance of several established cancer stem cell markers in biliary tract cancer models and tissues. In the present article, we review and discuss the currently available literature addressing the role of putative cancer stem cells in biliary tract cancer as well as the connection between known contributors of biliary tract tumorigenesis such as oncogenic signaling pathways, micro-RNAs and the tumor microenvironment with cancer stem cells. PMID:28465631

  16. Ovarian cancer stem cells.

    PubMed

    Zeimet, A G; Reimer, D; Sopper, S; Boesch, M; Martowicz, A; Roessler, J; Wiedemair, A M; Rumpold, H; Untergasser, G; Concin, N; Hofstetter, G; Muller-Holzner, E; Fiegl, H; Marth, C; Wolf, D; Pesta, M; Hatina, J

    2012-01-01

    Because of its semi-solid character in dissemination and growth, advanced ovarian cancer with its hundreds of peritoneal tumor nodules and plaques appears to be an excellent in vivo model for studying the cancer stem cell hypothesis. The most important obstacle, however, is to adequately define and isolate these tumor-initiating cells endowed with the properties of anoikis-resistance and unlimited self-renewal. Until now, no universal single marker or marker constellation has been found to faithfully isolate (ovarian) cancer stem cells. As these multipotent cells are known to possess highly elaborated efflux systems for cytotoxic agents, these pump systems have been exploited to outline putative stem cells as a side-population (SP) via dye exclusion analysis. Furthermore, the cells in question have been isolated via flow cytometry on the basis of cell surface markers thought to be characteristic for stem cells.In the Vienna variant of the ovarian cancer cell line A2780 a proof-of-principle model with both a stable SP and a stable ALDH1A1+ cell population was established. Double staining clearly revealed that both cell fractions were not identical. Of note, A2780V cells were negative for expression of surface markers CD44 and CD117 (c-kit). When cultured on monolayers of healthy human mesothelial cells, green-fluorescence-protein (GFP)-transfected SP of A2780V exhibited spheroid-formation, whereas non-side-population (NSP) developed a spare monolayer growing over the healthy mesothelium. Furthermore, A2780V SP was found to be partially resistant to platinum. However, this resistance could not be explained by over-expression of the "excision repair cross-complementation group 1" (ERCC1) gene, which is essentially involved in the repair of platinated DNA damage. ERCC1 was, nonetheless, over-expressed in A2780V cells grown as spheres under stem cell-selective conditions as compared to adherent monolayers cultured under differentiating conditions. The same was true for

  17. Proteasome expression and activity in cancer and cancer stem cells.

    PubMed

    Voutsadakis, Ioannis A

    2017-03-01

    Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.

  18. Cancer stem cells of the digestive system.

    PubMed

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Implications of Cancer Stem Cell Theory for Cancer Chemoprevention by Natural Dietary Compounds

    PubMed Central

    Li, Yanyan; Wicha, Max S.; Schwartz, Steven J.; Sun, Duxin

    2011-01-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anti-cancer drugs targeting cancer stem cells. Naturally-occurring dietary compounds have received increasing attention in cancer chemoprevention. The anti-cancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog, and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine, and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. PMID:21295962

  20. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Cancer.gov

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation of tumor cells that can self-renew and give rise to more differentiated tumor cells. It is thought that these stem cells survive initial therapies (such as chemotherapy and hormone therapy) and then generate new tumor cells that are resistant to these standard treatments. If prostate cancer stem cells could be identified and characterized, it might be possible to design treatments that prevent resistance.

  1. Curcumin: a promising agent targeting cancer stem cells.

    PubMed

    Zang, Shufei; Liu, Tao; Shi, Junping; Qiao, Liang

    2014-01-01

    Cancer stem cells are a subset of cells that are responsible for cancer initiation and relapse. They are generally resistant to the current anticancer agents. Successful anticancer therapy must consist of approaches that can target not only the differentiated cancer cells, but also cancer stem cells. Emerging evidence suggested that the dietary agent curcumin exerted its anti-cancer activities via targeting cancer stem cells of various origins such as those of colorectal cancer, pancreatic cancer, breast cancer, brain cancer, and head and neck cancer. In order to enhance the therapeutic potential of curcumin, this agent has been modified or used in combination with other agents in the experimental therapy for many cancers. In this mini-review, we discussed the effect of curcumin and its derivatives in eliminating cancer stem cells and the possible underlying mechanisms.

  2. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds.

    PubMed

    Li, Yanyan; Wicha, Max S; Schwartz, Steven J; Sun, Duxin

    2011-09-01

    The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D(3), are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Cancer stem cells: impact, heterogeneity, and uncertainty

    PubMed Central

    Magee, Jeffrey A.; Piskounova, Elena; Morrison, Sean J.

    2015-01-01

    The differentiation of tumorigenic cancer stem cells into non-tumorigenic cancer cells confers heterogeneity to some cancers beyond that explained by clonal evolution or environmental differences. In such cancers, functional differences between tumorigenic and non-tumorigenic cells influence response to therapy and prognosis. However, it remains uncertain whether the model applies to many, or few, cancers due to questions about the robustness of cancer stem cell markers and the extent to which existing assays underestimate the frequency of tumorigenic cells. In cancers with rapid genetic change, reversible changes in cell states, or biological variability among patients the stem cell model may not be readily testable. PMID:22439924

  4. Mammary Stem Cells and Breast Cancer Stem Cells: Molecular Connections and Clinical Implications.

    PubMed

    Celià-Terrassa, Toni

    2018-05-04

    Cancer arises from subpopulations of transformed cells with high tumor initiation and repopulation ability, known as cancer stem cells (CSCs), which share many similarities with their normal counterparts. In the mammary gland, several studies have shown common molecular regulators between adult mammary stem cells (MaSCs) and breast cancer stem cells (bCSCs). Cell plasticity and self-renewal are essential abilities for MaSCs to maintain tissue homeostasis and regenerate the gland after pregnancy. Intriguingly, these properties are similarly executed in breast cancer stem cells to drive tumor initiation, tumor heterogeneity and recurrence after chemotherapy. In addition, both stem cell phenotypes are strongly influenced by external signals from the microenvironment, immune cells and supportive specific niches. This review focuses on the intrinsic and extrinsic connections of MaSC and bCSCs with clinical implications for breast cancer progression and their possible therapeutic applications.

  5. Metastatic cancer stem cells: from the concept to therapeutics.

    PubMed

    Liao, Wen-Ting; Ye, Ya-Ping; Deng, Yong-Jian; Bian, Xiu-Wu; Ding, Yan-Qing

    2014-01-01

    Metastatic cancer stem cells (MCSCs) refer to a subpopulation of cancer cells with both stem cell properties and invasion capabilities that contribute to cancer metastasis. MCSCs have capability of self-renewal, potentials of multiple differentiation and development and/or reconstruction of cancer tissues. As compared with stationary cancer stem cells, MCSCs are capable of invasion to normal tissues such as vasculatures, resistance to chemo- and/or radio-therapies, escape from immune surveillance, survival in circulation and formation of metastasis. MCSCs are derived from invasive cancer stem cells (iCSCs) due to the plasticity of cancer stem cells, which is one of the characteristics of cancer cell heterogeneity. Both stages of iCSCs and MSCSs are the potential therapeutic targets for cancer metastasis in the future strategies of personalized cancer therapy.

  6. Cancer stem cells: beyond Koch's postulates.

    PubMed

    Garcion, Emmanuel; Naveilhan, Philippe; Berger, François; Wion, Didier

    2009-06-08

    Until the last century, infectious diseases were the leading cause of human mortality. Therefore, our current medical reasoning is profoundly influenced by views that originated from medical microbiology. The notion that cancer growth is sustained by a sub-population of particular cells, the cancer stem cells, is highly reminiscent of the germ theory of disease as exemplified by Koch's postulates in the XIXth century. However, accumulating data underscore the importance of cell-cell interactions and tumor environment. Hence it is essential to critically review the basic tenets of the cancer stem cell concept on the light of their relationships with Koch's postulates. Shifting the pathogenic element from a special cellular entity (cancer stem cell or microorganism) to a "pathogenic field" could be critical for curing both cancer and drug-resistant infectious diseases.

  7. Cancer stem cell-targeted therapeutics and delivery strategies.

    PubMed

    Ahmad, Gulzar; Amiji, Mansoor M

    2017-08-01

    Cancer initiating or stem cells (CSCs) are a small population of cells in the tumor mass, which have been reported to be present in different types of cancers. CSCs usually reside within the tumor and are responsible for reoccurrence of cancer. The imprecise, inaccessible nature and increased efflux of conventional therapeutic drugs make these cells resistant to drugs. We discuss the specific markers for identification of these cells, role of CSCs in chemotherapy resistance and use of different therapeutic means to target them, including elucidation of specific cell markers, exploitation of different signaling pathways and use of nanotechnology. Area covered: This review covers cancer stem cell signaling which are used by these cells to maintain their quiescence, stemness and resistant phenotype, distinct cell surface markers, contribution of these cells in drug resistance, inevitability to cure cancer and use of nanotechnology to overcome this hurdle. Expert opinion: Cancer stem cells are the main culprit of our failure to cure cancer. In order to cure cancer along with other cells types in cancer, cancer stem cells need to be targeted in the tumor bed. Nanotechnology solutions can facilitate clinical translation of the therapeutics along with other emerging technologies to cure cancer.

  8. Induced cancer stem cells generated by radiochemotherapy and their therapeutic implications.

    PubMed

    Chen, Xiewan; Liao, Rongxia; Li, Dezhi; Sun, Jianguo

    2017-03-07

    Local and distant recurrence of malignant tumors following radio- and/or chemotherapy correlates with poor prognosis of patients. Among the reasons for cancer recurrence, preexisting cancer stem cells (CSCs) are considered the most likely cause due to their properties of self-renewal, pluripotency, plasticity and tumorigenicity. It has been demonstrated that preexisting cancer stem cells derive from normal stem cells and differentiated somatic cells that undergo transformation and dedifferentiation respectively under certain conditions. However, recent studies have revealed that cancer stem cells can also be induced from non-stem cancer cells by radiochemotherapy, constituting the subpopulation of induced cancer stem cells (iCSCs). These findings suggest that radiochemotherapy has the side effect of directly transforming non-stem cancer cells into induced cancer stem cells, possibly contributing to tumor recurrence and metastasis. Therefore, drugs targeting cancer stem cells or preventing dedifferentiation of non-stem cancer cells can be combined with radiochemotherapy to improve its antitumor efficacy. The current review is to investigate the mechanisms by which induced cancer stem cells are generated by radiochemotherapy and hence provide new strategies for cancer treatment.

  9. Epirubicin-Adsorbed Nanodiamonds Kill Chemoresistant Hepatic Cancer Stem Cells

    PubMed Central

    2015-01-01

    Chemoresistance is a primary cause of treatment failure in cancer and a common property of tumor-initiating cancer stem cells. Overcoming mechanisms of chemoresistance, particularly in cancer stem cells, can markedly enhance cancer therapy and prevent recurrence and metastasis. This study demonstrates that the delivery of Epirubicin by nanodiamonds is a highly effective nanomedicine-based approach to overcoming chemoresistance in hepatic cancer stem cells. The potent physical adsorption of Epirubicin to nanodiamonds creates a rapidly synthesized and stable nanodiamond–drug complex that promotes endocytic uptake and enhanced tumor cell retention. These attributes mediate the effective killing of both cancer stem cells and noncancer stem cells in vitro and in vivo. Enhanced treatment of both tumor cell populations results in an improved impairment of secondary tumor formation in vivo compared with treatment by unmodified chemotherapeutics. On the basis of these results, nanodiamond-mediated drug delivery may serve as a powerful method for overcoming chemoresistance in cancer stem cells and markedly improving overall treatment against hepatic cancers. PMID:25437772

  10. Stem cells and cancer of the stomach and intestine.

    PubMed

    Vries, Robert G J; Huch, Meritxell; Clevers, Hans

    2010-10-01

    Cancer in the 21st century has become the number one cause of death in developed countries. Although much progress has been made in improving patient survival, tumour relapse is one of the important causes of cancer treatment failure. An early observation in the study of cancer was the heterogeneity of tumours. Traditionally, this was explained by a combination of genomic instability of tumours and micro environmental factors leading to diverse phenotypical characteristics. It was assumed that cells in a tumour have an equal capacity to propagate the cancer. This model is currently known as the stochastic model. Recently, the Cancer stem cell model has been proposed to explain the heterogeneity of a tumour and its progression. According to this model, the heterogeneity of tumours is the result of aberrant differentiation of tumour cells into the cells of the tissue the tumour originated from. Tumours were suggested to contain stem cell-like cells, the cancer stem cells or tumour-initiating cells, which are uniquely capable of propagating a tumour much like normal stem cells fuel proliferation and differentiation in normal tissue. In this review we discuss the normal stem cell biology of the stomach and intestine followed by both the stochastic and cancer stem cell models in light of recent findings in the gastric and intestinal systems. The molecular pathways underlying normal and tumourigenic growth have been well studied, and recently the stem cells of the stomach and intestine have been identified. Furthermore, intestinal stem cells were identified as the cells-of-origin of colon cancer upon loss of the tumour suppressor APC. Lastly, several studies have proposed the positive identification of a cancer stem cell of human colon cancer. At the end we compare the cancer stem cell model and the stochastic model. We conclude that clonal evolution of tumour cells resulting from genetic mutations underlies tumour initiation and progression in both cancer models. This

  11. Correlation of cancer stem cell markers and immune cell markers in resected non-small cell lung cancer.

    PubMed

    Huang, Zhaoqin; Yu, Haining; Zhang, Jianbo; Jing, Haiyan; Zhu, Wanqi; Li, Xiaolin; Kong, Lingling; Xing, Ligang; Yu, Jinming; Meng, Xiangjiao

    2017-01-01

    Background: Recent studies confirmed that immunotherapy showed prominent efficacy in non-small cell lung cancer (NSCLC). Cancer stem cells/cancer initiating cells are resistant to anticancer treatment. The purpose of the study was to analyze the correlation of cancer stem cells/cancer initiating cells and tumor-infiltrating immune cells in NSCLC. Methods: CD133, octamer 4 (OCT-4), CD8, CD56, human leukocyte antigen (HLA) class I and programmed death ligand-1 (PD-L1) were assessed in 172 resected NSCLC samples. The staining was analyzed and scored by the pathologist who was blinded to the clinical pathological data of the patients. Results: High CD8+ T cell infiltration was correlated significantly with squamous cell carcinoma histology (p=0.008). High PD-L1 expression (≥10%) was associated with high tumor status (p=0.043). Pearson's correlation test showed that CD56+ cells were negatively correlated with CD133 expression (r=-0.361, p<0.001) and weakly correlated with negative OCT-4 expression (r=-0.180, p=0.018). There was a strong positive correlation between CD8 and HLA class I (r=0.573, p<0.001). In the survival analysis, high CD8+ T cell infiltration is an independent predictor of improved disease-free survival and overall survival. Patients with low CD133 expression and high CD56 expression had a longer overall survival than those with high CD133 expression and/or low CD56 expression (p=0.013). Conclusion: There is a negative correlation between CD56+ cells and cancer stem cell markers. This correlation may confirm the possibility that natural killer cells can target CD133+ cancer stem cells/cancer initiating cells in non-small cell lung cancer.

  12. Molecular insight in gastric cancer induction: an overview of cancer stemness genes.

    PubMed

    Akhavan-Niaki, Haleh; Samadani, Ali Akbar

    2014-04-01

    Gastric cancer is one of the most outgoing human cancers in the world. Two main functional types were described: Intestinal adenocarcinoma and diffuse one. The most important purpose of this review is to analyze and investigate the main genetic factors involved in tumorogenesis of stomach and the molecular mechanism of their expression regulation alongside with the importance of cancer stem cells and their relationship with gastric cancer. It is evident that proper diagnosis of molecular case of cancer may lead to absolute treatment and at least reduction in the disease severity. However, stemness factors such as Sox2, Oct3/4, and Nanog were related with induced pluripotent stem cells, proposing a correlation between these stemness factors and cancer stem cells. Moreover, aberrant induction by Helicobacter pylori of the intestinal-specific homeobox transcription factors, CDX1 and CDX2, also plays an important role in this modification. There are some genes which are directly activated by CDX1 in gastric cancer and distinguished stemness-related reprogramming factors like SALL4 and KLF5. Correspondingly, we also aimed to present the main important epigenetic changes such as DNA methylation, histone modification, and chromatin modeling of stemness genes in disease development. Remarkably, a better understanding of molecular bases of cancer may lead to novel diagnostic, therapeutic, and preventive approaches by some genetic and epigenetic changes such as gene amplifications, gene silencing by DNA methylation, losses of imprinting, LOH, and mutations. Consequently, genome-wide searches of gene expression are widely important for surveying the proper mechanisms of cancer emergence and development. Conspicuously, this review explains an outline of the molecular mechanism and new approaches in gastric cancer.

  13. Prostate cancer stem cells: from theory to practice.

    PubMed

    Adamowicz, Jan; Pakravan, Katayoon; Bakhshinejad, Babak; Drewa, Tomasz; Babashah, Sadegh

    2017-04-01

    None of the generally accepted theories on prostate cancer development can fully explain many distinguishing features of the disease, such as intratumoral heterogeneity, metastatic growth, drug resistance and tumor relapse. Prostate stem cells are a heterogeneous and small subpopulation of self-renewing cells which can actively proliferate in response to changes in the androgen level and give rise to all the cell lineages that build the prostate epithelium. According to the cancer stem cell hypothesis, prostate cancer could be a stem cell disease. Prostate cancer stem cells, which represent only a minimal percentage of the tumor mass, are characterized by a markedly increased clonogenicity and therapeutic resistance. These tumor-initiating cells reside in dynamic niches distributed within the prostate but at a higher concentration in proximal regions of the prostatic ducts. Several markers have been used to identify prostate cancer stem cells. Nevertheless, a definitive profile has not yet been established owing to specificity issues. As cancer stem cells play determining roles in the birth and burst of prostate malignancy, strategies that selectively target them have gained huge clinical attention. Unraveling the mechanisms underlying the physiological functions of cancer stem cells and gaining fundamental insights into their putative involvement in the pathogenesis of prostate tumors provide novel opportunities for the development of efficient and sophisticated therapeutic strategies in the future.

  14. mTOR plays critical roles in pancreatic cancer stem cells through specific and stemness-related functions

    NASA Astrophysics Data System (ADS)

    Matsubara, Shyuichiro; Ding, Qiang; Miyazaki, Yumi; Kuwahata, Taisaku; Tsukasa, Koichiro; Takao, Sonshin

    2013-11-01

    Pancreatic cancer is characterized by near-universal mutations in KRAS. The mammalian target of rapamycin (mTOR), which functions downstream of RAS, has divergent effects on stem cells. In the present study, we investigated the significance of the mTOR pathway in maintaining the properties of pancreatic cancer stem cells. The mTOR inhibitor, rapamycin, reduced the viability of CD133+ pancreatic cancer cells and sphere formation which is an index of self-renewal of stem-like cells, indicating that the mTOR pathway functions to maintain cancer stem-like cells. Further, rapamycin had different effects on CD133+ cells compared to cyclopamine which is an inhibitor of the Hedgehog pathway. Thus, the mTOR pathway has a distinct role although both pathways maintain pancreatic cancer stem cells. Therefore, mTOR might be a promising target to eliminate pancreatic cancer stem cells.

  15. Nanotechniques Inactivate Cancer Stem Cells

    NASA Astrophysics Data System (ADS)

    Goltsev, Anatoliy N.; Babenko, Natalya N.; Gaevskaya, Yulia A.; Bondarovich, Nikolay A.; Dubrava, Tatiana G.; Ostankov, Maksim V.; Chelombitko, Olga V.; Malyukin, Yuriy V.; Klochkov, Vladimir K.; Kavok, Nataliya S.

    2017-06-01

    One of the tasks of current oncology is identification of cancer stem cells and search of therapeutic means capable of their specific inhibition. The paper presents the data on phenotype characteristics of Ehrlich carcinoma cells as convenient and easy-to-follow model of tumor growth. The evidence of cancer stem cells as a part of Ehrlich carcinoma and significance of CD44+ and CD44- subpopulations in maintaining the growth of this type of tumor were demonstrated. A high (tenfold) tumorigenic activity of the Ehrlich carcinoma CD44+ cells if compared to CD44- cells was proven. In this pair of comparison, the CD44+ cells had a higher potential of generating in peritoneal cavity of CD44high, CD44+CD24-, CD44+CD24+ cell subpopulations, highlighting the presence of cancer stem cells in a pool of CD44+ cells.

  16. Cancer stem cells in colorectal cancer: a review.

    PubMed

    Munro, Matthew J; Wickremesekera, Susrutha K; Peng, Lifeng; Tan, Swee T; Itinteang, Tinte

    2018-02-01

    Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men. Adenocarcinoma accounts for 90% of CRC cases. There has been accumulating evidence in support of the cancer stem cell (CSC) concept of cancer which proposes that CSCs are central in the initiation of cancer. CSCs have been the focus of study in a range of cancers, including CRC. This has led to the identification and understanding of genes involved in the induction and maintenance of pluripotency of stem cells, and markers for CSCs, including those investigated specifically in CRC. Knowledge of the expression pattern of CSCs in CRC has been increasing in recent years, revealing a heterogeneous population of cells within CRC ranging from pluripotent to differentiated cells, with overlapping and sometimes unique combinations of markers. This review summarises current literature on the understanding of CSCs in CRC, including evidence of the presence of CSC subpopulations, and the stem cell markers currently used to identify and localise these CSC subpopulations. Future research into this field may lead to improved methods for early detection of CRC, novel therapy and monitoring of treatment for CRC and other cancer types. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Use of Cancer Stem Cells to Investigate the Pathogenesis of Colitis-associated Cancer

    PubMed Central

    Davies, Julie M.; Santaolalla, Rebeca

    2016-01-01

    Abstract: Colitis-associated cancer (CAC) can develop in patients with inflammatory bowel disease with long-term uncontrolled inflammation. The mutational history and tumor microenvironment observed in CAC patients is distinct from that observed in sporadic colon cancer and suggests a different etiology. Recently, much attention has been focused on understanding the cellular origin of cancer and the cancer stem cells, which is key to growth and progression. Cancer stem cells are often chemo-resistant making them attractive targets for improving patient outcomes. New techniques have rapidly been evolving allowing for a better understanding of the normal intestinal stem cell function and behavior in the niche. Use of these new technologies will be crucial to understanding cancer stem cells in both sporadic and CAC. In this review, we will explore emerging methods related to the study of normal and cancer stem cells in the intestine, and examine potential avenues of investigation and application to understanding the pathogenesis of CAC. PMID:26963566

  18. Cancer stem cells in the development of liver cancer

    PubMed Central

    Yamashita, Taro; Wang, Xin Wei

    2013-01-01

    Liver cancer is an aggressive disease with a poor outcome. Several hepatic stem/progenitor markers are useful for isolating a subset of liver cells with stem cell features, known as cancer stem cells (CSCs). These cells are responsible for tumor relapse, metastasis, and chemoresistance. Liver CSCs dictate a hierarchical organization that is shared in both organogenesis and tumorigenesis. An increased understanding of the molecular signaling events that regulate cellular hierarchy and stemness, and success in defining key CSC-specific genes, have opened up new avenues to accelerate the development of novel diagnostic and treatment strategies. This Review highlights recent advances in understanding the pathogenesis of liver CSCs and discusses unanswered questions about the concept of liver CSCs. PMID:23635789

  19. Holoclone Forming Cells from Pancreatic Cancer Cells Enrich Tumor Initiating Cells and Represent a Novel Model for Study of Cancer Stem Cells

    PubMed Central

    Tan, Lei; Sui, Xin; Deng, Hongkui; Ding, Mingxiao

    2011-01-01

    Background Pancreatic cancer is one of the direct causes of cancer-related death. High level of chemoresistance is one of the major obstacles of clinical treatment. In recent years, cancer stem cells have been widely identified and indicated as the origin of chemoresistance in multi-types of solid tumors. Increasing evidences suggest that cancer stem cells reside in the cells capable of forming holoclones continuously. However, in pancreatic cancer, holoclone-forming cells have not been characterized yet. Therefore, the goal of our present study was to indentify the holoclone-forming pancreatic cancer stem cells and develop an in vitro continuous colony formation system, which will greatly facilitate the study of pancreatic cancer stem cells. Methodology/Principal Findings Pancreatic cancer cell line BxPC3 was submitted to monoclonal cultivation to generate colonies. Based on the morphologies, colonies were classified and analyzed for their capacities of secondary colony formation, long-term survival in vitro, tumor formation in vivo, and drug resistance. Flowcytometry and quantitative RT-PCR were performed to detect the expression level of cancer stem cells associated cell surface markers, regulatory genes and microRNAs in distinct types of colonies. Three types of colonies with distinct morphologies were identified and termed as holo-, mero-, and paraclones, in which only holoclones generated descendant colonies of all three types in further passages. Compared to mero- and paraclones, holoclones possessed higher capacities of long-term survival, tumor initiation, and chemoresistance. The preferential expression of cancer stem cells related marker (CXCR4), regulatory genes (BMI1, GLI1, and GLI2) and microRNAs (miR-214, miR-21, miR-221, miR-222 and miR-155) in holoclones were also highlighted. Conclusions/Significance Our results indicate that the pancreatic tumor-initiating cells with high level of chemoresistance were enriched in holoclones derived from BxPC3

  20. Cancer (stem) cell differentiation: An inherent or acquired property?

    PubMed

    Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas

    2015-12-01

    There is a growing list of data indicating that cancer (stem) cells could functionally adapt foreign tissue features, such as endothelial-like cells or neuroendocrine cells, express lineage markers or could differentiate into various lineages in response to appropriate differentiation criteria. The finding that cancer (stem) cells may possess some kind of differentiation capacity poses the question whether this might be an inherent or acquired property. Cancer stem cells share stem cell characteristics and may thus possess an inherent differentiation capacity enabling the cells to respond to various differentiation stimuli. Considering the plasticity of cancer (stem) cells, even non-tumorigenic (and putatively non-differentiable) tumor cells could give rise to tumorigenic tumor stem cells, exhibiting stem cell characteristics including an inherent differentiation capacity. On the contrary, cancer (stem) cells may have acquired differentiation capacity as a consequence of a previous cell fusion event with cell types exhibiting differentiation potential and being fusogenic, such as macrophages or stem cells. Of pivotal interest in a tumor context are macrophages, which chiefly foster the chronically inflamed tumor microenvironment. Because chronically inflamed tissue is a well-known trigger for cell fusion and both macrophages and stem cells are highly fusogenic we conclude that cell fusion events between these cell types and cancer (stem) cells should frequently occur, thereby giving rise to hybrid cells exhibiting not only novel properties, like an enhanced metastatogenic phenotype, but also parental characteristics, such as differentiation capacity. Conceivably, the combination of both properties might be advantageous for metastasizing cancer (stem) cells to adapt better and faster to a foreign organ tissue environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Stem cells in genetically-engineered mouse models of prostate cancer

    PubMed Central

    Shibata, Maho; Shen, Michael M.

    2015-01-01

    The cancer stem cell model proposes that tumors have a hierarchical organization in which tumorigenic cells give rise to non-tumorigenic cells, with only a subset of stem-like cells able to propagate the tumor. In the case of prostate cancer, recent analyses of genetically engineered mouse (GEM) models have provided evidence supporting the existence of cancer stem cells in vivo. These studies suggest that cancer stem cells capable of tumor propagation exist at various stages of tumor progression from prostatic intraepithelial neoplasia (PIN) to advanced metastatic and castration-resistant disease. However, studies of stem cells in prostate cancer have been limited by available approaches for evaluating their functional properties in cell culture and transplantation assays. Given the role of the tumor microenvironment and the putative cancer stem cell niche, future studies using GEM models to analyze cancer stem cells in their native tissue microenvironment are likely to be highly informative. PMID:26341780

  2. Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition

    PubMed Central

    Eyler, Christine E.; Foo, Wen-Chi; LaFiura, Katherine M.; McLendon, Roger E.; Hjelmeland, Anita B.; Rich, Jeremy N.

    2009-01-01

    Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer improved efficacy and reduced toxicity compared to conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biologies may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched non-stem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anti-cancer stem cell therapies. PMID:18802038

  3. Laminins and cancer stem cells: Partners in crime?

    PubMed

    Qin, Yan; Rodin, Sergey; Simonson, Oscar E; Hollande, Frédéric

    2017-08-01

    As one of the predominant protein families within the extracellular matrix both structurally and functionally, laminins have been shown to be heavily involved in tumor progression and drug resistance. Laminins participate in key cellular events for tumor angiogenesis, cell invasion and metastasis development, including the regulation of epithelial-mesenchymal transition and basement membrane remodeling, which are tightly associated with the phenotypic characteristics of stem-like cells, particularly in the context of cancer. In addition, a great deal of studies and reports has highlighted the critical roles of laminins in modulating stem cell phenotype and differentiation, as part of the stem cell niche. Stemming from these discoveries a growing body of literature suggests that laminins may act as regulators of cancer stem cells, a tumor cell subpopulation that plays an instrumental role in long-term cancer maintenance, metastasis development and therapeutic resistance. The accumulating evidence in this emerging research area suggests that laminins represent potential therapeutic targets for anti-cancer treatments against cancer stem cells, and that they may be used as predictive and prognostic markers to inform clinical management and improve patient survival. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Alpha-fetoprotein, stem cells and cancer: how study of the production of alpha-fetoprotein during chemical hepatocarcinogenesis led to reaffirmation of the stem cell theory of cancer.

    PubMed

    Sell, Stewart

    2008-01-01

    Identification of the cells in the liver that produce alpha-fetoprotein during development, in response to liver injury and during the early stages of chemical hepatocarcinogenesis led to the conclusion that maturation arrest of liver-determined tissue stem cells was the cellular process that gives rise to hepatocellular carcinomas. When the cellular changes in these processes were compared to that of the formation of teratocarcinomas, the hypothesis arose that all cancers arise from maturation arrest of tissue-determined stem cells. This was essentially a reinterpretation of the embryonal rest theory of cancer whereby tissue stem cells take the role of embryonal rests. A corollary of the stem cell theory of the origin of cancer is that cancers contain the same functional cell populations as normal tissues: stem cells, transit-amplifying cells and mature cells. Cancer stem cells retain the essential feature of normal stem cells: the ability to self-renew. Growth of cancers is due to continued proliferation of cancer transit-amplifying cells that do not differentiate to mature cells (maturation arrest). On the other hand, cancer stem cells generally divide very rarely and contribute little to tumor growth. However, the presence of cancer stem cells in tumors is believed to be responsible for the properties of immortalization, transplantability and resistance to therapy characteristic of cancers. Current therapies for cancer (chemotherapy, radiotherapy, antiangiogenesis and differentiation therapy) are directed against the cancer transit-amplifying cells. When these therapies are discontinued, the cancer reforms from the cancer stem cells. Therapy directed toward interruption of the cell signaling pathways that maintain cancer stem cells could lead to new modalities to the prevention of regrowth of the cancer. Copyright 2008 S. Karger AG, Basel.

  5. ALPHA-FETOPROTEIN (AFP), STEM CELLS, AND CANCER: HOW STUDY OF THE PRODUCTION OF AFP DURING CHEMICAL HEPATOCARCINOGENESIS LED TO REAFFIRMATION OF THE STEM CELL THEORY OF CANCER

    PubMed Central

    Sell, Stewart

    2008-01-01

    Identification of the cells in the liver that produce alpha-fetoprotein (AFP) during development, in response to liver injury, and during the early stages of chemical hepatocarcinogenesis led to the conclusion that maturation arrest of liver-determined tissue stem cells was the cellular process that gives rise to hepatocellular carcinomas (HCC). When the cellular changes in these processes were compared that of the formation of teratocarcinomas, the hypothesis arose that all cancers arise from maturation arrest of tissue determined stem cells. This was essentially a reinterpretation of the embryonal rest theory of cancer whereby tissue stem cells take the role of embryonal rests. A corollary of the stem cell theory of the origin of cancer is that cancers contain the same functional cell populations as do normal tissues: stem cells, transit-amplifying cells, and mature cells. Cancer stem cells retain the essential feature of normal stem cells: the ability to self-renew. Growth of cancers is due to continued proliferation of cancer transit-amplifying cells that do not differentiate to mature cells (maturation arrest). On the other hand, cancer stem cells generally divide very rarely and contribute little to tumor growth. However, the presence of cancer stem cells in tumors is believed to be responsible for the properties of immortalization, transplantability and resistance to therapy characteristic of cancers. Current therapies for cancer (chemotherapy, radiotherapy, anti-angiogenesis and differentiation therapy) are directed against the cancer transit amplifying cells. When these therapies are discontinued, the cancer re-forms from the cancer stem cells. Therapy directed toward interruption of the cell-signaling pathways that maintain cancer stem cells could lead to new modalities to the prevention of re-growth of the cancer. PMID:18612221

  6. Senescence-associated reprogramming promotes cancer stemness.

    PubMed

    Milanovic, Maja; Fan, Dorothy N Y; Belenki, Dimitri; Däbritz, J Henry M; Zhao, Zhen; Yu, Yong; Dörr, Jan R; Dimitrova, Lora; Lenze, Dido; Monteiro Barbosa, Ines A; Mendoza-Parra, Marco A; Kanashova, Tamara; Metzner, Marlen; Pardon, Katharina; Reimann, Maurice; Trumpp, Andreas; Dörken, Bernd; Zuber, Johannes; Gronemeyer, Hinrich; Hummel, Michael; Dittmar, Gunnar; Lee, Soyoung; Schmitt, Clemens A

    2018-01-04

    Cellular senescence is a stress-responsive cell-cycle arrest program that terminates the further expansion of (pre-)malignant cells. Key signalling components of the senescence machinery, such as p16 INK4a , p21 CIP1 and p53, as well as trimethylation of lysine 9 at histone H3 (H3K9me3), also operate as critical regulators of stem-cell functions (which are collectively termed 'stemness'). In cancer cells, a gain of stemness may have profound implications for tumour aggressiveness and clinical outcome. Here we investigated whether chemotherapy-induced senescence could change stem-cell-related properties of malignant cells. Gene expression and functional analyses comparing senescent and non-senescent B-cell lymphomas from Eμ-Myc transgenic mice revealed substantial upregulation of an adult tissue stem-cell signature, activated Wnt signalling, and distinct stem-cell markers in senescence. Using genetically switchable models of senescence targeting H3K9me3 or p53 to mimic spontaneous escape from the arrested condition, we found that cells released from senescence re-entered the cell cycle with strongly enhanced and Wnt-dependent clonogenic growth potential compared to virtually identical populations that had been equally exposed to chemotherapy but had never been senescent. In vivo, these previously senescent cells presented with a much higher tumour initiation potential. Notably, the temporary enforcement of senescence in p53-regulatable models of acute lymphoblastic leukaemia and acute myeloid leukaemia was found to reprogram non-stem bulk leukaemia cells into self-renewing, leukaemia-initiating stem cells. Our data, which are further supported by consistent results in human cancer cell lines and primary samples of human haematological malignancies, reveal that senescence-associated stemness is an unexpected, cell-autonomous feature that exerts its detrimental, highly aggressive growth potential upon escape from cell-cycle blockade, and is enriched in relapse

  7. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles

    PubMed Central

    Hu, Chenxia; Niestroj, Martin; Yuan, Daniel; Chang, Steven; Chen, Jie

    2015-01-01

    Cancer ranks among the leading causes of human mortality. Cancer becomes intractable when it spreads from the primary tumor site to various organs (such as bone, lung, liver, and then brain). Unlike solid tumor cells, cancer stem cells and metastatic cancer cells grow in a non-attached (suspension) form when moving from their source to other locations in the body. Due to the non-attached growth nature, metastasis is often first detected in the circulatory systems, for instance in a lymph node near the primary tumor. Cancer research over the past several decades has primarily focused on treating solid tumors, but targeted therapy to treat cancer stem cells and cancer metastasis has yet to be developed. Because cancers undergo faster metabolism and consume more glucose than normal cells, glucose was chosen in this study as a reagent to target cancer cells. In particular, by covalently binding gold nanoparticles (GNPs) with thio-PEG (polyethylene glycol) and thio-glucose, the resulting functionalized GNPs (Glu-GNPs) were created for targeted treatment of cancer metastasis and cancer stem cells. Suspension cancer cell THP-1 (human monocytic cell line derived from acute monocytic leukemia patients) was selected because it has properties similar to cancer stem cells and has been used as a metastatic cancer cell model for in vitro studies. To take advantage of cancer cells’ elevated glucose consumption over normal cells, different starvation periods were screened in order to achieve optimal treatment effects. Cancer cells were then fed using Glu-GNPs followed by X-ray irradiation treatment. For comparison, solid tumor MCF-7 cells (breast cancer cell line) were studied as well. Our irradiation experimental results show that Glu-GNPs are better irradiation sensitizers to treat THP-1 cells than MCF-7 cells, or Glu-GNPs enhance the cancer killing of THP-1 cells 20% more than X-ray irradiation alone and GNP treatment alone. This finding can help oncologists to design

  8. Cancer stem cells in solid tumors: is 'evading apoptosis' a hallmark of cancer?

    PubMed

    Enderling, Heiko; Hahnfeldt, Philip

    2011-08-01

    Conventional wisdom has long held that once a cancer cell has developed it will inevitably progress to clinical disease. Updating this paradigm, it has more recently become apparent that the tumor interacts with its microenvironment and that some environmental bottlenecks, such as the angiogenic switch, must be overcome for the tumor to progress. In parallel, attraction has been drawn to the concept that there is a minority population of cells - the cancer stem cells - bestowed with the exclusive ability to self-renew and regenerate the tumor. With therapeutic targeting issues at stake, much attention has shifted to the identification of cancer stem cells, the thinking being that the remaining non-stem population, already fated to die, will play a negligible role in tumor development. In fact, the newly appreciated importance of intercellular interactions in cancer development also extends in a unique and unexpected way to interactions between the stem and non-stem compartments of the tumor. Here we discuss recent findings drawn from a hybrid mathematical-cellular automaton model that simulates growth of a heterogeneous solid tumor comprised of cancer stem cells and non-stem cancer cells. The model shows how the introduction of cell fate heterogeneity paradoxically influences the tumor growth dynamic in response to apoptosis, to reveal yet another bottleneck to tumor progression potentially exploitable for disease control. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. PERSPECTIVES ON CANCER STEM CELLS IN OSTEOSARCOMA

    PubMed Central

    Basu-Roy, Upal; Basilico, Claudio; Mansukhani, Alka

    2012-01-01

    Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer. PMID:22659734

  10. Dormancy activation mechanism of oral cavity cancer stem cells.

    PubMed

    Chen, Xiang; Li, Xin; Zhao, Baohong; Shang, Dehao; Zhong, Ming; Deng, Chunfu; Jia, Xinshan

    2015-07-01

    Radiotherapy and chemotherapy are targeted primarily at rapidly proliferating cancer cells and are unable to eliminate cancer stem cells in the G0 phase. Thus, these treatments cannot prevent the recurrence and metastasis of cancer. Understanding the mechanisms by which cancer stem cells are maintained in the dormant G0 phase, and how they become active is key to developing new cancer therapies. The current study found that the anti-cancer drug 5-fluorouracil, acting on the oral squamous cell carcinoma KB cell line, selectively killed proliferating cells while sparing cells in the G0 phase. Bisulfite sequencing PCR showed that demethylation of the Sox2 promoter led to the expression of Sox2. This then resulted in the transformation of cancer stem cells from the G0 phase to the division stage and suggested that the transformation of cancer stem cells from the G0 phase to the division stage is closely related to an epigenetic modification of the cell.

  11. Primary cultures of human colon cancer as a model to study cancer stem cells.

    PubMed

    Koshkin, Sergey; Danilova, Anna; Raskin, Grigory; Petrov, Nikolai; Bajenova, Olga; O'Brien, Stephen J; Tomilin, Alexey; Tolkunova, Elena

    2016-09-01

    The principal cause of death in cancer involves tumor progression and metastasis. Since only a small proportion of the primary tumor cells, cancer stem cells (CSCs), which are the most aggressive, have the capacity to metastasize and display properties of stem cells, it is imperative to characterize the gene expression of diagnostic markers and to evaluate the drug sensitivity in the CSCs themselves. Here, we have examined the key genes that are involved in the progression of colorectal cancer and are expressed in cancer stem cells. Primary cultures of colorectal cancer cells from a patient's tumors were studied using the flow cytometry and cytological methods. We have evaluated the clinical and stem cell marker expression in these cells, their resistance to 5-fluorouracil and irinotecan, and the ability of cells to form tumors in mice. The data shows the role of stem cell marker Oct4 in the resistance of primary colorectal cancer tumor cells to 5-fluorouracil.

  12. Mycoplasma Infection Alters Cancer Stem Cell Properties in Vitro.

    PubMed

    Gedye, Craig; Cardwell, Tracy; Dimopoulos, Nektaria; Tan, Bee Shin; Jackson, Heather; Svobodová, Suzanne; Anaka, Matthew; Behren, Andreas; Maher, Christopher; Hofmann, Oliver; Hide, Winston; Caballero, Otavia; Davis, Ian D; Cebon, Jonathan

    2016-02-01

    Cancer cell lines can be useful to model cancer stem cells. Infection with Mycoplasma species is an insidious problem in mammalian cell culture. While investigating stem-like properties in early passage melanoma cell lines, we noted poorly reproducible results from an aliquot of a cell line that was later found to be infected with Mycoplasma hyorhinis. Deliberate infection of other early passage melanoma cell lines aliquots induced variable and unpredictable effects on expression of putative cancer stem cell markers, clonogenicity, proliferation and global gene expression. Cell lines established in stem cell media (SCM) were equally susceptible. Mycoplasma status is rarely reported in publications using cultured cells to study the cancer stem cell hypothesis. Our work highlights the importance of surveillance for Mycoplasma infection while using any cultured cells to interrogate tumor heterogeneity.

  13. Distinct metabolic responses of an ovarian cancer stem cell line.

    PubMed

    Vermeersch, Kathleen A; Wang, Lijuan; McDonald, John F; Styczynski, Mark P

    2014-12-18

    Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues. Mass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations. The metabolic responses of an ovarian cancer cell line and its derived isogenic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to

  14. Ring finger protein 43 associates with gastric cancer progression and attenuates the stemness of gastric cancer stem-like cells via the Wnt-β/catenin signaling pathway.

    PubMed

    Gao, Yunhe; Cai, Aizhen; Xi, Hongqing; Li, Jiyang; Xu, Wei; Zhang, Yanmei; Zhang, Kecheng; Cui, Jianxin; Wu, Xiaosong; Wei, Bo; Chen, Lin

    2017-04-26

    Ring finger protein 43 (RNF43) is a member of the transmembrane E3 ubiquitin ligase family that was originally found in stem cells and plays important roles in tumor formation and progression. Our previous study indicated that RNF43 might be a tumor suppressor protein in gastric cancer. Given its antagonistic relationship with leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), one of the gastric cancer stem cell markers, investigation of the potential role of RNF43 in gastric stem cancer cells is necessary. Immunohistochemistry staining, western blot analysis, and quantitative reverse transcription polymerase chain reaction were used to determine the mRNA and protein expression level of RNF43 and other Wnt pathway factors. Gastric cancer stem-like cells were obtained from gastric cancer tumor and cell lines by tumorsphere culture. The adeno-associated virus system was used to upregulate RNF43 expression in cancer cells. Functional experiments including tumorsphere formation, chemotherapy resistance, surface marker detection, and tumor xenograft assay were performed to measure stem-like properties in gastric cancer stem-like cells after RNF43 overexpression. RNF43 loss was significantly associated with TNM stage, distant metastasis, and Lauren classification, and predicted worse prognosis in gastric cancer patients. RNF43 expression was even lower in tumorspheres derived from tumor tissues or cell lines compared with adherent cancer cells and normal gastric cells. Overexpression of RNF43 in gastric cancer cells impaired their stem-like properties, including sphere formation ability, chemoresistance in vitro, and tumorigenicity in vivo. Moreover, Wnt pathway-related proteins were decreased in RNF43-overexpressing cells, while Wnt pathway activators could reverse the trend to some extent. Our findings indicated that RNF43 might not only participate in gastric cancer progression, but also attenuate the stemness of gastric cancer stem-like cells through

  15. Therapeutic targeting of the p53 pathway in cancer stem cells

    PubMed Central

    Prabhu, Varun V.; Allen, Joshua E.; Hong, Bo; Zhang, Shengliang; Cheng, Hairong; El-Deiry, Wafik S.

    2013-01-01

    Introduction Cancer stem cells are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance, and therapeutic resistance. Restoring wild-type p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target cancer stem cells. Areas covered Therapeutic approaches to restore the function of wild-type p53, cancer and normal stem cell biology in relation to p53, and the downstream effects of p53 on cancer stem cells. Expert opinion The restoration of wild-type p53 function by targeting p53 directly, its interacting proteins, or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and cancer stem cells based on the current evidence linking p53 signaling with these populations. PMID:22998602

  16. Wnt Signaling in Adult Epithelial Stem Cells and Cancer.

    PubMed

    Tan, Si Hui; Barker, Nick

    2018-01-01

    Wnt/β-catenin signaling is integral to the homeostasis and regeneration of many epithelial tissues due to its critical role in adult stem cell regulation. It is also implicated in many epithelial cancers, with mutations in core pathway components frequently present in patient tumors. In this chapter, we discuss the roles of Wnt/β-catenin signaling and Wnt-regulated stem cells in homeostatic, regenerative and cancer contexts of the intestines, stomach, skin, and liver. We also examine the sources of Wnt ligands that form part of the stem cell niche. Despite the diversity in characteristics of various tissue stem cells, the role(s) of Wnt/β-catenin signaling is generally coherent in maintaining stem cell fate and/or promoting proliferation. It is also likely to play similar roles in cancer stem cells, making the pathway a salient therapeutic target for cancer. While promising progress is being made in the field, deeper understanding of the functions and signaling mechanisms of the pathway in individual epithelial tissues will expedite efforts to modulate Wnt/β-catenin signaling in cancer treatment and tissue regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. The self-renewal signaling pathways utilized by gastric cancer stem cells.

    PubMed

    Fu, Ying; Li, Hui; Hao, Xishan

    2017-04-01

    Gastric cancer is a leading cause of cancer-related mortality worldwide. Cancer stem cells are the source of tumor recurrence and metastasis. Self-renewal is a marker of cancer stem cells and also the basis of long-lasting survival and tumor progression. Although the mechanism of gastric cancer stem cell self-renewal is not clear, there are several signaling pathways and environmental factors known to be involved. This mini review describes recent developments in the self-renewal signaling pathway of gastric cancer stem cell research. Advancements made in this field of research will likely support the development of novel therapeutic strategies for gastric cancer.

  18. Radiobiological characteristics of cancer stem cells from esophageal cancer cell lines

    PubMed Central

    Wang, Jian-Lin; Yu, Jing-Ping; Sun, Zhi-Qiang; Sun, Su-Ping

    2014-01-01

    AIM: To study the cancer stem cell population in esophageal cancer cell lines KYSE-150 and TE-1 and identify whether the resulting stem-like spheroid cells display cancer stem cells and radiation resistance characteristics. METHODS: A serum-free medium (SFM) suspension was used to culture esophageal cancer stem cell lines and enrich the esophageal stem-like spheres. A reverse transcription polymerase chain reaction assay was used to detect stem cell gene expression in the spheroid cells. Radiosensitivity of stem-like spheres and parental cells were evaluated by clonogenic assays. Furthermore, different cells after different doses of irradiation were tested to evaluate the change in sphere formation, cell cycle and CD44+CD271+ expression of tumor stem-like spheroid cells using flow cytometry before and after irradiation. RESULTS: The cells were observed to generate an increased number of spheres in SFM with increasing cell passage. Radiation increased the rate of generation of stem-like spheres in both types of cells. The average survival fraction (SF2) of the cultured KYSE-150 compared with TE-1 stem-like spheres after 2 Gy of radiation was 0.81 ± 0.03 vs 0.87 ± 0.01 (P < 0.05), while the average SF2 of KYSE-150 compared with TE-1 parental cells was 0.69 ± 0.04 vs 0.80 ± 0.03, P < 0.05. In the esophageal parental cells, irradiation dose-dependently induced G2 arrest. Stem-like esophageal spheres were resistant to irradiation-induced G2 arrest without significant changes in the percentage population of irradiated stem-like cells. Under irradiation at 0, 4, and 8 Gy, the CD44+CD271+ cell percentage for KYSE150 parental cells was 1.08% ± 0.03% vs 1.29% ± 0.07% vs 1.11% ± 0.09%, respectively; the CD44+CD271+ cell percentage for TE1 parental cells was 1.16% ± 0.11% vs 0.97% ± 0.08% vs 1.45% ± 0.35%, respectively. The differences were not statistically significant. Under irradiation at 0, 4, and 8 Gy, the CD44+CD271+ cell percentage for KYSE-150 stem

  19. Radiobiological characteristics of cancer stem cells from esophageal cancer cell lines.

    PubMed

    Wang, Jian-Lin; Yu, Jing-Ping; Sun, Zhi-Qiang; Sun, Su-Ping

    2014-12-28

    To study the cancer stem cell population in esophageal cancer cell lines KYSE-150 and TE-1 and identify whether the resulting stem-like spheroid cells display cancer stem cells and radiation resistance characteristics. A serum-free medium (SFM) suspension was used to culture esophageal cancer stem cell lines and enrich the esophageal stem-like spheres. A reverse transcription polymerase chain reaction assay was used to detect stem cell gene expression in the spheroid cells. Radiosensitivity of stem-like spheres and parental cells were evaluated by clonogenic assays. Furthermore, different cells after different doses of irradiation were tested to evaluate the change in sphere formation, cell cycle and CD44(+)CD271(+) expression of tumor stem-like spheroid cells using flow cytometry before and after irradiation. The cells were observed to generate an increased number of spheres in SFM with increasing cell passage. Radiation increased the rate of generation of stem-like spheres in both types of cells. The average survival fraction (SF2) of the cultured KYSE-150 compared with TE-1 stem-like spheres after 2 Gy of radiation was 0.81 ± 0.03 vs 0.87 ± 0.01 (P < 0.05), while the average SF2 of KYSE-150 compared with TE-1 parental cells was 0.69 ± 0.04 vs 0.80 ± 0.03, P < 0.05. In the esophageal parental cells, irradiation dose-dependently induced G2 arrest. Stem-like esophageal spheres were resistant to irradiation-induced G2 arrest without significant changes in the percentage population of irradiated stem-like cells. Under irradiation at 0, 4, and 8 Gy, the CD44(+)CD271(+) cell percentage for KYSE150 parental cells was 1.08% ± 0.03% vs 1.29% ± 0.07% vs 1.11% ± 0.09%, respectively; the CD44(+)CD271(+) cell percentage for TE1 parental cells was 1.16% ± 0.11% vs 0.97% ± 0.08% vs 1.45% ± 0.35%, respectively. The differences were not statistically significant. Under irradiation at 0, 4, and 8 Gy, the CD44(+)CD271(+) cell percentage for KYSE-150 stem-like spheres was

  20. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention.

    PubMed

    Tomasetti, Cristian; Li, Lu; Vogelstein, Bert

    2017-03-24

    Cancers are caused by mutations that may be inherited, induced by environmental factors, or result from DNA replication errors (R). We studied the relationship between the number of normal stem cell divisions and the risk of 17 cancer types in 69 countries throughout the world. The data revealed a strong correlation (median = 0.80) between cancer incidence and normal stem cell divisions in all countries, regardless of their environment. The major role of R mutations in cancer etiology was supported by an independent approach, based solely on cancer genome sequencing and epidemiological data, which suggested that R mutations are responsible for two-thirds of the mutations in human cancers. All of these results are consistent with epidemiological estimates of the fraction of cancers that can be prevented by changes in the environment. Moreover, they accentuate the importance of early detection and intervention to reduce deaths from the many cancers arising from unavoidable R mutations. Copyright © 2017, American Association for the Advancement of Science.

  1. Stem Cell Transplants in Cancer Treatment

    Cancer.gov

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  2. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Cancer.gov

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation

  3. Epidermal stem cells: location, potential and contribution to cancer.

    PubMed

    Ambler, C A; Määttä, A

    2009-01-01

    Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.

  4. Cancer stem cells and personalized cancer nanomedicine.

    PubMed

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  5. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdollahi, H

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment responsemore » in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.« less

  6. Targeting Notch signalling pathway of cancer stem cells.

    PubMed

    Venkatesh, Vandana; Nataraj, Raghu; Thangaraj, Gopenath S; Karthikeyan, Murugesan; Gnanasekaran, Ashok; Kaginelli, Shanmukhappa B; Kuppanna, Gobianand; Kallappa, Chandrashekrappa Gowdru; Basalingappa, Kanthesh M

    2018-01-01

    Cancer stem cells (CSCs) have been defined as cells within tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. CSCs have been increasingly identified in blood cancer, prostate, ovarian, lung, melanoma, pancreatic, colon, brain and many more malignancies. CSCs have slow growth rate and are resistant to chemotherapy and radiotherapy that lead to the failure of traditional current therapy. Eradicating the CSCs and recurrence, is promising aspect for the cure of cancer. The CSCs like any other stem cells activate the signal transduction pathways that involve the development and tissue homeostasis, which include Notch signaling pathway. The new treatment targets these pathway that control stem-cell replication, survival and differentiation that are under development. Notch inhibitors either single or in combination with chemotherapy drugs have been developed to treat cancer and its recurrence. This approach of targeting signaling pathway of CSCs represents a promising future direction for the therapeutic strategy to cure cancer.

  7. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer.

    PubMed

    Lynch, Jennifer R; Wang, Jenny Yingzi

    2016-05-11

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies.

  8. G Protein-Coupled Receptor Signaling in Stem Cells and Cancer

    PubMed Central

    Lynch, Jennifer R.; Wang, Jenny Yingzi

    2016-01-01

    G protein-coupled receptors (GPCRs) are a large superfamily of cell-surface signaling proteins that bind extracellular ligands and transduce signals into cells via heterotrimeric G proteins. GPCRs are highly tractable drug targets. Aberrant expression of GPCRs and G proteins has been observed in various cancers and their importance in cancer stem cells has begun to be appreciated. We have recently reported essential roles for G protein-coupled receptor 84 (GPR84) and G protein subunit Gαq in the maintenance of cancer stem cells in acute myeloid leukemia. This review will discuss how GPCRs and G proteins regulate stem cells with a focus on cancer stem cells, as well as their implications for the development of novel targeted cancer therapies. PMID:27187360

  9. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme

    PubMed Central

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T.; Peng, Lifeng; Davis, Paul F.; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM’s cancer biology. PMID:27148537

  10. Complexity in cancer stem cells and tumor evolution: Toward precision medicine.

    PubMed

    La Porta, Caterina A M; Zapperi, Stefano

    2017-06-01

    In this review, we discuss recent advances on the plasticity of cancer stem cells and highlight their relevance to understand the metastatic process and to guide therapeutic interventions. Recent results suggest that the strict hierarchical structure of cancer cell populations advocated by the cancer stem cell model must be reconsidered since the depletion of cancer stem cells leads the other tumor cells to switch back into the cancer stem cell phenotype. This plasticity has important implications for metastasis since migrating cells do not need to be cancer stem cells in order to seed a metastasis. We also discuss the important role of the immune system and the microenvironment in modulating phenotypic switching and suggest possible avenues to exploit our understanding of this process to develop an effective strategy for precision medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Midbody Accumulation in Breast Cancer Stem Cells

    DTIC Science & Technology

    2011-08-01

    transit amplifying or differentiating cells. These results suggest that MBds are in almost exclusively in stem cells and putative breast cancer stem...confer tumor-like properties to these cells. We were unable to establish GFP-MKLP1 breast cancer cell lines for this analysis for some reason that we...and nonpolarized cells (Fig. 1c, d). Immuno- electron microscopy confirmed this localization and revealed ultrastructural features characteristic of

  12. Deubiquitylating enzymes as cancer stem cell therapeutics.

    PubMed

    Haq, Saba; Suresh, Bharathi; Ramakrishna, Suresh

    2018-01-01

    The focus of basic and applied research on core stem cell transcription factors has paved the way to initial delineation of their characteristics, their regulatory mechanisms, and the applicability of their regulatory proteins for protein-induced pluripotent stem cells (protein-IPSC) generation and in further clinical settings. Striking parallels have been observed between cancer stem cells (CSCs) and stem cells. For the maintenance of stem cells and CSC pluripotency and differentiation, post translational modifications (i.e., ubiquitylation and deubiquitylation) are tightly regulated, as these modifications result in a variety of stem cell fates. The identification of deubiquitylating enzymes (DUBs) involved in the regulation of core stem cell transcription factors and CSC-related proteins might contribute to providing novel insights into the implications of DUB regulatory mechanisms for governing cellular reprogramming and carcinogenesis. Moreover, we propose the novel possibility of applying DUBs coupled with core transcription factors to improve protein-iPSC generation efficiency. Additionally, this review article further illustrates the potential of applying DUB inhibitors as a novel therapeutic intervention for targeting CSCs. Thus, defining DUBs as core pharmacological targets implies that future endeavors to develop their inhibitors may revolutionize our ability to regulate stem cell maintenance and differentiation, somatic cell reprogramming, and cancer stem cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Mesenchymal Stem Cell Based Therapy for Prostate Cancer

    DTIC Science & Technology

    2015-11-01

    Award Number: W81XWH-13-1-0304 TITLE: Mesenchymal Stem Cell-Based Therapy for Prostate Cancer PRINCIPAL INVESTIGATOR: John Isaacs CONTRACTING...TITLE AND SUBTITLE Mesenchymal Stem Cell-Based Therapy for Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13-1-0304 5c. PROGRAM ELEMENT...effective therapy for castrate resistant metastatic prostate cancer (CRPC). Based upon a substantial published literature from multiple groups, as well as

  14. Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer.

    PubMed

    Shan, Naing Lin; Wahler, Joseph; Lee, Hong Jin; Bak, Min Ji; Gupta, Soumyasri Das; Maehr, Hubert; Suh, Nanjoo

    2017-10-01

    Triple-negative breast cancer is one of the least responsive breast cancer subtypes to available targeted therapies due to the absence of hormonal receptors, aggressive phenotypes, and the high rate of relapse. Early breast cancer prevention may therefore play an important role in delaying the progression of triple-negative breast cancer. Cancer stem cells are a subset of cancer cells that are thought to be responsible for tumor progression, treatment resistance, and metastasis. We have previously shown that vitamin D compounds, including a Gemini vitamin D analog BXL0124, suppress progression of ductal carcinoma in situ in vivo and inhibit cancer stem-like cells in MCF10DCIS mammosphere cultures. In the present study, the effects of vitamin D compounds in regulating breast cancer stem-like cells and differentiation in triple-negative breast cancer were assessed. Mammosphere cultures, which enriches for breast cancer cells with stem-like properties, were used to assess the effects of 1α,25(OH) 2 D 3 and BXL0124 on cancer stem cell markers in the triple-negative breast cancer cell line, SUM159. Vitamin D compounds significantly reduced the mammosphere forming efficiency in primary, secondary and tertiary passages of mammospheres compared to control groups. Key markers of cancer stem-like phenotype and pluripotency were analyzed in mammospheres treated with 1α,25(OH) 2 D 3 and BXL0124. As a result, OCT4, CD44 and LAMA5 levels were decreased. The vitamin D compounds also down-regulated the Notch signaling molecules, Notch1, Notch2, Notch3, JAG1, JAG2, HES1 and NFκB, which are involved in breast cancer stem cell maintenance. In addition, the vitamin D compounds up-regulated myoepithelial differentiating markers, cytokeratin 14 and smooth muscle actin, and down-regulated the luminal marker, cytokeratin 18. Cytokeratin 5, a biomarker associated with basal-like breast cancer, was found to be significantly down-regulated by the vitamin D compounds. These results suggest

  15. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.

    PubMed

    Silver, Daniel J; Sinyuk, Maksim; Vogelbaum, Michael A; Ahluwalia, Manmeet S; Lathia, Justin D

    2016-02-01

    During brain neoplasia, malignant cells subjugate the immune system to provide an environment that favors tumor growth. These mechanisms capitalize on tumor-promoting functions of various immune cell types and typically result in suppression of tumor immune rejection. Immunotherapy efforts are underway to disrupt these mechanisms and turn the immune system against developing tumors. While many of these therapies are already in early-stage clinical trials, understanding how these therapies impact various tumor cell populations, including self-renewing cancer stem cells, may help to predict their efficacy and clarify their mechanisms of action. Moreover, interrogating the biology of glioma cell, cancer stem cell, and immune cell interactions may provide additional therapeutic targets to leverage against disease progression. In this review, we begin by highlighting a series of investigations into immune cell-mediated tumor promotion that do not parse the tumor into stem and non-stem components. We then take a closer look at the immune-suppressive mechanisms derived specifically from cancer stem cell interactions with the immune system and end with an update on immunotherapy and cancer stem cell-directed clinical trials in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030.

    PubMed

    Lin, L; Liu, Y; Li, H; Li, P-K; Fuchs, J; Shibata, H; Iwabuchi, Y; Lin, J

    2011-07-12

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer, including colon cancer. To date, whether STAT3 is activated and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, in colon cancer stem cells are still unknown. Flow cytometry was used to isolate colon cancer stem cells, which are characterised by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulations (ALDH(+)/CD133(+)). The levels of STAT3 phosphorylation and the effects of STAT3 inhibition by a newly developed curcumin analogue, GO-Y030, that targets STAT3 in colon cancer stem cells were examined. Our results observed that ALDH(+)/CD133(+) colon cancer cells expressed higher levels of phosphorylated STAT3 than ALDH-negative/CD133-negative colon cancer cells, suggesting that STAT3 is activated in colon cancer stem cells. GO-Y030 and curcumin inhibited STAT3 phosphorylation, cell viability, tumoursphere formation in colon cancer stem cells. GO-Y030 also reduced STAT3 downstream target gene expression and induced apoptosis in colon cancer stem cells. Furthermore, GO-Y030 suppressed tumour growth of cancer stem cells from both SW480 and HCT-116 colon cancer cell lines in the mouse model. Our results indicate that STAT3 is a novel therapeutic target in colon cancer stem cells, and inhibition of activated STAT3 in cancer stem cells by GO-Y030 may offer an effective treatment for colorectal cancer.

  17. High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer

    PubMed Central

    Liu, Shu-Yan; Zheng, Peng-Sheng

    2013-01-01

    High aldehyde dehydrogenase (ALDH) activity characterizes a subpopulation of cells with cancer stem cell (CSC) properties in several malignancies. To clarify whether ALDH can be used as a marker of cervical cancer stem cells (CCSCs), ALDHhigh and ALDHlow cells were sorted from 4 cervical cancer cell lines and 5 primary tumor xenografts and examined for CSC characteristics. Here, we demonstrate that cervical cancer cells with high ALDH activity fulfill the functional criteria for CSCs: (1) ALDHhigh cells, unlike ALDHlow cells, are highly tumorigenic in vivo; (2) ALDHhigh cells can give rise to both ALDHhigh and ALDHlow cells in vitro and in vivo, thereby establishing a cellular hierarchy; and (3) ALDHhigh cells have enhanced self-renewal and differentiation potentials. Additionally, ALDHhigh cervical cancer cells are more resistant to cisplatin treatment than ALDHlow cells. Finally, expression of the stem cell self-renewal-associated transcription factors OCT4, NANOG, KLF4 and BMI1 is elevated in ALDHhigh cervical cancer cells. Taken together, our data indicated that high ALDH activity may represent both a functional marker for CCSCs and a target for novel cervical cancer therapies. PMID:24318570

  18. Cancer stem cells: A product of clonal evolution?

    PubMed

    van Niekerk, Gustav; Davids, Lester M; Hattingh, Suzèl M; Engelbrecht, Anna-Mart

    2017-03-01

    The cancer stem cell (CSC) model has emerged as a prominent paradigm for explaining tumour heterogeneity. CSCs in tumour recurrence and drug resistance have also been implicated in a number of studies. In fact, CSCs are often identified by their expression of drug-efflux proteins which are also highly expressed in normal stem cells. Similarly, pro-survival or proliferation signalling often exhibited by stem cells is regularly reported as being upregulated by CSC. Here we review evidence suggesting that many aspects of CSCs are more readily described by clonal evolution. As an example, cancer cells often exhibit copy number gains of genes involved in drug-efflux proteins and pro-survival signalling. Consequently, clonal selection for stem cell traits may result in cancer cells developing "stemness" traits which impart a fitness advantage, without strictly following a CSC model. Finally, since symmetric cell division would give rise to more cells than asymmetric division, it is expected that more advanced tumours would depart from a CSC. Collectively, these observations suggest clonal evolution may explain many aspects of the CSC. © 2016 UICC.

  19. DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ki Hyung; Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan; Kang, Yun-Jeong

    Highlights: • Germ cell marker DDX4 was significantly increased in ovarian cancer. • Ovarian cancer stem cell marker CD133 was significantly increased in ovarian cancer. • DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. • CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4. • Germ cell marker DDX4 has the potential of ovarian cancer stem cell marker. - Abstract: DDX4 (DEAD box polypeptide 4), characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), is an RNA helicase which is implicated in various cellular processes involving the alteration of RNA secondarymore » structure, such as translation initiation, nuclear and mitochondrial splicing, and ribosome and spliceosome assembly. DDX4 is known to be a germ cell-specific protein and is used as a sorting marker of germline stem cells for the production of oocytes. A recent report about DDX4 in ovarian cancer showed that DDX4 is overexpressed in epithelial ovarian cancer and disrupts a DNA damage-induced G2 checkpoint. We investigated the relationship between DDX4 and ovarian cancer stem cells by analyzing the expression patterns of DDX4 and the cancer stem cell marker CD133 in ovarian cancers via tissue microarray. Both DDX4 and CD133 were significantly increased in ovarian cancer compared to benign tumors, and showed similar patterns of expression. In addition, DDX4 and CD133 were mostly colocalized in various types of ovarian cancer tissues. Furthermore, almost all CD133 positive ovarian cancer cells also express DDX4 whereas CD133-negative cells did not possess DDX4, suggesting a strong possibility that DDX4 plays an important role in cancer stem cells, and/or can be used as an ovarian cancer stem cell marker.« less

  20. Self-renewal molecular mechanisms of colorectal cancer stem cells.

    PubMed

    Pan, Tianhui; Xu, Jinghong; Zhu, Yongliang

    2017-01-01

    Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog-Gli (HH-GLI), specific roles mediated by cell surface markers and micro-environmental factors are involved in the regulation of self-renewal. The elucidation of the molecular mechanisms behind self-renewal may lead to the development of novel targeted interventions for the treatment of colorectal cancer.

  1. Pancreatic stellate cells enhance stem cell-like phenotypes in pancreatic cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Shin; Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp; Takikawa, Tetsuya

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer Pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. Black-Right-Pointing-Pointer Pancreatic cancer cells co-cultured with PSCs showed enhanced spheroid formation. Black-Right-Pointing-Pointer Expression of stem cell-related genes ABCG2, Nestin and LIN28 was increased. Black-Right-Pointing-Pointer Co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. Black-Right-Pointing-Pointer This study suggested a novel role of PSCs as a part of the cancer stem cell niche. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression ofmore » pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Recent studies have identified that a portion of cancer cells, called 'cancer stem cells', within the entire cancer tissue harbor highly tumorigenic and chemo-resistant phenotypes, which lead to the recurrence after surgery or re-growth of the tumor. The mechanisms that maintain the 'stemness' of these cells remain largely unknown. We hypothesized that PSCs might enhance the cancer stem cell-like phenotypes in pancreatic cancer cells. Indirect co-culture of pancreatic cancer cells with PSCs enhanced the spheroid-forming ability of cancer cells and induced the expression of cancer stem cell-related genes ABCG2, Nestin and LIN28. In addition, co-injection of PSCs enhanced tumorigenicity of pancreatic cancer cells in vivo. These results suggested a novel role of PSCs as a part of the cancer stem cell niche.« less

  2. The Implications of the Cancer Stem Cell Hypothesis for Neuro-Oncology and Neurology.

    PubMed

    Rich, Jeremy N

    2008-05-01

    The cancer stem cell hypothesis posits that cancers contain a subset of neoplastic cells that propagate and maintain tumors through sustained self-renewal and potent tumorigenecity. Recent excitement has been generated by a number of reports that have demonstrated the existence of cancer stem cells in several types of brain tumors. Brain cancer stem cells - also called tumor initiating cells or tumor propagating cells - share features with normal neural stem cells but do not necessarily originate from stem cells. Although most cancers have only a small fraction of cancer stem cells, these tumor cells have been shown in laboratory studies to contribute to therapeutic resistance, formation of new blood vessels to supply the tumor, and tumor spread. As malignant brain tumors rank among the deadliest of all neurologic diseases, the identification of new cellular targets may have profound implications in neuro-oncology. Novel drugs that target stem cell pathways active in brain tumors have been efficacious against cancer stem cells suggesting that anti-cancer stem cell therapies may advance brain tumor therapy. The cancer stem cell hypothesis may have several implications for other neurologic diseases as caution must be exercised in activating stem cell maintenance pathways in cellular therapies for neurodegenerative diseases. The ability for a small fraction of cells to determine the overall course of a disease may also inform new paradigms of disease that may translate into improved patient outcomes.

  3. Correlation of HIWI and HILI Expression with Cancer Stem Cell Markers in Colorectal Cancer.

    PubMed

    Litwin, Monika; Dubis, Joanna; Arczyńska, Katarzyna; Piotrowska, Aleksandra; Frydlewicz, Anna; Karczewski, Maciej; Dzięgiel, Piotr; Witkiewicz, Wojciech

    2015-06-01

    Cancer stem cells (CSCs) constitute a sub-population of tumor cells that possess stem cell properties, such as self-renewal and the ability of differentiation. The presence of CSCs is associated with metastatic potential, treatment resistance and poor patient prognosis. Recently, aberrant expression of P-element induced wimpy testis proteins-PIWI (HIWI and HILI) has been identified in various types of tumors. The aim of the study was to evaluate the clinical significance of the HIWI and HILI expression and its relationship with cancer stem cells markers in 72 patients with colorectal carcinoma (CRC). The expression level of HIWI and HILI and cancer stem cells markers in paired cancerous and non-cancerous tissues was measured by real-time reverse transcription-polymerase chain reaction (RT-PCR) assay. Immunohistochemistry was performed to confirm the observed changes on mRNA level and detect tissue localization of PIWI proteins. Significantly higher mRNA levels of HIWI and decreased HILI mRNA were measured in colorectal cancer tissues compared to corresponding non-cancerous samples. The changes in HIWI mRNA level in cancer tissues were correlated with OCT4 expression. Positive correlations between HILI level and SOX2 were also observed in cancerous tissues. Our results indicate a reciprocal regulation between HIWI, HILI and some CSCs markers in colorectal cancer. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  4. The Isolation and Characterization of Human Prostate Cancer Stem Cells

    DTIC Science & Technology

    2012-02-01

    established cell lines and primary patient samples) with human prostate fibroblasts hold promise as models of tumor initiation/cancer stem cell activity...We continue to optimize and validate our in vitro model of prostate cancer initiation to facilitate cancer stem cell discovery as well as drug targeting.

  5. Biology of lung cancer: genetic mutation, epithelial-mesenchymal transition, and cancer stem cells.

    PubMed

    Aoi, Takashi

    2016-09-01

    At present, most cases of unresectable cancer cannot be cured. Genetic mutations, EMT, and cancer stem cells are three major issues linked to poor prognosis in such cases, all connected by inter- and intra-tumor heterogeneity. Issues on inter-/intra-tumor heterogeneity of genetic mutation could be resolved with recent and future technologies of deep sequencers, whereas, regarding such issues as the "same genome, different epigenome/phenotype", we expect to solve many of these problems in the future through further research in stem cell biology. We herein review and discuss the three major issues in the biology of cancers, especially from the standpoint of stem cell biology.

  6. miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis.

    PubMed

    Chakraborty, Chiranjib; Chin, Kok-Yong; Das, Srijit

    2016-10-01

    Over the last few years, microRNAs (miRNA)-controlled cancer stem cells have drawn enormous attention. Cancer stem cells are a small population of tumor cells that possess the stem cell property of self-renewal. Recent data shows that miRNA regulates this small population of stem cells. In the present review, we explained different characteristics of cancer stem cells as well as miRNA regulation of self-renewal and differentiation in cancer stem cells. We also described the migration and tumor formation. Finally, we described the different miRNAs that regulate various types of cancer stem cells, such as prostate cancer stem cells, head and neck cancer stem cells, breast cancer stem cells, colorectal cancer stem cells, lung cancer stem cells, gastric cancer stem cells, pancreatic cancer stem cells, etc. Extensive research is needed in order to employ miRNA-based therapeutics to control cancer stem cell population in various cancers in the future.

  7. Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties

    PubMed Central

    Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik

    2010-01-01

    Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify

  8. Stem cells in prostate cancer initiation and progression

    PubMed Central

    Lawson, Devon A.; Witte, Owen N.

    2007-01-01

    Peter Nowell and David Hungerford’s discovery of the Philadelphia chromosome facilitated many critical studies that have led to a paradigm shift in our understanding of cancer as a disease of stem cells. This Review focuses on the application of these concepts to investigation of the role of stem cells in prostate cancer initiation and progression. Major strides in the development of in vitro and in vivo assays have enabled identification and characterization of prostate stem cells as well as functional evaluation of the tumorigenic effects of prostate cancer–related genetic alterations. PMID:17671638

  9. Prostate Cancer Stem Cells: Viewing Signaling Cascades at a Finer Resolution.

    PubMed

    Lin, Xiukun; Farooqi, Ammad Ahmad; Qureshi, Muhammad Zahid; Romero, Mirna Azalea; Tabassum, Sobia; Ismail, Muhammad

    2016-06-01

    It is becoming characteristically more understandable that within tumor cells, there lies a sub-population of tumor cells with "stem cell" like properties and remarkable ability of self-renewal. Many features of these self-renewing cells are comparable with normal stem cells and are termed as "cancer stem cells". Accumulating experimentally verified data has started to scratch the surface of spatio-temporally dysregulated intracellular signaling cascades in the biology of prostate cancer stem cells. We partition this multicomponent review into how different signaling cascades operate in cancer stem cells and how bioactive ingredients isolated from natural sources may modulate signaling network.

