A robust and cost-effective approach to sequence and analyze complete genomes of small RNA viruses
USDA-ARS?s Scientific Manuscript database
Background: Next-generation sequencing (NGS) allows ultra-deep sequencing of nucleic acids. The use of sequence-independent amplification of viral nucleic acids without utilization of target-specific primers provides advantages over traditional sequencing methods and allows detection of unsuspected ...
deepTools: a flexible platform for exploring deep-sequencing data.
Ramírez, Fidel; Dündar, Friederike; Diehl, Sarah; Grüning, Björn A; Manke, Thomas
2014-07-01
We present a Galaxy based web server for processing and visualizing deeply sequenced data. The web server's core functionality consists of a suite of newly developed tools, called deepTools, that enable users with little bioinformatic background to explore the results of their sequencing experiments in a standardized setting. Users can upload pre-processed files with continuous data in standard formats and generate heatmaps and summary plots in a straight-forward, yet highly customizable manner. In addition, we offer several tools for the analysis of files containing aligned reads and enable efficient and reproducible generation of normalized coverage files. As a modular and open-source platform, deepTools can easily be expanded and customized to future demands and developments. The deepTools webserver is freely available at http://deeptools.ie-freiburg.mpg.de and is accompanied by extensive documentation and tutorials aimed at conveying the principles of deep-sequencing data analysis. The web server can be used without registration. deepTools can be installed locally either stand-alone or as part of Galaxy. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Hanriot, Lucie; Keime, Céline; Gay, Nadine; Faure, Claudine; Dossat, Carole; Wincker, Patrick; Scoté-Blachon, Céline; Peyron, Christelle; Gandrillon, Olivier
2008-01-01
Background "Open" transcriptome analysis methods allow to study gene expression without a priori knowledge of the transcript sequences. As of now, SAGE (Serial Analysis of Gene Expression), LongSAGE and MPSS (Massively Parallel Signature Sequencing) are the mostly used methods for "open" transcriptome analysis. Both LongSAGE and MPSS rely on the isolation of 21 pb tag sequences from each transcript. In contrast to LongSAGE, the high throughput sequencing method used in MPSS enables the rapid sequencing of very large libraries containing several millions of tags, allowing deep transcriptome analysis. However, a bias in the complexity of the transcriptome representation obtained by MPSS was recently uncovered. Results In order to make a deep analysis of mouse hypothalamus transcriptome avoiding the limitation introduced by MPSS, we combined LongSAGE with the Solexa sequencing technology and obtained a library of more than 11 millions of tags. We then compared it to a LongSAGE library of mouse hypothalamus sequenced with the Sanger method. Conclusion We found that Solexa sequencing technology combined with LongSAGE is perfectly suited for deep transcriptome analysis. In contrast to MPSS, it gives a complex representation of transcriptome as reliable as a LongSAGE library sequenced by the Sanger method. PMID:18796152
The green ash transcriptome and identification of genes responding to abiotic and biotic stresses
Thomas Lane; Teodora Best; Nicole Zembower; Jack Davitt; Nathan Henry; Yi Xu; Jennifer Koch; Haiying Liang; John McGraw; Stephan Schuster; Donghwan Shim; Mark V. Coggeshall; John E. Carlson; Margaret E. Staton
2016-01-01
Background: To develop a set of transcriptome sequences to support research on environmental stress responses in green ash (Fraxinus pennsylvanica), we undertook deep RNA sequencing of green ash tissues under various stress treatments. The treatments, including emerald ash borer (EAB) feeding, heat, drought, cold and ozone, were selected to mimic...
Diversity of viruses detected by deep sequencing in pigs from a common background
USDA-ARS?s Scientific Manuscript database
The trial was successful in identifying a number of viruses in the feces of the pigs demonstrating the application of this technology to determine the background noise in the animals. The findings in this study are similar to the fecal virome in pigs from a typical commercial swine farm in the Unite...
Kulmanov, Maxat; Khan, Mohammed Asif; Hoehndorf, Robert; Wren, Jonathan
2018-02-15
A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein-protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations. Web server: http://deepgo.bio2vec.net, Source code: https://github.com/bio-ontology-research-group/deepgo. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Mee, Edward T.; Preston, Mark D.; Minor, Philip D.; Schepelmann, Silke; Huang, Xuening; Nguyen, Jenny; Wall, David; Hargrove, Stacey; Fu, Thomas; Xu, George; Li, Li; Cote, Colette; Delwart, Eric; Li, Linlin; Hewlett, Indira; Simonyan, Vahan; Ragupathy, Viswanath; Alin, Voskanian-Kordi; Mermod, Nicolas; Hill, Christiane; Ottenwälder, Birgit; Richter, Daniel C.; Tehrani, Arman; Jacqueline, Weber-Lehmann; Cassart, Jean-Pol; Letellier, Carine; Vandeputte, Olivier; Ruelle, Jean-Louis; Deyati, Avisek; La Neve, Fabio; Modena, Chiara; Mee, Edward; Schepelmann, Silke; Preston, Mark; Minor, Philip; Eloit, Marc; Muth, Erika; Lamamy, Arnaud; Jagorel, Florence; Cheval, Justine; Anscombe, Catherine; Misra, Raju; Wooldridge, David; Gharbia, Saheer; Rose, Graham; Ng, Siemon H.S.; Charlebois, Robert L.; Gisonni-Lex, Lucy; Mallet, Laurent; Dorange, Fabien; Chiu, Charles; Naccache, Samia; Kellam, Paul; van der Hoek, Lia; Cotten, Matt; Mitchell, Christine; Baier, Brian S.; Sun, Wenping; Malicki, Heather D.
2016-01-01
Background Unbiased deep sequencing offers the potential for improved adventitious virus screening in vaccines and biotherapeutics. Successful implementation of such assays will require appropriate control materials to confirm assay performance and sensitivity. Methods A common reference material containing 25 target viruses was produced and 16 laboratories were invited to process it using their preferred adventitious virus detection assay. Results Fifteen laboratories returned results, obtained using a wide range of wet-lab and informatics methods. Six of 25 target viruses were detected by all laboratories, with the remaining viruses detected by 4–14 laboratories. Six non-target viruses were detected by three or more laboratories. Conclusion The study demonstrated that a wide range of methods are currently used for adventitious virus detection screening in biological products by deep sequencing and that they can yield significantly different results. This underscores the need for common reference materials to ensure satisfactory assay performance and enable comparisons between laboratories. PMID:26709640
GenomeGems: evaluation of genetic variability from deep sequencing data
2012-01-01
Background Detection of disease-causing mutations using Deep Sequencing technologies possesses great challenges. In particular, organizing the great amount of sequences generated so that mutations, which might possibly be biologically relevant, are easily identified is a difficult task. Yet, for this assignment only limited automatic accessible tools exist. Findings We developed GenomeGems to gap this need by enabling the user to view and compare Single Nucleotide Polymorphisms (SNPs) from multiple datasets and to load the data onto the UCSC Genome Browser for an expanded and familiar visualization. As such, via automatic, clear and accessible presentation of processed Deep Sequencing data, our tool aims to facilitate ranking of genomic SNP calling. GenomeGems runs on a local Personal Computer (PC) and is freely available at http://www.tau.ac.il/~nshomron/GenomeGems. Conclusions GenomeGems enables researchers to identify potential disease-causing SNPs in an efficient manner. This enables rapid turnover of information and leads to further experimental SNP validation. The tool allows the user to compare and visualize SNPs from multiple experiments and to easily load SNP data onto the UCSC Genome browser for further detailed information. PMID:22748151
3′ terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing
2013-01-01
Background Post-transcriptional 3′ end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3′ RACE coupled with high-throughput sequencing to characterize the 3′ terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. Results The 3′ terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3′ terminus of an in vitro transcribed MRP RNA control and the differing 3′ terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). Conclusions 3′ RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3′ terminal sequences of noncoding RNAs. PMID:24053768
A visual tracking method based on deep learning without online model updating
NASA Astrophysics Data System (ADS)
Tang, Cong; Wang, Yicheng; Feng, Yunsong; Zheng, Chao; Jin, Wei
2018-02-01
The paper proposes a visual tracking method based on deep learning without online model updating. In consideration of the advantages of deep learning in feature representation, deep model SSD (Single Shot Multibox Detector) is used as the object extractor in the tracking model. Simultaneously, the color histogram feature and HOG (Histogram of Oriented Gradient) feature are combined to select the tracking object. In the process of tracking, multi-scale object searching map is built to improve the detection performance of deep detection model and the tracking efficiency. In the experiment of eight respective tracking video sequences in the baseline dataset, compared with six state-of-the-art methods, the method in the paper has better robustness in the tracking challenging factors, such as deformation, scale variation, rotation variation, illumination variation, and background clutters, moreover, its general performance is better than other six tracking methods.
USDA-ARS?s Scientific Manuscript database
Background: Perilla (Perilla frutescens (L.) var frutescens) produces high levels of a-linolenic acid (ALA), an omega-3 fatty acid important to health and development. To uncover key genes involved in fatty acid (FA) and triacylglycerol (TAG) synthesis in perilla, we conducted deep sequencing of cD...
Fun, Axel; Leitner, Thomas; Vandekerckhove, Linos; Däumer, Martin; Thielen, Alexander; Buchholz, Bernd; Hoepelman, Andy I M; Gisolf, Elizabeth H; Schipper, Pauline J; Wensing, Annemarie M J; Nijhuis, Monique
2018-01-05
Emergence of resistance against integrase inhibitor raltegravir in human immunodeficiency virus type 1 (HIV-1) patients is generally associated with selection of one of three signature mutations: Y143C/R, Q148K/H/R or N155H, representing three distinct resistance pathways. The mechanisms that drive selection of a specific pathway are still poorly understood. We investigated the impact of the HIV-1 genetic background and population dynamics on the emergence of raltegravir resistance. Using deep sequencing we analyzed the integrase coding sequence (CDS) in longitudinal samples from five patients who initiated raltegravir plus optimized background therapy at viral loads > 5000 copies/ml. To investigate the role of the HIV-1 genetic background we created recombinant viruses containing the viral integrase coding region from pre-raltegravir samples from two patients in whom raltegravir resistance developed through different pathways. The in vitro selections performed with these recombinant viruses were designed to mimic natural population bottlenecks. Deep sequencing analysis of the viral integrase CDS revealed that the virological response to raltegravir containing therapy inversely correlated with the relative amount of unique sequence variants that emerged suggesting diversifying selection during drug pressure. In 4/5 patients multiple signature mutations representing different resistance pathways were observed. Interestingly, the resistant population can consist of a single resistant variant that completely dominates the population but also of multiple variants from different resistance pathways that coexist in the viral population. We also found evidence for increased diversification after stronger bottlenecks. In vitro selections with low viral titers, mimicking population bottlenecks, revealed that both recombinant viruses and HXB2 reference virus were able to select mutations from different resistance pathways, although typically only one resistance pathway emerged in each individual culture. The generation of a specific raltegravir resistant variant is not predisposed in the genetic background of the viral integrase CDS. Typically, in the early phases of therapy failure the sequence space is explored and multiple resistance pathways emerge and then compete for dominance which frequently results in a switch of the dominant population over time towards the fittest variant or even multiple variants of similar fitness that can coexist in the viral population.
Kitahara, Marcelo V.; Cairns, Stephen D.; Stolarski, Jarosław; Blair, David; Miller, David J.
2010-01-01
Background Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia. Methodology Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families. Principal Findings/Conclusions There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic “noise” contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical to understanding anthozoan evolution and the origins of the Scleractinia. PMID:20628613
2010-01-01
Background Bathymodiolus azoricus is a deep-sea hydrothermal vent mussel found in association with large faunal communities living in chemosynthetic environments at the bottom of the sea floor near the Azores Islands. Investigation of the exceptional physiological reactions that vent mussels have adopted in their habitat, including responses to environmental microbes, remains a difficult challenge for deep-sea biologists. In an attempt to reveal genes potentially involved in the deep-sea mussel innate immunity we carried out a high-throughput sequence analysis of freshly collected B. azoricus transcriptome using gills tissues as the primary source of immune transcripts given its strategic role in filtering the surrounding waterborne potentially infectious microorganisms. Additionally, a substantial EST data set was produced and from which a comprehensive collection of genes coding for putative proteins was organized in a dedicated database, "DeepSeaVent" the first deep-sea vent animal transcriptome database based on the 454 pyrosequencing technology. Results A normalized cDNA library from gills tissue was sequenced in a full 454 GS-FLX run, producing 778,996 sequencing reads. Assembly of the high quality reads resulted in 75,407 contigs of which 3,071 were singletons. A total of 39,425 transcripts were conceptually translated into amino-sequences of which 22,023 matched known proteins in the NCBI non-redundant protein database, 15,839 revealed conserved protein domains through InterPro functional classification and 9,584 were assigned with Gene Ontology terms. Queries conducted within the database enabled the identification of genes putatively involved in immune and inflammatory reactions which had not been previously evidenced in the vent mussel. Their physical counterpart was confirmed by semi-quantitative quantitative Reverse-Transcription-Polymerase Chain Reactions (RT-PCR) and their RNA transcription level by quantitative PCR (qPCR) experiments. Conclusions We have established the first tissue transcriptional analysis of a deep-sea hydrothermal vent animal and generated a searchable catalog of genes that provides a direct method of identifying and retrieving vast numbers of novel coding sequences which can be applied in gene expression profiling experiments from a non-conventional model organism. This provides the most comprehensive sequence resource for identifying novel genes currently available for a deep-sea vent organism, in particular, genes putatively involved in immune and inflammatory reactions in vent mussels. The characterization of the B. azoricus transcriptome will facilitate research into biological processes underlying physiological adaptations to hydrothermal vent environments and will provide a basis for expanding our understanding of genes putatively involved in adaptations processes during post-capture long term acclimatization experiments, at "sea-level" conditions, using B. azoricus as a model organism. PMID:20937131
Li, Meng; Jain, Sunit; Dick, Gregory J
2016-01-01
Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes.
Li, Meng; Jain, Sunit; Dick, Gregory J.
2016-01-01
Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes. PMID:27512389
Le, Thuy; Chiarella, Jennifer; Simen, Birgitte B.; Hanczaruk, Bozena; Egholm, Michael; Landry, Marie L.; Dieckhaus, Kevin; Rosen, Marc I.; Kozal, Michael J.
2009-01-01
Background It is largely unknown how frequently low-abundance HIV drug-resistant variants at levels under limit of detection of conventional genotyping (<20% of quasi-species) are present in antiretroviral-experienced persons experiencing virologic failure. Further, the clinical implications of low-abundance drug-resistant variants at time of virologic failure are unknown. Methodology/Principal Findings Plasma samples from 22 antiretroviral-experienced subjects collected at time of virologic failure (viral load 1380 to 304,000 copies/mL) were obtained from a specimen bank (from 2004–2007). The prevalence and profile of drug-resistant mutations were determined using Sanger sequencing and ultra-deep pyrosequencing. Genotypes were interpreted using Stanford HIV database algorithm. Antiretroviral treatment histories were obtained by chart review and correlated with drug-resistant mutations. Low-abundance drug-resistant mutations were detected in all 22 subjects by deep sequencing and only in 3 subjects by Sanger sequencing. In total they accounted for 90 of 247 mutations (36%) detected by deep sequencing; the majority of these (95%) were not detected by standard genotyping. A mean of 4 additional mutations per subject were detected by deep sequencing (p<0.0001, 95%CI: 2.85–5.53). The additional low-abundance drug-resistant mutations increased a subject's genotypic resistance to one or more antiretrovirals in 17 of 22 subjects (77%). When correlated with subjects' antiretroviral treatment histories, the additional low-abundance drug-resistant mutations correlated with the failing antiretroviral drugs in 21% subjects and correlated with historical antiretroviral use in 79% subjects (OR, 13.73; 95% CI, 2.5–74.3, p = 0.0016). Conclusions/Significance Low-abundance HIV drug-resistant mutations in antiretroviral-experienced subjects at time of virologic failure can increase a subject's overall burden of resistance, yet commonly go unrecognized by conventional genotyping. The majority of unrecognized resistant mutations correlate with historical antiretroviral use. Ultra-deep sequencing can provide important historical resistance information for clinicians when planning subsequent antiretroviral regimens for highly treatment-experienced patients, particularly when their prior treatment histories and longitudinal genotypes are not available. PMID:19562031
Deep sequencing of evolving pathogen populations: applications, errors, and bioinformatic solutions
2014-01-01
Deep sequencing harnesses the high throughput nature of next generation sequencing technologies to generate population samples, treating information contained in individual reads as meaningful. Here, we review applications of deep sequencing to pathogen evolution. Pioneering deep sequencing studies from the virology literature are discussed, such as whole genome Roche-454 sequencing analyses of the dynamics of the rapidly mutating pathogens hepatitis C virus and HIV. Extension of the deep sequencing approach to bacterial populations is then discussed, including the impacts of emerging sequencing technologies. While it is clear that deep sequencing has unprecedented potential for assessing the genetic structure and evolutionary history of pathogen populations, bioinformatic challenges remain. We summarise current approaches to overcoming these challenges, in particular methods for detecting low frequency variants in the context of sequencing error and reconstructing individual haplotypes from short reads. PMID:24428920
2014-01-01
Background Hypervariable region 1 (HVR1) contained within envelope protein 2 (E2) gene is the most variable part of HCV genome and its translation product is a major target for the host immune response. Variability within HVR1 may facilitate evasion of the immune response and could affect treatment outcome. The aim of the study was to analyze the impact of HVR1 heterogeneity employing sensitive ultra-deep sequencing, on the outcome of PEG-IFN-α (pegylated interferon α) and ribavirin treatment. Methods HVR1 sequences were amplified from pretreatment serum samples of 25 patients infected with genotype 1b HCV (12 responders and 13 non-responders) and were subjected to pyrosequencing (GS Junior, 454/Roche). Reads were corrected for sequencing error using ShoRAH software, while population reconstruction was done using three different minimal variant frequency cut-offs of 1%, 2% and 5%. Statistical analysis was done using Mann–Whitney and Fisher’s exact tests. Results Complexity, Shannon entropy, nucleotide diversity per site, genetic distance and the number of genetic substitutions were not significantly different between responders and non-responders, when analyzing viral populations at any of the three frequencies (≥1%, ≥2% and ≥5%). When clonal sample was used to determine pyrosequencing error, 4% of reads were found to be incorrect and the most abundant variant was present at a frequency of 1.48%. Use of ShoRAH reduced the sequencing error to 1%, with the most abundant erroneous variant present at frequency of 0.5%. Conclusions While deep sequencing revealed complex genetic heterogeneity of HVR1 in chronic hepatitis C patients, there was no correlation between treatment outcome and any of the analyzed quasispecies parameters. PMID:25016390
MRI markers of small vessel disease in lobar and deep hemispheric intracerebral hemorrhage
Smith, Eric E.; Nandigam, Kaveer R.N.; Chen, Yu-Wei; Jeng, Jed; Salat, David; Halpin, Amy; Frosch, Matthew; Wendell, Lauren; Fazen, Louis; Rosand, Jonathan; Viswanathan, Anand; Greenberg, Steven M.