  10. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology.

    PubMed

    Chiba, Tetsuhiro; Iwama, Atsushi; Yokosuka, Osamu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology. © 2015 The Japan Society of Hepatology.

  11. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    PubMed Central

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  12. Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells.

    PubMed

    Ahmed, Mehreen; Chaudhari, Kritika; Babaei-Jadidi, Roya; Dekker, Lodewijk V; Shams Nateri, Abdolrahman

    2017-04-01

    Increasing evidence suggests that cancer cell populations contain a small proportion of cells that display stem-like cell properties and which may be responsible for overall tumor maintenance. These cancer stem-like cells (CSCs) appear to have unique tumor-initiating ability and innate survival mechanisms that allow them to resist cancer therapies, consequently promoting relapses. Selective targeting of CSCs may provide therapeutic benefit and several recent reports have indicated this may be possible. In this article, we review drugs targeting CSCs, in selected epithelial cell-derived cancers. Stem Cells 2017;35:839-850. © 2017 AlphaMed Press.

  13. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells.

    PubMed

    Ponnusamy, Moorthy P; Seshacharyulu, Parthasarathy; Vaz, Arokiapriyanka; Dey, Parama; Batra, Surinder K

    2011-04-26

    Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be

  14. CD24 negative lung cancer cells, possessing partial cancer stem cell properties, cannot be considered as cancer stem cells.

    PubMed

    Xu, Haineng; Mu, Jiasheng; Xiao, Jing; Wu, Xiangsong; Li, Maolan; Liu, Tianrun; Liu, Xinyuan

    2016-01-01

    Cancer stem cells (CSCs) play vital role in lung cancer progression, resistance, metastasis and relapse. Identifying lung CSCs makers for lung CSCs targeting researches are critical for lung cancer therapy. In this study, utilizing previous identified lung CSCs as model, we compared the expression of CD24, CD133 and CD44 between CSCs and non-stem cancer cells. Increased ratio of CD24- cells were found in CSCs. CD24- cells were then sorted by flow cytometry and their proliferative ability, chemo-resistance property and in vivo tumor formation abilities were detected. A549 CD24- cells formed smaller colonies, slower proliferated in comparison to A549 CD24+ cells. Besides, A549 CD24- exhibited stronger resistance to chemotherapy drug. However, A549 CD24- didn't exert any stronger tumor formation ability in vivo, which is the gold standard of CSCs. These results showed that CD24- A549 cells showed some properties of CSCs but not actually CSCs. This study provides evidence that CD24 cannot be considered as lung CSCs marker.

  15. Concise reviews: cancer stem cells: from concept to cure.

    PubMed

    Matchett, K B; Lappin, T R

    2014-10-01

    In 1953, noting a remarkable consistency between the agents causing mutations and those associated with cancer, Carl Nordling, a Finnish-born architect, proposed that cancer results from an accumulation of genetic mutations. It is now generally accepted that inherited mutations and environmental carcinogens can lead to the development of premalignant clones. After further mutations, one cell reaches a critical state which confers a survival or growth advantage over normal cells. Such cells have the ability to initiate a malignant tumour. They share many of the features of normal stem cells, including the capacity for self-renewal and differentiation, and are widely termed cancer stem cells (CSCs). Although CSCs have been well characterized in hematological malignancies, their existence in some other tissues has been questioned. Here, we review recent work in which stem cells and stem cell-like cells have been used to investigate the pathogenesis of cancer and potential anticancer treatment strategies, in the context of both hematological and somatic tissue disease. © 2014 AlphaMed Press.

  16. The Role of SIRT1 in Breast Cancer Stem Cells

    DTIC Science & Technology

    2014-07-01

    Stem cell markers, SOX-2 and Nanog, are significantly decreased in SIRT1 inhibitor treated cancer cells by qRT-PCR and western blot in T47D cell line...cells. Immunohistochemistry performed on breast cancer specimens shows the correlation between cancer stem cell markers and SIRT1 overexpression. SIRT1

  17. High-throughput screening identifies artesunate as selective inhibitor of cancer stemness: Involvement of mitochondrial metabolism.

    PubMed

    Subedi, Amit; Futamura, Yushi; Nishi, Mayuko; Ryo, Akihide; Watanabe, Nobumoto; Osada, Hiroyuki

    2016-09-02

    Cancer stem cells (CSCs) have robust systems to maintain cancer stemness and drug resistance. Thus, targeting such robust systems instead of focusing on individual signaling pathways should be the approach allowing the identification of selective CSC inhibitors. Here, we used the alkaline phosphatase (ALP) assay to identify inhibitors for cancer stemness in induced cancer stem-like (iCSCL) cells. We screened several compounds from natural product chemical library and evaluated hit compounds for their efficacy on cancer stemness in iCSCL tumorspheres. We identified artesunate, an antimalarial drug, as a selective inhibitor of cancer stemness. Artesunate induced mitochondrial dysfunction that selectively inhibited cancer stemness of iCSCL cells, indicating an essential role of mitochondrial metabolism in cancer stemness. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Invincible, but not invisible: imaging approaches toward in vivo detection of cancer stem cells.

    PubMed

    Hart, Lori S; El-Deiry, Wafik S

    2008-06-10

    With evidence emerging in support of a cancer stem-cell model of carcinogenesis, it is of paramount importance to identify and image these elusive cells in their natural environment. The cancer stem-cell hypothesis has the potential to explain unresolved questions of tumorigenesis, tumor heterogeneity, chemotherapeutic and radiation resistance, and even the metastatic phenotype. Intravital imaging of cancer stem cells could be of great value for determining prognosis, as well as monitoring therapeutic efficacy and influencing therapeutic protocols. Cancer stem cells represent a rare population of cells, as low as 0.1% of cells within a human tumor, and the phenotype of isolated cancer stem cells is easily altered when placed under in vitro conditions. This represents a challenge in studying cancer stem cells without manipulation or extraction from their natural environment. Advanced imaging techniques allow for the in vivo observation of physiological events at cellular resolution. Cancer stem-cell studies must take advantage of such technology to promote a better understanding of the cancer stem-cell model in relation to tumor growth and metastasis, as well as to potentially improve on the principles by which cancers are treated. This review examines the opportunities for in vivo imaging of putative cancer stem cells with regard to currently accepted cancer stem-cell characteristics and advanced imaging technologies.

  19. Relevance of mortalin to cancer cell stemness and cancer therapy

    PubMed Central

    Yun, Chae-Ok; Bhargava, Priyanshu; Na, Youjin; Lee, Jung-Sun; Ryu, Jihoon; Kaul, Sunil C.; Wadhwa, Renu

    2017-01-01

    Mortalin/mtHsp70 is a member of Hsp70 family of proteins. Enriched in a large variety of cancers, it has been shown to contribute to the process of carcinogenesis by multiple ways including inactivation of tumor suppressor p53 protein, deregulation of apoptosis and activation of EMT signaling. In this study, we report that upregulation of mortalin contributes to cancer cell stemness. Several cancer cell stemness markers, such as ABCG2, OCT-4, CD133, ALDH1, CD9, MRP1 and connexin were upregulated in mortalin-overexpressing cells that showed higher ability to form spheroids. These cells also showed higher migration, and were less responsive to a variety of cancer chemotherapeutic drugs. Of note, knockdown of mortalin by specific shRNA sensitized these cells to all the drugs used in this study. We report that low doses of anti-mortalin molecules, MKT-077 and CAPE, also caused similar sensitization of cancer cells to chemotherapeutic drugs and hence are potential candidates for effective cancer chemotherapy. PMID:28165047

  20. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer.

    PubMed

    Zhang, Le; Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-04-18

    Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic.

  1. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer

    PubMed Central

    Xu, Liang; Zhang, Fengchun; Vlashi, Erina

    2017-01-01

    ABSTRACT Experimental evidence suggest that breast tumors originate from breast cancer stem cells (BCSCs), and that mitochondrial biogenesis is essential for the anchorage-independent clonal expansion and survival of CSCs, thus rendering mitochondria a significant target for novel treatment approaches. One of the recognized side effects of the FDA-approved drug, doxycycline is the inhibition of mitochondrial biogenesis. Here we investigate the mechanism by which doxycycline exerts its inhibitory effects on the properties of breast cancer cells and BCSCs, such as mammosphere forming efficiency, invasion, migration, apoptosis, the expression of stem cell markers and epithelial-to-mesenchymal transition (EMT) related markers of breast cancer cells. In addition, we explored whether autophagy plays a role in the inhibitory effect of doxycycline on breast cancer cells. We find that doxycyline can inhibit the viability and proliferation of breast cancer cells and BCSCs, decrease mammosphere forming efficiency, migration and invasion, and EMT of breast cancer cells. Expression of stem cell factors Oct4, Sox2, Nanog and CD44 were also significantly downregulated after doxycycline treatment. Moreover, doxycycline could down-regulate the expression of the autophagy marker LC-3BI and LC-3BII, suggesting that inhibiting autophagy may be responsible in part for the observed effects on proliferation, EMT and stem cell markers. The potent inhibition of EMT and cancer stem-like characteristics in breast cancer cells by doxycycline treatment suggests that this drug can be repurposed as an anti-cancer drug in the treatment of breast cancer patients in the clinic. PMID:27753527

  2. Generation of Breast Cancer Stem Cells by the EMT

    DTIC Science & Technology

    2009-10-01

    shift in the type of human breast cancer cells. We began to use experimentally immortalized HMLE cells that were then transformed through...Generation of Breast Cancer Stem Cells by the EMT PRINCIPAL INVESTIGATOR: Robert A. Weinberg, Ph.D. CONTRACTING...Generation of Breast Cancer Stem Cells by the EMT 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-1-0464 5c. PROGRAM ELEMENT NUMBER 6

  3. Esophageal Cancer: Genomic and Molecular Characterization, Stem Cell Compartment and Clonal Evolution

    PubMed Central

    Testa, Ugo; Castelli, Germana; Pelosi, Elvira

    2017-01-01

    Esophageal cancer (EC) is the eighth most common cancer and is the sixth leading cause of death worldwide. The incidence of histologic subtypes of EC, esophageal adenocarcinoma (EAC) and esophageal squamous carcinoma (ESCC), display considerable geographic variation. EAC arises from metaplastic Barrett’s esophagus (BE) in the context of chronic inflammation secondary to exposure to acid and bile. The main risk factors for developing ESCC are cigarette smoking and alcohol consumption. The main somatic genetic abnormalities showed a different genetic landscape in EAC compared to ESCC. EAC is a heterogeneous cancer dominated by copy number alterations, a high mutational burden, co-amplification of receptor tyrosine kinase, frequent TP53 mutations. The cellular origins of BE and EAC are still not understood: animal models supported a cellular origin either from stem cells located in the basal layer of esophageal epithelium or from progenitors present in the cardia region. Many studies support the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. The exact identification of these CSCs, as well as their role in the pathogenesis of EAC and ESCC remain still to be demonstrated. The reviewed studies suggest that current molecular and cellular characterization of EAC and ESCC should serve as background for development of new treatment strategies. PMID:28930282

  4. Links between DNA Replication, Stem Cells and Cancer

    PubMed Central

    Vassilev, Alex; DePamphilis, Melvin L.

    2017-01-01

    Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells. PMID:28125050

  5. Eliminating Cancer Stem Cells by Targeting Embryonic Signaling Pathways.

    PubMed

    Oren, Ohad; Smith, B Douglas

    2017-02-01

    Dramatic advances have been made in the understanding of cancer over the past decade. Prime among those are better appreciation of the biology of cancer and the development of targeted therapies. Despite these improvements, however, most tumors remain refractory to anti-cancer medications and frequently recur. Cancer Stem Cells (CSCs), which in some cases express markers of pluripotency (e.g., Oct-4), share many of the molecular features of normal stem cells. These cells have been hypothesised to play a role in tumor resistance and relapse. They exhibit dependence on many primitive regulatory pathways and may be best viewed in the context of embryonic signaling pathways. In this article, we review important embryonic signaling cascades and their differential expression in CSCs. We also discuss these pathways as actionable targets for novel therapies in hopes that eliminating cancer stem cells will lead to an improvement in overall survival for patients.

  6. Deubiquitinating enzymes in cancer stem cells: functions and targeted inhibition for cancer therapy.

    PubMed

    Kaushal, Kamini; Antao, Ainsley Mike; Kim, Kye-Seong; Ramakrishna, Suresh

    2018-06-01

    The ability of cancers to evade conventional treatments, such as chemotherapy and radiation therapy, has been attributed to a subpopulation of cancer stem cells (CSCs). CSCs are regulated by mechanisms similar to those that regulate normal stem cells (NSCs), including processes involving ubiquitination and deubiquitination enzymes (DUBs) that regulate the expression of various factors, such as Notch, Wnt, Sonic Hedgehog (Shh), and Hippo. In this review, we discuss the roles of various DUBs involved in the regulation of core stem cell transcription factors and CSC-related proteins that are implicated in the modulation of cellular processes and carcinogenesis. In addition, we discuss the various DUB inhibitors that have been designed to target processes relevant to cancer and CSC maintenance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Investigation of the expression of RIF1 gene on head and neck, pancreatic and brain cancer and cancer stem cells.

    PubMed

    GursesCila, Hacer E; Acar, Muradiye; Barut, Furkan B; Gunduz, Mehmet; Grenman, Reidar; Gunduz, Esra

    2016-12-01

    Recent studies have shown that cancer stem cells are resistant to chemotherapy. The aim of this study was to compare RIF1 gene expression in head and neck, pancreatic cancer and glioma cell lines and the cancer stem cells isolated from these cell lines. UT-SCC-74 from Turku University and UT-SCC-74B primary tumor metastasis and neck cancer cell lines, YKG-1 glioma cancer cell line from RIKEN, pancreatic cancer cell lines and ASPC-1 cells from ATCC were grown in cell culture. To isolate cancer stem cells, ALDH-1 for UT-SCC-74 and UT-SCC-74B cell line, CD-133 for YKG-1 cell line and CD-24 for ASPC-1 cell line, were used as markers of cancer stem cells. RNA isolation was performed for both cancer lines and cancer stem cells. RNAs were converted to cDNA. RIF1 gene expression was performed by qRT-PCR analysis. RIF1 gene expression was compared with cancer cell lines and cancer stem cells isolated from these cell lines. The possible effect of RIF1 gene was evaluated. In the pancreatic cells, RIF1 gene expression in the stem cell-positive cell line was 256 time that seen in the stem cell-negative cell line. Considering the importance of RIF1 in NHEJ and of NHEJ in pancreatic cancer, RIF1 may be one of the genes that plays an important role in the diagnoses and therapeutic treatment of pancreatic cancer. The results of head and neck and brain cancers are inconclusive and further studies are required to elucidate the connection between RIF1 gene and these other types of cancers.

  8. Transforming growth factor‐β in liver cancer stem cells and regeneration

    PubMed Central

    Rao, Shuyun; Zaidi, Sobia; Banerjee, Jaideep; Jogunoori, Wilma; Sebastian, Raul; Mishra, Bibhuti; Nguyen, Bao‐Ngoc; Wu, Ray‐Chang; White, Jon; Deng, Chuxia; Amdur, Richard; Li, Shulin

    2017-01-01

    Cancer stem cells have established mechanisms that contribute to tumor heterogeneity as well as resistance to therapy. Over 40% of hepatocellular carcinomas (HCCs) are considered to be clonal and arise from a stem‐like/cancer stem cell. Moreover, HCC is the second leading cause of cancer death worldwide, and an improved understanding of cancer stem cells and targeting these in this cancer are urgently needed. Multiple studies have revealed etiological patterns and multiple genes/pathways signifying initiation and progression of HCC; however, unlike the transforming growth factor β (TGF‐β) pathway, loss of p53 and/or activation of β‐catenin do not spontaneously drive HCC in animal models. Despite many advances in cancer genetics that include identifying the dominant role of TGF‐β signaling in gastrointestinal cancers, we have not reached an integrated view of genetic mutations, copy number changes, driver pathways, and animal models that support effective targeted therapies for these common and lethal cancers. Moreover, pathways involved in stem cell transformation into gastrointestinal cancers remain largely undefined. Identifying the key mechanisms and developing models that reflect the human disease can lead to effective new treatment strategies. In this review, we dissect the evidence obtained from mouse and human liver regeneration, and mouse genetics, to provide insight into the role of TGF‐β in regulating the cancer stem cell niche. (Hepatology Communications 2017;1:477–493) PMID:29404474

  9. iPSC-derived cancer stem cells provide a model of tumor vasculature.

    PubMed

    Prieto-Vila, Marta; Yan, Ting; Calle, Anna Sanchez; Nair, Neha; Hurley, Laura; Kasai, Tomonari; Kakuta, Hiroki; Masuda, Junko; Murakami, Hiroshi; Mizutani, Akifumi; Seno, Masaharu

    2016-01-01

    To grow beyond a size of approximately 1-2 mm 3 , tumor cells activate many processes to develop blood vasculature. Growing evidences indicate that the formation of the tumor vascular network is very complex, and is not restricted to angiogenesis. Cancer cell-derived tumor vasculatures have been recently described. Among them, endothelial differentiation of tumor cells have been directly related to cancer stem cells, which are cells within a tumor that possess the capacity to self-renew, and to exhibit multipotential heterogeneous lineages of cancer cells. Vasculogenic mimicry has been described to be formed by cancer cells expressing stemness markers. Thus, cancer stem cells have been proposed to contribute to vasculogenic mimicry, though its relation is yet to be clarified. Here, we analyzed the tumor vasculature by using a model of mouse cancer stem cells, miPS-LLCcm cells, which we have previously established from mouse induced pluripotent stem cells and we introduced the DsRed gene in miPS-LLCcm to trace them in vivo . Various features of vasculature were evaluated in ovo , in vitro , and in vivo . The tumors formed in allograft nude mice exhibited angiogenesis in chick chorioallantoic membrane assay. In those tumors, along with penetrated host endothelial vessels, we detected endothelial differentiation from cancer stem cells and formation of vasculogenic mimicry. The angiogenic factors such as VEGF-A and FGF2 were expressed predominantly in the cancer stem cells subpopulation of miPS-LLCcm cells. Our results suggested that cancer stem cells play key roles in not only the recruitment of host endothelial vessels into tumor, but also in maturation of endothelial linage of cancer stem cell's progenies. Furthermore, the undifferentiated subpopulation of the miPS-LLCcm participates directly in the vasculogenic mimicry formation. Collectively, we show that miPS-LLCcm cells have advantages to further study tumor vasculature and to develop novel targeting strategies

  10. iPSC-derived cancer stem cells provide a model of tumor vasculature

    PubMed Central

    Prieto-Vila, Marta; Yan, Ting; Calle, Anna Sanchez; Nair, Neha; Hurley, Laura; Kasai, Tomonari; Kakuta, Hiroki; Masuda, Junko; Murakami, Hiroshi; Mizutani, Akifumi; Seno, Masaharu

    2016-01-01

    To grow beyond a size of approximately 1-2 mm3, tumor cells activate many processes to develop blood vasculature. Growing evidences indicate that the formation of the tumor vascular network is very complex, and is not restricted to angiogenesis. Cancer cell-derived tumor vasculatures have been recently described. Among them, endothelial differentiation of tumor cells have been directly related to cancer stem cells, which are cells within a tumor that possess the capacity to self-renew, and to exhibit multipotential heterogeneous lineages of cancer cells. Vasculogenic mimicry has been described to be formed by cancer cells expressing stemness markers. Thus, cancer stem cells have been proposed to contribute to vasculogenic mimicry, though its relation is yet to be clarified. Here, we analyzed the tumor vasculature by using a model of mouse cancer stem cells, miPS-LLCcm cells, which we have previously established from mouse induced pluripotent stem cells and we introduced the DsRed gene in miPS-LLCcm to trace them in vivo. Various features of vasculature were evaluated in ovo, in vitro, and in vivo. The tumors formed in allograft nude mice exhibited angiogenesis in chick chorioallantoic membrane assay. In those tumors, along with penetrated host endothelial vessels, we detected endothelial differentiation from cancer stem cells and formation of vasculogenic mimicry. The angiogenic factors such as VEGF-A and FGF2 were expressed predominantly in the cancer stem cells subpopulation of miPS-LLCcm cells. Our results suggested that cancer stem cells play key roles in not only the recruitment of host endothelial vessels into tumor, but also in maturation of endothelial linage of cancer stem cell’s progenies. Furthermore, the undifferentiated subpopulation of the miPS-LLCcm participates directly in the vasculogenic mimicry formation. Collectively, we show that miPS-LLCcm cells have advantages to further study tumor vasculature and to develop novel targeting strategies in

  11. CD117/c-kit in Cancer Stem Cell-Mediated Progression and Therapeutic Resistance

    PubMed Central

    Young, Tyler R.; Mobley, Mary E.

    2018-01-01

    Metastasis is the primary cause of cancer patient morbidity and mortality, but due to persisting gaps in our knowledge, it remains untreatable. Metastases often occur as patient tumors progress or recur after initial therapy. Tumor recurrence at the primary site may be driven by a cancer stem-like cell or tumor progenitor cell, while recurrence at a secondary site is driven by metastatic cancer stem cells or metastasis-initiating cells. Ongoing efforts are aimed at identifying and characterizing these stem-like cells driving recurrence and metastasis. One potential marker for the cancer stem-like cell subpopulation is CD117/c-kit, a tyrosine kinase receptor associated with cancer progression and normal stem cell maintenance. Further, activation of CD117 by its ligand stem cell factor (SCF; kit ligand) in the progenitor cell niche stimulates several signaling pathways driving proliferation, survival, and migration. This review examines evidence that the SCF/CD117 signaling axis may contribute to the control of cancer progression through the regulation of stemness and resistance to tyrosine kinase inhibitors. PMID:29518044

  12. Application of stem cells in targeted therapy of breast cancer: a systematic review.

    PubMed

    Madjd, Zahra; Gheytanchi, Elmira; Erfani, Elham; Asadi-Lari, Mohsen

    2013-01-01

    The aim of this systematic review was to investigate whether stem cells could be effectively applied in targeted therapy of breast cancer. A systematic literature search was performed for original articles published from January 2007 until May 2012. Nine studies met the inclusion criteria for phase I or II clinical trials, of which three used stem cells as vehicles, two trials used autologous hematopoetic stem cells and in four trials cancer stem cells were targeted. Mesenchymal stem cells (MSCs) were applied as cellular vehicles to transfer therapeutic agents. Cell therapy with MSC can successfully target resistant cancers. Cancer stem cells were selectively targeted via a proteasome-dependent suicide gene leading to tumor regression. Wnt/β-catenin signaling pathway has been also evidenced to be an attractive CSC-target. This systematic review focused on two different concepts of stem cells and breast cancer marking a turning point in the trials that applied stem cells as cellular vehicles for targeted delivery therapy as well as CSC-targeted therapies. Applying stem cells as targeted therapy could be an effective therapeutic approach for treatment of breast cancer in the clinic and in therapeutic marketing; however this needs to be confirmed with further clinical investigations.

  13. Chemotherapy curable malignancies and cancer stem cells: a biological review and hypothesis.

    PubMed

    Savage, Philip

    2016-11-21

    Cytotoxic chemotherapy brings routine cures to only a small select group of metastatic malignancies comprising gestational trophoblast tumours, germ cell tumours, acute leukemia, Hodgkin's disease, high grade lymphomas and some of the rare childhood malignancies. We have previously postulated that the extreme sensitivity to chemotherapy for these malignancies is linked to the on-going high levels of apoptotic sensitivity that is naturally linked with the unique genetic events of nuclear fusion, meiosis, VDJ recombination, somatic hypermutation, and gastrulation that have occurred within the cells of origin of these malignancies. In this review we will examine the cancer stem cell/cancer cell relationship of each of the chemotherapy curable malignancies and how this relationship impacts on the resultant biology and pro-apoptotic sensitivity of the varying cancer cell types. In contrast to the common epithelial cancers, in each of the chemotherapy curable malignancies there are no conventional hierarchical cancer stem cells. However cells with cancer stem like qualities can arise stochastically from within the general tumour cell population. These stochastic stem cells acquire a degree of resistance to DNA damaging agents but also retain much of the key characteristics of the cancer cells from which they develop. We would argue that the balance between the acquired resistance of the stochastic cancer stem cell and the inherent chemotherapy sensitivity of parent tumour cell determines the overall chemotherapy curability of each diagnosis. The cancer stem cells in the chemotherapy curable malignancies appear to have two key biological differences from those of the more common chemotherapy incurable malignancies. The first difference is that the conventional hierarchical pattern of cancer stem cells is absent in each of the chemotherapy curable malignancies. The other key difference, we suggest, is that the stochastic stem cells in the chemotherapy curable malignancies

  14. Cancer Stem Cells: Dynamic Entities in an Ever-Evolving Paradigm.

    PubMed

    Lopez-Bertoni, Hernando; Li, Yunqing; Laterra, John

    2015-11-01

    The cancer stem cell (CSC) hypothesis postulates that there is a hierarchy of cellular differentiation within cancers and that the bulk population of tumor cells is derived from a relatively small population of multi-potent neoplastic stem-like cells (CSCs). This tumor-initiating cell population plays an important role in maintaining tumor growth through their unlimited self-renewal, therapeutic resistance, and capacity to propagate tumors through asymmetric cell division. Recent findings from multiple laboratories show that cancer progenitor cells have the capacity to de-differentiate and acquire a stem-like phenotype in response to either genetic manipulation or environmental cues. These findings suggest that CSCs and relatively differentiated progenitors coexist in dynamic equilibrium and are subject to bidirectional conversion. In this review, we discuss emerging concepts regarding the stem-like phenotype, its acquisition by cancer progenitor cells, and the molecular mechanisms involved. Understanding the dynamic equilibrium between CSCs and cancer progenitor cells is critical for the development of novel therapeutic strategies that focus on depleting tumors of their tumor-propagating cell population.

  15. Cancer stem cells: a metastasizing menace!

    PubMed

    Bandhavkar, Saurabh

    2016-04-01

    Cancer is one of the leading causes of death worldwide, and is estimated to be a reason of death of more than 18 billion people in the coming 5 years. Progress has been made in diagnosis and treatment of cancer; however, a sound understanding of the underlying cell biology still remains an unsolved mystery. Current treatments include a combination of radiation, surgery, and/or chemotherapy. However, these treatments are not a complete cure, aimed simply at shrinking the tumor and in majority of cases, there is a relapse of tumor. Several evidences suggest the presence of cancer stem cells (CSCs) or tumor-initiating stem-like cells, a small population of cells present in the tumor, capable of self-renewal and generation of differentiated progeny. The presence of these CSCs can be attributed to the failure of cancer treatments as these cells are believed to exhibit therapy resistance. As a result, increasing attention has been given to CSC research to resolve the therapeutic problems related to cancer. Progress in this field of research has led to the development of novel strategies to treat several malignancies and has become a hot topic of discussion. In this review, we will briefly focus on the main characteristics, therapeutic implications, and perspectives of CSCs in cancer therapy. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  16. RUNX1 and RUNX3 protect against YAP-mediated EMT, stem-ness and shorter survival outcomes in breast cancer

    PubMed Central

    Kulkarni, Madhura; Tan, Tuan Zea; Syed Sulaiman, Nurfarhanah Bte; Lamar, John M.; Bansal, Prashali; Cui, Jianzhou; Qiao, Yiting; Ito, Yoshiaki

    2018-01-01

    Hippo pathway target, YAP has emerged as an important player in solid tumor progression. Here, we identify RUNX1 and RUNX3 as novel negative regulators of oncogenic function of YAP in the context of breast cancer. RUNX proteins are one of the first transcription factors identified to interact with YAP. RUNX1 or RUNX3 expression abrogates YAP-mediated pro-tumorigenic properties of mammary epithelial cell lines in an interaction dependent manner. RUNX1 and RUNX3 inhibit YAP-mediated migration and stem-ness properties of mammary epithelial cell lines by co-regulating YAP-mediated gene expression. Analysis of whole genome expression profiles of breast cancer samples revealed significant co-relation between YAP–RUNX1/RUNX3 expression levels and survival outcomes of breast cancer patients. High RUNX1/RUNX3 expression proved protective towards YAP-dependent patient survival outcomes. High YAP in breast cancer patients’ expression profiles co-related with EMT and stem-ness gene signature enrichment. High RUNX1/RUNX3 expression along with high YAP reflected lower enrichment of EMT and stem-ness signatures. This antagonistic activity of RUNX1 and RUNX3 towards oncogenic function of YAP identified in mammary epithelial cells as well as in breast cancer expression profiles gives a novel mechanistic insight into oncogene–tumor suppressor interplay in the context of breast cancer progression. The novel interplay between YAP, RUNX1 and RUNX3 and its significance in breast cancer progression can serve as a prognostic tool to predict cancer recurrence. PMID:29581836

  17. A Model of Cancer Stem Cells Derived from Mouse Induced Pluripotent Stem Cells

    PubMed Central

    Chen, Ling; Kasai, Tomonari; Li, Yueguang; Sugii, Yuh; Jin, Guoliang; Okada, Masashi; Vaidyanath, Arun; Mizutani, Akifumi; Satoh, Ayano; Kudoh, Takayuki; Hendrix, Mary J. C.; Salomon, David S.; Fu, Li; Seno, Masaharu

    2012-01-01

    Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5′-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model. PMID:22511923

  18. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...CA130273 - Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM...hypothesis, we originally proposed to transform neural stem cells (NSCs) and neural progenitor cells (NPCs) in vivo by expressing an activated form

  19. Gastric cancer stem cells in gastric carcinogenesis, progression, prevention and treatment

    PubMed Central

    Li, Kang; Dan, Zeng; Nie, Yu-Qiang

    2014-01-01

    In recent decades, the study of the mechanism of tumorigenesis has brought much progress to cancer treatment. However, cancer stem cell (CSC) theory has changed previous views of tumors, and has provided a new method for treatment of cancer. The discovery of CSCs and their characteristics have contributed to understanding the molecular mechanism of tumor genesis and development, resulting in a new effective strategy for cancer treatment. Gastric CSCs (GCSCs) are the basis for the onset of gastric cancer. They may be derived from gastric stem cells in gastric tissues, or bone marrow mesenchymal stem cells. As with other stem cells, GCSCs highly express drug-resistance genes such as aldehyde dehydrogenase and multidrug resistance, which are resistant to chemotherapy and thus form the basis of drug resistance. Many specific molecular markers such as CD44 and CD133 have been used for identification and isolation of GCSCs, diagnosis and grading of gastric cancer, and research on GCSC-targeted therapy for gastric cancer. Therefore, discussion of the recent development and advancements in GCSCs will be helpful for providing novel insight into gastric cancer treatment. PMID:24833872

  20. Tumor-associated myeloid cells as guiding forces of cancer cell stemness.

    PubMed

    Sica, Antonio; Porta, Chiara; Amadori, Alberto; Pastò, Anna

    2017-08-01

    Due to their ability to differentiate into various cell types and to support tissue regeneration, stem cells simultaneously became the holy grail of regenerative medicine and the evil obstacle in cancer therapy. Several studies have investigated niche-related conditions that favor stemness properties and increasingly emphasized their association with an inflammatory environment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are major orchestrators of cancer-related inflammation, able to dynamically express different polarized inflammatory programs that promote tumor outgrowth, including tumor angiogenesis, immunosuppression, tissue remodeling and metastasis formation. In addition, these myeloid populations support cancer cell stemness, favoring tumor maintenance and progression, as well as resistance to anticancer treatments. Here, we discuss inflammatory circuits and molecules expressed by TAMs and MDSCs as guiding forces of cancer cell stemness.

  1. Epigenetic Regulation of miRNAs and Breast Cancer Stem Cells

    PubMed Central

    Duru, Nadire; Gernapudi, Ramkishore; Eades, Gabriel; Eckert, Richard; Zhou, Qun

    2015-01-01

    MicroRNAs have emerged as important targets of chemopreventive strategies in breast cancer. We have found that miRNAs are dysregulated at an early stage in breast cancer, in non-malignant Ductal Carcinoma In Situ. Many dietary chemoprevention agents can act by epigenetically activating miRNA-signaling pathways involved in tumor cell proliferation and invasive progression. In addition, many miRNAs activated via chemopreventive strategies target cancer stem cell signaling and prevent tumor progression or relapse. Specifically, we have found that miRNAs regulate DCIS stem cells, which may play important roles in breast cancer progression to invasive disease. We have shown that chemopreventive agents can directly inhibit DCIS stem cells and block tumor formation in vivo, via activation of tumor suppressor miRNAs. PMID:26052481

  2. Ubiquitin B in Cervical Cancer: Critical for the Maintenance of Cancer Stem-Like Cell Characters

    PubMed Central

    Wang, Yingying; Ji, Teng; Sun, Shujuan; Mo, Qingqing; Chen, Pingbo; Fang, Yong; Liu, Jia; Wang, Beibei; Zhou, Jianfeng; Ma, Ding; Wu, Peng

    2013-01-01

    Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate. Ubiquitin, which is a small, highly conserved protein expressed in all eukaryotic cells, can be covalently linked to certain target proteins to mark them for degradation by the ubiquitin-proteasome system. Previous studies highlight the essential role of Ubiquitin B (UbB) and UbB-dependent proteasomal protein degradation in histone deacetylase inhibitor (HDACi) -induced tumor selectivity. We hypothesized that UbB plays a critical role in the function of cervical cancer stem cells. We measured endogenous UbB levels in mammospheres in vitro by real-time PCR and Western blotting. The function of UbB in cancer stem-like cells was assessed after knockdown of UbB expression in prolonged Trichostatin A-selected HeLa cells (HeLa/TSA) by measuring in vitro cell proliferation, cell apoptosis, invasion, and chemotherapy resistance as well as by measuring in vivo growth in an orthotopic model of cervical cancer. We also assessed the cancer stem cell frequency, tumorsphere formation, and in vivo growth of human cervical cancer xenografts after UbB silencing. We found that HeLa/TSA were resistant to chemotherapy, highly expressed the UbB gene and the stem cell markers Sox2, Oct4 and Nanog. These cells also displayed induced differentiation abilities, including enhanced migration/invasion/malignancy capabilities in vitro and in vivo. Furthermore, an elevated expression of UbB was shown in the tumor samples of chemotherapy patients. Silencing of UbB inhibited tumorsphere formation, lowered the expression of stem cell markers and decreased cervical xenograft growth. Our results demonstrate that UbB was significantly increased in prolonged Trichostatin A-selected HeLa cells and it played a key role in the maintenance of cervical cancer stem-like cells. PMID:24367661

  3. Breast tumor heterogeneity: cancer stem cells or clonal evolution?

    PubMed

    Campbell, Lauren L; Polyak, Kornelia

    2007-10-01

    Breast tumors are composed of a variety of cell types with distinct morphologies and behaviors. It is not clear how this tumor heterogeneity comes about. Two popular concepts that attempt to explain this are the cancer stem cell hypothesis and the clonal evolution model. Each of these ideas has been investigated for some time, leading to the accumulation of numerous findings that are used to support one or the other. Although the two views share some similarities, they are fundamentally different notions with very different clinical implications. Analysis of the research backing each concept, along with a review of the results of our recent study investigating putative breast cancer stem cells, suggests how the cancer stem cell hypothesis and the clonal evolution model may be involved in generating breast tumor heterogeneity. An understanding of this process will allow the development of more effective ways to treat and prevent breast cancer.

  4. [Role of let-7 in maintaining characteristics of breast cancer stem cells].

    PubMed

    Sun, Xin; Fan, Chong; Hu, Li-juan; Du, Ning; Xu, Chong-wen; Ren, Hong

    2012-08-01

    To observe the expression of let-7 in breast cancer stem cells and explore the role of let-7 in maintaining the characteristics of breast cancer stem cells. We separated breast cancer stem cells (SP and NSP) from MCF-7 cell line using SP sorting, and observed the expression of let-7a/b/c on SP and NSP cells using quantitative real-time PCR and the expressions of Ras and ERK using Western blotting to study the mechanism by which let-7 maintains the characteristics of breast cancer stem cells. The SP cells accounted for 3.3% in MCF-7 cells, however, the rate dropped to 0.4% when verapamil was added into the process of seperation. The level of Let-7a/b/c in SP cells were lower than that in NSP cells, and among let-7 miRNAs, let-7b/c showed the most obvious difference. The expressions of t-Ras and t-ERK showed no difference between SP and NSP cells, nevertheless, the expressions of p-Ras, p-ERK were higher in SP cells than in NSP cells. SP sorting is an effective method to separate cancer stem cells. There do exist cancer stem cells in MCF-7 breast cancer cell line. Let-7 is down-regulated in SP cells, and the down-regulation makes let-7 lose the opportunity to restrain Ras mRNA, finally, p-Ras and p-ERK are activated. They play an important role in maintaining the characteristics of breast cancer stem cells.

  5. Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells.

    PubMed

    Fedr, Radek; Pernicová, Zuzana; Slabáková, Eva; Straková, Nicol; Bouchal, Jan; Grepl, Michal; Kozubík, Alois; Souček, Karel

    2013-05-01

    The clonogenic assay is a well-established in vitro method for testing the survival and proliferative capability of cells. It can be used to determine the cytotoxic effects of various treatments including chemotherapeutics and ionizing radiation. However, this approach can also characterize cells with different phenotypes and biological properties, such as stem cells or cancer stem cells. In this study, we implemented a faster and more precise method for assessing the cloning efficiency of cancer stem-like cells that were characterized and separated using a high-speed cell sorter. Cell plating onto a microplate using an automatic cell deposition unit was performed in a single-cell or dilution rank mode by the fluorescence-activated cell sorting method. We tested the new automatic cell-cloning assay (ACCA) on selected cancer cell lines and compared it with the manual approach. The obtained results were also compared with the results of the limiting dilution assay for different cell lines. We applied the ACCA to analyze the cloning capacity of different subpopulations of prostate and colon cancer cells based on the expression of the characteristic markers of stem (CD44 and CD133) and cancer stem cells (TROP-2, CD49f, and CD44). Our results revealed that the novel ACCA is a straightforward approach for determining the clonogenic capacity of cancer stem-like cells identified in both cell lines and patient samples. Copyright © 2013 International Society for Advancement of Cytometry.

  6. Cancer microenvironment, inflammation and cancer stem cells: A hypothesis for a paradigm change and new targets in cancer control

    PubMed Central

    Blaylock, Russell L.

    2015-01-01

    Since President Nixon officially declared a war on cancer with the National Cancer Act, billions of dollars have been spent on research in hopes of finding a cure for cancer. Recent reviews have pointed out that over the ensuing 42 years, cancer death rates have barely changed for the major cancers. Recently, several researchers have questioned the prevailing cancer paradigm based on recent discoveries concerning the mechanism of carcinogenesis and the origins of cancer. Over the past decade we have learned a great deal concerning both of these central issues. Cell signaling has taken center stage, particularly as regards the links between chronic inflammation and cancer development. It is now evident that the common factor among a great number of carcinogenic agents is activation of genes controlling inflammation cell-signaling pathways and that these signals control all aspects of the cancer process. Of these pathways, the most important and common to all cancers is the NFκB and STAT3 pathways. The second discovery of critical importance is that mutated stem cells appear to be in charge of the cancer process. Most chemotherapy agents and radiotherapy kill daughter cells of the cancer stem cell, many of which are not tumorigenic themselves. Most cancer stem cells are completely resistant to conventional treatments, which explain dormancy and the poor cure rate with metastatic tumors. A growing number of studies are finding that several polyphenol extracts can kill cancer stem cells as well as daughter cells and can enhance the effectiveness and safety of conventional treatments. These new discoveries provide the clinician with a whole new set of targets for cancer control and cure. PMID:26097771

  7. Head and Neck Cancer Stem Cells: The Side Population

    PubMed Central

    Tabor, Mark H.; Clay, Matthew R.; Owen, John H.; Bradford, Carol R.; Carey, Thomas E.; Wolf, Gregory T.; Prince, Mark E.P.

    2014-01-01

    Background The cancer stem cell (CSC) hypothesis concludes that a subpopulation of tumor cells can self-renew, causing tumor growth, treatment failure, and recurrence. Several tumor studies have identified cells able to efflux Hoechst 33342 dye; the side population (SP). SP cells and CSCs share many characteristics, suggesting the SP isolated from malignant tumors contains CSCs. Methods The SP was isolated from a head and neck cancer cell line and analyzed for CSC-like characteristics. Results The SP demonstrated the ability to reproduce both SP and non-side population (NSP) cells from as few as one cell. The SP had lower expression of active β-catenin and more resistance to 5-Fluorouracil; the SP also demonstrated greater expression of BMI-1 (4.3-fold) and ABCG2 (1.4-fold). SPs were identified in 2 primary human tumors. Conclusions The SP in head and neck cancer cell lines may serve as a valuable in-vitro model for CSCs leading to the development of novel treatment strategies. PMID:21344428

  8. The stem cell patent landscape as relevant to cancer vaccines.

    PubMed

    Wang, Shyh-Jen

    2011-10-01

    Cancer vaccine targeting cancer stem cells is proposed to serve as a potent immunotherapy. Thus, it would be useful to examine the main trends in stem cell patenting activity as a guide for those seeking to develop such cancer vaccines. We found that a substantial number of stem cell patents were granted up to the end of 2010, including ~2000 issued in the US. Many of these have been filed since 2001, including 7,551 applications in the US. Stem cell development, as evidenced by the numbers of PubMed articles, has matured steadily in recent years. However, the other metrics, such as the number of patent applications, the technology-science linkage and the number of patent assignees, have been stagnant. Moreover, the ownership of stem cell patents is still quiet fragmented across multiple organizations, and the number of stem cell patent assignees from the business sector has not increased significantly. Academic and nonprofit institutions not only account for a large share of stem cell patents but also apply for patents continually. Based on this analysis, the strength of stem cell resources seems to remain stagnant in recent years due to the ban on government funding of embryonic stem cell research. Furthermore, the patent prosecution or technical barriers in the field of stem cells would be another main reason that the number of US-issued stem cell patents for each application have been in gradual decline since 2000. Therefore, we consider stem cell technology to still be under development.

  9. Identification of Epigenetic Changes in Prostate Cancer using Induced Pluripotent Stem Cells

    DTIC Science & Technology

    2013-04-01

    0240 TITLE: Identification of Epigenetic Changes in Prostate Cancer using Induced Pluripotent Stem Cells PRINCIPAL INVESTIGATOR: Donna M...TITLE AND SUBTITLE I Identification of Epigenetic Changes in Prostate Cancer using 5a. CONTRACT NUMBER Induced Pluripotent Stem Cells ... stem cells (iPSCs). Comparison of gene and protein expression of these prostatic iPSCs and embryonic stem cells (ESCs) revealed similarities but

  10. Could drugs inhibiting the mevalonate pathway also target cancer stem cells?

    PubMed

    Likus, Wirginia; Siemianowicz, Krzysztof; Bieńk, Konrad; Pakuła, Małgorzata; Pathak, Himani; Dutta, Chhanda; Wang, Qiong; Shojaei, Shahla; Assaraf, Yehuda G; Ghavami, Saeid; Cieślar-Pobuda, Artur; Łos, Marek J

    2016-03-01

    Understanding the connection between metabolic pathways and cancer is very important for the development of new therapeutic approaches based on regulatory enzymes in pathways associated with tumorigenesis. The mevalonate cascade and its rate-liming enzyme HMG CoA-reductase has recently drawn the attention of cancer researchers because strong evidences arising mostly from epidemiologic studies, show that it could promote transformation. Hence, these studies pinpoint HMG CoA-reductase as a candidate proto-oncogene. Several recent epidemiological studies, in different populations, have proven that statins are beneficial for the treatment-outcome of various cancers, and may improve common cancer therapy strategies involving alkylating agents, and antimetabolites. Cancer stem cells/cancer initiating cells (CSC) are key to cancer progression and metastasis. Therefore, in the current review we address the different effects of statins on cancer stem cells. The mevalonate cascade is among the most pleiotropic, and highly interconnected signaling pathways. Through G-protein-coupled receptors (GRCP), it integrates extra-, and intracellular signals. The mevalonate pathway is implicated in cell stemness, cell proliferation, and organ size regulation through the Hippo pathway (e.g. Yap/Taz signaling axis). This pathway is a prime preventive target through the administration of statins for the prophylaxis of obesity-related cardiovascular diseases. Its prominent role in regulation of cell growth and stemness also invokes its role in cancer development and progression. The mevalonate pathway affects cancer metastasis in several ways by: (i) affecting epithelial-to-mesenchymal transition (EMT), (ii) affecting remodeling of the cytoskeleton as well as cell motility, (iii) affecting cell polarity (non-canonical Wnt/planar pathway), and (iv) modulation of mesenchymal-to-epithelial transition (MET). Herein we provide an overview of the mevalonate signaling network. We then briefly

  11. MiR-23b controls ALDH1A1 expression in cervical cancer stem cells.

    PubMed

    Wang, Weiwen; Li, Yang; Liu, Na; Gao, Yu; Li, Long

    2017-04-27

    Cancer stem cells has been widely investigated due to its essential role in cancer progression and drug resistance. Here, we try to find a new therapeutic target for cervical cancer stem cells. We detected ALDH1A1-associated miRNAs expression in our isolated tumorspheres and their corresponding parental cells. Sphere formation assay was also used to determine stemness after cells were manipulated with miR-23b plasmid or miR-23b inhibitor. We found that miR-23b was under-expressed in cervical cancer stem cells to maintain high levels of ALDH1A1. Introduction of miR-23b into cervical cancer cells could alter stemness and cisplatin sensitivity. miR-23b plays key role in maintaining stemness of cervical cancer stem cells and can be developed as therapeutic target to better fight against cervical cancer.

  12. Lung cancer stem cells and implications for future therapeutics.

    PubMed

    Wang, Jing; Li, Ze-hong; White, James; Zhang, Lin-bo

    2014-07-01

    Lung cancer is the most dreaded of all cancers because of the higher mortality rates associated with it worldwide. The various subtypes of lung cancer respond differently to a particular treatment regime, which makes the therapeutic interventions all the more complicated. The concept of cancer stem cells (CSCs) is based primarily on the clinical and experimental observations that indicate the existence of a subpopulation of cells with the capacity to self-renew and differentiate as well as show increased resistance to radiation and chemotherapy. They are considered as the factors responsible for the cases of tumor relapse. The CSCs may have significant role in the development of lung tumorigenesis based on the identification of the CSCs which respond during injury. The properties of multi-potency and self-renewal are shared in common by the lung CSCs with the normal pluripotent stem cells which can be isolated using the similar markers. This review deals with the origin and characteristics of the lung cancer stem cells. The role of different markers used to isolate lung CSCs like CD44, ALDH (aldehyde dehydrogenase), CD133 and ABCG2 (ATP binding cassette sub family G member 2) have been discussed in detail. Analysis of the developmental signaling pathways such as Wnt/β-catenin, Notch, hedgehog in the regulation and maintenance of the lung CSCs have been done. Finally, before targeting the lung CSC biomarkers for potential therapeutics, challenges faced in lung cancer stem cell research need to be taken into account. With the accepted notion that the CSCs are to blame for cancer relapse and drug resistance, targeting them can be an important aspect of lung cancer therapy in the future.

  13. Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate.

    PubMed

    Fujiki, Hirota; Sueoka, Eisaburo; Rawangkan, Anchalee; Suganuma, Masami

    2017-12-01

    Our previous experiments show that the main constituent of green-tea catechins, (-)-epigallocatechin gallate (EGCG), completely prevents tumor promotion on mouse skin initiated with 7,12-dimethylbenz(a)anthracene followed by okadaic acid and that EGCG and green tea extract prevent cancer development in a wide range of target organs in rodents. Therefore, we focused our attention on human cancer stem cells (CSCs) as targets of cancer prevention and treatment with EGCG. The numerous reports concerning anticancer activity of EGCG against human CSCs enriched from cancer cell lines were gathered from a search of PubMed, and we hope our review of the literatures will provide a broad selection for the effects of EGCG on various human CSCs. Based on our theoretical study, we discuss the findings as follows: (1) Compared with the parental cells, human CSCs express increased levels of the stemness markers Nanog, Oct4, Sox2, CD44, CD133, as well as the EMT markers, Twist, Snail, vimentin, and also aldehyde dehydrogenase. They showed decreased levels of E-cadherin and cyclin D1. (2) EGCG inhibits the transcription and translation of genes encoding stemness markers, indicating that EGCG generally inhibits the self-renewal of CSCs. (3) EGCG inhibits the expression of the epithelial-mesenchymal transition phenotypes of human CSCs. (4) The inhibition of EGCG of the stemness of CSCs was weaker compared with parental cells. (5) The weak inhibitory activity of EGCG increased synergistically in combination with anticancer drugs. Green tea prevents human cancer, and the combination of EGCG and anticancer drugs confers cancer treatment with tissue-agnostic efficacy.

  14. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells.

    PubMed

    Yue, Zhiying; Yuan, Zengjin; Zeng, Li; Wang, Ying; Lai, Li; Li, Jing; Sun, Peng; Xue, Xiwen; Qi, Junyi; Yang, Zhengfeng; Zheng, Yansen; Fang, Yuanzhang; Li, Dali; Siwko, Stefan; Li, Yi; Luo, Jian; Liu, Mingyao

    2018-05-01

    The fourth member of the leucine-rich repeat-containing GPCR family (LGR4, frequently referred to as GPR48) and its cognate ligands, R-spondins (RSPOs) play crucial roles in the development of multiple organs as well as the survival of adult stem cells by activation of canonical Wnt signaling. Wnt/β-catenin signaling acts to regulate breast cancer; however, the molecular mechanisms determining its spatiotemporal regulation are largely unknown. In this study, we identified LGR4 as a master controller of Wnt/β-catenin signaling-mediated breast cancer tumorigenesis, metastasis, and cancer stem cell (CSC) maintenance. LGR4 expression in breast tumors correlated with poor prognosis. Either Lgr4 haploinsufficiency or mammary-specific deletion inhibited mouse mammary tumor virus (MMTV)- PyMT- and MMTV- Wnt1-driven mammary tumorigenesis and metastasis. Moreover, LGR4 down-regulation decreased in vitro migration and in vivo xenograft tumor growth and lung metastasis. Furthermore, Lgr4 deletion in MMTV- Wnt1 tumor cells or knockdown in human breast cancer cells decreased the number of functional CSCs by ∼90%. Canonical Wnt signaling was impaired in LGR4-deficient breast cancer cells, and LGR4 knockdown resulted in increased E-cadherin and decreased expression of N-cadherin and snail transcription factor -2 ( SNAI2) (also called SLUG), implicating LGR4 in regulation of epithelial-mesenchymal transition. Our findings support a crucial role of the Wnt signaling component LGR4 in breast cancer initiation, metastasis, and breast CSCs.-Yue, Z., Yuan, Z., Zeng, L., Wang, Y., Lai, L., Li, J., Sun, P., Xue, X., Qi, J., Yang, Z., Zheng, Y., Fang, Y., Li, D., Siwko, S., Li, Y., Luo, J., Liu, M. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells.

  15. Stem Cell-Like Gene Expression in Ovarian Cancer Predicts Type II Subtype and Prognosis

    PubMed Central

    Schwede, Matthew; Spentzos, Dimitrios; Bentink, Stefan; Hofmann, Oliver; Haibe-Kains, Benjamin; Harrington, David; Quackenbush, John; Culhane, Aedín C.

    2013-01-01

    Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age), the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further validation may be valuable

  16. Natural Killer Cell Immunotherapy Targeting Cancer Stem Cells

    PubMed Central

    Luna, Jesus I; Grossenbacher, Steven K.; Murphy, William J; Canter, Robert J

    2017-01-01

    Introduction Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with “stem-cell” like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. In this report, we review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert Opinion Unlike cytotoxic cancer treatments, NK cells are able to target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells. PMID:27960589

  17. Drug Screening Identifies Niclosamide as an Inhibitor of Breast Cancer Stem-Like Cells

    PubMed Central

    Wang, Yu-Chi; Chao, Tai-Kuang; Chang, Cheng-Chang; Yo, Yi-Te; Yu, Mu-Hsien; Lai, Hung-Cheng

    2013-01-01

    The primary cause of death from breast cancer is the progressive growth of tumors and resistance to conventional therapies. It is currently believed that recurrent cancer is repopulated according to a recently proposed cancer stem cell hypothesis. New therapeutic strategies that specifically target cancer stem-like cells may represent a new avenue of cancer therapy. We aimed to discover novel compounds that target breast cancer stem-like cells. We used a dye-exclusion method to isolate side population (SP) cancer cells and, subsequently, subjected these SP cells to a sphere formation assay to generate SP spheres (SPS) from breast cancer cell lines. Surface markers, stemness genes, and tumorigenicity were used to test stem properties. We performed a high-throughput drug screening using these SPS. The effects of candidate compounds were assessed in vitro and in vivo. We successfully generated breast cancer SPS with stem-like properties. These SPS were enriched for CD44high (2.8-fold) and CD24low (4-fold) cells. OCT4 and ABCG2 were overexpressed in SPS. Moreover, SPS grew tumors at a density of 103, whereas an equivalent number of parental cells did not initiate tumor formation. A clinically approved drug, niclosamide, was identified from the LOPAC chemical library of 1,258 compounds. Niclosamide downregulated stem pathways, inhibited the formation of spheroids, and induced apoptosis in breast cancer SPS. Animal studies also confirmed this therapeutic effect. The results of this proof-of-principle study may facilitate the development of new breast cancer therapies in the near future. The extension of niclosamide clinical trials is warranted. PMID:24058587

  18. [Tricostantin A inhibits self-renewal of breast cancer stem cells in vitro].

    PubMed

    Peng, Li; Li, Fu-Xi; Shao, Wen-Feng; Xiong, Jing-Bo

    2013-10-01

    To investigate the effect of tricostantin A (TSA) on self-renewal of breast cancer stem cells and explore the mechanisms. Breast cancer cell lines MDA-MB-468, MDA-MB-231, MCF-7 and SKBR3 were cultured in suspension and treated with different concentrations of TSA for 7 days, using 0.1% DMSO as the control. Secondary mammosphere formation efficiency and percentage of CD44(+)/CD24(-) sub-population in the primary mammospheres were used to evaluate the effects of TSA on self-renewal of breast cancer stem cells. The breast cancer stem cell surface marker CD44(+)/CD24(-) and the percentage of apoptosis in the primary mammospheres were assayed using flow cytometry. The mRNA expressions of Nanog, Sox2 and Oct4 in the primary mammospheres were assayed with quantitative PCR. TSA at both 100 and 500 nmol/L, but not at 10 nmol/L, partially inhibited the self-renewal of breast cancer stem cells from the 4 cell lines. TSA at 500 nmol/L induced cell apoptosis in the primary mammospheres. TSA down-regulated the mRNA expression of Nanog and Sox2 in the primary mammospheres. TSA can partially inhibit the self-renewal of breast cancer stem cells through a mechanism involving the down-regulation of Nanog and Sox2 expression, indicating the value of combined treatments with low-dose TSA and other anticancer drugs to achieve maximum inhibition of breast cancer stem cell self-renewal. The core transcriptional factor of embryonic stem cells Nanog and Sox2 can be potential targets of anticancer therapy.

  19. Methoxyphenyl chalcone sensitizes aggressive epithelial cancer to cisplatin through apoptosis induction and cancer stem cell eradication.

    PubMed

    Su, Yu-Kai; Huang, Wen-Chien; Lee, Wei-Hwa; Bamodu, Oluwaseun Adebayo; Zucha, Muhammad Ary; Astuti, Indwiani; Suwito, Heri; Yeh, Chi-Tai; Lin, Chien-Min

    2017-05-01

    Current standard chemotherapy for late stage ovarian cancer is found unsuccessful due to relapse after completing the regimens. After completing platinum-based chemotherapy, 70% of patients develop relapse and resistance. Recent evidence proves ovarian cancer stem cells as the source of resistance. Therefore, treatment strategy to target both cancer stem cells and normal stem cells is essential. In this study, we developed a novel chalcone derivative as novel drug candidate for ovarian cancer treatment. We found that methoxyphenyl chalcone was effective to eliminate ovarian cancer cells when given either as monotherapy or in combination with cisplatin. We found that cell viability of ovarian cancer cells was decreased through apoptosis induction. Dephosphorylation of Bcl2-associated agonist of cell death protein was increased after methoxyphenyl chalcone treatment that led to activation of caspases. Interestingly, this drug also worked as a G2/M checkpoint modulator with alternative ways of DNA damage signal-evoking potential that might work to increase response after cisplatin treatment. In addition, methoxyphenyl chalcone was able to suppress autophagic flux and stemness regulator in ovarian spheroids that decreased their survival. Therefore, combination of methoxyphenyl chalcone and cisplatin showed synergistic effects. Taken together, we believe that our novel compound is a promising novel therapeutic agent for effective clinical treatment of ovarian cancer.

  20. Co-expression of the Follicle Stimulating Hormone Receptor and Stem Cell Markers: A Novel Approach to Target Ovarian Cancer Stem Cells

    DTIC Science & Technology

    2012-09-01

    ovarian cancer stem cell markers to consider it as a new experimental target for novel nanotechnology approaches capable of destroying ovarian cancer stem...FSHR mRNA after several generations in an amount consistent with stem cell characteristics. Nude mouse experiments to confirm co-expression in vivoare

  1. Aripiprazole, an Antipsychotic and Partial Dopamine Agonist, Inhibits Cancer Stem Cells and Reverses Chemoresistance.

    PubMed

    Suzuki, Shuhei; Okada, Masashi; Kuramoto, Kenta; Takeda, Hiroyuki; Sakaki, Hirotsugu; Watarai, Hikaru; Sanomachi, Tomomi; Seino, Shizuka; Yoshioka, Takashi; Kitanaka, Chifumi

    2016-10-01

    There is a growing interest in repurposing antipsychotic dopamine antagonists for cancer treatment; however, antipsychotics are often associated with an increased risk of fatal events. The anticancer activities of aripiprazole, an antipsychotic drug with partial dopamine agonist activity and an excellent safety profile, remain unknown. The effects of aripiprazole alone or in combination with chemotherapeutic agents on the growth, sphere-forming ability and stem cell/differentiation/chemoresistance marker expression of cancer stem cells, serum-cultured cancer cells from which they were derived, and normal cells were examined. At concentrations non-toxic to normal cells, aripiprazole inhibited the growth of serum-cultured cancer cells and cancer stem cells. Furthermore, aripiprazole induced differentiation and inhibited sphere formation, as well as stem cell marker expression of cancer stem cells while inhibiting their survivin expression and sensitizing them to chemotherapeutic agents. Repurposing aripiprazole as an anticancer stem cell drug may merit further consideration. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. Glioma-Associated Oncogene Homolog Inhibitors Have the Potential of Suppressing Cancer Stem Cells of Breast Cancer.

    PubMed

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Sheen, I-Shyan; Wu, Szu-Hua; Lu, Ssu-Jung; Wang, Chih-Hsuan; Chang, Chiung-Fang

    2018-05-05

    Overexpression of Sonic Hedgehog signaling (Shh) pathway molecules is associated with invasiveness and recurrence in breast carcinoma. Therefore, inhibition of the Shh pathway downstream molecule Glioma-associated Oncogene Homolog (Gli) was investigated for its ability to reduce progression and invasiveness of patient-derived breast cancer cells and cell lines. Human primary breast cancer T2 cells with high expression of Shh signaling pathway molecules were compared with breast cancer line MDA-MB-231 cells. The therapeutic effects of Gli inhibitors were examined in terms of the cell proliferation, apoptosis, cancer stem cells, cell migration and gene expression. Blockade of the Shh signaling pathway could reduce cell proliferation and migration only in MDA-MB-231 cells. Hh pathway inhibitor-1 (HPI-1) increased the percentages of late apoptotic cells in MDA-MB-231 cells and early apoptotic cells in T2 cells. It reduced Bcl2 expression for cell proliferation and increased Bim expression for apoptosis. In addition, Gli inhibitor HPI-1 decreased significantly the percentages of cancer stem cells in T2 cells. HPI-1 worked more effectively than GANT-58 against breast carcinoma cells. In conclusion, HPI-1 could inhibit cell proliferation, reduce cell invasion and decrease cancer stem cell population in breast cancer cells. To target Gli-1 could be a potential strategy to suppress breast cancer stem cells.

  3. New Advances and Challenges of Targeting Cancer Stem Cells.

    PubMed

    Dashzeveg, Nurmaa K; Taftaf, Rokana; Ramos, Erika K; Torre-Healy, Luke; Chumakova, Anastasia; Silver, Daniel J; Alban, Tyler J; Sinyuk, Maksim; Thiagarajan, Praveena S; Jarrar, Awad M; Turaga, Soumya M; Saygin, Caner; Mulkearns-Hubert, Erin; Hitomi, Masahiro; Rich, Jeremy N; Gerson, Stanton L; Lathia, Justin D; Liu, Huiping

    2017-10-01

    The second International Cancer Stem Cell Conference in Cleveland, Ohio, on September 20-23, 2016, convened 330 attendees from academic, industrial, and clinical organizations. It featured a debate on the concepts and challenges of the cancer stem cells (CSC) as well as CSC-centered scientific sessions on clinical trials, genetics and epigenetics, tumor microenvironment, immune suppression, metastasis, therapeutic resistance, and emerging novel concepts. The conference hosted 35 renowned speakers, 100 posters, 20 short talks, and a preconference workshop. The reported advances of CSC research and therapies fostered new collaborations across national and international borders, and inspired the next generation's young scientists. Cancer Res; 77(19); 5222-7. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Therapeutic Potential, Challenges and Future Perspective of Cancer Stem Cells in Translational Oncology: A Critical Review.

    PubMed

    Shukla, Gaurav; Khera, Harvinder Kour; Srivastava, Amit Kumar; Khare, Piush; Patidar, Rahul; Saxena, Rajiv

    2017-01-01

    Stem cell research is a rapidly developing field that offers effective treatment for a variety of malignant and non-malignant diseases. Stem cell is a regenerative medicine associated with the replacement, repair, and restoration of injured tissue. Stem cell research is a promising field having maximum therapeutic potential. Cancer stem cells (CSCs) are the cells within the tumor that posses capacity of selfrenewal and have a root cause for the failure of traditional therapies leading to re-occurrence of cancer. CSCs have been identified in blood, breast, brain, and colon cancer. Traditional therapies target only fast growing tumor mass, but not slow-dividing cancer stem cells. It has been shown that embryonic pathways such as Wnt, Hedgehog and Notch, control self-renewal capacity and involved in cancer stem cell maintenance. Targeting of these pathways may be effective in eradicating cancer stem cells and preventing chemotherapy and radiotherapy resistance. Targeting CSCs has become one of the most effective approaches to improve the cancer survival by eradicating the main root cause of cancer. The present review will address, in brief, the importance of cancer stem cells in targeting cancer as better and effective treatment along with a concluding outlook on the scope and challenges in the implication of cancer stem cells in translational oncology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Microenvironment-Programmed Metastatic Prostate Cancer Stem Cells (mPCSCs)

    DTIC Science & Technology

    2015-10-01

    osteoblastic differentiation during aging . Rejuvenation Res 2006;9:10–9. 25] Gao FB, Raff M. Cell size control and a cell-intrinsic maturation program in...self- renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 10, 556-569 (2012). 8. Rybak, A.P., Bristow, R.G., & Kapoor, A...established clinical tumor is sustained by subpopulations of self- renewing cancer cells operationally called cancer stem cells (CSC) that can generate

  6. The novel JNK inhibitor AS602801 inhibits cancer stem cells in vitro and in vivo.

    PubMed

    Okada, Masashi; Kuramoto, Kenta; Takeda, Hiroyuki; Watarai, Hikaru; Sakaki, Hirotsugu; Seino, Shizuka; Seino, Manabu; Suzuki, Shuhei; Kitanaka, Chifumi

    2016-05-10

    A phase 2 clinical trial investigating the efficacy and safety of AS602801, a newly developed JNK inhibitor, in the treatment of inflammatory endometriosis is complete. We are now examining whether AS602801 acts against human cancer cells in vitro and in vivo. In vitro, AS602801 exhibited cytotoxicity against both serum-cultured non-stem cancer cells and cancer stem cells derived from human pancreatic cancer, non-small cell lung cancer, ovarian cancer and glioblastoma at concentrations that did not decrease the viability of normal human fibroblasts. AS602801 also inhibited the self-renewal and tumor-initiating capacity of cancer stem cells surviving AS602801 treatment. Cancer stem cells in established xenograft tumors were reduced by systemic administration of AS602801 at a dose and schedule that did not adversely affect the health of the tumor-bearing mice. These findings suggest AS602801 is a promising anti-cancer stem cell agent, and further investigation of the utility of AS602801 in the treatment of cancer seems warranted.

  7. The stem cell division theory of cancer.

    PubMed

    López-Lázaro, Miguel

    2018-03-01

    All cancer registries constantly show striking differences in cancer incidence by age and among tissues. For example, lung cancer is diagnosed hundreds of times more often at age 70 than at age 20, and lung cancer in nonsmokers occurs thousands of times more frequently than heart cancer in smokers. An analysis of these differences using basic concepts in cell biology indicates that cancer is the end-result of the accumulation of cell divisions in stem cells. In other words, the main determinant of carcinogenesis is the number of cell divisions that the DNA of a stem cell has accumulated in any type of cell from the zygote. Cell division, process by which a cell copies and separates its cellular components to finally split into two cells, is necessary to produce the large number of cells required for living. However, cell division can lead to a variety of cancer-promoting errors, such as mutations and epigenetic mistakes occurring during DNA replication, chromosome aberrations arising during mitosis, errors in the distribution of cell-fate determinants between the daughter cells, and failures to restore physical interactions with other tissue components. Some of these errors are spontaneous, others are promoted by endogenous DNA damage occurring during quiescence, and others are influenced by pathological and environmental factors. The cell divisions required for carcinogenesis are primarily caused by multiple local and systemic physiological signals rather than by errors in the DNA of the cells. As carcinogenesis progresses, the accumulation of DNA errors promotes cell division and eventually triggers cell division under permissive extracellular environments. The accumulation of cell divisions in stem cells drives not only the accumulation of the DNA alterations required for carcinogenesis, but also the formation and growth of the abnormal cell populations that characterize the disease. This model of carcinogenesis provides a new framework for understanding the

  8. Cervical Cancer Stem Cells Selectively Overexpress HPV Oncoprotein E6 that Controls Stemness and Self-Renewal through Upregulation of HES1.

    PubMed

    Tyagi, Abhishek; Vishnoi, Kanchan; Mahata, Sutapa; Verma, Gaurav; Srivastava, Yogesh; Masaldan, Shashank; Roy, Bal Gangadhar; Bharti, Alok C; Das, Bhudev C

    2016-08-15

    Perturbation of keratinocyte differentiation by E6/E7 oncoproteins of high-risk human papillomaviruses that drive oncogenic transformation of cells in squamocolumnar junction of the uterine cervix may confer "stem-cell like" characteristics. However, the crosstalk between E6/E7 and stem cell signaling during cervical carcinogenesis is not well understood. We therefore examined the role of viral oncoproteins in stem cell signaling and maintenance of stemness in cervical cancer. Isolation and enrichment of cervical cancer stem-like cells (CaCxSLCs) was done from cervical primary tumors and cancer cell lines by novel sequential gating using a set of functional and phenotypic markers (ABCG2, CD49f, CD71, CD133) in defined conditioned media for assessing sphere formation and expression of self-renewal and stemness markers by FACS, confocal microscopy, and qRT-PCR. Differential expression level and DNA-binding activity of Notch1 and its downstream targets in CaCxSLCs as well as silencing of HPVE6/Hes1 by siRNA was evaluated by gel retardation assay, FACS, immunoblotting, and qRT-PCR followed by in silico and in vivo xenograft analysis. CaCxSLCs showed spheroid-forming ability, expressed self-renewal and stemness markers Oct4, Sox2, Nanog, Lrig1, and CD133, and selectively overexpressed E6 and HES1 transcripts in both cervical primary tumors and cancer cell lines. The enriched CaCxSLCs were highly tumorigenic and did recapitulate primary tumor histology in nude mice. siRNA silencing of HPVE6 or Hes1 abolished sphere formation, downregulated AP-1-STAT3 signaling, and induced redifferentiation. Our findings suggest the possible mechanism by which HPVE6 potentially regulate and maintain stem-like cancer cells through Hes1. Clin Cancer Res; 22(16); 4170-84. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Mesenchymal stem cell's secretome promotes selective enrichment of cancer stem-like cells with specific cytogenetic profile.

    PubMed

    Jiménez, Gema; Hackenberg, Michael; Catalina, Purificación; Boulaiz, Houria; Griñán-Lisón, Carmen; García, María Ángel; Perán, Macarena; López-Ruiz, Elena; Ramírez, Alberto; Morata-Tarifa, Cynthia; Carrasco, Esther; Aguilera, Margarita; Marchal, Juan Antonio

    2018-08-10

    Cancer stem cells (CSCs) are responsible for tumor initiation, metastasis and cancer recurrence, however the involvement of microenvironment is crucial. Here, we have analyzed how human mesenchymal stem cells (MSCs)-derived conditioned medium (CM) affect colon and melanoma CSCs enrichment and maintenance. Our results strongly suggest that the secretome of CM-MSCs selects and maintains subpopulations with high expression of CSCs markers and ALDH1 activity, low proliferation rates with G1 phase arrest, and notably retain in vivo these properties. Cytogenetic analyses indicated that CM-cultured cells contain alterations in chromosome 17 (17q25). Subsequent SKY-FISH analyses suggested that genes located in 17q25 might be involved in stem-cell maintenance. The characterization of secreted proteins present in CM-MSCs revealed that four cytokines and seven growth factors are directly linked to the CSCs enrichment reported in this study. Further analyses revealed that the combination of just IL6 and HGF is enough to provide cancer cells with better stemness properties. In conclusion, this study demonstrates how specific chromosomal alterations present in CSCs subpopulations might represent an advantage for their in vitro maintenance and in vivo stemness properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    PubMed Central

    Mavroudi, Maria; Zarogoulidis, Paul; Porpodis, Konstantinos; Kioumis, Ioannis; Lampaki, Sofia; Yarmus, Lonny; Malecki, Raf; Zarogoulidis, Konstantinos; Malecki, Marek

    2014-01-01

    Introduction Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The statistics speak for themselves with the grim reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem cells’ guided gene therapy. Review of therapeutic strategies in preclinical and clinical trials Stem cells have the unique potential for self renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells only. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for

  11. Estrogen Receptor β as a Therapeutic Target in Breast Cancer Stem Cells

    PubMed Central

    Ma, Ran; Karthik, Govindasamy-Muralidharan; Lövrot, John; Haglund, Felix; Rosin, Gustaf; Katchy, Anne; Zhang, Xiaonan; Viberg, Lisa; Frisell, Jan; Williams, Cecilia; Linder, Stig; Fredriksson, Irma

    2017-01-01

    Abstract Background: Breast cancer cells with tumor-initiating capabilities (BSCs) are considered to maintain tumor growth and govern metastasis. Hence, targeting BSCs will be crucial to achieve successful treatment of breast cancer. Methods: We characterized mammospheres derived from more than 40 cancer patients and two breast cancer cell lines for the expression of estrogen receptors (ERs) and stem cell markers. Mammosphere formation and proliferation assays were performed on cells from 19 cancer patients and five healthy individuals after incubation with ER-subtype selective ligands. Transcriptional analysis was performed to identify pathways activated in ERβ-stimulated mammospheres and verified using in vitro experiments. Xenograft models (n = 4 or 5 per group) were used to study the role of ERs during tumorigenesis. Results: We identified an absence of ERα but upregulation of ERβ in BSCs associated with phenotypic stem cell markers and responsible for the proliferative role of estrogens. Knockdown of ERβ caused a reduction of mammosphere formation in cell lines and in patient-derived cancer cells (40.7%, 26.8%, and 39.1%, respectively). Gene set enrichment analysis identified glycolysis-related pathways (false discovery rate < 0.001) upregulated in ERβ-activated mammospheres. We observed that tamoxifen or fulvestrant alone was insufficient to block proliferation of patient-derived BSCs while this could be accomplished by a selective inhibitor of ERβ (PHTPP; 53.7% in luminal and 45.5% in triple-negative breast cancers). Furthermore, PHTPP reduced tumor initiation in two patient-derived xenografts (75.9% and 59.1% reduction in tumor volume, respectively) and potentiated tamoxifen-mediated inhibition of tumor growth in MCF7 xenografts. Conclusion: We identify ERβ as a mediator of estrogen action in BSCs and a novel target for endocrine therapy. PMID:28376210

  12. Mathematical models of tissue stem and transit target cell divisions and the risk of radiation- or smoking-associated cancer

    PubMed Central

    Hendry, Jolyon H.

    2017-01-01

    There is compelling biological data to suggest that cancer arises from a series of mutations in single target cells, resulting in defects in cell renewal and differentiation processes which lead to malignancy. Because much mutagenic damage is expressed following cell division, more-rapidly renewing tissues could be at higher risk because of the larger number of cell replications. Cairns suggested that renewing tissues may reduce cancer risk by partitioning the dividing cell populations into lineages comprising infrequently-dividing long-lived stem cells and frequently-dividing short-lived daughter transit cells. We develop generalizations of three recent cancer-induction models that account for the joint maintenance and renewal of stem and transit cells, also competing processes of partially transformed cell proliferation and differentiation/apoptosis. We are particularly interested in using these models to separately assess the probabilities of mutation and development of cancer associated with “spontaneous” processes and with those linked to a specific environmental mutagen, specifically ionizing radiation or cigarette smoking. All three models demonstrate substantial variation in cancer risks, by at least 20 orders of magnitude, depending on the assumed number of critical mutations required for cancer, and the stem-cell and transition-cell mutation rates. However, in most cases the conditional probabilities of cancer being mutagen-induced range between 7–96%. The relative risks associated with mutagen exposure compared to background rates are also stable, ranging from 1.0–16.0. Very few cancers, generally <0.5%, arise from mutations occurring solely in stem cells rather than in a combination of stem and transit cells. However, for cancers with 2 or 3 critical mutations, a substantial proportion of cancers, in some cases 100%, have at least one mutation derived from a mutated stem cell. Little difference is made to relative risks if competing processes of

  13. Mathematical models of tissue stem and transit target cell divisions and the risk of radiation- or smoking-associated cancer.

    PubMed

    Little, Mark P; Hendry, Jolyon H

    2017-02-01

    There is compelling biological data to suggest that cancer arises from a series of mutations in single target cells, resulting in defects in cell renewal and differentiation processes which lead to malignancy. Because much mutagenic damage is expressed following cell division, more-rapidly renewing tissues could be at higher risk because of the larger number of cell replications. Cairns suggested that renewing tissues may reduce cancer risk by partitioning the dividing cell populations into lineages comprising infrequently-dividing long-lived stem cells and frequently-dividing short-lived daughter transit cells. We develop generalizations of three recent cancer-induction models that account for the joint maintenance and renewal of stem and transit cells, also competing processes of partially transformed cell proliferation and differentiation/apoptosis. We are particularly interested in using these models to separately assess the probabilities of mutation and development of cancer associated with "spontaneous" processes and with those linked to a specific environmental mutagen, specifically ionizing radiation or cigarette smoking. All three models demonstrate substantial variation in cancer risks, by at least 20 orders of magnitude, depending on the assumed number of critical mutations required for cancer, and the stem-cell and transition-cell mutation rates. However, in most cases the conditional probabilities of cancer being mutagen-induced range between 7-96%. The relative risks associated with mutagen exposure compared to background rates are also stable, ranging from 1.0-16.0. Very few cancers, generally <0.5%, arise from mutations occurring solely in stem cells rather than in a combination of stem and transit cells. However, for cancers with 2 or 3 critical mutations, a substantial proportion of cancers, in some cases 100%, have at least one mutation derived from a mutated stem cell. Little difference is made to relative risks if competing processes of

  14. Reprogramming to developmental plasticity in cancer stem cells.

    PubMed

    O'Brien-Ball, Caitlin; Biddle, Adrian

    2017-10-15

    During development and throughout adult life, sub-populations of cells exist that exhibit phenotypic plasticity - the ability to differentiate into multiple lineages. This behaviour is important in embryogenesis, is exhibited in a more limited context by adult stem cells, and can be re-activated in cancer cells to drive important processes underlying tumour progression. A well-studied mechanism of phenotypic plasticity is the epithelial-to-mesenchymal transition (EMT), a process which has been observed in both normal and cancerous cells. The epigenetic and metabolic modifications necessary to facilitate phenotypic plasticity are first seen in development and can be re-activated both in normal regeneration and in cancer. In cancer, the re-activation of these mechanisms enables tumour cells to acquire a cancer stem cell (CSC) phenotype with enhanced ability to survive in hostile environments, resist therapeutic interventions, and undergo metastasis. However, recent research has suggested that plasticity may also expose weaknesses in cancer cells that could be exploited for future therapeutic development. More research is needed to identify developmental mechanisms that are active in cancer, so that these may be targeted to reduce tumour growth and metastasis and overcome therapeutic resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Antitumor immunity and cancer stem cells.

    PubMed

    Schatton, Tobias; Frank, Markus H

    2009-09-01

    Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5(+) MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy.

  16. Antitumor Immunity and Cancer Stem Cells

    PubMed Central

    Schatton, Tobias; Frank, Markus H.

    2010-01-01

    Self-renewing cancer stem cells (CSC) capable of spawning more differentiated tumor cell progeny are required for tumorigenesis and neoplastic progression of leukemias and several solid cancers. The mechanisms by which CSC cause tumor initiation and growth are currently unknown. Recent findings that suggest a negative correlation between degrees of host immunocompetence and rates of cancer development raise the possibility that only a restricted minority of malignant cells, namely CSC, may possess the phenotypic and functional characteristics to evade host antitumor immunity. In human malignant melanoma, a highly immunogenic cancer, we recently identified malignant melanoma initiating cells (MMIC), a novel type of CSC, based on selective expression of the chemoresistance mediator ABCB5. Here we present evidence of a relative immune privilege of ABCB5+ MMIC, suggesting refractoriness to current immunotherapeutic treatment strategies. We discuss our findings in the context of established immunomodulatory functions of physiologic stem cells and in relation to mechanisms responsible for the downregulation of immune responses against tumors. We propose that the MMIC subset might be responsible for melanoma immune evasion and that immunomodulation might represent one mechanism by which CSC advance tumorigenic growth and resistance to immunotherapy. Accordingly, the possibility of an MMIC-driven tumor escape from immune-mediated rejection has important implications for current melanoma immunotherapy. PMID:19796244

  17. Oral epithelial stem cells – implications in normal development and cancer metastasis

    PubMed Central

    Papagerakis, Silvana; Pannone, Giuseppe; Zheng, Li; About, Imad; Taqi, Nawar; Nguyen, Nghia P.T.; Matossian, Margarite; McAlpin, Blake; Santoro, Angela; McHugh, Jonathan; Prince, Mark E.; Papagerakis, Petros

    2014-01-01

    Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination. PMID:24803391

  18. Evolution of Energy Metabolism, Stem Cells and Cancer Stem Cells: How the Warburg and Barker Hypotheses Might Be Linked

    PubMed Central

    Trosko, James E.; Kang, Kyung-Sun

    2012-01-01

    The evolutionary transition from single cells to the metazoan forced the appearance of adult stem cells and a hypoxic niche, when oxygenation of the environment forced the appearance of oxidative phosphorylation from that of glycolysis. The prevailing paradigm in the cancer field is that cancers start from the “immortalization” or “re-programming” of a normal, differentiated cell with many mitochondria, that metabolize via oxidative phosphorylation. This paradigm has been challenged with one that assumes that the target cell for carcinogenesis is the normal, immortal adult stem cell, with few mitochondria. This adult organ-specific stem cell is blocked from “mortalizing” or from “programming” to be terminally differentiated. Two hypotheses have been offered to explain cancers, namely, the “stem cell theory” and the “de-differentiation” or “re-programming” theory. This Commentary postulates that the paleochemistry of the oceans, which, initially, provided conditions for life’ s energy to arise via glycolysis, changed to oxidative phosphorylation for life’ s processes. In doing so, stem cells evolved, within hypoxic niches, to protect the species germinal and somatic genomes. This Commentary provides support for the “stem cell theory”, in that cancer cells, which, unlike differentiated cells, have few mitochondria and metabolize via glycolysis. The major argument against the “de-differentiation theory” is that, if re-programming of a differentiated cell to an “induced pluri-potent stem cell” happened in an adult, teratomas, rather than carcinomas, should be the result. PMID:24298354

  19. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2015-07-01

    dominant role over some oncogene function.In addition, we recently reported that cancer stem cells (CSCs)- stem cell like cells in tumors that have stem ... cell properties and tumor initiating ability- retain epigenetic memories of their cells of origin (Chow et al., 2014). We showed that CSCs derived from

  20. Spatiotemporal switching signals for cancer stem cell activation in pediatric origins of adulthood cancer: Towards a watch-and-wait lifetime strategy for cancer treatment.

    PubMed

    Li, Shengwen Calvin; Kabeer, Mustafa H

    2018-02-26

    Pediatric origin of cancer stem cell hypothesis holds great promise and potential in adult cancer treatment, however; the road to innovation is full of obstacles as there are plenty of questions left unanswered. First, the key question is to characterize the nature of such stem cells (concept). Second, the quantitative imaging of pediatric stem cells should be implemented (technology). Conceptually, pediatric stem cell origins of adult cancer are based on the notion that plasticity in early life developmental programming evolves local environments to cancer. Technologically, such imaging in children is lacking as all imaging is designed for adult patients. We postulate that the need for quantitative imaging to measure space-time changes of plasticity in early life developmental programming in children may trigger research and development of the imaging technology. Such quantitative imaging of pediatric origin of adulthood cancer will help develop a spatiotemporal monitoring system to determine cancer initiation and progression. Clinical validation of such speculative hypothesis-that cancer originates in a pediatric environment-will help implement a wait-and-watch strategy for cancer treatment.

  1. Resetting cancer stem cell regulatory nodes upon MYC inhibition.

    PubMed

    Galardi, Silvia; Savino, Mauro; Scagnoli, Fiorella; Pellegatta, Serena; Pisati, Federica; Zambelli, Federico; Illi, Barbara; Annibali, Daniela; Beji, Sara; Orecchini, Elisa; Alberelli, Maria Adele; Apicella, Clara; Fontanella, Rosaria Anna; Michienzi, Alessandro; Finocchiaro, Gaetano; Farace, Maria Giulia; Pavesi, Giulio; Ciafrè, Silvia Anna; Nasi, Sergio

    2016-12-01

    MYC deregulation is common in human cancer and has a role in sustaining the aggressive cancer stem cell populations. MYC mediates a broad transcriptional response controlling normal biological programmes, but its activity is not clearly understood. We address MYC function in cancer stem cells through the inducible expression of Omomyc-a MYC-derived polypeptide interfering with MYC activity-taking as model the most lethal brain tumour, glioblastoma. Omomyc bridles the key cancer stemlike cell features and affects the tumour microenvironment, inhibiting angiogenesis. This occurs because Omomyc interferes with proper MYC localization and itself associates with the genome, with a preference for sites occupied by MYC This is accompanied by selective repression of master transcription factors for glioblastoma stemlike cell identity such as OLIG2, POU3F2, SOX2, upregulation of effectors of tumour suppression and differentiation such as ID4, MIAT, PTEN, and modulation of the expression of microRNAs that target molecules implicated in glioblastoma growth and invasion such as EGFR and ZEB1. Data support a novel view of MYC as a network stabilizer that strengthens the regulatory nodes of gene expression networks controlling cell phenotype and highlight Omomyc as model molecule for targeting cancer stem cells. © 2016 The Authors.

  2. Gene Expression Profiling of Liver Cancer Stem Cells by RNA-Sequencing

    PubMed Central

    Lam, Chi Tat; Ng, Michael N. P.; Yu, Wan Ching; Lau, Joyce; Wan, Timothy; Wang, Xiaoqi; Yan, Zhixiang; Liu, Hang; Fan, Sheung Tat

    2012-01-01

    Background Accumulating evidence supports that tumor growth and cancer relapse are driven by cancer stem cells. Our previous work has demonstrated the existence of CD90+ liver cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). Nevertheless, the characteristics of these cells are still poorly understood. In this study, we employed a more sensitive RNA-sequencing (RNA-Seq) to compare the gene expression profiling of CD90+ cells sorted from tumor (CD90+CSCs) with parallel non-tumorous liver tissues (CD90+NTSCs) and elucidate the roles of putative target genes in hepatocarcinogenesis. Methodology/Principal Findings CD90+ cells were sorted respectively from tumor and adjacent non-tumorous human liver tissues using fluorescence-activated cell sorting. The amplified RNAs of CD90+ cells from 3 HCC patients were subjected to RNA-Seq analysis. A differential gene expression profile was established between CD90+CSCs and CD90+NTSCs, and validated by quantitative real-time PCR (qRT-PCR) on the same set of amplified RNAs, and further confirmed in an independent cohort of 12 HCC patients. Five hundred genes were differentially expressed (119 up-regulated and 381 down-regulated genes) between CD90+CSCs and CD90+NTSCs. Gene ontology analysis indicated that the over-expressed genes in CD90+CSCs were associated with inflammation, drug resistance and lipid metabolism. Among the differentially expressed genes, glypican-3 (GPC3), a member of glypican family, was markedly elevated in CD90+CSCs compared to CD90+NTSCs. Immunohistochemistry demonstrated that GPC3 was highly expressed in forty-two human liver tumor tissues but absent in adjacent non-tumorous liver tissues. Flow cytometry indicated that GPC3 was highly expressed in liver CD90+CSCs and mature cancer cells in liver cancer cell lines and human liver tumor tissues. Furthermore, GPC3 expression was positively correlated with the number of CD90+CSCs in liver tumor tissues. Conclusions/Significance The identified genes

  3. Transient receptor potential vanilloid-type 2 targeting on stemness in liver cancer.

    PubMed

    Hu, Zecheng; Cao, Xiaocheng; Fang, Yu; Liu, Guoxing; Xie, Chengzhi; Qian, Ke; Lei, Xiaohua; Cao, Zhenyu; Du, Huihui; Cheng, Xiangding; Xu, Xundi

    2018-06-12

    The malignant phenotype of the cells resulting from human liver cancer is driven by liver cancer stem-like cells (LCSLCs). Transient Receptor Potential Vanilloid-type 2 channel (TRPV2) contributes to the progression of different tumor types, including liver cancer. In the current study, the TRPV2 expression levels give rise to the effect on stemness in liver cancer cell lines. TRPV2 knockdown in HepG2 cells enhanced spheroid and colony formation, and expression levels of CD133, CD44 and ALDH1 whereas the opposite effects were observed in TRPV2 enforced expression in SMMC-7721 cells. Furthermore, TRPV2 overexpression restored inhibition of spheroid and colony formation, and stem cell markers expression in HepG2 cells with TRPV2 silencing. The addition of the TRPV2 agonist probenecid and the TRPV2 antagonist tranilast suppressed and/or increased in vitro spheroid and colony formation, and stem cell marker expression of LCSLCs and/or liver cancer cell lines, respectively. Notably, probenecid and tranilast significantly inhibited or promoted tumor growth of HepG2 xenografts in the severe combined immunodeficiency (SCID) mouse model, respectively. TRPV2 expression at protein levels revealed converse correlation with those of CD133 and CD44 in human hepatocellular carcinoma (HCC) tissue. Collectively, the data demonstrate that TRPV2 exert effects on stemness of liver cancer and is a potential target in the treatment of human liver cancer patients. Copyright © 2018. Published by Elsevier Masson SAS.

  4. Androgen deprivation and stem cell markers in prostate cancers

    PubMed Central

    Tang, Yao; Hamburger, Anne W; Wang, Linbo; Khan, Mohammad Afnan; Hussain, Arif

    2010-01-01

    In our previous studies using human LNCaP xenografts and TRAMP (transgenic adenocarcinoma of mouse prostate) mice, androgen deprivation therapy (ADT) resulted in a temporary cessation of prostate cancer (PCa) growth, but then tumors grew faster with more malignant behaviour. To understand whether cancer stem cells might play a role in PCa progression in these animal models, we investigated the expressions of stem cell-related markers in tumors at different time points after ADT. In both animal models, enhanced expressions of stem cell markers were observed in tumors of castrated mice, as compared to non-castrated controls. This increased cell population that expressed stem cell markers is designated as stem-like cells (SLC) in this article. We also observed that the SLC peaked at relatively early time points after ADT, before tumors resumed their growth. These results suggest that the SLC population may play a role in tumor re-growth and disease progression, and that targeting the SLC at their peak-expression time point may prevent tumor recurrence following ADT. PMID:20126580

  5. Stem cell autocrine CXCL12/CXCR4 stimulates invasion and metastasis of esophageal cancer.

    PubMed

    Wang, Xingwei; Cao, Yan; Zhang, Shirong; Chen, Zhihui; Fan, Ling; Shen, Xiaochun; Zhou, Shiwen; Chen, Dongfeng

    2017-05-30

    Esophageal cancer is one of the most common malignant tumors of the digestive tract. The greatest obstacle to the curing of esophageal cancer is its propensity to spread and metastasize. Esophageal cancer stem cells are considered the source for recurrence and metastasis of the tumors. While clinical evidence suggested that continuous up-regulation of CXCL12/CXCR4 was significantly associated with poor prognosis in patients with esophageal cancer, but the role and mechanism of CXCL12/CXCR4 in the invasion and metastasis of esophageal cancer has not been reported by far. This study found that esophageal cancer stem cells not only autocrine a great amount of CXCL12, but also high expression of its corresponding receptor CXCR4. Most importantly, the ability of esophageal cancer stem cells to spread and metastasize could be inhibited by blockage of CXCR4 with inhibitors or shRNA approaches both in vivo and in vitro studies. The important role of CXCL12 in the invasion and metastasis of esophageal cancer stem cells was also confirmed by loss-of-function and gain-of-function strategies. Mechanistically, we demonstrated that CXCL12/CXCR4 activated the ERK1/2 pathway and thereby ultimately maintained the characteristics of high-level invasion and metastasis of esophageal cancer stem cells. Taken together, our findings suggested that autocrine CXCL12/CXCR4 was one of the major mechanisms underlying the metastatic property of esophageal cancer stem cells through ERK1/2 signaling pathway, and might serve as a therapeutic target for esophageal cancer patients.

  6. CD271 Defines a Stem Cell-Like Population in Hypopharyngeal Cancer

    PubMed Central

    Imai, Takayuki; Tamai, Keiichi; Oizumi, Sayuri; Oyama, Kyoko; Yamaguchi, Kazunori; Sato, Ikuro; Satoh, Kennichi; Matsuura, Kazuto; Saijo, Shigeru; Sugamura, Kazuo; Tanaka, Nobuyuki

    2013-01-01

    Cancer stem cells contribute to the malignant phenotypes of a variety of cancers, but markers to identify human hypopharyngeal cancer (HPC) stem cells remain poorly understood. Here, we report that the CD271+ population sorted from xenotransplanted HPCs possesses an enhanced tumor-initiating capability in immunodeficient mice. Tumors generated from the CD271+ cells contained both CD271+ and CD271− cells, indicating that the population could undergo differentiation. Immunohistological analyses of the tumors revealed that the CD271+ cells localized to a perivascular niche near CD34+ vasculature, to invasive fronts, and to the basal layer. In accordance with these characteristics, a stemness marker, Nanog, and matrix metalloproteinases (MMPs), which are implicated in cancer invasion, were significantly up-regulated in the CD271+ compared to the CD271− cell population. Furthermore, using primary HPC specimens, we demonstrated that high CD271 expression was correlated with a poor prognosis for patients. Taken together, our findings indicate that CD271 is a novel marker for HPC stem-like cells and for HPC prognosis. PMID:23626764

  7. Correlation between telomerase and mTOR pathway in cancer stem cells.

    PubMed

    Dogan, Fatma; Biray Avci, Cigir

    2018-01-30

    Cancer stem cells (CSCs), which are defined as a subset of tumor cells, are able to self-renew, proliferate, differentiate similar to normal stem cells. Therefore, targeting CSCs has been considered as a new approach in cancer therapy. The mammalian target of rapamycin (mTOR) is a receptor tyrosine kinase which plays an important role in regulating cell proliferation, differentiation, cell growth, self-renewal in CSCs. On the other hand, hTERT overactivation provides replicative feature and immortality to CSCs, so the stemness and replicative properties of CSCs depend on telomerase activity. Therefore hTERT/telomerase activity may become a universal biomarker for anticancer therapy and it is an attractive therapeutic target for CSCs. It is known that mTOR regulates telomerase activity at the translational and post-translational level. Researchers show that mTOR inhibitor rapamycin reduces telomerase activity without changing hTERT mRNA activity. Correlation between mTOR and hTERT is important for survival and immortality of cancer cells. In addition, the PI3K/AKT/mTOR signaling pathway and hTERT up-regulation are related with cancer stemness features and drug resistance. mTOR inhibitor and TERT inhibitor combination may construct a novel strategy in cancer stem cells and it can make a double effect on telomerase enzyme. Consequently, inhibition of PI3K/AKT/mTOR signaling pathway components and hTERT activation may prohibit CSC self-renewal and surpass CSC-mediated resistance in order to develop new cancer therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0644 TITLE: Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Chun-Ju...U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release...Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0644 5c. PROGRAM ELEMENT

  9. Regulating cancer stem cells the miR way.

    PubMed

    Peter, Marcus E

    2010-01-08

    A recent study in Nature Cell Biology, Wellner et al. (2009) identifies ZEB1, a known promoter of tumor invasion, as a negative regulator of miRNA clusters that target stem cell factors. These findings provide new insight into the network of transcription factors and miRNAs that regulate cancer stem cells. Copyright 2010 Elsevier Inc. All rights reserved.

  10. NF-κB Participates in the Stem Cell Phenotype of Ovarian Cancer Cells.

    PubMed

    Gonzalez-Torres, Carolina; Gaytan-Cervantes, Javier; Vazquez-Santillan, Karla; Mandujano-Tinoco, Edna Ayerim; Ceballos-Cancino, Gisela; Garcia-Venzor, Alfredo; Zampedri, Cecilia; Sanchez-Maldonado, Paulina; Mojica-Espinosa, Raul; Jimenez-Hernandez, Luis Enrique; Maldonado, Vilma

    2017-05-01

    NF-κB is a transcription factor involved in cancer stem cells maintenance of many tumors. Little is known about the specific stem-associated upstream regulators of this pathway in ovarian cancer. The Aim of the study was to analyze the role of the canonical and non-canonical NF-κB pathways in stem cells of ovarian cancer cell lines. Stem cells were isolated using sorting cytometry. Western blot and RT-PCR were used to quantify protein and messenger RNA levels. Loss and gain of function assays were performed using siRNAs and dominant-negative proteins, respectively. NF-κB binding activity was measured with a reporter gene assay. The stem phenotype was estimated with clonogenic assays using soft agar, colony formation, ovospheres formation and in vivo tumorigenicity assays. The CD44+ subpopulation of SKOV3 ovarian cancer cell line presented higher mRNA levels of key stemness genes, an increased tumorigenic capacity and higher expression of the RelA, RelB and IKKα. When the canonical pathway was inhibited by means of a dominant-negative version of IkBα, the stem cell population was reduced, as shown by a reduced CD44+ subpopulation, a decrease in the expression of the stemness genes and a reduction of the stem phenotype. In addition, IKKα, the main upstream non-canonical kinase, was highly expressed in the CSC population. Accordingly, when IKKα was inhibited using shRNAs, the expression of the stemness genes was reduced. This report is the first to show the importance of several elements of both NF-κB pathway in maintaining the ovarian cancer stem cell population. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  11. Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms

    PubMed Central

    Cruceru, Maria Linda; Neagu, Monica; Demoulin, Jean-Baptiste; Constantinescu, Stefan N

    2013-01-01

    Despite intense efforts to identify cancer-initiating cells in malignant brain tumours, markers linked to the function of these cells have only very recently begun to be uncovered. The notion of cancer stem cell gained prominence, several molecules and signalling pathways becoming relevant for diagnosis and treatment. Whether a substantial fraction or only a tiny minority of cells in a tumor can initiate and perpetuate cancer, is still debated. The paradigm of cancer-initiating stem cells has initially been developed with respect to blood cancers where chronic conditions such as myeloproliferative neoplasms are due to mutations acquired in a haematopoietic stem cell (HSC), which maintains the normal hierarchy to neoplastic haematopoiesis. In contrast, acute leukaemia transformation of such blood neoplasms appears to derive not only from HSCs but also from committed progenitors that cannot differentiate. This review will focus on putative novel therapy targets represented by markers described to define cancer stem/initiating cells in malignant gliomas, which have been called ‘leukaemia of the brain’, given their rapid migration and evolution. Parallels are drawn with other cancers, especially haematopoietic, given the similar rampant proliferation and treatment resistance of glioblastoma multiforme and secondary acute leukaemias. Genes associated with the malignant conditions and especially expressed in glioma cancer stem cells are intensively searched. Although many such molecules might only coincidentally be expressed in cancer-initiating cells, some may function in the oncogenic process, and those would be the prime candidates for diagnostic and targeted therapy. For the latter, combination therapies are likely to be envisaged, given the robust and plastic signalling networks supporting malignant proliferation. PMID:23998913

  12. Investigation of MACC1 Gene Expression in Head and Neck Cancer and Cancer Stem Cells.

    PubMed

    Evran, Ebru; Şahin, Hilal; Akbaş, Kübra; Çiğdem, Sadik; Gündüz, Esra

    2016-12-01

    By investigating the MACC1 gene (metastasis-associated in colon cancer 1) in cancer stem cells (CSC) resistant to chemotherapy and in cancer stem cells (CSC) resistant to chemotherapy and in cancer cells (CS) sensitive to chemotherapy we determineda steady expression in both types of cells in head and neck cancer. In conformity with the result we examined if this gene could be a competitor gene for chemotherapy. According to literature, the MACC1 gene shows a clear expression in head and neck cancer cells [1]. Here we examined MACC1 expression in CSC and investigated it as a possible biomarker. Our experiments were performed in the UT -SCC -74 in primary head and neck cancer cell line. We examined the MACC -1 gene expression by Real Time PCR from both isolated CSC and CS. Expression of MACC -1 gene of cancer stem cells showed an two-fold increase compared with cancer cells. Based on the positive expression of MACC1 in both CS and CSC, this gene may serve as a potential biomarker in head and neck cancer. By comparing the results of this study with the novel features of MACC1, two important hypotheses could be examined. The first hypothesis is that MACC1 is a possible transcripton factor in colon cancer, which influences a high expression of CSC in head and neck and affects the expression of three biomarkers of the CSC control group biomarkers. The second hypothesisis is that the positive expression of MACC1 in patients with a malignant prognosis of tongue cancer, which belongs to head and neck cancer types, operates a faster development of CSC to cancer cells.

  13. Circulating cancer stem cell markers in breast carcinomas: a systematic review protocol.

    PubMed

    Mansoori, Maryam; Madjd, Zahra; Janani, Leila; Rasti, Arezoo

    2017-12-19

    Breast cancer is one of the most common types of cancer in women worldwide. Recent studies have provided strong support for the cancer stem cell (CSC) hypothesis, which suggests that many cancers, including breast cancer, are driven by a subpopulation of cells that display stem cell-like properties. The hypothesis that a subpopulation of circulating tumor cells (CTCs) possesses many CSC-like hallmarks is reinforced by the expression of related molecular markers between these two cell populations. The aim of this study is to systematically review primary studies and identify circulating CSC markers in breast cancer patients. Relevant observational studies evaluating the expression of circulating breast cancer stem cell markers through October 31, 2016, will be searched in PubMed, SCOPUS, Embase, ISI Web of Science, and Google Scholar with no restriction on language. Full copies of articles identified by the search and considered to meet the inclusion criteria will be obtained for data extraction and synthesis. Two quality assessment tools will be used for evaluating observational studies like case control, which are the Hoy et al. suggested tool and Newcastle-Ottawa Scale (NOS), respectively. Publication bias will be assessed by funnel plots or Egger's test (i.e., plots of study results against precision), and data synthesis will be performed using Stata software (Stata Corp V.12, TX, USA).This systematic review will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Detecting cancer stem cells in blood will help clinicians to monitor cancer patients by obtaining as many samples as needed with a non-invasive method and in any stages; it is not possible to repeat sampling on working on tissue samples. By identifying cancer stem cells early in blood, it will be possible to distinguish metastasis in early stages. CRD42016043810.

  14. Enhanced expression of PKM2 associates with the biological properties of cancer stem cells from A549 human lung cancer cells.

    PubMed

    Guo, Chang-Ying; Yan, Chen; Luo, Lan; Goto, Shinji; Urata, Yoshishige; Xu, Jian-Jun; Wen, Xiao-Ming; Kuang, Yu-Kang; Tou, Fang-Fang; Li, Tao-Sheng

    2017-04-01

    Cancer cells express the M2 isoform of glycolytic enzyme pyruvate kinase (PKM2) for favoring the survival under a hypoxic condition. Considering the relative low oxygen microenvironment in stem cell niche, we hypothesized that an enhanced PKM2 expression associates with the biological properties of cancer stem cells. We used A549 human lung cancer cell line and surgical resected lung cancer tissue samples from patients for experiments. We confirmed the co-localization of PKM2 and CD44, a popular marker for cancer stem cells in lung cancer tissue samples from patients. The expression of PKM2 was clearly observed in approximately 80% of the A549 human lung cancer cells. Remarkably, enhanced expression of PKM2 was specially observed in these cells that also positively expressed CD44. Downregulation of PKM2 in CD44+ cancer stem cells by siRNA significantly impaired the potency for spheroid formation, decreased the cell survival under fetal bovine serum deprivation and hypoxic conditions, but increased their sensitivity to anti-cancer drug of cisplatin and γ-ray. The enhanced expression of PKM2 seems to associate with the biological properties of cancer stem cells from A549 human lung cancer cells. Selective targeting of PKM2 may provide a new strategy for cancer therapy, especially for patients with therapeutic resistance.

  15. WE-E-BRE-10: Level of Breast Cancer Stem Cell Correlated with Tumor Radioresistence: An Indication for Individualized Breast Cancer Therapy Adapted to Cancer Stem Cell Fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, S; Pajonk, F; McCloskey, S

    2014-06-15

    Purposes: The presence of cancer stem cells (CSCs) in a solid tumor could result in poor tumor control probability. The purposes are to study CSC radiosensitivity parameters α and β and their correlation to CSC levels to understand the underlying radioresistance mechanisms and enable individualized treatment design. Methods: Four established breast cancer cell lines (MCF-7, T47D, MDA-MB-231, and SUM159PT) were irradiated in vitro using single radiation doses of 0, 2, 4, 6, 8 or 10 Gy. The fractions of CSCs in each cell lines were determined using cancer stem cell markers. Mammosphere assays were also performed to better estimate themore » number of CSCs and represent the CSC repopulation in a human solid tumor. The measured cell surviving fractions were fitted using the Linear-quadratic (LQ) model with independent fitting parameters: α-TC, β-TC (TCs), α-CSC, β-CSC (CSCs), and fs (the percentage of CSCs in each sample). Results: The measured fs increased following the irradiation by MCF-7 (0.1%), T47D (0.9%), MDA-MB-231 (1.18%) and SUM159T (2.46%), while decreasing surviving curve slopes were observed, indicating greater radioresistance, in the opposite order. The fitting yielded the radiosensitive parameters for the MCF-7: α-TC=0.1±0.2Gy{sup −1}, β-TC= 0.08 ±0.14Gy{sup −2}, α-CSC=0.04±0.07Gy{sup −1}, β-CSC =0.02±0.3Gy{sup −2}; for the SUM159PT, α-TC=0.08±0.25 Gy{sup −1}, β-TC=0.02±0.02Gy{sup −2}, α-CSC=0.04±0.18Gy{sup −1}, β-CSC =0.004±0.24Gy{sup −2}. In the mammosphere assay, where fs were higher than the corresponding cell line assays, there was almost no shoulder found in the surviving curves (more radioresistant in mammosphere assays) yielding β-CSC of approximately 0. Conclusion: Breast cancer stem cells were more radioresistant characterized by smaller α and β values compared to differentiated breast cancer cells. Percentage of breast cancer stem cells strongly correlated to overall tumor radioresistance. This

  16. Isolation and characterisation of cancer stem cells from canine osteosarcoma.

    PubMed

    Wilson, H; Huelsmeyer, M; Chun, R; Young, K M; Friedrichs, K; Argyle, D J

    2008-01-01

    There is increasing evidence that cancer is a stem cell disease. This study sought to isolate and characterise cancer stem cells from canine osteosarcoma. One human and three canine cell lines were cultured in non-adherent culture conditions using serum-starved, semi-solid media. Primitive sarcosphere colonies from all cell lines were identified under these conditions and were characterised using molecular and cytochemical techniques for embryonic stem cell markers. Expression of the embryonic stem cell-associated genes Nanog, Oct4 and STAT3 indicated a primitive phenotype. Sarcospheres could be reproduced consistently when passaged multiple times and produced adherent cell cultures when returned to normal growth conditions. Similarities between human and canine osteosarcoma cell lines add credence to the potential of the dog as a model for human disease.

  17. Epithelial stem cells and intestinal cancer.

    PubMed

    Tan, Shawna; Barker, Nick

    2015-06-01

    The mammalian intestine is comprised of an epithelial layer that serves multiple functions in order to maintain digestive activity as well as intestinal homeostasis. This epithelial layer contains highly proliferative stem cells which facilitate its characteristic rapid regeneration. How these stem cells contribute to tissue repair and normal homeostasis are actively studied, and while we have a greater understanding of the molecular mechanisms and cellular locations that underlie stem cell regulation in this tissue, much still remains undiscovered. This review describes epithelial stem cells in both intestinal and non-intestinal tissues, as well as the strategies that have been used to further characterize the cells. Through a discussion of the current understanding of intestinal self-renewal and tissue regeneration in response to injury, we focus on how dysregulation of critical signaling pathways results in potentially oncogenic aberrations, and highlight issues that should be addressed in order for effective intestinal cancer therapies to be devised. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy.

    PubMed

    Vicente-Dueñas, Carolina; Hauer, Julia; Ruiz-Roca, Lucía; Ingenhag, Deborah; Rodríguez-Meira, Alba; Auer, Franziska; Borkhardt, Arndt; Sánchez-García, Isidro

    2015-06-01

    Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumor cells. However, recent evidences have revealed that cancer stem cells could arise through a tumor stem cell reprogramming mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of cancer development and proposes new approaches to treat cancer in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Breast fibroblasts in both cancer and normal tissues induce phenotypic transformation of breast cancer stem cells: a preliminary study

    PubMed Central

    Xi, Chunfang; Liu, Mingwei; Sun, Haichen; Liu, Shuang; Song, Lei

    2018-01-01

    Background Breast cancer stem cells (BCSCs) are associated with the invasion of breast cancer. In recent years, studies have demonstrated different phenotypes among BCSCs. Furthermore, BCSCs of diverse phenotypes are present at different tumour sites and different histological stages. Fibroblasts are involved in the phenotypic transformation of BCSCs. Cancer-associated fibroblasts (CAFs) participate in the induction of epithelial–mesenchymal transition, thereby promoting the acquisition of stem cell characteristics, but little is known about the role of normal fibroblasts (NFs) in the phenotypic transformation of BCSCs or about the effect of CAFs and NFs on BCSC phenotypes. Methods A total of six pairs of primary CAFs and NFs were isolated from surgical samples of breast cancer patients and subjected to morphological, immunohistochemical, cell invasion and proteomics analyses. After establishing a cell culture system with conditioned medium from CAFs and NFs, we used the mammosphere formation assay to explore the effect of CAFs and NFs on the self-renewal ability of BCSCs. The effect of CAFs and NFs on the phenotypic differentiation of BCSCs was further analysed by flow cytometry and immunofluorescence. Results The isolated CAFs and NFs did not show significant differences in cell morphology or alpha-smooth muscle actin (α-SMA) expression, but cell invasion and proteomics analyses demonstrated heterogeneity among these fibroblasts. Both CAFs and NFs could promote the generation of BCSCs, but CAFs displayed a greater ability than NFs in promoting mammosphere formation. Conditioned medium from CAFs increased the proportion of aldehyde dehydrogenase-1 positive (ALDH1+) BCSCs, but conditioned medium from NFs was more likely to promote the generation of CD44+CD24− BCSCs from MCF-7 cells. Discussion This study validated the heterogeneity among CAFs and NFs and expanded on the conclusion that fibroblasts promote the generation of cancer stem cells. Our results

  20. The Endogenous GRP78 Interactome in Human Head and Neck Cancers: A Deterministic Role of Cell Surface GRP78 in Cancer Stemness.

    PubMed

    Chen, Hsin-Ying; Chang, Joseph Tung-Chieh; Chien, Kun-Yi; Lee, Yun-Shien; You, Guo-Rung; Cheng, Ann-Joy

    2018-01-11

    Cell surface glucose regulated protein 78 (GRP78), an endoplasmic reticulum (ER) chaperone, was suggested to be a cancer stem cell marker, but the influence of this molecule on cancer stemness is poorly characterized. In this study, we developed a mass spectrometry platform to detect the endogenous interactome of GRP78 and investigated its role in cancer stemness. The interactome results showed that cell surface GRP78 associates with multiple molecules. The influence of cell population heterogeneity of head and neck cancer cell lines (OECM1, FaDu, and BM2) according to the cell surface expression levels of GRP78 and the GRP78 interactome protein, Progranulin, was investigated. The four sorted cell groups exhibited distinct cell cycle distributions, asymmetric/symmetric cell divisions, and different relative expression levels of stemness markers. Our results demonstrate that cell surface GRP78 promotes cancer stemness, whereas drives cells toward a non-stemlike phenotype when it chaperones Progranulin. We conclude that cell surface GRP78 is a chaperone exerting a deterministic influence on cancer stemness.

  1. Transforming growth factor β as regulator of cancer stemness and metastasis

    PubMed Central

    Bellomo, Claudia; Caja, Laia; Moustakas, Aristidis

    2016-01-01

    Key elements of cancer progression towards metastasis are the biological actions of cancer stem cells and stromal cells in the tumour microenvironment. Cross-communication between tumour and stromal cells is mediated by secreted cytokines, one of which, the transforming growth factor β (TGFβ), regulates essentially every cell within the malignant tissue. In this article, we focus on the actions of TGFβ on cancer stem cells, cancer-associated fibroblasts and immune cells that assist the overall process of metastatic dissemination. We aim at illustrating intricate connections made by various cells in the tumour tissue and which depend on the action of TGFβ. PMID:27537386

  2. Human Papillomavirus Infections and Cancer Stem Cells of Tumors from the Uterine Cervix

    PubMed Central

    López, Jacqueline; Ruíz, Graciela; Organista-Nava, Jorge; Gariglio, Patricio; García-Carrancá, Alejandro

    2012-01-01

    Different rate of development of productive infections (as low grade cervical intraepithelial neoplasias), or high grade lesions and cervical malignant tumors associated with infections of the Transformation zone (TZ) by High-Risk Human Papillomavirus (HR-HPV), could suggest that different epithelial host target cells could exist. If there is more than one target cell, their differential infection by HR-HPV may play a central role in the development of cervical cancer. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support in several solid tumors, including cervical cancer (CC). According to the cancer stem cell (CSC) hypothesis, CC can now be considered a disease in which stem cells of the TZ are converted to cervical cancer stem cells by the interplay between HR-HPV viral oncogenes and cellular alterations that are thought to be finally responsible for tumor initiation and maintenance. Current studies of CSC could provide novel insights regarding tumor initiation and progression, their relation with viral proteins and interplay with the tumor micro-environment. This review will focus on the biology of cervical cancer stem cells, which might contribute to our understanding of the mechanisms responsible for cervical tumor development. PMID:23341858

  3. Breast cancer stem cells, EMT and therapeutic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they aremore » also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.« less

  4. Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms.

    PubMed

    Cruceru, Maria Linda; Neagu, Monica; Demoulin, Jean-Baptiste; Constantinescu, Stefan N

    2013-10-01

    Despite intense efforts to identify cancer-initiating cells in malignant brain tumours, markers linked to the function of these cells have only very recently begun to be uncovered. The notion of cancer stem cell gained prominence, several molecules and signalling pathways becoming relevant for diagnosis and treatment. Whether a substantial fraction or only a tiny minority of cells in a tumor can initiate and perpetuate cancer, is still debated. The paradigm of cancer-initiating stem cells has initially been developed with respect to blood cancers where chronic conditions such as myeloproliferative neoplasms are due to mutations acquired in a haematopoietic stem cell (HSC), which maintains the normal hierarchy to neoplastic haematopoiesis. In contrast, acute leukaemia transformation of such blood neoplasms appears to derive not only from HSCs but also from committed progenitors that cannot differentiate. This review will focus on putative novel therapy targets represented by markers described to define cancer stem/initiating cells in malignant gliomas, which have been called 'leukaemia of the brain', given their rapid migration and evolution. Parallels are drawn with other cancers, especially haematopoietic, given the similar rampant proliferation and treatment resistance of glioblastoma multiforme and secondary acute leukaemias. Genes associated with the malignant conditions and especially expressed in glioma cancer stem cells are intensively searched. Although many such molecules might only coincidentally be expressed in cancer-initiating cells, some may function in the oncogenic process, and those would be the prime candidates for diagnostic and targeted therapy. For the latter, combination therapies are likely to be envisaged, given the robust and plastic signalling networks supporting malignant proliferation. © 2013 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Breast Cancer Stem Cell Therapeutics, Multiple Strategies Versus Using Engineered Mesenchymal Stem Cells With Notch Inhibitory Properties: Possibilities and Perspectives.

    PubMed

    Bose, Bipasha; Sen, Utsav; Shenoy P, Sudheer

    2018-01-01

    Relapse cases of cancers are more vigorous and difficult to control due to the preponderance of cancer stem cells (CSCs). Such CSCs that had been otherwise dormant during the first incidence of cancer gradually appear as radiochemoresistant cancer cells. Hence, cancer therapeutics aimed at CSCs would be an effective strategy for mitigating the cancers during relapse. Alternatively, CSC therapy can also be proposed as an adjuvant therapy, along-with the conventional therapies. As regenerative stem cells (RSCs) are known for their trophic effects, anti-tumorogenicity, and better migration toward an injury site, this review aims to address the use of adult stem cells such as dental pulp derived; cord blood derived pure populations of regenerative stem cells for targeting CSCs. Indeed, pro-tumorogenicity of RSCs is of concern and hence has also been dealt with in relation to breast CSC therapeutics. Furthermore, as notch signaling pathways are upregulated in breast cancers, and anti-notch antibody based and sh-RNA based therapies are already in the market, this review focuses the possibilities of engineering RSCs to express notch inhibitory proteins for breast CSC therapeutics. Also, we have drawn a comparison among various possibilities of breast CSC therapeutics, about, notch1 inhibition. J. Cell. Biochem. 119: 141-149, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer

    PubMed Central

    Chavez-Gonzalez, Antonieta; Bakhshinejad, Babak; Pakravan, Katayoon

    2018-01-01

    Background Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. Conclusions A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy. PMID:27678246

  7. Cancer Stem Cells and Molecular Biology Test in Colorectal Cancer: Therapeutic Implications.

    PubMed

    Effendi-Ys, Rustam

    2017-10-01

    Colorectal cancer (CRC) is the third most frequent cancer in males, the second in females, and is the second leading cause of cancer related death worldwide. Within Indonesia's 250 million population, the incidence rates for CRC per 100,000 population were 15.2 for males and 10.2 for females, and estimated 63,500 cases per year.  More than 50% of colorectal cancer patients will develop metastasis. CRC is still the main cause of tumor-related death, and although most CRC patients are treated with surgery to remove the tumor tissue, some of the CRC patients recurred. Chemotherapy used as adjuvant or neoadjuvant therapy also has several problems, in which these treatments are useless in tumor cells with chemo-resistance. Molecular testing of CRC from tumor tissues has important implications for the selection of treatment. Biomarkers can be used as prognostic value, molecular predictive factors, and targeted therapy. Recent research reported that, cancer stem cells (CSCs) are considered as the origin of tumorigenesis, development, metastasis and recurrence. At present, it has been shown that CSCs existed in many tumors including CRC. This review aims to summarize the issue on CSCs, and the future development of drugs that target colorectal cancer stem cells.

  8. Metabolic enzymes: key modulators of functionality in cancer stem-like cells.

    PubMed

    Dong, Bo-Wen; Qin, Guang-Ming; Luo, Yan; Mao, Jian-Shan

    2017-02-21

    Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs.

  9. Establishment of a pancreatic cancer stem cell model using the SW1990 human pancreatic cancer cell line in nude mice.

    PubMed

    Pan, Yan; Gao, Song; Hua, Yong-Qiang; Liu, Lu-Ming

    2015-01-01

    To establish a pancreatic cancer stem cell model using human pancreatic cancer cells in nude mice to provide a platform for pancreatic cancer stem cell research. To establish pancreatic cancer xenografts using human pancreatic cancer cell line SW1990, nude mice were randomly divided into control and gemcitabine groups. When the tumor grew to a volume of 125 mm3, they treated with gemcitabine at a dose of 50 mg/kg by intraperitoneal injection of 0.2 ml in the gemcitabine group, while the mice in control group were treated with the same volume of normal saline. Gemcitabine was given 2 times a week for 3 times. When the model was established, the proliferation of pancreatic cancer stem cells was observed by clone formation assay, and the protein and/or mRNA expression of pancreatic stem cell surface markers including CD24, CD44, CD133, ALDH, transcription factors containing Oct-4, Sox-2, Nanog and Gli, the key nuclear transcription factor in Sonic Hedgehog signaling pathway was detected by Western blot and/or RT-PCR to verify the reliability of this model. This model is feasible and safe. During the establishment, no mice died and the weight of nude mice maintained above 16.5 g. The clone forming ability in gemcitabine group was stronger than that of the control group (p<0.01). In gemcitabine group, the protein expression of pancreatic cancer stem cell surface markers including CD44, and ALDH was up-regulated, the protein and mRNA expression of nuclear transcription factor including Oct-4, Sox-2 and Nanog was also significantly increased (P<0.01). In addition, the protein expression of key nuclear transcription factor in Sonic Hedgehog signaling pathway, Gli-1, was significantly enhanced (p<0.01). The pancreatic cancer stem cell model was successfully established using human pancreatic cancer cell line SW1990 in nude mice. Gemcitabine could enrich pancreatic cancer stem cells, simultaneously accompanied by the activation of Sonic Hedgehog signaling pathway.

  10. Cancer stem cells and cell size: A causal link?

    PubMed

    Li, Qiuhui; Rycaj, Kiera; Chen, Xin; Tang, Dean G

    2015-12-01

    The majority of normal animal cells are 10-20 μm in diameter. Many signaling mechanisms, notably PI3K/Akt/mTOR, Myc, and Hippo pathways, tightly control and coordinate cell growth, cell size, cell division, and cell number during homeostasis. These regulatory mechanisms are frequently deregulated during tumorigenesis resulting in wide variations in cell sizes and increased proliferation in cancer cells. Here, we first review the evidence that primitive stem cells in adult tissues are quiescent and generally smaller than their differentiated progeny, suggesting a correlation between small cell sizes with the stemness. Conversely, increased cell size positively correlates with differentiation phenotypes. We then discuss cancer stem cells (CSCs) and present some evidence that correlates cell sizes with CSC activity. Overall, a causal link between CSCs and cell size is relatively weak and remains to be rigorously assessed. In the future, optimizing methods for isolating cells based on size should help elucidate the connection between cancer cell size and CSC characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Therapeutic Effectiveness of Anticancer Phytochemicals on Cancer Stem Cells

    PubMed Central

    Oh, Jisun; Hlatky, Lynn; Jeong, Yong-Seob; Kim, Dohoon

    2016-01-01

    Understanding how to target cancer stem cells (CSCs) may provide helpful insights for the development of therapeutic or preventive strategies against cancers. Dietary phytochemicals with anticancer properties are promising candidates and have selective impact on CSCs. This review summarizes the influence of phytochemicals on heterogeneous cancer cell populations as well as on specific targeting of CSCs. PMID:27376325

  12. A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yu Kyeong; Lee, Jae Ho; Park, Ga-Young

    2013-01-25

    Highlights: ► A CDK4 inhibitor may be used for breast cancer stem cell-targeted therapy. ► The CDK4 inhibitor differentiated the cancer stem cell population (CD24{sup −}/CD44{sup +}) of MDA-MB-231. ► The differentiation of the cancer stem cells by the CDK4 inhibitor radiosensitized MDA-MB-231. -- Abstract: Cancer stem cells (CSCs) are one of the main reasons behind cancer recurrence due to their resistance to conventional anti-cancer therapies. Thus, many efforts are being devoted to developing CSC-targeted therapies to overcome the resistance of CSCs to conventional anti-cancer therapies and decrease cancer recurrence. Differentiation therapy is one potential approach to achieve CSC-targeted therapies.more » This method involves inducing immature cancer cells with stem cell characteristics into more mature or differentiated cancer cells. In this study, we found that a CDK4 inhibitor sensitized MDA-MB-231 cells but not MCF7 cells to irradiation. This difference appeared to be associated with the relative percentage of CSC-population between the two breast cancer cells. The CDK4 inhibitor induced differentiation and reduced the cancer stem cell activity of MDA-MB-231 cells, which are shown by multiple marker or phenotypes of CSCs. Thus, these results suggest that radiosensitization effects may be caused by reducing the CSC-population of MDA-MB-231 through the use of the CDK4 inhibitor. Thus, further investigations into the possible application of the CDK4 inhibitor for CSC-targeted therapy should be performed to enhance the efficacy of radiotherapy for breast cancer.« less

  13. Cancer stem cells (CSCs), cervical CSCs and targeted therapies

    PubMed Central

    Huang, Ruixia; Rofstad, Einar K.

    2017-01-01

    Accumulating evidence has shown that cancer stem cells (CSCs) have a tumour-initiating capacity and play crucial roles in tumour metastasis, relapse and chemo/radio-resistance. As tumour propagation initiators, CSCs are considered to be promising targets for obtaining a better therapeutic outcome. Cervical carcinoma is the most common gynaecological malignancy and has a high cancer mortality rate among females. As a result, the investigation of cervical cancer stem cells (CCSCs) is of great value. However, the numbers of cancer cells and corresponding CSCs in malignancy are dynamically balanced, and CSCs may reside in the CSC niche, about which little is known to date. Therefore, due to their complicated molecular phenotypes and biological behaviours, it remains challenging to obtain “purified” CSCs and continuously culture CSCs for further in vitro studies without the cells losing their stem properties. At present, CSC-related markers and functional assays are used to purify, identify and therapeutically target CSCs both in vitro and in vivo. Nevertheless, CSC-related markers are not universal to all tumour types, although some markers may be valid in multiple tumour types. Additionally, functional identifications based on CSC-specific properties are usually limited in in vivo studies. Furthermore, an optimal method for identifying potential CCSCs in CCSC studies has not been previously published, and these techniques are currently of great importance. This article updates our knowledge on CSCs and CCSCs, reviews potential stem cell markers and functional assays for identifying CCSCs, and describes the potential of targeting CCSCs in the treatment of cervical carcinoma. PMID:27343550

  14. Cancer stem cells (CSCs), cervical CSCs and targeted therapies.

    PubMed

    Huang, Ruixia; Rofstad, Einar K

    2017-05-23

    Accumulating evidence has shown that cancer stem cells (CSCs) have a tumour-initiating capacity and play crucial roles in tumour metastasis, relapse and chemo/radio-resistance. As tumour propagation initiators, CSCs are considered to be promising targets for obtaining a better therapeutic outcome. Cervical carcinoma is the most common gynaecological malignancy and has a high cancer mortality rate among females. As a result, the investigation of cervical cancer stem cells (CCSCs) is of great value. However, the numbers of cancer cells and corresponding CSCs in malignancy are dynamically balanced, and CSCs may reside in the CSC niche, about which little is known to date. Therefore, due to their complicated molecular phenotypes and biological behaviours, it remains challenging to obtain "purified" CSCs and continuously culture CSCs for further in vitro studies without the cells losing their stem properties. At present, CSC-related markers and functional assays are used to purify, identify and therapeutically target CSCs both in vitro and in vivo. Nevertheless, CSC-related markers are not universal to all tumour types, although some markers may be valid in multiple tumour types. Additionally, functional identifications based on CSC-specific properties are usually limited in in vivo studies. Furthermore, an optimal method for identifying potential CCSCs in CCSC studies has not been previously published, and these techniques are currently of great importance. This article updates our knowledge on CSCs and CCSCs, reviews potential stem cell markers and functional assays for identifying CCSCs, and describes the potential of targeting CCSCs in the treatment of cervical carcinoma.

  15. Racial disparity in colorectal cancer: Gut microbiome and cancer stem cells.

    PubMed

    Goyal, Sachin; Nangia-Makker, Pratima; Farhana, Lulu; Yu, Yingjie; Majumdar, Adhip Pn

    2016-09-26

    Over the past two decades there has been remarkable progress in cancer diagnosis, treatment and screening. The basic mechanisms leading to pathogenesis of various types of cancers are also understood better and some patients, if diagnosed at a particular stage go on to lead a normal pre-diagnosis life. Despite these achievements, racial disparity in some cancers remains a mystery. The higher incidence, aggressiveness and mortality of breast, prostate and colorectal cancers (CRCs) in African-Americans as compared to Caucasian-Americans are now well documented. The polyp-carcinoma sequence in CRC and easy access to colonic epithelia or colonic epithelial cells through colonoscopy/colonic effluent provides the opportunity to study colonic stem cells early in course of natural history of the disease. With the advent of metagenomic sequencing, uncultivable organisms can now be identified in stool and their numbers correlated with the effects on colonic epithelia. It would be expected that these techniques would revolutionize our understanding of the racial disparity in CRC and pave a way for the same in other cancers as well. Unfortunately, this has not happened. Our understanding of the underlying factors responsible in African-Americans for higher incidence and mortality from colorectal carcinoma remains minimal. In this review, we aim to summarize the available data on role of microbiome and cancer stem cells in racial disparity in CRC. This will provide a platform for further research on this topic.

  16. Metabolic enzymes: key modulators of functionality in cancer stem-like cells

    PubMed Central

    Dong, Bo-Wen; Qin, Guang-Ming; Luo, Yan; Mao, Jian-Shan

    2017-01-01

    Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs. PMID:28009990

  17. The low chamber pancreatic cancer cells had stem-like characteristics in modified transwell system: is it a novel method to identify and enrich cancer stem-like cells?

    PubMed

    Wang, Dongqing; Zhu, Haitao; Liu, Yanfang; Liu, Qing; Xie, Xiaodong; Zhou, Yuepeng; Zhang, Lirong; Zhu, Yan; Zhang, Zhijian; Su, Zhaoliang

    2014-01-01

    Cancer stem cells (CSCs) or cancer-initiating cells (CICs) play an important role in tumor initiation, progression, metastasis, chemoresistance, and recurrence. It is important to construct an effective method to identify and isolate CSCs for biotherapy of cancer. During the past years, many researchers had paid more attention to it; however, this method was still on seeking. Therefore, compared to the former methods that were used to isolate the cancer stem cell, in the present study, we tried to use modified transwell system to isolate and enrich CSCs from human pancreatic cancer cell lines (Panc-1). Our results clearly showed that the lower chamber cells in modified transwell system were easily forming spheres; furthermore, these spheres expressed high levels of stem cell markers (CD133/CD44/CD24/Oct-4/ESA) and exhibited chemoresistance, underwent epithelial-to-mesenchymal transition (EMT), and possessed the properties of self-renewal in vitro and tumorigenicity in vivo. Therefore, we speculated that modified transwell assay system, as a rapid and effective method, can be used to isolate and enrich CSCs.

  18. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    DTIC Science & Technology

    2015-07-01

    AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE July 2015 2. REPORT TYPE Annual 3. DATES COVERED 1 Jul 2014 - 30 Jun 2015 4. TITLE AND SUBTITLE Cell ...of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM ELEMENT NUMBER 6

  19. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase.

    PubMed

    Pandey, Puspa R; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Liu, Wen; Kobayashi, Aya; Xing, Fei; Fukuda, Koji; Hirota, Shigeru; Sugai, Tamotsu; Wakabayashi, Go; Koeda, Keisuke; Kashiwaba, Masahiro; Suzuki, Kazuyuki; Chiba, Toshimi; Endo, Masaki; Fujioka, Tomoaki; Tanji, Susumu; Mo, Yin-Yuan; Cao, Deliang; Wilber, Andrew C; Watabe, Kounosuke

    2011-11-01

    Resveratrol is a natural polyphenolic compound and has been shown to exhibit cardio-protective as well as anti-neoplastic effects on various types of cancers. However, the exact mechanism of its anti-tumor effect is not clearly defined. Resveratrol has been shown to have strong hypolipidemic effect on normal adipocytes and as hyper-lipogenesis is a hallmark of cancer cell physiology, the effect of resveratrol on lipid synthesis in cancer stem-like cells (CD24(-)/CD44(+)/ESA(+)) that were isolated from both ER+ and ER- breast cancer cell lines was examined. The authors found that resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells. This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3. The activation of apoptotic pathway in the cancer stem-like cells was suppressed by TOFA and by Fumonisin B1, suggesting that resveratrol-induced apoptosis is indeed through the modulation of FAS-mediated cell survival signaling. Importantly, resveratrol was able to significantly suppress the growth of cancer stem-like cells in an animal model of xenograft without showing apparental toxicity. Taken together, the results of this study indicate that resveratrol is capable of inducing apoptosis in the cancer stem-like cells through suppression of lipogenesis by modulating FAS expression, which highlights a novel mechanism of anti-tumor effect of resveratrol.

  20. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase

    PubMed Central

    Pandey, Puspa R.; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K.; Liu, Wen; Kobayashi, Aya; Xing, Fei; Fukuda, Koji; Hirota, Shigeru; Sugai, Tamotsu; Wakabayashi, Go; Koeda, Keisuke; Kashiwaba, Masahiro; Suzuki, Kazuyuki; Chiba, Toshimi; Endo, Masaki; Fujioka, Tomoaki; Tanji, Susumu; Mo, Yin-Yuan; Cao, Deliang; Wilber, Andrew C.; Watabe, Kounosuke

    2012-01-01

    Resveratrol is a natural polyphenolic compound and has been shown to exhibit cardio-protective as well as anti-neoplastic effects on various types of cancers. However, the exact mechanism of its anti-tumor effect is not clearly defined. Resveratrol has been shown to have strong hypolipidemic effect on normal adipocytes and as hyper-lipogenesis is a hallmark of cancer cell physiology, we examined the effect of resveratrol on lipid synthesis in cancer stem-like cells (CD24−/CD44+/ESA+) that were isolated from both ER+ and ER− breast cancer cell lines. We found that resveratrol significantly reduced the cell viability and mammosphere formation followed by inducing apoptosis in cancer stem-like cells. This inhibitory effect of resveratrol is accompanied by a significant reduction in lipid synthesis which is caused by the down-regulation of the fatty acid synthase (FAS) gene followed by up-regulation of pro-apoptotic genes, DAPK2 and BNIP3. The activation of apoptotic pathway in the cancer stem-like cells was suppressed by TOFA and by Fumonisin B1, suggesting that resveratrol-induced apoptosis is indeed through the modulation of FAS-mediated cell survival signaling. Importantly, resveratrol was able to significantly suppress the growth of cancer stem-like cells in an animal model of xenograft without showing apparental toxicity. Taken together, our results indicate that resveratrol is capable of inducing apoptosis in the cancer stem-like cells through suppression of lipogenesis by modulating FAS expression, which highlights a novel mechanism of anti-tumor effect of resveratrol. PMID:21188630

  1. Iron depletion is a novel therapeutic strategy to target cancer stem cells

    PubMed Central

    Ninomiya, Takayuki; Ohara, Toshiaki; Noma, Kazuhiro; Katsura, Yuki; Katsube, Ryoichi; Kashima, Hajime; Kato, Takuya; Tomono, Yasuko; Tazawa, Hiroshi; Kagawa, Shunsuke; Shirakawa, Yasuhiro; Kimura, Fumiaki; Chen, Ling; Kasai, Tomonari; Seno, Masaharu; Matsukawa, Akihiro; Fujiwara, Toshiyoshi

    2017-01-01

    Adequate iron levels are essential for human health. However, iron overload can act as catalyst for the formation of free radicals, which may cause cancer. Cancer stem cells (CSCs), which maintain the hallmark stem cell characteristics of self-renewal and differentiation capacity, have been proposed as a driving force of tumorigenesis and metastases. In the present study, we investigated the role of iron in the proliferation and stemness of CSCs, using the miPS-LLCcm cell model. Although the anti-cancer agents fluorouracil and cisplatin suppressed the proliferation of miPS-LLCcm cells, these drugs did not alter the expression of stemness markers, including Nanog, SOX2, c-Myc, Oct3/4 and Klf4. In contrast, iron depletion by the iron chelators deferasirox and deferoxamine suppressed the proliferation of miPS-LLCcm cells and the expression of stemness markers. In an allograft model, deferasirox inhibited the growth of miPS-LLCcm implants, which was associated with decreased expression of Nanog and Sox2. Altogether, iron appears to be crucial for the proliferation and maintenance of stemness of CSCs, and iron depletion may be a novel therapeutic strategy to target CSCs. PMID:29228699

  2. Cancer induction by restriction of oncogene expression to the stem cell compartment

    PubMed Central

    Pérez-Caro, María; Cobaleda, César; González-Herrero, Inés; Vicente-Dueñas, Carolina; Bermejo-Rodríguez, Camino; Sánchez-Beato, Margarita; Orfao, Alberto; Pintado, Belén; Flores, Teresa; Sánchez-Martín, Manuel; Jiménez, Rafael; Piris, Miguel A; Sánchez-García, Isidro

    2009-01-01

    In human cancers, all cancerous cells carry the oncogenic genetic lesions. However, to elucidate whether cancer is a stem cell-driven tissue, we have developed a strategy to limit oncogene expression to the stem cell compartment in a transgenic mouse setting. Here, we focus on the effects of the BCR-ABLp210 oncogene, associated with chronic myeloid leukaemia (CML) in humans. We show that CML phenotype and biology can be established in mice by restricting BCR-ABLp210 expression to stem cell antigen 1 (Sca1)+ cells. The course of the disease in Sca1-BCR-ABLp210 mice was not modified on STI571 treatment. However, BCR-ABLp210-induced CML is reversible through the unique elimination of the cancer stem cells (CSCs). Overall, our data show that oncogene expression in Sca1+ cells is all that is required to fully reprogramme it, giving rise to a full-blown, oncogene-specified tumour with all its mature cellular diversity, and that elimination of the CSCs is enough to eradicate the whole tumour. PMID:19037256

  3. An Overview of Lipid Droplets in Cancer and Cancer Stem Cells

    PubMed Central

    Seco, J.

    2017-01-01

    For decades, lipid droplets have been considered as the main cellular organelles involved in the fat storage, because of their lipid composition. However, in recent years, some new and totally unexpected roles have been discovered for them: (i) they are active sites for synthesis and storage of inflammatory mediators, and (ii) they are key players in cancer cells and tissues, especially in cancer stem cells. In this review, we summarize the main concepts related to the lipid droplet structure and function and their involvement in inflammatory and cancer processes. PMID:28883835

  4. Are ovarian cancer stem cells the target for innovative immunotherapy?

    PubMed Central

    Wang, Liang; Xu, Tianmin; Cui, Manhua

    2018-01-01

    Cancer stem cells (CSCs), a subpopulation of cancer cells with the ability of self-renewal and differentiation, are believed to be responsible for tumor generation, progression, metastasis, and relapse. Ovarian cancer, the most malignant gynecological cancer, has consistent pathology behavior with CSC model, which suggests that therapies based on ovarian cancer stem cells (OCSCs) can gain a more successful prognosis. Much evidence has proved that epigenetic mechanism played an important role in tumor formation and sustainment. Since CSCs are generally resistant to conventional therapies (chemotherapy and radiotherapy), immunotherapy is a more effective method that has been implemented in the clinic. Chimeric antigen receptor (CAR)-T cell, an adoptive cellular immunotherapy, which results in apparent elimination of tumor in both hematologic and solid cancers, could be used for ovarian cancer. This review covers the basic conception of CSCs and OCSCs, the implication of epigenetic mechanism underlying cancer evolution considering CSC model, the immunotherapies reported for ovarian cancer targeting OCSCs currently, and the relationship between immune system and hierarchy cancer organized by CSCs. Particularly, the promising prospects and potential pitfalls of targeting OCSC surface markers to design CAR-T cellular immunotherapy are discussed here. PMID:29780254

  5. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Rae-Kwon; Uddin, Nizam; Hyun, Jin-Won

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2more » and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.« less

  6. Identification of progenitor cancer stem cell in lentigo maligna melanoma.

    PubMed

    Bongiorno, M R; Doukaki, S; Malleo, F; Aricò, M

    2008-07-01

    The potential role of stem cells in neoplasia has aroused considerable interest over the past few years. A number of known biologic characteristics of melanomas support the theory that they may originate in a mutated stem cell. Melanocytic stem cell markers have been described recently. Moreover, the CD133 cells that show surface markers for CD34 are stem cells primitive. These stem cells are capable of differentiating into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. The identification of cancer stem/initiating cells with a crucial role in tumor formation may open up new pharmacologic perspectives. The purpose of this study is to detect the expression of CD133 and CD34, two putative markers of cancer stem cells in the lentigo maligna melanoma. Thirty cases of lentigo maligna melanoma were analyzed using indirect immunohistochemical staining. The vast majority of the samples analyzed showed the presence of rare cells, which were clearly positive for CD133 and CD34. Strong CD133 and CD34 staining was found in the outer root sheath of the mid-lower hair follicles, intermixed with atypical melanocytes extending along layers of the hair follicles. A number of these staminal cells were adjacent and intermixed with melanoma cells. This study supports the stem cell origin of this tumor and suggests that the precursor of the melanoma in question is a stem-like cell rather than the primitive melanoblast committed to be exclusively involved in melanocytic differentiation.

  7. A1E reduces stemness and self-renewal in HPV 16-positive cervical cancer stem cells.

    PubMed

    Kwon, Taeho; Bak, Yesol; Ham, Sun-Young; Yu, Dae-Yeul; Yoon, Do-Young

    2016-02-02

    Cervical cancer is the second most common cancer in females. Recent reports have revealed the critical role of cervical cancer stem cells (CSCs) in tumorigenicity and metastasis. Previously we demonstrated that A1E exerts an anti-proliferative action, which inhibits the growth of cervical cancer cells. A1E is composed of 11 oriental medicinal herbs. Cervical cancer cell culture, wund healing and invasion assay, flow cytometry, sheroid formation assay, and wstern blot assays were performed in HPV 16-positive SiHa cell and HPV 16-negative C33A cells. A1E targets the E6 and E7 oncogenes; thus, A1E significantly inhibited proliferation of human papilloma virus (HPV) 16-positive SiHa cells, it did not inhibit the proliferation of HPV-negative C33A cells. Accordingly, we investigated whether A1E can regulate epithelial-to-mesenchymal transition (EMT), CSC self-renewal, and stemness-related gene expression in cervical cancer cells. Down rgulation of cell migration, cell invasion, and EMT was observed in A1E-treated SiHa cells. Specifically, A1E-treated SiHa cells showed significant decreases in OCT-3/4 and Sox2 expression levels and in sphere formation. Moreover, CSCs makers ALDH+ and ALDH, CD133 double positive cell were significantly decreased in A1E-treated SiHa cells. However, A1E treatment did not down regulate ALDH+ expression and the number of ALDH/CD133 double positive cells in C33A cells. Taken together, A1E can inhibit CSCs and reduce the expression of stemness markers. Treating CSCs with A1E may be a potential therapy for cervical cancer.

  8. Nuclear EGFR-PKM2 axis induces cancer stem cell-like characteristics in irradiation-resistant cells.

    PubMed

    Shi, Ying; Liu, Na; Lai, Weiwei; Yan, Bin; Chen, Ling; Liu, Shouping; Liu, Shuang; Wang, Xiang; Xiao, Desheng; Liu, Xiaoli; Mao, Chao; Jiang, Yiqun; Jia, Jiantao; Liu, Yating; Yang, Rui; Cao, Ya; Tao, Yongguang

    2018-05-28

    Radiation therapy has become an important tool in the treatment of cancer patients, but most patients relapse within 5 years. Relapse is due to the presence of cancer stem cells (CSCs), but the molecular mechanism of radioresistance in CSCs remains largely elusive. Here, we found that irradiation-resistant (IR) cells exhibited increased stem cell-like properties together with elevated anchorage-independent growth and metastasis ability. EGFR not only leads to increased acquisition of endometrial cancer stem cell markers in radioresistant sublines but is critical for the cancer stem-cell phenotype and tumorigenicity. Moreover, PKM2 functions as an interacting partner of EGFR, which induces the EMT phenotype and stem cell-like properties in IR cells. Finally, we found that the regulatory function of the EGFR-PKM2 axis is dependent on nuclear EGFR. In sum, our study indicated that EGFR and PKM2 directly interact and bind with each other to regulate the transcription of stemness-related genes and promote the stem-like phenotype, thus promoting invasion and metastasis. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Hee-Jin; Kim, Gwangil; Park, Kyung-Soon, E-mail: kspark@cha.ac.kr

    2013-08-09

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells bymore » protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway.« less

  10. Using a Stem Cell-Based Signature to Guide Therapeutic Selection in Cancer

    PubMed Central

    Shats, Igor; Gatza, Michael L.; Chang, Jeffrey T.; Mori, Seiichi; Wang, Jialiang; Rich, Jeremy; Nevins, Joseph R.

    2010-01-01

    Given the very substantial heterogeneity of most human cancers, it is likely that most cancer therapeutics will be active in only a small fraction of any population of patients. As such, the development of new therapeutics, coupled with methods to match a therapy with the individual patient, will be critical to achieving significant gains in disease outcome. One such opportunity is the use of expression signatures to identify key oncogenic phenotypes that can serve not only as biomarkers but also as a means of identifying therapeutic compounds that might specifically target these phenotypes. Given the potential importance of targeting tumors exhibiting a stem-like phenotype, we have developed an expression signature that reflects common biological aspects of various stem-like characteristics. The Consensus Stemness Ranking (CSR) signature is upregulated in cancer stem cell enriched samples, at advanced tumor stages and is associated with poor prognosis in multiple cancer types. Using two independent computational approaches we utilized the CSR signature to identify clinically useful compounds that could target the CSR phenotype. In vitro assays confirmed selectivity of several predicted compounds including topoisomerase inhibitors and resveratrol towards breast cancer cell lines that exhibit a high-CSR phenotype. Importantly, the CSR signature could predict clinical response of breast cancer patients to a neoadjuvant regimen that included a CSR-specific agent. Collectively, these results suggest therapeutic opportunities to target the CSR phenotype in a relevant cohort of cancer patients. PMID:21169407

  11. Brain tumour stem cells: implications for cancer therapy and regenerative medicine.

    PubMed

    Sanchez-Martin, Manuel

    2008-09-01

    The cancer relapse and mortality rate suggest that current therapies do not eradicate all malignant cells. Currently, it is accepted that tumorigenesis and organogenesis are similar in many respects, as for example, homeostasis is governed by a distinct sub-population of stem cells in both situations. There is increasing evidence that many types of cancer contain their own stem cells: cancer stem cells (CSC), which are characterized by their self-renewing capacity and differentiation ability. The investigation of solid tumour stem cells has gained momentum particularly in the area of brain tumours. Gliomas are the most common type of primary brain tumours. Nearly two-thirds of gliomas are highly malignant lesions with fast progression and unfortunate prognosis. Despite recent advances, two-year survival for glioblastoma (GBM) with optimal therapy is less than 30%. Even among patients with low-grade gliomas that confer a relatively good prognosis, treatment is almost never curative. Recent studies have demonstrated the existence of a small fraction of glioma cells endowed with features of primitive neural progenitor cells and a tumour-initiating function. In general, this fraction is characterized for forming neurospheres, being endowed with drug resistance properties and often, we can isolate some of them using sorting methods with specific antibodies. The molecular characterization of these stem populations will be critical to developing an effective therapy for these tumours with very dismal prognosis. To achieve this aim, the development of a mouse model which recapitulates the nature of these tumours is essential. This review will focus on glioma stem cell knowledge and discuss future implications in brain cancer therapy and regenerative medicine.

  12. Molecular biology of breast cancer stem cells: potential clinical applications.

    PubMed

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  13. A stem cell medium containing neural stimulating factor induces a pancreatic cancer stem-like cell-enriched population

    PubMed Central

    WATANABE, YUSAKU; YOSHIMURA, KIYOSHI; YOSHIKAWA, KOICHI; TSUNEDOMI, RYOICHI; SHINDO, YOSHITARO; MATSUKUMA, SOU; MAEDA, NORIKO; KANEKIYO, SHINSUKE; SUZUKI, NOBUAKI; KURAMASU, ATSUO; SONODA, KOUHEI; TAMADA, KOJI; KOBAYASHI, SEI; SAYA, HIDEYUKI; HAZAMA, SHOICHI; OKA, MASAAKI

    2014-01-01

    Cancer stem cells (CSCs) have been studied for their self-renewal capacity and pluripotency, as well as their resistance to anticancer therapy and their ability to metastasize to distant organs. CSCs are difficult to study because their population is quite low in tumor specimens. To overcome this problem, we established a culture method to induce a pancreatic cancer stem-like cell (P-CSLC)-enriched population from human pancreatic cancer cell lines. Human pancreatic cancer cell lines established at our department were cultured in CSC-inducing media containing epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), neural cell survivor factor-1 (NSF-1), and N-acetylcysteine. Sphere cells were obtained and then transferred to a laminin-coated dish and cultured for approximately two months. The surface markers, gene expression, aldehyde dehydrogenase (ALDH) activity, cell cycle, and tumorigenicity of these induced cells were examined for their stem cell-like characteristics. The population of these induced cells expanded within a few months. The ratio of CD24high, CD44high, epithelial specific antigen (ESA) high, and CD44variant (CD44v) high cells in the induced cells was greatly enriched. The induced cells stayed in the G0/G1 phase and demonstrated mesenchymal and stemness properties. The induced cells had high tumorigenic potential. Thus, we established a culture method to induce a P-CSLCenriched population from human pancreatic cancer cell lines. The CSLC population was enriched approximately 100-fold with this method. Our culture method may contribute to the precise analysis of CSCs and thus support the establishment of CSC-targeting therapy. PMID:25118635

  14. Phenformin-loaded polymeric micelles for targeting both cancer cells and cancer stem cells in vitro and in vivo.

    PubMed

    Krishnamurthy, Sangeetha; Ng, Victor W L; Gao, Shujun; Tan, Min-Han; Yang, Yi Yan

    2014-11-01

    Conventional cancer chemotherapy often fails as most anti-cancer drugs are not effective against drug-resistant cancer stem cells. These surviving cancer stem cells lead to relapse and metastasis. In this study, an anti-diabetic drug, phenformin, capable of eliminating cancer stem cells was loaded into micelles via self-assembly using a mixture of a diblock copolymer of poly(ethylene glycol) (PEG) and urea-functionalized polycarbonate and a diblock copolymer of PEG and acid-functionalized polycarbonate through hydrogen bonding. The phenformin-loaded micelles, having an average diameter of 102 nm with narrow size distribution, were stable in serum-containing solution over 48 h and non-cytotoxic towards non-cancerous cells. More than 90% of phenformin was released from the micelles over 96 h. Lung cancer stem cells (side population cells, i.e. SP cells) and non-SP cells were sorted from H460 human lung cancer cell line, and treated with free phenformin and phenformin-loaded micelles. The results showed that the drug-loaded micelles were more effective in inhibiting the growth of both SP and non-SP cells. In vivo studies conducted in an H460 human lung cancer mouse model demonstrated that the drug-loaded micelles had greater anti-tumor efficacy, and reduced the population of SP cells in the tumor tissues more effectively than free phenformin. Liver function analysis was performed following drug treatments, and the results indicated that the drug-loaded micelles did not cause liver damage, a harmful side-effect of phenformin when used clinically. These phenformin-loaded micelles may be used to target both cancer cells and cancer stem cells in chemotherapy for the prevention of relapse and metastasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Ovary and fimbrial stem cells: biology, niche and cancer origins.