2014-01-01
Background MRI evidence of small vessel disease is common in intracerebral hemorrhage (ICH). We hypothesized that ICH caused by cerebral amyloid angiopathy (CAA) or hypertensive vasculopathy would have different distributions of MRI T2 white matter hyperintensity (WMH) and microbleeds (MB). Methods Data were analyzed from 133 consecutive patients with primary supratentorial ICH and adequate MRI sequences. CAA was diagnosed using the Boston criteria. WMH segmentation was performed using a validated semi-automated method. WMH and MB were compared according to site of symptomatic hematoma origin (lobar vs. deep) or by pattern of hemorrhages, including both hematomas and MB, on MRI GRE sequence (grouped as lobar only--probable CAA, lobar only--possible CAA, deep hemispheric only, or mixed lobar and deep hemorrhages). Results Lobar and deep hemispheric hematoma patients had similar median nWMH volumes (19.5 cm vs. 19.9 cm3, p=0.74) and prevalence of ≥1 MB (54% vs. 52%, p=0.99). The supratentorial WMH distribution was similar according to hemorrhage location category, however the prevalence of brainstem T2 hyperintensity was lower in lobar hematoma vs. deep hematoma (54% vs. 70%, p=0.004). Mixed ICH was common (23%). Mixed ICH patients had large nWMH volumes and a posterior distribution of cortical hemorrhages similar to that seen in CAA. Conclusions WMH distribution is largely similar between CAA-related and non-CAA-related ICH. Mixed lobar and deep hemorrhages are seen on MRI GRE in up to one quarter of patients; in these patients both hypertension and CAA may be contributing to the burden of WMH. PMID:20689084
2011-01-01
Background Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. Results In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. Conclusion We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea. PMID:21251263
Action-Driven Visual Object Tracking With Deep Reinforcement Learning.
Yun, Sangdoo; Choi, Jongwon; Yoo, Youngjoon; Yun, Kimin; Choi, Jin Young
2018-06-01
In this paper, we propose an efficient visual tracker, which directly captures a bounding box containing the target object in a video by means of sequential actions learned using deep neural networks. The proposed deep neural network to control tracking actions is pretrained using various training video sequences and fine-tuned during actual tracking for online adaptation to a change of target and background. The pretraining is done by utilizing deep reinforcement learning (RL) as well as supervised learning. The use of RL enables even partially labeled data to be successfully utilized for semisupervised learning. Through the evaluation of the object tracking benchmark data set, the proposed tracker is validated to achieve a competitive performance at three times the speed of existing deep network-based trackers. The fast version of the proposed method, which operates in real time on graphics processing unit, outperforms the state-of-the-art real-time trackers with an accuracy improvement of more than 8%.
The 3-D aftershock distribution of three recent M5~5.5 earthquakes in the Anza region,California
NASA Astrophysics Data System (ADS)
Zhang, Q.; Wdowinski, S.; Lin, G.
2011-12-01
The San Jacinto fault zone (SJFZ) exhibits the highest level of seismicity compared to other regions in southern California. On average, it produces four earthquakes per day, most of them at depth of 10-17 km. Over the past decade, an increasing seismic activity occurred in the Anza region, which included three M5~5.5 events and their aftershock sequences. These events occurred in 2001, 2005, and 2010. In this research we map the 3-D distribution of these three events to evaluate their rupture geometry and better understand the unusual deep seismic pattern along the SJFZ, which was termed "deep creep" (Wdowinski, 2009). We relocated 97,562 events from 1981 to 2011 in Anza region by applying the Source-Specific Station Term (SSST) method (Lin et al., 2006) and used an accurate 1-D velocity model derived from 3-D model of Lin et al (2007) and used In order to separate the aftershock sequence from background seismicity, we characterized each of the three aftershock sequences using Omori's law. Preliminary results show that all three sequences had a similar geometry of deep elongated aftershock distribution. Most aftershocks occurred at depth of 10-17 km and extended over a 70 km long segments of the SJFZ, centered at the mainshock hypocenters. A comparative study of other M5~5.5 mainshocks and their aftershock sequences in southern California reveals very different geometrical pattern, suggesting that the three Anza M5~5.5 events are unique and can be indicative of "deep creep" deformation processes. Reference 1.Lin, G.and Shearer,P.M.,2006, The COMPLOC earthquake location package,Seism. Res. Lett.77, pp.440-444. 2.Lin, G. and Shearer, P.M., Hauksson, E., and Thurber C.H.,2007, A three-dimensional crustal seismic velocity model for southern California from a composite event method,J. Geophys.Res.112, B12306, doi: 10.1029/ 2007JB004977. 3.Wdowinski, S. ,2009, Deep creep as a cause for the excess seismicity along the San Jacinto fault, Nat. Geosci.,doi:10.1038/NGEO684.
DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data.
Yang, Jian-Hua; Qu, Liang-Hu
2012-01-01
Recent advances in high-throughput deep-sequencing technology have produced large numbers of short and long RNA sequences and enabled the detection and profiling of known and novel microRNAs (miRNAs) and other noncoding RNAs (ncRNAs) at unprecedented sensitivity and depth. In this chapter, we describe the use of deepBase, a database that we have developed to integrate all public deep-sequencing data and to facilitate the comprehensive annotation and discovery of miRNAs and other ncRNAs from these data. deepBase provides an integrative, interactive, and versatile web graphical interface to evaluate miRBase-annotated miRNA genes and other known ncRNAs, explores the expression patterns of miRNAs and other ncRNAs, and discovers novel miRNAs and other ncRNAs from deep-sequencing data. deepBase also provides a deepView genome browser to comparatively analyze these data at multiple levels. deepBase is available at http://deepbase.sysu.edu.cn/.
Making sense of deep sequencing
Goldman, D.; Domschke, K.
2016-01-01
This review, the first of an occasional series, tries to make sense of the concepts and uses of deep sequencing of polynucleic acids (DNA and RNA). Deep sequencing, synonymous with next-generation sequencing, high-throughput sequencing and massively parallel sequencing, includes whole genome sequencing but is more often and diversely applied to specific parts of the genome captured in different ways, for example the highly expressed portion of the genome known as the exome and portions of the genome that are epigenetically marked either by DNA methylation, the binding of proteins including histones, or that are in different configurations and thus more or less accessible to enzymes that cleave DNA. Deep sequencing of RNA (RNASeq) reverse-transcribed to complementary DNA is invaluable for measuring RNA expression and detecting changes in RNA structure. Important concepts in deep sequencing include the length and depth of sequence reads, mapping and assembly of reads, sequencing error, haplotypes, and the propensity of deep sequencing, as with other types of ‘big data’, to generate large numbers of errors, requiring monitoring for methodologic biases and strategies for replication and validation. Deep sequencing yields a unique genetic fingerprint that can be used to identify a person, and a trove of predictors of genetic medical diseases. Deep sequencing to identify epigenetic events including changes in DNA methylation and RNA expression can reveal the history and impact of environmental exposures. Because of the power of sequencing to identify and deliver biomedically significant information about a person and their blood relatives, it creates ethical dilemmas and practical challenges in research and clinical care, for example the decision and procedures to report incidental findings that will increasingly and frequently be discovered. PMID:24925306
De novo peptide sequencing by deep learning
Tran, Ngoc Hieu; Zhang, Xianglilan; Xin, Lei; Shan, Baozhen; Li, Ming
2017-01-01
De novo peptide sequencing from tandem MS data is the key technology in proteomics for the characterization of proteins, especially for new sequences, such as mAbs. In this study, we propose a deep neural network model, DeepNovo, for de novo peptide sequencing. DeepNovo architecture combines recent advances in convolutional neural networks and recurrent neural networks to learn features of tandem mass spectra, fragment ions, and sequence patterns of peptides. The networks are further integrated with local dynamic programming to solve the complex optimization task of de novo sequencing. We evaluated the method on a wide variety of species and found that DeepNovo considerably outperformed state of the art methods, achieving 7.7–22.9% higher accuracy at the amino acid level and 38.1–64.0% higher accuracy at the peptide level. We further used DeepNovo to automatically reconstruct the complete sequences of antibody light and heavy chains of mouse, achieving 97.5–100% coverage and 97.2–99.5% accuracy, without assisting databases. Moreover, DeepNovo is retrainable to adapt to any sources of data and provides a complete end-to-end training and prediction solution to the de novo sequencing problem. Not only does our study extend the deep learning revolution to a new field, but it also shows an innovative approach in solving optimization problems by using deep learning and dynamic programming. PMID:28720701
Chong, Cheong-Meng; Leung, Siu Wai; Prieto-da-Silva, Álvaro R. B.; Havt, Alexandre; Quinet, Yves P.; Martins, Alice M. C.; Lee, Simon M. Y.; Rádis-Baptista, Gandhi
2014-01-01
Background Dinoponera quadriceps is a predatory giant ant that inhabits the Neotropical region and subdues its prey (insects) with stings that deliver a toxic cocktail of molecules. Human accidents occasionally occur and cause local pain and systemic symptoms. A comprehensive study of the D. quadriceps venom gland transcriptome is required to advance our knowledge about the toxin repertoire of the giant ant venom and to understand the physiopathological basis of Hymenoptera envenomation. Results We conducted a transcriptome analysis of a cDNA library from the D. quadriceps venom gland with Sanger sequencing in combination with whole-transcriptome shotgun deep sequencing. From the cDNA library, a total of 420 independent clones were analyzed. Although the proportion of dinoponeratoxin isoform precursors was high, the first giant ant venom inhibitor cysteine-knot (ICK) toxin was found. The deep next generation sequencing yielded a total of 2,514,767 raw reads that were assembled into 18,546 contigs. A BLAST search of the assembled contigs against non-redundant and Swiss-Prot databases showed that 6,463 contigs corresponded to BLASTx hits and indicated an interesting diversity of transcripts related to venom gene expression. The majority of these venom-related sequences code for a major polypeptide core, which comprises venom allergens, lethal-like proteins and esterases, and a minor peptide framework composed of inter-specific structurally conserved cysteine-rich toxins. Both the cDNA library and deep sequencing yielded large proportions of contigs that showed no similarities with known sequences. Conclusions To our knowledge, this is the first report of the venom gland transcriptome of the New World giant ant D. quadriceps. The glandular venom system was dissected, and the toxin arsenal was revealed; this process brought to light novel sequences that included an ICK-folded toxins, allergen proteins, esterases (phospholipases and carboxylesterases), and lethal-like toxins. These findings contribute to the understanding of the ecology, behavior and venomics of hymenopterans. PMID:24498135
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua
2016-10-01
The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.
Quantitative phenotyping via deep barcode sequencing.
Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey
2009-10-01
Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.
Deep Sequencing to Identify the Causes of Viral Encephalitis
Chan, Benjamin K.; Wilson, Theodore; Fischer, Kael F.; Kriesel, John D.
2014-01-01
Deep sequencing allows for a rapid, accurate characterization of microbial DNA and RNA sequences in many types of samples. Deep sequencing (also called next generation sequencing or NGS) is being developed to assist with the diagnosis of a wide variety of infectious diseases. In this study, seven frozen brain samples from deceased subjects with recent encephalitis were investigated. RNA from each sample was extracted, randomly reverse transcribed and sequenced. The sequence analysis was performed in a blinded fashion and confirmed with pathogen-specific PCR. This analysis successfully identified measles virus sequences in two brain samples and herpes simplex virus type-1 sequences in three brain samples. No pathogen was identified in the other two brain specimens. These results were concordant with pathogen-specific PCR and partially concordant with prior neuropathological examinations, demonstrating that deep sequencing can accurately identify viral infections in frozen brain tissue. PMID:24699691
2010-01-01
Background Nematodes represent the most abundant benthic metazoa in one of the largest habitats on earth, the deep sea. Characterizing major patterns of biodiversity within this dominant group is a critical step towards understanding evolutionary patterns across this vast ecosystem. The present study has aimed to place deep-sea nematode species into a phylogenetic framework, investigate relationships between shallow water and deep-sea taxa, and elucidate phylogeographic patterns amongst the deep-sea fauna. Results Molecular data (18 S and 28 S rRNA) confirms a high diversity amongst deep-sea Enoplids. There is no evidence for endemic deep-sea lineages in Maximum Likelihood or Bayesian phylogenies, and Enoplids do not cluster according to depth or geographic location. Tree topologies suggest frequent interchanges between deep-sea and shallow water habitats, as well as a mixture of early radiations and more recently derived lineages amongst deep-sea taxa. This study also provides convincing evidence of cosmopolitan marine species, recovering a subset of Oncholaimid nematodes with identical gene sequences (18 S, 28 S and cox1) at trans-Atlantic sample sites. Conclusions The complex clade structures recovered within the Enoplida support a high global species richness for marine nematodes, with phylogeographic patterns suggesting the existence of closely related, globally distributed species complexes in the deep sea. True cosmopolitan species may additionally exist within this group, potentially driven by specific life history traits of Enoplids. Although this investigation aimed to intensively sample nematodes from the order Enoplida, specimens were only identified down to genus (at best) and our sampling regime focused on an infinitesimal small fraction of the deep-sea floor. Future nematode studies should incorporate an extended sample set covering a wide depth range (shelf, bathyal, and abyssal sites), utilize additional genetic loci (e.g. mtDNA) that are informative at the species level, and apply high-throughput sequencing methods to fully assay community diversity. Finally, further molecular studies are needed to determine whether phylogeographic patterns observed in Enoplids are common across other ubiquitous marine groups (e.g. Chromadorida, Monhysterida). PMID:21167065
On Statistical Modeling of Sequencing Noise in High Depth Data to Assess Tumor Evolution
NASA Astrophysics Data System (ADS)
Rabadan, Raul; Bhanot, Gyan; Marsilio, Sonia; Chiorazzi, Nicholas; Pasqualucci, Laura; Khiabanian, Hossein
2018-07-01
One cause of cancer mortality is tumor evolution to therapy-resistant disease. First line therapy often targets the dominant clone, and drug resistance can emerge from preexisting clones that gain fitness through therapy-induced natural selection. Such mutations may be identified using targeted sequencing assays by analysis of noise in high-depth data. Here, we develop a comprehensive, unbiased model for sequencing error background. We find that noise in sufficiently deep DNA sequencing data can be approximated by aggregating negative binomial distributions. Mutations with frequencies above noise may have prognostic value. We evaluate our model with simulated exponentially expanded populations as well as data from cell line and patient sample dilution experiments, demonstrating its utility in prognosticating tumor progression. Our results may have the potential to identify significant mutations that can cause recurrence. These results are relevant in the pretreatment clinical setting to determine appropriate therapy and prepare for potential recurrence pretreatment.