    PubMed

    Ng, Annie; Barker, Nick

    2015-10-01

    The mammalian ovary is covered by a single-layered epithelium that undergoes rupture and remodelling following each ovulation. Although resident stem cells are presumed to be crucial for this cyclic regeneration, their identity and mode of action have been elusive. Surrogate stemness assays and in vivo fate-mapping studies using recently discovered stem cell markers have identified stem cell pools in the ovary and fimbria that ensure epithelial homeostasis. Recent findings provide insights into intrinsic mechanisms and local extrinsic cues that govern the function of ovarian and fimbrial stem cells. These discoveries have advanced our understanding of stem cell biology in the ovary and fimbria, and lay the foundations for evaluating the contribution of resident stem cells to the initiation and progression of human epithelial ovarian cancer.

  16. Atractylenolide I-mediated Notch pathway inhibition attenuates gastric cancer stem cell traits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Li; Mao, Rurong; Shen, Ke

    Highlights: • This paper supports the anti-tumor effects of AT-I on gastric cancer in vitro. • AT-I attenuates gastric cancer stem cell traits. • It is the systematic study regarding AT-I suppression of Notch pathway in GC and GCSLCs. - Abstract: Atractylenolide I (AT-I), one of the main naturally occurring compounds of Rhizoma Atractylodis Macrocephalae, has remarkable anti-cancer effects on various cancers. However, its effects on the treatment of gastric cancer remain unclear. Via multiple cellular and molecular approaches, we demonstrated that AT-I could potently inhibit cancer cell proliferation and induce apoptosis through inactivating Notch pathway. AT-I treatment led tomore » the reduction of expressions of Notch1, Jagged1, and its downstream Hes1/ Hey1. Our results showed that AT-I inhibited the self-renewal capacity of gastric stem-like cells (GCSLCs) by suppression of their sphere formation capacity and cell viability. AT-I attenuated gastric cancer stem cell (GCSC) traits partly through inactivating Notch1, leading to reducing the expressions of its downstream target Hes1, Hey1 and CD44 in vitro. Collectively, our results suggest that AT-I might develop as a potential therapeutic drug for the treatment of gastric cancer.« less

  17. Therapeutic PEG-ceramide nanomicelles synergize with salinomycin to target both liver cancer cells and cancer stem cells.

    PubMed

    Wang, Meiping; Xie, Fangyuan; Wen, Xikai; Chen, Han; Zhang, Hai; Liu, Junjie; Zhang, He; Zou, Hao; Yu, Yuan; Chen, Yan; Sun, Zhiguo; Wang, Xinxia; Zhang, Guoqing; Yin, Chuan; Sun, Duxin; Gao, Jie; Jiang, Beige; Zhong, Yanqiang; Lu, Ying

    2017-05-01

    Salinomycin (SAL)-loaded PEG-ceramide nanomicelles (SCM) were prepared to target both liver cancer cells and cancer stem cells. The synergistic ratio of SAL/PEG-ceramide was evaluated to prepare SCM, and the antitumor activity of SCM was examined both in vitro and in vivo. SAL/PEG-ceramide molar ratio of 1:4 was chosen as the synergistic ratio, and SCM showed superior cytotoxic effect and increased apoptosis-inducing activity in both liver cancer cells and cancer stem cells. In vivo, SCM showed the best tumor inhibitory effect with a safety profile. Thus, PEG-ceramide nanomicelles could serve as an effective and safe therapeutic drug carrier to deliver SAL into liver cancer, opening up the avenue of using PEG-ceramide as therapeutic drug carriers.

  18. Molecular Biomarkers of Cancer Stem/Progenitor Cells Associated with Progression, Metastases, and Treatment Resistance of Aggressive Cancers

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2014-01-01

    The validation of novel diagnostic, prognostic, and predictive biomarkers and therapeutic targets in tumor cells is of critical importance for optimizing the choice and efficacy of personalized therapies. Importantly, recent advances have led to the identification of gene-expression signatures in cancer cells, including cancer stem/progenitor cells, in the primary tumors, exosomes, circulating tumor cells (CTC), and disseminated cancer cells at distant metastatic sites. The gene-expression signatures may help to improve the accuracy of diagnosis and predict the therapeutic responses and overall survival of patients with cancer. Potential biomarkers in cancer cells include stem cell–like markers [CD133, aldehyde dehydrogenase (ALDH), CD44, and CD24], growth factors, and their cognate receptors [epidermal growth factor receptor (EGFR), EGFRvIII, and HER2], molecules associated with epithelial–mesenchymal transition (EMT; vimentin, N-cadherin, snail, twist, and Zeb1), regulators of altered metabolism (phosphatidylinositol-3′ kinase/Akt/mTOR), and drug resistance (multidrug transporters and macrophage inhibitory cytokine-1). Moreover, different pluripotency-associated transcription factors (Oct3/4, Nanog, Sox2, and Myc) and microRNAs that are involved in the epigenetic reprogramming and acquisition of stem cell–like properties by cancer cells during cancer progression may also be exploited as molecular biomarkers to predict the risk of metastases, systemic treatment resistance, and disease relapse of patients with cancer. PMID:24273063

  19. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    DTIC Science & Technology

    2017-10-01

    resemble normal stem cells, specifically in the ability to infinitely give rise to the bulk of a tumor as the “seed” of the cancer, account for cancer...infinitely give rise to the bulk of a tumor as the “seed” of the cancer, account for cancer initiation, progression, recurrence, and chemo...cell population that can infinitely give rise to the bulk of a tumor as the “seed” of the cancer, account for cancer initiation, progression, radio

  20. Cancer stem cell drugs target K-ras signaling in a stemness context

    PubMed Central

    Najumudeen, A K; Jaiswal, A; Lectez, B; Oetken-Lindholm, C; Guzmán, C; Siljamäki, E; Posada, I M D; Lacey, E; Aittokallio, T; Abankwa, D

    2016-01-01

    Cancer stem cells (CSCs) are considered to be responsible for treatment relapse and have therefore become a major target in cancer research. Salinomycin is the most established CSC inhibitor. However, its primary mechanistic target is still unclear, impeding the discovery of compounds with similar anti-CSC activity. Here, we show that salinomycin very specifically interferes with the activity of K-ras4B, but not H-ras, by disrupting its nanoscale membrane organization. We found that caveolae negatively regulate the sensitivity to this drug. On the basis of this novel mechanistic insight, we defined a K-ras-associated and stem cell-derived gene expression signature that predicts the drug response of cancer cells to salinomycin. Consistent with therapy resistance of CSC, 8% of tumor samples in the TCGA-database displayed our signature and were associated with a significantly higher mortality. Using our K-ras-specific screening platform, we identified several new candidate CSC drugs. Two of these, ophiobolin A and conglobatin A, possessed a similar or higher potency than salinomycin. Finally, we established that the most potent compound, ophiobolin A, exerts its K-ras4B-specific activity through inactivation of calmodulin. Our data suggest that specific interference with the K-ras4B/calmodulin interaction selectively inhibits CSC. PMID:26973241

  1. Identification of Human Cutaneous Basal Cell Carcinoma Cancer Stem Cells.

    PubMed

    Morgan, Huw; Olivero, Carlotta; Patel, Girish K

    2018-04-20

    The cancer stem cell model states that a subset of tumor cells, called "cancer stem cells," can initiate and propagate tumor growth through self-renewal, high proliferative capacity, and their ability to recreate tumor heterogeneity. In basal cell carcinoma (BCC), we have shown that tumor cells that express the cell surface protein CD200 fulfill the cancer stem cell hypothesis. CD200+ CD45- BCC cells represent 0.05-3.96% of all BCC cells and reside in small clusters at the tumor periphery. Using a novel, reproducible in vivo xenograft growth assay, we determined that tumor-initiating cell (TIC) frequencies are approximately 1 per 1.5 million unsorted BCC cells. The CD200+ CD45- BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200+ CD45- cells, representing ~1500-fold enrichment. The methods used to identify and purify CD200+ CD45- BCC cells, as well as characterize gene expression, are described herein.

  2. Dynamic Interactions Between Cancer Stem Cells And Their Stromal Partners.

    PubMed

    Park, Tea Soon; Donnenberg, Vera S; Donnenberg, Albert D; Zambidis, Elias T; Zimmerlin, Ludovic

    2014-03-01

    The cancer stem cell (CSC) paradigm presumes the existence of self-renewing cancer cells capable of regenerating all tumor compartments and exhibiting stem cell-associated phenotypes. Recent interpretations of the CSC hypothesis envision stemness as a dynamic trait of tumor-initiating cells rather than a defined and unique cell type. Bidirectional crosstalk between the tumor microenvironment and the cancer bulk is well described in the literature and the tumor-associated stroma, vasculature and immune infiltrate have all been implicated as direct contributors to tumor development. These non-neoplastic cell types have also been shown to organize specific niches within the tumor bulk where they can control the intra-tumor CSC content and alter the fate of CSCs and tumor progenitors during tumorigenesis to acquire phenotypic features for invasion, metastasis and dormancy. Despite the complexity of the tumor-stroma interactome, novel therapeutic approaches envision combining tumor-ablative treatment with manipulation of the tumor microenvironment. We will review the currently available literature that provides clues about the complex cellular network that regulate the CSC phenotype and its niches during tumor progression.

  3. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri.

    PubMed

    Feng, Dingqing; Peng, Cheng; Li, Cairong; Zhou, Ying; Li, Min; Ling, Bin; Wei, Haiming; Tian, Zhigang

    2009-11-01

    Like many other solid tumors, cervical cancer contains a heterogeneous population of cancer cells. Several investigators have identified putative stem cells from solid tumors and cancer cell lines via the capacity to self renew and drive tumor formation. The aim of this study was to identify and characterize a cancer stem-like cell population from primary carcinoma of the cervix uteri. Cervical carcinoma from 19 patients staged I-II following International Federation of Gynecology and Obstetrics (FIGO) criteria were disaggregated and subjected to growth conditions selective for stem cells. Eight of nineteen tumor-derived cultures encompassed stem-like cells capable of self-renewal, extensive proliferation as clonal non-adherent spherical clusters. Cell markers of spheroid were identified as CD44+CK17+. Cell survival assays showed the sphere-forming cells were only 48% inhibited by doxorubicin whereas 78% inhibited by paclitaxel. Chemo-resistance may partly attribute to the exclusive expression of ABC transporter. To investigate the tumorigenicity of these stem-like cells, xenoengraftment of 10(5) dissociated spheroid cells allowed full recapitulation of the original tumor, whereas the same amount of tumor cells without non-adherent spheroid selection remained non-tumorigenic. Stemness properties of these spheroid cells were further established by reverse transcription-PCR and Western blotting, demonstrating the expression of embryonic and adult stemness-related genes (Oct-4, Piwil2, C-myc, Stat3 and Sox2). Based on these findings, we assert that cervical cancer contain a subpopulation of tumor initiating cells with stem-like properties, thus facilitating the approach to therapeutic strategies aimed at eradicating the tumorigenic subpopulation within cervical cancer.

  4. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”

    PubMed Central

    Fiorillo, Marco; Verre, Andrea F.; Iliut, Maria; Peiris-Pagés, Maria; Ozsvari, Bela; Gandara, Ricardo; Cappello, Anna Rita; Sotgia, Federica; Vijayaraghavan, Aravind; Lisanti, Michael P.

    2015-01-01

    Tumor-initiating cells (TICs), a.k.a. cancer stem cells (CSCs), are difficult to eradicate with conventional approaches to cancer treatment, such as chemo-therapy and radiation. As a consequence, the survival of residual CSCs is thought to drive the onset of tumor recurrence, distant metastasis, and drug-resistance, which is a significant clinical problem for the effective treatment of cancer. Thus, novel approaches to cancer therapy are needed urgently, to address this clinical need. Towards this end, here we have investigated the therapeutic potential of graphene oxide to target cancer stem cells. Graphene and its derivatives are well-known, relatively inert and potentially non-toxic nano-materials that form stable dispersions in a variety of solvents. Here, we show that graphene oxide (of both big and small flake sizes) can be used to selectively inhibit the proliferative expansion of cancer stem cells, across multiple tumor types. For this purpose, we employed the tumor-sphere assay, which functionally measures the clonal expansion of single cancer stem cells under anchorage-independent conditions. More specifically, we show that graphene oxide effectively inhibits tumor-sphere formation in multiple cell lines, across 6 different cancer types, including breast, ovarian, prostate, lung and pancreatic cancers, as well as glioblastoma (brain). In striking contrast, graphene oxide is non-toxic for “bulk” cancer cells (non-stem) and normal fibroblasts. Mechanistically, we present evidence that GO exerts its striking effects on CSCs by inhibiting several key signal transduction pathways (WNT, Notch and STAT-signaling) and thereby inducing CSC differentiation. Thus, graphene oxide may be an effective non-toxic therapeutic strategy for the eradication of cancer stem cells, via differentiation-based nano-therapy. PMID:25708684

  5. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells

    PubMed Central

    Niu, N; Mercado-Uribe, I; Liu, J

    2017-01-01

    Our recent perplexing findings that polyploid giant cancer cells (PGCCs) acquired embryonic-like stemness and were capable of tumor initiation raised two important unanswered questions: how do PGCCs acquire such stemness, and to which stage of normal development do PGCCs correspond. Intriguingly, formation of giant cells due to failed mitosis/cytokinesis is common in the blastomere stage of the preimplantation embryo. However, the relationship between PGCCs and giant blastomeres has never been studied. Here, we tracked the fate of single PGCCs following paclitaxel-induced mitotic failure. Morphologically, early spheroids derived from PGCCs were indistinguishable from human embryos at the blastomere, polyploid blastomere, compaction, morula and blastocyst-like stages by light, scanning electron or three-dimensional confocal scanning microscopy. Formation of PGCCs was associated with activation of senescence, while budding of daughter cells was associated with senescence escape. PGCCs showed time- and space-dependent activation of expression of the embryonic stem cell markers OCT4, NANOG, SOX2 and SSEA1 and lacked expression of Xist. PGCCs acquired mesenchymal phenotype and were capable of differentiation into all three germ layers in vitro. The embryonic-like stemness of PGCCs was associated with nuclear accumulation of YAP, a key mediator of the Hippo pathway. Spheroids derived from single PGCCs grew into a wide spectrum of human neoplasms, including germ cell tumors, high-grade and low-grade carcinomas and benign tissues. Daughter cells derived from PGCCs showed attenuated capacity for invasion and increased resistance to paclitaxel. We also observed formation of PGCCs and dedifferentiation in ovarian cancer specimens from patients treated with chemotherapy. Taken together, our findings demonstrate that PGCCs represent somatic equivalents of blastomeres, the most primitive cancer stem cells reported to date. Thus, our studies reveal an evolutionarily conserved

  6. Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively.

    PubMed

    Mitsutake, Norisato; Iwao, Atsuhiko; Nagai, Kazuhiro; Namba, Hiroyuki; Ohtsuru, Akira; Saenko, Vladimir; Yamashita, Shunichi

    2007-04-01

    There is increasing evidence that cancers contain their own stem-like cells called cancer stem cells (CSCs). A small subset of cells, termed side population (SP), has been identified using flow cytometric analysis. The SP cells have the ability to exclude the DNA binding dye, Hoechst33342, and are highly enriched for stem cells in many kinds of normal tissues. Because CSCs are thought to be drug resistant, SP cells in cancers might contain CSCs. We initially examined the presence of SP cells in several human thyroid cancer cell lines. A small percentage of SP cells were found in ARO (0.25%), FRO (0.1%), NPA (0.06%), and WRO (0.02%) cells but not TPC1 cells. After sorting, the SP cells generated both SP and non-SP cells in culture. The clonogenic ability of SP cells was significantly higher than that of non-SP cells. Moreover, the SP prevalence was dependent on cell density in culture, suggesting that SP cells preferentially survived at lower cell density. Microarray experiment revealed differential gene expression profile between SP and non-SP cells, and several genes related to stemness were up-regulated. However, non-SP population also contained cells that were tumorigenic in nude mice, and non-SP cells generated a small number of SP cells. These results suggest that cancer stem-like cells are partly, but not exclusively, enriched in SP population. Clarifying the key tumorigenic population might contribute to the establishment of a novel therapy for thyroid cancer.

  7. Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer

    PubMed Central

    Taniguchi, Hiroaki; Hoshino, Daisuke; Moriya, Chiharu; Zembutsu, Hitoshi; Nishiyama, Nobuhiro; Yamamoto, Hiroyuki; Kataoka, Kazunori; Imai, Kohzoh

    2017-01-01

    PR domain zinc finger protein 14 (PRDM14) maintains stemness in embryonic stem cells via epigenetic mechanisms. Although PRDM14 is elevated in several cancers, it is unclear if and how PRDM14 confers stem cell-like properties and epigenetic changes to cancer cells. Here, we examined the phenotypic characteristics and epigenetic and gene expression profiles of cancer cells that differentially express PRDM14, and assessed the potential of PRDM14-targeted cancer therapy. PRDM14 expression was markedly increased in many different cancer types and correlated with poor survival of breast cancer patients. PRDM14 conferred stem cell-like phenotypes to cancer cells and regulated the expression of genes involved in cancer stemness, metastasis, and chemoresistance. PRDM14 also reduced the methylation of proto-oncogene and stemness gene promoters and PRDM14-binding regions were primarily occupied by histone H3 Lys-4 trimethylation (H3K4me3), both of which are positively correlated with gene expression. Moreover, strong PRDM14 binding sites coincided with promoters containing both H3K4me3 and H3K27me3 histone marks. Using calcium phosphate hybrid micelles as an RNAi delivery system, silencing of PRDM14 expression by chimera RNAi reduced tumor size and metastasis in vivo without causing adverse effects. Conditional loss of PRDM14 function also improved survival of MMTV-Wnt-1 transgenic mice, a spontaneous model of murine breast cancer. Our findings suggest that PRDM14 inhibition may be an effective and novel therapy for cancer stem cells. PMID:28423353

  8. Cancer metabolism, stemness and tumor recurrence

    PubMed Central

    Curry, Joseph M.; Tuluc, Madalina; Whitaker-Menezes, Diana; Ames, Julie A.; Anantharaman, Archana; Butera, Aileen; Leiby, Benjamin; Cognetti, David M.; Sotgia, Federica; Lisanti, Michael P.; Martinez-Outschoorn, Ubaldo E.

    2013-01-01

    tumor can actually determine clinical outcome, likely by providing high-energy mitochondrial “fuels” for proliferative cancer cells to burn. Finally, we also show that in normal mucosal tissue, the basal epithelial “stem cell” layer is hyper-proliferative (Ki-67+), mitochondrial-rich (TOMM20+/COX+) and is metabolically programmed to use mitochondrial fuels (MCT1+), such as ketone bodies and L-lactate. Thus, oxidative mitochondrial metabolism (OXPHOS) is a common feature of both (1) normal stem cells and (2) proliferating cancer cells. As such, we should consider metabolically treating cancer patients with mitochondrial inhibitors (such as Metformin), and/or with a combination of MCT1 and MCT4 inhibitors, to target “metabolic symbiosis.” PMID:23574725

  9. Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification.

    PubMed

    Eguiara, Arrate; Holgado, Olaia; Beloqui, Izaskun; Abalde, Leire; Sanchez, Yolanda; Callol, Carles; Martin, Angel G

    2011-11-01

    The cancer stem cell is defined by its capacity to self-renew, the potential to differentiate into all cells of the tumor and the ability to proliferate and drive the expansion of the tumor. Thus, targeting these cells may provide novel anti-cancer treatment strategies. Breast cancer stem cells have been isolated according to surface marker expression, ability to efflux fluorescent dyes, increased activity of aldehyde dehydrogenase or the capacity to form spheres in non-adherent culture conditions. In order to test novel drugs directed towards modulating self-renewal of cancer stem cells, rapid, easy and inexpensive assays must be developed. Using 2 days-post-fertilization (dpf) zebrafish embryos as transplant recipients, we show that cells grown in mammospheres from breast carcinoma cell lines migrate to the tail of the embryo and form masses with a significantly higher frequency than parental monolayer populations. When stem-like self-renewal was targeted in the parental population by the use of the dietary supplement curcumin, cell migration and mass formation were reduced, indicating that these effects were associated with stem-like cell content. This is a proof of principle report that proposes a rapid and inexpensive assay to target in vivo cancer stem-like cells, which may be used to unravel basic cancer stem cell biology and for drug screening.

  10. Eliminating cancer stem cells: an interview with CCR’s Steven Hou | Center for Cancer Research

    Cancer.gov

    Steven Hou, Ph.D., senior investigator in the Basic Research Laboratory at the Center for Cancer Research describes his latest research that has uncovered potential ways to eliminate cancer stem cells and may offer hope to patients with reoccurring tumors.  Learn more...

  11. Isolation and Characterization of Cancer Stem Cells of the Non-Small-Cell Lung Cancer (A549) Cell Line.

    PubMed

    Halim, Noor Hanis Abu; Zakaria, Norashikin; Satar, Nazilah Abdul; Yahaya, Badrul Hisham

    2016-01-01

    Cancer is a major health problem worldwide. The failure of current treatments to completely eradicate cancer cells often leads to cancer recurrence and dissemination. Studies have suggested that tumor growth and spread are driven by a minority of cancer cells that exhibit characteristics similar to those of normal stem cells, thus these cells are called cancer stem cells (CSCs). CSCs are believed to play an important role in initiating and promoting cancer. CSCs are resistant to currently available cancer therapies, and understanding the mechanisms that control the growth of CSCs might have great implications for cancer therapy. Cancer cells are consist of heterogeneous population of cells, thus methods of identification, isolation, and characterisation of CSCs are fundamental to obtain a pure CSC populations. Therefore, this chapter describes in detail a method for isolating and characterizing a pure population of CSCs from heterogeneous population of cancer cells and CSCs based on specific cell surface markers.

  12. Chemotherapy-Induced Depletion of OCT4-Positive Cancer Stem Cells in a Mouse Model of Malignant Testicular Cancer.

    PubMed

    Pierpont, Timothy M; Lyndaker, Amy M; Anderson, Claire M; Jin, Qiming; Moore, Elizabeth S; Roden, Jamie L; Braxton, Alicia; Bagepalli, Lina; Kataria, Nandita; Hu, Hilary Zhaoxu; Garness, Jason; Cook, Matthew S; Capel, Blanche; Schlafer, Donald H; Southard, Teresa; Weiss, Robert S

    2017-11-14

    Testicular germ cell tumors (TGCTs) are among the most responsive solid cancers to conventional chemotherapy. To elucidate the underlying mechanisms, we developed a mouse TGCT model featuring germ cell-specific Kras activation and Pten inactivation. The resulting mice developed malignant, metastatic TGCTs composed of teratoma and embryonal carcinoma, the latter of which exhibited stem cell characteristics, including expression of the pluripotency factor OCT4. Consistent with epidemiological data linking human testicular cancer risk to in utero exposures, embryonic germ cells were susceptible to malignant transformation, whereas adult germ cells underwent apoptosis in response to the same oncogenic events. Treatment of tumor-bearing mice with genotoxic chemotherapy not only prolonged survival and reduced tumor size but also selectively eliminated the OCT4-positive cancer stem cells. We conclude that the chemosensitivity of TGCTs derives from the sensitivity of their cancer stem cells to DNA-damaging chemotherapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Biochemistry of epidermal stem cells☆

    PubMed Central

    Eckert, Richard L.; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan C.; Boucher, Shayne E.; Bickenbach, Jackie R.; Kerr, Candace

    2014-01-01

    Background The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. Scope of review A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. Major conclusions An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. General significance Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. PMID:22820019

  14. Targeting Breast Cancer Recurrence via Hedgehog-mediated Sensitization of Breast Cancer Stem Cells

    DTIC Science & Technology

    2011-07-01

    Hedgehog -mediated Sensitization of Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: David J. Robbins, Ph.D...June 2010 – 14 June 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Breast Cancer Recurrence via Hedgehog -mediated Sensitization of...this award. Introduction The purpose of the research supported by this award is to determine if targeting the hedgehog signaling pathway in

  15. Semi-synthetic salinomycin analogs exert cytotoxic activity against human colorectal cancer stem cells.

    PubMed

    Klose, Johannes; Kattner, Sarah; Borgström, Björn; Volz, Claudia; Schmidt, Thomas; Schneider, Martin; Oredsson, Stina; Strand, Daniel; Ulrich, Alexis

    2018-01-01

    Salinomycin, a polyether antibiotic, is a well-known inhibitor of human cancer stem cells. Chemical modification of the allylic C20 hydroxyl of salinomycin has enabled access to synthetic analogs that display increased cytotoxic activity compared to the native structure. The aim of this study was to investigate the activity of a cohort of C20-O-acyl analogs of salinomycin on human colorectal cancer cell lines in vitro. Two human colorectal cancer cell lines (SW480 and SW620) were exposed to three C20-O-acylated analogs and salinomycin. The impact of salinomycin and its analogs on tumor cell number, migration, cell death, and cancer stem cell specifity was analyzed. Exposure of human colorectal cancer cells to the C20-O-acylated analogs of salinomycin resulted in reduced tumor cell number and impaired tumor cell migration at lower concentrations than salinomycin. When used at higher (micromolar) concentrations, these effects were accompanied by induction of apoptotic cell death. Salinomycin analogs further expose improved activity against cancer stem cells compared to salinomycin. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Isolation and Characterization of Prostate Cancer Stem Cells

    DTIC Science & Technology

    2011-08-01

    and ability to induce prostate tubule formation in vivo. FISH analysis of prostaspheres derived from patient specimens containing the TMPRSS-ERG...hybridization (FISH)[6]. Analysis of prostate tumor surgical cohorts have found 36-78% of prostate cancers possess the TMPRSS-ERG fusion[6]. We wondered...suggest that cancer stem/early progenitor cells can be expanded in our cultures. 6 To test the feasibility of this approach, FISH analysis was

  17. DCIS-Specific MicroRNA in Cancer Stem Cell

    DTIC Science & Technology

    2011-09-01

    Gairani, Misako Watabe, Fei Xing, Aya Kobayashi, Wen Liu, Koji Fukuda, , Sudha Pai and Kounosuke Watabe. Roles of lipogenesis and microRNA in cancer...Pai, Wen Liu, Aya Kobayashi, Fei Xing, Koji Fukuda , Shigeru Hirota, Tamotsu Sugai, Go Wakabayashi, Keisuke Koeda, Masahiro Kashiwaba, Kazuyuki...Aya Kobayashi, Wen Liu, Koji Fukuda, , Sudha Pai and Kounosuke Watabe Roles of lipogenesis and microRNA in cancer stem- like cells in ductal carcinoma

  18. FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer.

    PubMed

    Bhartiya, Deepa; Singh, Jarnail

    2015-01-01

    Despite extensive research, genetic basis of premature ovarian failure (POF) and ovarian cancer still remains elusive. It is indeed paradoxical that scientists searched for mutations in FSH receptor (FSHR) expressed on granulosa cells, whereas more than 90% of cancers arise in ovary surface epithelium (OSE). Two distinct populations of stem cells including very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) exist in OSE, are responsible for neo-oogenesis and primordial follicle assembly in adult life, and are modulated by FSH via its alternatively spliced receptor variant FSHR3 (growth factor type 1 receptor acting via calcium signaling and the ERK/MAPK pathway). Any defect in FSH-FSHR3-stem cell interaction in OSE may affect folliculogenesis and thus result in POF. Ovarian aging is associated with a compromised microenvironment that does not support stem cell differentiation into oocytes and further folliculogenesis. FSH exerts a mitogenic effect on OSE and elevated FSH levels associated with advanced age may provide a continuous trigger for stem cells to proliferate resulting in cancer, thus supporting gonadotropin theory for ovarian cancer. Present review is an attempt to put adult ovarian biology, POF, aging, and cancer in the perspective of FSH-FSHR3-stem cell network that functions in OSE. This hypothesis is further supported by the recent understanding that: i) cancer is a stem cell disease and OSE is the niche for ovarian cancer stem cells; ii) ovarian OCT4-positive stem cells are regulated by FSH; and iii) OCT4 along with LIN28 and BMP4 are highly expressed in ovarian cancers. © 2015 Society for Reproduction and Fertility.

  19. Combining targeted drugs to overcome and prevent resistance of solid cancers with some stem-like cell features

    PubMed Central

    Koivunen, Peppi; Koivunen, Jussi P.

    2014-01-01

    Treatment resistance significantly inhibits the efficiency of targeted cancer therapies in drug-sensitive genotypes. In the current work, we studied mechanisms for rapidly occurring, adaptive resistance in targeted therapy-sensitive lung, breast, and melanoma cancer cell lines. The results show that in ALK translocated lung cancer lines H3122 and H2228, cells with cancer stem-like cell features characterized by high expression of cancer stem cell markers and/or in vivo tumorigenesis can mediate adaptive resistance to oncogene ablative therapy. When pharmacological ablation of ALK oncogene was accompanied with PI3K inhibitor or salinomycin therapy, cancer stem-like cell features were reversed which was accompanied with decreased colony formation. Furthermore, co-targeting was able to block the formation of acquired resistance in H3122 line. The results suggest that cells with cancer stem-like cell features can mediate adaptive resistance to targeted therapies. Since these cells follow the stochastic model, concurrent therapy with an oncogene ablating agent and a stem-like cell-targeting drug is needed for maximal therapeutic efficiency. PMID:25238228

  20. Cancer stem cells accountability in progression of head and neck squamous cell carcinoma: the most recent trends!

    PubMed

    Routray, Samapika; Mohanty, Neeta

    2014-01-01

    Cancer stem cells (CSCs) play a major role in local recurrence and metastatic spread in head and neck squamous cell carcinomas (HNSCC). Evidence suggests that cancer stem cells are resistant to conventional therapy. So the emerging concepts of the role of cancer stem cells in the pathobiology of HNSCC should be understood carefully to be able to create new paradigms in treatment plans.

  1. Evaluation of Melatonin Effect on Human Breast Cancer Stem Cells Using a Threedimensional Growth Method of Mammospheres.

    PubMed

    Lopes, Juliana Ramos; da Silva Kavagutti, Mayume; de Medeiros, Felipe Arthur Faustino; de Campos Zuccari, Debora Aparecida Pires

    2017-01-01

    The high rates of women&#039;s death from breast cancer occur due to acquired resistance by patients to certain treatments, enabling the recurrence and/or tumor growth, invasion and metastasis. It has been demonstrated that the presence of cancer stem cells in human tumors, as responsible for recurrence and resistance to therapy. Studies have identified OCT4 as responsible for self-renewal and maintenance of pluripotency of stem cells. Thus, it is interesting to study potential drugs that target this specific population in breast cancer. Melatonin, appears to have oncostatic effects on cancer cells, however, little is known about its therapeutic effect on cancer stem cells. Evaluate the viability and the expression of OCT4 in breast cancer stem cells, MCF-7 and MDA-MB- 231, after melatonin treatment. The cells were grown in a 3-dimensional model of mammospheres, representing the breast cancer stem cell population and treated or not with melatonin. The cell viability of mammospheres were evaluated by MTT assay and the OCT4 expression, a cancer stem cells marker, was verified by immunocitochemistry. Our results demonstrated that the melatonin treatment decreased the cell viability of MCF-7 and MDAMB- 231 mammospheres. Furthermore, it was observed that in both cell lines, the expression of OCT4 was decreased in melatonin-treated cells compared to the control group. This fact suggests that melatonin is effective against breast cancer stem cells inhibiting the cell viability via OCT 4. Based on that, we believe that melatonin has a high potential to be used as an alternative treatment for breast cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation.

    PubMed

    Kiro, N E; Hamblin, M R; Abrahamse, H

    2017-06-01

    Breast and cervical cancers are dangerous threats with regard to the health of women. The two malignancies have reached the highest record in terms of cancer-related deaths among women worldwide. Despite the use of novel strategies with the aim to treat and cure advanced stages of cancer, post-therapeutic relapse believed to be caused by cancer stem cells is one of the challenges encountered during tumor therapy. Therefore, further attention should be paid to cancer stem cells when developing novel anti-tumor therapeutic approaches. Low-intensity laser irradiation is a form of phototherapy making use of visible light in the wavelength range of 630-905 nm. Low-intensity laser irradiation has shown remarkable results in a wide range of medical applications due to its biphasic dose and wavelength effect at a cellular level. Overall, this article focuses on the cellular responses of healthy and cancer cells after treatment with low-intensity laser irradiation alone or in combination with a photosensitizer as photodynamic therapy and the influence that various wavelengths and fluencies could have on the therapeutic outcome. Attention will be paid to the biomodulative effect of low-intensity laser irradiation on cancer stem cells.

  3. SU-F-T-683: Cancer Stem Cell Hypothesis and Radiation Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourkal, E

    Purpose: The tumor control probability in radiation therapy allows comparing different radiation treatments to each other by means of calculating the probability that a prescribed dose of radiation eradicates or controls the tumor. In the conventional approach, all cancer cells can divide unlimited number of times and the tumor control often means eradicating every malignant cell by the radiation. In recent years however, there is a mounting consensus that in a given tumor volume there is a sub-population of cells, known as cancer stem cells (CSCs) that are responsible for tumor initiation and growth. Other or progenitor cancer cells canmore » only divide limited number of times. This entails that only cancer stem cells may nned to be eliminated in order to control the tumor. Thus one may define TCP as the probability of eliminating CSCs for the given dose of radiation. Methods: Using stochastic methods, specifically the birth-and-death Markov processes, an infinite system of equations is set for probabilities of having m cancer stem cells at time t after the start of radiation. The TCP is calculated as the probability of no cancer stem cells surviving the radiation. Two scenarios are studied. In the first situation, the TCP is calculated for a unidirectional case when CSC gives birth to another CSC or a progenitor cell. In the second scenario, a bidirectional model is studied where the progenitor cell gives rise to CSC. Results: The proposed calculations show that the calculated TCP for CSC depends on whether one adopts unidirectional or bidirectional conversion models. The bidirectional model shows significantly lower TCP values for the given dose delivered to the tumor. Conclusion: Incorporating CSC hypothesis into the TCP modeling may notably influence the dose prescription as well as the concept of the expected TCP after the radiation treatments.« less

  4. Identification of Novel Targets for Lung Cancer Therapy Using an Induced Pluripotent Stem Cell Model.

    PubMed

    Shukla, Vivek; Rao, Mahadev; Zhang, Hongen; Beers, Jeanette; Wangsa, Darawalee; Wangsa, Danny; Buishand, Floryne O; Wang, Yonghong; Yu, Zhiya; Stevenson, Holly; Reardon, Emily; McLoughlin, Kaitlin C; Kaufman, Andrew; Payabyab, Eden; Hong, Julie A; Zhang, Mary; Davis, Sean R; Edelman, Daniel C; Chen, Guokai; Miettinen, Markku; Restifo, Nicholas; Ried, Thomas; Meltzer, Paul S; Schrump, David S

    2018-04-01

    Despite extensive studies, the genetic and epigenetic mechanisms that mediate initiation and progression of lung cancers have not been fully elucidated. Previously, we have demonstrated that via complementary mechanisms, including DNA methylation, polycomb repressive complexes, and noncoding RNAs, cigarette smoke induces stem-like phenotypes that coincide with progression to malignancy in normal respiratory epithelia as well as enhanced growth and metastatic potential of lung cancer cells. To further investigate epigenetic mechanisms contributing to stemness/pluripotency in lung cancers and potentially identify novel therapeutic targets in these malignancies, induced pluripotent stem cells were generated from normal human small airway epithelial cells. Lung induced pluripotent stem cells were generated by lentiviral transduction of small airway epithelial cells of OSKM (Yamanaka) factors (octamer-binding transcription factor 4 [Oct4], sex-determining region Y box 2 [SOX2], Kruppel-like factor 4 [KLF4], and MYC proto-oncogene, bHLH transcription factor [MYC]). Western blot, real-time polymerase chain reaction, and chromatin immunoprecipitation sequencing analysis were performed. The lung induced pluripotent stem cells exhibited hallmarks of pluripotency, including morphology, surface antigen and stem cell gene expression, in vitro proliferation, and teratoma formation. In addition, lung induced pluripotent stem cells exhibited no chromosomal aberrations, complete silencing of reprogramming transgenes, genomic hypermethylation, upregulation of genes encoding components of polycomb repressive complex 2, hypermethylation of stem cell polycomb targets, and modulation of more than 15,000 other genes relative to parental small airway epithelial cells. Additional sex combs like-3 (ASXL3), encoding a polycomb repressive complex 2-associated protein not previously described in reprogrammed cells, was markedly upregulated in lung induced pluripotent stem cell as well as human

  5. Identification of a distinct population of CD133+CXCR4+ cancer stem cells in ovarian cancer

    PubMed Central

    Cioffi, Michele; D’Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-01-01

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4+CD133+ within ovarian cancer cell lines. The sorted population CD133+CXCR4+ demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133+CXCR4+ sorted OVCAR-5 cells. Most strikingly CXCR4+CD133+ sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133−CXCR4−, CD133+CXCR4−, CD133−CXCR4+ cells. CXCR4+CD133+ OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target. PMID:26020117

  6. Harnessing the apoptotic programs in cancer stem-like cells

    PubMed Central

    Wang, Ying-Hua; Scadden, David T

    2015-01-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. PMID:26253117

  7. Cancer stem cells with increased metastatic potential as a therapeutic target for esophageal cancer.

    PubMed

    Wang, D; Plukker, J Th M; Coppes, R P

    2017-06-01

    Esophageal cancers (EC) are highly aggressive tumors, commonly presented in a locally advanced stage with a poor prognosis and survival. Up to 50% of the patients are eligible for treatment with curative intent and receive the standard treatment with neoadjuvant chemoradiotherapy (nCRT) and surgery. Currently, pathologic complete response to nCRT is 20-30%, with a partial or no response in about 50% and 20%, respectively. EC recurrences occur frequently even after successful anti-cancer treatment, suggesting high aggressiveness with increased metastatic potential. A tumor sub-population of so-called cancer stem cells (CSCs), is known to display a high metastatic potential and resistance to conventional anti-cancer therapy, hereby being responsible for the unbeneficial clinical features. In this review, a concise overview will be given of the current literature on esophageal CSCs and related metastases. Esophageal CSC markers will be discussed followed by the pathways that initiate and sustain these cells. In addition, the cellular processes, epithelial-mesenchymal transition (EMT), hypoxia and autophagy, known to contribute to cancer stemness and metastasis will be explained. Finally, potential options for treatment also related to cancer genome atlas (TCGA) data on EC will be discussed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor

  9. Sensitivity of Breast Cancer Stem Cells to TRA-8 Anti-DR5 Monoclonal Antibody

    DTIC Science & Technology

    2013-02-01

    1 AD_________________ Award Number: W81XWH-11-1-0151 TITLE: Sensitivity of Breast Cancer Stem Cells to TRA-8 Anti-DR5...Annual Summary 3. DATES COVERED 15-January-2012 – 14-January-2013 4. TITLE AND SUBTITLE Sensitivity of Breast Cancer Stem Cells to TRA-8 Anti-DR5...release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Basal-like breast cancers (BLBCs) generally become resistant to

  10. New cancer diagnostics and therapeutics from a ninth 'hallmark of cancer': symmetric self-renewal by mutated distributed stem cells.

    PubMed

    Sherley, James L

    2013-11-01

    A total of eight cellular alterations associated with human carcinogenesis have been framed as the 'hallmarks of cancer'. This representation overlooks a ninth hallmark of cancer: the requirement for tumor-originating distributed stem cells to shift sufficiently from asymmetric to symmetric self-renewal kinetics for attainment of the high cell production rate necessary to form clinically significant tumors within a human lifespan. Overlooking this ninth hallmark costs opportunities for discovery of more selective molecular targets for development of improved cancer therapeutics and missing cancer stem cell biomarkers of greater specificity. Here, the biological basis for the ninth hallmark of cancer is considered toward highlighting its importance in human carcinogenesis and, as such, its potential for revealing unique molecules for targeting cancer diagnostics and therapeutics.

  11. Anti-cancer activity of compounds from Bauhinia strychnifolia stem.

    PubMed

    Yuenyongsawad, Supreeya; Bunluepuech, Kingkan; Wattanapiromsakul, Chatchai; Tewtrakul, Supinya

    2013-11-25

    The stem and root of Bauhinia strychnifolia Craib (Fabaceae family) have been traditionally used in Thailand to treat fever, alcoholic toxication, allergy and cancer. An EtOH extract of Bauhinia strychnifolia showed good inhibitory activity against several cancer cell lines including HT-29, HeLa, MCF-7 and KB. As there has been no previous reports on chemical constituents of Bauhinia strychnifolia, this study is aimed to isolate the pure compounds with anti-cancer activity. Five pure compounds were isolated from EtOH extract of Bauhinia strychnifolia stem using silica gel, dianion HP-20 and sephadex LH-20 column chromatography and were tested for their cytotoxic effects against HT-29, HeLa, MCF-7 and KB cell lines using the Sulforhodamine B (SRB) assay. Among five compounds, 3,5,7,3',5'-pentahydroxyflavanonol-3-O-α-l-rhamnopyranoside (2) possessed very potent activity against KB (IC₅₀=0.00054μg/mL), HT-29 (IC₅₀=0.00217 μg/mL), MCF-7 (IC₅₀=0.0585 μg/mL) and HeLa cells (IC₅₀=0.0692 μg/mL). 3,5,7-Trihydroxychromone-3-O-α-l-rhamnopyranoside (3) also showed good activity against HT-29 (IC₅₀=0.02366 μg/mL), KB (IC₅₀=0.0412 μg/mL) and MCF-7 (IC₅₀=0.297 μg/mL), respectively. The activity of 2 (IC₅₀=0.00054 μg/mL) against KB cell was ten times higher than that of the positive control, Camptothecin (anti-cancer drug, IC₅₀=0.0057 μg/mL). All compounds did not show any cytotoxicity with normal cells at the concentration of 1 μg/mL. This is the first report of compounds 2 and 3 on anti-cancer activity and based on the anti-cancer activity of extracts and pure compounds isolated from Bauhinia strychnifolia stem, it might be suggested that this plant could be useful for treatment of cancer. © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Cancer Stem Cells Accountability in Progression of Head and Neck Squamous Cell Carcinoma: The Most Recent Trends!

    PubMed Central

    Routray, Samapika; Mohanty, Neeta

    2014-01-01

    Cancer stem cells (CSCs) play a major role in local recurrence and metastatic spread in head and neck squamous cell carcinomas (HNSCC). Evidence suggests that cancer stem cells are resistant to conventional therapy. So the emerging concepts of the role of cancer stem cells in the pathobiology of HNSCC should be understood carefully to be able to create new paradigms in treatment plans. PMID:24693428

  13. Constitutive Proteasomal Degradation of TWIST-1 in Epithelial Ovarian Cancer Stem Cells Impacts Differentiation and Metastatic Potential

    PubMed Central

    Yin, Gang; Alvero, Ayesha B.; Craveiro, Vinicius; Holmberg, Jennie C.; Fu, Han-Hsuan; Montagna, Michele K.; Yang, Yang; Chefetz-Menaker, Ilana; Nuti, Sudhakar; Rossi, Michael; Silasi, Dan-Arin; Rutherford, Thomas; Mor, Gil

    2013-01-01

    Epithelial-mesenchymal transition (EMT) is a critical process for embryogenesis but is abnormally activated during cancer metastasis and recurrence. This process enables epithelial cancer cells to acquire mobility and traits associated with stemness. It is unknown whether epithelial stem cells or epithelial cancer stem cells are able to undergo EMT, and what molecular mechanism regulates this process in these specific cell types. We found that Epithelial Ovarian Cancer Stem cells (EOC stem cells) are the source of metastatic progenitor cells through a differentiation process involving EMT and Mesenchymal-Epithelial Transition (MET). We demonstrate both in vivo and in vitro the differentiation of EOC stem cells into mesenchymal spheroid-forming cells (MSFCs) and their capacity to initiate an active carcinomatosis. Furthermore, we demonstrate that human EOC stem cells injected i.p in mice are able to form ovarian tumors, suggesting that the EOC stem cells have the ability to “home” to the ovaries and establish tumors. Most interestingly, we found that TWIST1 is constitutively degraded in EOC stem cells, and that the acquisition of TWIST1 requires additional signals that will trigger the differentiation process. These findings are relevant for understanding the differentiation and metastasis process in EOC stem cells. PMID:22349827

  14. Assessing stemness and proliferation properties of the newly established colon cancer 'stem' cell line, CSC480 and novel approaches to identify dormant cancer cells.

    PubMed

    Alowaidi, Faisal; Hashimi, Saeed Mujahid; Alqurashi, Naif; Alhulais, Reem; Ivanovski, Saso; Bellette, Bernadette; Meedenyia, Adrian; Lam, Alfred; Wood, Stephen

    2018-06-01

    To date two questions that remain unanswered regarding cancer are the following: i) how is it initiated, and ii) what is the role that cancer stem cells (CSCs) play in the disease process? Understanding the biology of CSCs and how they are generated is pivotal for the development of successful treatment regimens. To date, the lack of a representative cell model has prevented the successful identification and eradication of CSCs in vivo. The current methods of CSC identification are dependent on the protocol used to generate these cells, which has introduced variation and made the identification process more complicated. Furthermore, the list of possible markers is increasing in complexity. This is further confounded by the fact that there is insufficient information to determine whether the cells these markers detect are truly self‑renewing stem cells or, instead, progenitor cells. In the present study, we investigated a novel cell line model, CSC480, which can be employed to assess CSC markers and for testing novel therapeutic regimens. CSC480 cells have been revealed to express markers of CSCs such as CD44, ALDH1 and Sox2, that have lower expression in the SW480 cell line. CSC480 cells also expressed higher levels of the cancer resistance marker, ABCG2 and had higher proliferative and growth capacity than SW480 cells. In the present study, we also evaluated a novel approach to identify different cell types present in heterogeneous cancer cell populations according to their proliferative ability using the proliferation marker 5‑ethynyl‑2'‑deoxyuridine (EdU). Furthermore, using EdU, we identified dormant cells with a modified label‑retaining cell (LRC) protocol. Through this novel LRC method, we assessed newly discovered markers of stemness to ascertain their capability to identify quiescent from dividing CSCs. In conclusion, the CSC480 cell line was an important model to be used in unravelling the underlying mechanisms that control fast‑dividing and

  15. Enrichment of prostate cancer stem cells from primary prostate cancer cultures of biopsy samples

    PubMed Central

    Wang, Shunqi; Huang, Shengsong; Zhao, Xin; Zhang, Qimin; Wu, Min; Sun, Feng; Han, Gang; Wu, Denglong

    2014-01-01

    This study was to enrich prostate cancer stem cells (PrCSC) from primary prostate cancer cultures (PPrCC). Primary prostate cancer cells were amplified in keratinocyte serum-free medium with epidermal growth factor (EGF) and bovine pituitary extract (BPE), supplemented with leukemia inhibitory factor (LIF), stem cell factor (SCF) and cholera toxin. After amplification, cells were transferred into ultra-low attachment dishes with serum-free DMEM/F12 medium, supplemented with EGF, basic fibroblast growth factor (bFGF), bovine serum albumin (BSA), insulin, and N2 nutrition. Expression of cell-type-specific markers was determined by RT-qPCR and immunostaining. Tumorigenicity of enriched PrCSC was determined by soft agar assay and xenograft assay in NOD/SCID mice. Biopsy samples from 19 confirmed prostate cancer patients were used for establishing PPrCC, and 18 cases (95%) succeeded. Both basal marker (CK5) and luminal markers (androgen receptor and CK8) strongly co-expressed in most of PPrCC, indicating their basal epithelial origin. After amplification under adherent culture condition in vitro, transient amplifying cells were the dominant cells. Sphere formation efficiency (SFE) of passaged PPrCC was about 0.5%, which was 27 times lower than SFE of LNCaP (13.67%) in the same condition. Compared with adherent cells from PPrCC, prostasphere from PPrCC showed up regulated stem cell markers and increased tumorigenic potential in soft-agar assay. However, spheroid cells from PPrCC prostasphere failed to initiate tumor in xenograft assay in 6 months. Thus, PPrCC can be established and amplified from prostate cancer biopsy samples. Our modified sphere culture system can enrich PrCSC from PPrCC. PMID:24427338

  16. Detonation nanodiamond complexes with cancer stem cells inhibitors or paracrine products of mesenchymal stem cells as new potential medications

    NASA Astrophysics Data System (ADS)

    Konoplyannikov, A. G.; Alekseenskiy, A. E.; Zlotin, S. G.; Smirnov, B. B.; Kalsina, S. Sh.; Lepehina, L. A.; Semenkova, I. V.; Agaeva, E. V.; Baboyan, S. B.; Rjumshina, E. A.; Nosachenko, V. V.; Konoplyannikov, M. A.

    2015-09-01

    Combined use of complexes of the most active chemotherapeutic drugs and detonation nanodiamonds (DND) is a new trend in cancer therapy, which is probably related to selective chemotherapeutic drug delivery by DND to the zone of so-called cancer stem cells (CSC). Stable DND complexes of 4-5 nm size with salinomycin—a strong CSC inhibitor—have been obtained (as a suspension). It has been demonstrated that a complex administration considerably increases the drug antitumor effect on the transplantable tumor of LLC mice. A similar effect has been observed in CSC models in vivo, obtained by exposure of stem cells of normal mice tissues to a carcinogen 1,2-dimethylhydrazine. It has also been found out, that administration of DND complexes with the conditioned medium from mesenchymal stem cells (MSC) cultures to mice results in a considerable stimulation of stem cell pools in normal mice tissues, which can be used in regenerative medicine.

  17. Endothelial-derived interleukin-6 induces cancer stem cell motility by generating a chemotactic gradient towards blood vessels.

    PubMed

    Kim, Hong Sun; Chen, Yu-Chih; Nör, Felipe; Warner, Kristy A; Andrews, April; Wagner, Vivian P; Zhang, Zhaocheng; Zhang, Zhixiong; Martins, Manoela D; Pearson, Alexander T; Yoon, Euisik; Nör, Jacques E

    2017-11-21

    Recent evidence suggests that the metastatic spread of head and neck squamous cell carcinomas (HNSCC) requires the function of cancer stem cells endowed with multipotency, self-renewal, and high tumorigenic potential. We demonstrated that cancer stem cells reside in perivascular niches and are characterized by high aldehyde dehydrogenase (ALDH) activity and high CD44 expression (ALDH high CD44 high ) in HNSCC. Here, we hypothesize that endothelial cell-secreted interleukin-6 (IL-6) contributes to tumor progression by enhancing the migratory phenotype and survival of cancer stem cells. Analysis of tissue microarrays generated from the invasive fronts of 77 HNSCC patients followed-up for up to 11 years revealed that high expression of IL-6 receptor (IL-6R) (p=0.0217) or co-receptor gp130 (p=0.0422) correlates with low HNSCC patient survival. We observed that endothelial cell-secreted factors induce epithelial to mesenchymal transition (EMT) and enhance invasive capacity of HNSCC cancer stem cells. Conditioned medium from CRISPR/Cas9-mediated IL-6 knockout primary human endothelial cells is less chemotactic for cancer stem cells in a microfluidics-based system than medium from control endothelial cells (p<0.05). Blockade of the IL-6 pathway with a humanized anti-IL-6R antibody (tocilizumab) inhibited endothelial cell-induced motility in vitro and decreased the fraction of cancer stem cells in vivo . Notably, xenograft HNSCC tumors vascularized with IL-6-knockout endothelial cells exhibited slower tumor growth and smaller cancer stem cell fraction. These findings demonstrate that endothelial cell-secreted IL-6 enhances the motility and survival of highly tumorigenic cancer stem cells, suggesting that endothelial cells can create a chemotactic gradient that enables the movement of carcinoma cells towards blood vessels.

  18. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells.

    PubMed

    Morata-Tarifa, Cynthia; Jiménez, Gema; García, María A; Entrena, José M; Griñán-Lisón, Carmen; Aguilera, Margarita; Picon-Ruiz, Manuel; Marchal, Juan A

    2016-01-11

    Cancer stem cells are responsible for tumor progression, metastasis, therapy resistance and cancer recurrence, doing their identification and isolation of special relevance. Here we show that low adherent breast and colon cancer cells subpopulations have stem-like properties. Our results demonstrate that trypsin-sensitive (TS) breast and colon cancer cells subpopulations show increased ALDH activity, higher ability to exclude Hoechst 33342, enlarged proportion of cells with a cancer stem-like cell phenotype and are enriched in sphere- and colony-forming cells in vitro. Further studies in MDA-MB-231 breast cancer cells reveal that TS subpopulation expresses higher levels of SLUG, SNAIL, VIMENTIN and N-CADHERIN while show a lack of expression of E-CADHERIN and CLAUDIN, being this profile characteristic of the epithelial-to-mesenchymal transition (EMT). The TS subpopulation shows CXCL10, BMI-1 and OCT4 upregulation, differing also in the expression of several miRNAs involved in EMT and/or cell self-renewal such as miR-34a-5p, miR-34c-5p, miR-21-5p, miR-93-5p and miR-100-5p. Furthermore, in vivo studies in immunocompromised mice demonstrate that MDA-MB-231 TS cells form more and bigger xenograft tumors with shorter latency and have higher metastatic potential. In conclusion, this work presents a new, non-aggressive, easy, inexpensive and reproducible methodology to isolate prospectively cancer stem-like cells for subsequent biological and preclinical studies.

  19. Combined Gemcitabine and Metronidazole Is a Promising Therapeutic Strategy for Cancer Stem-like Cholangiocarcinoma.

    PubMed

    Kawamoto, Makoto; Umebayashi, Masayo; Tanaka, Hiroto; Koya, Norihiro; Nakagawa, Sinichiro; Kawabe, Ken; Onishi, Hideya; Nakamura, Masafumi; Morisaki, Takashi

    2018-05-01

    Metronidazole (MNZ) is a common antibiotic that exerts disulfiram-like effects when taken together with alcohol. However, the relationship between MNZ and aldehyde dehydrogenase (ALDH) activity remains unclear. This study investigated whether MNZ reduces cancer stemness by suppressing ALDH activity and accordingly reducing the malignancy of cholangiocarcinoma (CCA). We developed gemcitabine (GEM)-resistant TFK-1 cells and originally established CCA cell line from a patient with GEM-resistant CCA. Using these cell lines, we analyzed the impacts of MNZ for cancer stem cell markers, invasiveness, and chemosensitivity. MNZ reduced ALDH activity in GEM-resistant CCA cells, leading to decreased invasiveness and enhanced chemosensitivity. MNZ diminished the invasiveness by inducing mesenchymal-epithelial transition and enhancing chemosensitivity by increasing ENT1 (equilibrative nucleoside transporter 1) and reducing RRM1 (ribonucleotide reductase M1). MNZ reduced cancer stemness in GEM-resistant CCA cells. Combined GEM and MNZ would be a promising therapeutic strategy for cancer stem-like CAA. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features

    PubMed Central

    Li, Xiaoran; Zhong, Yali; Lu, Jie; Axcrona, Karol; Eide, Lars; Syljuåsen, Randi G.; Peng, Qian; Wang, Junbai; Zhang, Hongquan; Goscinski, Mariusz Adam; Kvalheim, Gunnar; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Reducing mtDNA content was considered as a critical step in the metabolism restructuring for cell stemness restoration and further neoplastic development. However, the connections between mtDNA depletion and metabolism reprograming-based cancer cell stemness in prostate cancers are still lack of studies. Here, we demonstrated that human CRPC cell line PC3 tolerated high concentration of the mtDNA replication inhibitor ethidium bromide (EtBr) and the mtDNA depletion triggered a universal metabolic remodeling process. Failure in completing that process caused lethal consequences. The mtDNA depleted (MtDP) PC3 cells could be steadily maintained in the special medium in slow cycling status. The MtDP PC3 cells contained immature mitochondria and exhibited Warburg effect. Furthermore, the MtDP PC3 cells were resistant to therapeutic treatments and contained greater cancer stem cell-like subpopulations: CD44+, ABCG2+, side-population and ALDHbright. In conclusion, these results highlight the association of mtDNA content, mitochondrial function and cancer cell stemness features. PMID:27248169

  1. Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer.

    PubMed

    Rodríguez, Marta; Silva, Javier; Herrera, Alberto; Herrera, Mercedes; Peña, Cristina; Martín, Paloma; Gil-Calderón, Beatriz; Larriba, María Jesús; Coronado, M Josés; Soldevilla, Beatriz; Turrión, Víctor S; Provencio, Mariano; Sánchez, Antonio; Bonilla, Félix; García-Barberán, Vanesa

    2015-12-01

    Cancer cells efficiently transfer exosome contents (essentially mRNAs and microRNAs) to other cell types, modifying immune responses, cell growth, angiogenesis and metastasis. Here we analyzed the exosomes release by breast tumor cells with different capacities of stemness/metastasis based on CXCR4 expression, and evaluated their capacity to generate oncogenic features in recipient cells. Breast cancer cells overexpressing CXCR4 showed an increase in stemness-related markers, and in proliferation, migration and invasion capacities. Furthermore, recipient cells treated with exosomes from CXCR4-cells showed increased in the same abilities. Moreover, inoculation of CXCR4-cell-derived exosomes in immunocompromised mice stimulated primary tumor growth and metastatic potential. Comparison of nucleic acids contained into exosomes isolated from patients revealed a "stemness and metastatic" signature in exosomes of patients with worse prognosis. Finally, our data supported the view that cancer cells with stem-like properties show concomitant metastatic behavior, and their exosomes stimulate tumor progression and metastasis. Exosomes-derived nucleic acids from plasma of breast cancer patients are suitable markers in the prognosis of such patients.

  2. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation.

    PubMed

    Weeden, Clare E; Asselin-Labat, Marie-Liesse

    2018-01-01

    Maintenance of genomic integrity in tissue-specific stem cells is critical for tissue homeostasis and the prevention of deleterious diseases such as cancer. Stem cells are subject to DNA damage induced by endogenous replication mishaps or exposure to exogenous agents. The type of DNA lesion and the cell cycle stage will invoke different DNA repair mechanisms depending on the intrinsic DNA repair machinery of a cell. Inappropriate DNA repair in stem cells can lead to cell death, or to the formation and accumulation of genetic alterations that can be transmitted to daughter cells and so is linked to cancer formation. DNA mutational signatures that are associated with DNA repair deficiencies or exposure to carcinogenic agents have been described in cancer. Here we review the most recent findings on DNA repair pathways activated in epithelial tissue stem and progenitor cells and their implications for cancer mutational signatures. We discuss how deep knowledge of early molecular events leading to carcinogenesis provides insights into DNA repair mechanisms operating in tumours and how these could be exploited therapeutically. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells.

    PubMed

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-06-10

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells.

  4. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells

    PubMed Central

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells. PMID:26059097

  5. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells

    PubMed Central

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054

  6. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells.

    PubMed

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs.

  7. Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance

    PubMed Central

    Meirelles, Katia; Benedict, Leo Andrew; Dombkowski, David; Pepin, David; Preffer, Frederic I.; Teixeira, Jose; Tanwar, Pradeep Singh; Young, Robert H.; MacLaughlin, David T.; Donahoe, Patricia K.; Wei, Xiaolong

    2012-01-01

    Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad−) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad− cells. Similarly, proliferation of the 3+Ecad− cells in monolayer increased with treatment, by either doxorubicin or cisplatin, compared with the unseparated or cancer stem cell-depleted 3−Ecad+ cells. However, these cells are sensitive to Mullerian inhibiting substance (MIS), which decreased colony formation. MIS inhibits ovarian cancer cells by inducing G1 arrest of the 3+Ecad− subpopulation through the induction of cyclin-dependent kinase inhibitors. 3+Ecad− cells selectively expressed LIN28, which colocalized by immunofluorescence with the 3+ cancer stem cell markers in the human ovarian carcinoma cell line, OVCAR-5, and is also highly expressed in transgenic murine models of ovarian cancer and in other human ovarian cancer cell lines. These results suggest that chemotherapeutics may be stimulative to cancer stem cells and that selective inhibition of these cells by treating with MIS or targeting LIN28 should be considered in the development of therapeutics. PMID:22308459

  8. Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance.

    PubMed

    Meirelles, Katia; Benedict, Leo Andrew; Dombkowski, David; Pepin, David; Preffer, Frederic I; Teixeira, Jose; Tanwar, Pradeep Singh; Young, Robert H; MacLaughlin, David T; Donahoe, Patricia K; Wei, Xiaolong

    2012-02-14

    Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad-) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad- cells. Similarly, proliferation of the 3+Ecad- cells in monolayer increased with treatment, by either doxorubicin or cisplatin, compared with the unseparated or cancer stem cell-depleted 3-Ecad+ cells. However, these cells are sensitive to Mullerian inhibiting substance (MIS), which decreased colony formation. MIS inhibits ovarian cancer cells by inducing G1 arrest of the 3+Ecad- subpopulation through the induction of cyclin-dependent kinase inhibitors. 3+Ecad- cells selectively expressed LIN28, which colocalized by immunofluorescence with the 3+ cancer stem cell markers in the human ovarian carcinoma cell line, OVCAR-5, and is also highly expressed in transgenic murine models of ovarian cancer and in other human ovarian cancer cell lines. These results suggest that chemotherapeutics may be stimulative to cancer stem cells and that selective inhibition of these cells by treating with MIS or targeting LIN28 should be considered in the development of therapeutics.

  9. PHF21B overexpression promotes cancer stem cell-like traits in prostate cancer cells by activating the Wnt/β-catenin signaling pathway.

    PubMed

    Li, Qiji; Ye, Liping; Guo, Wei; Wang, Min; Huang, Shuai; Peng, Xinsheng

    2017-06-23

    PHF21B is newly identified to be involved in the tumor progression; however, its biological role and molecular mechanism in prostate cancer have not been defined. This study is aimed to study the role of PHF21B in the progression of prostate cancer. Real-time PCR, immunohistochemistry and western blotting analysis were used to determine PHF21B expression in prostate cancer cell lines and clinical specimens. The role of PHF21B in maintaining prostate cancer stem cell-like phenotype was examined by tumor-sphere formation assay and expression levels of stem cell markers. Luciferase reporter assay, western blot analysis, enzyme-linked immunosorbent assay and ChIP assay were used to determine whether PHF21B activates the Wnt/β-catenin signaling by transcriptionally downregulating SFRP1 and SFRP2. Our results revealed that PHF21B was markedly upregulated in prostate cancer cell lines and tissues. High PHF21B levels predicted poorer recurrence-free survival in prostate cancer patients. Gain-of-function and loss-of-function studies showed that overexpression of PHF21B enhanced, while downregulation suppressed, the cancer stem cell-like phenotype in prostate cancer cells. Xenograft tumor model showed that silencing PHF21B decreased the ability of tumorigenicity in vivo. Notably, Wnt/β-catenin signaling was hyperactivated in prostate cancer cells overexpressing PHF21B, and mediated PHF21B-induced cancer stem cell-like phenotype. Furthermore, PHF21B suppressed repressors of the Wnt/β-catenin signaling cascade, including SFRP1 and SFRP2. These results demonstrated that PHF21B constitutively activated wnt/β-catenin signaling by transcriptionally downregulating SFRP1 and SFRP2, which promotes prostate cancer stem cell-like phenotype. Our results revealed that PHF21B functions as an oncogene in prostate cancer, and may represent a promising prognostic biomarker and an attractive candidate for target therapy of prostate cancer.

  10. The effects and mechanisms of SLC34A2 on maintaining stem cell-like phenotypes in CD147+ breast cancer stem cells.

    PubMed

    Lv, Yonggang; Wang, Ting; Fan, Jing; Zhang, Zhenzhen; Zhang, Juliang; Xu, Cheng; Li, Yongping; Zhao, Ge; He, Chenyang; Meng, Huimin; Yang, Hua; Wang, Zhen; Liu, Jiayun; Chen, Jianghao; Wang, Ling

    2017-04-01

    The cancer stem cell (CSC) hypothesis has gained significant recognition in describing tumorigenesis. Identification of the factors critical to development of breast cancer stem cells (BCSCs) may provide insight into the improvement of effective therapies against breast cancer. In this study, we aim to investigate the biological function of SLC34A2 in affecting the stem cell-like phenotypes in BCSCs and its underlying mechanisms. We demonstrated that CD147 + cells from breast cancer tissue samples and cell lines possessed BCSC-like features, including the ability of self-renewal in vitro, differentiation, and tumorigenic potential in vivo. Flow cytometry analysis showed the presence of a variable fraction of CD147 + cells in 9 of 10 tumor samples. Significantly, SLC34A2 expression in CD147 + BCSCs was enhanced compared with that in differentiated adherent progeny of CD147 + BCSCs and adherently cultured cell line cells. In breast cancer patient cohorts, SLC34A2 expression was found increased in 9 of 10 tumor samples. By using lentiviral-based approach, si-SLC34A2-transduced CD147 + BCSCs showed decreased ability of sphere formation, cell viability in vitro, and tumorigenicity in vivo, which suggested the essential role of SLC34A2 in CD147 + BCSCs. Furthermore, PI3K/AKT pathway and SOX2 were found necessary to maintain the stemness of CD147 + BCSCs by using LY294002 or lentiviral-si-SOX2. Finally, we indicated that SLC34A2 could regulate SOX2 to maintain the stem cell-like features in CD147 + BCSCs through PI3K/AKT pathway. Therefore, our report identifies a novel role of SLC34A2 in BCSCs' state regulation and establishes a rationale for targeting the SLC34A2/PI3K/AKT/SOX2 signaling pathway for breast cancer therapy.

  11. Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma.

    PubMed

    Jung, Narae; Kwon, Ho Jeong; Jung, Hye Jin

    2018-01-01

    Glioblastoma stem cell targeted therapies have become a powerful strategy for the treatment of this deadliest brain tumor. We demonstrate for the first time that downregulation of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) inhibits the cancer stem cell-like properties in human glioblastoma cells. The synthetic small molecules targeting UQCRB significantly suppressed not only the self-renewal capacity such as growth and neurosphere formation, but also the metastatic potential such as migration and invasion of glioblastoma stem‑like cells (GSCs) derived from U87MG and U373MG at subtoxic concentrations. Notably, the UQCRB inhibitors repressed c‑Met-mediated downstream signal transduction and hypoxia‑inducible factor‑1α (HIF‑1α) activation, thereby reducing the expression levels of GSC markers including CD133, Nanog, Oct4 and Sox2 in the GSCs. Furthermore, the UQCRB inhibitors decreased mitochondrial ROS generation and mitochondrial membrane potential in the GSCs, indicating that they regulate the mitochondrial function in GSCs. Indeed, the knockdown of UQCRB gene by UQCRB siRNA significantly inhibited the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking mitochondrial ROS/HIF‑1α/c‑Met pathway in U87MG GSCs. These findings suggest that UQCRB and its inhibitors could be a new therapeutic target and lead compounds for eliminating cancer stem cells in glioblastoma.

  12. Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis

    PubMed Central

    Lee, Won Jun; Kim, Sang Cheol; Yoon, Jung-Ho; Yoon, Sang Jun; Lim, Johan; Kim, You-Sun; Kwon, Sung Won; Park, Jeong Hill

    2016-01-01

    Generally, cancer stem cells have epithelial-to-mesenchymal-transition characteristics and other aggressive properties that cause metastasis. However, there have been no confident markers for the identification of cancer stem cells and comparative methods examining adherent and sphere cells are widely used to investigate mechanism underlying cancer stem cells, because sphere cells have been known to maintain cancer stem cell characteristics. In this study, we conducted a meta-analysis that combined gene expression profiles from several studies that utilized tumorsphere technology to investigate tumor stem-like breast cancer cells. We used our own gene expression profiles along with the three different gene expression profiles from the Gene Expression Omnibus, which we combined using the ComBat method, and obtained significant gene sets using the gene set analysis of our datasets and the combined dataset. This experiment focused on four gene sets such as cytokine-cytokine receptor interaction that demonstrated significance in both datasets. Our observations demonstrated that among the genes of four significant gene sets, six genes were consistently up-regulated and satisfied the p-value of < 0.05, and our network analysis showed high connectivity in five genes. From these results, we established CXCR4, CXCL1 and HMGCS1, the intersecting genes of the datasets with high connectivity and p-value of < 0.05, as significant genes in the identification of cancer stem cells. Additional experiment using quantitative reverse transcription-polymerase chain reaction showed significant up-regulation in MCF-7 derived sphere cells and confirmed the importance of these three genes. Taken together, using meta-analysis that combines gene set and network analysis, we suggested CXCR4, CXCL1 and HMGCS1 as candidates involved in tumor stem-like breast cancer cells. Distinct from other meta-analysis, by using gene set analysis, we selected possible markers which can explain the biological

  13. Collateral damage control in cancer therapy: defining the stem identity in gliomas.

    PubMed

    Hsieh, David

    2011-01-01

    The discovery of discrete functional components in cancer systems advocates a paradigm shift in therapeutic design towards the targeted destruction of critical cellular constituents that fuel tumorigenic potential. In astrocytomas, malignant growth can be propagated and sustained by glioma stem cells (GSCs) endowed with highly efficient clonogenic and tumor initiation capacities. Given their disproportionate oncogenic contribution, GSCs are often considered the optimal targets for curative treatment because their eradication may subvert the refractory nature of GBMs. However, the close affinity of GSCs and normal neural stem cells (NSCs) is a cautionary note for off-target effects of GSC-based therapies. In fact, many parallels can be drawn between GSC and NSC functions, which ostensibly rely on a communal collection of stem cell-promoting transcription factors (TFs). Only through rigorous scrutiny of nuances in the stemness program of GSCs and NSCs may we clarify the pathogenic mechanisms of stemness factors and reveal processes exploited by cancer cells to co-opt stem cell traits. Importantly, discerning the specific requirements for GSC and NSC maintenance may be an essential requisite when assessing molecular targets for discriminatory targeting of GSCs with minimal sequelae.

  14. HPV-Induced Field Cancerisation: Transformation of Adult Tissue Stem Cell Into Cancer Stem Cell.

    PubMed

    Olivero, Carlotta; Lanfredini, Simone; Borgogna, Cinzia; Gariglio, Marisa; Patel, Girish K

    2018-01-01

    Field cancerisation was originally described as a basis for multiple head and neck squamous cell carcinoma (HNSCC) and is a pre-malignant phenomenon that is frequently attributable to oncogenic human papillomavirus (HPV) infection. Our work on β-HPV-induced cutaneous squamous cell carcinomas identified a novel Lrig1+ hair follicle junctional zone keratinocyte stem cell population as the basis for field cancerisation. Herein, we describe the ability for HPV to infect adult tissue stem cells in order to establish persistent infection and induce their proliferation and displacement resulting in field cancerisation. By review of the HPV literature, we reveal how this mechanism is conserved as the basis of field cancerisation across many tissues. New insights have identified the capacity for HPV early region genes to dysregulate adult tissue stem cell self-renewal pathways ensuring that the expanded population preserve its stem cell characteristics beyond the stem cell niche. HPV-infected cells acquire additional transforming mutations that can give rise to intraepithelial neoplasia (IEN), from environmental factors such as sunlight or tobacco induced mutations in skin and oral cavity, respectively. With establishment of IEN, HPV viral replication is sacrificed with loss of the episome, and the tissue is predisposed to multiple cancer stem cell-driven carcinomas.

  15. The Hippo signaling pathway in stem cell biology and cancer

    PubMed Central

    Mo, Jung-Soon; Park, Hyun Woo; Guan, Kun-Liang

    2014-01-01

    The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer. PMID:24825474

  16. Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngalame, Ntube N.O., E-mail: ngalamenn@niehs.nih.g

    Inorganic arsenic, an environmental contaminant and a human carcinogen is associated with prostate cancer. Emerging evidence suggests that cancer stem cells (CSCs) are the driving force of carcinogenesis. Chronic arsenic exposure malignantly transforms the human normal prostate stem/progenitor cell (SC) line, WPE-stem to arsenic-cancer SCs (As-CSCs), through unknown mechanisms. MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. In prior work, miR-143 was markedly downregulated in As-CSCs, suggesting a role in arsenic-induced malignant transformation. In the present study, we investigated whether loss of miR-143 expression is important in arsenic-induced transformation of prostate SCs. Restorationmore » of miR-143 in As-CSCs was achieved by lentivirus-mediated miR-143 overexpression. Cells were assessed bi-weekly for up to 30 weeks to examine mitigation of cancer phenotype. Secreted matrix metalloproteinase (MMP) activity was increased by arsenic-induced malignant transformation, but miR-143 restoration decreased secreted MMP-2 and MMP-9 enzyme activities compared with scramble controls. Increased cell proliferation and apoptotic resistance, two hallmarks of cancer, were decreased upon miR-143 restoration. Increased apoptosis was associated with decreased BCL2 and BCL-XL expression. miR-143 restoration dysregulated the expression of SC/CSC self-renewal genes including NOTCH-1, BMI-1, OCT4 and ABCG2. The anticancer effects of miR-143 overexpression appeared to be mediated by targeting and inhibiting LIMK1 protein, and the phosphorylation of cofilin, a LIMK1 substrate. These findings clearly show that miR-143 restoration mitigated multiple cancer characteristics in the As-CSCs, suggesting a potential role in arsenic-induced transformation of prostate SCs. Thus, miR-143 is a potential biomarker and therapeutic target for arsenic-induced prostate cancer. - Highlights: • Chronic arsenic exposure

  17. Curcumin inhibits bladder cancer stem cells by suppressing Sonic Hedgehog pathway.

    PubMed

    Wang, Dengdian; Kong, Xiaochuan; Li, Yuan; Qian, Weiwei; Ma, Jiaxing; Wang, Daming; Yu, Dexin; Zhong, Caiyun

    2017-11-04

    Cancer stem cells (CSCs) is responsible for the recurrence of human cancers. Thus, targeting CSCs is considered to be a valid way for human cancer treatment. Curcumin is a major component of phytochemicals that exerts potent anticancer activities. However, the effect of curcumin on bladder cancer stem cells (BCSCs) remains to be elucidated. In this study, we investigated the mechanism of curcumin suppressing bladder cancer stem cells. In this study, UM-UC-3 and EJ cells were cultured in serum-free medium (SFM) to form cell spheres that was characterized as BCSCs. Then cell spheres were separately treated with different concentrations of curcumin and purmorphamine. Cell cycle analysis were used to determine the percentage of cells in different phases. Western blot and quantitative real-time PCR analysis were used to detect the expression of relative molecules. Immunofluorescence staining analysis were also utilized to measure the protein level of CD44. We found that CSC markers, including CD44, CD133, ALDH1-A1, OCT-4 and Nanog, were obviously highly expressed in cell spheres. Moreover, we observed that curcumin reduced the cell spheres formation, decreased the expression of CSC markers, suppressed cell proliferation and induced cell apoptosis. We also found that curcumin inhibited the activation of Shh pathway, while the inhibitory effects of curcumin on BCSCs could be weakened by upregulation of Sonic Hedgehog (Shh) pathway. Altogether, these data suggested that curcumin inhibited the activities of BCSCs through suppressing Shh pathway, which might be an effective chemopreventive agent for bladder cancer intervention. Copyright © 2017. Published by Elsevier Inc.

  18. The expression of cancer stem cell markers in human colorectal carcinoma cells in a microenvironment dependent manner.

    PubMed

    Stankevicius, Vaidotas; Kunigenas, Linas; Stankunas, Edvinas; Kuodyte, Karolina; Strainiene, Egle; Cicenas, Jonas; Samalavicius, Narimantas E; Suziedelis, Kestutis

    2017-03-18

    Numerous lines of evidence support the hierarchical model of cancer development and tumor initiation. According to the theory, cancer stem cells play a crucial role in the formation of the tumor and should be targeted for more effective anticancer treatment. However, cancer stem cells quickly loose their characteristics when propagated as 2D cell culture, indicating that the 2D cell culture does not provide the appropriate settings to maintain an in vivo environment. In this study we have investigated the expression of self-renewal, cancer stem cell and epithelial to mesenchymal transition markers after the transfer of human colorectal carcinoma cell DLD1 and HT29 lines from 2D cell cultures to scaffold-attached laminin rich extracellular matrix and scaffold-free multicellular spheroid 3D culture models. Based on the up-regulated expression of multipotency, CSC and EMT markers, our data suggests that human colorectal carcinoma cells grown in 3D exhibit enhanced cancer stem cell characteristics. Therefore, in order to design more efficient targeted therapies, we suggest that 3D cell culture models should be employed in cancer stem cell research. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight

    PubMed Central

    Corbet, Cyril

    2018-01-01

    Normal and cancer stem cells (CSCs) share the remarkable potential to self-renew and differentiate into many distinct cell types. Although most of the stem cells remain under quiescence to maintain their undifferentiated state, they can also undergo cell divisions as required to regulate tissue homeostasis. There is now a growing evidence that cell fate determination from stem cells implies a fine-tuned regulation of their energy balance and metabolic status. Stem cells can shift their metabolic substrate utilization, between glycolysis and mitochondrial oxidative metabolism, during specification and/or differentiation, as well as in order to adapt their microenvironmental niche. Pyruvate appears as a key metabolite since it is at the crossroads of cytoplasmic glycolysis and mitochondrial oxidative phosphorylation. This Review describes how metabolic reprogramming, focusing on pyruvate utilization, drives the fate of normal and CSCs by modulating their capacity for self-renewal, clonal expansion/differentiation, as well as metastatic potential and treatment resistance in cancer. This Review also explores potential therapeutic strategies to restore or manipulate stem cell function through the use of small molecules targeting the pyruvate metabolism. PMID:29403375

  20. Monoclonal antibodies targeting non-small cell lung cancer stem-like cells by multipotent cancer stem cell monoclonal antibody library.

    PubMed

    Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang

    2017-02-01

    Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.

  1. Aging-Induced Stem Cell Mutations as Drivers for Disease and Cancer

    PubMed Central

    Adams, Peter D.; Jasper, Heinrich; Rudolph, K. Lenhard

    2015-01-01

    Aging is characterized by a decrease in genome integrity, impaired organ maintenance, and an increased risk of cancer, which coincide with clonal dominance of expanded mutant stem and progenitor cell populations in aging tissues, such as the intestinal epithelium, the hematopoietic system, and the male germline. Here we discuss possible explanations for age-associated increases in the initiation and/or progression of mutant stem/progenitor clones and highlight the roles of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging. PMID:26046760

  2. [The cultivation and identification of lacrimal gland adenoid cystic cancer stem cells].

    PubMed

    Lyu, Jianmei; He, Yanjin; Xie, Lianfeng; Liu, Xun; Zhu, Limin

    2015-10-01

    To isolate and cultivate the Lacrimal gland Adenoid Cystic Carcinoma cells line, study Cancer Stem Cells properties. Experimental study. Lacrimal gland adenoid cystic carcinoma cancer stem cells were cultivated in serum-free suspension culture and the morphological changes were observed. Cells were divided into two groups, the LACC-CSC experimental group and the LACC control group. The flow cytometry instrument was used to detect the expression of classical stem cell markers CD133 and ABCG2. Transwell chamber was used to detect the cancer stem cell aggressivity and differentiated into the vascular endothelial cells. The tumorigenic force in vitro xenotransplantation were applied. LACC cells can grow suspensively after vaccinated in serum free medium and form tumor microspheres after 10-12 days. Flow cytometry experiments showed that the expression ratio of stem cell markers CD133 in LACC-CSC was (35.67 ± 6.86)%, significantly different to LACC with (0.46 ± 0.48)%, (t = 8.867, P < 0.05). Similarly, the expression ratio of stem cell marker ABCG2 in LACC-CSC was (39.99 ± 4.54)%, significantly different to LACC with (6.75 ± 1.34)%, (t = -9.932, P < 0.05). In vitro experiment of Matrigel invasion, LACC-CSC went through the matrigel basement membrane averagely (32.60 ± 8.79)/HP contrary to LACC with average (10.20 ± 2.77)/HP after 24 hours, showing statistically significance (t = 5.433, P < 0.05) between the two groups. After training for 48 hours, the difference between two groups was still obvious (t = 5.779, P < 0.05) with LACC-CSC average (62.60 ± 4.83)/HP to LACC (44.00 ± 5.34)/HP. When induced by serum medium containing VEGF and bFGF, LACC-CSC grew adherent gradually and cell morphological changes occurred after continuous induction to long spindle cells. When cultured into three-dimensional matrix structure they formed vessel samples and expressed vascular endothelial marker CD31 and CD34. Transplanted tumor in vitro experiment, mice of LACC-CSC group grew

  3. Gene expression profiling of rat spermatogonia and Sertoli cells reveals signaling pathways from stem cells to niche and testicular cancer cells to surrounding stroma

    PubMed Central

    2011-01-01

    Background Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer. PMID:21232125

  4. Emerging role of lipid metabolism alterations in Cancer stem cells.

    PubMed

    Yi, Mei; Li, Junjun; Chen, Shengnan; Cai, Jing; Ban, Yuanyuan; Peng, Qian; Zhou, Ying; Zeng, Zhaoyang; Peng, Shuping; Li, Xiaoling; Xiong, Wei; Li, Guiyuan; Xiang, Bo

    2018-06-15

    Cancer stem cells (CSCs) or tumor-initiating cells (TICs) represent a small population of cancer cells with self-renewal and tumor-initiating properties. Unlike the bulk of tumor cells, CSCs or TICs are refractory to traditional therapy and are responsible for relapse or disease recurrence in cancer patients. Stem cells have distinct metabolic properties compared to differentiated cells, and metabolic rewiring contributes to self-renewal and stemness maintenance in CSCs. Recent advances in metabolomic detection, particularly in hyperspectral-stimulated raman scattering microscopy, have expanded our knowledge of the contribution of lipid metabolism to the generation and maintenance of CSCs. Alterations in lipid uptake, de novo lipogenesis, lipid droplets, lipid desaturation, and fatty acid oxidation are all clearly implicated in CSCs regulation. Alterations on lipid metabolism not only satisfies the energy demands and biomass production of CSCs, but also contributes to the activation of several important oncogenic signaling pathways, including Wnt/β-catenin and Hippo/YAP signaling. In this review, we summarize the current progress in this attractive field and describe some recent therapeutic agents specifically targeting CSCs based on their modulation of lipid metabolism. Increased reliance on lipid metabolism makes it a promising therapeutic strategy to eliminate CSCs. Targeting key players of fatty acids metabolism shows promising to anti-CSCs and tumor prevention effects.

  5. Zinc suppresses stem cell properties of lung cancer cells through protein kinase C-mediated β-catenin degradation.

    PubMed

    Ninsontia, Chuanpit; Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2017-04-01

    Highly tumorigenic cancer stem cells (CSCs) residing in most cancers are responsible for cancer progression and treatment failure. Zinc is an element regulator of several cell functions; however, its role in regulation of stem cell program in lung cancer has not been demonstrated. The present study reveals for the first time that zinc can suppress stem cell properties of lung cancer cells. Such findings were proved in different lung cancer cell lines (H460, H23, and H292) and it was found that CSC markers (CD133 and ALDH1A1), stem cell-associated transcription factors (Oct4, Nanog, and Sox-2), and the ability to form tumor spheroid were dramatically suppressed by zinc treatments. Zinc was found to activate protein kinase C-α (PKCα) that further phosphorylated and mediated β-catenin degradation through the ubiquitin-proteasomal pathway. Zinc was found to increase the β-catenin-ubiquitin complex, which can be inhibited by a specific PKC inhibitor, bisindolylmaleimide I. Using specific reactive oxygen species detection and antioxidants, we have demonstrated that superoxide anions generated by zinc are a key upstream mechanism for PKCα activation leading to the subsequent suppression of stem cell features of lung cancer. Zinc increased cellular superoxide anions and the addition of superoxide anion scavenger prevented the activation of PKCα and β-catenin degradation. These findings indicate a novel role for zinc regulation in the PKCα/β-catenin pathway and explain an important mechanism for controlling of stem cell program in lung cancer cells. Copyright © 2017 the American Physiological Society.

  6. RNA binding protein Lin28B confers gastric cancer cells stemness via directly binding to NRP-1.

    PubMed

    Wang, Xiaocong; Hu, Huihua; Liu, Hebo

    2018-05-19

    This work aims to explore the roles and related mechanisms of RNA binding protein Lin28B in gastric cancer cells stemness. We found that Lin28B expression was negatively correlated with the overall survival (OS) of gastric cancer patients, and significantly increased in gastric cancer cells compared with that in gastric epithelial cells. Lin28B overexpression increased spheroid formation, expression of gastric cancer stemness-related markers, and decreased cisplatin sensitivity in gastric cancer cells. Mechanistically, Lin28B could directly bind to NRP-1 3'UTR, thus increasing NRP-1 mRNA stability and expression, and activate the downstream Wnt/β-catenin signaling. Knockdown of NRP-1 or treatment with Wnt/β-catenin antagonist could rescue the promotive effects of Lin28B on gastric cancer stemness. Thus, thes results indicate that Lin28B could facilitate gastric cancer stemness via directly binding to NRP-1 3'UTR and activating the downstream Wnt/β-catenin signaling. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Sheep, Wolf, or Werewolf: Cancer Stem Cells and the Epithelial-to-Mesenchymal Transition

    PubMed Central

    2013-01-01

    Multiple cancers contain subpopulations that exhibit characteristics of cancer stem cells (CSCs), the ability to self-renew and seed heterogeneous tumors. Recent evidence suggests two potentially overlapping models for these phenotypes: one where stem cells arise from multipotent progenitor cells, and another where they are created via an epithelial to mesenchymal transition. Unraveling this issue is critical, as it underlies phenomena such as metastasis and therapeutic resistance. Therefore, there is intense interest in understanding these two types of CSSs, how they differ from differentiated cancer cells, the mechanisms that drive their phenotypes, and how that knowledge can be incorporated into therapeutics. PMID:23499890

  8. Comprehensive analysis of miRNAs expression profiles revealed potential key miRNA/mRNAs regulating colorectal cancer stem cell self-renewal.

    PubMed

    Xu, Peng; Wang, Junhua; Sun, Bo; Xiao, Zhongdang

    2018-05-20

    Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood. Recently, miRNAs are reported to be relevant to the self-renewal ability of cancer stem cells. In this study, we first isolated colorectal cancer stem cell from colorectal cancer cell line HCT-116 by 1% low serum culture. Then we conducted a comprehensive analysis based on the miRNAs profiles data of both colorectal cancer stem cells and normal cultured colorectal cancer cells. Pathway analysis revealed multiple pathways including Jak-STAT, TGF-beta, PI3K-Akt and MAPK signaling pathway that are correlated to colorectal cancer. Further, we constructed a miRNA-mRNA network, based on which, several miRNA/mRNA pairs were ranked according to their impact index to the self-renewal of colorectal cancer stem cells. Further biological experiment showed that up-regulation of miR-92a-3p led to cell cycle arrest and reduced colony formation. This work provides clues to find the new potential biomarkers for colorectal cancer stem cell diagnosis and select effective miRNAs for targeted therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells.

    PubMed

    Bie, Qingli; Zhang, Bin; Sun, Caixia; Ji, Xiaoyun; Barnie, Prince Amoah; Qi, Chen; Peng, Jingjing; Zhang, Danyi; Zheng, Dong; Su, Zhaoliang; Wang, Shengjun; Xu, Huaxi

    2017-03-21

    Mesenchymal stem cells are important cells in tumor microenvironment. We have previously demonstrated that IL-17B/IL-17RB signal promoted progression of gastric cancer. In this study, we further explored the effect of IL-17B on mesenchymal stem cells in tumor microenvironment and its impact on the tumor progression. The results showed that IL-17B induced the expression of stemness-related genes Nanog, Sox2, and Oct4 in mesenchymal stem cells and enhanced its tumor-promoting effect. The supernatant from cultured mesenchymal stem cells after treating with exogenous rIL-17B promoted the proliferation and migration of MGC-803, therefor suggesting that rIL-17B might promote mesenchymal stem cells to produce soluble factors. In addition, rIL-17B also activated the NF-κΒ, STAT3, β-catenin pathway in mesenchymal stem cells. Our data revealed a new mechanism that IL-17B enhanced the progression of gastric cancer by activating mesenchymal stem cells.

  10. Pharmacological targets of breast cancer stem cells: a review.

    PubMed

    Pindiprolu, Sai Kiran S S; Krishnamurthy, Praveen T; Chintamaneni, Pavan Kumar

    2018-05-01

    Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.

  11. Ovarian surface epithelium at the junction area contains cancer-prone stem cell niche

    PubMed Central

    Flesken-Nikitin, Andrea; Hwang, Chang-Il; Cheng, Chieh-Yang; Michurina, Tatyana V.; Enikolopov, Grigori; Nikitin, Alexander Yu.

    2014-01-01

    Epithelial ovarian cancer (EOC) is the fifth-leading cause of cancer death among women in the United States, but its pathogenesis is poorly understood 1-3. Some epithelial cancers are known to occur in transitional zones between two types of epithelium, while others have been shown to originate in epithelial tissue stem cells 4-6. The stem cell niche of the ovarian surface epithelium (OSE), which is ruptured and regenerates during ovulation, has not yet been unequivocally defined. Here we identify the hilum region of the mouse ovary, the transitional/junction area between OSE, mesothelium and tubal (oviductal) epithelium as a previously unrecognized stem cell niche of the OSE. We find that cells of the hilum OSE are slowly-cycling and express stem/progenitor cell markers ALDH1, Lgr5, Lef1, CD133, and CK6b. These cells display long-term stem cell properties ex vivo and in vivo, as shown by our serial sphere generation and by long-term lineage tracing assays. Importantly, the hilum cells exhibit increased transformation potential after inactivation of tumour suppressor genes Trp53 and Rb1, whose pathways are frequently altered in the most aggressive and common type of human EOC, high-grade serous adenocarcinoma 7,8. Our study experimentally supports the notion that susceptibility of transitional zones to malignant transformation may be explained by the presence of stem cell niches in those areas. Identification of a stem cell niche for the OSE may have important implications for understanding EOC pathogenesis. PMID:23467088

  12. JMJD3 suppresses stem cell-like characteristics in breast cancer cells by downregulation of Oct4 independently of its demethylase activity.

    PubMed

    Xun, Jing; Wang, Dekun; Shen, Long; Gong, Junbo; Gao, Ruifang; Du, Lingfang; Chang, Antao; Song, Xiangrong; Xiang, Rong; Tan, Xiaoyue

    2017-03-28

    Epigenetic regulator JMJD3 plays an important role in both tumor progression and somatic cell reprogramming. Here, we explored the effect of JMJD3 on the stem cell-like characteristics of breast cancer and its underlying mechanism involving stemness-related transcription factor Oct4. Our data revealed that, in breast cancer cells lines and an orthotopic xenograph mouse model of breast cancer, ectopic overexpression of JMJD3 suppressed stem cell-like characteristics of breast cancer cells, whereas knockdown of JMJD3 promoted these characteristics. Oct4 mediated the suppressive effects of JMJD3 on the stemness of breast cancer cells. The inhibitory effect of JMJD3 on Oct4 was independent of demethylase activity, but mediated via degradation of PHF20. Furthermore, we applied an agonist of the vitamin D receptor, paricalcitol, and found that it induced JMJD3 in breast cancer cells. Our data showed that administration of paricalcitol suppressed stem cell-like characteristics and Oct4 expression. Taken together, JMJD3 inhibits the stem cell-like characteristics in breast cancer by suppression of stemness factor Oct4 in a PHF20-dependent manner. Administration of paricalcitol leads to upregulation of JMJD3 that suppresses Oct4 expression and the stem cell-like characteristics in breast cancer.

  13. Targeting Midbodies in Ovarian Cancer Stem Cells as a Therapeutic Strategy

    DTIC Science & Technology

    2014-12-01

    BRCA1, BRCA1, breast cancer 1 gene. MT, microtubules. 3. OVERALL PROJECT SUMMARY: Summarize the progress during appropriate reporting period...Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 2010; 140:62–73. [PubMed: 20074520] 40. Pardal...cells and contributes to the tolerance to nutrient deprivation. Cancer Res. 2007; 67:9677–84. [PubMed: 17942897] 47. Sarkar S, et al. A rational

  14. Cancer stem cells in head and neck squamous cell carcinoma: a review.

    PubMed

    Satpute, Pranali Shirish; Hazarey, Vinay; Ahmed, Riyaz; Yadav, Lalita

    2013-01-01

    Research indicates that a small population of cancer cells is highly tumorigenic, endowed with the capacity for self-renewal, and has the ability to differentiate into cells that constitute the bulk of tumors. These cells are considered the "drivers" of the tumorigenic process in some tumor types, and have been named cancer stem cells (CSC). Epithelial-mesenchymal transition (EMT) appears to be involved in the process leading to the acquisition of stemness by epithelial tumor cells. Through this process, cells acquire an invasive phenotype that may contribute to tumor recurrence and metastasis. CSC have been identified in human head and neck squamous cell carcinomas (HNSCC) using markers such as CD133 and CD44 expression, and aldehyde dehydrogenase (ALDH) activity. Head and neck cancer stem cells reside primarily in perivascular niches in the invasive fronts where endothelial-cell initiated events contribute to their survival and function. Clinically, CSC enrichment has been shown to be enhanced in recurrent disease, treatment failure and metastasis. CSC represent a novel target of study given their slow growth and innate mechanisms conferring treatment resistance. Further understanding of their unique phenotype may reveal potential molecular targets to improve therapeutic and survival outcomes in patients with HNSCC. Here, we discuss the state-of-the-knowledge on the pathobiology of cancer stem cells, with a focus on the impact of these cells on head and neck tumor progression, metastasis and recurrence due to treatment failure.

  15. Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer

    PubMed Central

    Virant-Klun, Irma; Stimpfel, Martin

    2016-01-01

    Small stem cells with diameters of up to 5 μm previously isolated from adult human ovaries indicated pluripotency and germinal lineage, especially primordial germ cells, and developed into primitive oocyte-like cells in vitro. Here, we show that a comparable population of small stem cells can be found in the ovarian tissue of women with borderline ovarian cancer, which, in contrast to small stem cells in “healthy” ovaries, formed spontaneous tumour-like structures and expressed some markers related to pluripotency and germinal lineage. The gene expression profile of these small putative cancer stem cells differed from similar cells sorted from “healthy” ovaries by 132 upregulated and 97 downregulated genes, including some important forkhead box and homeobox genes related to transcription regulation, developmental processes, embryogenesis, and ovarian cancer. These putative cancer stem cells are suggested to be a novel population of ovarian tumour-initiating cells in humans. PMID:27703207

  16. Esophageal cancer stem cells and implications for future therapeutics.

    PubMed

    Qian, Xia; Tan, Cheng; Wang, Feng; Yang, Baixia; Ge, Yangyang; Guan, Zhifeng; Cai, Jing

    2016-01-01

    Esophageal carcinoma (EC) is a lethal disease with high morbidity and mortality worldwide, and the incidence has been increasing in recent years. Although the diagnosis and treatment of EC have improved considerably, EC has rapidly progressed in the clinical setting and has a poor prognosis for its metastasis and recurrence. The general idea of cancer stem cells (CSCs) is primarily based on clinical and experimental observations, indicating the existence of a subpopulation of cells that can self-renew and differentiate. The EC stem cells, which can be isolated from normal pluripotent stem cells by applying similar biomarkers, may participate in promoting esophageal tumorigenesis through renewal and repair. In this review, major emphasis is given to CSC markers, altered CSC-specific pathways, and molecular targeting agents currently available to target CSCs of esophageal cancer. The roles of numerous markers (CD44, aldehyde dehydrogenase, CD133, and ATP-binding cassette subfamily G member 2) and developmental signaling pathways (Wnt/β-catenin, Notch, hedgehog, and Hippo) in isolating esophageal CSCs are discussed in detail. Targeting CSCs can be a logical strategy to treat EC, as these cells are responsible for carcinoma recurrence and chemoradiation resistance.

  17. MET: roles in epithelial-mesenchymal transition and cancer stemness

    PubMed Central

    Jeon, Hye-Min

    2017-01-01

    In a number of cancers, deregulated MET pathway leads to aberrantly activated proliferative and invasive signaling programs that promote malignant transformation, cell motility and migration, angiogenesis, survival in hypoxia, and invasion. A better understanding of oncogenic MET signaling will help us to discover effective therapeutic approaches and to identify which tumors are likely to respond to MET-targeted cancer therapy. In this review, we will summarize the roles of MET signaling in cancer, with particular focus on epithelial-mesenchymal transition (EMT) and cancer stemness. Then, we will provide update on MET targeting agents and discuss the challenges that should be overcome for the development of an effective therapy. PMID:28164090

  18. FOXP3 inhibits cancer stem cell self-renewal via transcriptional repression of COX2 in colorectal cancer cells.

    PubMed

    Liu, Shuo; Zhang, Cun; Zhang, Kuo; Gao, Yuan; Wang, Zhaowei; Li, Xiaoju; Cheng, Guang; Wang, Shuning; Xue, Xiaochang; Li, Weina; Zhang, Wei; Zhang, Yingqi; Xing, Xianghui; Li, Meng; Hao, Qiang

    2017-07-04

    Colon cancer stem cell (cCSC) is considered as the seed cell of colon cancer initiation and metastasis. Cyclooxygenase-2 (COX2), a downstream target of NFκB, is found to be essential in promoting cancer stem cell renewal. However, how COX2 is dysregulated in cCSCs is largely unknown. In this study, we found that the expression of transcription factor FOXP3 was much lower in the spheroids than that in the parental tumor cells. Overexpression of FOXP3 significantly decreased the numbers of spheres, reduced the side population. Accordingly, FOXP3 expression decreased the tumor size and weight in the xenograft model. The tumor inhibitory effects of FOXP3 were rarely seen when COX2 was additionally knocked down. Mechanically, FOXP3 transcriptionally repressed COX2 expression via interacting with and thus inhibiting p65 activity on the putative NFκB response elements in COX2 promoter. Taken together, we here revealed possible involvement of FOXP3 in regulating cCSC self-renewal via tuning COX2 expression, and thus providing a new target for the eradication of colon cancer stem cells.

  19. The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms

    PubMed Central

    Abdal Dayem, Ahmed; Choi, Hye Yeon; Yang, Gwang-Mo; Kim, Kyeongseok; Saha, Subbroto Kumar; Cho, Ssang-Goo

    2016-01-01

    The high incidence of breast cancer in developed and developing countries, and its correlation to cancer-related deaths, has prompted concerned scientists to discover novel alternatives to deal with this challenge. In this review, we will provide a brief overview of polyphenol structures and classifications, as well as on the carcinogenic process. The biology of breast cancer cells will also be discussed. The molecular mechanisms involved in the anti-cancer activities of numerous polyphenols, against a wide range of breast cancer cells, in vitro and in vivo, will be explained in detail. The interplay between autophagy and apoptosis in the anti-cancer activity of polyphenols will also be highlighted. In addition, the potential of polyphenols to target cancer stem cells (CSCs) via various mechanisms will be explained. Recently, the use of natural products as chemotherapeutics and chemopreventive drugs to overcome the side effects and resistance that arise from using chemical-based agents has garnered the attention of the scientific community. Polyphenol research is considered a promising field in the treatment and prevention of breast cancer. PMID:27657126

  20. Effect of Dedifferentiation on Time to Mutation Acquisition in Stem Cell-Driven Cancers

    PubMed Central

    Jilkine, Alexandra; Gutenkunst, Ryan N.

    2014-01-01

    Accumulating evidence suggests that many tumors have a hierarchical organization, with the bulk of the tumor composed of relatively differentiated short-lived progenitor cells that are maintained by a small population of undifferentiated long-lived cancer stem cells. It is unclear, however, whether cancer stem cells originate from normal stem cells or from dedifferentiated progenitor cells. To address this, we mathematically modeled the effect of dedifferentiation on carcinogenesis. We considered a hybrid stochastic-deterministic model of mutation accumulation in both stem cells and progenitors, including dedifferentiation of progenitor cells to a stem cell-like state. We performed exact computer simulations of the emergence of tumor subpopulations with two mutations, and we derived semi-analytical estimates for the waiting time distribution to fixation. Our results suggest that dedifferentiation may play an important role in carcinogenesis, depending on how stem cell homeostasis is maintained. If the stem cell population size is held strictly constant (due to all divisions being asymmetric), we found that dedifferentiation acts like a positive selective force in the stem cell population and thus speeds carcinogenesis. If the stem cell population size is allowed to vary stochastically with density-dependent reproduction rates (allowing both symmetric and asymmetric divisions), we found that dedifferentiation beyond a critical threshold leads to exponential growth of the stem cell population. Thus, dedifferentiation may play a crucial role, the common modeling assumption of constant stem cell population size may not be adequate, and further progress in understanding carcinogenesis demands a more detailed mechanistic understanding of stem cell homeostasis. PMID:24603301

  1. Multidrug Resistance and Cancer Stem Cells in Neuroblastoma and Hepatoblastoma

    PubMed Central

    Alisi, Anna; Cho, William C.; Locatelli, Franco; Fruci, Doriana

    2013-01-01

    Chemotherapy is one of the major modalities in treating cancers. However, its effectiveness is limited by the acquisition of multidrug resistance (MDR). Several mechanisms could explain the up-regulation of MDR genes/proteins in cancer after chemotherapy. It is known that cancer stem cells (CSCs) play a role as master regulators. Therefore, understanding the mechanisms that regulate some traits of CSCs may help design efficient strategies to overcome chemoresistance. Different CSC phenotypes have been identified, including those found in some pediatric malignancies. As solid tumors in children significantly differ from those observed in adults, this review aims at providing an overview of the mechanistic relationship between MDR and CSCs in common solid tumors, and, in particular, focuses on clinical as well as experimental evidence of the relations between CSCs and MDR in neuroblastoma and hepatoblastoma. Finally, some novel approaches, such as concomitant targeting of multiple key transcription factors governing the stemness of CSCs, as well as nanoparticle-based approaches will also be briefly addressed. PMID:24351843

  2. Altered gene products involved in the malignant reprogramming of cancer stem/progenitor cells and multitargeted therapies

    PubMed Central

    Mimeault, Murielle; Batra, Surinder K.

    2013-01-01

    Recent studies in the field of cancer stem cells have revealed that the alterations in key gene products involved in the epithelial-mesenchymal transition (EMT) program, altered metabolic pathways such as enhanced glycolysis, lipogenesis and/or autophagy and treatment resistance may occur in cancer stem/progenitor cells and their progenies during cancer progression. Particularly, the sustained activation of diverse developmental cascades such as hedgehog, epidermal growth factor receptor (EGFR), Wnt/β-catenin, Notch, transforming growth factor-β (TGF-β)/TGF-βR receptors and/or stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) can play critical functions for high self-renewal potential, survival, invasion and metastases of cancer stem/progenitor cells and their progenies. It has also been observed that cancer cells may be reprogrammed to re-express different pluripotency-associated stem cell-like markers such as Myc, Oct-3/4, Nanog and Sox-2 along the EMT process and under stressful and hypoxic conditions. Moreover, the enhanced expression and/or activities of some drug resistance-associated molecules such as Bcl-2, Akt/molecular target of rapamycin (mTOR), nuclear factor-kappaB (NF-κB), hypoxia-inducible factors (HIFs), macrophage inhibitory cytokine-1 (MIC-1) and ATP-binding cassette (ABC) multidrug transporters frequently occur in cancer cells during cancer progression and metastases. These molecular events may cooperate for the survival and acquisition of a more aggressive and migratory behavior by cancer stem/progenitor cells and their progenies during cancer transition to metastatic and recurrent disease states. Of therapeutic interest, these altered gene products may also be exploited as molecular biomarkers and therapeutic targets to develop novel multitargeted strategies for improving current cancer therapies and preventing disease relapse. PMID:23994756

  3. Establishment of Cancer Stem Cell Cultures from Human Conventional Osteosarcoma.

    PubMed

    Palmini, Gaia; Zonefrati, Roberto; Mavilia, Carmelo; Aldinucci, Alessandra; Luzi, Ettore; Marini, Francesca; Franchi, Alessandro; Capanna, Rodolfo; Tanini, Annalisa; Brandi, Maria Luisa

    2016-10-14

    The current improvements in therapy against osteosarcoma (OS) have prolonged the lives of cancer patients, but the survival rate of five years remains poor when metastasis has occurred. The Cancer Stem Cell (CSC) theory holds that there is a subset of tumor cells within the tumor that have stem-like characteristics, including the capacity to maintain the tumor and to resist multidrug chemotherapy. Therefore, a better understanding of OS biology and pathogenesis is needed in order to advance the development of targeted therapies to eradicate this particular subset and to reduce morbidity and mortality among patients. Isolating CSCs, establishing cell cultures of CSCs, and studying their biology are important steps to improving our understanding of OS biology and pathogenesis. The establishment of human-derived OS-CSCs from biopsies of OS has been made possible using several methods, including the capacity to create 3-dimensional stem cell cultures under nonadherent conditions. Under these conditions, CSCs are able to create spherical floating colonies formed by daughter stem cells; these colonies are termed "cellular spheres". Here, we describe a method to establish CSC cultures from primary cell cultures of conventional OS obtained from OS biopsies. We clearly describe the several passages required to isolate and characterize CSCs.

  4. Identifying and targeting cancer stem cells in the treatment of gastric cancer.

    PubMed

    Bekaii-Saab, Tanios; El-Rayes, Bassel

    2017-04-15

    Current treatment regimens for gastric cancer are not adequate. Cancer stem cells (CSCs) may be a key driving factor for growth and metastasis of this tumor type. In contrast to the conventional clonal evolution hypothesis, CSCs can initiate tumor formation, self-renew, and differentiate into tumor-propagating cells. Because gastric cancer can originate from CSCs, it is necessary to review current targets of signaling pathways for CSCs in gastric cancer that are being studied in clinical trials. These pathways are known to regulate the self-renewal and differentiation process in gastric CSCs. A better understanding of the clinical results of trials that target gastric CSCs will lead to better outcomes for patients with gastric cancer. Cancer 2017;123:1303-1312. © 2017 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2017 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society.

  5. Isolation and Characterization of Prostate Cancer Stem Cells

    DTIC Science & Technology

    2013-10-01

    et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 2011;8:97–106. 26] Guise T. Examining the...Nitrogen or fixed in formalin and paraffin-embedded to evaluate anatomy and glandular architecture. The remainder of the tissue was mechan- ically and

  6. Characteristics of Notch2(+) pancreatic cancer stem-like cells and the relationship with centroacinar cells.

    PubMed

    Zhou, Zhu-Chao; Dong, Qiang-Gang; Fu, De-Liang; Gong, Yi-Yi; Ni, Quan-Xing

    2013-08-01

    Notch2, a surface marker in cell lines, is used to isolate, identify and localise pancreatic cancer stem-like cells and is a target for therapy of these cells. Sphere formation was induced in Panc-1 and Bxpc-3 pancreatic cancer cell lines, and Notch2(+) cells were separated from Bxpc-3 and Panc-1 cell lines by magnetic activated cell sorting (MACS). Expression of stem cell-related markers, OCT4, Nanog and PDX1, were measured by immunofluorescent (IF) staining. Expression of Notch2 was also determined immunohistochemically in pancreatic tissues. Notch2(+) cells were transplanted in subcutaneous of mice. AQP1 and AQP5 were also measured by IF in Bxpc-3 cells. The Notch signal pathway inhibitor, Compound E (CE), was used to treat Notch2(+) Bxpc-3 cells, and their vitalities were subsequently measured by the CCK-8 method. Positive expression of OCT4, Nanog and PDX1 was observed in Notch2(+) cells. Notch2(+) cells at centroacinar cell (CAC) and terminal ductal locations expressed AQP1 and AQP5. They were strongly tumourigenic in mice, and CE inhibited proliferation of Notch2(+) Bxpc-3 cells to some degree. OCT4 and Nanog can be used as markers of self-renewal in pancreatic cancer stem cells. Notch2(+) cells in human pancreatic cancer Bxpc-3 and Panc-1 cell lines had the properties of cancer stem cells. The results suggest that Notch2(+) pancreatic cancer stem-like cells had a close relationship with CAC. © 2013 International Federation for Cell Biology.

  7. Ovarian cancer stem cells: still an elusive entity?

    PubMed

    Lupia, Michela; Cavallaro, Ugo

    2017-03-20

    The cancer stem cell (CSC) model proposes that tumor development and progression are fueled and sustained by undifferentiated cancer cells, endowed with self-renewal and tumor-initiating capacity. Ovarian carcinoma, based on its biological features and clinical evolution, appears as a prototypical example of CSC-driven disease. Indeed, ovarian cancer stem cells (OCSC) would account not only for the primary tumor growth, the peritoneal spread and the relapse, but also for the development of chemoresistance, thus having profound implication for the treatment of this deadly disease. In the last decade, an increasing body of experimental evidence has supported the existence of OCSC and their pathogenic role in the disease. Nevertheless, the identification of OCSC and the definition of their phenotypical and functional traits have proven quite challenging, mainly because of the heterogeneity of the disease and of the difficulties in establishing reliable biological models. A deeper understanding of OCSC pathobiology will shed light on the mechanisms that underlie the clinical behaviour of OC. In addition, it will favour the design of innovative treatment regimens that, on one hand, would counteract the resistance to conventional chemotherapy, and, on the other, would aim at the eradication of OC through the elimination of its CSC component.

  8. Development of novel miR-129 mimics with enhanced efficacy to eliminate chemoresistant colon cancer stem cells

    PubMed Central

    Ju, Jingfang

    2018-01-01

    Background Resistance to 5-Fluorouracil (5-FU) based chemotherapy is the major reason for failure of treating patients with advanced colorectal cancer. Materials and methods In this study, we developed a novel miR-129 mimic with potent efficacy in eliminating resistant colon cancer stem cells both in vitro and in vivo. We integrated 5-FU into miR-129 by replacing Uracil (U) to generate 5-FU-miR-129 mimics (Mimic-1). Results Mimic-1 is a strong therapeutic candidate with a number of unique features. Mimic-1 can be delivered to cancer cells without any transfection reagents (e.g. lipids, viral vector, nanoparticles). Mimic-1 is more potent at inhibiting cell proliferation and inducing cell cycle arrest at G1 phase than native miR-129 and the other mimics tested, while retaining target specificity. Mimic-1 prevents colon cancer metastasis in vivo without toxicity. Conclusion This represents a significant advancement in the development of a nontoxic and highly potent miRNA based cancer therapeutics and establishes a foundation for further developing Mimic-1 as a novel anti-cancer therapeutic for treating colorectal cancer. PMID:29507661

  9. MELK and EZH2 Cooperate to Regulate Medulloblastoma Cancer Stem-like Cell Proliferation and Differentiation.

    PubMed

    Liu, Hailong; Sun, Qianwen; Sun, Youliang; Zhang, Junping; Yuan, Hongyu; Pang, Shuhuan; Qi, Xueling; Wang, Haoran; Zhang, Mingshan; Zhang, Hongwei; Yu, Chunjiang; Gu, Chunyu

    2017-09-01

    Medulloblastoma is the most common malignant brain tumor in children. Although accumulated research has suggested that cancer stem-like cells play a key role in medulloblastoma tumorigenesis, the specific molecular mechanism regarding proliferation remains elusive. Here, we reported more abundant expression of maternal embryonic leucine-zipper kinase (MELK) and enhancer of zeste homolog 2 (EZH2) in medulloblastoma stem-like cells than in neural stem cells and the interaction between the two proteins could mediate the self-renewal of sonic hedgehog subtype medulloblastoma. In human medulloblastoma, extensive nodularity and large-cell/anaplastic subgroups differed according to the staining levels of MELK and EZH2 from the other two subgroups. The proportion of MELK- or EZH2-positive staining status could be considered as a potential indicator for survival. Mechanistically, MELK bound to and phosphorylated EZH2, and its methylation was induced by EZH2 in medulloblastoma, which could regulate the proliferation of cancer stem-like cells. In xenografts, loss of MELK or EZH2 attenuated medulloblastoma stem-like cell-derived tumor growth and promoted differentiation. These findings indicate that MELK-induced phosphorylation and EZH2-mediated methylation in MELK/EZH2 pathway are essential for medulloblastoma stem-like cell-derived tumor proliferation, thereby identifying a potential therapeutic strategy for these patients. Implications: This study demonstrates that the interaction occurring between MELK and EZH2 promotes self-proliferation and stemness, thus representing an attractive therapeutic target and potential candidate for diagnosis of medulloblastoma. Mol Cancer Res; 15(9); 1275-86. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Can Nanomedicines Kill Cancer Stem Cells?

    PubMed Central

    Zhao, Yi; Alakhova, Daria Y.; Kabanov, Alexander V.

    2014-01-01

    Most tumors are heterogeneous and many cancers contain small population of highly tumorigenic and intrinsically drug resistant cancer stem cells (CSCs). Like normal stem cell, CSCs have ability to self-renew and differentiate to other tumor cell types. They are believed to be a source for drug resistance, tumor recurrence and metastasis. CSCs often overexpress drug efflux transporters, spend most of their time in non-dividing G0 cell cycle state, and therefore, can escape the conventional chemotherapies. Thus, targeting CSCs is essential for developing novel therapies to prevent cancer relapse and emerging of drug resistance. Nanocarrier-based therapeutic agents (nanomedicines) have been used to achieve longer circulation times, better stability and bioavailability over current therapeutics. Recently, some groups have successfully applied nanomedicines to target CSCs to eliminate the tumor and prevent its recurrence. These approaches include 1) delivery of therapeutic agents (small molecules, siRNA, antibodies) that affect embryonic signaling pathways implicated in self-renewal and differentiation in CSCs, 2) inhibiting drug efflux transporters in an attempt to sensitize CSCs to therapy, 3) targeting metabolism in CSCs through nanoformulated chemicals and field-responsive magnetic nanoparticles and carbon nanotubes, and 4) disruption of multiple pathways in drug resistant cells using combination of chemotherapeutic drugs with amphiphilic Pluronic block copolymers. Despite clear progress of these studies the challenges of targeting CSCs by nanomedicines still exist and leave plenty of room for improvement and development. This review summarizes biological processes that are related to CSCs, overviews the current state of anti-CSCs therapies, and discusses state-of-the-art nanomedicine approaches developed to kill CSCs. PMID:24120657

  11. Moderate stem-cell telomere shortening rate postpones cancer onset in a stochastic model

    NASA Astrophysics Data System (ADS)

    Holbek, Simon; Bendtsen, Kristian Moss; Juul, Jeppe

    2013-10-01

    Mammalian cells are restricted from proliferating indefinitely. Telomeres at the end of each chromosome are shortened at cell division and when they reach a critical length, the cell will enter permanent cell cycle arrest—a state known as senescence. This mechanism is thought to be tumor suppressing, as it helps prevent precancerous cells from dividing uncontrollably. Stem cells express the enzyme telomerase, which elongates the telomeres, thereby postponing senescence. However, unlike germ cells and most types of cancer cells, stem cells only express telomerase at levels insufficient to fully maintain the length of their telomeres, leading to a slow decline in proliferation potential. It is not yet fully understood how this decline influences the risk of cancer and the longevity of the organism. We here develop a stochastic model to explore the role of telomere dynamics in relation to both senescence and cancer. The model describes the accumulation of cancerous mutations in a multicellular organism and creates a coherent theoretical framework for interpreting the results of several recent experiments on telomerase regulation. We demonstrate that the longest average cancer-free lifespan before cancer onset is obtained when stem cells start with relatively long telomeres that are shortened at a steady rate at cell division. Furthermore, the risk of cancer early in life can be reduced by having a short initial telomere length. Finally, our model suggests that evolution will favor a shorter than optimal average cancer-free lifespan in order to postpone cancer onset until late in life.

  12. Cancer Stem Cells: Cellular Plasticity, Niche, and its Clinical Relevance.

    PubMed

    Lee, Gina; Hall, Robert R; Ahmed, Atique U

    2016-10-01

    Cancer handles an estimated 7.6 million deaths worldwide per annum. A recent theory focuses on the role Cancer Stem Cells (CSCs) in driving tumorigenesis and disease progression. This theory hypothesizes that a population of the tumor cell with similar functional and phenotypic characteristics as normal tissue stem cells are responsible for formation and advancement of many human cancers. The CSCs subpopulation can differentiate into non-CSC tumor cells and promote phenotypic and functional heterogeneity within the tumor. The presence of CSCs has been reported in a number of human cancers including blood, breast, brain, colon, lung, pancreas prostate and liver. Although the origin of CSCs remains a mystery, recent reports suggest that the phenotypic characteristics of CSCs may be plastic and are influenced by the microenvironment specific for the individual tumor. Such factors unique to each tumor preserve the dynamic balance between CSCs to non-CSCs cell fate, as well as maintain the proper equilibrium. Alternating such equilibrium via dedifferentiation can result in aggressiveness, as CSCs are considered to be more resistant to the conventional cancer treatments of chemotherapy and radiation. Understanding how the tumoral microenvironment affects the plasticity driven CSC niche will be critical for developing a more effective treatment for cancer by eliminating its aggressive and recurring nature that now is believed to be perpetuated by CSCs.

  13. Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche.

    PubMed

    Flesken-Nikitin, Andrea; Hwang, Chang-Il; Cheng, Chieh-Yang; Michurina, Tatyana V; Enikolopov, Grigori; Nikitin, Alexander Yu

    2013-03-14

    Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer deaths among women in the United States, but its pathogenesis is poorly understood. Some epithelial cancers are known to occur in transitional zones between two types of epithelium, whereas others have been shown to originate in epithelial tissue stem cells. The stem cell niche of the ovarian surface epithelium (OSE), which is ruptured and regenerates during ovulation, has not yet been defined unequivocally. Here we identify the hilum region of the mouse ovary, the transitional (or junction) area between the OSE, mesothelium and tubal (oviductal) epithelium, as a previously unrecognized stem cell niche of the OSE. We find that cells of the hilum OSE are cycling slowly and express stem and/or progenitor cell markers ALDH1, LGR5, LEF1, CD133 and CK6B. These cells display long-term stem cell properties ex vivo and in vivo, as shown by our serial sphere generation and long-term lineage-tracing assays. Importantly, the hilum cells show increased transformation potential after inactivation of tumour suppressor genes Trp53 and Rb1, whose pathways are altered frequently in the most aggressive and common type of human EOC, high-grade serous adenocarcinoma. Our study supports experimentally the idea that susceptibility of transitional zones to malignant transformation may be explained by the presence of stem cell niches in those areas. Identification of a stem cell niche for the OSE may have important implications for understanding EOC pathogenesis.

  14. Cancer stem cell research in Iran: potentials and challenges.

    PubMed

    Roudi, Raheleh; Ebrahimi, Marzieh; Shariftabrizi, Ahmad; Madjd, Zahra

    2017-08-01

    Treatment modalities can reduce cancer-related mortality; however, a majority of patients develop drug resistance, metastasis and relapse. It has been proposed that tumorigenic characteristics of tumors are related to a proportion of cancer cells, termed cancer stem cells (CSCs). Following the first evidence regarding the existence of CSC population in acute myeloid leukemia in 1997, publications in CSCs field showed an explosive trend in all cancer types around the world. First research paper in the field of CSCs in Iran was published in 2004 on prostate cancer. Subsequently, an annual number of publications in the field of CSCs displayed a rapidly growing trend. Therefore, in the current review, we have presented a comprehensive evaluation of the CSCs research in Iran.

  15. CUDR promotes liver cancer stem cell growth through upregulating TERT and C-Myc

    PubMed Central

    Pu, Hu; Zheng, Qidi; Li, Haiyan; Wu, Mengying; An, Jiahui; Gui, Xin; Li, Tianming; Lu, Dongdong

    2015-01-01

    Cancer up-regulated drug resistant (CUDR) is a novel non-coding RNA gene. Herein, we demonstrate excessive CUDR cooperates with excessive CyclinD1 or PTEN depletion to accelerate liver cancer stem cells growth and liver stem cell malignant transformation in vitro and in vivo. Mechanistically, we reveal the decrease of PTEN in cells may lead to increase binding capacity of CUDR to CyclinD1. Therefore, CUDR-CyclinD1 complex loads onto the long noncoding RNA H19 promoter region that may lead to reduce the DNA methylation on H19 promoter region and then to enhance the H19 expression. Strikingly, the overexpression of H19 increases the binding of TERT to TERC and reduces the interplay between TERT with TERRA, thus enhancing the cell telomerase activity and extending the telomere length. On the other hand, insulator CTCF recruits the CUDR-CyclinD1 complx to form the composite CUDR-CyclinD1-insulator CTCF complex which occupancied on the C-myc gene promoter region, increasing the outcome of oncogene C-myc. Ultimately, excessive TERT and C-myc lead to liver cancer stem cell and hepatocyte-like stem cell malignant proliferation. To understand the novel functions of long noncoding RNA CUDR will help in the development of new liver cancer therapeutic and diagnostic approaches. PMID:26513297

  16. MicroRNA-128 suppresses paclitaxel-resistant lung cancer by inhibiting MUC1-C and BMI-1 in cancer stem cells.

    PubMed

    Koh, Hyebin; Park, Hyeri; Chandimali, Nisansala; Huynh, Do Luong; Zhang, Jiao Jiao; Ghosh, Mrinmoy; Gera, Meeta; Kim, Nameun; Bak, Yesol; Yoon, Do-Young; Park, Yang Ho; Kwon, Taeho; Jeong, Dong Kee

    2017-12-15

    The existence of cancer stem cells (CSCs) is the main reason for failure of cancer treatment caused by drug resistance. Therefore, eradicating cancers by targeting CSCs remains a significant challenge. In the present study, because of the important role of BMI-1 proto-oncogene, polycomb ring finger (BMI-1) and C-terminal Mucin1 (MUC1-C) in tumor growth and maintenance of CSCs, we aimed to confirm that microRNA miR-128, as an inhibitor of BMI-1 and MUC1-C, could effectively suppress paclitaxel (PTX)-resistant lung cancer stem cells. We showed that CSCs have significantly higher expression levels of BMI-1, MUC1-C, stemness proteins, signaling factors, and higher malignancy compared with normal tumor cells. After transfection with miR-128, the BMI-1 and MUC1-C levels in CSCs were suppressed. When miR-128 was stably expressed in PTX-resistant lung cancer stem cells, the cells showed decreased proliferation, metastasis, self-renewal, migration, invasive ability, clonogenicity, and tumorigenicity in vitro and in vivo and increased apoptosis compared with miR-NC (negative control) CSCs. Furthermore, miR-128 effectively decreased the levels of β-catenin and intracellular signaling pathway-related factors in CSCs. MiR-128 also decreased the luciferase activity of MUC1 reporter constructs and reduced the levels of transmembrane MUC1-C and BMI-1. These results suggested miR-128 as an attractive therapeutic strategy for PTX-resistant lung cancer via inhibition of BMI-1 and MUC1-C.

  17. Tissue Elasticity Bridges Cancer Stem Cells to the Tumor Microenvironment Through microRNAs: Implications for a "Watch-and-Wait" Approach to Cancer.

    PubMed

    Li, Shengwen Calvin; Vu, Long T; Luo, Jane Jianying; Zhong, Jiang F; Li, Zhongjun; Dethlefs, Brent A; Loudon, William G; Kabeer, Mustafa H

    2017-01-01

    Targeting the tumor microenvironment (TME) through which cancer stem cells (CSCs) crosstalk for cancer initiation and progression, may open new treatments different from those centered on the original hallmarks of cancer genetics thereby implying a new approach for suppression of TME driven activation of CSCs. Cancer is dynamic, heterogeneous, evolving with the TME and can be influenced by tissue-specific elasticity. One of the mediators and modulators of the crosstalk between CSCs and mechanical forces is miRNA, which can be developmentally regulated, in a tissue- and cellspecific manner. Here, based on our previous data, we provide a framework through which such gene expression changes in response to external mechanical forces can be understood during cancer progression. Recognizing the ways mechanical forces regulate and affect intracellular signals with applications in cancer stem cell biology. Such TME-targeted pathways shed new light on strategies for attacking cancer stem cells with fewer side effects than traditional gene-based treatments for cancer, requiring a "watchand- wait" approach. We attempt to address both normal brain microenvironment and tumor microenvironment as both works together, intertwining in pathology and physiology - a balance that needs to be maintained for the "watch-and-wait" approach to cancer. This review connected the subjects of tissue elasticity, tumor microenvironment, epigenetic of miRNAs, and stem-cell biology that are very relevant in cancer research and therapy. It attempts to unify apparently separate entities in a complex biological web, network, and system in a realistic and practical manner, i.e., to bridge basic research with clinical application. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Sheep, wolf, or werewolf: cancer stem cells and the epithelial-to-mesenchymal transition.

    PubMed

    Chang, Jeffrey T; Mani, Sendurai A

    2013-11-28

    Multiple cancers contain subpopulations that exhibit characteristics of cancer stem cells (CSCs), the ability to self-renew and seed heterogeneous tumors. Recent evidence suggests two potentially overlapping models for these phenotypes: one where stem cells arise from multipotent progenitor cells, and another where they are created via an epithelial to mesenchymal transition. Unraveling this issue is critical, as it underlies phenomena such as metastasis and therapeutic resistance. Therefore, there is intense interest in understanding these two types of CSSs, how they differ from differentiated cancer cells, the mechanisms that drive their phenotypes, and how that knowledge can be incorporated into therapeutics. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations.

    PubMed

    Rycaj, Kiera; Tang, Dean G

    2015-10-01

    A tumor originates from a normal cell that has undergone tumorigenic transformation as a result of genetic mutations. This transformed cell is the cell-of-origin for the tumor. In contrast, an established clinical tumor is sustained by subpopulations of self-renewing cancer cells operationally called cancer stem cells (CSC) that can generate, intraclonally, both tumorigenic and nontumorigenic cells. Identifying and characterizing tumor cell-of-origin and CSCs should help elucidate tumor cell heterogeneity, which, in turn, should help understand tumor cell responses to clinical treatments, drug resistance, tumor relapse, and metastatic spread. Both tumor transplantation and lineage-tracing assays have been helpful in characterizing these cancer cell populations, although each system has its strengths and caveats. In this article, we briefly review and summarize advantages and limitations of both assays in support of a combinatorial approach to accurately define the roles of both cancer-initiating and cancer-propagating cells. As an aside, we also wish to clarify the definitions of cancer cell-of-origin and CSCs, which are often interchangeably used by mistake. ©2015 American Association for Cancer Research.

  20. miR-206 Inhibits Stemness and Metastasis of Breast Cancer by Targeting MKL1/IL11 Pathway.

    PubMed

    Samaeekia, Ravand; Adorno-Cruz, Valery; Bockhorn, Jessica; Chang, Ya-Fang; Huang, Simo; Prat, Aleix; Ha, Nahun; Kibria, Golam; Huo, Dezheng; Zheng, Hui; Dalton, Rachel; Wang, Yuhao; Moskalenko, Grigoriy Y; Liu, Huiping

    2017-02-15

    Purpose: Effective targeting of cancer stem cells is necessary and important for eradicating cancer and reducing metastasis-related mortality. Understanding of cancer stemness-related signaling pathways at the molecular level will help control cancer and stop metastasis in the clinic. Experimental Design: By analyzing miRNA profiles and functions in cancer development, we aimed to identify regulators of breast tumor stemness and metastasis in human xenograft models in vivo and examined their effects on self-renewal and invasion of breast cancer cells in vitro To discover the direct targets and essential signaling pathways responsible for miRNA functions in breast cancer progression, we performed microarray analysis and target gene prediction in combination with functional studies on candidate genes (overexpression rescues and pheno-copying knockdowns). Results: In this study, we report that hsa-miR-206 suppresses breast tumor stemness and metastasis by inhibiting both self-renewal and invasion. We identified that among the candidate targets, twinfilin ( TWF1 ) rescues the miR-206 phenotype in invasion by enhancing the actin cytoskeleton dynamics and the activity of the mesenchymal lineage transcription factors, megakaryoblastic leukemia (translocation) 1 (MKL1), and serum response factor (SRF). MKL1 and SRF were further demonstrated to promote the expression of IL11 , which is essential for miR-206's function in inhibiting both invasion and stemness of breast cancer. Conclusions: The identification of the miR-206/TWF1/MKL1-SRF/IL11 signaling pathway sheds lights on the understanding of breast cancer initiation and progression, unveils new therapeutic targets, and facilitates innovative drug development to control cancer and block metastasis. Clin Cancer Res; 23(4); 1091-103. ©2016 AACR . ©2016 American Association for Cancer Research.

  1. The usefulness of three-dimensional cell culture in induction of cancer stem cells from esophageal squamous cell carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Daisuke; Kato, Kazunori, E-mail: kzkatou@juntendo.ac.jp; Department of Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421

    2013-05-17

    Highlights: •Spheroids were created from esophageal carcinoma cells using NanoCulture® Plates. •The proportion of strongly ALDH-positive cells increased in 3-D culture. •Expression of cancer stem cell-related genes was enhanced in 3-D culture. •CA-9 expression was enhanced, suggesting hypoxia had been induced in 3-D culture. •Drug resistance was increased. 3-D culture is useful for inducing cancer stem cells. -- Abstract: In recent years, research on resistance to chemotherapy and radiotherapy in cancer treatment has come under the spotlight, and researchers have also begun investigating the relationship between resistance and cancer stem cells. Cancer stem cells are assumed to be present inmore » esophageal cancer, but experimental methods for identification and culture of these cells have not yet been established. To solve this problem, we created spheroids using a NanoCulture® Plate (NCP) for 3-dimensional (3-D) cell culture, which was designed as a means for experimentally reproducing the 3-D structures found in the body. We investigated the potential for induction of cancer stem cells from esophageal cancer cells. Using flow cytometry we analyzed the expression of surface antigen markers CD44, CD133, CD338 (ABCG2), CD318 (CDCP1), and CD326 (EpCAM), which are known cancer stem cell markers. None of these surface antigen markers showed enhanced expression in 3-D cultured cells. We then analyzed aldehyde dehydrogenase (ALDH) enzymatic activity using the ALDEFLUOR reagent, which can identify immature cells such as stem cells and precursor cells. 3-D-cultured cells were strongly positive for ALDH enzyme activity. We also analyzed the expression of the stem cell-related genes Sox-2, Nanog, Oct3/4, and Lin28 using RT-PCR. Expression of Sox-2, Nanog, and Lin28 was enhanced. Analysis of expression of the hypoxic surface antigen marker carbonic anhydrase-9 (CA-9), which is an indicator of cancer stem cell induction and maintenance, revealed that CA-9

  2. Stem-like plasticity and heterogeneity of circulating tumor cells: current status and prospect challenges in liver cancer

    PubMed Central

    Correnti, Margherita; Raggi, Chiara

    2017-01-01

    Poor prognosis and high recurrence remain leading causes of primary liver cancerassociated mortality. The spread of circulating tumor cells (CTCs) in the blood plays a major role in the initiation of metastasis and tumor recurrence after surgery. Nevertheless, only a subset of CTCs can survive, migrate to distant sites and establish secondary tumors. Consistent with cancer stem cell (CSC) hypothesis, stem-like CTCs might represent a potential source for cancer relapse and distant metastasis. Thus, identification of stem-like metastasis-initiating CTC-subset may provide useful clinically prognostic information. This review will emphasize the most relevant findings of CTCs in the context of stem-like biology associated to liver carcinogenesis. In this view, the emerging field of stem-like CTCs may deliver substantial contribution in liver cancer field in order to move to personalized approaches for diagnosis, prognosis and therapy. PMID:27738343

  3. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth.

    PubMed

    Kim, Eun-Kyung; Cho, Jae Hee; Kim, EuiJoo; Kim, Yoon Jae

    2017-01-01

    The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells.

  4. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth

    PubMed Central

    Kim, EuiJoo

    2017-01-01

    Introduction The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Method Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. Results We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Conclusion Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells. PMID:28708871

  5. Nanomedicine strategies for sustained, controlled and targeted treatment of cancer stem cells.

    PubMed

    Gao, Jie; Li, Wei; Guo, Yajun; Feng, Si-Shen

    2016-12-01

    Cancer stem cells (CSCs) are original cancer cells that are of characteristics associated with normal stem cells. CSCs are toughest against various treatments and thus responsible for cancer metastasis and recurrence. Therefore, development of specific and effective treatment of CSCs plays a key role in improving survival and life quality of cancer patients, especially those in the metastatic stage. Nanomedicine strategies, which include prodrugs, micelles, liposomes and nanoparticles of biodegradable polymers, could substantially improve the therapeutic index of conventional therapeutics due to its manner of sustained, controlled and targeted delivery of high transportation efficiency across the cell membrane and low elimination by intracellular autophagy, and thus provide a practical solution to solve the problem encountered in CSCs treatment. This review gives briefly the latest information to summarize the concept, strategies, mechanisms and current status as well as future promises of nanomedicine strategies for treatment of CSCs.

  6. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties.

    PubMed

    Chiba, Tetsuhiro; Kita, Kaoru; Zheng, Yun-Wen; Yokosuka, Osamu; Saisho, Hiromitsu; Iwama, Atsushi; Nakauchi, Hiromitsu; Taniguchi, Hideki

    2006-07-01

    Recent advances in stem cell biology enable us to identify cancer stem cells in solid tumors as well as putative stem cells in normal solid organs. In this study, we applied side population (SP) cell analysis and sorting to established hepatocellular carcinoma (HCC) cell lines to detect subpopulations that function as cancer stem cells and to elucidate their roles in tumorigenesis. Among four cell lines analyzed, SP cells were detected in Huh7 (0.25%) and PLC/PRF/5 cells (0.80%), but not in HepG2 and Huh6 cells. SP cells demonstrated high proliferative potential and anti-apoptotic properties compared with those of non-SP cells. Immunocytochemistry examination showed that SP fractions contain a large number of cells presenting characteristics of both hepatocyte and cholangiocyte lineages. Non-obese diabetic/severe combined immunodeficiency (NOD/SCID) xenograft transplant experiments showed that only 1 x 10(3) SP cells were sufficient for tumor formation, whereas an injection of 1 x 10(6) non-SP cells did not initiate tumors. Re-analysis of SP cell-derived tumors showed that SP cells generated both SP and non-SP cells and tumor-initiating potential was maintained only in SP cells in serial transplantation. Microarray analysis discriminated a differential gene expression profile between SP and non-SP cells, and several so-called "stemness genes" were upregulated in SP cells in HCC cells. In conclusion, we propose that a minority population, detected as SP cells in HCC cells, possess extreme tumorigenic potential and provide heterogeneity to the cancer stem cell system characterized by distinct hierarchy.

  7. Nuclear translocation of PKM2/AMPK complex sustains cancer stem cell populations under glucose restriction stress.

    PubMed

    Yang, Yi-Chieh; Chien, Ming-Hsien; Liu, Hsin-Yi; Chang, Yu-Chan; Chen, Chi-Kuan; Lee, Wei-Jiunn; Kuo, Tsang-Chih; Hsiao, Michael; Hua, Kuo-Tai; Cheng, Tsu-Yao

    2018-05-01

    Cancer cells encounter metabolic stresses such as hypoxia and nutrient limitations because they grow and divide more quickly than their normal counterparts. In response to glucose restriction, we found that nuclear translocation of the glycolic enzyme, pyruvate kinase M2 (PKM2), helped cancer cells survive under the metabolic stress. Restriction of glucose stimulated AMPK activation and resulted in co-translocation of AMPK and PKM2 through Ran-mediated nuclear transport. Nuclear PKM2 subsequently bound to Oct4 and promoted the expression of cancer stemness-related genes, which might enrich the cancer stem cell population under the metabolic stress. Nuclear PKM2 was also capable of promoting cancer metastasis in an orthotopic xenograft model. In summary, we found that cytosolic AMPK helped PKM2 carry out its nonmetabolic functions in the nucleus under glucose restriction and that nuclear PKM2 promoted cancer stemness and metastasis. These findings suggested a potential new targeting pathway for cancer therapy in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. HER2 in Breast Cancer Stemness: A Negative Feedback Loop towards Trastuzumab Resistance

    PubMed Central

    Nami, Babak; Wang, Zhixiang

    2017-01-01

    HER2 receptor tyrosine kinase that is overexpressed in approximately 20% of all breast cancers (BCs) is a poor prognosis factor and a precious target for BC therapy. Trastuzumab is approved by FDA to specifically target HER2 for treating HER2+ BC. However, about 60% of patients with HER2+ breast tumor develop de novo resistance to trastuzumab, partially due to the loss of expression of HER2 extracellular domain on their tumor cells. This is due to shedding/cleavage of HER2 by metalloproteinases (ADAMs and MMPs). HER2 shedding results in the accumulation of intracellular carboxyl-terminal HER2 (p95HER2), which is a common phenomenon in trastuzumab-resistant tumors and is suggested as a predictive marker for trastuzumab resistance. Up-regulation of the metalloproteinases is a poor prognosis factor and is commonly seen in mesenchymal-like cancer stem cells that are risen during epithelial to mesenchymal transition (EMT) of tumor cells. HER2 cleavage during EMT can explain why secondary metastatic tumors with high percentage of mesenchymal-like cancer stem cells are mostly resistant to trastuzumab but still sensitive to lapatinib. Importantly, many studies report HER2 interaction with oncogenic/stemness signaling pathways including TGF-β/Smad, Wnt/β-catenin, Notch, JAK/STAT and Hedgehog. HER2 overexpression promotes EMT and the emergence of cancer stem cell properties in BC. Increased expression and activation of metalloproteinases during EMT leads to proteolytic cleavage and shedding of HER2 receptor, which downregulates HER2 extracellular domain and eventually increases trastuzumab resistance. Here, we review the hypothesis that a negative feedback loop between HER2 and stemness signaling drives resistance of BC to trastuzumab. PMID:28445439

  9. Cancer stem cell as therapeutic target for melanoma treatment.

    PubMed

    Alamodi, Abdulhadi A; Eshaq, Abdulaziz M; Hassan, Sofie-Yasmin; Al Hmada, Youssef; El Jamal, Siraj M; Fothan, Ahmed M; Arain, Omair M; Hassan, Sarah-Lilly; Haikel, Youssef; Megahed, Mosaad; Hassan, Mohamed

    2016-12-01

    Human malignant melanoma is a highly aggressive skin tumor that is characterized by its extraordinary heterogeneity, propensity for dissemination to distant organs and resistance to cytotoxic agents. Although chemo- and immune-based therapies have been evaluated in clinical trials, most of these therapeutics do not show significant benefit for patients with advanced disease. Treatment failure in melanoma patients is attributed mainly to the development of tumor heterogeneity resulting from the formation of genetically divergent subpopulations. These subpopulations are composed of cancer stem-like cells (CSCs) as a small fraction and non-cancer stem cells that form the majority of the tumor mass. In recent years, CSCs gained more attention and suggested as valuable experimental model system for tumor study. In melanoma, intratumoral heterogeneity, progression and drug resistance result from the unique characteristics of melanoma stem cells (MSCs). These MSCs are characterized by their distinct protein signature and tumor growth-driving pathways, whose activation is mediated by driver mutation-dependent signal. The molecular features of MSCs are either in a causal or consequential relationship to melanoma progression, drug resistance and relapse. Here, we review the current scientific evidence that supports CSC hypothesis and the validity of MSCs-dependent pathways and their key molecules as potential therapeutic target for melanoma treatment.

  10. Gastric Lgr5+ stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice

    PubMed Central

    Li, Xiu-Bin; Yang, Guan; Zhu, Liang; Tang, Yu-Ling; Zhang, Chong; Ju, Zhenyu; Yang, Xiao; Teng, Yan

    2016-01-01

    The cellular origin of gastric cancer remains elusive. Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is the first identified marker of gastric stem cells. However, the role of Lgr5+ stem cells in driving malignant gastric cancer is not fully validated. Here, we deleted Smad4 and PTEN in murine gastric Lgr5+ stem cells by the inducible Cre-LoxP system and marked mutant Lgr5+ stem cells and their progeny with Cre-reporter Rosa26tdTomato. Rapid onset and progression from microadenoma and macroscopic adenoma to invasive intestinal-type gastric cancer (IGC) were found in the gastric antrum with the loss of Smad4 and PTEN. In addition, invasive IGC developed at the murine gastro-forestomach junction, where a few Lgr5+ stem cells reside. In contrast, Smad4 and PTEN deletions in differentiated cells, including antral parietal cells, pit cells and corpus Lgr5+ chief cells, failed to initiate tumor growth. Furthermore, mutant Lgr5+ cells were involved in IGC growth and progression. In the TCGA (The Cancer Genome Atlas) database, an increase in LGR5 expression was manifested in the human IGC that occurred at the gastric antrum and gastro-esophageal junction. In addition, the concurrent deletion of SMAD4 and PTEN, as well as their reduced expression and deregulated downstream pathways, were associated with human IGC. Thus, we demonstrated that gastric Lgr5+ stem cells were cancer-initiating cells and might act as cancer-propagating cells to contribute to malignant progression. PMID:27091432

  11. Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice.

    PubMed

    Li, Xiu-Bin; Yang, Guan; Zhu, Liang; Tang, Yu-Ling; Zhang, Chong; Ju, Zhenyu; Yang, Xiao; Teng, Yan

    2016-07-01

    The cellular origin of gastric cancer remains elusive. Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is the first identified marker of gastric stem cells. However, the role of Lgr5(+) stem cells in driving malignant gastric cancer is not fully validated. Here, we deleted Smad4 and PTEN in murine gastric Lgr5(+) stem cells by the inducible Cre-LoxP system and marked mutant Lgr5(+) stem cells and their progeny with Cre-reporter Rosa26(tdTomato). Rapid onset and progression from microadenoma and macroscopic adenoma to invasive intestinal-type gastric cancer (IGC) were found in the gastric antrum with the loss of Smad4 and PTEN. In addition, invasive IGC developed at the murine gastro-forestomach junction, where a few Lgr5(+) stem cells reside. In contrast, Smad4 and PTEN deletions in differentiated cells, including antral parietal cells, pit cells and corpus Lgr5(+) chief cells, failed to initiate tumor growth. Furthermore, mutant Lgr5(+) cells were involved in IGC growth and progression. In the TCGA (The Cancer Genome Atlas) database, an increase in LGR5 expression was manifested in the human IGC that occurred at the gastric antrum and gastro-esophageal junction. In addition, the concurrent deletion of SMAD4 and PTEN, as well as their reduced expression and deregulated downstream pathways, were associated with human IGC. Thus, we demonstrated that gastric Lgr5(+) stem cells were cancer-initiating cells and might act as cancer-propagating cells to contribute to malignant progression.

  12. Breast Cancer Stem Cells in Antiestrogen Resistance

    DTIC Science & Technology

    2013-08-01

    several flavonoid derivatives purified from the bark of the Paper Mulberry tree (Broussonetia papyrifera) (L.) were able to down-regulate ER- α36...that a flavonoid derivative Broussoflavonol B, inhibited the expression of ER-α36 and EGFR, attenuated growth of ER-negative breast cancer stem...2.00+.40 Recently, we reported that several flavonoid derivatives purified from the bark of the Paper Mulberry tree (Broussonetia papyrifera) (L.) were

  13. Modeling the Treatment of Glioblastoma Multiforme and Cancer Stem Cells with Ordinary Differential Equations.

    PubMed

    Abernathy, Kristen; Burke, Jeremy

    2016-01-01

    Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels.

  14. Ceramide signaling in cancer and stem cells

    PubMed Central

    Bieberich, Erhard

    2008-01-01

    Most of the previous work on the sphingolipid ceramide has been devoted to its function as an apoptosis inducer. Recent studies, however, have shown that in stem cells, ceramide has additional nonapoptotic functions. In this article, ceramide signaling will be reviewed in light of ‘systems interface biology’: as an interconnection of sphingolipid metabolism, membrane biophysics and cell signaling. The focus will be on the metabolic interconversion of ceramide and sphingomyelin or sphingosine-1-phosphate. Lipid rafts and sphingolipid-induced protein scaffolds will be discussed as a membrane interface for lipid-controlled cell signaling. Ceramide/sphingomyelin and ceramide/sphingosine-1-phosphate-interdependent cell-signaling pathways are significant for the regulation of cell polarity, apoptosis and/or proliferation, and as novel pharmacologic targets in cancer and stem cells. PMID:19050750

  15. Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFκB pathway

    PubMed Central

    Alvero, Ayesha B; Visintin, Irene

    2011-01-01

    Recurrent ovarian cancer is resistant to conventional chemotherapy. A sub-population of ovarian cancer cells, the epithelial ovarian cancer stem cells (EOC stem cells) have stemness properties, constitutive NFκB activity, and represent the chemoresistant population. Currently, there is no effective treatment that targets these cells. Aurora-A kinase (Aurora-A) is associated with tumor initiation and progression and is overexpressed in numerous malignancies. The aim of this study is to determine the effect of Aurora-A inhibition in EOC stem cells. EOC stem cells were treated with the Aurora-A inhibitor, MK-5108. Cell growth was monitored by Incucyte real-time imaging system, cell viability was measured using the Celltiter 96 assay and cytokine levels were quantified using xMAP technology. The intracellular changes associated with MK-5108 treatment are: (1) polyploidy and cell cycle arrest; (2) inhibition of NFκB activity; (3) decreased cytokine production; and (4) nuclear accumulation of IκBα. Thus, inhibition of Aurora-A decreases cell proliferation in the EOC stem cells by inducing cell cycle arrest and affecting the NFκB pathway. As EOC stem cells represent a source of recurrence and chemoresistance, these results suggest that Aurora-A inhibition may effectively target the cancer stem cell population in ovarian cancer. PMID:21623171

  16. Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways.

    PubMed

    Kahlert, U D; Mooney, S M; Natsumeda, M; Steiger, H-J; Maciaczyk, J

    2017-01-01

    Cancer stem-like cells (CSCs) are thought to be the main cause of tumor occurrence, progression and therapeutic resistance. Strong research efforts in the last decade have led to the development of several tailored approaches to target CSCs with some very promising clinical trials underway; however, until now no anti-CSC therapy has been approved for clinical use. Given the recent improvement in our understanding of how onco-proteins can manipulate cellular metabolic networks to promote tumorigenesis, cancer metabolism research may well lead to innovative strategies to identify novel regulators and downstream mediators of CSC maintenance. Interfering with distinct stages of CSC-associated metabolics may elucidate novel, more efficient strategies to target this highly malignant cell population. Here recent discoveries regarding the metabolic properties attributed to CSCs in glioblastoma (GBM) and malignant colorectal cancer (CRC) were summarized. The association between stem cell markers, the response to hypoxia and other environmental stresses including therapeutic insults as well as developmentally conserved signaling pathways with alterations in cellular bioenergetic networks were also discussed. The recent developments in metabolic imaging to identify CSCs were also summarized. This summary should comprehensively update basic and clinical scientists on the metabolic traits of CSCs in GBM and malignant CRC. © 2016 UICC.

  17. Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer

    PubMed Central

    Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian

    2016-01-01

    Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells. PMID:27542229

  18. Tissue Elasticity Bridges Cancer Stem Cells to the Tumor Microenvironment Through microRNAs: Implications for a “Watch-and-Wait” Approach to Cancer

    PubMed Central

    Li, Shengwen Calvin; Vu, Long T.; Luo, Jane Jianying; Zhong, Jiang F.; Li, Zhongjun; Dethlefs, Brent A; Loudon, William G.; Kabeer, Mustafa H.