On Statistical Modeling of Sequencing Noise in High Depth Data to Assess Tumor Evolution
NASA Astrophysics Data System (ADS)
Rabadan, Raul; Bhanot, Gyan; Marsilio, Sonia; Chiorazzi, Nicholas; Pasqualucci, Laura; Khiabanian, Hossein
2017-12-01
One cause of cancer mortality is tumor evolution to therapy-resistant disease. First line therapy often targets the dominant clone, and drug resistance can emerge from preexisting clones that gain fitness through therapy-induced natural selection. Such mutations may be identified using targeted sequencing assays by analysis of noise in high-depth data. Here, we develop a comprehensive, unbiased model for sequencing error background. We find that noise in sufficiently deep DNA sequencing data can be approximated by aggregating negative binomial distributions. Mutations with frequencies above noise may have prognostic value. We evaluate our model with simulated exponentially expanded populations as well as data from cell line and patient sample dilution experiments, demonstrating its utility in prognosticating tumor progression. Our results may have the potential to identify significant mutations that can cause recurrence. These results are relevant in the pretreatment clinical setting to determine appropriate therapy and prepare for potential recurrence pretreatment.
Quantitative phenotyping via deep barcode sequencing
Smith, Andrew M.; Heisler, Lawrence E.; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J.; Chee, Mark; Roth, Frederick P.; Giaever, Guri; Nislow, Corey
2009-01-01
Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or “Bar-seq,” outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that ∼20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene–environment interactions on a genome-wide scale. PMID:19622793
Lederer, Christoph; Heider, Dominik; van den Boom, Johannes; Hoffmann, Daniel; Mueller, Jonathan W.; Bayer, Peter
2011-01-01
Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes assisting protein folding and protein quality control in organisms of all kingdoms of life. In contrast to the other sub-classes of PPIases, the cyclophilins and the FK-506 binding proteins, little was formerly known about the parvulin type of PPIase in Archaea. Recently, the first solution structure of an archaeal parvulin, the PinA protein from Cenarchaeum symbiosum, was reported. Investigation of occurrence and frequency of PPIase sequences in numerous archaeal genomes now revealed a strong tendency for thermophilic microorganisms to reduce the number of PPIases. Single-domain parvulins were mostly found in the genomes of recently proposed deep-branching archaeal subgroups, the Thaumarchaeota and the ARMANs (archaeal Richmond Mine acidophilic nanoorganisms). Hence, we used the parvulin sequence to reclassify available archaeal metagenomic contigs, thereby, adding new members to these subgroups. A combination of genomic background analysis and phylogenetic approaches of parvulin sequences suggested that the assigned sequences belong to at least two distinct groups of Thaumarchaeota. Finally, machine learning approaches were applied to identify amino acid residues that separate archaeal and bacterial parvulin proteins from each other. When mapped onto the recent PinA solution structure, most of these positions form a cluster at one site of the protein possibly indicating a different functionality of the two groups of parvulin proteins. PMID:22065628
Shafiee, Mohammad Javad; Chung, Audrey G; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander
2017-10-01
While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data. We propose an evolutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations. As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radiologist's computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer (EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity (82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches.
Pan, Xiaoyong; Shen, Hong-Bin
2018-05-02
RNA-binding proteins (RBPs) take over 5∼10% of the eukaryotic proteome and play key roles in many biological processes, e.g. gene regulation. Experimental detection of RBP binding sites is still time-intensive and high-costly. Instead, computational prediction of the RBP binding sites using pattern learned from existing annotation knowledge is a fast approach. From the biological point of view, the local structure context derived from local sequences will be recognized by specific RBPs. However, in computational modeling using deep learning, to our best knowledge, only global representations of entire RNA sequences are employed. So far, the local sequence information is ignored in the deep model construction process. In this study, we present a computational method iDeepE to predict RNA-protein binding sites from RNA sequences by combining global and local convolutional neural networks (CNNs). For the global CNN, we pad the RNA sequences into the same length. For the local CNN, we split a RNA sequence into multiple overlapping fixed-length subsequences, where each subsequence is a signal channel of the whole sequence. Next, we train deep CNNs for multiple subsequences and the padded sequences to learn high-level features, respectively. Finally, the outputs from local and global CNNs are combined to improve the prediction. iDeepE demonstrates a better performance over state-of-the-art methods on two large-scale datasets derived from CLIP-seq. We also find that the local CNN run 1.8 times faster than the global CNN with comparable performance when using GPUs. Our results show that iDeepE has captured experimentally verified binding motifs. https://github.com/xypan1232/iDeepE. xypan172436@gmail.com or hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online.
2010-01-01
Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE) are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host-pathogen interactions and evolutionary history of immunogenetics from fish to mammals. PMID:20707909
You, Ronghui; Huang, Xiaodi; Zhu, Shanfeng
2018-06-06
As of April 2018, UniProtKB has collected more than 115 million protein sequences. Less than 0.15% of these proteins, however, have been associated with experimental GO annotations. As such, the use of automatic protein function prediction (AFP) to reduce this huge gap becomes increasingly important. The previous studies conclude that sequence homology based methods are highly effective in AFP. In addition, mining motif, domain, and functional information from protein sequences has been found very helpful for AFP. Other than sequences, alternative information sources such as text, however, may be useful for AFP as well. Instead of using BOW (bag of words) representation in traditional text-based AFP, we propose a new method called DeepText2GO that relies on deep semantic text representation, together with different kinds of available protein information such as sequence homology, families, domains, and motifs, to improve large-scale AFP. Furthermore, DeepText2GO integrates text-based methods with sequence-based ones by means of a consensus approach. Extensive experiments on the benchmark dataset extracted from UniProt/SwissProt have demonstrated that DeepText2GO significantly outperformed both text-based and sequence-based methods, validating its superiority. Copyright © 2018 Elsevier Inc. All rights reserved.
Shenoy, Archana; Blelloch, Robert
2009-09-11
The Microprocessor, containing the RNA binding protein Dgcr8 and RNase III enzyme Drosha, is responsible for processing primary microRNAs to precursor microRNAs. The Microprocessor regulates its own levels by cleaving hairpins in the 5'UTR and coding region of the Dgcr8 mRNA, thereby destabilizing the mature transcript. To determine whether the Microprocessor has a broader role in directly regulating other coding mRNA levels, we integrated results from expression profiling and ultra high-throughput deep sequencing of small RNAs. Expression analysis of mRNAs in wild-type, Dgcr8 knockout, and Dicer knockout mouse embryonic stem (ES) cells uncovered mRNAs that were specifically upregulated in the Dgcr8 null background. A number of these transcripts had evolutionarily conserved predicted hairpin targets for the Microprocessor. However, analysis of deep sequencing data of 18 to 200nt small RNAs in mouse ES, HeLa, and HepG2 indicates that exonic sequence reads that map in a pattern consistent with Microprocessor activity are unique to Dgcr8. We conclude that the Microprocessor's role in directly destabilizing coding mRNAs is likely specifically targeted to Dgcr8 itself, suggesting a specialized cellular mechanism for gene auto-regulation.
Zhang, Xiao-yong; Tang, Gui-ling; Xu, Xin-ya; Nong, Xu-hua; Qi, Shu-Hua
2014-01-01
The fungal diversity in deep-sea environments has recently gained an increasing amount attention. Our knowledge and understanding of the true fungal diversity and the role it plays in deep-sea environments, however, is still limited. We investigated the fungal community structure in five sediments from a depth of ∼4000 m in the East India Ocean using a combination of targeted environmental sequencing and traditional cultivation. This approach resulted in the recovery of a total of 45 fungal operational taxonomic units (OTUs) and 20 culturable fungal phylotypes. This finding indicates that there is a great amount of fungal diversity in the deep-sea sediments collected in the East Indian Ocean. Three fungal OTUs and one culturable phylotype demonstrated high divergence (89%–97%) from the existing sequences in the GenBank. Moreover, 44.4% fungal OTUs and 30% culturable fungal phylotypes are new reports for deep-sea sediments. These results suggest that the deep-sea sediments from the East India Ocean can serve as habitats for new fungal communities compared with other deep-sea environments. In addition, different fungal community could be detected when using targeted environmental sequencing compared with traditional cultivation in this study, which suggests that a combination of targeted environmental sequencing and traditional cultivation will generate a more diverse fungal community in deep-sea environments than using either targeted environmental sequencing or traditional cultivation alone. This study is the first to report new insights into the fungal communities in deep-sea sediments from the East Indian Ocean, which increases our knowledge and understanding of the fungal diversity in deep-sea environments. PMID:25272044
Quasispecies Analyses of the HIV-1 Near-full-length Genome With Illumina MiSeq
Ode, Hirotaka; Matsuda, Masakazu; Matsuoka, Kazuhiro; Hachiya, Atsuko; Hattori, Junko; Kito, Yumiko; Yokomaku, Yoshiyuki; Iwatani, Yasumasa; Sugiura, Wataru
2015-01-01
Human immunodeficiency virus type-1 (HIV-1) exhibits high between-host genetic diversity and within-host heterogeneity, recognized as quasispecies. Because HIV-1 quasispecies fluctuate in terms of multiple factors, such as antiretroviral exposure and host immunity, analyzing the HIV-1 genome is critical for selecting effective antiretroviral therapy and understanding within-host viral coevolution mechanisms. Here, to obtain HIV-1 genome sequence information that includes minority variants, we sought to develop a method for evaluating quasispecies throughout the HIV-1 near-full-length genome using the Illumina MiSeq benchtop deep sequencer. To ensure the reliability of minority mutation detection, we applied an analysis method of sequence read mapping onto a consensus sequence derived from de novo assembly followed by iterative mapping and subsequent unique error correction. Deep sequencing analyses of aHIV-1 clone showed that the analysis method reduced erroneous base prevalence below 1% in each sequence position and discarded only < 1% of all collected nucleotides, maximizing the usage of the collected genome sequences. Further, we designed primer sets to amplify the HIV-1 near-full-length genome from clinical plasma samples. Deep sequencing of 92 samples in combination with the primer sets and our analysis method provided sufficient coverage to identify >1%-frequency sequences throughout the genome. When we evaluated sequences of pol genes from 18 treatment-naïve patients' samples, the deep sequencing results were in agreement with Sanger sequencing and identified numerous additional minority mutations. The results suggest that our deep sequencing method would be suitable for identifying within-host viral population dynamics throughout the genome. PMID:26617593
Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing
Balmaseda, Angel; Harris, Eva; DeRisi, Joseph L.
2012-01-01
Dengue virus is an emerging infectious agent that infects an estimated 50–100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ∼40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness. PMID:22347512
Yoon, Song-Ro; Arnheim, Norman; Calabrese, Peter
2016-01-01
We used targeted next generation deep-sequencing (Safe Sequencing System) to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11) were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10−8) suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments. PMID:27341568
Cosmic Accretion and Galaxy Co-Evolution: Lessons from the Extended Chandra Deep Field South
NASA Astrophysics Data System (ADS)
Urry, C. Megan
2011-05-01
The Chandra deep fields reveal that most cosmic accretion onto supermassive black holes is obscured by gas and dust. The GOODS and MUSYC multiwavelength data show that many X-ray-detected AGN are faint and red (or even undetectable) in the optical but bright in the infrared, as is characteristic of obscured sources. (N.B. The ECDFS is most sensitive to the AGN that constitute the X-ray background, namely, moderate luminosity AGN, with log Lx=43-44, at moderate redshifts, 0.5
A multiple-alignment based primer design algorithm for genetically highly variable DNA targets
2013-01-01
Background Primer design for highly variable DNA sequences is difficult, and experimental success requires attention to many interacting constraints. The advent of next-generation sequencing methods allows the investigation of rare variants otherwise hidden deep in large populations, but requires attention to population diversity and primer localization in relatively conserved regions, in addition to recognized constraints typically considered in primer design. Results Design constraints include degenerate sites to maximize population coverage, matching of melting temperatures, optimizing de novo sequence length, finding optimal bio-barcodes to allow efficient downstream analyses, and minimizing risk of dimerization. To facilitate primer design addressing these and other constraints, we created a novel computer program (PrimerDesign) that automates this complex procedure. We show its powers and limitations and give examples of successful designs for the analysis of HIV-1 populations. Conclusions PrimerDesign is useful for researchers who want to design DNA primers and probes for analyzing highly variable DNA populations. It can be used to design primers for PCR, RT-PCR, Sanger sequencing, next-generation sequencing, and other experimental protocols targeting highly variable DNA samples. PMID:23965160
2012-01-01
Background MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. Results A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Conclusions Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grape. These results show that a number of regulatory miRNAs exist in Amur grape and play an important role in Amur grape growth, development, and response to abiotic or biotic stress. PMID:22455456
Low-Latency Telerobotic Sample Return and Biomolecular Sequencing for Deep Space Gateway
NASA Astrophysics Data System (ADS)
Lupisella, M.; Bleacher, J.; Lewis, R.; Dworkin, J.; Wright, M.; Burton, A.; Rubins, K.; Wallace, S.; Stahl, S.; John, K.; Archer, D.; Niles, P.; Regberg, A.; Smith, D.; Race, M.; Chiu, C.; Russell, J.; Rampe, E.; Bywaters, K.
2018-02-01
Low-latency telerobotics, crew-assisted sample return, and biomolecular sequencing can be used to acquire and analyze lunar farside and/or Apollo landing site samples. Sequencing can also be used to monitor and study Deep Space Gateway environment and crew health.
Genetic diversity among pandemic 2009 influenza viruses isolated from a transmission chain
2013-01-01
Background Influenza viruses such as swine-origin influenza A(H1N1) virus (A(H1N1)pdm09) generate genetic diversity due to the high error rate of their RNA polymerase, often resulting in mixed genotype populations (intra-host variants) within a single infection. This variation helps influenza to rapidly respond to selection pressures, such as those imposed by the immunological host response and antiviral therapy. We have applied deep sequencing to characterize influenza intra-host variation in a transmission chain consisting of three cases due to oseltamivir-sensitive viruses, and one derived oseltamivir-resistant case. Methods Following detection of the A(H1N1)pdm09 infections, we deep-sequenced the complete NA gene from two of the oseltamivir-sensitive virus-infected cases, and all eight gene segments of the viruses causing the remaining two cases. Results No evidence for the resistance-causing mutation (resulting in NA H275Y substitution) was observed in the oseltamivir-sensitive cases. Furthermore, deep sequencing revealed a subpopulation of oseltamivir-sensitive viruses in the case carrying resistant viruses. We detected higher levels of intra-host variation in the case carrying oseltamivir-resistant viruses than in those infected with oseltamivir-sensitive viruses. Conclusions Oseltamivir-resistance was only detected after prophylaxis with oseltamivir, suggesting that the mutation was selected for as a result of antiviral intervention. The persisting oseltamivir-sensitive virus population in the case carrying resistant viruses suggests either that a small proportion survive the treatment, or that the oseltamivir-sensitive virus rapidly re-establishes itself in the virus population after the bottleneck. Moreover, the increased intra-host variation in the oseltamivir-resistant case is consistent with the hypothesis that the population diversity of a RNA virus can increase rapidly following a population bottleneck. PMID:23587185
Zhang, Likui; Kang, Manyu; Huang, Yangchao; Yang, Lixiang
2016-05-01
The diversity and ecological significance of bacteria and archaea in deep-sea environments have been thoroughly investigated, but eukaryotic microorganisms in these areas, such as fungi, are poorly understood. To elucidate fungal diversity in calcareous deep-sea sediments in the Southwest India Ridge (SWIR), the internal transcribed spacer (ITS) regions of rRNA genes from two sediment metagenomic DNA samples were amplified and sequenced using the Illumina sequencing platform. The results revealed that 58-63 % and 36-42 % of the ITS sequences (97 % similarity) belonged to Basidiomycota and Ascomycota, respectively. These findings suggest that Basidiomycota and Ascomycota are the predominant fungal phyla in the two samples. We also found that Agaricomycetes, Leotiomycetes, and Pezizomycetes were the major fungal classes in the two samples. At the species level, Thelephoraceae sp. and Phialocephala fortinii were major fungal species in the two samples. Despite the low relative abundance, unidentified fungal sequences were also observed in the two samples. Furthermore, we found that there were slight differences in fungal diversity between the two sediment samples, although both were collected from the SWIR. Thus, our results demonstrate that calcareous deep-sea sediments in the SWIR harbor diverse fungi, which augment the fungal groups in deep-sea sediments. This is the first report of fungal communities in calcareous deep-sea sediments in the SWIR revealed by Illumina sequencing.