    2017-01-01

    Targeting the tumor microenvironment (TME) through which cancer stem cells (CSCs) crosstalk for cancer initiation and progression, may open up new treatments different from those centered on the original hallmarks of cancer genetics thereby implying a new approach for suppression of TME-driven activation of CSCs. Cancer is dynamic, heterogeneous, evolving with the TME and can be influenced by tissue-specific elasticity. One of the mediators and modulators of the crosstalk between CSCs and mechanical forces is miRNA, which can be developmentally regulated, in a tissue- and cell-specific manner. Here, based on our previous data, we provide a framework through which such gene expression changes in response to external mechanical forces can be understood during cancer progression. Recognizing the ways mechanical forces regulate and affect intracellular signals with applications in cancer stem cell biology. Such TME-targeted pathways shed new light on strategies for attacking cancer stem cells with fewer side effects than traditional gene-based treatments for cancer, requiring a “watch-and-wait” approach. We attempt to address both normal brain microenvironment and tumor microenvironment as both works together, intertwining in pathology and physiology – a balance that needs to be maintained for the “watch-and-wait” approach to cancer. Thus, this review connected the subjects of tissue elasticity, tumor microenvironment, epigenetic of miRNAs, and stem-cell biology that are very relevant in cancer research and therapy. It attempts to unify apparently separate entities in a complex biological web, network, and system in a realistic and practical manner, i.e., to bridge basic research with clinical application. PMID:28270089

  19. Maternal Embryonic Leucine-zipper Kinase: Key Kinase for Stem Cell Phenotype in Glioma and Other Cancers

    PubMed Central

    Ganguly, Ranjit; Hong, Christopher; Smith, Luke; Kornblum, Harley I; Nakano, Ichiro

    2014-01-01

    Maternal embryonic leucine zipper kinase (MELK) is a member of the snf1/AMPK family of protein Serine/Threonine kinases that has recently gained significant attention in the stem cell and cancer biology field. Recent studies suggest that activation of this kinase is tightly associated with extended survival and accelerated proliferation of cancer stem cells (CSCs) in various organs. Overexpression of MELK has been noted in various cancers, including colon, breast, ovaries, pancreas, prostate, and brain, making the inhibition of MELK an attractive therapeutic strategy for a variety of cancers. In the experimental cancer models, depletion of MELK by RNA interference or small molecule inhibitors induces apoptotic cell death of cancer stem cells derived from glioblastoma and breast cancer, both in vitro and in vivo. Mechanism of action of MELK includes, yet may not be restricted to, direct binding and activation of the oncogenic transcription factors c-JUN and FOXM1 in cancer cells but not in the normal counterparts. Following these pre-clinical studies, the Phase I clinical trial for advanced cancers with OTS167 started in 2013, as the first-in-class MELK inhibitor. This review summarizes the current molecular understanding of MELK and the recent pre-clinical studies about MELK as a cancer therapeutic target. PMID:24795222

  20. A Synthetic Triterpenoid CDDO-Im Inhibits Tumorsphere Formation by Regulating Stem Cell Signaling Pathways in Triple-Negative Breast Cancer

    PubMed Central

    Wahler, Joseph; Liby, Karen T.; Sporn, Michael B.; Suh, Nanjoo

    2014-01-01

    Triple-negative breast cancer is associated with poor prognosis because of a high rate of tumor recurrence and metastasis. Previous studies demonstrated that the synthetic triterpenoid, CDDO-Imidazolide (CDDO-Im) induced cell cycle arrest and apoptosis in triple-negative breast cancer. Since a small subpopulation of cancer stem cells has been suggested to be responsible for drug resistance and metastasis of tumors, our present study determined whether the effects of CDDO-Im in triple-negative breast cancer are due to the inhibition of a cancer stem cell subpopulation. CDDO-Im treatment markedly induced cell cycle arrest at G2/M-phase and apoptosis in the triple-negative breast cancer cell lines, SUM159 and MDA-MB-231. Because SUM159 cells were more sensitive to CDDO-Im than MDA-MB-231 cells, the effects of CDDO-Im on the cancer stem cell subpopulation were further investigated in SUM159 cells. SUM159 cells formed tumorspheres in culture, and the cancer stem cell subpopulation, CD24−/EpCAM+ cells, was markedly enriched in SUM159 tumorspheres. The CD24−/EpCAM+ cells in SUM159 tumorspheres were significantly inhibited by CDDO-Im treatment. CDDO-Im also significantly decreased sphere forming efficiency and tumorsphere size in both primary and secondary sphere cultures. PCR array of stem cell signaling genes showed that expression levels of many key molecules in the stem cell signaling pathways, such as Notch, TGF-β/Smad, Hedgehog and Wnt, were significantly down-regulated by CDDO-Im in SUM159 tumorspheres. Protein levels of Notch receptors (c-Notch1, Notch1 and Notch3), TGF-β/Smad (pSmad2/3) and Hedgehog downstream effectors (GLI1) also were markedly reduced by CDDO-Im. In conclusion, the present study demonstrates that the synthetic triterpenoid, CDDO-Im, is a potent anti-cancer agent against triple-negative breast cancer cells by targeting the cancer stem cell subpopulation. PMID:25229616

  1. Novel therapeutic Strategies for Targeting Liver Cancer Stem Cells

    PubMed Central

    Oishi, Naoki; Wang, Xin Wei

    2011-01-01

    The cancer stem cell (CSC) hypothesis was first proposed over 40 years ago. Advances in CSC isolation were first achieved in hematological malignancies, with the first CSC demonstrated in acute myeloid leukemia. However, using similar strategies and technologies, and taking advantage of available surface markers, CSCs have been more recently demonstrated in a growing range of epithelial and other solid organ malignancies, suggesting that the majority of malignancies are dependent on such a compartment. Primary liver cancer consists predominantly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). It is believed that hepatic progenitor cells (HPCs) could be the origin of some HCCs and ICCs. Furthermore, stem cell activators such as Wnt/β-catenin, TGF-β, Notch and Hedgehog signaling pathways also expedite tumorigenesis, and these pathways could serve as molecular targets to assist in designing cancer prevention strategies. Recent studies indicate that additional factors such as EpCAM, Lin28 or miR-181 may also contribute to HCC progression by targeting HCC CSCs. Various therapeutic drugs that directly modulate CSCs have been examined in vivo and in vitro. However, CSCs clearly have a complex pathogenesis, with a considerable crosstalk and redundancy in signaling pathways, and hence targeting single molecules or pathways may have a limited benefit for treatment. Many of the key signaling molecules are shared by both CSCs and normal stem cells, which add further challenges for designing molecularly targeted strategies specific to CSCs but sparing normal stem cells to avoid side effects. In addition to the direct control of CSCs, many other factors that are needed for the maintenance of CSCs, such as angiogenesis, vasculogenesis, invasion and migration, hypoxia, immune evasion, multiple drug resistance, and radioresistance, should be taken into consideration when designing therapeutic strategies for HCC. Here we provide a brief review of

  2. RNA editing-dependent epitranscriptome diversity in cancer stem cells

    PubMed Central

    Jiang, Qingfei; Crews, Leslie A.; Holm, Frida; Jamieson, Catriona H. M.

    2017-01-01

    Cancer stem cells (CSCs) can regenerate all facets of a tumour as a result of their stem cell-like capacity to self-renew, survive and become dormant in protective microenvironments. CSCs evolve during tumour progression in a manner that conforms to Charles Darwin’s principle of natural selection. Although somatic DNA mutations and epigenetic alterations promote evolution, post-transcriptional RNA modifications together with RNA binding protein activity (the ‘epitranscriptome’) might also contribute to clonal evolution through dynamic determination of RNA function and gene expression diversity in response to environmental stimuli. Deregulation of these epitranscriptomic events contributes to CSC generation and maintenance, which governs cancer progression and drug resistance. In this Review, we discuss the role of malignant RNA processing in CSC generation and maintenance, including mechanisms of RNA methylation, RNA editing and RNA splicing, and the functional consequences of their aberrant regulation in human malignancies. Finally, we highlight the potential of these events as novel CSC biomarkers as well as therapeutic targets. PMID:28416802

  3. Delivery of therapeutics using nanocarriers for targeting cancer cells and cancer stem cells.

    PubMed

    Krishnamurthy, Sangeetha; Ke, Xiyu; Yang, Yi Yan

    2015-01-01

    Development of cancer resistance, cancer relapse and metastasis are attributed to the presence of cancer stem cells (CSCs). Eradication of this subpopulation has been shown to increase life expectancy of patients. Since the discovery of CSCs a decade ago, several strategies have been devised to specifically target them but with limited success. Nanocarriers have recently been employed to deliver anti-CSC therapeutics for reducing the population of CSCs at the tumor site with great success. This review discusses the different therapeutic strategies that have been employed using nanocarriers, their advantages, success in targeting CSCs and the challenges that are to be overcome. Exploiting this new modality of cancer treatment in the coming decade may improve outcomes profoundly with promise of effective treatment response and reducing relapse and metastasis.

  4. Cancer Stem Cell Radioresistance and Enrichment: Where Frontline Radiation Therapy May Fail in Lung and Esophageal Cancers

    PubMed Central

    Nguyen, Giang Huong; Murph, Mandi M.; Chang, Joe Y.

    2011-01-01

    Many studies have highlighted the role cancer stem cells (CSC) play in the development and progression of various types of cancer including lung and esophageal cancer. More recently, it has been proposed that the presence of CSCs affects treatment efficacy and patient prognosis. In reviewing this new area of cancer biology, we will give an overview of the current literature regarding lung and esophageal CSCs and radioresistance of CSC, and discuss the potential therapeutic applications of these findings. PMID:21603589

  5. Ovarian cancer stem-like cells with induced translineage-differentiation capacity and are suppressed by alkaline phosphatase inhibitor

    PubMed Central

    Liu, Kuei-Chun; Yo, Yi-Te; Huang, Rui-Lan; Wang, Yu-Chi; Liao, Yu-Ping; Huang, Tien-Shuo; Chao, Tai-Kuang; Lin, Chi-Kang; Weng, Shao-Ju; Ma, Kuo-Hsing; Chang, Cheng-Chang; Yu, Mu-Hsien; Lai, Hung-Cheng

    2013-01-01

    Spheroid formation is one property of stem cells—such as embryo-derived or neural stem cells—that has been used for the enrichment of cancer stem-like cells (CSLCs). However, it is unclear whether CSLC-derived spheroids are heterogeneous or whether they share common embryonic stemness properties. Understanding these features might lead to novel therapeutic approaches. Ovarian carcinoma is a deadly disease of women. We identified two types of spheroids (SR1 and SR2) from ovarian cancer cell lines and patients' specimens according to their morphology. Both types expressed stemness markers and could self-renew and initiate tumors when a low number of cells were used. Only SR1 could differentiate into multiple-lineage cell types under specific induction conditions. SR1 spheroids could differentiate to SR2 spheroids through epithelial–mesenchymal transition. Alkaline phosphatase (ALP) was highly expressed in SR1 spheroids, decreased in SR2 spheroids, and was absent in differentiated progenies in accordance with the loss of stemness properties. We verified that ALP can be a marker for ovarian CSLCs, and patients with greater ALP expression is related to advanced clinical stages and have a higher risk of recurrence and lower survival rate. The ALP inhibitor, levamisole, disrupted the self-renewal of ovarian CSLCs in vitro and tumor growth in vivo. In summary, this research provides a plastic ovarian cancer stem cell model and a new understanding of the cross-link between stem cells and cancers. This results show that ovarian CSLCs can be suppressed by levamisole. Our findings demonstrated that some ovarian CSLCs may restore ALP activity, and this suggests that inhibition of ALP activity may present a new opportunity for treatment of ovarian cancer. PMID:24280306

  6. Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis.

    PubMed

    Iqbal, Waqas; Alkarim, Saleh; AlHejin, Ahmed; Mukhtar, Hasan; Saini, Kulvinder S

    2016-11-15

    Tumor comprises of heterogeneous population of cells where not all the disseminated cancer cells have the prerogative and "in-build genetic cues" to form secondary tumors. Cells with stem like properties complemented by key signaling molecules clearly have shown to exhibit selective growth advantage to form tumors at distant metastatic sites. Thus, defining the role of cancer stem cells (CSC) in tumorigenesis and metastasis is emerging as a major thrust area for therapeutic intervention. Precise relationship and regulatory mechanisms operating in various signal transduction pathways during cancer dissemination, extravasation and angiogenesis still remain largely enigmatic. How the crosstalk amongst circulating tumor cells (CTC), epithelial mesenchymal transition (EMT) process and CSC is coordinated for initiating the metastasis at secondary tissues, and during cancer relapse could be of great therapeutic interest. The signal transduction mechanisms facilitating the dissemination, infiltration of CSC into blood stream, extravasations, progression of metastasis phenotype and angiogenesis, at distant organs, are the key pathologically important vulnerabilities being elucidated. Therefore, current new drug discovery focus has shifted towards finding "key driver genes" operating in parallel signaling pathways, during quiescence, survival and maintenance of stemness in CSC. Understanding these mechanisms could open new horizons for tackling the issue of cancer recurrence and metastasis-the cause of ~90% cancer associated mortality. To design futuristic & targeted therapies, we propose a multi-pronged strategy involving small molecules, RNA interference, vaccines, antibodies and other biotechnological modalities against CSC and the metastatic signal transduction cascade.

  7. PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting.

    PubMed

    Ciuffreda, Ludovica; Falcone, Italia; Incani, Ursula Cesta; Del Curatolo, Anais; Conciatori, Fabiana; Matteoni, Silvia; Vari, Sabrina; Vaccaro, Vanja; Cognetti, Francesco; Milella, Michele

    2014-09-01

    Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a non-redundant lipid phosphatase that restrains and fine tunes the phosphatidylinositol-3-kinase (PI3K) signaling pathway. PTEN is involved in inherited syndromes, which predispose to different types of cancers and is among the most frequently inactivated tumor suppressor genes in sporadic cancers. Indeed, loss of PTEN function occurs in a wide spectrum of human cancers through a variety of mechanisms, including mutations, deletions, transcriptional silencing, or protein instability. PTEN prevents tumorigenesis through multiple mechanisms and regulates a plethora of cellular processes, including survival, proliferation, energy metabolism and cellular architecture. Moreover, recent studies have demonstrated that PTEN is able to exit, exist, and function outside the cell, allowing for inhibition of the PI3K pathway in neighboring cells in a paracrine fashion. Most recently, studies have shown that PTEN is also critical for stem cell maintenance and that PTEN loss can lead to the emergence and proliferation of cancer stem cell (CSC) clones. Depending on the cellular and tissue context of origin, PTEN deletion may result in increased self-renewal capacity or normal stem cell exhaustion and PTEN-defìcient stem and progenitor cells have been reported in prostate, lung, intestinal, and pancreatic tissues before tumor formation; moreover, reversible or irreversible PTEN loss is frequently observed in CSC from a variety of solid and hematologic malignancies, where it may contribute to the functional phenotype of CSC. In this review, we will focus on the role of PTEN expression and function and downstream pathway activation in cancer stem cell biology and regulation of the tumorigenic potential; the emerging role of PTEN in mediating the crosstalk between the PI3K and MAPK pathways will also be discussed, together with prospects for the therapeutic targeting of tumors lacking PTEN expression. Copyright

  8. JNK signaling mediates EPHA2-dependent tumor cell proliferation, motility, and cancer stem cell-like properties in non-small cell lung cancer

    PubMed Central

    Song, Wenqiang; Ma, Yufang; Wang, Jialiang; Brantley-Sieders, Dana; Chen, Jin

    2014-01-01

    Recent genome-wide analyses in human lung cancer revealed that EPHA2 receptor tyrosine kinase is overexpressed in non-small cell lung cancer (NSCLC), and high levels of EPHA2 correlate with poor clinical outcome. However, the mechanistic basis for EPHA2-mediated tumor promotion in lung cancer remains poorly understood. Here we show that the JNK/c-JUN signaling mediates EPHA2-dependent tumor cell proliferation and motility. A screen of phospho-kinase arrays revealed a decrease in phospho-c-JUN levels in EPHA2 knockdown cells. Knockdown of EPHA2 inhibited p-JNK and p-c-JUN levels in approximately 50% of NSCLC lines tested. Treatment of parental cells with SP600125, a JNK inhibitor, recapitulated defects in EPHA2-deficient tumor cells; whereas constitutively activated JNK mutants were sufficient to rescue phenotypes. Knockdown of EPHA2 also inhibited tumor formation and progression in xenograft animal models in vivo. Furthermore, we investigated the role of EPHA2 in cancer stem-like cells. RNAi-mediated depletion of EPHA2 in multiple NSCLC lines decreased the ALDH positive cancer stem-like population and tumor spheroid formation in suspension. Depletion of EPHA2 in sorted ALDH positive populations markedly inhibited tumorigenicity in nude mice. Furthermore, analysis of a human lung cancer tissue microarray revealed a significant, positive association between EPHA2 and ALDH expression, indicating an important role for EPHA2 in human lung cancer stem-like cells. Collectively, these studies revealed a critical role of JNK signaling in EPHA2-dependent lung cancer cell proliferation and motility and a role for EPHA2 in cancer stem-like cell function, providing evidence for EPHA2 as a potential therapeutic target in NSCLC. PMID:24607842

  9. Identification and Characterization of Cells with Cancer Stem Cell Properties in Human Primary Lung Cancer Cell Lines

    PubMed Central

    Suo, Zhenhe; Munthe, Else; Solberg, Steinar; Ma, Liwei; Wang, Mengyu; Westerdaal, Nomdo Anton Christiaan; Kvalheim, Gunnar; Gaudernack, Gustav

    2013-01-01

    Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90− cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population. PMID:23469181

  10. Withaferin A (WFA) inhibits tumor growth and metastasis by targeting ovarian cancer stem cells.

    PubMed

    Kakar, Sham S; Parte, Seema; Carter, Kelsey; Joshua, Irving G; Worth, Christopher; Rameshwar, Pranela; Ratajczak, Mariusz Z

    2017-09-26

    Ovarian cancer is the fifth leading cause of deaths due to cancer among women in the United States. In 2017, 22,440 women are expected to be diagnosed with ovarian cancer and 14,080 women will die with it. Currently used chemotherapies (Cisplatin or platinum/taxane combination) targets cancer cells, but spares cancer stem cells (CSCs), which are responsible for tumor relapse leading to recurrence of cancer. Aldehyde dehydrogenase I (ALDH1) positive cancer stem cells are one of the major populations in ovarian tumor and have been related to tumor progression and metastasis. In our studies, we observed expression of ALDH1 in both ovarian surface epithelium (OSE) and cortex with high levels of expression in OSE in normal ovary and benign (BN) tumor, compared to borderline (BL) and high grade (HG) ovarian tumors. In contrast, high levels of expression of ALDH1 were observed in cortex in BL and HG tumors compared to normal ovary and BN tumor. Withaferin A (WFA) alone or in combination with cisplatin (CIS) significantly inhibited the spheroid formation (tumorigenic potential) of isolated ALDH1 CSCs in vitro and significantly reduced its expression in tumors collected from mice bearing orthotopic ovarian tumor compared to control. Treatment of animals with CIS alone significantly increased the ALDH1 CSC population in tumors, suggesting that CIS targets cancer cells but spares cancer stem cells, which undergo amplification. WFA and CIS combination suppresses the expression of securin an "oncogene", suggesting that securin may serve as a downstream signaling gene to mediate the antitumor effects of WFA.

  11. Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways.

    PubMed

    Brandi, Jessica; Dando, Ilaria; Pozza, Elisa Dalla; Biondani, Giulia; Jenkins, Rosalind; Elliott, Victoria; Park, Kevin; Fanelli, Giuseppina; Zolla, Lello; Costello, Eithne; Scarpa, Aldo; Cecconi, Daniela; Palmieri, Marta

    2017-01-06

    Recently, we have shown that the secretome of pancreatic cancer stem cells (CSCs) is characterized by proteins that participate in cancer differentiation, invasion, and metastasis. However, the differentially expressed intracellular proteins that lead to the specific characteristics of pancreatic CSCs have not yet been identified, and as a consequence the deranged metabolic pathways are yet to be elucidated. To identify the modulated proteins of pancreatic CSCs, iTRAQ-based proteomic analysis was performed to compare the proteome of Panc1 CSCs and Panc1 parental cells, identifying 230 modulated proteins. Pathway analysis revealed activation of glycolysis, the pentose phosphate pathway, the pyruvate-malate cycle, and lipid metabolism as well as downregulation of the Krebs cycle, the splicesome and non-homologous end joining. These findings were supported by metabolomics and immunoblotting analysis. It was also found that inhibition of fatty acid synthase by cerulenin and of mevalonate pathways by atorvastatin have a greater anti-proliferative effect on cancer stem cells than parental cells. Taken together, these results clarify some important aspects of the metabolic network signature of pancreatic cancer stem cells, shedding light on key and novel therapeutic targets and suggesting that fatty acid synthesis and mevalonate pathways play a key role in ensuring their viability. To better understand the altered metabolic pathways of pancreatic cancer stem cells (CSCs), a comprehensive proteomic analysis and metabolite profiling investigation of Panc1 and Panc1 CSCs were carried out. The findings obtained indicate that Panc1 CSCs are characterized by upregulation of glycolysis, pentose phosphate pathway, pyruvate-malate cycle, and lipid metabolism and by downregulation of Krebs cycle, spliceosome and non-homologous end joining. Moreover, fatty acid synthesis and mevalonate pathways are shown to play a critical contribution to the survival of pancreatic cancer stem cells

  12. The hitchhikers guide to cancer stem cell theory: markers, pathways and therapy.

    PubMed

    Fábián, Ákos; Vereb, György; Szöllősi, János

    2013-01-01

    Cancer stem cell (CSC) biology is a rapidly developing field within cancer research. CSCs are postulated to be a unique cell population exclusively capable of infinite self renewal, multilineage differentiation and with ability to evade conventional cytotoxic cancer therapy. These traits distinguish CSCs from their more differentiated counterparts, which possess only limited or no potential for self renewal and tumor initiation. Therefore, CSCs would be the driving motor of malignant growth and therapy resistance. Accordingly, successful cancer treatment would need to eliminate this highly potent group of cells, since even small residual numbers would suffice to recapitulate the disease after therapy. Putative CSCs has been identified in a broad range of human malignancies and several cell surface markers have been associated with their stem cell phenotype. Despite all efforts, a pure CSC population has not been isolated and often in vitro clonogenic and in vivo tumorigenic potential is found in several cell populations with occasionally contradictory surface marker signatures. Here, we give a brief overview of recent advances in CSC theory, including the signaling pathways in CSCs that also appear crucial for stem cells homeostasis in normal tissues. We discuss evidence for the interaction of CSCs with the stromal tumor environment. Finally, we review the emerging potentially effective CSC-targeted treatment strategies and their future role in therapy. Copyright © 2012 International Society for Advancement of Cytometry.

  13. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Li, E-mail: lin.796@osu.edu; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030; Fuchs, James

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existencemore » of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced

  14. Treatment Analysis in a Cancer Stem Cell Context Using a Tumor Growth Model Based on Cellular Automata.

    PubMed

    Monteagudo, Ángel; Santos, José

    2015-01-01

    Cancer can be viewed as an emergent behavior in terms of complex system theory and artificial life, Cellular Automata (CA) being the tool most used for studying and characterizing the emergent behavior. Different approaches with CA models were used to model cancer growth. The use of the abstract model of acquired cancer hallmarks permits the direct modeling at cellular level, where a cellular automaton defines the mitotic and apoptotic behavior of cells, and allows for an analysis of different dynamics of the cellular system depending on the presence of the different hallmarks. A CA model based on the presence of hallmarks in the cells, which includes a simulation of the behavior of Cancer Stem Cells (CSC) and their implications for the resultant growth behavior of the multicellular system, was employed. This modeling of cancer growth, in the avascular phase, was employed to analyze the effect of cancer treatments in a cancer stem cell context. The model clearly explains why, after treatment against non-stem cancer cells, the regrowth capability of CSCs generates a faster regrowth of tumor behavior, and also shows that a continuous low-intensity treatment does not favor CSC proliferation and differentiation, thereby allowing an unproblematic control of future tumor regrowth. The analysis performed indicates that, contrary to the current attempts at CSC control, trying to make CSC proliferation more difficult is an important point to consider, especially in the immediate period after a standard treatment for controlling non-stem cancer cell proliferation.

  15. Social-Cognitive Predictors of STEM Career Interests and Goal Persistence in College Students with Disabilities from Racial and Ethnic Minority Backgrounds

    ERIC Educational Resources Information Center

    da Silva Cardoso, Elizabeth; Dutta, Alo; Chiu, Chung-Yi; Johnson, Ebonee T.; Kundu, Madan; Chan, Fong D.

    2013-01-01

    Objective: To examine the relations of science, technology, engineering, and mathematics's (STEM) self-efficacy, outcome expectations, interests, and contextual supports and barriers to STEM educational goals in college students with disabilities from racial and ethnic minority backgrounds. Design: Quantitative descriptive research design using…

  16. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    PubMed

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Priming the Tumor Immune Microenvironment Improves Immune Surveillance of Cancer Stem Cells and Prevents Cancer Recurrence

    DTIC Science & Technology

    2013-10-01

    YANG,a DEBBIE LIAO,b CONG CHEN,c YAN LIU,c TSUNG-HSIEN CHUANG,d RONG XIANG,a DOROTHY MARKOWITZ,b RALPH A. REISFELD,b YUNPING LUOb,c aDepartment of...tumor stem cells. Cancer Cell 2007;11:69–82. 27 Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res...polarization and vessel normalization through downregulation of PlGF. Cancer Cell 2011; 19: 31–44. 12 Murdoch C, Lewis CE. Macrophage migration and gene

  18. Cancer cell-soluble factors reprogram mesenchymal stromal cells to slow cycling, chemoresistant cells with a more stem-like state.

    PubMed

    El-Badawy, Ahmed; Ghoneim, Mohamed A; Gabr, Mahmoud M; Salah, Radwa Ayman; Mohamed, Ihab K; Amer, Marwa; El-Badri, Nagwa

    2017-11-07

    Mesenchymal stem cells (MSCs) play different roles in modulating tumor progression, growth, and metastasis. MSCs are recruited to the tumor site in large numbers and subsequently have an important microenvironmental role in modulating tumor progression and drug sensitivity. However, the effect of the tumor microenvironment on MSC plasticity remains poorly understood. Herein, we report a paracrine effect of cancer cells, in which they secrete soluble factors that promote a more stem-like state in bone marrow mesenchymal stem cells (BM-MSCs). The effect of soluble factors secreted from MCF7, Hela, and HepG2 cancer cell lines on BM-MSCs was assessed using a Transwell indirect coculture system. After 5 days of coculture, BM-MSCs were characterized by flow cytometry for surface marker expression, by qPCR for gene expression profile, and by confocal immunofluorescence for marker expression. We then measured the sensitivity of cocultured BM-MSCs to chemotherapeutic agents, their cell cycle profile, and their response to DNA damage. The sphere formation, invasive properties, and in-vivo performance of BM-MSCs after coculture with cancer cells were also measured. Indirect coculture of cancer cells and BM-MSCs, without direct cell contact, generated slow cycling, chemoresistant spheroid stem cells that highly expressed markers of pluripotency, cancer cells, and cancer stem cells (CSCs). They also displayed properties of a side population and enhanced sphere formation in culture. Accordingly, these cells were termed cancer-induced stem cells (CiSCs). CiSCs showed a more mesenchymal phenotype that was further augmented upon TGF-β stimulation and demonstrated a high expression of the β-catenin pathway and ALDH1A1. These findings demonstrate that MSCs, recruited to the tumor microenvironment in large numbers, may display cellular plasticity, acquire a more stem-like state, and acquire some properties of CSCs upon exposure to cancer cell-secreted factors. These acquired

  19. Studying Cancer Stem Cell Dynamics on PDMS Surfaces for Microfluidics Device Design

    PubMed Central

    Zhang, Weijia; Choi, Dong Soon; Nguyen, Yen H.; Chang, Jenny; Qin, Lidong

    2013-01-01

    This systematic study clarified a few interfacial aspects of cancer cell phenotypes on polydimethylsiloxane (PDMS) substrates and indicated that the cell phenotypic equilibrium greatly responds to cell-to-surface interactions. We demonstrated that coatings of fibronectin, bovine serum albumin (BSA), or collagen with or without oxygen-plasma treatments of the PDMS surfaces dramatically impacted the phenotypic equilibrium of breast cancer stem cells, while the variations of the PDMS elastic stiffness had much less such effects. Our results showed that the surface coatings of collagen and fibronectin on PDMS maintained breast cancer cell phenotypes to be nearly identical to the cultures on commercial polystyrene Petri dishes. The surface coating of BSA provided a weak cell-substrate adhesion that stimulated the increase in stem-cell-like subpopulation. Our observations may potentially guide surface modification approaches to obtain specific cell phenotypes. PMID:23900274

  20. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis

    PubMed Central

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P.; Fulzele, Sadanand; Pei, Lirong; Chang, Chang-Sheng; Choi, Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D.; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-01-01

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumors, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumors and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment. PMID:25908435

  1. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis.

    PubMed

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P; Sadanand, Fulzele; Pei, Lirong; Chang, Chang-Sheng; Choi, Jeong-Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-04-24

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumours, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumours and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.

  2. Prostate Cancer Stem Cell-Targeted Efficacy of a New-Generation Taxoid, SBT-1214 and Novel Polyenolic Zinc-Binding Curcuminoid, CMC2.24

    PubMed Central

    Botchkina, Galina I.; Zuniga, Edison S.; Rowehl, Rebecca H.; Park, Rosa; Bhalla, Rahuldev; Bialkowska, Agnieszka B.; Johnson, Francis; Golub, Lorne M.; Zhang, Yu; Ojima, Iwao; Shroyer, Kenneth R.

    2013-01-01

    Background Prostate cancer is the second leading cause of cancer death among men. Multiple evidence suggests that a population of tumor-initiating, or cancer stem cells (CSCs) is responsible for cancer development and exceptional drug resistance, representing a highly important therapeutic target. The present study evaluated CSC-specific alterations induced by new-generation taxoid SBT-1214 and a novel polyenolic zinc-binding curcuminoid, CMC2.24, in prostate CSCs. Principal Findings The CD133high/CD44high phenotype was isolated from spontaneously immortalized patient-derived PPT2 cells and highly metastatic PC3MM2 cells. Weekly treatment of the NOD/SCID mice bearing PPT2- and PC3MM3-induced tumors with the SBT-1214 led to dramatic suppression of tumor growth. Four of six PPT2 and 3 of 6 PC3MM2 tumors have shown the absence of viable cells in residual tumors. In vitro, SBT-1214 (100nM-1µM; for 72 hr) induced about 60% cell death in CD133high/CD44+/high cells cultured on collagen I in stem cell medium (in contrast, the same doses of paclitaxel increased proliferation of these cells). The cytotoxic effects were increased when SBT-1214 was combined with the CMC2.24. A stem cell-specific PCR array assay revealed that this drug combination mediated massive inhibition of multiple constitutively up-regulated stem cell-related genes, including key pluripotency transcription factors. Importantly, this drug combination induced expression of p21 and p53, which were absent in CD133high/CD44high cells. Viable cells that survived this treatment regimen were no longer able to induce secondary spheroids, exhibited significant morphological abnormalities and died in 2-5 days. Conclusions We report here that the SBT-1214 alone, or in combination with CMC2.24, possesses significant activity against prostate CD133high/CD44+/high tumor-initiating cells. This drug combination efficiently inhibits expression of the majority of stem cell-related genes and pluripotency transcription

  3. Autocrine interleukin-23 promotes self-renewal of CD133+ ovarian cancer stem-like cells.

    PubMed

    Wang, Dan; Xiang, Tong; Zhao, Zhongquan; Lin, Kailong; Yin, Pin; Jiang, Lupin; Liang, Zhiqing; Zhu, Bo

    2016-11-15

    Cancer stem cells (CSCs) are a group of cells which possess the ability of self-renewing and unlimited proliferation. And these CSCs are thought to be the cause of metastasis, recurrence and resistance. Recent study has found that pro-inflammatory cytokine and chemotactic factor mediate the self-renewing and differentiation of most of CSCs. Thus we speculate that ovarian cancer stem cells (OCSCs) can also maintain the ability of self-renewing and differentiation by releasing inflammatory factor. This report we discuss the biological characteristics and the specific molecular mechanism mediated by interleukin-23 (IL-23) and its receptor on the self-renewing of OCSCs. We found that OCSCs had high expression of IL-23 and IL-23R. IL-23 could promote the self-renewal ability of OCSCs and played a very important role to maintain the stable expression of stem cell markers in vitro. Moreover, we verified that IL-23 could maintain the potential tumorigenic of OCSCs in vivo and mediate the self-renewal ability and the formation of tumor in OCSCs by activating the signal pathways of STAT3 and NF-κB. In addition, human low differentiation tissues showed overexpression of IL-23. And IL-23 positively correlated to the expression level of CD133, Nanog and Oct4. In conclusion, Our discoveries demonstrate that autocrine IL-23 contribute to ovarian cancer malignancy through promoting the self-renewal of CD133+ ovarian cancer stem-like cells, and this suggests that IL-23 and its signaling pathway might serve as therapeutic targets for the treatment of ovarian cancer.

  4. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment.

    PubMed

    Phi, Lan Thi Hanh; Sari, Ita Novita; Yang, Ying-Gui; Lee, Sang-Hyun; Jun, Nayoung; Kim, Kwang Seock; Lee, Yun Kyung; Kwon, Hyog Young

    2018-01-01

    Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is important to understand the characteristics and mechanisms by which CSCs display resistance to therapeutic agents. In this review, we highlight the key features and mechanisms that regulate CSC function in drug resistance as well as recent breakthroughs of therapeutic approaches for targeting CSCs. This promises new insights of CSCs in drug resistance and provides better therapeutic rationales to accompany novel anticancer therapeutics.

  5. Effective elimination of cancer stem cells by magnetic hyperthermia.

    PubMed

    Sadhukha, Tanmoy; Niu, Lin; Wiedmann, Timothy Scott; Panyam, Jayanth

    2013-04-01

    Cancer stem cells (CSCs) are a subpopulation of cancer cells that have stem cell-like properties and are thought to be responsible for tumor drug resistance and relapse. Therapies that can effectively eliminate CSCs will, therefore, likely inhibit tumor recurrence. The objective of our study was to determine the susceptibility of CSCs to magnetic hyperthermia, a treatment that utilizes superparamagnetic iron oxide nanoparticles placed in an alternating magnetic field to generate localized heat and achieve selective tumor cell kill. SPIO NPs having a magnetite core of 12 nm were used to induce magnetic hyperthermia in A549 and MDA-MB-231 tumor cells. Multiple assays for CSCs, including side population phenotype, aldehyde dehydrogenase expression, mammosphere formation, and in vivo xenotransplantation, indicated that magnetic hyperthermia reduced or, in some cases, eliminated the CSC subpopulation in treated cells. Interestingly, conventional hyperthermia, induced by subjecting cells to elevated temperature (46 °C) in a water bath, was not effective in eliminating CSCs. Our studies show that magnetic hyperthermia has pleiotropic effects, inducing acute necrosis in some cells while stimulating reactive oxygen species generation and slower cell kill in others. These results suggest the potential for lower rates of tumor recurrence after magnetic hyperthermia compared to conventional cancer therapies.

  6. Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells

    PubMed Central

    Li, Xiaoran; Kan, Quancheng; Fan, Zhirui; Li, Yaqing; Ji, Yasai; Zhao, Jing; Zhang, Mingzhi; Grigalavicius, Mantas; Berge, Viktor; Goscinski, Mariusz Adam; M. Nesland, Jahn; Suo, Zhenhe

    2017-01-01

    One of the remarkable features of cancer cells is aerobic glycolysis, a phenomenon known as the “Warburg Effect”, in which cells rely preferentially on glycolysis instead of oxidative phosphorylation (OXPHOS) as the main energy source even in the presence of high oxygen tension. Cells with dysfunctional mitochondria are unable to generate sufficient ATP from mitochondrial OXPHOS, and then are forced to rely on glycolysis for ATP generation. Here we report our results in a prostate cancer cell line in which the mitochondrial pyruvate carrier 1 (MPC1) gene was knockout. It was discovered that the MPC1 gene knockout cells revealed a metabolism reprogramming to aerobic glycolysis with reduced ATP production, and the cells became more migratory and resistant to both chemotherapy and radiotherapy. In addition, the MPC1 knockout cells expressed significantly higher levels of the stemness markers Nanog, Hif1α, Notch1, CD44 and ALDH. To further verify the correlation of MPC gene function and cell stemness/metabolic reprogramming, MPC inhibitor UK5099 was applied in two ovarian cancer cell lines and similar results were obtained. Taken together, our results reveal that functional MPC may determine the fate of metabolic program and the stemness status of cancer cells in vitro. PMID:28624784

  7. Immune evasion through competitive inhibition: the shielding effect of cancer non-stem cells.

    PubMed

    Kareva, Irina

    2015-01-07

    It has been recently proposed that the two emerging hallmarks of cancer, namely altered glucose metabolism and immune evasion, may in fact be fundamentally linked. This connection comes from up-regulation of glycolysis by tumor cells, which can lead to active competition for resources in the tumor microenvironment between tumor and immune cells. Here it is further proposed that cancer stem cells (CSCs) can circumvent the anti-tumor immune response by creating a "protective shield" of non-stem cancer cells around them. This shield can protect the CSCs both by creating a physical barrier between them and cytotoxic lymphocytes (CTLs), and by promoting competition for the common resources, such as glucose, between non-stem cancer cells and CTLs. The implications of this hypothesis are investigated using an agent-based model, leading to a prediction that relative CSC to non-CSC ratio will vary depending on the strength of the host immune response. A discussion of possible therapeutic approaches concludes the paper, suggesting that a chemotherapeutic regimen consisting of regular pulsed doses, i.e., metronomic chemotherapy, would yield the best clinical outcome by removing the "protective shield" and thus allowing CTLs to most effectively reach and eliminate CSCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Human Adipose-Derived Stem Cells Labeled with Plasmonic Gold Nanostars for Cellular Tracking and Photothermal Cancer Cell Ablation.

    PubMed

    Shammas, Ronnie L; Fales, Andrew M; Crawford, Bridget M; Wisdom, Amy J; Devi, Gayathri R; Brown, David A; Vo-Dinh, Tuan; Hollenbeck, Scott T

    2017-04-01

    Gold nanostars are unique nanoplatforms that can be imaged in real time and transform light energy into heat to ablate cells. Adipose-derived stem cells migrate toward tumor niches in response to chemokines. The ability of adipose-derived stem cells to migrate and integrate into tumors makes them ideal vehicles for the targeted delivery of cancer nanotherapeutics. To test the labeling efficiency of gold nanostars, undifferentiated adipose-derived stem cells were incubated with gold nanostars and a commercially available nanoparticle (Qtracker), then imaged using two-photon photoluminescence microscopy. The effects of gold nanostars on cell phenotype, proliferation, and viability were assessed with flow cytometry, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide metabolic assay, and trypan blue, respectively. Trilineage differentiation of gold nanostar-labeled adipose-derived stem cells was induced with the appropriate media. Photothermolysis was performed on adipose-derived stem cells cultured alone or in co-culture with SKBR3 cancer cells. Efficient uptake of gold nanostars occurred in adipose-derived stem cells, with persistence of the luminescent signal over 4 days. Labeling efficiency and signal quality were greater than with Qtracker. Gold nanostars did not affect cell phenotype, viability, or proliferation, and exhibited stronger luminescence than Qtracker throughout differentiation. Zones of complete ablation surrounding the gold nanostar-labeled adipose-derived stem cells were observed following photothermolysis in both monoculture and co-culture models. Gold nanostars effectively label adipose-derived stem cells without altering cell phenotype. Once labeled, photoactivation of gold nanostar-labeled adipose-derived stem cells ablates neighboring cancer cells, demonstrating the potential of adipose-derived stem cells as a vehicle for the delivery of site-specific cancer therapy.

  9. FGF1 and IGF1-conditioned 3D culture system promoted the amplification and cancer stemness of lung cancer cells.

    PubMed

    Liu, Pengpeng; Zhang, Rui; Yu, Wenwen; Ye, Yingnan; Cheng, Yanan; Han, Lei; Dong, Li; Chen, Yongzi; Wei, Xiyin; Yu, Jinpu

    2017-12-01

    Lung cancer stem cells (LCSCs) are considered as the cellular origins of metastasis and relapse of lung cancer. However, routine two-dimensional culture system (2D-culture) hardly mimics the growth and functions of LCSCs in vivo and therefore significantly decreases the stemness activity of LCSCs. In this study, we constructed a special BME-based three-dimensional culture system (3D-culture) to amplify LCSCs in human lung adenocarcinoma cell line A549 cells and found 3D-culture promoted the enrichment and amplification of LCSCs in A549 cells displaying higher proliferation potential and invasion activity, but lower apoptosis. The expression and secretion levels of FGF1 and IGF1 were dramatically elevated in 3D-culture compared to 2D-culture. After growing in FGF1 and IGF1-conditioned 3D-culture, the proportion of LCSCs with specific stemness phenotypes in A549 cells significantly increased compared to that in conventional 3D suspension culture system. Further results indicated that FGF1 and IGF1 promoted the amplification and cancer stemness of LCSCs dependent on MAPK signaling pathway. Our data firstly established a growth factors-conditioned 3D-culture for LCSCs and demonstrated the effects of FGF1 and IGF1 in promoting the enrichment and amplification of LCSCs which might provide a feasible cell model in vitro for both mechanism study and translational research on lung cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Knockdown of miR-27a sensitizes colorectal cancer stem cells to TRAIL by promoting the formation of Apaf-1-caspase-9 complex.

    PubMed

    Zhang, Rui; Xu, Jian; Zhao, Jian; Bai, Jinghui

    2017-07-11

    MicroRNAs have been proved to participate in multiple biological processes in cancers. For developing resistance to cytotoxic drug, cancer cells, especially the cancer stem cells, usually change their microRNA expression profile to survive in hostile environments. In the present study, we found that expression of microRNA-27a was increased in colorectal cancer stem cells. High level of microRNA-27a was indicated to induce the resistance to TNF-related apoptosis-inducing ligand (TRAIL). Knockdown of microRNA-27a resensitized colorectal cancer stem cells to TRAIL-induced cell death. Mechanically, the gene of Apaf-1, which is associated with the mitochondrial apoptosis, was demonstrated to be the target of microRNA-27a in colorectal cancer stem cells. Knockdown of microRNA-27a increased the expression level of Apaf-1, thus enhancing the formation of Apaf-1-caspase-9 complex and subsequently promoting the TRAIL-induced apoptosis in colorectal cancer stem cells. These findings suggested that knockdown of microRNA-27a in colorectal cancer stem cells by the specific antioligonucleotides was potential to reverse the chemoresistance to TRAIL. It may represent a novel therapeutic strategy for treating the colorectal cancer more effectively.

  11. Coexpression of the Follicle Stimulating Hormone Receptor and Stem Cell Markers: A Novel Approach to Target Ovarian Cancer Stem Cells

    DTIC Science & Technology

    2016-03-01

    1 AD_____________ Award Number: W81XWH-11-1-0623 TITLE: Coexpression of the Follicle Stimulating Hormone Receptor and Stem Cell Markers: A...Novel Approach to Target Ovarian Cancer Stem Cells PRINCIPAL INVESTIGATOR: David W. Schomberg, PhD CONTRACTING ORGANIZATION: Duke University...Durham, NC 27705 REPORT DATE: March 2016 TYPE OF REPORT: Final PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick

  12. Inhibition of FOXC2 restores epithelial phenotype and drug sensitivity in prostate cancer cells with stem-cell properties

    PubMed Central

    Paranjape, A N; Soundararajan, R; Werden, S J; Joseph, R; Taube, J H; Liu, H; Rodriguez-Canales, J; Sphyris, N; Wistuba, I; Miura, N; Dhillon, J; Mahajan, N; Mahajan, K; Chang, J T; Ittmann, M; Maity, S N; Logothetis, C; Tang, D G; Mani, S A

    2016-01-01

    Advanced prostate adenocarcinomas enriched in stem-cell features, as well as variant androgen receptor (AR)-negative neuroendocrine (NE)/small-cell prostate cancers are difficult to treat, and account for up to 30% of prostate cancer-related deaths every year. While existing therapies for prostate cancer such as androgen deprivation therapy (ADT), destroy the bulk of the AR-positive cells within the tumor, eradicating this population eventually leads to castration-resistance, owing to the continued survival of AR-/lo stem-like cells. In this study, we identified a critical nexus between p38MAPK signaling, and the transcription factor Forkhead Box Protein C2 (FOXC2) known to promote cancer stem-cells and metastasis. We demonstrate that prostate cancer cells that are insensitive to ADT, as well as high-grade/NE prostate tumors, are characterized by elevated FOXC2, and that targeting FOXC2 using a well-tolerated p38 inhibitor restores epithelial attributes and ADT-sensitivity, and reduces the shedding of circulating tumor cells in vivo with significant shrinkage in the tumor mass. This study thus specifies a tangible mechanism to target the AR-/lo population of prostate cancer cells with stem-cell properties. PMID:26804168

  13. Differential MDR in Breast Cancer Stem Cells

    DTIC Science & Technology

    2006-05-01

    Source: Sanofi -Aventis Grant Title: CMDRP Era of Hope Scholar Award BC044784 Breast Cancer Stem Cells: A Novel Therapeutic Target Role in Project Co...E.M. and Whiteside, T.L. “Processing of Tumors for Vaccine and/or Tumor Infiltrating Lymphocytes”, p. 817-819 in Rose, N.R., Conway de Macario, E...Counterparts, Ernst Schering Res Foundation Workshop, In Press. [14] E.M. Elder, T.L. Whiteside, Processing of tumors for vaccine and/or tumor

  14. The Emerging Role of Insulin and Insulin-Like Growth Factor Signaling in Cancer Stem Cells

    PubMed Central

    Malaguarnera, Roberta; Belfiore, Antonino

    2014-01-01

    Cancer cells frequently exploit the IGF signaling, a fundamental pathway mediating development, cell growth, and survival. As a consequence, several components of the IGF signaling are deregulated in cancer and sustain cancer progression. However, specific targeting of IGF-IR in humans has resulted efficacious only in small subsets of cancers, making researches wondering whether IGF system targeting is still worth pursuing in the clinical setting. Although no definite answer is yet available, it has become increasingly clear that other components of the IGF signaling pathway, such as IR-A, may substitute for the lack of IGF-IR, and induce cancer resistance and/or clonal selection. Moreover, accumulating evidence now indicates that IGF signaling is a central player in the induction/maintenance of epithelial mesenchymal transition (EMT) and cell stemness, two strictly related programs, which play a key role in metastatic spread and resistance to cancer treatments. Here we review the evidences indicating that IGF signaling enhances the expression of transcription factors implicated in the EMT program and has extensive cross-talk with specific pathways involved in cell pluripotency and stemness maintenance. In turn, EMT and cell stemness activate positive feed-back mechanisms causing up-regulation of various IGF signaling components. These findings may have novel translational implications. PMID:24550888

  15. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Yijing; Tang, Huijuan; Guo, Yan

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOCmore » cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.« less

  16. Autocrine Semaphorin3A signaling is essential for the maintenance of stem-like cells in lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Daisuke; Takahashi, Kensuke; Kawahara, Kohichi

    Cancer stem-like cells (CSCs) exist in tumor tissues composed of heterogeneous cell population and are characterized by their self-renewal capacity and tumorigenicity. Many studies demonstrate that eradication of CSCs prevents development and recurrences of tumor; yet, molecules critical for the maintenance of CSCs have not been completely understood. We previously reported that Semaphorin3A (Sema3a) knockdown suppressed the tumorigenicity and proliferative capacity of Lewis lung carcinoma (LLC) cells. Therefore, we identified Sema3a as an essential factor for the establishment or maintenance of CSCs derived from LLC (LLC-stem cell). shRNA against Sema3a was introduced into LLC cells to establish a LLC-stem cellmore » line and its effects on tumorigenesis, sphere formation, and mTORC1 activity were tested. Sema3a knockdown completely abolished tumorigenicity and the sphere-formation and self-renewal ability of LLC-stem cells. The Sema3a knockdown was also associated with decreased expression of mRNA for stem cell markers. The self-renewal ability abolished by Sema3a knockdown could not be recovered by exogenous addition of recombinant SEMA3A. In addition, the activity of mammalian target of rapamycin complex 1 (mTORC1) and the expression of its substrate p70S6K1 were also decreased. These results demonstrate that Sema3a is a potential therapeutic target in eradication of CSCs. - Highlights: • Sema3a enhances tumorigenic capacity of cancer stem-like cells. • Sema3a is essential for the maintenance of cancer stem-like cells. • Sema3a can be a therapeutic target to eradicate cancer stem-like cells.« less

  17. Verification of ALDH Activity as a Biomarker in Colon Cancer Stem Cells-Derived HT-29 Cell Line.

    PubMed

    Khorrami, Samaneh; Zavaran Hosseini, Ahmad; Mowla, Seyed Javad; Malekzadeh, Reza

    2015-10-01

    Recent evidence has suggested that epithelial cancers including colorectal cancer (CRC) have driven by a small population of self-renewing, multi-potent cells termed cancer stem cells (CSCs) which could be responsible for recurrence of cancer. Aldehyde dehydrogenase 1 (ALDH1) activity has used as a functional stem cell biomarker to isolate CSCs in different cancers such as colorectal cancer. The main aim of this research was to determine the utility of ALDH1 activity along with CD44 and EPCAM in identifying stem cell-like cells in human HT-29 colonic adenocarcinoma cell line. In this experimental study, colon CSCs biomarkers including CD44, EPCAM and ALDH1 in colonospheres and parent cells have analyzed by flow cytometry. The expression levels of stemness genes in spheroid and parental cells have investigated using SYBR Green real-time PCR. In addition, in vivo xenografts assay has performed to determine tumorigenic potential of tumor spheroid cells in nude mice. According to results, over 92% of spheroids were CD44+/EpCAM+, while parent cells only have expressed 38% of CD44/EpCAM biomarkers (P < 0.001). Controversially, ALDH activity was about 2-fold higher in the parent cells than spheroid cells (P < 0.05). In comparison with the parental cells, expression levels of ''stemness'' genes, like Sox2, Oct4, Nanog, C-myc, and Klf4 have significantly increased in colonosphere cells (P < 0.05). Further, administration of 2500 spheroids could be sufficient to initiate tumor growth in nude mice, while 1x106 of parental cells has needed to form tumor. For the first time, we have shown that colonospheres with low ALDH1 activity has indicated increased tumorigenic potential and stemness properties. So, it hasn't seemed that ALDH1 could become a useful biomarker to identify CSCs population in HT-29 cell line.

  18. Hyaluronan Production Regulates Metabolic and Cancer Stem-like Properties of Breast Cancer Cells via Hexosamine Biosynthetic Pathway-coupled HIF-1 Signaling*

    PubMed Central

    Chanmee, Theerawut; Ontong, Pawared; Izumikawa, Tomomi; Higashide, Miho; Mochizuki, Nobutoshi; Chokchaitaweesuk, Chatchadawalai; Khansai, Manatsanan; Nakajima, Kazuki; Kakizaki, Ikuko; Kongtawelert, Prachya; Taniguchi, Naoyuki; Itano, Naoki

    2016-01-01

    Cancer stem cells (CSCs) represent a small subpopulation of self-renewing oncogenic cells. As in many other stem cells, metabolic reprogramming has been implicated to be a key characteristic of CSCs. However, little is known about how the metabolic features of cancer cells are controlled to orchestrate their CSC-like properties. We recently demonstrated that hyaluronan (HA) overproduction allowed plastic cancer cells to revert to stem cell states. Here, we adopted stable isotope-assisted tracing and mass spectrometry profiling to elucidate the metabolic features of HA-overproducing breast cancer cells. These integrated approaches disclosed an acceleration of metabolic flux in the hexosamine biosynthetic pathway (HBP). A metabolic shift toward glycolysis was also evident by quantitative targeted metabolomics, which was validated by the expression profiles of key glycolytic enzymes. Forced expression of glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1), an HBP rate-limiting enzyme, resembled the results of HA overproduction with regard to HIF-1α accumulation and glycolytic program, whereas GFAT1 inhibition significantly decreased HIF-1α protein level in HA-overproducing cancer cells. Moreover, inhibition of the HBP-HIF-1 axis abrogated HA-driven glycolytic enhancement and reduced the CSC-like subpopulation. Taken together, our results provide compelling evidence that HA production regulates the metabolic and CSC-like properties of breast cancer cells via HBP-coupled HIF-1 signaling. PMID:27758869

  19. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    PubMed Central

    2012-01-01

    Background Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs) have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. Methods CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. Results The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. Conclusions MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma. PMID:22475227

  20. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulkmore » cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.« less

  1. Tamoxifen enhances stemness and promotes metastasis of ERα36+ breast cancer by upregulating ALDH1A1 in cancer cells

    PubMed Central

    Wang, Qiang; Jiang, Jun; Ying, Guoguang; Xie, Xiao-Qing; Zhang, Xia; Xu, Wei; Zhang, Xuemin; Song, Erwei; Bu, Hong; Ping, Yi-Fang; Yao, Xiao-Hong; Wang, Bin; Xu, Shilei; Yan, Ze-Xuan; Tai, Yanhong; Hu, Baoquan; Qi, Xiaowei; Wang, Yan-Xia; He, Zhi-Cheng; Wang, Yan; Wang, Ji Ming; Cui, You-Hong; Chen, Feng; Meng, Kun; Wang, Zhaoyi; Bian, Xiu-Wu

    2018-01-01

    The 66 kDa estrogen receptor alpha (ERα66) is the main molecular target for endocrine therapy such as tamoxifen treatment. However, many patients develop resistance with unclear mechanisms. In a large cohort study of breast cancer patients who underwent surgery followed by tamoxifen treatment, we demonstrate that ERα36, a variant of ERα66, correlates with poor prognosis. Mechanistically, tamoxifen directly binds and activates ERα36 to enhance the stemness and metastasis of breast cancer cells via transcriptional stimulation of aldehyde dehydrogenase 1A1 (ALDH1A1). Consistently, the tamoxifen-induced stemness and metastasis can be attenuated by either ALDH1 inhibitors or a specific ERα36 antibody. Thus, tamoxifen acts as an agonist on ERα36 in breast cancer cells, which accounts for hormone therapy resistance and metastasis of breast cancer. Our study not only reveals ERα36 as a stratifying marker for endocrine therapy but also provides a promising therapeutic avenue for tamoxifen-resistant breast cancer. PMID:29393296

  2. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells

    PubMed Central

    2014-01-01

    Background The development of immunotherapy has led to significant progress in the treatment of metastatic cancer, including the development of genetic engineering technologies that redirect lymphocytes to recognize and target a wide variety of tumor antigens. Chimeric antigen receptors (CARs) are hybrid proteins combining antibody recognition domains linked to T cell signaling elements. Clinical trials of CAR-transduced peripheral blood lymphocytes (PBL) have induced remission of both solid organ and hematologic malignancies. Chondroitin sulfate proteoglycan 4 (CSPG4) is a promising target antigen that is overexpressed in multiple cancer histologies including melanoma, triple-negative breast cancer, glioblastoma, mesothelioma and sarcoma. Methods CSPG4 expression in cancer cell lines was assayed using flow cytometry (FACS) and reverse-transcription PCR (RT-PCR). Immunohistochemistry was utilized to assay resected melanomas and normal human tissues (n = 30) for CSPG4 expression and a reverse-phase protein array comprising 94 normal tissue samples was also interrogated for CSPG4 expression. CARs were successfully constructed from multiple murine antibodies (225.28S, TP41.2, 149.53) using second generation (CD28.CD3ζ) signaling domains. CAR sequences were cloned into a gamma-retroviral vector with subsequent successful production of retroviral supernatant and PBL transduction. CAR efficacy was assayed by cytokine release and cytolysis following coculture with target cell lines. Additionally, glioblastoma stem cells were generated from resected human tumors, and CSPG4 expression was determined by RT-PCR and FACS. Results Immunohistochemistry demonstrated prominent CSPG4 expression in melanoma tumors, but failed to demonstrate expression in any of the 30 normal human tissues studied. Two of 94 normal tissue protein lysates were positive by protein array. CAR constructs demonstrated cytokine secretion and cytolytic function after co-culture with tumor cell lines

  3. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Dongli; Zhang, Zhen; Li, Jieyao

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be seriallymore » passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.« less

  4. Methods for Stem Cell Production and Therapy

    NASA Technical Reports Server (NTRS)

    Valluri, Jagan V. (Inventor); Claudio, Pier Paolo (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  5. Pancreatic Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells

    PubMed Central

    Pelosi, Elvira; Castelli, Germana

    2017-01-01

    Pancreatic Ductal Adenocarcinoma (PDAC) is the fourth most common cause of cancer-related death and is the most lethal of common malignancies with a five-year survival rate of <10%. PDAC arises from different types of non-invasive precursor lesions: intraductal papillary mucinous neoplasms, mucinous cystic neoplasms and pancreatic intraepithelial neoplasia. The genetic landscape of PDAC is characterized by the presence of four frequently-mutated genes: KRAS, CDKN2A, TP53 and SMAD4. The development of mouse models of PDAC has greatly contributed to the understanding of the molecular and cellular mechanisms through which driver genes contribute to pancreatic cancer development. Particularly, oncogenic KRAS-driven genetically-engineered mouse models that phenotypically and genetically recapitulate human pancreatic cancer have clarified the mechanisms through which various mutated genes act in neoplasia induction and progression and have led to identifying the possible cellular origin of these neoplasias. Patient-derived xenografts are increasingly used for preclinical studies and for the development of personalized medicine strategies. The studies of the purification and characterization of pancreatic cancer stem cells have suggested that a minority cell population is responsible for initiation and maintenance of pancreatic adenocarcinomas. The study of these cells could contribute to the identification and clinical development of more efficacious drug treatments. PMID:29156578

  6. Knockdown of miR-27a sensitizes colorectal cancer stem cells to TRAIL by promoting the formation of Apaf-1-caspase-9 complex

    PubMed Central

    Zhang, Rui; Xu, Jian; Zhao, Jian; Bai, Jinghui

    2017-01-01

    MicroRNAs have been proved to participate in multiple biological processes in cancers. For developing resistance to cytotoxic drug, cancer cells, especially the cancer stem cells, usually change their microRNA expression profile to survive in hostile environments. In the present study, we found that expression of microRNA-27a was increased in colorectal cancer stem cells. High level of microRNA-27a was indicated to induce the resistance to TNF-related apoptosis-inducing ligand (TRAIL). Knockdown of microRNA-27a resensitized colorectal cancer stem cells to TRAIL-induced cell death. Mechanically, the gene of Apaf-1, which is associated with the mitochondrial apoptosis, was demonstrated to be the target of microRNA-27a in colorectal cancer stem cells. Knockdown of microRNA-27a increased the expression level of Apaf-1, thus enhancing the formation of Apaf-1-caspase-9 complex and subsequently promoting the TRAIL-induced apoptosis in colorectal cancer stem cells. These findings suggested that knockdown of microRNA-27a in colorectal cancer stem cells by the specific antioligonucleotides was potential to reverse the chemoresistance to TRAIL. It may represent a novel therapeutic strategy for treating the colorectal cancer more effectively. PMID:28423356

  7. The NSL Chromatin-Modifying Complex Subunit KANSL2 Regulates Cancer Stem-like Properties in Glioblastoma That Contribute to Tumorigenesis.

    PubMed

    Ferreyra Solari, Nazarena E; Belforte, Fiorella S; Canedo, Lucía; Videla-Richardson, Guillermo A; Espinosa, Joaquín M; Rossi, Mario; Serna, Eva; Riudavets, Miguel A; Martinetto, Horacio; Sevlever, Gustavo; Perez-Castro, Carolina

    2016-09-15

    KANSL2 is an integral subunit of the nonspecific lethal (NSL) chromatin-modifying complex that contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. Mechanistic investigations showed that KANSL2 regulates cell self-renewal, which correlates with effects on expression of the stemness transcription factor POU5F1. RNAi-mediated silencing of POU5F1 reduced KANSL2 levels, linking these two genes to stemness control in GBM cells. Together, our findings indicate that KANSL2 acts to regulate the stem cell population in GBM, defining it as a candidate GBM biomarker for clinical use. Cancer Res; 76(18); 5383-94. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells.

    PubMed

    Lin, Li; Jou, David; Wang, Yina; Ma, Haiyan; Liu, Tianshu; Fuchs, James; Li, Pui-Kai; Lü, Jiagao; Li, Chenglong; Lin, Jiayuh

    2016-12-01

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer including pancreatic cancer. Whether STAT3 is activated in stem cell-like pancreatic cancer cells and the effect of STAT3 inhibition, is still unknown. Flow cytometry was used to isolate pancreatic cancer stem-like cells which are identified by both aldehyde dehydrogenase (ALDH)-positive (ALDH+) as well as cluster of differentiation (CD) 44-positive/CD24-positive subpopulations (CD44+/CD24+). STAT3 activation and the effects of STAT3 inhibition by STAT3 inhibitors, LLL12, FLLL32, and Stattic in ALDH+ and CD44+/CD24+ cells were examined. Our results showed that ALDH+ and CD44+/CD24+ pancreatic cancer stem-like cells expressed higher levels of phosphorylated STAT3, an active form of STAT3, compared to ALDH-negative (ALDH-) and CD44-negative/CD24-negative (CD44-/CD24-) pancreatic cancer cells, suggesting that STAT3 is activated in pancreatic cancer stem-like cells. Small molecular STAT3 inhibitors inhibited STAT3 phosphorylation, STAT3 downstream target gene expression, cell viability, and tumorsphere formation in ALDH+ and CD44+/CD24+ cells. Our results indicate that STAT3 is a novel therapeutic target in pancreatic cancer stem-like cells and inhibition of activated STAT3 in these cells by STAT3 inhibitors may offer an effective treatment for pancreatic cancer.

  9. A novel anticancer agent SNG1153 inhibits growth of lung cancer stem/progenitor cells

    PubMed Central

    Wang, Jing; Zhu, Hai; Han, Yuqing; Jin, Mingji; Wang, Jun; Zhou, Congya; Ma, Junfeng; Lin, Qingcong; Wang, Zhaoyi; Meng, Kun; Fu, Xueqi

    2016-01-01

    Lung cancer is the leading cause of cancer-related death in both men and women. Lung cancer contains a small population of cancer cells with stem-like features known as cancer stem cells (CSCs). CSCs are often more resistant to current therapeutic treatments. Thus, it is urgent to develop a novel agent that is able to inhibit CSCs growth. In this study, we examined the ability of SNG1153, a novel chemical agent to inhibit the growth of lung CSCs. We found that SNG1153 inhibited growth and induced apoptosis in established lung cancer cells. We also found that SNG1153 inhibited the tumorsphere formation and decreased CD133-positive (lung CSC marker) cancer cells. SNG1153 was able to attenuate tumor formation in NOD/SCID (non-obese diabetic/severe combined immunodeficient) mice injected with lung tumorsphere cells. We further demonstrated that SNG1153 induced β-catenin phosphorylation and down-regulated β-catenin. Our results thus demonstrate that SNG1153 effectively inhibits the growth of lung CSCs and suggest that SNG1153 may be a novel therapeutic agent to treat human lung cancer. PMID:27281614

  10. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    PubMed

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-05

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Distinct Effects of Adipose-Derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchy.

    PubMed

    Anjanappa, Manjushree; Burnett, Riesa; Zieger, Michael A; Merfeld-Clauss, Stephanie; Wooden, William; March, Keith; Tholpady, Sunil; Nakshatri, Harikrishna

    2016-07-01

    Adipose-derived stem cells (ASC) have received considerable attention in oncology because of the known direct link between obesity and cancer as well as the use of ASCs in reconstructive surgery after tumor ablation. Previous studies have documented how cancer cells commandeer ASCs to support their survival by altering extracellular matrix composition and stiffness, migration, and metastasis. This study focused on delineating the effects of ASCs and adipocytes on the self-renewal of stem/progenitor cells and hierarchy of breast epithelial cells. The immortalized breast epithelial cell line MCF10A, ductal carcinoma in situ (DCIS) cell lines MCF10DCIS.com and SUM225, and MCF10A-overexpressing SRC oncogene were examined using a mammosphere assay and flow cytometry for the effects of ASCs on their self-renewal and stem-luminal progenitor-differentiated cell surface marker profiles. Interestingly, ASCs promoted the self-renewal of all cell types except SUM225. ASC coculture or treatment with ASC conditioned media altered the number of CD49f(high)/EpCAM(low) basal/stem-like and CD49f(medium)/EpCAM(medium) luminal progenitor cells. Among multiple factors secreted by ASCs, IFNγ and hepatocyte growth factor (HGF) displayed unique actions on epithelial cell hierarchy. IFNγ increased stem/progenitor-like cells while simultaneously reducing the size of mammospheres, whereas HGF increased the size of mammospheres with an accompanying increase in luminal progenitor cells. ASCs expressed higher levels of HGF, whereas adipocytes expressed higher levels of IFNγ. As luminal progenitor cells are believed to be prone for transformation, IFNγ and HGF expression status of ASCs may influence susceptibility for developing breast cancer as well as on outcomes of autologous fat transplantation on residual/dormant tumor cells. This study suggests that the ratio of ASCs to adipocytes influences cancer cell hierarchy, which may impact incidence and progression. Mol Cancer Res; 14(7); 660

  12. Integrative ChIP-seq/Microarray Analysis Identifies a CTNNB1 Target Signature Enriched in Intestinal Stem Cells and Colon Cancer

    PubMed Central

    Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L.; Roberts, Brian S.; Arthur, William T.; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing

    2014-01-01

    Background Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. Results We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Conclusion Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells. PMID:24651522

  13. Cytokeratin 19 (KRT19) has a Role in the Reprogramming of Cancer Stem Cell-Like Cells to Less Aggressive and More Drug-Sensitive Cells.

    PubMed

    Saha, Subbroto Kumar; Kim, Kyeongseok; Yang, Gwang-Mo; Choi, Hye Yeon; Cho, Ssang-Goo

    2018-05-09

    Cytokeratin 19 ( KRT19 ) is a cytoplasmic intermediate filament protein, which is responsible for structural rigidity and multipurpose scaffolds. In several cancers, KRT19 is overexpressed and may play a crucial role in tumorigenic transformation. In our previous study, we revealed the role of KRT19 as signaling component which mediated Wnt/NOTCH crosstalk through NUMB transcription in breast cancer. Here, we investigated the function of KRT19 in cancer reprogramming and drug resistance in breast cancer cells. We found that expression of KRT19 was attenuated in several patients-derived breast cancer tissues and patients with a low expression of KRT19 were significantly correlated with poor prognosis in breast cancer patients. Consistently, highly aggressive and drug-resistant breast cancer patient-derived cancer stem cell-like cells (konkuk university-cancer stem cell-like cell (KU-CSLCs)) displayed higher expression of cancer stem cell (CSC) markers, including ALDH1 , CXCR4 , and CD133 , but a much lower expression of KRT19 than that is seen in highly aggressive triple negative breast cancer MDA-MB231 cells. Moreover, we revealed that the knockdown of KRT19 in MDA-MB231 cells led to an enhancement of cancer properties, such as cell proliferation, sphere formation, migration, and drug resistance, while the overexpression of KRT19 in KU-CSLCs resulted in the significant attenuation of cancer properties. KRT19 regulated cancer stem cell reprogramming by modulating the expression of cancer stem cell markers ( ALDH1 , CXCR4 , and CD133 ), as well as the phosphorylation of Src and GSK3β (Tyr216). Therefore, our data may imply that the modulation of KRT19 expression could be involved in cancer stem cell reprogramming and drug sensitivity, which might have clinical implications for cancer or cancer stem cell treatment.

  14. Cytokeratin 19 (KRT19) has a Role in the Reprogramming of Cancer Stem Cell-Like Cells to Less Aggressive and More Drug-Sensitive Cells

    PubMed Central

    Kim, Kyeongseok; Yang, Gwang-Mo; Choi, Hye Yeon

    2018-01-01

    Cytokeratin 19 (KRT19) is a cytoplasmic intermediate filament protein, which is responsible for structural rigidity and multipurpose scaffolds. In several cancers, KRT19 is overexpressed and may play a crucial role in tumorigenic transformation. In our previous study, we revealed the role of KRT19 as signaling component which mediated Wnt/NOTCH crosstalk through NUMB transcription in breast cancer. Here, we investigated the function of KRT19 in cancer reprogramming and drug resistance in breast cancer cells. We found that expression of KRT19 was attenuated in several patients-derived breast cancer tissues and patients with a low expression of KRT19 were significantly correlated with poor prognosis in breast cancer patients. Consistently, highly aggressive and drug-resistant breast cancer patient-derived cancer stem cell-like cells (konkuk university-cancer stem cell-like cell (KU-CSLCs)) displayed higher expression of cancer stem cell (CSC) markers, including ALDH1, CXCR4, and CD133, but a much lower expression of KRT19 than that is seen in highly aggressive triple negative breast cancer MDA-MB231 cells. Moreover, we revealed that the knockdown of KRT19 in MDA-MB231 cells led to an enhancement of cancer properties, such as cell proliferation, sphere formation, migration, and drug resistance, while the overexpression of KRT19 in KU-CSLCs resulted in the significant attenuation of cancer properties. KRT19 regulated cancer stem cell reprogramming by modulating the expression of cancer stem cell markers (ALDH1, CXCR4, and CD133), as well as the phosphorylation of Src and GSK3β (Tyr216). Therefore, our data may imply that the modulation of KRT19 expression could be involved in cancer stem cell reprogramming and drug sensitivity, which might have clinical implications for cancer or cancer stem cell treatment. PMID:29747452

  15. Pyruvate dehydrogenase expression is negatively associated with cell stemness and worse clinical outcome in prostate cancers

    PubMed Central

    Zhong, Yali; Li, Xiaoli; Ji, Yasai; Li, Xiaoran; Li, Yaqing; Yu, Dandan; Yuan, Yuan; Liu, Jian; Li, Huixiang; Zhang, Mingzhi; Ji, Zhenyu; Fan, Dandan; Wen, Jianguo; Goscinski, Mariusz Adam; Yuan, Long; Hao, Bin; Nesland, Jahn M; Suo, Zhenhe

    2017-01-01

    Cells generate adenosine-5′-triphosphate (ATP), the major currency for energy-consuming reactions, through mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis. One of the remarkable features of cancer cells is aerobic glycolysis, also known as the “Warburg Effect”, in which cancer cells rely preferentially on glycolysis instead of mitochondrial OXPHOS as the main energy source even in the presence of high oxygen tension. One of the main players in controlling OXPHOS is the mitochondrial gatekeeperpyruvate dehydrogenase complex (PDHc) and its major subunit is E1α (PDHA1). To further analyze the function of PDHA1 in cancer cells, it was knock out (KO) in the human prostate cancer cell line LnCap and a stable KO cell line was established. We demonstrated that PDHA1 gene KO significantly decreased mitochondrial OXPHOS and promoted anaerobic glycolysis, accompanied with higher stemness phenotype including resistance to chemotherapy, enhanced migration ability and increased expression of cancer stem cell markers. We also examined PDHA1 protein expression in prostate cancer tissues by immunohistochemistry and observed that reduced PDHA1 protein expression in clinical prostate carcinomas was significantly correlated with poor prognosis. Collectively, our results show that negative PDHA1 gene expressionis associated with significantly higher cell stemness in prostate cancer cells and reduced protein expression of this gene is associated with shorter clinical outcome in prostate cancers. PMID:28076853

  16. Isolation and Characterization of Prostate Cancer Stem Cells

    DTIC Science & Technology

    2009-08-01

    The Prostate Manuscript ID: PROS-09-224.R1 Wiley - Manuscript type: Original Article Date Submitted by the Author: 18-Sep-2009 Complete List of ...subpopulation of basal cells has stem cell characteristics raises some interesting questions about the cell of origin for prostate cancer. Can both basal...positively for AMACR and the retention of 7 a p63+ basal layer, the basal-derived lesions fulfill the histologic criteria used

  17. Portulaca oleracea extract can inhibit nodule formation of colon cancer stem cells by regulating gene expression of the Notch signal transduction pathway.

    PubMed

    Jin, Heiying; Chen, Li; Wang, Shuiming; Chao, Deng

    2017-07-01

    To investigate whether Portulaca oleracea extract affects tumor formation in colon cancer stem cells and its chemotherapy sensitivity. In addition, to analyze associated genetic changes within the Notch signal transduction pathway. Serum-free cultures of colon cancer cells (HT-29) and HT-29 cancer stem cells were treated with the chemotherapeutic drug 5-fluorouracil to assess sensitivity. Injections of the stem cells were also given to BALB/c mice to confirm tumor growth and note its characteristics. In addition, the effect of different concentrations of P. oleracea extract was tested on the growth of HT-29 colon cancer cells and HT-29 cancer stem cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The effects of P. oleracea extract on the expression of β-catenin, Notch1, and Notch2 in the HT-29 cells were studied using reverse transcription polymerase chain reaction and Western blotting. The tumor volume of the HT29 cells was two times larger than that of HT29 cancer stem cells. Treatment with P. oleracea extract inhibited the proliferation of both HT-29 cancer cells and HT-29 cancer stem cells at doses from 0.07 to 2.25 µg/mL. Apoptosis of HT-29 cancer cells and HT-29 cancer stem cells was assessed by flow cytometry; it was enhanced by the addition of P. oleracea extract. Finally, treatment with P. oleracea extract significantly downregulated the expression of the Notch1 and β-catenin genes in both cell types. The results of this study show that P. oleracea extract inhibits the growth of colon cancer stem cells in a dose-dependent manner. Furthermore, it inhibits the expression of the Notch1 and β-catenin genes. Taken together, this suggests that it may elicit its effects through regulatory and target genes that mediate the Notch signal transduction pathway.

  18. Berberine induces neuronal differentiation through inhibition of cancer stemness and epithelial-mesenchymal transition in neuroblastoma cells.

    PubMed

    Naveen, C R; Gaikwad, Sagar; Agrawal-Rajput, Reena

    2016-06-15

    Berberine, a plant alkaloid, has been used since many years for treatment of gastrointestinal disorders. It also shows promising medicinal use against metabolic disorders, neurodegenerative disorders and cancer; however its efficacy in neuroblastoma (NB) is poorly explored. EMT is important in cancer stemness and metastasis resulting in failure to differentiate; thus targeting EMT and related pathways can have clinical benefits. Potential of berberine was investigated for (i) neuronal differentiation and cancer stemness inhibition, (ii) underlying molecular mechanisms regulating cancer-stemness and (iii) EMT reversal. Using neuro2a (N2a) neuroblastoma cells (NB); we investigated effect of berberine on neuronal differentiation, cancer-stemness, EMT and underlying signalling by immunofluorescence, RT-PCR, Western blot. High glucose-induced TGF-β mediated EMT model was used to test EMT reversal potential by Western blot and RT-PCR. STRING analysis was done to determine and validate functional protein-interaction networks. We demonstrate berberine induces neuronal differentiation accompanying increased neuronal differentiation markers like MAP2, β-III tubulin and NCAM; generated neurons were viable. Berberine attenuated cancer stemness markers CD133, β-catenin, n-myc, sox2, notch2 and nestin. Berberine potentiated G0/G1 cell cycle arrest by inhibiting proliferation, cyclin dependent kinases and cyclins resulting in apoptosis through increased bax/bcl-2 ratio. Restoration of tumor suppressor proteins, p27 and p53, indicate promising anti-cancer property. The induction of NCAM and reduction in its polysialylation indicates anti-migratory potential which is supported by down regulation of MMP-2/9. It increased epithelial marker laminin and smad and increased Hsp70 levels also suggest its protective role. Molecular insights revealed that berberine regulates EMT via downregulation of PI3/Akt and Ras-Raf-ERK signalling and subsequent upregulation of p38-MAPK. TGF

  19. Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state.

    PubMed

    Lim, Yat-Yuen; Wright, Josephine A; Attema, Joanne L; Gregory, Philip A; Bert, Andrew G; Smith, Eric; Thomas, Daniel; Lopez, Angel F; Drew, Paul A; Khew-Goodall, Yeesim; Goodall, Gregory J

    2013-05-15

    The miR-200 family is a key regulator of the epithelial-mesenchymal transition, however, its role in controlling the transition between cancer stem-cell-like and non-stem-cell-like phenotypes is not well understood. We utilized immortalized human mammary epithelial (HMLE) cells to investigate the regulation of the miR-200 family during their conversion to a stem-like phenotype. HMLE cells were found to be capable of spontaneous conversion from a non-stem to a stem-like phenotype and this conversion was accompanied by the loss of miR-200 expression. Stem-like cell fractions isolated from metastatic breast cancers also displayed loss of miR-200 indicating similar molecular changes may occur during breast cancer progression. The phenotypic change observed in HMLE cells was directly controlled by miR-200 because restoration of its expression decreased stem-like properties while promoting a transition to an epithelial phenotype. Investigation of the mechanisms controlling miR-200 expression revealed both DNA methylation and histone modifications were significantly altered in the stem-like and non-stem phenotypes. In particular, in the stem-like phenotype, the miR-200b-200a-429 cluster was silenced primarily through polycomb group-mediated histone modifications whereas the miR-200c-141 cluster was repressed by DNA methylation. These results indicate that the miR-200 family plays a crucial role in the transition between stem-like and non-stem phenotypes and that distinct epigenetic-based mechanisms regulate each miR-200 gene in this process. Therapy targeted against miR-200 family members and epigenetic modifications might therefore be applicable to breast cancer.

  20. The SHH/Gli axis regulates CD90-mediated liver cancer stem cell function by activating the IL6/JAK2 pathway.

    PubMed

    Zhang, Ketao; Che, Siyao; Pan, Chuzhi; Su, Zheng; Zheng, Shangyou; Yang, Shanglin; Zhang, Huayao; Li, Wenda; Wang, Weidong; Liu, Jianping

    2018-05-02

    The cell surface antigen CD90 has recently been established as a promising marker for liver cancer stem cells. This study aimed to investigate potential implications of SHH/Gli signalling in CD90+ liver cancer stem cells. Correlation of the expression of SHH signalling components and CD90 in liver cancer cells and clinical tissues, as well as in enriched CD90+ liver cancer stem cells and the TCGA database, were analysed by quantitative RT-PCR, Western blotting and flow cytometry. Functional analysis was conducted by siRNA-mediated CD90, Gli1 and Gli3 gene knockdown, SHH treatment and application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody in CD90+ liver cancer stem cells, followed by cell proliferation, migration, sphere formation and tumorigenicity assays. CD90 expression exhibited a high positive correlation with Gli1 and Gli3 in multiple liver cancer cell lines and human cancerous liver tissues, both of which showed a significant increase in liver cancer. Analysis of TCGA data revealed an association of CD90, Gli1 and Gli3 with a short overall survival and positive correlation between CD90 expression and Gli3 expression level. The stem cell potentials of CD90+ 97L liver cancer cells were greatly impaired by Gli1/3 knockdown with siRNA but enhanced by SHH treatment. Application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody showed the CD90 and SHH/Gli-regulated liver cancer stem cell functions were mediated by the IL6/JAK2/STAT3 pathway. The stem cell properties of CD90+ liver cancer cells are regulated by the downstream SHH/Gli and IL6/JAK2/STAT3 signalling pathways. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Akt-mediated phosphorylation of Oct4 is associated with the proliferation of stem-like cancer cells

    PubMed Central

    ZHAO, QING-WEI; ZHOU, YAN-WEN; LI, WEN-XIN; KANG, BO; ZHANG, XIAO-QIAN; YANG, YING; CHENG, JIE; YIN, SHENG-YONG; TONG, YING; HE, JIAN-QIN; YAO, HANG-PING; ZHENG, MIN; WANG, YING-JIE

    2015-01-01

    Oct4 protein encoded by POU5F1 plays a pivotal role in maintaining the self-renewal of pluripotent stem cells; however, its presence in cancer cells remains controversial. In the present study, we provided evidence that the transcripts of authentic OCT4 gene (OCT4A) and its multiple pseudogenes were detected in a variety of cancer cell lines. A few major bands were also detected by western blotting using an anti-Oct4A monoclonal antibody. Moreover, an anti-Oct4-pT235 antibody was used to identify a band in the majority of the tested cancer cell lines that coincided with one of the anti-Oct4A bands which was decreasable by a specific shRNA. The Oct4-pT235 signals were also detected in human glioblastoma and liver cancer specimens by immunofluorescence microscopy and immunohistochemistry. U87 glioblastoma cells were cultured in a neural stem cell medium to induce the formation of neurospheres rich in stem-like cancer cells. The levels of Oct4-pT235 in the sphere cells were markedly increased compared to their monolayer parental cells, a result that was accompanied by upregulation of the PI3K-Akt pathway. Akti-1/2, a specific inhibitor of Akt, effectively reduced the level of Oct4-pT235 and attenuated the proliferation of U87 sphere cells. ITE, an agonist of the aryl hydrocarbon receptor, also significantly attenuated the Akt-mediated phosphorylation of Oct4 in glioblastoma and liver cancer cells, and reduced their tumorigenic potential in a xenograft tumor model. Taken together, we concluded that the Akt-mediated phosphorylation of Oct4A or its homolog protein was associated with the proliferation of stem-like cancer cells that may serve as a novel biomarker and drug target for certain types of cancer. PMID:25625591

  2. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update

    PubMed Central

    Miele, Lucio; Harris, Pamela Jo; Jeong, Woondong; Bando, Hideaki; Kahn, Michael; Yang, Sherry X.

    2015-01-01

    During the past decade, cancer stem cells (CSCs) have been increasingly identified in many malignancies. Although the origin and plasticity of these cells remain controversial, tumour heterogeneity and the presence of small populations of cells with stem-like characteristics is established in most malignancies. CSCs display many features of embryonic or tissue stem cells, and typically demonstrate persistent activation of one or more highly conserved signal transduction pathways involved in development and tissue homeostasis, including the Notch, Hedgehog (HH), and Wnt pathways. CSCs generally have slow growth rates and are resistant to chemotherapy and/or radiotherapy. Thus, new treatment strategies targeting these pathways to control stem-cell replication, survival and differentiation are under development. Herein, we provide an update on the latest advances in the clinical development of such approaches, and discuss strategies for overcoming CSC-associated primary or acquired resistance to cancer treatment. Given the crosstalk between the different embryonic developmental signalling pathways, as well as other pathways, designing clinical trials that target CSCs with rational combinations of agents to inhibit possible compensatory escape mechanisms could be of particular importance. We also share our views on the future directions for targeting CSCs to advance the clinical development of these classes of agents. PMID:25850553

  3. IQGAP1 Is Involved in Enhanced Aggressive Behavior of Epithelial Ovarian Cancer Stem Cell-Like Cells During Differentiation.

    PubMed

    Huang, Lu; Xu, Shanshan; Hu, Dongxiao; Lu, Weiguo; Xie, Xing; Cheng, Xiaodong

    2015-05-01

    Wide metastasis is one of characteristics of ovarian cancer. Cancer stem cells, as a source in cancer invasion and metastasis, possess powerful potential of differentiation. Scaffolding IQ domain GTPase-activating protein 1 (IQGAP1) plays a key role in the invasion and metastasis of cancer cells, but IQGAP1's role in cancer stem cells including ovarian cancer was unclear. Spheroid culture with serum-free medium was used for enriching ovarian cancer stem cell-like cells (CSC-LCs) from 3AO cell line, and a medium with 10% fetal bovine serum was used to induce the differentiation of CSC-LCs. Immunofluorescence was for detecting the stem markers OCT4 and SOX2. The quantitative real-time-polymerase chain reaction and Western blotting were performed to determine the messenger RNA and protein expression of IQGAP1, respectively. The capacity of cell invasion was evaluated by transwell chamber assay. Ovarian CSC-LCs obtained through spheroid culture showed irregularly elongated appearance, CD24 negative, and OCT4 and SOX2 positive. IQGAP1 expression was decreased in ovarian CSC-LCs compared with parental 3AO cells, but increased de novo during the differentiation of CSC-LCs. Knockdown of IQGAP1 by specific small interfering RNA remarkably weakened invasion capacity of 2-day differentiated ovarian CSC-LCs. Increased IQGAP1 expression during the differentiation of CSC-LCs is involved in an aggressive cell behavior, which may contribute to metastasis of ovarian cancer.

  4. Single marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehyrdrogenase

    PubMed Central

    Clay, MR.; Tabor, M.; Owen, J.; Carey, TE.; Bradford, CR.; Wolf, GT.; Wicha, MS.; Prince, ME.

    2010-01-01

    Background According to the cancer stem cell (CSC) theory only a small subset of cancer cells are capable of forming tumors. We previously reported that CD44 isolates tumorigenic cells from HNSCC. Recent studies indicate that aldehyde dehydrogenase (ALDH) activity may represent a more specific marker of CSCs. Methods Six primary HNSCC were collected. Cells with high and low ALDH activity (ALDHhigh/ALDHlow) were isolated. ALDHhigh and ALDHlow populations were implanted into NOD/SCID mice and monitored for tumor development. Results ALDHhigh cells represented a small percentage of the tumor cells (1-7.8%). ALDHhigh cells formed tumors from as few as 500 cells in 24/45 implantations while only 3/37 implantations of ALDHlow cells formed tumors. Conclusions ALDHhigh cells comprise a subpopulation cells in HNSCC that are tumorigenic and capable of producing tumors at very low numbers. This finding indicates that ALDH activity on its own is a highly selective marker for CSCs in HNSCC. PMID:20073073

  5. Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells.

    PubMed

    Wang, Jiankang; Luo, Bingling; Li, Xiaobing; Lu, Wenhua; Yang, Jing; Hu, Yumin; Huang, Peng; Wen, Shijun

    2017-06-22

    Reactive oxygen species (ROS) have a crucial role in cell signaling and cellular functions. Mounting evidences suggest that abnormal increase of ROS is often observed in cancer cells and that this biochemical feature can be exploited for selective killing of the malignant cells. A naturally occurring compound phenethyl isothiocyanate (PEITC) has been shown to have promising anticancer activity by modulating intracellular ROS. Here we report a novel synthetic analog of PEITC with superior in vitro and in vivo antitumor effects. Mechanistic study showed that LBL21 induced a rapid depletion of intracellular glutathione (GSH), leading to abnormal ROS accumulation and mitochondrial dysfunction, evident by a decrease in mitochondrial respiration and transmembrane potential. Importantly, LBL21 exhibited the ability to abrogate stem cell-like cancer side population (SP) cells in non-small cell lung cancer A549 cells associated with a downregulation of stem cell markers including OCT4, ABCG2, SOX2 and CD133. Functionally, LBL21 inhibited the ability of cancer cells to form colonies in vitro and develop tumor in vivo. The therapeutic efficacy of LBL21 was further demonstrated in mice bearing A549 lung cancer xenografts. Our study suggests that the novel ROS-modulating agent LBL21 has promising anticancer activity with an advantage of elimination of stem-like cancer cells. This compound merits further study to evaluate its potential for use in cancer treatment.

  6. Associations Between Markers of Colorectal Cancer Stem Cells and Adenomas Among Ethnic Groups

    PubMed Central

    Leavell, Bonita J.; Van Buren, Eric; Antaki, Fadi; Axelrod, Bradley N.; Rambus, Mary Ann; Majumdar, Adhip P. N.

    2013-01-01

    Background and Purposes Most colorectal tumors develop from adenomatous polyps, which are detected by colonoscopy. African Americans (AAs) have higher incidence of colorectal cancer (CRC) and greater mortality from this disease than Caucasian Americans (CAs). We investigated whether differences in predisposition to CRC and its surrogate (colonic adenomas) between these ethnic groups were related to numbers of cancer stem or stem-like cells (CSCs) in colonocytes. Methods We analyzed colonic effluent from 11 AA and 14 CA patients who underwent scheduled colonoscopy examinations at the John D. Dingell Veterans Affairs Medical Center. We determined proportions of cells that expressed the CSC markers CD44 and CD166 by flow cytometry. Results The proportion of colonocytes that were CD44+CD166– in effluent from patients with adenomas was significantly greater than from patients without adenomas (P = 0.01); the proportion of CD44+CD166+ colonocytes was also greater (P = 0.07). Effluent from AAs with adenomas had 60 % more CD44+166– colonocytes than from CAs with adenomas. Using cutoff values of 8 % for AAs and 3 % for CAs, the proportion of CD44+166– colonocytes that had positive predictive value for detection of adenomas was 100 % for AAs and CAs, determined by receiver operator characteristic curve analysis. Conclusion The proportion of CD44+166– colonocytes in colonic effluent can be used to identify patients with adenoma. AAs with adenomas have a higher proportion of CD44+166– colonocytes than CA. The increased proportion of CSCs in colonic tissue from AA might be associated with the increased incidence of CRC in this population. PMID:22562538

  7. Single-cell Sequencing Reveals Variants in ARID1A, GPRC5A and MLL2 Driving Self-renewal of Human Bladder Cancer Stem Cells.

    PubMed

    Yang, Zhao; Li, Chong; Fan, Zusen; Liu, Hongjie; Zhang, Xiaolong; Cai, Zhiming; Xu, Liqin; Luo, Jian; Huang, Yi; He, Luyun; Liu, Chunxiao; Wu, Song

    2017-01-01

    Cancer stem cells are considered responsible for many important aspects of tumors such as their self-renewal, tumor-initiating, drug-resistance and metastasis. However, the genetic basis and origination of human bladder cancer stem cells (BCSCs) remains unknown. Here, we conducted single-cell sequencing on 59 cells including BCSCs, bladder cancer non-stem cells (BCNSCs), bladder epithelial stem cells (BESCs) and bladder epithelial non-stem cells (BENSCs) from three bladder cancer (BC) specimens. Specifically, BCSCs demonstrate clonal homogeneity and suggest their origin from BESCs or BCNSCs through phylogenetic analysis. Moreover, 21 key altered genes were identified in BCSCs including six genes not previously described in BC (ETS1, GPRC5A, MKL1, PAWR, PITX2 and RGS9BP). Co-mutations of ARID1A, GPRC5A and MLL2 introduced by CRISPR/Cas9 significantly enhance the capabilities of self-renewal and tumor-initiating of BCNSCs. To our knowledge, our study first provides an overview of the genetic basis of human BCSCs with single-cell sequencing and demonstrates the biclonal origin of human BCSCs via evolution analysis. Human bladder cancer stem cells show the high level of consistency and may derived from bladder epithelial stem cells or bladder cancer non-stem cells. Mutations of ARID1A, GPRC5A and MLL2 grant bladder cancer non-stem cells the capability of self-renewal. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  8. Bufalin inhibits the differentiation and proliferation of human osteosarcoma cell line hMG63-derived cancer stem cells.

    PubMed

    Chang, Yuewen; Zhao, Yongfang; Zhan, Hongsheng; Wei, Xiaoen; Liu, Tianjin; Zheng, Bo

    2014-02-01

    Cancer stem cells (CSCs) play an important role in drug resistance of tumor and are responsible for high recurrence rates. Agents that can suppress the proliferation and differentiation of CSCs would provide new opportunity to fight against tumor recurrence. In this study, we developed a new strategy to enrich CSCs in human osteosarcoma cell line hMG63. Using these CSCs as model, we tested the effect of bufalin, a traditional Chinese medicine, on the proliferation and differentiation of CSCs. hMG63 cells were cultured in poly-HEMA-treated dish and cancer stem cell-specific medium. In this nonadhesive culture system, hMG63 formed spheres, which were then collected and injected into the immunodeficient mice. Cisplatin was administered every 3 days for five times. The enriched xenograft tumors were cultured in cancer stem cell-specific medium again to form tumor spheres. Expression of cancer stem cell markers of these cells was measured by flow cytometry. These cells were then treated with bufalin, and the proliferation and differentiation ability were indicated by the expression level of molecular markers and the formation of sphere again in vitro. We obtained a low CD133+/CD44 cell population with high-level stem cell marker. When treated with bufalin, the sphere could not get attached to the flask and failed to differentiate, which was indicated by the stable expression of stem cell marker CD133 and OCT-4 in the condition permissive to differentiation. Treatment of bufalin also suppressed the single cells isolated from the sphere to form sphere again in the nonadhesive culture system, and a decreased expression of proliferation marker Ki67 was also detected in these cells. Sphere-formed and chemoresistant colon xenograft tumors in immunodeficient mice could enrich cancer stem cell population. Bufalin could inhibit proliferation and differentiation of CSCs.

  9. Normal and cancer mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR Axis

    PubMed Central

    Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin

    2017-01-01

    Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657

  10. The p53 Isoform Δ133p53β Promotes Cancer Stem Cell Potential

    PubMed Central

    Arsic, Nikola; Gadea, Gilles; Lagerqvist, E. Louise; Busson, Muriel; Cahuzac, Nathalie; Brock, Carsten; Hollande, Frederic; Gire, Veronique; Pannequin, Julie; Roux, Pierre

    2015-01-01

    Summary Cancer stem cells (CSC) are responsible for cancer chemoresistance and metastasis formation. Here we report that Δ133p53β, a TP53 splice variant, enhanced cancer cell stemness in MCF-7 breast cancer cells, while its depletion reduced it. Δ133p53β stimulated the expression of the key pluripotency factors SOX2, OCT3/4, and NANOG. Similarly, in highly metastatic breast cancer cells, aggressiveness was coupled with enhanced CSC potential and Δ133p53β expression. Like in MCF-7 cells, SOX2, OCT3/4, and NANOG expression were positively regulated by Δ133p53β in these cells. Finally, treatment of MCF-7 cells with etoposide, a cytotoxic anti-cancer drug, increased CSC formation and SOX2, OCT3/4, and NANOG expression via Δ133p53, thus potentially increasing the risk of cancer recurrence. Our findings show that Δ133p53β supports CSC potential. Moreover, they indicate that the TP53 gene, which is considered a major tumor suppressor gene, also acts as an oncogene via the Δ133p53β isoform. PMID:25754205

  11. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells.

    PubMed

    Long, Qifang; Yang, Ru; Lu, Weixian; Zhu, Weipei; Zhou, Jundong; Zheng, Cui; Zhou, Dongmei; Yu, Ling; Wu, Jinchang

    2017-01-01

    Cancer stem cells are a small subset of cancer cells that contribute to cancer progression, metastasis, chemoresistance and recurrence. CD133-positive (CD133+) ovarian cancer cells have been identified as ovarian cancer stem cells. Adenovirus-mediated gene therapy is an innovative therapeutic method for cancer treatment. In the present study, we aimed to develop a new gene therapy to specifically eliminate CD133+ ovarian cancer stem cells by targeting CD133. We used the Cre/LoxP system to augment the selective expression of the truncated Bid (tBid) gene as suicide gene therapy in CD133+ ovarian cancer stem cells. The adenovirus (Ad)-CD133-Cre expressing Cre recombinase under the control of the CD133 promoter and Ad-CMV-LoxP-Neo-LoxP-tBid expressing tBid under the control of the CMV promoter were successfully constructed using the Cre/LoxP switching system. The co-infection of Ad-CMV-LoxP-Neo-LoxP-tBid and Ad-CD133-Cre selectively induced tBid overexpression, which inhibited cell growth and triggered the cell apoptosis of CD133+ ovarian cancer stem cells. The Cre/LoxP system-mediated tBid overexpression activated the pro-apoptotic signaling pathway and augmented the cytotoxic effect of cisplatin in CD133+ ovarian cancer stem cells. Furthermore, in xenograft experiments, co-infection with the two recombinant adenoviruses markedly suppressed tumor growth in vivo and promoted cell apoptosis in tumor tissues. Taken together, the present study provides evidence that the adenovirus-mediated tBid overexpression induced by the Cre/LoxP system can effectively eliminate CD133+ ovarian cancer stem cells, representing a novel therapeutic strategy for the treatment of ovarian cancer.

  12. CBX7 regulates stem cell-like properties of gastric cancer cells via p16 and AKT-NF-κB-miR-21 pathways.

    PubMed

    Ni, Su-Jie; Zhao, Li-Qin; Wang, Xiao-Feng; Wu, Zhen-Hua; Hua, Rui-Xi; Wan, Chun-Hua; Zhang, Jie-Yun; Zhang, Xiao-Wei; Huang, Ming-Zhu; Gan, Lu; Sun, Hua-Lin; Dimri, Goberdhan P; Guo, Wei-Jian

    2018-02-08

    Chromobox protein homolog 7 (CBX7), a member of the polycomb group (PcG) family of proteins, is involved in the regulation of cell proliferation and cancer progression. PcG family members, such as BMI, Mel-18, and EZH2, are integral constituents of the polycomb repressive complexes (PRCs) and have been known to regulate cancer stem cell (CSC) phenotype. However, the role of other PRCs' constituents such as CBX7 in the regulation of CSC phenotype remains largely elusive. This study was to investigate the role of CBX7 in regulating stem cell-like properties of gastric cancer and the underlying mechanisms. Firstly, the role of CBX7 in regulating stem cell-like properties of gastric cancer was investigated using sphere formation, Western blot, and xenograft tumor assays. Next, RNA interference and ectopic CBX7 expression were employed to determine the impact of CBX7 on the expression of CSC marker proteins and CSC characteristics. The expression of CBX7, its downstream targets, and stem cell markers were analyzed in gastric stem cell spheres, common cancer cells, and gastric cancer tissues. Finally, the pathways by which CBX7 regulates stem cell-like properties of gastric cancer were explored. We found that CBX7, a constituent of the polycomb repressive complex 1 (PRC1), plays an important role in maintaining stem cell-like characteristics of gastric cancer cells via the activation of AKT pathway and the downregulation of p16. Spearman rank correlation analysis showed positive correlations among the expression of CBX7 and phospho-AKT (pAKT), stem cell markers OCT-4, and CD133 in gastric cancer tissues. In addition, CBX7 was found to upregulate microRNA-21 (miR-21) via the activation of AKT-NF-κB pathway, and miR-21 contributes to CBX7-mediated CSC characteristics. CBX7 positively regulates stem cell-like characteristics of gastric cancer cells by inhibiting p16 and activating AKT-NF-κB-miR-21 pathway.

  13. Bone microenvironment-mediated resistance of cancer cells to bisphosphonates and impact on bone osteocytes/stem cells.

    PubMed

    Alasmari, Abeer; Lin, Shih-Chun; Dibart, Serge; Salih, Erdjan

    2016-08-01

    Anti-resorptive bisphosphonates (BPs) have been clinically used to prevent cancer-bone metastasis and cancer-induced bone pathologies despite the fact that the phenotypic response of the cancer-bone interactions to BP exposure is "uncharted territory". This study offers unique insights into the interplay between cancer stem cells and osteocytes/osteoblasts and mesenchymal stem cells using a three-dimensional (3D) live cancer-bone interactive model. We provide extraordinary cryptic details of the biological events that occur as a result of alendronate (ALN) treatment using 3D live cancer-bone model systems under specific bone remodeling stages. While cancer cells are susceptible to BP treatment in the absence of bone, they are totally unaffected in the presence of bone. Cancer cells colonize live bone irrespective of whether the bone is committed to bone resorption or formation and hence, cancer-bone metastasis/interactions are though to be "independent of bone remodeling stages". In our 3D live bone model systems, ALN inhibited bone resorption at the osteoclast differentiation level through effects of mineral-bound ALN on osteocytes and osteoblasts. The mineral-bound ALN rendered bone incapable of osteoblast differentiation, while cancer cells colonize the bone with striking morphological adaptations which led to a conclusion that a direct anti-cancer effect of BPs in a "live or in vivo" bone microenvironment is implausible. The above studies were complemented with mass spectrometric analysis of the media from cancer-bone organ cultures in the absence and presence of ALN. The mineral-bound ALN impacts the bone organs by limiting transformation of mesenchymal stem cells to osteoblasts and leads to diminished endosteal cell population and degenerated osteocytes within the mineralized bone matrix.

  14. DLK1 as a potential target against cancer stem/progenitor cells of hepatocellular carcinoma.

    PubMed

    Xu, Xiao; Liu, Rui-Fang; Zhang, Xin; Huang, Li-Yu; Chen, Fei; Fei, Qian-Lan; Han, Ze-Guang

    2012-03-01

    Delta-like 1 homolog (DLK1; Drosophila) is a hepatic stem/progenitor cell marker in fetal livers that plays a vital role in oncogenesis of hepatocellular carcinoma (HCC). The aim of this study is to investigate whether DLK1 could serve as a potential therapeutic target against cancer stem/progenitor cells of HCC. DLK1(+) and DLK1(-) cells were sorted by fluorescence-activated cell sorting and magnetic-activated cell sorting, respectively, and then were evaluated by flow cytometry. The biological behaviors of these isolated cells and those with DLK1 knockdown were assessed by growth curve, colony formation assay, spheroid colony formation, chemoresistance, and in vivo tumorigenicity. Adenovirus-mediated RNA interference was used to knockdown the endogenous DLK1. We found that DLK1(+) population was less than 10% in almost all 17 HCC cell lines examined. DLK1(+) HCC cells showed stronger ability of chemoresistance, colony formation, spheroid colony formation, and in vivo tumorigenicity compared with DLK1(-) cells. The DLK1(+) HCC cells could generate the progeny without DLK1 expression. Furthermore, DLK1 knockdown could suppress the ability of proliferation, colony formation, spheroid colony formation, and in vivo tumorigenicity of Hep3B and Huh-7 HCC cells. Our data suggested that DLK1(+) HCC cells have characteristics similar to those of cancer stem/progenitor cells. RNA interference against DLK1 can suppress the malignant behaviors of HCC cells, possibly through directly disrupting cancer stem/progenitor cells, which suggested that DLK1 could be a potential therapeutic target against the HCC stem/progenitor cells.

  15. Genetic profiling of putative breast cancer stem cells from malignant pleural effusions.

    PubMed

    Tiran, Verena; Stanzer, Stefanie; Heitzer, Ellen; Meilinger, Michael; Rossmann, Christopher; Lax, Sigurd; Tsybrovskyy, Oleksiy; Dandachi, Nadia; Balic, Marija

    2017-01-01

    A common symptom during late stage breast cancer disease is pleural effusion, which is related to poor prognosis. Malignant cells can be detected in pleural effusions indicating metastatic spread from the primary tumor site. Pleural effusions have been shown to be a useful source for studying metastasis and for isolating cells with putative cancer stem cell (CSC) properties. For the present study, pleural effusion aspirates from 17 metastatic breast cancer patients were processed to propagate CSCs in vitro. Patient-derived aspirates were cultured under sphere forming conditions and isolated primary cultures were further sorted for cancer stem cell subpopulations ALDH1+ and CD44+CD24-/low. Additionally, sphere forming efficiency of CSC and non-CSC subpopulations was determined. In order to genetically characterize the different tumor subpopulations, DNA was isolated from pleural effusions before and after cell sorting, and compared with corresponding DNA copy number profiles from primary tumors or bone metastasis using low-coverage whole genome sequencing (SCNA-seq). In general, unsorted cells had a higher potential to form spheres when compared to CSC subpopulations. In most cases, cell sorting did not yield sufficient cells for copy number analysis. A total of five from nine analyzed unsorted pleura samples (55%) showed aberrant copy number profiles similar to the respective primary tumor. However, most sorted subpopulations showed a balanced profile indicating an insufficient amount of tumor cells and low sensitivity of the sequencing method. Finally, we were able to establish a long term cell culture from one pleural effusion sample, which was characterized in detail. In conclusion, we confirm that pleural effusions are a suitable source for enrichment of putative CSC. However, sequencing based molecular characterization is impeded due to insufficient sensitivity along with a high number of normal contaminating cells, which are masking genetic alterations of

  16. Cancer stem-like cells in Epstein-Barr virus-associated nasopharyngeal carcinoma

    PubMed Central

    Wei-Man Lun, Samantha; Cheung, Siu-Tim; Lo, Kwok-Wai

    2014-01-01

    Although the Epstein-Barr virus (EBV) has spread to all populations in the world, EBV-associated nasopharyngeal carcinoma (NPC) is prevalent only in South China and Southeast Asia. The role of EBV in the malignant transformation of nasopharyngeal epithelium is the main focus of current researches. Radiotherapy and chemoradiotherapy have been successful in treating early stage NPC, but the recurrence rates remain high. Unfortunately, local relapse and metastasis are commonly unresponsive to conventional treatments. These recurrent and metastatic lesions are believed to arise from residual or surviving cells that have the properties of cancer stem cells. These cancer stem-like cells (CSCs) have the ability to self-renew, differentiate, and sustain propagation. They are also chemo-resistant and can form spheres in anchorage-independent environments. This review summarizes recent researches on the CSCs in EBV-associated NPC, including the findings regarding cell surface markers, stem cell-related transcription factors, and various signaling pathways. In particular, the review focuses on the roles of EBV latent genes [latent membrane protein 1 (LMP1) and latent membrane protein 2A (LMP2A)], cellular microRNAs, and adenosine triphosphate (ATP)-binding cassette chemodrug transporters in contributing to the properties of CSCs, including the epithelial-mesenchymal transition, stem-like transition, and chemo-resistance. Novel therapeutics that enhance the efficacy of radiotherapy and chemoradiotherapy and inhibitors that suppress the properties of CSCs are also discussed. PMID:25223912

  17. Sunitinib reduces tumor hypoxia and angiogenesis, and radiosensitizes prostate cancer stem-like cells.

    PubMed

    Diaz, Roque; Nguewa, Paul A; Redrado, Miriam; Manrique, Irene; Calvo, Alfonso

    2015-08-01

    The need for new treatments for advanced prostate cancer has fostered the experimental use of targeted therapies. Sunitinib is a multi-tyrosine kinase inhibitor that mainly targets membrane-bound receptors of cells within the tumor microenvironment, such as endothelial cells and pericytes. However, recent studies suggest a direct effect on tumor cells. In the present study, we have evaluated both direct and indirect effects of Sunitinib in prostate cancer and how this drug regulates hypoxia, using in vitro and in vivo models. We have used both in vitro (PC-3, DU145, and LNCaP cells) and in vivo (PC-3 xenografts) models to study the effect of Sunitinib in prostate cancer. Analysis of hypoxia based on HIF-1α expression and FMISO uptake was conducted. ALDH activity was used to analyze cancer stem cells (CSC). Sunitinib strongly reduced proliferation of PC-3 and DU-145 cells in a dose dependent manner, and decreased levels of p-Akt, p-Erk1/2, and Id-1, compared to untreated cells. A 3-fold reduction in tumor growth was also observed (P < 0.001 with respect to controls). Depletion of Hif-1α levels in vitro and a decrease in FMISO uptake in vivo showed that Sunitinib inhibits tumor hypoxia. When combined with radiotherapy, this drug enhanced cell death in vitro and in vivo, and significantly decreased CD-31, PDGFRβ, Hif-1α, Id1, and PCNA protein levels (whereas apoptosis was increased) in tumors as compared to controls or single-therapy treated mice. Moreover, Sunitinib reduced the number of ALDH + cancer stem-like cells and sensitized these cells to radiation-mediated loss of clonogenicity. Our results support the use of Sunitinib in prostate cancer and shows that both hypoxia and cancer stem cells are involved in the effect elicited by this drug. Combination of Sunitinib with radiotherapy warrants further consideration to reduce prostate cancer burden. © 2015 Wiley Periodicals, Inc.

  18. Stemness-Related Transcriptional Factors and Homing Gene Expression Profiles in Hepatic Differentiation and Cancer

    PubMed Central

    Toraih, Eman A; Fawzy, Manal S; El-Falouji, Abdullah I; Hamed, Elham O; Nemr, Nader A; Hussein, Mohammad H; Fadeal, Noha M Abd El

    2016-01-01

    Stem cell transcriptional signature activation is an essential event in the development of cancer. This study aimed to investigate the differential expression profiles of three pluripotency-associated genes, OCT4, NANOG and SOX2, G-protein-coupled chemokine receptor 4 (CXCR4) and the ligand CXCL2, and alpha-fetoprotein (AFP) in hepatogenic differentiated stem cells and in sera of hepatitis C virus (HCV) and HCV-induced hepatocellular carcinoma (HCC) patients. Mesenchymal stem cells derived from umbilical cord blood were differentiated using hepatogenic differentiation media. Serum specimens were collected from 96 patients (32 cirrhotic HCV, 32 early HCC and 32 late HCC) and 96 controls. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed for relative quantification of the six target genes using the Livak method. In silico network analysis was also executed to explore the pluripotency and tumorigenetic regulatory circuits in liver cancer. The expression levels of all genes declined gradually during the stages of stem cell differentiation. On univariate and multivariate analyses, NANOG, CXCR4 and AFP were significantly upregulated in late clinical stage HCC patients. In contrast, SOX2 and CXCL2 were markedly overexpressed in cirrhotic patients and could be used for clear demarcation between cirrhotic and HCC patients in our cases. In conclusion, our data highlight the potential role of the SOX2 stem cell marker and CXCL2 chemokine in liver cell degeneration and fibrogenesis in HCV-induced hepatic cirrhosis in our sample of the Egyptian population. In addition, the significant association of NANOG and CXCR4 high expression with late HCC could contribute to the acquisition of stem cell–like properties in hepatic cancer and dissemination in late stages, respectively. Taken together, our results could have potential application in HCC prognosis and treatment. PMID:27623812

  19. Raman background photobleaching as a possible method of cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Brandt, Nikolai N.; Brandt, Nikolai B.; Chikishev, Andrey Y.; Gangardt, Mihail G.; Karyakina, Nina F.

    2001-06-01

    Kinetics of photobleaching of background in Raman spectra of aqueous solutions of plant toxins ricin and ricin agglutinin, ricin binding subunit, and normal and malignant human blood serum were measured. For the excitation of the spectra cw and pulsed laser radiation were used. The spectra of Raman background change upon laser irradiation. Background intensity is lower for the samples with small molecular weight. The cyclization of amino acid residues in the toxin molecules as well as in human blood serum can be a reason of the Raman background. The model of the background photobleaching is proposed. The differences in photobleaching kinetics in the cases of cw and pulsed laser radiation are discussed. It is shown that Raman background photobleaching can be very informative for cancer diagnostics.

  20. Current understanding of cancer stem cells: Review of their radiobiology and role in head and neck cancers.

    PubMed

    Reid, Paul Ambrose; Wilson, Puthenparampil; Li, Yanrui; Marcu, Loredana Gabriela; Bezak, Eva

    2017-09-01

    Evidence of cancer cells that bear attributes analogous to those of normal stem cells has developed a hierarchical model of cancer's architecture and progression. This subset of cancer stem cells (CSCs) drives the progression and therapy resistance of cancers. Research to identify the phenotypes of these CSCs presents evidence of a subpopulation that is more resistant to therapy and may proliferate in response. Literature shows that CSCs typically represent around 1%-10% of cell populations in head and neck cancer but this proportion may increase in response to a therapeutic radiation dose. This is shown to be not just as a result of preferential killing, but also their capacity to alter divisional dynamics and enlist the support of a complicit microenvironment in therapy resistance and proliferation. The CSCs represent the apex of a hierarchy in the heterogeneity of cancer cells and may be seen as the agents of treatment failure, metastasis, and tumor recurrence, the principal cause of mortality in head and neck cancers. Greater than 90% of head and neck cancers are squamous cell carcinomas (HNSCCs), and among these an increasing incidence of the involvement of the human papillomavirus (HPV) is reported. Chemoradiotherapy along with surgical resection are the interventions of choice for control and cure of HNSCC, but given CSCs therapy resistance and proliferative responses to radiation, the identification and understanding of the radiobiology of this subpopulation is critical to their targeted elimination. This article reviews the current evidence on CSC generally and in HNSCC specifically to identify their phenotype, evaluate their responses to radiotherapy, and evaluate the defensive mechanisms used to resist therapeutic control. © 2017 Wiley Periodicals, Inc.

  1. A rational approach for cancer stem-like cell isolation and characterization using CD44 and prominin-1(CD133) as selection markers

    PubMed Central

    Lee, Yi-Jen; Wu, Chang-Cheng; Li, Jhy-Wei; Ou, Chien-Chih; Hsu, Shih-Chung; Tseng, Hsiu-Hsueh; Kao, Ming-Ching; Liu, Jah-Yao

    2016-01-01

    The availability of adequate cancer stem cells or cancer stem-like cell (CSC) is important in cancer study. From ovarian cancer cell lines, SKOV3 and OVCAR3, we induced peritoneal ascites tumors in immunodeficient mice. Among the cells (SKOV3.PX1 and OVCAR3.PX1) from those tumors, we sorted both CD44 and CD133 positive cells (SKOV3.PX1_133+44+, OVCAR3.PX1_133+44+), which manifest the characteristics of self-renewal, multi-lineage differentiation, chemoresistance and tumorigenicity, those of cancer stem-like cells (CSLC). Intraperitoneal transplantation of these CD44 and CD133 positive cells resulted in poorer survival in the engrafted animals. Clinically, increased CD133 expression was found in moderately and poorly differentiated (grade II and III) ovarian serous cystadenocarcinomas. The ascites tumor cells from human ovarian cancers demonstrated more CD133 and CD44 expressions than those from primary ovarian or metastatic tumors and confer tumorigenicity in immunodeficient mice. Compared to their parental cells, the SKOV3.PX1_133+44+ and OVCAR3.PX1_133+44+ cells uniquely expressed 5 CD markers (CD97, CD104, CD107a, CD121a, and CD125). Among these markers, CD97, CD104, CD107a, and CD121a are significantly more expressed in the CD133+ and CD44+ double positive cells of human ovarian ascites tumor cells (Ascites_133+44+) than those from primary ovarian or metastatic tumors. The cancer stem-like cells were enriched from 3% to more than 70% after this manipulation. This intraperitoneal enrichment of cancer stem-like cells, from ovarian cancer cell lines or primary ovarian tumor, potentially provides an adequate amount of ovarian cancer stem-like cells for the ovarian cancer study and possibly benefits cancer therapy. PMID:27655682

  2. Influence of Mesenchymal Stem Cells Conditioned Media on Proliferation of Urinary Tract Cancer Cell Lines and Their Sensitivity to Ciprofloxacin.

    PubMed

    Maj, Malgorzata; Bajek, Anna; Nalejska, Ewelina; Porowinska, Dorota; Kloskowski, Tomasz; Gackowska, Lidia; Drewa, Tomasz

    2017-06-01

    Mesenchymal stem cells (MSCs) are known to interact with cancer cells through direct cell-to-cell contact and secretion of paracrine factors, although their exact influence on tumor progression in vivo remains unclear. To better understand how fetal and adult stem cells affect tumors, we analyzed viability of human renal (786-0) and bladder (T24) carcinoma cell lines cultured in conditioned media harvested from amniotic fluid-derived stem cells (AFSCs) and adipose-derived stem cells (ASCs). Both media reduced metabolic activity of 786-0 cells, however, decreased viability of T24 cells was noted only after incubation with conditioned medium from ASCs. To test the hypothesis that MSCs-secreted factors might be involved in chemoresistance acquisition, we further analyzed influence of mesenchymal stem cell conditioned media (MSC-CM) on cancer cells sensitivity to ciprofloxacin, that is considered as potential candidate agent for urinary tract cancers treatment. Significantly increased resistance to tested drug indicates that MSCs may protect cancer cells from chemotherapy. J. Cell. Biochem. 118: 1361-1368, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Adipose-Derived Stem Cells Enhance Cancer Stem Cell Property and Tumor Formation Capacity in Lewis Lung Carcinoma Cells Through an Interleukin-6 Paracrine Circuit.

    PubMed

    Lu, Jui-Hua; Wei, Hong-Jian; Peng, Bou-Yue; Chou, Hsin-Hua; Chen, Wei-Hong; Liu, Hen-Yu; Deng, Win-Ping

    2016-12-01

    Adipose-derived stem cells (ADSCs) are multipotent cells that have attracted much recent attention and emerged as therapeutic approaches in several medical fields. Although current knowledge of the biological impacts of ADSCs in cancer research is greatly improved, the underlying effects of ADSCs in tumor development remain controversial and cause the safety concerns in clinical utilization. Hence, we isolated primary ADSCs from the abdominal fat of mice and conducted interaction of ADSCs with Lewis lung carcinoma cells in culture and in mice to investigate the impacts of ADSCs on tumor development. Cytokine array and neutralizing antibody were further utilized to identify the key regulator and downstream signaling pathway. In this study, we demonstrated that ADSCs enhance the malignant characteristics of LLC1 cells, including cell growth ability and especially cancer stem cell property. ADSCs were then identified to promote tumor formation and growth in mice. We further determined that ADSC interaction with LLC1 cells stimulates increased secretion of interleukin-6 mainly from ADSCs, which then act in a paracrine manner on LLC1 cells to enhance their malignant characteristics. Interleukin-6 was also identified to regulate genes related to cell proliferation and cancer stem cell, as well as to activate JAK2/STAT3, a predominant interleukin-6-activated pathway, in LLC1 cells. Collectively, we demonstrated that ADSCs play a pro-malignant role in tumor development of Lewis lung carcinoma cells by particularly promoting cancer stem cell property through interleukin-6 paracrine circuit, which is important for safety considerations regarding the clinical application of ADSCs.

  4. Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies.

    PubMed

    Mimeault, M; Hauke, R; Batra, S K

    2007-09-01

    Basic and clinical research accomplished during the last few years on embryonic, fetal, amniotic, umbilical cord blood, and adult stem cells has constituted a revolution in regenerative medicine and cancer therapies by providing the possibility of generating multiple therapeutically useful cell types. These new cells could be used for treating numerous genetic and degenerative disorders. Among them, age-related functional defects, hematopoietic and immune system disorders, heart failures, chronic liver injuries, diabetes, Parkinson's and Alzheimer's diseases, arthritis, and muscular, skin, lung, eye, and digestive disorders as well as aggressive and recurrent cancers could be successfully treated by stem cell-based therapies. This review focuses on the recent advancements in adult stem cell biology in normal and pathological conditions. We describe how these results have improved our understanding on critical and unique functions of these rare sub-populations of multipotent and undifferentiated cells with an unlimited self-renewal capacity and high plasticity. Finally, we discuss some major advances to translate the experimental models on ex vivo and in vivo expanded and/or differentiated stem cells into clinical applications for the development of novel cellular therapies aimed at repairing genetically altered or damaged tissues/organs in humans. A particular emphasis is made on the therapeutic potential of different tissue-resident adult stem cell types and their in vivo modulation for treating and curing specific pathological disorders.

  5. EGFR-mediated interleukin enhancer-binding factor 3 contributes to formation and survival of cancer stem-like tumorspheres as a therapeutic target against EGFR-positive non-small cell lung cancer.

    PubMed

    Cheng, Chun-Chia; Chou, Kuei-Fang; Wu, Cheng-Wen; Su, Nai-Wen; Peng, Cheng-Liang; Su, Ying-Wen; Chang, Jungshan; Ho, Ai-Sheng; Lin, Huan-Chau; Chen, Caleb Gon-Shen; Yang, Bi-Ling; Chang, Yu-Cheng; Chiang, Ya-Wen; Lim, Ken-Hong; Chang, Yi-Fang

    2018-02-01

    YM155, an inhibitor of interleukin enhancer-binding factor 3 (ILF3), significantly suppresses cancer stemness property, implying that ILF3 contributes to cell survival of cancer stem cells. However, the molecular function of ILF3 inhibiting cancer stemness remains unclear. This study aimed to uncover the potential function of ILF3 involving in cell survival of epidermal growth factor receptor (EGFR)-positive lung stem-like cancer, and to investigate the potential role to improve the efficacy of anti-EGFR therapeutics. The association of EGFR and ILF3 in expression and regulations was first investigated in this study. Lung cancer A549 cells with deprivation of ILF3 were created by the gene-knockdown method and then RNAseq was applied to identify the putative genes regulated by ILF3. Meanwhile, HCC827- and A549-derived cancer stem-like cells were used to investigate the role of ILF3 in the formation of cancer stem-like tumorspheres. We found that EGFR induced ILF3 expression, and YM155 reduced EGFR expression. The knockdown of ILF3 reduced not only EGFR expression in mRNA and protein levels, but also cell proliferation in vitro and in vivo, demonstrating that ILF3 may play an important role in contributing to cancer cell survival. Moreover, the knockdown and inhibition of ILF3 by shRNA and YM155, respectively, reduced the formation and survival of HCC827- and A549-derived tumorspheres through inhibiting ErbB3 (HER3) expression, and synergized the therapeutic efficacy of afatinib, a tyrosine kinase inhibitor, against EGFR-positive A549 lung cells. This study demonstrated that ILF3 plays an oncogenic like role in maintaining the EGFR-mediated cellular pathway, and can be a therapeutic target to improve the therapeutic efficacy of afatinib. Our results suggested that YM155, an ILF3 inhibitor, has the potential for utilization in cancer therapy against EGFR-positive lung cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response.

    PubMed

    Qadir, Abdul S; Ceppi, Paolo; Brockway, Sonia; Law, Calvin; Mu, Liang; Khodarev, Nikolai N; Kim, Jung; Zhao, Jonathan C; Putzbach, William; Murmann, Andrea E; Chen, Zhuo; Chen, Wenjing; Liu, Xia; Salomon, Arthur R; Liu, Huiping; Weichselbaum, Ralph R; Yu, Jindan; Peter, Marcus E

    2017-03-07

    Stimulation of CD95/Fas drives and maintains cancer stem cells (CSCs). We now report that this involves activation of signal transducer and activator of transcription 1 (STAT1) and induction of STAT1-regulated genes and that this process is inhibited by active caspases. STAT1 is enriched in CSCs in cancer cell lines, patient-derived human breast cancer, and CD95 high -expressing glioblastoma neurospheres. CD95 stimulation of cancer cells induced secretion of type I interferons (IFNs) that bind to type I IFN receptors, resulting in activation of Janus-activated kinases, activation of STAT1, and induction of a number of STAT1-regulated genes that are part of a gene signature recently linked to therapy resistance in five primary human cancers. Consequently, we identified type I IFNs as drivers of cancer stemness. Knockdown or knockout of STAT1 resulted in a strongly reduced ability of CD95L or type I IFN to increase cancer stemness. This identifies STAT1 as a key regulator of the CSC-inducing activity of CD95. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Chemical Proteomic Approaches Targeting Cancer Stem Cells: A Review of Current Literature.

    PubMed

    Jung, Hye Jin

    2017-01-01

    Cancer stem cells (CSCs) have been proposed as central drivers of tumor initiation, progression, recurrence, and therapeutic resistance. Therefore, identifying stem-like cells within cancers and understanding their properties is crucial for the development of effective anticancer therapies. Recently, chemical proteomics has become a powerful tool to efficiently determine protein networks responsible for CSC pathophysiology and comprehensively elucidate molecular mechanisms of drug action against CSCs. This review provides an overview of major methodologies utilized in chemical proteomic approaches. In addition, recent successful chemical proteomic applications targeting CSCs are highlighted. Future direction of potential CSC research by integrating chemical genomic and proteomic data obtained from a single biological sample of CSCs are also suggested in this review. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Novel micelle formulation of curcumin for enhancing antitumor activity and inhibiting colorectal cancer stem cells

    PubMed Central

    Wang, Ke; Zhang, Tao; Liu, Lina; Wang, Xiaolei; Wu, Ping; Chen, Zhigang; Ni, Chao; Zhang, Junshu; Hu, Fuqiang; Huang, Jian

    2012-01-01

    Background and methods: Curcumin has extraordinary anticancer properties but has limited use due to its insolubility in water and instability, which leads to low systemic bioavailability. We have developed a novel nanoparticulate formulation of curcumin encapsulated in stearic acid-g-chitosan oligosaccharide (CSO-SA) polymeric micelles to overcome these hurdles. Results: The synthesized CSO-SA copolymer was able to self-assemble to form nanoscale micelles in aqueous medium. The mean diameter of the curcumin-loaded CSO-SA micelles was 114.7 nm and their mean surface potential was 18.5 mV. Curcumin-loaded CSO-SA micelles showed excellent internalization ability that increased curcumin accumulation in cancer cells. Curcumin-loaded CSO-SA micelles also had potent antiproliferative effects on primary colorectal cancer cells in vitro, resulting in about 6-fold greater inhibition compared with cells treated with a solution containing an equivalent concentration of free curcumin. Intravenous administration of curcumin-loaded CSO-SA micelles marginally suppressed tumor growth but did not increase cytotoxicity to mice, as confirmed by no change in body weight. Most importantly, curcumin-loaded CSO-SA micelles were effective for inhibiting subpopulations of CD44+/CD24+ cells (putative colorectal cancer stem cell markers) both in vitro and in vivo. Conclusion: The present study identifies an effective and safe means of using curcumin-loaded CSO-SA micelles for cancer therapy. PMID:22927762

  9. Ovarian cancer stem cells more questions than answers.

    PubMed

    Ottevanger, Petronella Beatrix

    2017-06-01

    Epithelial ovarian cancer is a highly lethal disease, which is usually diagnosed at a late stage with extensive metastases in the abdominal cavity. Ovarian cancer either develops from the ovarian surface epithelium (OSE) or from serous intra-epithelial carcinoma (STIC). Primary therapy consists of debulking surgery and platinum based chemotherapy. The success of debulking surgery depends on surgical skills but also on the gene signature of the tumour. Debulking surgery combined with first line platinum based chemotherapy, frequently leads to complete remission. However, most ovarian cancers relapse. Once the disease has relapsed, the interval between subsequent therapies decreases steadily due to rapid progression and therapy resistance. Research on therapy resistance of ovarian cancer is frequently devoted to genetic alterations in cancer cells, leading to drug inactivation, enhanced DNA repair mechanisms and intracellular pathway derangements. However the knowledge of ovarian cancer stem cells (OCSC) and the role they play in the development of cancer and therapy resistance is sparse. In this review current knowledge on the characteristics of OCSCs and the micro environmental mechanisms leading to the development or activation of OCSCs resulting in ovarian cancer is reviewed. Moreover the role of OCSC in both surgical and systemic therapy resistance and the relation with epithelial mesenchymal transformation (EMT) is discussed, as are micro-environmental signals leading to OCSC or EMT activation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  10. Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by modulating sonic hedgehog pathway.

    PubMed

    Verma, Raj Kumar; Yu, Wei; Singh, Surya Pratap; Shankar, Sharmila; Srivastava, Rakesh K

    2015-11-01

    Anthothecol, a limonoid isolated from plant Khaya anthotheca (Meliaceae), is an antimalarial compound. The objectives of this study were to examine the molecular mechanisms by which anthothecol-encapsulated PLGA-nanoparticles (Antho-NPs) regulate the behavior of pancreatic cancer stem cells (CSCs). Antho-NPs inhibited cell proliferation and colony formation, and induced apoptosis in pancreatic CSCs and cancer cell lines, but had no effects on human normal pancreatic ductal epithelial cells. Antho-NPs inhibited self-renewal capacity of pancreatic CSCs isolated from human and Kras(G12D) mice. Furthermore, antho-NPs suppressed cell motility, migration and invasion by up-regulating E-cadherin and inhibiting N-cadherin and Zeb1. In addition, Antho-NPs inhibited pluripotency maintaining factors and stem cell markers, suggesting their inhibitory role on CSC population. Anthothecol disrupted binding of Gli to DNA, and inhibited Gli transcription and Gli target genes. Our studies establish preclinical significance of Antho-NPs for the treatment and/or prevention of pancreatic cancer. Despite medical advances, the prognosis of pancreatic cancer remains poor. The search for an effective treatment has been under intensive research for some time. In this article, the authors investigated the efficacy and mechanism of anthothecol (an antimalarial compound), encapsulated by PLGA nanoparticles (Antho-NPs), against pancreatic cancer cell lines. It was found that Antho-NPs acted via the Sonic hedgehog signaling pathway and inhibited cancer stem cell growth. These results have provided important basis for further clinical trials. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Nanomaterials for regulating cancer and stem cell fate

    NASA Astrophysics Data System (ADS)

    Shah, Birju P.

    The realm of nanomedicine has grown exponentially over the past few decades. However, there are several obstacles that need to be overcome, prior to the wide-spread clinical applications of these nanoparticles, such as (i) developing well-defined nanoparticles of varying size, morphology and composition to enable various clinical applications; (ii) overcome various physiological barriers encountered in order to deliver the therapeutics to the target location; and (iii) real-time monitoring of the nano-therapeutics within the human body for tracking their uptake, localization and effect. Hence, this dissertation focuses on developing multimodal nanotechnology-based approaches to overcome the above-mentioned challenges and thus enable regulation of cancer and stem cell fate. The initial part of this dissertation describes the development of multimodal magnetic core-shell nanoparticles (MCNPs), comprised of a highly magnetic core surrounded by a thin gold shell, thus combining magnetic and plasmonic properties. These nanoparticles were utilized for mainly two applications: (i) Magnetically-facilitated delivery of siRNA and plasmid DNA for effective stem cell differentiation and imaging and (ii) Combined hyperthermia and targeted delivery of a mitochondria-targeting peptide for enhancing apoptosis in cancer cells. The following part of this dissertation presents the generation of a multi-functional cyclodextrin-conjugated polymeric delivery platform (known as DexAMs), for co-delivery of anticancer drugs and siRNAs in a target-specific manner to brain tumor cells. This combined delivery of chemotherapeutics and siRNA resulted in a synergistic effect on the apoptosis of brain tumor cells, as compared to the individual treatments. The final part of this thesis presents development of stimuli-responsive uorescence resonance energy transfer (FRET)-based mesoporous silica nanoparticles for real-time monitoring of drug release in cells. The stimuli-responsive behavior of

  12. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.

    PubMed

    Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T

    2008-12-01

    Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.

  13. Approaches for targeting self-renewal pathways in cancer stem cells: implications for hematological treatments.

    PubMed

    Horne, Gillian A; Copland, Mhairi

    2017-05-01

    Self-renewal is considered a defining property of stem cells. Self-renewal is essential in embryogenesis and normal tissue repair and homeostasis. However, in cancer, self-renewal pathways, e.g. WNT, NOTCH, Hedgehog and BMP, frequently become de-regulated in stem cells, or more mature progenitor cells acquire self-renewal properties, resulting in abnormal tissue growth and tumorigenesis. Areas covered: This review considers the conserved embryonic self-renewal pathways, including WNT, NOTCH, Hedgehog and BMP. The article describes recent advances in our understanding of these pathways in leukemia and, more specifically, leukemia stem cells (LSC), how these pathways cross-talk and interact with the LSC microenvironment, and discusses the clinical implications and potential therapeutic strategies, both in preclinical and in clinical trials for hematological malignancies. Expert opinion: The conserved embryonic self-renewal pathways are frequently de-regulated in cancer stem cells (CSC), including LSCs. There is significant cross-talk between self-renewal pathways, and their downstream targets, and the microenvironment. Effective targeting of these pathways is challenging due to cross-talk, and importantly, because these pathways are important for normal stem cells as well as CSC, adverse effects on normal tissues may mean a therapeutic window cannot be identified. Nonetheless, several agents targeting these pathways are currently in clinical trials in hematological malignancies.

  14. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis.

    PubMed

    Das, Undurti N

    2011-12-01

    Stem cells are pluripotent and expected to be of benefit in the management of coronary heart disease, stroke, diabetes mellitus, cancer, and Alzheimer's disease in which pro-inflammatory cytokines are increased. Identifying endogenous bioactive molecules that have a regulatory role in stem cell survival, proliferation, and differentiation may aid in the use of stem cells in various diseases including cancer. Essential fatty acids form precursors to both pro- and anti-inflammatory molecules have been shown to regulate gene expression, enzyme activity, modulate inflammation and immune response, gluconeogenesis via direct and indirect pathways, function directly as agonists of a number of G protein-coupled receptors, activate phosphatidylinositol 3-kinase/Akt and p44/42 mitogen-activated protein kinases, and stimulate cell proliferation via Ca(2+), phospholipase C/protein kinase, events that are also necessary for stem cell survival, proliferation, and differentiation. Hence, it is likely that bioactive lipids play a significant role in various diseases by modulating the proliferation and differentiation of embryonic stem cells in addition to their capacity to suppress inflammation. Ephrin Bs and reelin, adhesion molecules, and microRNAs regulate neuronal migration and cancer cell metastasis. Polyunsaturated fatty acids and their products seem to modulate the expression of ephrin Bs and reelin and several adhesion molecules and microRNAs suggesting that bioactive lipids participate in neuronal regeneration and stem cell proliferation, migration, and cancer cell metastasis. Thus, there appears to be a close interaction among essential fatty acids, their bioactive products, and inflammation and cancer growth and its metastasis.

  15. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in themore » malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.« less

  16. Effect of colorectal cancer on the number of normal stem cells circulating in peripheral blood.

    PubMed

    Marlicz, Wojciech; Sielatycka, Katarzyna; Serwin, Karol; Kubis, Ewa; Tkacz, Marta; Głuszko, Rafał; Białek, Andrzej; Starzyńska, Teresa; Ratajczak, Mariusz Z

    2016-12-01

    Bone marrow (BM) residing stem cells are mobilized from their BM niches into peripheral blood (PB) in several pathological situations including tissue organ injury and systemic inflammation. We recently reported that the number of BM-derived stem cells (SCs) increases in patients with pancreatic and stomach cancer. Accordingly, we observed higher numbers of circulating very small embryonic/epiblast‑like stem cells (VSELs) and mesenchymal stem cells (MSCs) that were associated with the activation of pro-mobilizing complement cascade and an elevated level of sphingosine-1 phosphate (S1P) in PB plasma. We wondered if a similar correlation occurs in patients with colorectal cancer (CRC). A total of 46 patients were enrolled in this study: 17 with CRC, 18 with benign colonic adenomas (BCA) and 11 healthy individuals. By employing fluorescence-activated cell sorting (FACS) we evaluated the number of BM-derived SCs circulating in PB: i) CD34+/Lin-/CD45- and CD133-/Lin-/CD45- VSELs; ii) CD45-/CD105+/CD90+/CD29+ MSCs; iii) CD45-/CD34+/CD133+/KDR+ endothelial progenitor cells (EPCs); and iv) CD133+/Lin-/CD45+ or CD34+/Lin-/CD45+ cells enriched for hematopoietic stem/progenitor cells (HSPCs). In parallel, we measured in the PB parameters regulating the egress of SCs from BM into PB. In contrast to pancreatic and gastric cancer patients, CRC subjects presented neither an increase in the number of circulating SCs nor the activation of pro-mobilizing factors such as complement, coagulation and fibrinolytic cascade, circulating stromal derived factor 1 (SDF‑1), vascular endothelial growth factor (VEGF) and intestinal permeability marker (zonulin). In conclusion, mobilization of SCs in cancer patients depends on the type of malignancy and its ability to activate pro-mobilization cascades.

  17. Defeating EpCAM(+) liver cancer stem cells by targeting chromatin remodeling enzyme CHD4 in human hepatocellular carcinoma.

    PubMed

    Nio, Kouki; Yamashita, Taro; Okada, Hikari; Kondo, Mitsumasa; Hayashi, Takehiro; Hara, Yasumasa; Nomura, Yoshimoto; Zeng, Sha Sha; Yoshida, Mariko; Hayashi, Tomoyuki; Sunagozaka, Hajime; Oishi, Naoki; Honda, Masao; Kaneko, Shuichi

    2015-11-01

    Hepatocellular carcinoma is composed of a subset of cells with enhanced tumorigenicity and chemoresistance that are called cancer stem (or stem-like) cells. We explored the role of chromodomain-helicase-DNA-binding protein 4, which is encoded by the CHD4 gene and is known to epigenetically control gene regulation and DNA damage responses in EpCAM(+) liver cancer stem cells. Gene and protein expression profiles were determined by microarray and immunohistochemistry in 245 and 144 hepatocellular carcinoma patients, respectively. The relationship between gene/protein expression and prognosis was examined. The functional role of CHD4 was evaluated in primary hepatocellular carcinoma cells and in cell lines in vitro and in vivo. CHD4 was abundantly expressed in EpCAM(+) hepatocellular carcinoma with expression of hepatic stem cell markers and poor prognosis in two independent cohorts. In cell lines, CHD4 knockdown increased chemosensitivity and CHD4 overexpression induced epirubicin chemoresistance. To inhibit the functions of CHD4 that are mediated through histone deacetylase and poly (ADP-ribose) polymerase, we evaluated the effect of the histone deacetylase inhibitor suberohydroxamic acid and the poly (ADP-ribose) polymerase inhibitor AG-014699. Treatment with either suberohydroxamic acid or AG-014699 reduced the number of EpCAM(+) liver cancer stem cells in vitro, and suberohydroxamic acid and AG-014699 in combination successfully inhibited tumor growth in a mouse xenograft model. CHD4 plays a pivotal role in chemoresistance and the maintenance of stemness in liver cancer stem cells and is therefore a good target for the eradication of hepatocellular carcinoma. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. [Importance of the tumor stem cell hypothesis for understanding ovarian cancer].

    PubMed

    Vochem, R; Einenkel, J; Horn, L-C; Ruschpler, P

    2014-07-01

    Despite complex surgical and systemic therapies epithelial ovarian cancer has a poor prognosis. A small quantity of tumorigenic cells termed cancer stem cells (CSC) are responsible for the development of chemoresistance and high rates of recurrence. This review presents the CSC hypothesis and describes methods of identification and enrichment of CSCs as well as approaches for the therapeutic use of these findings. A systematic literature review based on PubMed and Web of Science was carried out. The CSC model is based on a hierarchical structure of tumors with few CSCs and variably differentiated tumor cells constituting the tumor bulk. Only the CSCs possess tumorigenic potential. Other essential functional characteristics of CSCs are their potential for self-renewal and their ability to differentiate into further cell types. The CSCs are structurally characterized by different surface markers and changes in certain signaling pathways. Currently there are phase I and II studies in progress investigating specific influences on CSCs. Various clinical characteristics of the course of disease in ovarian cancer are aptly represented by the tumor stem cell model. In spite of precisely defined functional characteristics of CSCs, surface markers and signaling pathways show individual differences and vary between tumor entities. This complicates identification and enrichment. Current experimental findings in various approaches and even first clinical studies raise hopes for a personalized cancer therapy targeting CSCs.

  19. Symmetric vs. Asymmetric Stem Cell Divisions: An Adaptation against Cancer?

    PubMed Central

    Shahriyari, Leili; Komarova, Natalia L.

    2013-01-01

    Traditionally, it has been held that a central characteristic of stem cells is their ability to divide asymmetrically. Recent advances in inducible genetic labeling provided ample evidence that symmetric stem cell divisions play an important role in adult mammalian homeostasis. It is well understood that the two types of cell divisions differ in terms of the stem cells' flexibility to expand when needed. On the contrary, the implications of symmetric and asymmetric divisions for mutation accumulation are still poorly understood. In this paper we study a stochastic model of a renewing tissue, and address the optimization problem of tissue architecture in the context of mutant production. Specifically, we study the process of tumor suppressor gene inactivation which usually takes place as a consequence of two “hits”, and which is one of the most common patterns in carcinogenesis. We compare and contrast symmetric and asymmetric (and mixed) stem cell divisions, and focus on the rate at which double-hit mutants are generated. It turns out that symmetrically-dividing cells generate such mutants at a rate which is significantly lower than that of asymmetrically-dividing cells. This result holds whether single-hit (intermediate) mutants are disadvantageous, neutral, or advantageous. It is also independent on whether the carcinogenic double-hit mutants are produced only among the stem cells or also among more specialized cells. We argue that symmetric stem cell divisions in mammals could be an adaptation which helps delay the onset of cancers. We further investigate the question of the optimal fraction of stem cells in the tissue, and quantify the contribution of non-stem cells in mutant production. Our work provides a hypothesis to explain the observation that in mammalian cells, symmetric patterns of stem cell division seem to be very common. PMID:24204602

  20. EMP2 is a novel therapeutic target for endometrial cancer stem cells

    PubMed Central

    Kiyohara, Meagan H.; Dillard, Christen; Tsui, Jessica; Kim, Sara Ruth; Lu, Jianyi; Sachdev, Divya; Goodglick, Lee; Tong, Maomeng; Torous, Vanda Farahmand; Aryasomayajula, Chinmayi; Wang, Wei; Najafzadeh, Parisa; Gordon, Lynn K.; Braun, Jonathan; McDermott, Sean; Wicha, Max S.; Wadehra, Madhuri

    2017-01-01

    Previous studies have suggested that overexpression of the oncogenic protein epithelial membrane protein-2 (EMP2) correlates with endometrial carcinoma progression and ultimately poor survival from disease. To understand the role of EMP2 in the etiology of disease, gene analysis was performed to show transcripts that are reciprocally regulated by EMP2 levels. In particular, EMP2 expression correlates with and helps regulate the expression of several cancer stem cell associated markers including aldehyde dehydrogenase 1 (ALDH1). ALDH expression significantly promotes tumor initiation and correlates with the levels of EMP2 expression in both patient samples and tumor cell lines. As therapy against CSCs in endometrial cancer is lacking, the ability of anti-EMP2 IgG1 therapy to reduce primary and secondary tumor formation using xenograft HEC1A models was determined. Anti-EMP2 IgG1 reduced the expression and activity of ALDH and correspondingly reduced both primary and secondary tumor load. Our results collectively suggest that anti-EMP2 therapy may be a novel method of reducing endometrial cancer stem cells. PMID:28604744

  1. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer.

    PubMed

    Zucha, Muhammad Ary; Wu, Alexander T H; Lee, Wei-Hwa; Wang, Liang-Shun; Lin, Wan-Wan; Yuan, Chiou-Chung; Yeh, Chi-Tai

    2015-05-30

    According to a Prognoscan database, upregulation of Bruton's tyrosine kinase (Btk) is associated with low overall survival in ovarian cancer patients. We found that spheroids-forming ovarian cancer cell, which highly expressed cancer stem-like cell (CSC) markers and Btk, were cisplatin resistant. We next treated CSCs and non-CSCs by a combination of ibrutinib and cisplatin. We found that chemoresistance was dependent on Btk and JAK2/STAT3, which maintained CSC by inducing Sox-2 and prosurvival genes. We suggest that addition of ibrutinib to cisplatin may improve treatment outcome in ovarian cancer.

  2. Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer.

    PubMed

    Kumar, Dhruv; Gupta, Dwijendra; Shankar, Sharmila; Srivastava, Rakesh K

    2015-02-20

    Cancer recognized as one of the leading irrepressible health issues is contributing to increasing mortality-rate day-by-day. The tumor microenvironment is an important field of cancer to understand the detection, treatment and prevention of cancer. Recently, cancer stem cell (CSC) research has shown promising results aiming towards cancer diagnostics and treatment. Here, we found that prostate and breast cancer stem cells secreted vesicles of endosomal origin, called exosomes showed strong connection between autophagy and exosomes released from CSCs. Exosomes may serve as vesicles to communicate with neoplastic cells (autocrine and paracrine manner) and normal cells (paracrine and endocrine manner) and thereby suppress immune systems and regulate neoplastic growth, and metastasis. They can also be used as biomarkers for various cancers. We detected tetraspanin proteins (CD9, CD63, CD81), Alix and tumor susceptibility gene-101 (TSG101) of exosomal markers from rotenone treated CSCs. We have also detected the induction of autophagy genes, Atg7 and conversion of autophagy marker (LC3-I to LC3-II), and tetraspanin proteins (CD9, CD63, CD81) in rotenone treated CSCs by western blotting. The mRNA expression of CD9, CD63, CD81 and TSG101 analyzed by qRT-PCR showed that the rotenone induced the expression of CD9, CD63, CD81 and TSG101 in CSCs. Electron microscopy of rotenone treated CSCs showed the mitochondrial damage of CSCs as confirmed by the release of exosomes from CSCs. The constituents of exosomes may be useful to understand the mechanism of exosomes formation, release and function, and also serve as a useful biomarker and provide novel therapeutic strategies for the treatment and prevention of cancer.

  3. Evolution of Cancer Stem-like Cells in Endocrine-Resistant Metastatic Breast Cancers Is Mediated by Stromal Microvesicles.

    PubMed

    Sansone, Pasquale; Berishaj, Marjan; Rajasekhar, Vinagolu K; Ceccarelli, Claudio; Chang, Qing; Strillacci, Antonio; Savini, Claudia; Shapiro, Lauren; Bowman, Robert L; Mastroleo, Chiara; De Carolis, Sabrina; Daly, Laura; Benito-Martin, Alberto; Perna, Fabiana; Fabbri, Nicola; Healey, John H; Spisni, Enzo; Cricca, Monica; Lyden, David; Bonafé, Massimiliano; Bromberg, Jacqueline

    2017-04-15

    The hypothesis that microvesicle-mediated miRNA transfer converts noncancer stem cells into cancer stem cells (CSC) leading to therapy resistance remains poorly investigated. Here we provide direct evidence supporting this hypothesis, by demonstrating how microvesicles derived from cancer-associated fibroblasts (CAF) transfer miR-221 to promote hormonal therapy resistance (HTR) in models of luminal breast cancer. We determined that CAF-derived microvesicles horizontally transferred miR-221 to tumor cells and, in combination with hormone therapy, activated an ER lo /Notch hi feed-forward loop responsible for the generation of CD133 hi CSCs. Importantly, microvesicles from patients with HTR metastatic disease expressed high levels of miR-221. We further determined that the IL6-pStat3 pathway promoted the biogenesis of onco-miR-221 hi CAF microvesicles and established stromal CSC niches in experimental and patient-derived breast cancer models. Coinjection of patient-derived CAFs from bone metastases led to de novo HTR tumors, which was reversed with IL6R blockade. Finally, we generated patient-derived xenograft (PDX) models from patient-derived HTR bone metastases and analyzed tumor cells, stroma, and microvesicles. Murine and human CAFs were enriched in HTR tumors expressing high levels of CD133 hi cells. Depletion of murine CAFs from PDX restored sensitivity to HT, with a concurrent reduction of CD133 hi CSCs. Conversely, in models of CD133 neg , HT-sensitive cancer cells, both murine and human CAFs promoted de novo HT resistance via the generation of CD133 hi CSCs that expressed low levels of estrogen receptor alpha. Overall, our results illuminate how microvesicle-mediated horizontal transfer of genetic material from host stromal cells to cancer cells triggers the evolution of therapy-resistant metastases, with potentially broad implications for their control. Cancer Res; 77(8); 1927-41. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Canine osteosarcoma cell lines contain stem-like cancer cells: biological and pharmacological characterization.

    PubMed

    Gatti, Monica; Wurth, Roberto; Vito, Guendalina; Pattarozzi, Alessandra; Campanella, Chiara; Thellung, Stefano; Maniscalco, Lorella; De Maria, Raffaella; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Bajetto, Adriana; Ratto, Alessandra; Ferrari, Angelo; Barbieri, Federica; Florio, Tullio

    2016-05-01

    Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs.

  5. A microfluidic chaotic mixer platform for cancer stem cell immunocapture and release

    NASA Astrophysics Data System (ADS)

    Shaner, Sebastian Wesley

    Isolation of exceedingly rare and ambiguous cells, like cancer stem cells (CSCs), from a pool of other abundant cells is a daunting task primarily due to the inadequately defined properties of such cells. With phenotypes of different CSCs fairly well-defined, immunocapturing of CSCs is a desirable cell-specific capture technique. A microfluidic device is a proven candidate that offers the platform for user-constrained microenvironments that can be optimized for small-scale volumetric flow experimentation. In this study, we show how a well-known passive micromixer design (staggered herringbone mixer - SHM) can be optimized to induce maximum chaotic mixing within antibody-laced microchannels and, ultimately, promote CSC capture. The device's (Cancer Stem Cell Capture Chip - CSC3 (TM)) principle design configuration is called: Single-Walled Staggered Herringbone (SWaSH). The CSC3 (TM) was constructed of a polydimethylsiloxane (PDMS) foundation and thinly coated with an alginate hydrogel derivatized with streptavidin. The results of our work showed that the non-stickiness of alginate and antigen-specific antibodies allowed for superb target-specific cell isolation and negligible non-specific cell binding. Future engineering design directions include developing new configurations (e.g. Staggered High-Low Herringbone (SHiLoH) and offset SHiLoH) to optimize microvortex generation within the microchannels. This study's qualitative and quantitative results can help stimulate progress into refinements in device design and prospective advancements in cancer stem cell isolation and more comprehensive single-cell and cluster analysis.

  6. Current molecular markers for gastric progenitor cells and gastric cancer stem cells.

    PubMed

    Qiao, Xiaotan T; Gumucio, Deborah L

    2011-07-01

    Gastric stem and progenitor cells (GPC) play key roles in the homeostatic renewal of gastric glands and are instrumental in epithelial repair after injury. Until very recently, the existence of GPC could only be inferred by indirect labeling strategies. The last few years have seen significant progress in the identification of biomarkers that allow prospective identification of GPC. The analysis of these unique cell populations is providing new insights into the molecular underpinnings of gastric epithelial homeostasis and repair. Of closely related interest is the potential to identify so-called cancer stem cells, a rare subpopulation of tumor-initiating cells. Here, we review the current useful biomarkers for GPC, including: (a) those that have been demonstrated by lineage tracing to give rise to all gastric cell lineages (e.g., the villin-transgene marker as well as Lgr5); (b) those that give rise to a subset of gastric lineages (e.g., TFF2); (c) markers that recognize cryptic progenitors for metaplasia (e.g., MIST1), and (d) markers that have not yet been analyzed by lineage tracing (e.g., DCKL1/DCAMKL1, CD133/PROM1, and CD44). The study of these markers has been mostly limited to the mouse model, but the hope is that the rapid pace of recent breakthroughs in this animal model will soon lead to a greater understanding of human gastric stem cell biology and to new insights into gastric cancer, the second leading cause of cancer-related death worldwide.