Jeanne, Nicolas; Saliou, Adrien; Carcenac, Romain; Lefebvre, Caroline; Dubois, Martine; Cazabat, Michelle; Nicot, Florence; Loiseau, Claire; Raymond, Stéphanie; Izopet, Jacques; Delobel, Pierre
2015-01-01
HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds. PMID:26585833
Jeanne, Nicolas; Saliou, Adrien; Carcenac, Romain; Lefebvre, Caroline; Dubois, Martine; Cazabat, Michelle; Nicot, Florence; Loiseau, Claire; Raymond, Stéphanie; Izopet, Jacques; Delobel, Pierre
2015-11-20
HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds.
Accurate identification of RNA editing sites from primitive sequence with deep neural networks.
Ouyang, Zhangyi; Liu, Feng; Zhao, Chenghui; Ren, Chao; An, Gaole; Mei, Chuan; Bo, Xiaochen; Shu, Wenjie
2018-04-16
RNA editing is a post-transcriptional RNA sequence alteration. Current methods have identified editing sites and facilitated research but require sufficient genomic annotations and prior-knowledge-based filtering steps, resulting in a cumbersome, time-consuming identification process. Moreover, these methods have limited generalizability and applicability in species with insufficient genomic annotations or in conditions of limited prior knowledge. We developed DeepRed, a deep learning-based method that identifies RNA editing from primitive RNA sequences without prior-knowledge-based filtering steps or genomic annotations. DeepRed achieved 98.1% and 97.9% area under the curve (AUC) in training and test sets, respectively. We further validated DeepRed using experimentally verified U87 cell RNA-seq data, achieving 97.9% positive predictive value (PPV). We demonstrated that DeepRed offers better prediction accuracy and computational efficiency than current methods with large-scale, mass RNA-seq data. We used DeepRed to assess the impact of multiple factors on editing identification with RNA-seq data from the Association of Biomolecular Resource Facilities and Sequencing Quality Control projects. We explored developmental RNA editing pattern changes during human early embryogenesis and evolutionary patterns in Drosophila species and the primate lineage using DeepRed. Our work illustrates DeepRed's state-of-the-art performance; it may decipher the hidden principles behind RNA editing, making editing detection convenient and effective.
DNA Barcoding the Geometrid Fauna of Bavaria (Lepidoptera): Successes, Surprises, and Questions
Hausmann, Axel; Haszprunar, Gerhard; Hebert, Paul D. N.
2011-01-01
Background The State of Bavaria is involved in a research program that will lead to the construction of a DNA barcode library for all animal species within its territorial boundaries. The present study provides a comprehensive DNA barcode library for the Geometridae, one of the most diverse of insect families. Methodology/Principal Findings This study reports DNA barcodes for 400 Bavarian geometrid species, 98 per cent of the known fauna, and approximately one per cent of all Bavarian animal species. Although 98.5% of these species possess diagnostic barcode sequences in Bavaria, records from neighbouring countries suggest that species-level resolution may be compromised in up to 3.5% of cases. All taxa which apparently share barcodes are discussed in detail. One case of modest divergence (1.4%) revealed a species overlooked by the current taxonomic system: Eupithecia goossensiata Mabille, 1869 stat.n. is raised from synonymy with Eupithecia absinthiata (Clerck, 1759) to species rank. Deep intraspecific sequence divergences (>2%) were detected in 20 traditionally recognized species. Conclusions/Significance The study emphasizes the effectiveness of DNA barcoding as a tool for monitoring biodiversity. Open access is provided to a data set that includes records for 1,395 geometrid specimens (331 species) from Bavaria, with 69 additional species from neighbouring regions. Taxa with deep intraspecific sequence divergences are undergoing more detailed analysis to ascertain if they represent cases of cryptic diversity. PMID:21423340
Poelchau, Monica F; Reynolds, Julie A; Elsik, Christine G; Denlinger, David L; Armbruster, Peter A
2013-05-22
Seasonal environments present fundamental physiological challenges to a wide range of insects. Many temperate insects surmount the exigencies of winter by undergoing photoperiodic diapause, in which photoperiod provides a token cue that initiates an alternative developmental programme leading to dormancy. Pre-diapause is a crucial preparatory phase of this process, preceding developmental arrest. However, the regulatory and physiological mechanisms of diapause preparation are largely unknown. Using high-throughput gene expression profiling in the Asian tiger mosquito, Aedes albopictus, we reveal major shifts in endocrine signalling, cell proliferation, metabolism, energy production and cellular structure across pre-diapause development. While some hallmarks of diapause, such as insulin signalling and stress response, were not important at the transcriptional level, two genes, Pepck and PCNA, appear to show diapause-induced transcriptional changes across insect taxa. These processes demonstrate physiological commonalities between Ae. albopictus pre-diapause and diapause strategies across insects, and support the idea of a genetic 'toolkit' for diapause. Observations of gene expression trends from a comparative developmental perspective suggest that individual physiological processes are delayed against a background of a fixed morphological ontogeny. Our results demonstrate how deep sequencing can provide new insights into elusive molecular bases of complex ecological adaptations.
Exome Sequencing and the Management of Neurometabolic Disorders
Tarailo-Graovac, M.; Shyr, C.; Ross, C.J.; Horvath, G.A.; Salvarinova, R.; Ye, X.C.; Zhang, L.-H.; Bhavsar, A.P.; Lee, J.J.Y.; Drögemöller, B.I.; Abdelsayed, M.; Alfadhel, M.; Armstrong, L.; Baumgartner, M.R.; Burda, P.; Connolly, M.B.; Cameron, J.; Demos, M.; Dewan, T.; Dionne, J.; Evans, A.M.; Friedman, J.M.; Garber, I.; Lewis, S.; Ling, J.; Mandal, R.; Mattman, A.; McKinnon, M.; Michoulas, A.; Metzger, D.; Ogunbayo, O.A.; Rakic, B.; Rozmus, J.; Ruben, P.; Sayson, B.; Santra, S.; Schultz, K.R.; Selby, K.; Shekel, P.; Sirrs, S.; Skrypnyk, C.; Superti-Furga, A.; Turvey, S.E.; Van Allen, M.I.; Wishart, D.; Wu, J.; Wu, J.; Zafeiriou, D.; Kluijtmans, L.; Wevers, R.A.; Eydoux, P.; Lehman, A.M.; Vallance, H.; Stockler-Ipsiroglu, S.; Sinclair, G.; Wasserman, W.W.; van Karnebeek, C.D.
2016-01-01
BACKGROUND Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient’s clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children’s Hospital Foundation and others.) PMID:27276562
2011-01-01
Background Parasitoid insects manipulate their hosts' physiology by injecting various factors into their host upon parasitization. Transcriptomic approaches provide a powerful approach to study insect host-parasitoid interactions at the molecular level. In order to investigate the effects of parasitization by an ichneumonid wasp (Diadegma semiclausum) on the host (Plutella xylostella), the larval transcriptome profile was analyzed using a short-read deep sequencing method (Illumina). Symbiotic polydnaviruses (PDVs) associated with ichneumonid parasitoids, known as ichnoviruses, play significant roles in host immune suppression and developmental regulation. In the current study, D. semiclausum ichnovirus (DsIV) genes expressed in P. xylostella were identified and their sequences compared with other reported PDVs. Five of these genes encode proteins of unknown identity, that have not previously been reported. Results De novo assembly of cDNA sequence data generated 172,660 contigs between 100 and 10000 bp in length; with 35% of > 200 bp in length. Parasitization had significant impacts on expression levels of 928 identified insect host transcripts. Gene ontology data illustrated that the majority of the differentially expressed genes are involved in binding, catalytic activity, and metabolic and cellular processes. In addition, the results show that transcription levels of antimicrobial peptides, such as gloverin, cecropin E and lysozyme, were up-regulated after parasitism. Expression of ichnovirus genes were detected in parasitized larvae with 19 unique sequences identified from five PDV gene families including vankyrin, viral innexin, repeat elements, a cysteine-rich motif, and polar residue rich protein. Vankyrin 1 and repeat element 1 genes showed the highest transcription levels among the DsIV genes. Conclusion This study provides detailed information on differential expression of P. xylostella larval genes following parasitization, DsIV genes expressed in the host and also improves our current understanding of this host-parasitoid interaction. PMID:21906285
2012-01-01
Background Plants respond to external stimuli through fine regulation of gene expression partially ensured by small RNAs. Of these, microRNAs (miRNAs) play a crucial role. They negatively regulate gene expression by targeting the cleavage or translational inhibition of target messenger RNAs (mRNAs). In Hevea brasiliensis, environmental and harvesting stresses are known to affect natural rubber production. This study set out to identify abiotic stress-related miRNAs in Hevea using next-generation sequencing and bioinformatic analysis. Results Deep sequencing of small RNAs was carried out on plantlets subjected to severe abiotic stress using the Solexa technique. By combining the LeARN pipeline, data from the Plant microRNA database (PMRD) and Hevea EST sequences, we identified 48 conserved miRNA families already characterized in other plant species, and 10 putatively novel miRNA families. The results showed the most abundant size for miRNAs to be 24 nucleotides, except for seven families. Several MIR genes produced both 20-22 nucleotides and 23-27 nucleotides. The two miRNA class sizes were detected for both conserved and putative novel miRNA families, suggesting their functional duality. The EST databases were scanned with conserved and novel miRNA sequences. MiRNA targets were computationally predicted and analysed. The predicted targets involved in "responses to stimuli" and to "antioxidant" and "transcription activities" are presented. Conclusions Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs when the complete genome is not yet available. Our study provided additional information for evolutionary studies and revealed potentially specific regulation of the control of redox status in Hevea. PMID:22330773
Cancer-Associated Mutations in Endometriosis without Cancer
Anglesio, M.S.; Papadopoulos, N.; Ayhan, A.; Nazeran, T.M.; Noë, M.; Horlings, H.M.; Lum, A.; Jones, S.; Senz, J.; Seckin, T.; Ho, J.; Wu, R.-C.; Lac, V.; Ogawa, H.; Tessier-Cloutier, B.; Alhassan, R.; Wang, A.; Wang, Y.; Cohen, J.D.; Wong, F.; Hasanovic, A.; Orr, N.; Zhang, M.; Popoli, M.; McMahon, W.; Wood, L.D.; Mattox, A.; Allaire, C.; Segars, J.; Williams, C.; Tomasetti, C.; Boyd, N.; Kinzler, K.W.; Gilks, C.B.; Diaz, L.; Wang, T.-L.; Vogelstein, B.; Yong, P.J.; Huntsman, D.G.; Shih, I.-M.
2017-01-01
BACKGROUND Endometriosis, defined as the presence of ectopic endometrial stroma and epithelium, affects approximately 10% of reproductive-age women and can cause pelvic pain and infertility. Endometriotic lesions are considered to be benign inflammatory lesions but have cancerlike features such as local invasion and resistance to apoptosis. METHODS We analyzed deeply infiltrating endometriotic lesions from 27 patients by means of exomewide sequencing (24 patients) or cancer-driver targeted sequencing (3 patients). Mutations were validated with the use of digital genomic methods in micro-dissected epithelium and stroma. Epithelial and stromal components of lesions from an additional 12 patients were analyzed by means of a droplet digital polymerase-chain-reaction (PCR) assay for recurrent activating KRAS mutations. RESULTS Exome sequencing revealed somatic mutations in 19 of 24 patients (79%). Five patients harbored known cancer driver mutations in ARID1A, PIK3CA, KRAS, or PPP2R1A, which were validated by Safe-Sequencing System or immunohistochemical analysis. The likelihood of driver genes being affected at this rate in the absence of selection was estimated at P = 0.001 (binomial test). Targeted sequencing and a droplet digital PCR assay identified KRAS mutations in 2 of 3 patients and 3 of 12 patients, respectively, with mutations in the epithelium but not the stroma. One patient harbored two different KRAS mutations, c.35G→T and c.35G→C, and another carried identical KRAS c.35G→A mutations in three distinct lesions. CONCLUSIONS We found that lesions in deep infiltrating endometriosis, which are associated with virtually no risk of malignant transformation, harbor somatic cancer driver mutations. Ten of 39 deep infiltrating lesions (26%) carried driver mutations; all the tested somatic mutations appeared to be confined to the epithelial compartment of endometriotic lesions. PMID:28489996
A deep learning method for lincRNA detection using auto-encoder algorithm.
Yu, Ning; Yu, Zeng; Pan, Yi
2017-12-06
RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the DNA sequences; (2) lincRNAs contain some conversed patterns/motifs tethered together by non-conserved regions. The two evidences give the reasoning for adopting knowledge-based deep learning methods in lincRNA detection. Similar to coding region transcription, non-coding regions are split at transcriptional sites. However, regulatory RNAs rather than message RNAs are generated. That is, the transcribed RNAs participate the biological process as regulatory units instead of generating proteins. Identifying these transcriptional regions from non-coding regions is the first step towards lincRNA recognition. The auto-encoder method achieves 100% and 92.4% prediction accuracy on transcription sites over the putative data sets. The experimental results also show the excellent performance of predictive deep neural network on the lincRNA data sets compared with support vector machine and traditional neural network. In addition, it is validated through the newly discovered lincRNA data set and one unreported transcription site is found by feeding the whole annotated sequences through the deep learning machine, which indicates that deep learning method has the extensive ability for lincRNA prediction. The transcriptional sequences of lincRNAs are collected from the annotated human DNA genome data. Subsequently, a two-layer deep neural network is developed for the lincRNA detection, which adopts the auto-encoder algorithm and utilizes different encoding schemes to obtain the best performance over intergenic DNA sequence data. Driven by those newly annotated lincRNA data, deep learning methods based on auto-encoder algorithm can exert their capability in knowledge learning in order to capture the useful features and the information correlation along DNA genome sequences for lincRNA detection. As our knowledge, this is the first application to adopt the deep learning techniques for identifying lincRNA transcription sequences.
USDA-ARS?s Scientific Manuscript database
Deep sequencing of viruses isolated from infected hosts is an efficient way to measure population-genetic variation and can reveal patterns of dispersal and natural selection. In this study, we mined existing Illumina sequence reads to investigate single-nucleotide polymorphisms (SNPs) within two RN...
Geoseq: a tool for dissecting deep-sequencing datasets.
Gurtowski, James; Cancio, Anthony; Shah, Hardik; Levovitz, Chaya; George, Ajish; Homann, Robert; Sachidanandam, Ravi
2010-10-12
Datasets generated on deep-sequencing platforms have been deposited in various public repositories such as the Gene Expression Omnibus (GEO), Sequence Read Archive (SRA) hosted by the NCBI, or the DNA Data Bank of Japan (ddbj). Despite being rich data sources, they have not been used much due to the difficulty in locating and analyzing datasets of interest. Geoseq http://geoseq.mssm.edu provides a new method of analyzing short reads from deep sequencing experiments. Instead of mapping the reads to reference genomes or sequences, Geoseq maps a reference sequence against the sequencing data. It is web-based, and holds pre-computed data from public libraries. The analysis reduces the input sequence to tiles and measures the coverage of each tile in a sequence library through the use of suffix arrays. The user can upload custom target sequences or use gene/miRNA names for the search and get back results as plots and spreadsheet files. Geoseq organizes the public sequencing data using a controlled vocabulary, allowing identification of relevant libraries by organism, tissue and type of experiment. Analysis of small sets of sequences against deep-sequencing datasets, as well as identification of public datasets of interest, is simplified by Geoseq. We applied Geoseq to, a) identify differential isoform expression in mRNA-seq datasets, b) identify miRNAs (microRNAs) in libraries, and identify mature and star sequences in miRNAS and c) to identify potentially mis-annotated miRNAs. The ease of using Geoseq for these analyses suggests its utility and uniqueness as an analysis tool.
Detection of Emerging Vaccine-Related Polioviruses by Deep Sequencing.
Sahoo, Malaya K; Holubar, Marisa; Huang, ChunHong; Mohamed-Hadley, Alisha; Liu, Yuanyuan; Waggoner, Jesse J; Troy, Stephanie B; Garcia-Garcia, Lourdes; Ferreyra-Reyes, Leticia; Maldonado, Yvonne; Pinsky, Benjamin A
2017-07-01
Oral poliovirus vaccine can mutate to regain neurovirulence. To date, evaluation of these mutations has been performed primarily on culture-enriched isolates by using conventional Sanger sequencing. We therefore developed a culture-independent, deep-sequencing method targeting the 5' untranslated region (UTR) and P1 genomic region to characterize vaccine-related poliovirus variants. Error analysis of the deep-sequencing method demonstrated reliable detection of poliovirus mutations at levels of <1%, depending on read depth. Sequencing of viral nucleic acids from the stool of vaccinated, asymptomatic children and their close contacts collected during a prospective cohort study in Veracruz, Mexico, revealed no vaccine-derived polioviruses. This was expected given that the longest duration between sequenced sample collection and the end of the most recent national immunization week was 66 days. However, we identified many low-level variants (<5%) distributed across the 5' UTR and P1 genomic region in all three Sabin serotypes, as well as vaccine-related viruses with multiple canonical mutations associated with phenotypic reversion present at high levels (>90%). These results suggest that monitoring emerging vaccine-related poliovirus variants by deep sequencing may aid in the poliovirus endgame and efforts to ensure global polio eradication. Copyright © 2017 Sahoo et al.