  7. Characterization of Cancer Stem-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Transformed by Tumor-Derived Extracellular Vesicles

    PubMed Central

    Yan, Ting; Mizutani, Akifumi; Chen, Ling; Takaki, Mai; Hiramoto, Yuki; Matsuda, Shuichi; Shigehiro, Tsukasa; Kasai, Tomonari; Kudoh, Takayuki; Murakami, Hiroshi; Masuda, Junko; Hendrix, Mary J. C.; Strizzi, Luigi; Salomon, David S.; Fu, Li; Seno, Masaharu

    2014-01-01

    Several studies have shown that cancer niche can perform an active role in the regulation of tumor cell maintenance and progression through extracellular vesicles-based intercellular communication. However, it has not been reported whether this vesicle-mediated communication affects the malignant transformation of normal stem cells/progenitors. We have previously reported that the conditioned medium derived from the mouse Lewis Lung Carcinoma (LLC) cell line can convert mouse induced pluripotent stem cells (miPSCs) into cancer stem cells (CSCs), indicating that normal stem cells when placed in an aberrant microenvironment can give rise to functionally active CSCs. Here, we focused on the contribution of tumor-derived extracellular vesicles (tEVs) that are secreted from LLC cells to induce the transformation of miPSCs into CSCs. We isolated tEVs from the conditioned medium of LLC cells, and then the differentiating miPSCs were exposed to tEVs for 4 weeks. The resultant tEV treated cells (miPS-LLCev) expressed Nanog and Oct3/4 proteins comparable to miPSCs. The frequency of sphere formation of the miPS-LLCev cells in suspension culture indicated that the self-renewal capacity of the miPS-LLCev cells was significant. When the miPS-LLCev cells were subcutaneously transplanted into Balb/c nude mice, malignant liposarcomas with extensive angiogenesis developed. miPS-LLCevPT and miPS-LLCevDT, the cells established from primary site and disseminated liposarcomas, respectively, showed their capacities to self-renew and differentiate into adipocytes and endothelial cells. Moreover, we confirmed the secondary liposarcoma development when these cells were transplanted. Taken together, these results indicate that miPS-LLCev cells possess CSC properties. Thus, our current study provides the first evidence that tEVs have the potential to induce CSC properties in normal tissue stem cells/progenitors. PMID:25057308

  8. TRX-E-002-1 Induces c-Jun-Dependent Apoptosis in Ovarian Cancer Stem Cells and Prevents Recurrence In Vivo.

    PubMed

    Alvero, Ayesha B; Heaton, Andrew; Lima, Eydis; Pitruzzello, Mary; Sumi, Natalia; Yang-Hartwich, Yang; Cardenas, Carlos; Steinmacher, Sahra; Silasi, Dan-Arin; Brown, David; Mor, Gil

    2016-06-01

    Chemoresistance is a major hurdle in the management of patients with epithelial ovarian cancer and is responsible for its high mortality. Studies have shown that chemoresistance is due to the presence of a subgroup of cancer cells with stemness properties and a high capacity for tumor repair. We have developed a library of super-benzopyran analogues to generate potent compounds that can induce cell death in chemoresistant cancer stem cells. TRX-E-002-1 is identified as the most potent analogue and can induce cell death in all chemoresistant CD44(+)/MyD88(+) ovarian cancer stem cells tested (IC50 = 50 nmol/L). TRX-E-002-1 is also potent against spheroid cultures formed from cancer stem cells, chemosensitive CD44(-)/MyD88(-) ovarian cancer cells, and heterogeneous cultures of ovarian cancer cells. Cell death was associated with the phosphorylation and increased levels of c-Jun and induction of caspases. In vivo, TRX-E-002-1 given as daily intraperitoneal monotherapy at 100 mg/kg significantly decreased intraperitoneal tumor burden compared with vehicle control. When given in combination with cisplatin, animals receiving the combination of cisplatin and TRX-E-002-1 showed decreased tumor burden compared with each monotherapy. Finally, TRX-E-002-1 given as maintenance treatment after paclitaxel significantly delayed disease recurrence. Our results suggest that TRX-E-002-1 may fill the current need for better therapeutic options in the control and management of recurrent ovarian cancer and may help improve patient survival. Mol Cancer Ther; 15(6); 1279-90. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Dual-Mode Imaging-Guided Synergistic Chemo- and Magnetohyperthermia Therapy in a Versatile Nanoplatform To Eliminate Cancer Stem Cells.

    PubMed

    Tang, Jinglong; Zhou, Huige; Liu, Jiaming; Liu, Jing; Li, Wanqi; Wang, Yuqing; Hu, Fan; Huo, Qing; Li, Jiayang; Liu, Ying; Chen, Chunying

    2017-07-19

    Cancer stem cells (CSCs) have been identified as a new target for therapy in diverse cancers. Traditional therapies usually kill the bulk of cancer cells, but are often unable to effectively eliminate CSCs, which may lead to drug resistance and cancer relapse. Herein, we propose a novel strategy: fabricating multifunctional magnetic Fe 3 O 4 @PPr@HA hybrid nanoparticles and loading it with the Notch signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycinet-butylester (DAPT) to eliminate CSCs. Hyaluronic acid ligands greatly enhance the accumulation of the hybrid nanoparticles in the tumor site and in the CSCs. Both hyaluronase in the tumor microenvironment and the magnetic hyperthermia effect of the inner magnetic core can accelerate the release of DAPT. This controlled release of DAPT in the tumor site further enhances the ability of the combination of chemo- and magnetohyperthermia therapy to eliminate cancer stem cells. With the help of polypyrrole-mediated photoacoustic and Fe 3 O 4 -mediated magnetic resonance imaging, the drug release can be precisely monitored in vivo. This versatile nanoplatform enables effective elimination of the cancer stem cells and monitoring of the drugs.

  10. Regulation of Ovarian Cancer Stem Cells or Tumor-Initiating Cells

    PubMed Central

    Kwon, Mi Jeong; Shin, Young Kee

    2013-01-01

    Cancer stem cells or tumor-initiating cells (CSC/TICs), which can undergo self-renewal and differentiation, are thought to play critical roles in tumorigenesis, therapy resistance, tumor recurrence and metastasis. Tumor recurrence and chemoresistance are major causes of poor survival rates of ovarian cancer patients, which may be due in part to the existence of CSC/TICs. Therefore, elucidating the molecular mechanisms responsible for the ovarian CSC/TICs is required to develop a cure for this malignancy. Recent studies have indicated that the properties of CSC/TICs can be regulated by microRNAs, genes and signaling pathways which also function in normal stem cells. Moreover, emerging evidence suggests that the tumor microenvironments surrounding CSC/TICs are crucial for the maintenance of these cells. Similarly, efforts are now being made to unravel the mechanism involved in the regulation of ovarian CSC/TICs, although much work is still needed. This review considers recent advances in identifying the genes and pathways involved in the regulation of ovarian CSC/TICs. Furthermore, current approaches targeting ovarian CSC/TICs are described. Targeting both CSC/TICs and bulk tumor cells is suggested as a more effective approach to eliminating ovarian tumors. Better understanding of the regulation of ovarian CSC/TICs might facilitate the development of improved therapeutic strategies for recurrent ovarian cancer. PMID:23528891

  11. Dissecting tumor metabolic heterogeneity: Telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells

    PubMed Central

    Lamb, Rebecca; Ozsvari, Bela; Bonuccelli, Gloria; Smith, Duncan L.; Pestell, Richard G.; Martinez-Outschoorn, Ubaldo E.; Clarke, Robert B.; Sotgia, Federica; Lisanti, Michael P.

    2015-01-01

    Tumor cell metabolic heterogeneity is thought to contribute to tumor recurrence, distant metastasis and chemo-resistance in cancer patients, driving poor clinical outcome. To better understand tumor metabolic heterogeneity, here we used the MCF7 breast cancer line as a model system to metabolically fractionate a cancer cell population. First, MCF7 cells were stably transfected with an hTERT-promoter construct driving GFP expression, as a surrogate marker of telomerase transcriptional activity. To enrich for immortal stem-like cancer cells, MCF7 cells expressing the highest levels of GFP (top 5%) were then isolated by FACS analysis. Notably, hTERT-GFP(+) MCF7 cells were significantly more efficient at forming mammospheres (i.e., stem cell activity) and showed increased mitochondrial mass and mitochondrial functional activity, all relative to hTERT-GFP(−) cells. Unbiased proteomics analysis of hTERT-GFP(+) MCF7 cells directly demonstrated the over-expression of 33 key mitochondrial proteins, 17 glycolytic enzymes, 34 ribosome-related proteins and 17 EMT markers, consistent with an anabolic cancer stem-like phenotype. Interestingly, MT-CO2 (cytochrome c oxidase subunit 2; Complex IV) expression was increased by >20-fold. As MT-CO2 is encoded by mt-DNA, this finding is indicative of increased mitochondrial biogenesis in hTERT-GFP(+) MCF7 cells. Importantly, most of these candidate biomarkers were transcriptionally over-expressed in human breast cancer epithelial cells in vivo. Similar results were obtained using cell size (forward/side scatter) to fractionate MCF7 cells. Larger stem-like cells also showed increased hTERT-GFP levels, as well as increased mitochondrial mass and function. Thus, this simple and rapid approach for the enrichment of immortal anabolic stem-like cancer cells will allow us and others to develop new prognostic biomarkers and novel anti-cancer therapies, by specifically and selectively targeting this metabolic sub-population of aggressive

  12. The Role of Biomaterials on Cancer Stem Cell Enrichment and Behavior

    NASA Astrophysics Data System (ADS)

    Ordikhani, Faride; Kim, Yonghyun; Zustiak, Silviya P.

    2015-11-01

    The theory of cancer stem cells (CSCs) and their role in cancer metastasis, tumorigenicity and resistance to therapy is slowly shifting the emphasis on the search for cancer cure: more evidence is surfacing that a successful therapy should be geared against this rare cancer cell population. Unfortunately, CSCs are difficult to culture in vitro which severely limits the progress of CSC research. This review gives a brief overview of CSCs and their microenvironment, with particular focus on studies that used in vitro biomaterial-based models and biomaterial/CSC interfaces for the enrichment of CSCs. Biomaterial properties relevant to CSC behaviors are also addressed. While the discussed research field is still in its infancy, it appears that in vitro cancer models that include a biomaterial can support CSC enrichment and this has proved indispensable to the study of their biology as well as the development of novel cancer therapies.

  13. Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411.

    PubMed

    Holmboe, Sif; Hansen, Pernille Lund; Thisgaard, Helge; Block, Ines; Müller, Carolin; Langkjær, Niels; Høilund-Carlsen, Poul Flemming; Olsen, Birgitte Brinkmann; Mollenhauer, Jan

    2017-01-01

    Cancer stem cells represent the putative tumor-driving subpopulation thought to account for drug resistance, relapse, and metastatic spread of epithelial and other cancer types. Accordingly, cell surface markers for therapeutic delivery to cancer stem cells are subject of intense research. Somatostatin receptor 2 and nucleolin are known to be overexpressed by various cancer types, which have elicited comprehensive efforts to explore their therapeutic utilization. Here, we evaluated somatostatin receptor 2 targeting and nucleolin targeting for therapeutic delivery to cancer stem cells from lung cancer. Nucleolin is expressed highly but not selectively, while somatostatin receptor 2 is expressed selectively but not highly by cancer cells. The non-small cell lung cancer cell lines A549 and H1299, displayed average levels of both surface molecules as judged based on analysis of a larger cell line panel. H1299 compared to A549 cells showed significantly elevated sphere-forming capacity, indicating higher cancer stem cell content, thus qualifying as suitable test system. Nucleolin-targeting 57Co-DOTA-AS1411 aptamer showed efficient internalization by cancer cells and, remarkably, at even higher efficiency by cancer stem cells. In contrast, somatostatin receptor 2 expression levels were not sufficiently high in H1299 cells to confer efficient uptake by either non-cancer stem cells or cancer stem cells. The data provides indication that the nucleolin-targeting AS1411 aptamer might be used for therapeutic delivery to non-small cell lung cancer stem cells.

  14. Breast cancer stem cell-like cells generated during TGFβ-induced EMT are radioresistant.

    PubMed

    Konge, Julie; Leteurtre, François; Goislard, Maud; Biard, Denis; Morel-Altmeyer, Sandrine; Vaurijoux, Aurélie; Gruel, Gaetan; Chevillard, Sylvie; Lebeau, Jérôme

    2018-05-04

    Failure of conventional antitumor therapy is commonly associated with cancer stem cells (CSCs), which are often defined as inherently resistant to radiation and chemotherapeutic agents. However, controversy about the mechanisms involved in the radiation response remains and the inherent intrinsic radioresistance of CSCs has also been questioned. These discrepancies observed in the literature are strongly associated with the cell models used. In order to clarify these contradictory observations, we studied the radiosensitivity of breast CSCs using purified CD24 -/low /CD44 + CSCs and their corresponding CD24 + /CD44 low non-stem cells. These cells were generated after induction of the epithelial-mesenchymal transition (EMT) by transforming growth factor β (TGFβ) in immortalized human mammary epithelial cells (HMLE). Consequently, these 2 cellular subpopulations have an identical genetic background, their differences being related exclusively to TGFβ-induced cell reprogramming. We showed that mesenchymal CD24 -/low /CD44 + CSCs are more resistant to radiation compared with CD24 + /CD44 low parental cells. Cell cycle distribution and free radical scavengers, but not DNA repair efficiency, appeared to be intrinsic determinants of cellular radiosensitivity. Finally, for the first time, we showed that reduced radiation-induced activation of the death receptor pathways (FasL, TRAIL and TNF-α) at the transcriptional level was a key causal event in the radioresistance of CD24 -/low / CD44+ cells acquired during EMT.

  15. Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors

    DTIC Science & Technology

    2009-05-01

    contaminating rat UGSE cells ; and regions of host mouse glands were either from circulating pluripotent stem cells or local epithelial cells which were...CONTRACT NUMBER Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors 5b. GRANT NUMBER 81WXH...NOTES 14. ABSTRACT The objective of this proposal was to isolate, grow, and characterize normal prostate stem cells and establish new prostate

  16. uPAR-controlled oncolytic adenoviruses eliminate cancer stem cells in human pancreatic tumors.

    PubMed

    Sobrevals, Luciano; Mato-Berciano, Ana; Urtasun, Nerea; Mazo, Adela; Fillat, Cristina

    2014-01-01

    Pancreatic tumors contain cancer stem cells highly resistant to chemotherapy. The identification of therapies that can eliminate this population of cells might provide with more effective treatments. In the current work we evaluated the potential of oncolytic adenoviruses to act against pancreatic cancer stem cells (PCSC). PCSC from two patient-derived xenograft models were isolated from orthotopic pancreatic tumors treated with saline, or with the chemotherapeutic agent gemcitabine. An enrichment in the number of PCSC expressing the cell surface marker CD133 and a marked enhancement on tumorsphere formation was observed in gemcitabine treated tumors. No significant increase in the CD44, CD24, and epithelial-specific antigen (ESA) positive cells was observed. Neoplastic sphere-forming cells were susceptible to adenoviral infection and exposure to oncolytic adenoviruses resulted in elevated cytotoxicity with both Adwt and the tumor specific AduPARE1A adenovirus. In vivo, intravenous administration of a single dose of AduPARE1A in human-derived pancreatic xenografts led to a remarkable anti-tumor effect. In contrast to gemcitabine AduPARE1A treatment did not result in PCSC enrichment. No enrichment on tumorspheres neither on the CD133(+) population was detected. Therefore our data provide evidences of the relevance of uPAR-controlled oncolytic adenoviruses for the elimination of pancreatic cancer stem cells. © 2013.

  17. TM4SF1 promotes the self-renewal of esophageal cancer stem-like cells and is regulated by miR-141.

    PubMed

    Xue, Lei; Yu, Xiying; Jiang, Xingran; Deng, Xin; Mao, Linlin; Guo, Liping; Fan, Jinhu; Fan, Qinqxia; Wang, Liuxing; Lu, Shih-Hsin

    2017-03-21

    Cancer stem-like cells have been identified in primary human tumors and cancer cell lines. Previously we found TM4SF1 gene was highly expressed in side population (SP) cells from esophageal squamous cell carcinoma (ESCC) cell lines, but the role and underlying mechanism of TM4SF1 in ESCC remain unclear. In this study, we observed TM4SF1 was up-regulated but miR-141 was down-regulated in SP cells isolated from ESCC cell lines. TM4SF1 could stimulate the self-renewal ability and carcinogenicity of esophageal cancer stem-like cells, and promote cell invasion and migration. In miR-141 overexpression cells, the expression of TM4SF1 was significantly reduced. We also found that overexpression of miR-141 could abolish the self-renewal ability and carcinogenicity of esophageal cancer stem-like cells and decrease cell invasion and migration by suppressing TM4SF1. Consequently, TM4SF1 is a direct target gene of miR-141. The regulation of TM4SF1 by miR-141 may play an important role in controlling self-renewals of esophageal cancer stem-like cells. It may also promote the development of new therapeutic strategies and efficient drugs to target ESCC stem-like cells.

  18. Emodin As an Effective Agent in Targeting Cancer Stem-Like Side Population Cells of Gallbladder Carcinoma

    PubMed Central

    Li, Xin-xing; Dong, Ying; Wang, Wei; Wang, Hao-lu; Chen, Yu-ying; Shi, Gui-ying; Yi, Jing

    2013-01-01

    Side population (SP) cells are previously identified from bone marrow based on their capacity to efflux of the fluorescent dye Hoechst 33342. Recent studies demonstrate that SP cells isolated from various cancer cell lines and primary tumors possess stem-cell-like properties. Thus, targeting tumor SP cells may provide new strategies for treatment in clinic. We previously showed that 1,3,8-trihydroxy-6-methylanthraquinone (emodin), a reactive oxygen species (ROS) generator, enhanced sensitivity of gallbladder cancer SGC-996 cells to cisplatin (CDDP) via generation of ROS and downregulation of multidrug-resistance-associated protein 1 (MRP1). To determine whether emodin also acts effectively on cancer stem cells of gallbladder carcinoma, we use SP cells as a model of cancer stem-cell-like cells. Here, we found that emodin, via ROS-related mechanism and suppressing the function of ATP-binding cassette super-family G member (ABCG2), which is known to be associated with Hoechst dye efflux activity of SP cells, not only reduced the ratio, inhibited clone formation, and eliminated sphere formation of SP cells effectively, but also promoted obviously the intracellular accumulation of doxorubicin, the main substrate of the efflux pump ABCG2. In addition, emodin could sensitize CDDP, via inhibition of expression of ABCG2, to overcome chemoresistance of SP cells. Importantly, similar to the experiment in vitro, emodin/CDDP co-treatment in vivo suppressed the tumor growth derived from SP cells through downregulating ABCG2 expression. Our results suggest that emodin is an effective agent targeting cancer stem-like SP cells of gallbladder carcinoma, either alone or acts as a chemotherapy enhancer. PMID:22974371

  19. Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells.

    PubMed

    Sahpazidou, Despina; Geromichalos, George D; Stagos, Dimitrios; Apostolou, Anna; Haroutounian, Serkos A; Tsatsakis, Aristidis M; Tzanakakis, George N; Hayes, A Wallace; Kouretas, Dimitrios

    2014-10-15

    A major part of the wineries' wastes is composed of grape stems which are discarded mainly in open fields and cause environmental problems due mainly to their high polyphenolic content. The grape stem extracts' use as a source of high added value polyphenols presents great interest because this combines a profitable venture with environmental protection close to wine-producing zones. In the present study, at first, the Total Polyphenolic Content (TPC) and the polyphenolic composition of grape stem extracts from four different Greek Vitis vinifera varieties were determined by HPLC methods. Afterwards, the grape stem extracts were examined for their ability to inhibit growth of colon (HT29), breast (MCF-7 and MDA-MB-23), renal (786-0 and Caki-1) and thyroid (K1) cancer cells. The cancer cells were exposed to the extracts for 72 h and the effects on cell growth were evaluated using the SRB assay. The results indicated that all extracts inhibited cell proliferation, with IC₅₀ values of 121-230 μg/ml (MCF-7), 121-184 μg/ml (MDA-MD-23), 175-309 μg/ml (HT29), 159-314 μg/ml (K1), 180-225 μg/ml (786-0) and 134->400 μg/ml (Caki-1). This is the first study presenting the inhibitory activity of grape stem extracts against growth of colon, breast, renal and thyroid cancer cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells.

    PubMed

    Ferreira-Teixeira, Margarida; Paiva-Oliveira, Daniela; Parada, Belmiro; Alves, Vera; Sousa, Vitor; Chijioke, Obinna; Münz, Christian; Reis, Flávio; Rodrigues-Santos, Paulo; Gomes, Célia

    2016-10-21

    High-grade non-muscle invasive bladder cancer (NMIBC) has a high risk of recurrence and progression to muscle-invasive forms, which seems to be largely related to the presence of tumorigenic stem-like cell populations that are refractory to conventional therapies. Here, we evaluated the therapeutic potential of Natural Killer (NK) cell-based adoptive immunotherapy against chemoresistant bladder cancer stem-like cells (CSCs) in a pre-clinical relevant model, using NK cells from healthy donors and NMIBC patients. Cytokine-activated NK cells from healthy donors and from high-grade NMIBC patients were phenotypically characterized and assayed in vitro against stem-like and bulk differentiated bladder cancer cells. Stem-like cells were isolated from two bladder cancer cell lines using the sphere-forming assay. The in vivo therapeutic efficacy was evaluated in mice bearing a CSC-induced orthotopic bladder cancer. Animals were treated by intravesical instillation of interleukin-activated NK cells. Tumor response was evaluated longitudinally by non-invasive bioluminescence imaging. NK cells from healthy donors upon activation with IL-2 and IL-15 kills indiscriminately both stem-like and differentiated tumor cells via stress ligand recognition. In addition to cell killing, NK cells shifted CSCs towards a more differentiated phenotype, rendering them more susceptible to cisplatin, highlighting the benefits of a possible combined therapy. On the contrary, NK cells from NMIBC patients displayed a low density on NK cytotoxicity receptors, adhesion molecules and a more immature phenotype, losing their ability to kill and drive differentiation of CSCs. The local administration, via the transurethral route, of activated NK cells from healthy donors provides an efficient tumor infiltration and a subsequent robust tumoricidal activity against bladder cancer with high selective cytolytic activity against CSCs, leading to a dramatic reduction in tumor burden from 80 % to complete

  1. Cigarette Smoke Induces Stem Cell Features of Pancreatic Cancer Cells via PAF1.

    PubMed

    Nimmakayala, Rama Krishna; Seshacharyulu, Parthasarathy; Lakshmanan, Imayavaramban; Rachagani, Satyanarayana; Chugh, Seema; Karmakar, Saswati; Rauth, Sanchita; Vengoji, Raghupathy; Atri, Pranita; Talmon, Geoffrey A; Lele, Subodh M; Smith, Lynette M; Thapa, Ishwor; Bastola, Dhundy; Ouellette, Michel M; Batra, Surinder K; Ponnusamy, Moorthy P

    2018-06-01

    Cigarette smoking is a major risk factor for pancreatic cancer. Aggressive pancreatic tumors contain cancer cells with stem cell features. We investigated whether cigarette smoke induces stem cell features in pancreatic cancer cells. Kras G12D ; Pdx1-Cre (KC) mice were exposed to cigarette smoke or clean air (controls) for up to 20 weeks; pancreata were collected and analyzed by histology, quantitative reverse transcription PCR, and confocal immunofluorescence microscopy. HPNE and Capan1 cells were exposed to cigarette smoke extract (CSE), nicotine and nicotine-derived carcinogens (NNN or NNK), or clean air (controls) for 80 days and evaluated for stem cell markers and features using flow cytometry-based autofluorescence, sphere formation, and immunoblot assays. Proteins were knocked down in cells with small interfering RNAs. We performed RNA sequencing analyses of CSE-exposed cells. We used chromatin immunoprecipitation assays to confirm the binding of FOS like 1, AP-1 transcription factor subunit (FOSL1) to RNA polymerase II-associated factor (PAF1) promoter. We obtained pancreatic ductal adenocarcinoma (PDAC) and matched non-tumor tissues (n=15) and performed immunohistochemical analyses. Chronic exposure of HPNE and Capan1 cells to CSE caused them to increase markers of stem cells, including autofluorescence and sphere formation, compared to control cells. These cells increased expression of ABCG2, SOX9 and PAF1, via cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) signaling to mitogen-activated protein kinase 1 and FOSL1. Pancreatic cell lines with knockdown of PAF1 did not develop features of stem cells upon exposure to CSE. Exposure of cells to NNN and NNK led to increased expression of CHRNA7, FOSL1, and PAF1 along with stem cell features. Pancreata from KC mice exposed to cigarette smoke had increased levels of PAF1 mRNA and protein, compared with control mice, as well as increased expression of SOX9. Levels of PAF1 and FOSL1 were increased in PDAC

  2. Enrichment of the Cancer Stem Phenotype in Sphere Cultures of Prostate Cancer Cell Lines Occurs through Activation of Developmental Pathways Mediated by the Transcriptional Regulator ΔNp63α

    PubMed Central

    Portillo-Lara, Roberto; Alvarez, Mario Moisés

    2015-01-01

    Background Cancer stem cells (CSC) drive prostate cancer tumor survival and metastasis. Nevertheless, the development of specific therapies against CSCs is hindered by the scarcity of these cells in prostate tissues. Suspension culture systems have been reported to enrich CSCs in primary cultures and cell lines. However, the molecular mechanisms underlying this phenomenon have not been fully explored. Methodology/Principal Findings We describe a prostasphere assay for the enrichment of CD133+ CSCs in four commercial PCa cell lines: 22Rv1, DU145, LNCaP, and PC3. Overexpression of CD133, as determined by flow cytometric analysis, correlated with an increased clonogenic, chemoresistant, and invasive potential in vitro. This phenotype is concordant to that of CSCs in vivo. Gene expression profiling was then carried out using the Cancer Reference panel and the nCounter system from NanoString Technologies. This analysis revealed several upregulated transcripts that can be further explored as potential diagnostic markers or therapeutic targets. Furthermore, functional annotation analysis suggests that ΔNp63α modulates the activation of developmental pathways responsible for the increased stem identity of cells growing in suspension cultures. Conclusions/Significance We conclude that profiling the genetic mechanisms involved in CSC enrichment will help us to better understand the molecular pathways that underlie CSC pathophysiology. This platform can be readily adapted to enrich and assay actual patient samples, in order to design patient-specific therapies that are aimed particularly against CSCs. PMID:26110651

  3. Bruton's tyrosine kinase (Btk) inhibitor ibrutinib suppresses stem-like traits in ovarian cancer

    PubMed Central

    Zucha, Muhammad Ary; Wu, Alexander T.H.; Lee, Wei-Hwa; Wang, Liang-Shun; Lin, Wan-Wan; Yuan, Chiou-Chung; Yeh, Chi-Tai

    2015-01-01

    According to a Prognoscan database, upregulation of Bruton's tyrosine kinase (Btk) is associated with low overall survival in ovarian cancer patients. We found that spheroids-forming ovarian cancer cell, which highly expressed cancer stem-like cell (CSC) markers and Btk, were cisplatin resistant. We next treated CSCs and non-CSCs by a combination of ibrutinib and cisplatin. We found that chemoresistance was dependent on Btk and JAK2/STAT3, which maintained CSC by inducing Sox-2 and prosurvival genes. We suggest that addition of ibrutinib to cisplatin may improve treatment outcome in ovarian cancer. PMID:26036311

  4. Secretome protein signature of human pancreatic cancer stem-like cells.

    PubMed

    Brandi, Jessica; Dalla Pozza, Elisa; Dando, Ilaria; Biondani, Giulia; Robotti, Elisa; Jenkins, Rosalind; Elliott, Victoria; Park, Kevin; Marengo, Emilio; Costello, Eithne; Scarpa, Aldo; Palmieri, Marta; Cecconi, Daniela

    2016-03-16

    Emerging research has demonstrated that pancreatic ductal adenocarcinoma (PDAC) contains a sub-population of cancer stem cells (CSCs) characterized by self-renewal, anchorage-independent-growth, long-term proliferation and chemoresistance. The secretome analysis of pancreatic CSCs has not yet been performed, although it may provide insight into tumour/microenvironment interactions and intracellular processes, as well as to identify potential biomarkers. To characterize the secreted proteins of pancreatic CSCs, we performed an iTRAQ-based proteomic analysis to compare the secretomes of Panc1 cancer stem-like cells (Panc1 CSCs) and parental cell line. A total of 72 proteins were found up-/down-regulated in the conditioned medium of Panc1 CSCs. The pathway analysis revealed modulation of vital physiological pathways including glycolysis, gluconeogenesis and pentose phosphate. Through ELISA immunoassays we analysed the presence of the three proteins most highly secreted by Panc1 CSCs (ceruloplasmin, galectin-3, and MARCKS) in sera of PDAC patient. ROC curve analysis suggests ceruloplasmin as promising marker for patients negative for CA19-9. Overall, our study provides a systemic secretome analysis of pancreatic CSCs revealing a number of secreted proteins which participate in pathological conditions including cancer differentiation, invasion and metastasis. They may serve as a valuable pool of proteins from which biomarkers and therapeutic targets can be identified. The secretome of CSCs is a rich reservoir of biomarkers of cancer progression and molecular therapeutic targets, and thus is a topic of great interest for cancer research. The secretome analysis of pancreatic CSCs has not yet been performed. Recently, our group has demonstrated that Panc-1 CSCs isolated from parental cell line by using the CSC selective medium, represent a model of great importance to deepen the understanding of the biology of pancreatic adenocarcinoma. To our knowledge, this is the first

  5. MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans

    PubMed Central

    Virant-Klun, Irma; Ståhlberg, Anders; Kubista, Mikael; Skutella, Thomas

    2016-01-01

    MicroRNAs are a family of naturally occurring small noncoding RNA molecules that play an important regulatory role in gene expression. They are suggested to regulate a large proportion of protein encoding genes by mediating the translational suppression and posttranscriptional control of gene expression. Recent findings show that microRNAs are emerging as important regulators of cellular differentiation and dedifferentiation, and are deeply involved in developmental processes including human preimplantation development. They keep a balance between pluripotency and differentiation in the embryo and embryonic stem cells. Moreover, it became evident that dysregulation of microRNA expression may play a fundamental role in progression and dissemination of different cancers including ovarian cancer. The interest is still increased by the discovery of exosomes, that is, cell-derived vesicles, which can carry different proteins but also microRNAs between different cells and are involved in cell-to-cell communication. MicroRNAs, together with exosomes, have a great potential to be used for prognosis, therapy, and biomarkers of different diseases including infertility. The aim of this review paper is to summarize the existent knowledge on microRNAs related to female fertility and cancer: from primordial germ cells and ovarian function, germinal stem cells, oocytes, and embryos to embryonic stem cells. PMID:26664407

  6. Enhanced anti-tumor activity and cytotoxic effect on cancer stem cell population of metformin-butyrate compared with metformin HCl in breast cancer.

    PubMed

    Lee, Kyung-Min; Lee, Minju; Lee, Jiwoo; Kim, Sung Wuk; Moon, Hyeong-Gon; Noh, Dong-Young; Han, Wonshik

    2016-06-21

    Metformin, which is a drug commonly used to treat type 2 diabetes, has shown anti-tumor effects in numerous experimental, epidemiologic, observational, and clinical studies. Here, we report a new metformin derivative, metformin-butyrate (MFB). Compared to metformin-HCl, it more potently activates AMPK, inhibits mTOR, and impairs cell cycle progression at S and G2/M phases. Moreover, MFB inhibits the mammosphere formation of breast cancer cells and shows cytotoxic effects against CD44+CD24-/low populations in vitro and in vivo, indicating that it might have preferential effects on the cancer stem cell population. MFB showed synergistic cytotoxicity with docetaxel and cisplatin, and MFB pretreatment of breast cancer cells prior to their injection into the mammary fat pads of mice significantly decreased the obtained xenograft tumor volumes, compared with untreated or metformin-pretreated cells. Overall, MFB showed greater anti-neoplastic activity and greater efficacies in targeting the G2/M phase and breast cancer stem cell population, compared to metformin-HCl. This suggests that MFB may be a promising therapeutic agent against aggressive and resistant breast cancers.

  7. Resistance to Cell Death and Its Modulation in Cancer Stem Cells

    PubMed Central

    Safa, Ahmad R.

    2017-01-01

    Accumulating evidence has demonstrated that human cancers arise from various tissues of origin that initiate from cancer stem cells (CSCs) or cancer-initiating cells. The extrinsic and intrinsic apoptotic pathways are dysregulated in CSCs, and these cells play crucial roles in tumor initiation, progression, cell death resistance, chemo- and radiotherapy resistance, and tumor recurrence. Understanding CSC-specific signaling proteins and pathways is necessary to identify specific therapeutic targets that may lead to the development of more efficient therapies selectively targeting CSCs. Several signaling pathways—including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/β-catenin—and expression of the CSC markers CD133, CD24, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain CSC properties. Studying such pathways may help to understand CSC biology and lead to the development of potential therapeutic interventions to render CSCs more sensitive to cell death triggered by chemotherapy and radiation therapy. Moreover, recent demonstrations of dedifferentiation of differentiated cancer cells into CSC-like cells have created significant complexity in the CSCs hypothesis. Therefore, any successful therapeutic agent or combination of drugs for cancer therapy must eliminate not only CSCs but differentiated cancer cells and the entire bulk of tumor cells. This review article expands on the CSC hypothesis and paradigm with respect to major signaling pathways and effectors that regulate CSC apoptosis resistance. Moreover, selective CSC apoptotic modulators and their therapeutic potential for making tumors more responsive to therapy are discussed. The use of novel therapies, including small-molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of CSCs, immunotherapy, and noncoding microRNAs may provide better means of

  8. Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling.

    PubMed

    Al-Wadei, Mohammed H; Banerjee, Jheelam; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2016-01-01

    A small subpopulation of pancreatic cancer cells with characteristics of stem cells drive tumour initiation, progression and metastasis. A better understanding of the regulation of cancer stem cells may lead to more effective cancer prevention and therapy. We have shown that the proliferation and migration of pancreatic cancer cell lines is activated by the nicotinic receptor-mediated release of stress neurotransmitters, responses reversed by γ-aminobutyric acid (GABA). However, the observed cancer inhibiting effects of GABA will only succeed clinically if GABA inhibits pancreatic cancer stem cells (PCSCs) in addition to the more differentiated cancer cells that comprise the majority of cancer tissues and cell lines. Using PCSCs isolated from two pancreatic cancer patients by cell sorting and by spheroid formation assay from pancreatic cancer cell line Panc-1, we tested the hypothesis that nicotine induces the self-renewal of PCSCs. Nicotinic acetylcholine receptors (nAChRs) α3, α4, α5 and α7 were expressed and chronic exposure to nicotine increased the protein expression of these receptors. Immunoassays showed that PCSCs produced the stress neurotransmitters epinephrine and norepinephrine and the inhibitory neurotransmitter GABA. Chronic nicotine significantly increased the production of stress neurotransmitters and sonic hedgehog (SHH) while inducing Gli1 protein and decreasing GABA. GABA treatment inhibited the induction of SHH and Gli1. Spheroid formation and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assays showed significant nicotine-induced increases in self renewal and cell proliferation, responses blocked by GABA. Our data suggest that nicotine increases the SHH-mediated malignant potential of PCSCs and that GABA prevents these effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Stem cell-based gene therapy activated using magnetic hyperthermia to enhance the treatment of cancer

    PubMed Central

    Yin, Perry T.; Shah, Shreyas; Pasquale, Nicholas J.; Garbuzenko, Olga B.; Minko, Tamara; Lee, Ki-Bum

    2015-01-01

    Stem cell-based gene therapies, wherein stem cells are genetically engineered to express therapeutic molecules, have shown tremendous potential for cancer applications owing to their innate ability to home to tumors. However, traditional stem cell-based gene therapies are hampered by our current inability to control when the therapeutic genes are actually turned on, thereby resulting in detrimental side effects. Here, we report the novel application of magnetic core-shell nanoparticles for the dual purpose of delivering and activating a heat-inducible gene vector that encodes TNF-related apoptosis-inducing ligand (TRAIL) in adipose-derived mesenchymal stem cells (AD-MSCs). By combining the tumor tropism of the AD-MSCs with the spatiotemporal MCNP-based delivery and activation of TRAIL expression, this platform provides an attractive means with which to enhance our control over the activation of stem cell-based gene therapies. In particular, we found that these engineered AD-MSCs retained their innate ability to proliferate, differentiate, and, most importantly, home to tumors, making them ideal cellular carriers. Moreover, exposure of the engineered AD-MSCS to mild magnetic hyperthermia resulted in the selective expression of TRAIL from the engineered AD-MSCs and, as a result, induced significant ovarian cancer cell death in vitro and in vivo. PMID:26720500

  10. Regulation of stem-like cancer cells by glutamine through β-catenin pathway mediated by redox signaling.

    PubMed

    Liao, Jianwei; Liu, Pan-Pan; Hou, Guoxin; Shao, Jiajia; Yang, Jing; Liu, Kaiyan; Lu, Wenhua; Wen, Shijun; Hu, Yumin; Huang, Peng

    2017-02-28

    Cancer stem cells (CSCs) are thought to play an important role in tumor recurrence and drug resistance, and present a major challenge in cancer therapy. The tumor microenvironment such as growth factors, nutrients and oxygen affect CSC generation and proliferation by providing the necessary energy sources and growth signals. The side population (SP) analysis has been used to detect the stem-like cancer cell populations based on their high expression of ABCG2 that exports Hoechst-33342 and certain cytotoxic drugs from the cells. The purpose of this research is to investigate the effect of a main nutrient molecule, glutamine, on SP cells and the possible underlying mechanism(s). Biochemical assays and flow cytometric analysis were used to evaluate the effect of glutamine on stem-like side population cells in vitro. Molecular analyses including RNAi interfering, qRT-PCR, and immunoblotting were employed to investigate the molecular signaling in response to glutamine deprivation and its influence on tumor formation capacity in vivo. We show that glutamine supports the maintenance of the stem cell phenotype by promoting glutathione synthesis and thus maintaining redox balance for SP cells. A deprivation of glutamine in the culture medium significantly reduced the proportion of SP cells. L-asparaginase, an enzyme that catalyzes the hydrolysis of asparagine and glutamine to aspartic acid and glutamate, respectively, mimics the effect of glutamine withdrawal and also diminished the proportion of SP cells. Mechanistically, glutamine deprivation increases intracellular ROS levels, leading to down-regulation of the β-catenin pathway. Glutamine plays a significant role in maintaining the stemness of cancer cells by a redox-mediated mechanism mediated by β-catenin. Inhibition of glutamine metabolism or deprivation of glutamine by L-asparaginase may be a new strategy to eliminate CSCs and overcome drug resistance.

  11. Single Nucleotide Polymorphisms of Stemness Genes Predicted to Regulate RNA Splicing, microRNA and Oncogenic Signaling are Associated with Prostate Cancer Survival.

    PubMed

    Freedman, Jennifer A; Wang, Yanru; Li, Xuechan; Liu, Hongliang; Moorman, Patricia G; George, Daniel J; Lee, Norman H; Hyslop, Terry; Wei, Qingyi; Patierno, Steven R

    2018-05-03

    Prostate cancer is a clinically and molecularly heterogeneous disease, with variation in outcomes only partially predicted by grade and stage. Additional tools to distinguish indolent from aggressive disease are needed. Phenotypic characteristics of stemness correlate with poor cancer prognosis. Given this correlation, we identified single nucleotide polymorphisms (SNPs) of stemness-related genes and examined their associations with prostate cancer survival. SNPs within stemness-related genes were analyzed for association with overall survival of prostate cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Significant SNPs predicted to be functional were selected for linkage disequilibrium analysis and combined and stratified analyses. Identified SNPs were evaluated for association with gene expression. SNPs of CD44 (rs9666607), ABCC1 (rs35605 and rs212091) and GDF15 (rs1058587) were associated with prostate cancer survival and predicted to be functional. A role for rs9666607 of CD44 and rs35605 of ABCC1 in RNA splicing regulation, rs212091 of ABCC1 in miRNA binding site activity and rs1058587 of GDF15 in causing an amino acid change was predicted. These SNPs represent potential novel prognostic markers for overall survival of prostate cancer and support a contribution of the stemness pathway to prostate cancer patient outcome.

  12. Fluorescent CSC models evidence that targeted nanomedicines improve treatment sensitivity of breast and colon cancer stem cells.

    PubMed

    Gener, Petra; Gouveia, Luis Pleno; Sabat, Guillem Romero; de Sousa Rafael, Diana Fernandes; Fort, Núria Bergadà; Arranja, Alexandra; Fernández, Yolanda; Prieto, Rafael Miñana; Ortega, Joan Sayos; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2015-11-01

    To be able to study the efficacy of targeted nanomedicines in marginal population of highly aggressive cancer stem cells (CSC), we have developed a novel in vitro fluorescent CSC model that allows us to visualize these cells in heterogeneous population and to monitor CSC biological performance after therapy. In this model tdTomato reporter gene is driven by CSC specific (ALDH1A1) promoter and contrary to other similar models, CSC differentiation and un-differentiation processes are not restrained and longitudinal studies are feasible. We used this model for preclinical validation of poly[(d,l-lactide-co-glycolide)-co-PEG] (PLGA-co-PEG) micelles loaded with paclitaxel. Further, active targeting against CD44 and EGFR receptors was validated in breast and colon cancer cell lines. Accordingly, specific active targeting toward surface receptors enhances the performance of nanomedicines and sensitizes CSC to paclitaxel based chemotherapy. Many current cancer therapies fail because of the failure to target cancer stem cells. This surviving population soon proliferates and differentiates into more cancer cells. In this interesting article, the authors designed an in vitro cancer stem cell model to study the effects of active targeting using antibody-labeled micelles containing chemotherapeutic agent. This new model should allow future testing of various drug/carrier platforms before the clinical phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Characterization of aldehyde dehydrogenase 1 high ovarian cancer cells: Towards targeted stem cell therapy.

    PubMed

    Sharrow, Allison C; Perkins, Brandy; Collector, Michael I; Yu, Wayne; Simons, Brian W; Jones, Richard J

    2016-08-01

    The cancer stem cell (CSC) paradigm hypothesizes that successful clinical eradication of CSCs may lead to durable remission for patients with ovarian cancer. Despite mounting evidence in support of ovarian CSCs, their phenotype and clinical relevance remain unclear. We and others have found high aldehyde dehydrogenase 1 (ALDH(high)) expression in a variety of normal and malignant stem cells, and sought to better characterize ALDH(high) cells in ovarian cancer. We compared ALDH(high) to ALDH(low) cells in two ovarian cancer models representing distinct subtypes: FNAR-C1 cells, derived from a spontaneous rat endometrioid carcinoma, and the human SKOV3 cell line (described as both serous and clear cell subtypes). We assessed these populations for stem cell features then analyzed expression by microarray and qPCR. ALDH(high) cells displayed CSC properties, including: smaller size, quiescence, regenerating the phenotypic diversity of the cell lines in vitro, lack of contact inhibition, nonadherent growth, multi-drug resistance, and in vivo tumorigenicity. Microarray and qPCR analysis of the expression of markers reported by others to enrich for ovarian CSCs revealed that ALDH(high) cells of both models showed downregulation of CD24, but inconsistent expression of CD44, KIT and CD133. However, the following druggable targets were consistently expressed in the ALDH(high) cells from both models: mTOR signaling, her-2/neu, CD47 and FGF18/FGFR3. Based on functional characterization, ALDH(high) ovarian cancer cells represent an ovarian CSC population. Differential gene expression identified druggable targets that have the potential for therapeutic efficacy against ovarian CSCs from multiple subtypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Epigenetics changes caused by the fusion of human embryonic stem cell and ovarian cancer cells.

    PubMed

    He, Ke; Qu, Hu; Xu, Li-Nan; Gao, Jun; Cheng, Fu-Yi; Xiang, Peng; Zhou, Can-Quan

    2016-10-01

    To observe the effect of gene expression and tumorigenicity in hybrid cells of human embryonic stem cells (hESCs) and ovarian cancer cells in vitro and in vivo using a mouse model, and to determine its feasibility in reprogramming tumour cells growth and apoptosis, for a potential exploration of the role of hESCs and tumour cells fusion in the management of ovarian cancer. Stable transgenic hESCs (H1) and ovarian cancer cell line OVCAR-3 were established before fusion, and cell fusion system was established to analyse the related indicators. PTEN expression in HO-H1 cells was higher than those in the parental stem cells and lower than those in parental tumour cells; the growth of OV-H1 (RFP+GFP) hybrid cells with double fluorescence expressions were obviously slower than that of human embryonic stem cells and OVCAR-3 ovarian cancer cells. The apoptosis signal of the OV-H1 hybrid cells was significantly higher than that of the hESCs and OVCAR-3 ovarian cancer cells. In vivo results showed that compared with 7 days, 28 days and 35 days after inoculation of OV-H1 hybrid cells; also, apoptotic cell detection indicated that much stronger apoptotic signal was found in OV-H1 hybrid cells inoculated mouse. The hESCs can inhibit the growth of OVCAR-3 cells in vitro by suppressing p53 and PTEN expression to suppress the growth of tumour that may be achieved by inducing apoptosis of OVCAR-3 cells. The change of epigenetics after fusion of ovarian cancer cells and hESCs may become a novel direction for treatment of ovarian cancer. © 2016 The Author(s).

  15. Evidence for circulating cancer stem-like cells and epithelial-mesenchymal transition phenotype in the pleurospheres derived from lung adenocarcinoma using liquid biopsy.

    PubMed

    Mirza, Sheefa; Jain, Nayan; Rawal, Rakesh

    2017-03-01

    Lung cancer stem cells are supposed to be the main drivers of tumor initiation, maintenance, drug resistance, and relapse of the disease. Hence, identification of the cellular and molecular aspects of these cells is a prerequisite for targeted therapy of lung cancer. Currently, analysis of circulating tumor cells has the potential to become the main diagnostic technique to monitor disease progression or therapeutic response as it is non-invasive. However, accurate detection of circulating tumor cells has remained a challenge, as epithelial cell markers used so far are not always trustworthy for detecting circulating tumor cells, especially during epithelial-mesenchymal transition. As cancer stem cells are the only culprit to initiate metastatic tumors, our aim was to isolate and characterize circulating tumor stem cells rather than circulating tumor cells from the peripheral blood of NSCLC adenocarcinoma as limited data are available addressing the gene expression profiling of lung cancer stem cells. Here, we reveal that CD44(+)/CD24(-) population in circulation not only exhibit stem cell-related genes but also possess epithelial-mesenchymal transition characteristics. In conclusion, the use of one or more cancer stem cell markers along with epithelial, mesenchymal and epithelial mesenchymal transition markers will prospectively provide the most precise assessment of the threat for recurrence and metastatic disease and has a great potential for forthcoming applications in harvesting circulating tumor stem cells and their downstream applications. Our results will aid in developing diagnostic and prognostic modalities and personalized treatment regimens like dendritic cell-based immunotherapy that can be utilized for targeting and eliminating circulating tumor stem cells, to significantly reduce the possibility of relapse and improve clinical outcomes.

  16. At the Crossroads of Cancer Stem Cells, Radiation Biology, and Radiation Oncology.

    PubMed

    Gerweck, Leo E; Wakimoto, Hiroaki

    2016-03-01

    Reports that a small subset of tumor cells initiate and sustain tumor growth, are resistant to radiation and drugs, and bear specific markers have led to an explosion of cancer stem cell research. These reports imply that the evaluation of therapeutic response by changes in tumor volume is misleading, as volume changes reflect the response of the sensitive rather than the resistant tumorigenic cell population. The reports further suggest that the marker-based selection of the tumor cell population will facilitate the development of radiation treatment schedules, sensitizers, and drugs that specifically target the resistant tumorigenic cells that give rise to treatment failure. This review presents evidence that contests the observations that cancer stem cell markers reliably identify the subset of tumor cells that sustain tumor growth and that the marker-identified population is radioresistant relative to the marker-negative cells. Experimental studies show that cells and tumors that survive large radiation doses are not more radioresistant than unirradiated cells and tumors, and also show that the intrinsic radiosensitivity of unsorted colony-forming tumor cells, in combination with the fraction of unsorted tumor cells that are tumor initiating, predicts tumor radiocurability. ©2016 American Association for Cancer Research.

  17. Posttranslationally modified progesterone receptors direct ligand-specific expression of breast cancer stem cell-associated gene programs.

    PubMed

    Knutson, Todd P; Truong, Thu H; Ma, Shihong; Brady, Nicholas J; Sullivan, Megan E; Raj, Ganesh; Schwertfeger, Kathryn L; Lange, Carol A

    2017-04-17

    Estrogen and progesterone are potent breast mitogens. In addition to steroid hormones, multiple signaling pathways input to estrogen receptor (ER) and progesterone receptor (PR) actions via posttranslational events. Protein kinases commonly activated in breast cancers phosphorylate steroid hormone receptors (SRs) and profoundly impact their activities. To better understand the role of modified PRs in breast cancer, we measured total and phospho-Ser294 PRs in 209 human breast tumors represented on 2754 individual tissue spots within a tissue microarray and assayed the regulation of this site in human tumor explants cultured ex vivo. To complement this analysis, we assayed PR target gene regulation in T47D luminal breast cancer models following treatment with progestin (promegestone; R5020) and antiprogestins (mifepristone, onapristone, or aglepristone) in conditions under which the receptor is regulated by Lys388 SUMOylation (K388 intact) or is SUMO-deficient (via K388R mutation to mimic persistent Ser294 phosphorylation). Selected phospho-PR-driven target genes were validated by qRT-PCR and following RUNX2 shRNA knockdown in breast cancer cell lines. Primary and secondary mammosphere assays were performed to implicate phospho-Ser294 PRs, epidermal growth factor signaling, and RUNX2 in breast cancer stem cell biology. Phospho-Ser294 PR species were abundant in a majority (54%) of luminal breast tumors, and PR promoter selectivity was exquisitely sensitive to posttranslational modifications. Phospho-PR expression and target gene programs were significantly associated with invasive lobular carcinoma (ILC). Consistent with our finding that activated phospho-PRs undergo rapid ligand-dependent turnover, unique phospho-PR gene signatures were most prevalent in breast tumors clinically designated as PR-low to PR-null (luminal B) and included gene sets associated with cancer stem cell biology (HER2, PAX2, AHR, AR, RUNX). Validation studies demonstrated a requirement for

  18. Regulation of HIF-1-Alpha, miR-200, and Markers of Cancer Stem Cells by CDF Under Hypoxic Condition

    DTIC Science & Technology

    2012-04-01

    tumors. It has been well recognized that cancer stem cells (CSCs) and epithelial-to- mesenchymal transition (EMT) phenotypic cells are associated with...epithelial-to- mesenchymal transition (EMT), cancer stem cell (CSC) functions, and inflammation, which contribute to radiation therapy and chemotherapy... Hypoxia induces the VEGF and IL-6 cytokine production in PCa cells and its CSC-like sphere forming cells . ● The CSC-like sphere forming

  19. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells

    PubMed Central

    Liu, P; Brown, S; Goktug, T; Channathodiyil, P; Kannappan, V; Hugnot, J-P; Guichet, P-O; Bian, X; Armesilla, A L; Darling, J L; Wang, W

    2012-01-01

    Background: Glioblastoma multiforme (GBM) cells are resistant to anticancer drugs. Cancer stem cells (CSCs) are a key mediator of chemoresistance. We have reported that disulfiram (DS), an aldehyde dehydrogenase (ALDH) inhibitor, targets breast CSC-like cells. In this study, the effect of DS and combination of DS and gemcitabine (dFdC) on GBM cells and GBM stem-like cells was investigated. Methods: 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), combination index (CI)-isobologram, western blot, luciferase reporter gene assay, electrophoretic mobility-shift assay and ALDH analysis were used in this study. Results: Disulfiram is cytotoxic in GBM cell lines in a copper (Cu)-dependent manner. Disulfiram/copper enhances the cytotoxicity of dFdC. Combination index-isobologram analysis indicates a synergistic effect between DS/Cu and dFdC. Disulfiram/copper induces reactive oxygen species (ROS), activates JNK and p38 pathways and inhibits nuclear factor-kappa B activity in GBM cell lines. Disulfiram/copper may trigger intrinsic apoptotic pathway via modulation of the Bcl2 family. Disulfiram/copper abolishes stem-like cell population in GBM cell lines. Conclusion: Our findings indicate that the cytotoxicity of DS/Cu and the enhancing effect of DS/Cu on the cytotoxicity of dFdC in GBM stem-like cells may be caused by induction of ROS and inhibition of both ALDH and the NFkB pathway. Both DS and dFdC can traverse the blood–brain barrier. Further study may lead them into GBM chemotherapy. PMID:23033007

  20. Stem-Cell-Based Tumorigenesis in Adult Drosophila.

    PubMed

    Hou, S X; Singh, S R

    2017-01-01

    Recent studies suggest that a small subset of cells within a tumor, the so-called cancer stem cells (CSCs), are responsible for tumor propagation, relapse, and the eventual death of most cancer patients. CSCs may derive from a few tumor-initiating cells, which are either transformed normal stem cells or reprogrammed differentiated cells after acquiring initial cancer-causing mutations. CSCs and normal stem cells share some properties, but CSCs differ from normal stem cells in their tumorigenic ability. Notably, CSCs are usually resistant to chemo- and radiation therapies. Despite the apparent roles of CSCs in human cancers, the biology underlying their behaviors remains poorly understood. Over the past few years, studies in Drosophila have significantly contributed to this new frontier of cancer research. Here, we first review how stem-cell tumors are initiated and propagated in Drosophila, through niche appropriation in the posterior midgut and through stem-cell competition for niche occupancy in the testis. We then discuss the differences between normal and tumorigenic stem cells, revealed by studying Ras V12 -transformed stem-cell tumors in the Drosophila kidney. Finally, we review the biology behind therapy resistance, which has been elucidated through studies of stem-cell resistance and sensitivity to death inducers using female germline stem cells and intestinal stem cells of the posterior midgut. We expect that screens using adult Drosophila neoplastic stem-cell tumor models will be valuable for identifying novel and effective compounds for treating human cancers. © 2017 Elsevier Inc. All rights reserved.

  1. Transcriptomic profiling of curcumin treated human breast stem cells identifies a role for stearoyl coa-desaturase in breast cancer prevention

    PubMed Central

    Colacino, Justin A.; McDermott, Sean P.; Sartor, Maureen A.; Wicha, Max S.; Rozek, Laura S.

    2017-01-01

    Curcumin is a potential agent for both the prevention and treatment of cancers. Curcumin treatment alone, or in combination with piperine, limits breast stem cell self-renewal while remaining non-toxic to normal differentiated cells. We paired fluorescence activated cell sorting with RNA sequencing to characterize the genome-wide changes induced specifically in normal breast stem cells following treatment with these compounds. We generated genome-wide maps of the transcriptional changes that occur in epithelial-like (ALDH+) and mesenchymal-like (ALDH−/CD44+/CD24−) normal breast stem/progenitor cells following treatment with curcumin and piperine. We show that curcumin targets both stem cell populations by down-regulating expression of breast stem cell genes including ALDH1A3, CD49f, PROM1, and TP63. We also identified novel genes and pathways targeted by curcumin, including downregulation of SCD. Transient siRNA knockdown of SCD in MCF10A cells significantly inhibited mammosphere formation and the mean proportion of CD44+/CD24− cells, suggesting that SCD is a regulator of breast stemness and a target of curcumin in breast stem cells. These findings extend previous reports of curcumin targeting stem cells, here in two phenotypically distinct stem/progenitor populations isolated from normal human breast tissue. We identified novel mechanisms by which curcumin and piperine target breast stem cell self-renewal, such as by targeting lipid metabolism, providing a mechanistic link between curcumin treatment and stem cell self renewal. These results elucidate the mechanisms by which curcumin may act as a cancer preventive compound and provide novel targets for cancer prevention and treatment. PMID:27306423

  2. Transcriptomic profiling of curcumin-treated human breast stem cells identifies a role for stearoyl-coa desaturase in breast cancer prevention.

    PubMed

    Colacino, Justin A; McDermott, Sean P; Sartor, Maureen A; Wicha, Max S; Rozek, Laura S

    2016-07-01

    Curcumin is a potential agent for both the prevention and treatment of cancers. Curcumin treatment alone, or in combination with piperine, limits breast stem cell self-renewal, while remaining non-toxic to normal differentiated cells. We paired fluorescence-activated cell sorting with RNA sequencing to characterize the genome-wide changes induced specifically in normal breast stem cells following treatment with these compounds. We generated genome-wide maps of the transcriptional changes that occur in epithelial-like (ALDH+) and mesenchymal-like (ALDH-/CD44+/CD24-) normal breast stem/progenitor cells following treatment with curcumin and piperine. We show that curcumin targets both stem cell populations by down-regulating expression of breast stem cell genes including ALDH1A3, CD49f, PROM1, and TP63. We also identified novel genes and pathways targeted by curcumin, including downregulation of SCD. Transient siRNA knockdown of SCD in MCF10A cells significantly inhibited mammosphere formation and the mean proportion of CD44+/CD24- cells, suggesting that SCD is a regulator of breast stemness and a target of curcumin in breast stem cells. These findings extend previous reports of curcumin targeting stem cells, here in two phenotypically distinct stem/progenitor populations isolated from normal human breast tissue. We identified novel mechanisms by which curcumin and piperine target breast stem cell self-renewal, such as by targeting lipid metabolism, providing a mechanistic link between curcumin treatment and stem cell self-renewal. These results elucidate the mechanisms by which curcumin may act as a cancer-preventive compound and provide novel targets for cancer prevention and treatment.

  3. HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells.

    PubMed

    Colamaio, Marianna; Tosti, Nadia; Puca, Francesca; Mari, Alessia; Gattordo, Rosaria; Kuzay, Yalçın; Federico, Antonella; Pepe, Anna; Sarnataro, Daniela; Ragozzino, Elvira; Raia, Maddalena; Hirata, Hidenari; Gemei, Marica; Mimori, Koshi; Del Vecchio, Luigi; Battista, Sabrina; Fusco, Alfredo

    2016-10-01

    Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence. HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood. We have investigated the role of HMGA1 in brain tumor stem cell (BTSC) self-renewal, stemness and resistance to temozolomide by shRNA- mediated HMGA1 silencing. We first report that HMGA1 is overexpressed in a subset of BTSC lines from human GBMs. Then, we show that HMGA1 knockdown reduces self-renewal, sphere forming efficiency and stemness, and sensitizes BTSCs to temozolomide. Interestingly, HMGA1 silencing also leads to reduced tumor initiation ability in vivo. These results demonstrate a pivotal role of HMGA1 in cancer stem cell gliomagenesis and endorse HMGA1 as a suitable target for CSC-specific GBM therapy.

  4. Targeting Breast Cancer Recurrence via Hedgehog-Mediated Sensitization of Breast Cancer Stem Cells

    DTIC Science & Technology

    2011-07-01

    identification of Notch3 as a transcriptional target of ΔNp63α and a mediator of cellular quiescence in mammary stem cells. 2. Presentation of a poster...enhanced expression of Notch3 in HC11s and breast cancer cell lines, and ectopic expression of the Notch3 intracellular domain (N3ICD) was sufficient to...signaling or shRNA-mediated suppression of Notch3 were sufficient to bypass quiescence induced by ΔNp63α and other quiescence-inducing stimuli. these

  5. DOXIL when combined with Withaferin A (WFA) targets ALDH1 positive cancer stem cells in ovarian cancer.

    PubMed

    Kakar, Sham S; Worth, Christopher A; Wang, Zhenglong; Carter, Kelsey; Ratajczak, Mariusz; Gunjal, Pranesh

    Ovarian cancer is a highly aggressive and deadly disease. Currently, the treatment for ovarian cancer entails cytoreductive surgery followed by chemotherapy, mainly cisplatin or carboplatin combined with paclitaxel. Although this regimen is initially effective in a high percentage of cases, unfortunately, after few months of initial treatment, tumor relapse occurs due to platinum-resistance. DOXIL (liposomal preparation of doxorubicin) is a choice of drug for recurrent ovarian cancer. However, its response rate is very low and is accompanied by myocardial toxicity. Resistance to chemotherapy and recurrence of cancer is primarily attributed to the presence of cancer stem cells (CSCs), a small population of cells present in cancer. Effect of DOXIL and withaferin A (WFA), both alone and in combination, was investigated on cell proliferation of ovarian cancer cell line A2780 and tumor growth in SCID mice bearing i.p. ovarian tumors. ALDH1 cells were isolated from A2780 using cell sorter, and effect of DOXIL and WFA both alone and in combination on tumorigenic function of ALDH1 was studied using spheroids formation assays in vitro. Western blots were performed to examine the expression of ALDH1 and Notch 1 genes. In our studies, we showed, for the first time, that DOXIL when combined with withaferin A (WFA) elicits synergistic effect on inhibition of cell proliferation of ovarian cancer cells and inhibits the expression of ALDH1 protein, a marker for ALDH1 positive cancer stem cells (CSCs), and Notch1, a signaling pathway gene required for self-renewal of CSCs. Inhibition of expression of both ALDH1 and Notch1 genes by WFA was found to be dose dependent, whereas DOXIL (200 nM) was found to be ineffective. SCID mice, bearing i.p. ovarian tumors, were treated with a small dose of DOXIL (2 mg/kg) in combination with a sub-optimal dose of WFA (2 mg/kg) which resulted in a highly significant (60% to 70%) reduction in tumor growth, and complete inhibition of metastasis

  6. Cancer Stem Cells and Chemoresistance: The Smartest Survives the Raid

    PubMed Central

    Zhao, Jihe

    2016-01-01

    Chemoresistant metastatic relapse of minimal residual disease plays a significant role for poor prognosis of cancer. Growing evidence supports a critical role of cancer stem cell (CSC) behind the mechanisms for this deadly disease. This review briefly introduces the basics of the conventional chemotherapies, updates the CSC theories, highlights the molecular and cellular mechanisms by which CSC smartly designs and utilizes multiple lines of self-defense to avoid being killed by chemotherapy, and concisely summarizes recent progress in studies on CSC-targeted therapies in the end, with the hope to help guide future research towards developing more effective therapeutic strategies to eradicate tumor cells in the patients. PMID:26899500

  7. Sam68 Allows Selective Targeting of Human Cancer Stem Cells.

    PubMed

    Benoit, Yannick D; Mitchell, Ryan R; Risueño, Ruth M; Orlando, Luca; Tanasijevic, Borko; Boyd, Allison L; Aslostovar, Lili; Salci, Kyle R; Shapovalova, Zoya; Russell, Jennifer; Eguchi, Masakatsu; Golubeva, Diana; Graham, Monica; Xenocostas, Anargyros; Trus, Michael R; Foley, Ronan; Leber, Brian; Collins, Tony J; Bhatia, Mickie

    2017-07-20

    Targeting of human cancer stem cells (CSCs) requires the identification of vulnerabilities unique to CSCs versus healthy resident stem cells (SCs). Unfortunately, dysregulated pathways that support transformed CSCs, such as Wnt/β-catenin signaling, are also critical regulators of healthy SCs. Using the ICG-001 and CWP family of small molecules, we reveal Sam68 as a previously unappreciated modulator of Wnt/β-catenin signaling within CSCs. Disruption of CBP-β-catenin interaction via ICG-001/CWP induces the formation of a Sam68-CBP complex in CSCs that alters Wnt signaling toward apoptosis and differentiation induction. Our study identifies Sam68 as a regulator of human CSC vulnerability. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  8. The Mammary Stem Cell Hierarchy: A Looking Glass into Heterogeneous Breast Cancer Landscapes

    PubMed Central

    Sreekumar, Amulya; Roarty, Kevin; Rosen, Jeffrey M.

    2015-01-01

    The mammary gland is a dynamic organ that undergoes extensive morphogenesis during the different stages of embryonic development, puberty, estrus, pregnancy, lactation and involution. Systemic and local cues underlie this constant tissue remodeling and act by eliciting an intricate pattern of responses in the mammary epithelial and stromal cells. Decades of studies utilizing methods such as transplantation and lineage tracing have identified a complex hierarchy of mammary stem cells, progenitors and differentiated epithelial cells that fuel mammary epithelial development. Importantly, these studies have extended our understanding of the molecular crosstalk between cell types, and signaling pathways maintaining normal homeostasis that often are deregulated during tumorigenesis. While several questions remain, this research has many implications for breast cancer. Fundamental among these are the identification of the cells of origin for the multiple subtypes of breast cancer and the understanding of tumor heterogeneity. A deeper understanding of these critical questions will unveil novel breast cancer drug targets and treatment paradigms. In this review, we provide a current overview of normal mammary development and tumorigenesis from a stem cell perspective. PMID:26206777

  9. Cancer Stem-Like Cells Enriched in Panc-1 Spheres Possess Increased Migration Ability and Resistance to Gemcitabine

    PubMed Central

    Yin, Tao; Wei, Hongji; Gou, Shanmiao; Shi, Pengfei; Yang, Zhiyong; Zhao, Gang; Wang, Chunyou

    2011-01-01

    Pancreatic cancer is one of the most lethal malignancies with poor prognosis. Previously, we found that a subpopulation of cancer stem cells (CSCs) in the Panc-1 pancreatic cancer cell line could propagate to form spheres. Here we characterized the malignant phenotypes of the pancreatic cancer stem CD44+/CD24+ cells, which were enriched under sphere forming conditions as analyzed by flow cytometry. These cells demonstrated increased resistance to gemcitabine and increased migration ability. Moreover, these cells exhibited epithelial to mesenchymal transition characterized by a decreased level of the epithelial marker E-cadherin and an increased level of the mesenchymal marker vimentin. Notably, abnormal expression of Bmi-1, ABCG2, Cyclin D1 and p16 were found in Panc-1 CSCs. Our results suggest that targeted inhibition of CSCs represents a novel therapeutic approach to overcome chemoresistance and metastasis of pancreatic cancer. PMID:21673909

  10. Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse

    PubMed Central

    Nowakowski, Adam; Drela, Katarzyna; Rozycka, Justyna; Janowski, Miroslaw

    2016-01-01

    Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials. PMID:27460260

  11. Curcumin Promotes Autophagic Survival of a Sub-Set of Colon Cancer Stem Cells, which are Ablated by DCLK1-siRNA

    PubMed Central

    Kantara, Carla; O’Connell, Malaney; Sarkar, Shubhashish; Moya, Stephanie; Ullrich, Robert; Singh, Pomila

    2014-01-01

    Curcumin is known to induce apoptosis of cancer cells by different mechanisms, but its effects on cancer stem-like cells have been less investigated. Here we report that curcumin promotes the survival of DCLK1-positive colon cancer stem-like cells (CSC), potentially confounding application of its anticancer properties. At optimal concentrations, curcumin greatly reduced expression levels of stem cell markers (DCLK1/CD44/ALDHA1/Lgr5/Nanog) in 3D spheroid cultures and tumor xenografts derived from colon cancer cells. However, curcumin unexpectedly induced proliferation and autophagic survival of a subset of DCLK1-positive CSCs. Spheroid cultures were disintegrated by curcumin in vitro but re-grew within 30–40 days of treatment, suggesting a survival benefit from autophagy, permitting long-term persistence of CRC. Notably, RNAi-mediated silencing of DCLK1 triggered apoptotic cell death of colon cancer cells in vitro and in vivo, and abolished CRC survival in response to curcumin; combination of DCLK1-siRNA and curcumin dramatically reversed CSC phenotype, contributing to attenuation of the growth of spheroid cultures and tumor xenografts. Taken together, our findings confirm a role of DCLK1 in colon cancer stem cells and highlight DCLK1 as a target to enhance antitumor properties of curcumin. PMID:24626093

  12. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy

    PubMed Central

    Han, Jae Woong; Gurunathan, Sangiliyandi; Choi, Yun-Jung; Kim, Jin-Hoi

    2017-01-01

    Background Silver nanoparticles (AgNPs) exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells. Materials and methods AgNPs were synthesized and characterized using various analytical techniques such as UV–visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The cellular responses of AgNPs were analyzed by a series of cellular and biochemical assays. Gene and protein expressions were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Results The AgNPs showed typical crystalline structures and spherical shapes (average size =20 nm). High concentration of AgNPs induced cytotoxicity in a dose-dependent manner by increasing lactate dehydrogenase leakage and reactive oxygen species. Furthermore, AgNPs caused mitochondrial dysfunction, DNA fragmentation, increased expression of apoptotic genes, and decreased expression of antiapoptotic genes. Lower concentrations of AgNPs induced neuronal differentiation by increasing the expression of differentiation markers and decreasing the expression of stem cell markers. Cisplatin reduced the viability of F9 cells that underwent AgNPs-induced differentiation. Conclusion The results showed that AgNPs caused differentially regulated cytotoxicity and induced neuronal differentiation of F9 cells in a concentration-dependent manner. Therefore, AgNPs can be used for differentiation therapy, along with chemotherapeutic agents, for improving cancer treatment by targeting specific chemotherapy-resistant cells within a tumor. Furthermore, understanding the

  13. Defining the steps that lead to cancer: replicative telomere erosion, aneuploidy and an epigenetic maturation arrest of tissue stem cells.

    PubMed

    Stindl, Reinhard

    2008-01-01

    Recently, an influential sequencing study found that more than 1700 genes had non-silent mutations in either a breast or colorectal cancer, out of just 11 breast and 11 colorectal tumor samples. This is not surprising given the fact that genomic instability is the hallmark of cancer cells. The plethora of genomic alterations found in every carcinoma does not obey the 'law of genotype-phenotype correlation', since the same histological subtype of cancer harbors different gene mutations and chromosomal aberrations in every patient. In an attempt to make sense out of the observed genetic and chromosomal chaos in cancer, I propose a cascade model. According to this model, tissue regeneration depends on the proliferation and serial activation of stem cells. Replicative telomere erosion limits the proliferative life span of adult stem cells and results in the Hayflick limit (M1). However, local tissue exhaustion or old age might promote the activation of M1-deficient tissue stem cells. Extended proliferation of these cells leads to telomere-driven chromosomal instability and aneuploidy (abnormal balance of chromosomes and/or chromosome material). Several of the aforementioned steps have been already described in the literature. However, in contrast to common theories, it is proposed here that the genomic damage blocks the epigenetic differentiation switch. As a result of aneuploidy, differentiation-specific genes cannot be activated by modification of methylation patterns. Consequently, the phenotype of cancer tissue is largely determined by the epigenetic maturation arrest of tissue stem cells, which in addition enables a fraction of cancer cells to proliferate, invade and metastasize, as normal adult stem cells do. The new model combines genetic and epigenetic alterations of cancer cells in one causative cascade and offers an explanation for why identical histologic cancer types harbor a confusing variety of chromosomal and gene aberrations. The Viennese Cascade, as

  14. Rewriting the Histone Code of Breast Cancer Stem Cells

    DTIC Science & Technology

    2012-05-01

    possibly as natural mechanism of stem cells to protect the integrity of their long-life genomes (6-7). Because of their ability to initiate a tumor...tumor growth in xenograft mouse models. Furthermore, we fused ZF DNA-binding domains to the DNA- methyltransferase DNMT3a and engeneered catalytic...R, Liang J, Yu W, Sun L, Yang X, Wang Y, Zhang Y, Shang Y. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J

  15. Decreasing glioma recurrence through adjuvant cancer stem cell inhibition.

    PubMed

    Neman, Josh; Jandial, Rahul

    2010-06-24

    Gliomas remain one of the most challenging solid organ tumors to treat and are marked clinically by invariable recurrence despite multimodal intervention (surgery, chemotherapy, radiation). This recurrence perhaps, is as a consequence of the failure to eradicate a tumor cell subpopulation, termed cancer stem cells. Isolating, characterizing, and understanding these tumor-initiating cells through cellular and molecular markers, along with genetic and epigenetic understanding will allow for selective targeting through therapeutic agents and holds promise for decreasing glioma recurrence.

  16. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    PubMed

    Taghizadeh, Rouzbeh; Noh, Minsoo; Huh, Yang Hoon; Ciusani, Emilio; Sigalotti, Luca; Maio, Michele; Arosio, Beatrice; Nicotra, Maria R; Natali, PierGiorgio; Sherley, James L; La Porta, Caterina A M

    2010-12-22

    A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone. The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  17. Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells.

    PubMed

    Testa, Ugo; Petrucci, Eleonora; Pasquini, Luca; Castelli, Germana; Pelosi, Elvira

    2018-02-01

    Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A , PIK3CA , PTEN , CTNNB1 and RAS . Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments.

  18. Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells

    PubMed Central

    Castelli, Germana; Pelosi, Elvira

    2018-01-01

    Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A, PIK3CA, PTEN, CTNNB1 and RAS. Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments. PMID:29389895

  19. Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer.

    PubMed

    Teschendorff, Andrew E; Menon, Usha; Gentry-Maharaj, Aleksandra; Ramus, Susan J; Weisenberger, Daniel J; Shen, Hui; Campan, Mihaela; Noushmehr, Houtan; Bell, Christopher G; Maxwell, A Peter; Savage, David A; Mueller-Holzner, Elisabeth; Marth, Christian; Kocjan, Gabrijela; Gayther, Simon A; Jones, Allison; Beck, Stephan; Wagner, Wolfgang; Laird, Peter W; Jacobs, Ian J; Widschwendter, Martin

    2010-04-01

    Polycomb group proteins (PCGs) are involved in repression of genes that are required for stem cell differentiation. Recently, it was shown that promoters of PCG target genes (PCGTs) are 12-fold more likely to be methylated in cancer than non-PCGTs. Age is the most important demographic risk factor for cancer, and we hypothesized that its carcinogenic potential may be referred by irreversibly stabilizing stem cell features. To test this, we analyzed the methylation status of over 27,000 CpGs mapping to promoters of approximately 14,000 genes in whole blood samples from 261 postmenopausal women. We demonstrate that stem cell PCGTs are far more likely to become methylated with age than non-targets (odds ratio = 5.3 [3.8-7.4], P < 10(-10)), independently of sex, tissue type, disease state, and methylation platform. We identified a specific subset of 69 PCGT CpGs that undergo hypermethylation with age and validated this methylation signature in seven independent data sets encompassing over 900 samples, including normal and cancer solid tissues and a population of bone marrow mesenchymal stem/stromal cells (P < 10(-5)). We find that the age-PCGT methylation signature is present in preneoplastic conditions and may drive gene expression changes associated with carcinogenesis. These findings shed substantial novel insights into the epigenetic effects of aging and support the view that age may predispose to malignant transformation by irreversibly stabilizing stem cell features.

  20. Identifying Stem-like Cells Using Mitochondrial Membrane Potential | Center for Cancer Research

    Cancer.gov

    Therapies that are based on living cells promise to improve treatments for metastatic cancer and for many degenerative diseases. Lasting treatment of these maladies may require the durable persistence of cells. Long-term engraftment of cells – for months or years – and the generation of large numbers of progeny are characteristics of stem cells. Most approaches to isolate viable hematopoetic stem cells and therapeutically active T cells are based on immunophenotyping using highly multicolored flow cytometry. However, these methods do not directly measure the metabolic features of cells, which are known to be important in predicting cell fate.