Rational Protein Engineering Guided by Deep Mutational Scanning
Shin, HyeonSeok; Cho, Byung-Kwan
2015-01-01
Sequence–function relationship in a protein is commonly determined by the three-dimensional protein structure followed by various biochemical experiments. However, with the explosive increase in the number of genome sequences, facilitated by recent advances in sequencing technology, the gap between protein sequences available and three-dimensional structures is rapidly widening. A recently developed method termed deep mutational scanning explores the functional phenotype of thousands of mutants via massive sequencing. Coupled with a highly efficient screening system, this approach assesses the phenotypic changes made by the substitution of each amino acid sequence that constitutes a protein. Such an informational resource provides the functional role of each amino acid sequence, thereby providing sufficient rationale for selecting target residues for protein engineering. Here, we discuss the current applications of deep mutational scanning and consider experimental design. PMID:26404267
Burkholder, William F; Newell, Evan W; Poidinger, Michael; Chen, Swaine; Fink, Katja
2017-01-01
The inaugural workshop "Deep Sequencing in Infectious Diseases: Immune and Pathogen Repertoires for the Improvement of Patient Outcomes" was held in Singapore on 13-14 October 2016. The aim of the workshop was to discuss the latest trends in using high-throughput sequencing, bioinformatics, and allied technologies to analyze immune and pathogen repertoires and their interplay within the host, bringing together key international players in the field and Singapore-based researchers and clinician-scientists. The focus was in particular on the application of these technologies for the improvement of patient diagnosis, prognosis and treatment, and for other broad public health outcomes. The presentations by scientists and clinicians showed the potential of deep sequencing technology to capture the coevolution of adaptive immunity and pathogens. For clinical applications, some key challenges remain, such as the long turnaround time and relatively high cost of deep sequencing for pathogen identification and characterization and the lack of international standardization in immune repertoire analysis.
Burkholder, William F.; Newell, Evan W.; Poidinger, Michael; Chen, Swaine; Fink, Katja
2017-01-01
The inaugural workshop “Deep Sequencing in Infectious Diseases: Immune and Pathogen Repertoires for the Improvement of Patient Outcomes” was held in Singapore on 13–14 October 2016. The aim of the workshop was to discuss the latest trends in using high-throughput sequencing, bioinformatics, and allied technologies to analyze immune and pathogen repertoires and their interplay within the host, bringing together key international players in the field and Singapore-based researchers and clinician-scientists. The focus was in particular on the application of these technologies for the improvement of patient diagnosis, prognosis and treatment, and for other broad public health outcomes. The presentations by scientists and clinicians showed the potential of deep sequencing technology to capture the coevolution of adaptive immunity and pathogens. For clinical applications, some key challenges remain, such as the long turnaround time and relatively high cost of deep sequencing for pathogen identification and characterization and the lack of international standardization in immune repertoire analysis. PMID:28620372
St. John, Elizabeth P.; Simen, Birgitte B.; Turenchalk, Gregory S.; Braverman, Michael S.; Abbate, Isabella; Aerssens, Jeroen; Bouchez, Olivier; Gabriel, Christian; Izopet, Jacques; Meixenberger, Karolin; Di Giallonardo, Francesca; Schlapbach, Ralph; Paredes, Roger; Sakwa, James; Schmitz-Agheguian, Gudrun G.; Thielen, Alexander; Victor, Martin
2016-01-01
Background Ultra deep sequencing is of increasing use not only in research but also in diagnostics. For implementation of ultra deep sequencing assays in clinical laboratories for routine diagnostics, intra- and inter-laboratory testing are of the utmost importance. Methods A multicenter study was conducted to validate an updated assay design for 454 Life Sciences’ GS FLX Titanium system targeting protease/reverse transcriptase (RTP) and env (V3) regions to identify HIV-1 drug-resistance mutations and determine co-receptor use with high sensitivity. The study included 30 HIV-1 subtype B and 6 subtype non-B samples with viral titers (VT) of 3,940–447,400 copies/mL, two dilution series (52,129–1,340 and 25,130–734 copies/mL), and triplicate samples. Amplicons spanning PR codons 10–99, RT codons 1–251 and the entire V3 region were generated using barcoded primers. Analysis was performed using the GS Amplicon Variant Analyzer and geno2pheno for tropism. For comparison, population sequencing was performed using the ViroSeq HIV-1 genotyping system. Results The median sequencing depth across the 11 sites was 1,829 reads per position for RTP (IQR 592–3,488) and 2,410 for V3 (IQR 786–3,695). 10 preselected drug resistant variants were measured across sites and showed high inter-laboratory correlation across all sites with data (P<0.001). The triplicate samples of a plasmid mixture confirmed the high inter-laboratory consistency (mean% ± stdev: 4.6 ±0.5, 4.8 ±0.4, 4.9 ±0.3) and revealed good intra-laboratory consistency (mean% range ± stdev range: 4.2–5.2 ± 0.04–0.65). In the two dilutions series, no variants >20% were missed, variants 2–10% were detected at most sites (even at low VT), and variants 1–2% were detected by some sites. All mutations detected by population sequencing were also detected by UDS. Conclusions This assay design results in an accurate and reproducible approach to analyze HIV-1 mutant spectra, even at variant frequencies well below those routinely detectable by population sequencing. PMID:26756901
DNA Replication Profiling Using Deep Sequencing.
Saayman, Xanita; Ramos-Pérez, Cristina; Brown, Grant W
2018-01-01
Profiling of DNA replication during progression through S phase allows a quantitative snap-shot of replication origin usage and DNA replication fork progression. We present a method for using deep sequencing data to profile DNA replication in S. cerevisiae.
DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data.
Arango-Argoty, Gustavo; Garner, Emily; Pruden, Amy; Heath, Lenwood S; Vikesland, Peter; Zhang, Liqing
2018-02-01
Growing concerns about increasing rates of antibiotic resistance call for expanded and comprehensive global monitoring. Advancing methods for monitoring of environmental media (e.g., wastewater, agricultural waste, food, and water) is especially needed for identifying potential resources of novel antibiotic resistance genes (ARGs), hot spots for gene exchange, and as pathways for the spread of ARGs and human exposure. Next-generation sequencing now enables direct access and profiling of the total metagenomic DNA pool, where ARGs are typically identified or predicted based on the "best hits" of sequence searches against existing databases. Unfortunately, this approach produces a high rate of false negatives. To address such limitations, we propose here a deep learning approach, taking into account a dissimilarity matrix created using all known categories of ARGs. Two deep learning models, DeepARG-SS and DeepARG-LS, were constructed for short read sequences and full gene length sequences, respectively. Evaluation of the deep learning models over 30 antibiotic resistance categories demonstrates that the DeepARG models can predict ARGs with both high precision (> 0.97) and recall (> 0.90). The models displayed an advantage over the typical best hit approach, yielding consistently lower false negative rates and thus higher overall recall (> 0.9). As more data become available for under-represented ARG categories, the DeepARG models' performance can be expected to be further enhanced due to the nature of the underlying neural networks. Our newly developed ARG database, DeepARG-DB, encompasses ARGs predicted with a high degree of confidence and extensive manual inspection, greatly expanding current ARG repositories. The deep learning models developed here offer more accurate antimicrobial resistance annotation relative to current bioinformatics practice. DeepARG does not require strict cutoffs, which enables identification of a much broader diversity of ARGs. The DeepARG models and database are available as a command line version and as a Web service at http://bench.cs.vt.edu/deeparg .
Leung, Preston; Eltahla, Auda A; Lloyd, Andrew R; Bull, Rowena A; Luciani, Fabio
2017-07-15
With the advent of affordable deep sequencing technologies, detection of low frequency variants within genetically diverse viral populations can now be achieved with unprecedented depth and efficiency. The high-resolution data provided by next generation sequencing technologies is currently recognised as the gold standard in estimation of viral diversity. In the analysis of rapidly mutating viruses, longitudinal deep sequencing datasets from viral genomes during individual infection episodes, as well as at the epidemiological level during outbreaks, now allow for more sophisticated analyses such as statistical estimates of the impact of complex mutation patterns on the evolution of the viral populations both within and between hosts. These analyses are revealing more accurate descriptions of the evolutionary dynamics that underpin the rapid adaptation of these viruses to the host response, and to drug therapies. This review assesses recent developments in methods and provide informative research examples using deep sequencing data generated from rapidly mutating viruses infecting humans, particularly hepatitis C virus (HCV), human immunodeficiency virus (HIV), Ebola virus and influenza virus, to understand the evolution of viral genomes and to explore the relationship between viral mutations and the host adaptive immune response. Finally, we discuss limitations in current technologies, and future directions that take advantage of publically available large deep sequencing datasets. Copyright © 2016 Elsevier B.V. All rights reserved.
DEEP MOTIF DASHBOARD: VISUALIZING AND UNDERSTANDING GENOMIC SEQUENCES USING DEEP NEURAL NETWORKS.
Lanchantin, Jack; Singh, Ritambhara; Wang, Beilun; Qi, Yanjun
2017-01-01
Deep neural network (DNN) models have recently obtained state-of-the-art prediction accuracy for the transcription factor binding (TFBS) site classification task. However, it remains unclear how these approaches identify meaningful DNA sequence signals and give insights as to why TFs bind to certain locations. In this paper, we propose a toolkit called the Deep Motif Dashboard (DeMo Dashboard) which provides a suite of visualization strategies to extract motifs, or sequence patterns from deep neural network models for TFBS classification. We demonstrate how to visualize and understand three important DNN models: convolutional, recurrent, and convolutional-recurrent networks. Our first visualization method is finding a test sequence's saliency map which uses first-order derivatives to describe the importance of each nucleotide in making the final prediction. Second, considering recurrent models make predictions in a temporal manner (from one end of a TFBS sequence to the other), we introduce temporal output scores, indicating the prediction score of a model over time for a sequential input. Lastly, a class-specific visualization strategy finds the optimal input sequence for a given TFBS positive class via stochastic gradient optimization. Our experimental results indicate that a convolutional-recurrent architecture performs the best among the three architectures. The visualization techniques indicate that CNN-RNN makes predictions by modeling both motifs as well as dependencies among them.
Swenson, Luke C; Moores, Andrew; Low, Andrew J; Thielen, Alexander; Dong, Winnie; Woods, Conan; Jensen, Mark A; Wynhoven, Brian; Chan, Dennison; Glascock, Christopher; Harrigan, P Richard
2010-08-01
Tropism testing should rule out CXCR4-using HIV before treatment with CCR5 antagonists. Currently, the recombinant phenotypic Trofile assay (Monogram) is most widely utilized; however, genotypic tests may represent alternative methods. Independent triplicate amplifications of the HIV gp120 V3 region were made from either plasma HIV RNA or proviral DNA. These underwent standard, population-based sequencing with an ABI3730 (RNA n = 63; DNA n = 40), or "deep" sequencing with a Roche/454 Genome Sequencer-FLX (RNA n = 12; DNA n = 12). Position-specific scoring matrices (PSSMX4/R5) (-6.96 cutoff) and geno2pheno[coreceptor] (5% false-positive rate) inferred tropism from V3 sequence. These methods were then independently validated with a separate, blinded dataset (n = 278) of screening samples from the maraviroc MOTIVATE trials. Standard sequencing of HIV RNA with PSSM yielded 69% sensitivity and 91% specificity, relative to Trofile. The validation dataset gave 75% sensitivity and 83% specificity. Proviral DNA plus PSSM gave 77% sensitivity and 71% specificity. "Deep" sequencing of HIV RNA detected >2% inferred-CXCR4-using virus in 8/8 samples called non-R5 by Trofile, and <2% in 4/4 samples called R5. Triplicate analyses of V3 standard sequence data detect greater proportions of CXCR4-using samples than previously achieved. Sequencing proviral DNA and "deep" V3 sequencing may also be useful tools for assessing tropism.
Deusch, Oliver; O’Flynn, Ciaran; Colyer, Alison; Morris, Penelope; Allaway, David; Jones, Paul G.; Swanson, Kelly S.
2014-01-01
Background Previously, we demonstrated that dietary protein:carbohydrate ratio dramatically affects the fecal microbial taxonomic structure of kittens using targeted 16S gene sequencing. The present study, using the same fecal samples, applied deep Illumina shotgun sequencing to identify the diet-associated functional potential and analyze taxonomic changes of the feline fecal microbiome. Methodology & Principal Findings Fecal samples from kittens fed one of two diets differing in protein and carbohydrate content (high–protein, low–carbohydrate, HPLC; and moderate-protein, moderate-carbohydrate, MPMC) were collected at 8, 12 and 16 weeks of age (n = 6 per group). A total of 345.3 gigabases of sequence were generated from 36 samples, with 99.75% of annotated sequences identified as bacterial. At the genus level, 26% and 39% of reads were annotated for HPLC- and MPMC-fed kittens, with HPLC-fed cats showing greater species richness and microbial diversity. Two phyla, ten families and fifteen genera were responsible for more than 80% of the sequences at each taxonomic level for both diet groups, consistent with the previous taxonomic study. Significantly different abundances between diet groups were observed for 324 genera (56% of all genera identified) demonstrating widespread diet-induced changes in microbial taxonomic structure. Diversity was not affected over time. Functional analysis identified 2,013 putative enzyme function groups were different (p<0.000007) between the two dietary groups and were associated to 194 pathways, which formed five discrete clusters based on average relative abundance. Of those, ten contained more (p<0.022) enzyme functions with significant diet effects than expected by chance. Six pathways were related to amino acid biosynthesis and metabolism linking changes in dietary protein with functional differences of the gut microbiome. Conclusions These data indicate that feline feces-derived microbiomes have large structural and functional differences relating to the dietary protein:carbohydrate ratio and highlight the impact of diet early in life. PMID:25010839
Chromatin accessibility prediction via a hybrid deep convolutional neural network.
Liu, Qiao; Xia, Fei; Yin, Qijin; Jiang, Rui
2018-03-01
A majority of known genetic variants associated with human-inherited diseases lie in non-coding regions that lack adequate interpretation, making it indispensable to systematically discover functional sites at the whole genome level and precisely decipher their implications in a comprehensive manner. Although computational approaches have been complementing high-throughput biological experiments towards the annotation of the human genome, it still remains a big challenge to accurately annotate regulatory elements in the context of a specific cell type via automatic learning of the DNA sequence code from large-scale sequencing data. Indeed, the development of an accurate and interpretable model to learn the DNA sequence signature and further enable the identification of causative genetic variants has become essential in both genomic and genetic studies. We proposed Deopen, a hybrid framework mainly based on a deep convolutional neural network, to automatically learn the regulatory code of DNA sequences and predict chromatin accessibility. In a series of comparison with existing methods, we show the superior performance of our model in not only the classification of accessible regions against background sequences sampled at random, but also the regression of DNase-seq signals. Besides, we further visualize the convolutional kernels and show the match of identified sequence signatures and known motifs. We finally demonstrate the sensitivity of our model in finding causative noncoding variants in the analysis of a breast cancer dataset. We expect to see wide applications of Deopen with either public or in-house chromatin accessibility data in the annotation of the human genome and the identification of non-coding variants associated with diseases. Deopen is freely available at https://github.com/kimmo1019/Deopen. ruijiang@tsinghua.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Chen, Zhao; Moran, Kimberly; Richards-Yutz, Jennifer; Toorens, Erik; Gerhart, Daniel; Ganguly, Tapan; Shields, Carol L; Ganguly, Arupa
2014-03-01
Sporadic retinoblastoma (RB) is caused by de novo mutations in the RB1 gene. Often, these mutations are present as mosaic mutations that cannot be detected by Sanger sequencing. Next-generation deep sequencing allows unambiguous detection of the mosaic mutations in lymphocyte DNA. Deep sequencing of the RB1 gene on lymphocyte DNA from 20 bilateral and 70 unilateral RB cases was performed, where Sanger sequencing excluded the presence of mutations. The individual exons of the RB1 gene from each sample were amplified, pooled, ligated to barcoded adapters, and sequenced using semiconductor sequencing on an Ion Torrent Personal Genome Machine. Six low-level mosaic mutations were identified in bilateral RB and four in unilateral RB cases. The incidence of low-level mosaic mutation was estimated to be 30% and 6%, respectively, in sporadic bilateral and unilateral RB cases, previously classified as mutation negative. The frequency of point mutations detectable in lymphocyte DNA increased from 96% to 97% for bilateral RB and from 13% to 18% for unilateral RB. The use of deep sequencing technology increased the sensitivity of the detection of low-level germline mosaic mutations in the RB1 gene. This finding has significant implications for improved clinical diagnosis, genetic counseling, surveillance, and management of RB. © 2013 WILEY PERIODICALS, INC.
Geology of the Deep Creek area, Washington, and its regional significance
Yates, Robert Giertz
1976-01-01
This report, although primarily concerned with the stratigraphy and structure of a lead-zinc mining district in northern Stevens County, Washington, discusses and integrates the geology of the region about the Deep Creek area. Although the study centers in an area of about 200 square miles immediately south of the International Boundary, the regional background comes from: (1)the previously undescribed Northport quadrangle to the west, (2) published reports and reconnaissance of the Metaline quadrangle to the east, and (3) from published reports and maps of a 16 mile wide area that lies to the north adjacent to these three quadrangles in British Columbia. The report is divided into three parts: (1) descriptions of rocks and structures of the Deep Creek area, (2) descriptions of the regional setting of the Deep Creek area, and (3) an analysis and interpretation of the depositional and tectonic events that produced the geologic features exposed today. In the Deep Creek area surficial deposits of sand and gravel of glacial origin cover much of the consolidated rocks, which range in age from greenschist of the late Precambrlan to albite granite of the Eocene. Three broad divisions of depositional history are represented: (1) Precambrian, (2) lower Paleozoic and (3) upper Paleozoic; the record of the Mesozoic and Eocene is fragmentary. The lower Paleozoic division is the only fossil-controlled sequence; the age of the other two divisions were established by less direct methods. Both Precambrian and upper Paleozoic sequences are dominated by fine-grained detrital sediments, the Precambrian tending towards the alumina-rich and the upper Paleozoic tending towards the black shale facies with high silica. Neither sequence has more than trivial amounts of coarse clastics. Both include limestones, but in minor abundance. The lower Paleozoic sequence, on the other hand, represents a progressive change in deposition. The sequence began during the very late Precambrian with the deposition of clean quartz sand. This was followed by the accumulation of a comparatively thin limestone unit succeeded by a thick shale. The shale grades into a thick carbonate unit which in turn is overlain by black graptolitic slates (Ordovician). This general order of deposition holds for the Cambro-Ordovician throughout the area. Precambrian rocks indigenous to the Deep Creek area, have undergone at least six tectonic events of greatly different intensities. The first three of these events are epeirogentic, the fourth involves intense folding, the fifth, crossfolding, and the sixth, block faulting without folding. These events are dated with varying degrees of precision. The two epeirogentic events of the Precambrian, one gentle folding at the beginning of Windermere time and the other high angle faulting and volcanism in mid-Windermere time, did little to deform or metamorphose the rocks. The third event consists of uplift of northern Idaho and adjacent Montana and westward decollement thrusting of essentially unfolded lower Paleozoic rocks. The decollement faulting is inferred to explain anomalous rock distribution and cannot be accurately dated. It occurred sometime after the Devonian and before the Jurassic. A late Paleozoic age is favored.
Barrett, Nolan H.; McCarthy, Peter J.
2017-01-01
ABSTRACT The proteobacterium Alteromonas sp. strain V450 was isolated from the Atlantic deep-sea sponge Leiodermatium sp. Here, we report the draft genome sequence of this strain, with a genome size of approx. 4.39 Mb and a G+C content of 44.01%. The results will aid deep-sea microbial ecology, evolution, and sponge-microbe association studies. PMID:28153886
Llewellyn, Martin S.; Messenger, Louisa A.; Luquetti, Alejandro O.; Garcia, Lineth; Torrico, Faustino; Tavares, Suelene B. N.; Cheaib, Bachar; Derome, Nicolas; Delepine, Marc; Baulard, Céline; Deleuze, Jean-Francois; Sauer, Sascha; Miles, Michael A.
2015-01-01
Background Chagas disease results from infection with the diploid protozoan parasite Trypanosoma cruzi. T. cruzi is highly genetically diverse, and multiclonal infections in individual hosts are common, but little studied. In this study, we explore T. cruzi infection multiclonality in the context of age, sex and clinical profile among a cohort of chronic patients, as well as paired congenital cases from Cochabamba, Bolivia and Goias, Brazil using amplicon deep sequencing technology. Methodology/ Principal Findings A 450bp fragment of the trypomastigote TcGP63I surface protease gene was amplified and sequenced across 70 chronic and 22 congenital cases on the Illumina MiSeq platform. In addition, a second, mitochondrial target—ND5—was sequenced across the same cohort of cases. Several million reads were generated, and sequencing read depths were normalized within patient cohorts (Goias chronic, n = 43, Goias congenital n = 2, Bolivia chronic, n = 27; Bolivia congenital, n = 20), Among chronic cases, analyses of variance indicated no clear correlation between intra-host sequence diversity and age, sex or symptoms, while principal coordinate analyses showed no clustering by symptoms between patients. Between congenital pairs, we found evidence for the transmission of multiple sequence types from mother to infant, as well as widespread instances of novel genotypes in infants. Finally, non-synonymous to synonymous (dn:ds) nucleotide substitution ratios among sequences of TcGP63Ia and TcGP63Ib subfamilies within each cohort provided powerful evidence of strong diversifying selection at this locus. Conclusions/Significance Our results shed light on the diversity of parasite DTUs within each patient, as well as the extent to which parasite strains pass between mother and foetus in congenital cases. Although we were unable to find any evidence that parasite diversity accumulates with age in our study cohorts, putative diversifying selection within members of the TcGP63I gene family suggests a link between genetic diversity within this gene family and survival in the mammalian host. PMID:25849488
2013-01-01
Background Deep sequencing of viruses isolated from infected hosts is an efficient way to measure population-genetic variation and can reveal patterns of dispersal and natural selection. In this study, we mined existing Illumina sequence reads to investigate single-nucleotide polymorphisms (SNPs) within two RNA viruses of the Western honey bee (Apis mellifera), deformed wing virus (DWV) and Israel acute paralysis virus (IAPV). All viral RNA was extracted from North American samples of honey bees or, in one case, the ectoparasitic mite Varroa destructor. Results Coverage depth was generally lower for IAPV than DWV, and marked gaps in coverage occurred in several narrow regions (< 50 bp) of IAPV. These coverage gaps occurred across sequencing runs and were virtually unchanged when reads were re-mapped with greater permissiveness (up to 8% divergence), suggesting a recurrent sequencing artifact rather than strain divergence. Consensus sequences of DWV for each sample showed little phylogenetic divergence, low nucleotide diversity, and strongly negative values of Fu and Li’s D statistic, suggesting a recent population bottleneck and/or purifying selection. The Kakugo strain of DWV fell outside of all other DWV sequences at 100% bootstrap support. IAPV consensus sequences supported the existence of multiple clades as had been previously reported, and Fu and Li’s D was closer to neutral expectation overall, although a sliding-window analysis identified a significantly positive D within the protease region, suggesting selection maintains diversity in that region. Within-sample mean diversity was comparable between the two viruses on average, although for both viruses there was substantial variation among samples in mean diversity at third codon positions and in the number of high-diversity sites. FST values were bimodal for DWV, likely reflecting neutral divergence in two low-diversity populations, whereas IAPV had several sites that were strong outliers with very low FST. Conclusions This initial survey of genetic variation within honey bee RNA viruses suggests future directions for studies examining the underlying causes of population-genetic structure in these economically important pathogens. PMID:23497218
Identification of Prostate Cancer-Specific microDNAs
2016-02-01
circular DNA by rolling circle amplification (RCA) and then amplified DNA fragments were subject to deep sequencing. Deep sequencing of the...demonstrate the existence of microDNAs in prostate cancer. We adopted multiple displacement amplification (MDA) with random 2 primers for enriched...prostate cancer cells through multiple displacement amplification and next generation sequencing. R e la ti v e c e ll g ro w th ( % ) 0 20
Sequence-specific bias correction for RNA-seq data using recurrent neural networks.
Zhang, Yao-Zhong; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru
2017-01-25
The recent success of deep learning techniques in machine learning and artificial intelligence has stimulated a great deal of interest among bioinformaticians, who now wish to bring the power of deep learning to bare on a host of bioinformatical problems. Deep learning is ideally suited for biological problems that require automatic or hierarchical feature representation for biological data when prior knowledge is limited. In this work, we address the sequence-specific bias correction problem for RNA-seq data redusing Recurrent Neural Networks (RNNs) to model nucleotide sequences without pre-determining sequence structures. The sequence-specific bias of a read is then calculated based on the sequence probabilities estimated by RNNs, and used in the estimation of gene abundance. We explore the application of two popular RNN recurrent units for this task and demonstrate that RNN-based approaches provide a flexible way to model nucleotide sequences without knowledge of predetermined sequence structures. Our experiments show that training a RNN-based nucleotide sequence model is efficient and RNN-based bias correction methods compare well with the-state-of-the-art sequence-specific bias correction method on the commonly used MAQC-III data set. RNNs provides an alternative and flexible way to calculate sequence-specific bias without explicitly pre-determining sequence structures.
Beck, Andrew; Tesh, Robert B.; Wood, Thomas G.; Widen, Steven G.; Ryman, Kate D.; Barrett, Alan D. T.
2014-01-01
Background. The first comparison of a live RNA viral vaccine strain to its wild-type parental strain by deep sequencing is presented using as a model the yellow fever virus (YFV) live vaccine strain 17D-204 and its wild-type parental strain, Asibi. Methods. The YFV 17D-204 vaccine genome was compared to that of the parental strain Asibi by massively parallel methods. Variability was compared on multiple scales of the viral genomes. A modeled exploration of small-frequency variants was performed to reconstruct plausible regions of mutational plasticity. Results. Overt quasispecies diversity is a feature of the parental strain, whereas the live vaccine strain lacks diversity according to multiple independent measurements. A lack of attenuating mutations in the Asibi population relative to that of 17D-204 was observed, demonstrating that the vaccine strain was derived by discrete mutation of Asibi and not by selection of genomes in the wild-type population. Conclusions. Relative quasispecies structure is a plausible correlate of attenuation for live viral vaccines. Analyses such as these of attenuated viruses improve our understanding of the molecular basis of vaccine attenuation and provide critical information on the stability of live vaccines and the risk of reversion to virulence. PMID:24141982
An, Xiaoping; Fan, Hang; Ma, Maijuan; Anderson, Benjamin D.; Jiang, Jiafu; Liu, Wei; Cao, Wuchun; Tong, Yigang
2014-01-01
This paper explored our hypothesis that sRNA (18∼30 bp) deep sequencing technique can be used as an efficient strategy to identify microorganisms other than viruses, such as prokaryotic and eukaryotic pathogens. In the study, the clean reads derived from the sRNA deep sequencing data of wild-caught ticks and mosquitoes were compared against the NCBI nucleotide collection (non-redundant nt database) using Blastn. The blast results were then analyzed with in-house Python scripts. An empirical formula was proposed to identify the putative pathogens. Results showed that not only viruses but also prokaryotic and eukaryotic species of interest can be screened out and were subsequently confirmed with experiments. Specially, a novel Rickettsia spp. was indicated to exist in Haemaphysalis longicornis ticks collected in Beijing. Our study demonstrated the reuse of sRNA deep sequencing data would have the potential to trace the origin of pathogens or discover novel agents of emerging/re-emerging infectious diseases. PMID:24618575
Wang, Guojun; Barrett, Nolan H; McCarthy, Peter J
2017-02-02
The proteobacterium Alteromonas sp. strain V450 was isolated from the Atlantic deep-sea sponge Leiodermatium sp. Here, we report the draft genome sequence of this strain, with a genome size of approx. 4.39 Mb and a G+C content of 44.01%. The results will aid deep-sea microbial ecology, evolution, and sponge-microbe association studies. Copyright © 2017 Wang et al.
miRBase: integrating microRNA annotation and deep-sequencing data.
Kozomara, Ana; Griffiths-Jones, Sam
2011-01-01
miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15,000 microRNA gene loci in over 140 species, and over 17,000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.
Transcriptome sequences resolve deep relationships of the grape family.
Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M; Gerrath, Jean; Zimmer, Elizabeth A; Fang, Xiao-Dong
2013-01-01
Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated.
Background rejection in NEXT using deep neural networks
Renner, J.; Farbin, A.; Vidal, J. Muñoz; ...
2017-01-16
Here, we investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the usemore » of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.« less
2012-01-01
Background Staphylococcus aureus Repeat (STAR) elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Results Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. Conclusions The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis. PMID:23020678
Draft Genome Sequence of Pseudomonas oceani DSM 100277T, a Deep-Sea Bacterium
2018-01-01
ABSTRACT Pseudomonas oceani DSM 100277T was isolated from deep seawater in the Okinawa Trough at 1390 m. P. oceani belongs to the Pseudomonas pertucinogena group. Here, we report the draft genome sequence of P. oceani, which has an estimated size of 4.1 Mb and exhibits 3,790 coding sequences, with a G+C content of 59.94 mol%. PMID:29650573
Kravatsky, Yuri; Chechetkin, Vladimir; Fedoseeva, Daria; Gorbacheva, Maria; Kravatskaya, Galina; Kretova, Olga; Tchurikov, Nickolai
2017-11-23
The efficient development of antiviral drugs, including efficient antiviral small interfering RNAs (siRNAs), requires continuous monitoring of the strict correspondence between a drug and the related highly variable viral DNA/RNA target(s). Deep sequencing is able to provide an assessment of both the general target conservation and the frequency of particular mutations in the different target sites. The aim of this study was to develop a reliable bioinformatic pipeline for the analysis of millions of short, deep sequencing reads corresponding to selected highly variable viral sequences that are drug target(s). The suggested bioinformatic pipeline combines the available programs and the ad hoc scripts based on an original algorithm of the search for the conserved targets in the deep sequencing data. We also present the statistical criteria for the threshold of reliable mutation detection and for the assessment of variations between corresponding data sets. These criteria are robust against the possible sequencing errors in the reads. As an example, the bioinformatic pipeline is applied to the study of the conservation of RNA interference (RNAi) targets in human immunodeficiency virus 1 (HIV-1) subtype A. The developed pipeline is freely available to download at the website http://virmut.eimb.ru/. Brief comments and comparisons between VirMut and other pipelines are also presented.
The Causality of Evolution on Different Fitness Landscapes
NASA Astrophysics Data System (ADS)
Vyawahare, Saurabh; Austin, Robert; Zhang, Qiucen; Kim, Hyunsung; Bestoso, John
2013-03-01
Evolution of antibiotic resistance is a growing problem. One major reason why most antibiotics fail is because of mutations on drug targets (e.g. essential enzymes). Sequencing of clinically resistant isolates have shown that multiple mutational-hotspots exist in coding regions, which could potentially prohibit the binding of drugs. However, it is not clear whether the appearance of each mutation is random or influenced by other factors. In this paper, we compare evolution of resistance to ciprofloxacin from two distinct but well characterized genetic backgrounds. By combining our recently developed evolution reactor and deep whole-genome sequencing, we show different alleles of σs factor lead to fixation of different mutations in gyrA gene that confer ciprofloxacin resistance to bacteria Escherichia coli. Such causality of evolution in different genes provides an opportunity to control the evolution of antibiotic resistance. Sponsored by the NCI/NIH Physical Sciences Oncology Centers
Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks
Lanchantin, Jack; Singh, Ritambhara; Wang, Beilun; Qi, Yanjun
2018-01-01
Deep neural network (DNN) models have recently obtained state-of-the-art prediction accuracy for the transcription factor binding (TFBS) site classification task. However, it remains unclear how these approaches identify meaningful DNA sequence signals and give insights as to why TFs bind to certain locations. In this paper, we propose a toolkit called the Deep Motif Dashboard (DeMo Dashboard) which provides a suite of visualization strategies to extract motifs, or sequence patterns from deep neural network models for TFBS classification. We demonstrate how to visualize and understand three important DNN models: convolutional, recurrent, and convolutional-recurrent networks. Our first visualization method is finding a test sequence’s saliency map which uses first-order derivatives to describe the importance of each nucleotide in making the final prediction. Second, considering recurrent models make predictions in a temporal manner (from one end of a TFBS sequence to the other), we introduce temporal output scores, indicating the prediction score of a model over time for a sequential input. Lastly, a class-specific visualization strategy finds the optimal input sequence for a given TFBS positive class via stochastic gradient optimization. Our experimental results indicate that a convolutional-recurrent architecture performs the best among the three architectures. The visualization techniques indicate that CNN-RNN makes predictions by modeling both motifs as well as dependencies among them. PMID:27896980
Aftershock occurrence rate decay for individual sequences and catalogs
NASA Astrophysics Data System (ADS)
Nyffenegger, Paul A.
One of the earliest observations of the Earth's seismicity is that the rate of aftershock occurrence decays with time according to a power law commonly known as modified Omori-law (MOL) decay. However, the physical reasons for aftershock occurrence and the empirical decay in rate remain unclear despite numerous models that yield similar rate decay behavior. Key problems in relating the observed empirical relationship to the physical conditions of the mainshock and fault are the lack of studies including small magnitude mainshocks and the lack of uniformity between studies. We use simulated aftershock sequences to investigate the factors which influence the maximum likelihood (ML) estimate of the Omori-law p value, the parameter describing aftershock occurrence rate decay, for both individual aftershock sequences and "stacked" or superposed sequences. Generally the ML estimate of p is accurate, but since the ML estimated uncertainty is unaffected by whether the sequence resembles an MOL model, a goodness-of-fit test such as the Anderson-Darling statistic is necessary. While stacking aftershock sequences permits the study of entire catalogs and sequences with small aftershock populations, stacking introduces artifacts. The p value for stacked sequences is approximately equal to the mean of the individual sequence p values. We apply single-link cluster analysis to identify all aftershock sequences from eleven regional seismicity catalogs. We observe two new mathematically predictable empirical relationships for the distribution of aftershock sequence populations. The average properties of aftershock sequences are not correlated with tectonic environment, but aftershock populations and p values do show a depth dependence. The p values show great variability with time, and large values or changes in p sometimes precedes major earthquakes. Studies of teleseismic earthquake catalogs over the last twenty years have led seismologists to question seismicity models and aftershock sequence decay for deep sequences. For seven exceptional deep sequences, we conclude that MOL decay adequately describes these sequences, and little difference exists compared to shallow sequences. However, they do include larger aftershock populations compared to most deep sequences. These results imply that p values for deep sequences are larger than those for intermediate depth sequences.
Deep Dermatophytosis and Inherited CARD9 Deficiency
Vincent, Quentin B.; Liu, Luyan; Cypowyj, Sophie; Prando, Carolina; Migaud, Mélanie; Taibi, Lynda; Ammar-Khodja, Aomar; Stambouli, Omar Boudghene; Guellil, Boumediene; Jacobs, Frederique; Goffard, Jean-Christophe; Schepers, Kinda; del Marmol, Véronique; Boussofara, Lobna; Denguezli, Mohamed; Larif, Molka; Bachelez, Hervé; Michel, Laurence; Lefranc, Gérard; Hay, Rod; Jouvion, Gregory; Chretien, Fabrice; Fraitag, Sylvie; Bougnoux, Marie-Elisabeth; Boudia, Merad
2014-01-01
BACKGROUND Deep dermatophytosis is a severe and sometimes life-threatening fungal infection caused by dermatophytes. It is characterized by extensive dermal and subcutaneous tissue invasion and by frequent dissemination to the lymph nodes and, occasionally, the central nervous system. The condition is different from common superficial dermatophyte infection and has been reported in patients with no known immunodeficiency. Patients are mostly from North African, consanguineous, multiplex families, which strongly suggests a mendelian genetic cause. METHODS We studied the clinical features of deep dermatophytosis in 17 patients with no known immunodeficiency from eight unrelated Tunisian, Algerian, and Moroccan families. Because CARD9 (caspase recruitment domain–containing protein 9) deficiency has been reported in an Iranian family with invasive fungal infections, we also sequenced CARD9 in the patients. RESULTS Four patients died, at 28, 29, 37, and 39 years of age, with clinically active deep dermatophytosis. No other severe infections, fungal or otherwise, were reported in the surviving patients, who ranged in age from 37 to 75 years. The 15 Algerian and Tunisian patients, from seven unrelated families, had a homozygous Q289X CARD9 allele, due to a founder effect. The 2 Moroccan siblings were homozygous for the R101C CARD9 allele. Both alleles are rare deleterious variants. The familial segregation of these alleles was consistent with autosomal recessive inheritance and complete clinical penetrance. CONCLUSIONS All the patients with deep dermatophytosis had autosomal recessive CARD9 deficiency. Deep dermatophytosis appears to be an important clinical manifestation of CARD9 deficiency. (Funded by Agence Nationale pour la Recherche and others.) PMID:24131138
Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.
Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo
2016-01-11
Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.
Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields
NASA Astrophysics Data System (ADS)
Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo
2016-01-01
Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.
Deep learning methods for protein torsion angle prediction.
Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin
2017-09-18
Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.
Jones, David T; Kandathil, Shaun M
2018-04-26
In addition to substitution frequency data from protein sequence alignments, many state-of-the-art methods for contact prediction rely on additional sources of information, or features, of protein sequences in order to predict residue-residue contacts, such as solvent accessibility, predicted secondary structure, and scores from other contact prediction methods. It is unclear how much of this information is needed to achieve state-of-the-art results. Here, we show that using deep neural network models, simple alignment statistics contain sufficient information to achieve state-of-the-art precision. Our prediction method, DeepCov, uses fully convolutional neural networks operating on amino-acid pair frequency or covariance data derived directly from sequence alignments, without using global statistical methods such as sparse inverse covariance or pseudolikelihood estimation. Comparisons against CCMpred and MetaPSICOV2 show that using pairwise covariance data calculated from raw alignments as input allows us to match or exceed the performance of both of these methods. Almost all of the achieved precision is obtained when considering relatively local windows (around 15 residues) around any member of a given residue pairing; larger window sizes have comparable performance. Assessment on a set of shallow sequence alignments (fewer than 160 effective sequences) indicates that the new method is substantially more precise than CCMpred and MetaPSICOV2 in this regime, suggesting that improved precision is attainable on smaller sequence families. Overall, the performance of DeepCov is competitive with the state of the art, and our results demonstrate that global models, which employ features from all parts of the input alignment when predicting individual contacts, are not strictly needed in order to attain precise contact predictions. DeepCov is freely available at https://github.com/psipred/DeepCov. d.t.jones@ucl.ac.uk.
Gregor, Ivan; Dröge, Johannes; Schirmer, Melanie; Quince, Christopher; McHardy, Alice C
2016-01-01
Background. Metagenomics is an approach for characterizing environmental microbial communities in situ, it allows their functional and taxonomic characterization and to recover sequences from uncultured taxa. This is often achieved by a combination of sequence assembly and binning, where sequences are grouped into 'bins' representing taxa of the underlying microbial community. Assignment to low-ranking taxonomic bins is an important challenge for binning methods as is scalability to Gb-sized datasets generated with deep sequencing techniques. One of the best available methods for species bins recovery from deep-branching phyla is the expert-trained PhyloPythiaS package, where a human expert decides on the taxa to incorporate in the model and identifies 'training' sequences based on marker genes directly from the sample. Due to the manual effort involved, this approach does not scale to multiple metagenome samples and requires substantial expertise, which researchers who are new to the area do not have. Results. We have developed PhyloPythiaS+, a successor to our PhyloPythia(S) software. The new (+) component performs the work previously done by the human expert. PhyloPythiaS+ also includes a new k-mer counting algorithm, which accelerated the simultaneous counting of 4-6-mers used for taxonomic binning 100-fold and reduced the overall execution time of the software by a factor of three. Our software allows to analyze Gb-sized metagenomes with inexpensive hardware, and to recover species or genera-level bins with low error rates in a fully automated fashion. PhyloPythiaS+ was compared to MEGAN, taxator-tk, Kraken and the generic PhyloPythiaS model. The results showed that PhyloPythiaS+ performs especially well for samples originating from novel environments in comparison to the other methods. Availability. PhyloPythiaS+ in a virtual machine is available for installation under Windows, Unix systems or OS X on: https://github.com/algbioi/ppsp/wiki.
2013-01-01
Background MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating post transcriptional gene expression. Gall midges encompass a large group of insects that are of economic importance and also possess fascinating biological traits. The gall midge Mayetiola destructor, commonly known as the Hessian fly, is a destructive pest of wheat and model organism for studying gall midge biology and insect – host plant interactions. Results In this study, we systematically analyzed miRNAs from the Hessian fly. Deep-sequencing a Hessian fly larval transcriptome led to the identification of 89 miRNA species that are either identical or very similar to known miRNAs from other insects, and 184 novel miRNAs that have not been reported from other species. A genome-wide search through a draft Hessian fly genome sequence identified a total of 611 putative miRNA-encoding genes based on sequence similarity and the existence of a stem-loop structure for miRNA precursors. Analysis of the 611 putative genes revealed a striking feature: the dramatic expansion of several miRNA gene families. The largest family contained 91 genes that encoded 20 different miRNAs. Microarray analyses revealed the expression of miRNA genes was strictly regulated during Hessian fly larval development and abundance of many miRNA genes were affected by host genotypes. Conclusion The identification of a large number of miRNAs for the first time from a gall midge provides a foundation for further studies of miRNA functions in gall midge biology and behavior. The dramatic expansion of identical or similar miRNAs provides a unique system to study functional relations among miRNA iso-genes as well as changes in sequence specificity due to small changes in miRNAs and in their mRNA targets. These results may also facilitate the identification of miRNA genes for potential pest control through transgenic approaches. PMID:23496979
Hawlitschek, Oliver; Porch, Nick; Hendrich, Lars; Balke, Michael
2011-01-01
Background DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. Methodology/Principal Findings The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. Conclusion/Significance In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species. PMID:21347370
2012-01-01
Background MicroRNAs (miRNAs) are one of the functional non-coding small RNAs involved in the epigenetic control of the plant genome. Although plants contain both evolutionary conserved miRNAs and species-specific miRNAs within their genomes, computational methods often only identify evolutionary conserved miRNAs. The recent sequencing of the Brassica rapa genome enables us to identify miRNAs and their putative target genes. In this study, we sought to provide a more comprehensive prediction of B. rapa miRNAs based on high throughput small RNA deep sequencing. Results We sequenced small RNAs from five types of tissue: seedlings, roots, petioles, leaves, and flowers. By analyzing 2.75 million unique reads that mapped to the B. rapa genome, we identified 216 novel and 196 conserved miRNAs that were predicted to target approximately 20% of the genome’s protein coding genes. Quantitative analysis of miRNAs from the five types of tissue revealed that novel miRNAs were expressed in diverse tissues but their expression levels were lower than those of the conserved miRNAs. Comparative analysis of the miRNAs between the B. rapa and Arabidopsis thaliana genomes demonstrated that redundant copies of conserved miRNAs in the B. rapa genome may have been deleted after whole genome triplication. Novel miRNA members seemed to have spontaneously arisen from the B. rapa and A. thaliana genomes, suggesting the species-specific expansion of miRNAs. We have made this data publicly available in a miRNA database of B. rapa called BraMRs. The database allows the user to retrieve miRNA sequences, their expression profiles, and a description of their target genes from the five tissue types investigated here. Conclusions This is the first report to identify novel miRNAs from Brassica crops using genome-wide high throughput techniques. The combination of computational methods and small RNA deep sequencing provides robust predictions of miRNAs in the genome. The finding of numerous novel miRNAs, many with few target genes and low expression levels, suggests the rapid evolution of miRNA genes. The development of a miRNA database, BraMRs, enables us to integrate miRNA identification, target prediction, and functional annotation of target genes. BraMRs will represent a valuable public resource with which to study the epigenetic control of B. rapa and other closely related Brassica species. The database is available at the following link: http://bramrs.rna.kr [1]. PMID:23163954
NASA Technical Reports Server (NTRS)
Wissler, Steven S.; Maldague, Pierre; Rocca, Jennifer; Seybold, Calina
2006-01-01
The Deep Impact mission was ambitious and challenging. JPL's well proven, easily adaptable multi-mission sequence planning tools combined with integrated spacecraft subsystem models enabled a small operations team to develop, validate, and execute extremely complex sequence-based activities within very short development times. This paper focuses on the core planning tool used in the mission, APGEN. It shows how the multi-mission design and adaptability of APGEN made it possible to model spacecraft subsystems as well as ground assets throughout the lifecycle of the Deep Impact project, starting with models of initial, high-level mission objectives, and culminating in detailed predictions of spacecraft behavior during mission-critical activities.
Transcriptome Sequences Resolve Deep Relationships of the Grape Family
Wen, Jun; Xiong, Zhiqiang; Nie, Ze-Long; Mao, Likai; Zhu, Yabing; Kan, Xian-Zhao; Ickert-Bond, Stefanie M.; Gerrath, Jean; Zimmer, Elizabeth A.; Fang, Xiao-Dong
2013-01-01
Previous phylogenetic studies of the grape family (Vitaceae) yielded poorly resolved deep relationships, thus impeding our understanding of the evolution of the family. Next-generation sequencing now offers access to protein coding sequences very easily, quickly and cost-effectively. To improve upon earlier work, we extracted 417 orthologous single-copy nuclear genes from the transcriptomes of 15 species of the Vitaceae, covering its phylogenetic diversity. The resulting transcriptome phylogeny provides robust support for the deep relationships, showing the phylogenetic utility of transcriptome data for plants over a time scale at least since the mid-Cretaceous. The pros and cons of transcriptome data for phylogenetic inference in plants are also evaluated. PMID:24069307
Deep Learning and Its Applications in Biomedicine.
Cao, Chensi; Liu, Feng; Tan, Hai; Song, Deshou; Shu, Wenjie; Li, Weizhong; Zhou, Yiming; Bo, Xiaochen; Xie, Zhi
2018-02-01
Advances in biological and medical technologies have been providing us explosive volumes of biological and physiological data, such as medical images, electroencephalography, genomic and protein sequences. Learning from these data facilitates the understanding of human health and disease. Developed from artificial neural networks, deep learning-based algorithms show great promise in extracting features and learning patterns from complex data. The aim of this paper is to provide an overview of deep learning techniques and some of the state-of-the-art applications in the biomedical field. We first introduce the development of artificial neural network and deep learning. We then describe two main components of deep learning, i.e., deep learning architectures and model optimization. Subsequently, some examples are demonstrated for deep learning applications, including medical image classification, genomic sequence analysis, as well as protein structure classification and prediction. Finally, we offer our perspectives for the future directions in the field of deep learning. Copyright © 2018. Production and hosting by Elsevier B.V.
Deep Borehole Emplacement Mode Hazard Analysis Revision 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevougian, S. David
This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent ofmore » this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.]« less
Integrated digital error suppression for improved detection of circulating tumor DNA
Kurtz, David M.; Chabon, Jacob J.; Scherer, Florian; Stehr, Henning; Liu, Chih Long; Bratman, Scott V.; Say, Carmen; Zhou, Li; Carter, Justin N.; West, Robert B.; Sledge, George W.; Shrager, Joseph B.; Loo, Billy W.; Neal, Joel W.; Wakelee, Heather A.; Diehn, Maximilian; Alizadeh, Ash A.
2016-01-01
High-throughput sequencing of circulating tumor DNA (ctDNA) promises to facilitate personalized cancer therapy. However, low quantities of cell-free DNA (cfDNA) in the blood and sequencing artifacts currently limit analytical sensitivity. To overcome these limitations, we introduce an approach for integrated digital error suppression (iDES). Our method combines in silico elimination of highly stereotypical background artifacts with a molecular barcoding strategy for the efficient recovery of cfDNA molecules. Individually, these two methods each improve the sensitivity of cancer personalized profiling by deep sequencing (CAPP-Seq) by ~3 fold, and synergize when combined to yield ~15-fold improvements. As a result, iDES-enhanced CAPP-Seq facilitates noninvasive variant detection across hundreds of kilobases. Applied to clinical non-small cell lung cancer (NSCLC) samples, our method enabled biopsy-free profiling of EGFR kinase domain mutations with 92% sensitivity and 96% specificity and detection of ctDNA down to 4 in 105 cfDNA molecules. We anticipate that iDES will aid the noninvasive genotyping and detection of ctDNA in research and clinical settings. PMID:27018799
Porter, Danielle P.; Daeumer, Martin; Thielen, Alexander; Chang, Silvia; Martin, Ross; Cohen, Cal; Miller, Michael D.; White, Kirsten L.
2015-01-01
At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study. PMID:26690199
Porter, Danielle P; Daeumer, Martin; Thielen, Alexander; Chang, Silvia; Martin, Ross; Cohen, Cal; Miller, Michael D; White, Kirsten L
2015-12-07
At Week 96 of the Single-Tablet Regimen (STaR) study, more treatment-naïve subjects that received rilpivirine/emtricitabine/tenofovir DF (RPV/FTC/TDF) developed resistance mutations compared to those treated with efavirenz (EFV)/FTC/TDF by population sequencing. Furthermore, more RPV/FTC/TDF-treated subjects with baseline HIV-1 RNA >100,000 copies/mL developed resistance compared to subjects with baseline HIV-1 RNA ≤100,000 copies/mL. Here, deep sequencing was utilized to assess the presence of pre-existing low-frequency variants in subjects with and without resistance development in the STaR study. Deep sequencing (Illumina MiSeq) was performed on baseline and virologic failure samples for all subjects analyzed for resistance by population sequencing during the clinical study (n = 33), as well as baseline samples from control subjects with virologic response (n = 118). Primary NRTI or NNRTI drug resistance mutations present at low frequency (≥2% to 20%) were detected in 6.6% of baseline samples by deep sequencing, all of which occurred in control subjects. Deep sequencing results were generally consistent with population sequencing but detected additional primary NNRTI and NRTI resistance mutations at virologic failure in seven samples. HIV-1 drug resistance mutations emerging while on RPV/FTC/TDF or EFV/FTC/TDF treatment were not present at low frequency at baseline in the STaR study.
VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs
USDA-ARS?s Scientific Manuscript database
Accurate detection of viruses in plants and animals is critical for agriculture production and human health. Deep sequencing and assembly of virus-derived siRNAs has proven to be a highly efficient approach for virus discovery. However, to date no computational tools specifically designed for both k...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Sean
2013-03-01
Sean Gordon of the USDA on Natural variation in Brachypodium disctachyon: Deep Sequencing of Highly Diverse Natural Accessions at the 8th Annual Genomics of Energy Environment Meeting on March 27, 2013 in Walnut Creek, CA.
Microbial Diversity in Deep-sea Methane Seep Sediments Presented by SSU rRNA Gene Tag Sequencing
Nunoura, Takuro; Takaki, Yoshihiro; Kazama, Hiromi; Hirai, Miho; Ashi, Juichiro; Imachi, Hiroyuki; Takai, Ken
2012-01-01
Microbial community structures in methane seep sediments in the Nankai Trough were analyzed by tag-sequencing analysis for the small subunit (SSU) rRNA gene using a newly developed primer set. The dominant members of Archaea were Deep-sea Hydrothermal Vent Euryarchaeotic Group 6 (DHVEG 6), Marine Group I (MGI) and Deep Sea Archaeal Group (DSAG), and those in Bacteria were Alpha-, Gamma-, Delta- and Epsilonproteobacteria, Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. Diversity and richness were examined by 8,709 and 7,690 tag-sequences from sediments at 5 and 25 cm below the seafloor (cmbsf), respectively. The estimated diversity and richness in the methane seep sediment are as high as those in soil and deep-sea hydrothermal environments, although the tag-sequences obtained in this study were not sufficient to show whole microbial diversity in this analysis. We also compared the diversity and richness of each taxon/division between the sediments from the two depths, and found that the diversity and richness of some taxa/divisions varied significantly along with the depth. PMID:22510646
Barrett, Craig F.; Specht, Chelsea D.; Leebens-Mack, Jim; Stevenson, Dennis Wm.; Zomlefer, Wendy B.; Davis, Jerrold I.
2014-01-01
Background and Aims Zingiberales comprise a clade of eight tropical monocot families including approx. 2500 species and are hypothesized to have undergone an ancient, rapid radiation during the Cretaceous. Zingiberales display substantial variation in floral morphology, and several members are ecologically and economically important. Deep phylogenetic relationships among primary lineages of Zingiberales have proved difficult to resolve in previous studies, representing a key region of uncertainty in the monocot tree of life. Methods Next-generation sequencing was used to construct complete plastid gene sets for nine taxa of Zingiberales, which were added to five previously sequenced sets in an attempt to resolve deep relationships among families in the order. Variation in taxon sampling, process partition inclusion and partition model parameters were examined to assess their effects on topology and support. Key Results Codon-based likelihood analysis identified a strongly supported clade of ((Cannaceae, Marantaceae), (Costaceae, Zingiberaceae)), sister to (Musaceae, (Lowiaceae, Strelitziaceae)), collectively sister to Heliconiaceae. However, the deepest divergences in this phylogenetic analysis comprised short branches with weak support. Additionally, manipulation of matrices resulted in differing deep topologies in an unpredictable fashion. Alternative topology testing allowed statistical rejection of some of the topologies. Saturation fails to explain observed topological uncertainty and low support at the base of Zingiberales. Evidence for conflict among the plastid data was based on a support metric that accounts for conflicting resampled topologies. Conclusions Many relationships were resolved with robust support, but the paucity of character information supporting the deepest nodes and the existence of conflict suggest that plastid coding regions are insufficient to resolve and support the earliest divergences among families of Zingiberales. Whole plastomes will continue to be highly useful in plant phylogenetics, but the current study adds to a growing body of literature suggesting that they may not provide enough character information for resolving ancient, rapid radiations. PMID:24280362
Deep Recurrent Neural Networks for Human Activity Recognition
Murad, Abdulmajid
2017-01-01
Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs. PMID:29113103
Deep Recurrent Neural Networks for Human Activity Recognition.
Murad, Abdulmajid; Pyun, Jae-Young
2017-11-06
Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.
Draft Genome Sequence of Pseudomonas oceani DSM 100277T, a Deep-Sea Bacterium.
García-Valdés, Elena; Gomila, Margarita; Mulet, Magdalena; Lalucat, Jorge
2018-04-12
Pseudomonas oceani DSM 100277 T was isolated from deep seawater in the Okinawa Trough at 1390 m. P. oceani belongs to the Pseudomonas pertucinogena group. Here, we report the draft genome sequence of P. oceani , which has an estimated size of 4.1 Mb and exhibits 3,790 coding sequences, with a G+C content of 59.94 mol%. Copyright © 2018 García-Valdés et al.
Brown, Shawn P; Callaham, Mac A; Oliver, Alena K; Jumpponen, Ari
2013-12-01
Prescribed burning is a common management tool to control fuel loads, ground vegetation, and facilitate desirable game species. We evaluated soil fungal community responses to long-term prescribed fire treatments in a loblolly pine forest on the Piedmont of Georgia and utilized deep Internal Transcribed Spacer Region 1 (ITS1) amplicon sequencing afforded by the recent Ion Torrent Personal Genome Machine (PGM). These deep sequence data (19,000 + reads per sample after subsampling) indicate that frequent fires (3-year fire interval) shift soil fungus communities, whereas infrequent fires (6-year fire interval) permit system resetting to a state similar to that without prescribed fire. Furthermore, in nonmetric multidimensional scaling analyses, primarily ectomycorrhizal taxa were correlated with axes associated with long fire intervals, whereas soil saprobes tended to be correlated with the frequent fire recurrence. We conclude that (1) multiplexed Ion Torrent PGM analyses allow deep cost effective sequencing of fungal communities but may suffer from short read lengths and inconsistent sequence quality adjacent to the sequencing adaptor; (2) frequent prescribed fires elicit a shift in soil fungal communities; and (3) such shifts do not occur when fire intervals are longer. Our results emphasize the general responsiveness of these forests to management, and the importance of fire return intervals in meeting management objectives. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
RNA-Seq analysis to capture the transcriptome landscape of a single cell
Tang, Fuchou; Barbacioru, Catalin; Nordman, Ellen; Xu, Nanlan; Bashkirov, Vladimir I; Lao, Kaiqin; Surani, M. Azim
2013-01-01
We describe here a protocol for digital transcriptome analysis in a single mouse blastomere using a deep sequencing approach. An individual blastomere was first isolated and put into lysate buffer by mouth pipette. Reverse transcription was then performed directly on the whole cell lysate. After this, the free primers were removed by Exonuclease I and a poly(A) tail was added to the 3′ end of the first-strand cDNA by Terminal Deoxynucleotidyl Transferase. Then the single cell cDNAs were amplified by 20 plus 9 cycles of PCR. Then 100-200 ng of these amplified cDNAs were used to construct a sequencing library. The sequencing library can be used for deep sequencing using the SOLiD system. Compared with the cDNA microarray technique, our assay can capture up to 75% more genes expressed in early embryos. The protocol can generate deep sequencing libraries within 6 days for 16 single cell samples. PMID:20203668
Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms.
Pietra, Daniela; Brisci, Angela; Rumi, Elisa; Boggi, Sabrina; Elena, Chiara; Pietrelli, Alessandro; Bordoni, Roberta; Ferrari, Maurizio; Passamonti, Francesco; De Bellis, Gianluca; Cremonesi, Laura; Cazzola, Mario
2011-04-01
Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.
RaptorX-Property: a web server for protein structure property prediction.
Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo
2016-07-08
RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Isakov, Ofer; Bordería, Antonio V; Golan, David; Hamenahem, Amir; Celniker, Gershon; Yoffe, Liron; Blanc, Hervé; Vignuzzi, Marco; Shomron, Noam
2015-07-01
The study of RNA virus populations is a challenging task. Each population of RNA virus is composed of a collection of different, yet related genomes often referred to as mutant spectra or quasispecies. Virologists using deep sequencing technologies face major obstacles when studying virus population dynamics, both experimentally and in natural settings due to the relatively high error rates of these technologies and the lack of high performance pipelines. In order to overcome these hurdles we developed a computational pipeline, termed ViVan (Viral Variance Analysis). ViVan is a complete pipeline facilitating the identification, characterization and comparison of sequence variance in deep sequenced virus populations. Applying ViVan on deep sequenced data obtained from samples that were previously characterized by more classical approaches, we uncovered novel and potentially crucial aspects of virus populations. With our experimental work, we illustrate how ViVan can be used for studies ranging from the more practical, detection of resistant mutations and effects of antiviral treatments, to the more theoretical temporal characterization of the population in evolutionary studies. Freely available on the web at http://www.vivanbioinfo.org : nshomron@post.tau.ac.il Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Daikoku, Tohru; Oyama, Yukari; Yajima, Misako; Sekizuka, Tsuyoshi; Kuroda, Makoto; Shimada, Yuka; Takehara, Kazuhiko; Miwa, Naoko; Okuda, Tomoko; Sata, Tetsutaro; Shiraki, Kimiyasu
2015-06-01
Herpes simplex virus 2 caused a genital ulcer, and a secondary herpetic whitlow appeared during acyclovir therapy. The secondary and recurrent whitlow isolates were acyclovir-resistant and temperature-sensitive in contrast to a genital isolate. We identified the ribonucleotide reductase mutation responsible for temperature-sensitivity by deep-sequencing analysis.
Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning.
Teng, Haotian; Cao, Minh Duc; Hall, Michael B; Duarte, Tania; Wang, Sheng; Coin, Lachlan J M
2018-05-01
Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.
Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob
2016-01-01
Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.
Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A.; Larsen, Martin Jakob
2016-01-01
Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths. PMID:27002637
NASA Astrophysics Data System (ADS)
Dekas, Anne Elizabeth
Biological nitrogen fixation (the conversion of N2 to NH3) is a critical process in the oceans, counteracting the production of N2 gas by dissimilatory bacterial metabolisms and providing a source of bioavailable nitrogen to many nitrogen-limited ecosystems. One currently poorly studied and potentially underappreciated habitat for diazotrophic organisms is the sediments of the deep-sea. Although nitrogen fixation was once thought to be negligible in non-photosynthetically driven benthic ecosystems, the present study demonstrates the occurrence and expression of a diversity of nifH genes (those necessary for nitrogen fixation), as well as a widespread ability to fix nitrogen at high rates in these locations. The following research explores the distribution, magnitude, geochemical controls, and biological mediators of nitrogen fixation at several deep-sea sediment habitats, including active methane seeps (Mound 12, Costa Rica; Eel River Basin, CA, USA; Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA), whale-fall sites (Monterey Canyon, CA), and background deep-sea sediment (off-site Mound 12 Costa Rica, off-site Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA). The first of the five chapters describes the FISH-NanoSIMS method, which we optimized for the analysis of closely associated microbial symbionts in marine sediments. The second describes an investigation of methane seep sediment from the Eel River Basin, where we recovered nifH sequences from extracted DNA, and used FISH-NanoSIMS to identify methanotrophic archaea (ANME-2) as diazotrophs, when associated with functional sulfate-reducing bacterial symbionts. The third and fourth chapters focus on the distribution and diversity of active diazotrophs (respectively) in methane seep sediment from Mound 12, Costa Rica, using a combination of 15N-labeling experiments, FISH-NanoSIMS, and RNA and DNA analysis. The fifth chapter expands the scope of the investigation by targeting diverse samples from methane seep, whale-fall, and background sediment collected along the Eastern Pacific Margin, and comparing the rates of nitrogen fixation observed to geochemical measurements collected in parallel. Together, these analyses represent the most extensive investigation of deep-sea nitrogen fixation to date, and work towards understanding the contribution of benthic nitrogen fixation to global marine nitrogen cycling.
Avsec, Žiga; Cheng, Jun; Gagneur, Julien
2018-01-01
Abstract Motivation Regulatory sequences are not solely defined by their nucleic acid sequence but also by their relative distances to genomic landmarks such as transcription start site, exon boundaries or polyadenylation site. Deep learning has become the approach of choice for modeling regulatory sequences because of its strength to learn complex sequence features. However, modeling relative distances to genomic landmarks in deep neural networks has not been addressed. Results Here we developed spline transformation, a neural network module based on splines to flexibly and robustly model distances. Modeling distances to various genomic landmarks with spline transformations significantly increased state-of-the-art prediction accuracy of in vivo RNA-binding protein binding sites for 120 out of 123 proteins. We also developed a deep neural network for human splice branchpoint based on spline transformations that outperformed the current best, already distance-based, machine learning model. Compared to piecewise linear transformation, as obtained by composition of rectified linear units, spline transformation yields higher prediction accuracy as well as faster and more robust training. As spline transformation can be applied to further quantities beyond distances, such as methylation or conservation, we foresee it as a versatile component in the genomics deep learning toolbox. Availability and implementation Spline transformation is implemented as a Keras layer in the CONCISE python package: https://github.com/gagneurlab/concise. Analysis code is available at https://github.com/gagneurlab/Manuscript_Avsec_Bioinformatics_2017. Contact avsec@in.tum.de or gagneur@in.tum.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:29155928
MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.
Fang, Chao; Shang, Yi; Xu, Dong
2018-05-01
Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.
Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update.
Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong
2016-04-15
Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the "good" models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm.
Enhancement of ELDA Tracker Based on CNN Features and Adaptive Model Update
Gao, Changxin; Shi, Huizhang; Yu, Jin-Gang; Sang, Nong
2016-01-01
Appearance representation and the observation model are the most important components in designing a robust visual tracking algorithm for video-based sensors. Additionally, the exemplar-based linear discriminant analysis (ELDA) model has shown good performance in object tracking. Based on that, we improve the ELDA tracking algorithm by deep convolutional neural network (CNN) features and adaptive model update. Deep CNN features have been successfully used in various computer vision tasks. Extracting CNN features on all of the candidate windows is time consuming. To address this problem, a two-step CNN feature extraction method is proposed by separately computing convolutional layers and fully-connected layers. Due to the strong discriminative ability of CNN features and the exemplar-based model, we update both object and background models to improve their adaptivity and to deal with the tradeoff between discriminative ability and adaptivity. An object updating method is proposed to select the “good” models (detectors), which are quite discriminative and uncorrelated to other selected models. Meanwhile, we build the background model as a Gaussian mixture model (GMM) to adapt to complex scenes, which is initialized offline and updated online. The proposed tracker is evaluated on a benchmark dataset of 50 video sequences with various challenges. It achieves the best overall performance among the compared state-of-the-art trackers, which demonstrates the effectiveness and robustness of our tracking algorithm. PMID:27092505
Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Xu, Wei; Gong, Lin-feng; Pang, Ka-Lai; Luo, Zhu-Hua
2018-01-01
Deep-sea hydrothermal sediment is known to support remarkably diverse microbial consortia. In deep sea environments, fungal communities remain less studied despite their known taxonomic and functional diversity. High-throughput sequencing methods have augmented our capacity to assess eukaryotic diversity and their functions in microbial ecology. Here we provide the first description of the fungal community diversity found in deep sea sediments collected at the Southwest Indian Ridge (SWIR) using culture-dependent and high-throughput sequencing approaches. A total of 138 fungal isolates were cultured from seven different sediment samples using various nutrient media, and these isolates were identified to 14 fungal taxa, including 11 Ascomycota taxa (7 genera) and 3 Basidiomycota taxa (2 genera) based on internal transcribed spacers (ITS1, ITS2 and 5.8S) of rDNA. Using illumina HiSeq sequencing, a total of 757,467 fungal ITS2 tags were recovered from the samples and clustered into 723 operational taxonomic units (OTUs) belonging to 79 taxa (Ascomycota and Basidiomycota contributed to 99% of all samples) based on 97% sequence similarity. Results from both approaches suggest that there is a high fungal diversity in the deep-sea sediments collected in the SWIR and fungal communities were shown to be slightly different by location, although all were collected from adjacent sites at the SWIR. This study provides baseline data of the fungal diversity and biogeography, and a glimpse to the microbial ecology associated with the deep-sea sediments of the hydrothermal vent system of the Southwest Indian Ridge.
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
NASA Astrophysics Data System (ADS)
Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr
2017-10-01
Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
2014-01-01
Background The objective of this study was to perform a systematic review and a meta-analysis in order to estimate the diagnostic accuracy of diffusion weighted imaging (DWI) in the preoperative assessment of deep myometrial invasion in patients with endometrial carcinoma. Methods Studies evaluating DWI for the detection of deep myometrial invasion in patients with endometrial carcinoma were systematically searched for in the MEDLINE, EMBASE, and Cochrane Library from January 1995 to January 2014. Methodologic quality was assessed by using the Quality Assessment of Diagnostic Accuracy Studies tool. Bivariate random-effects meta-analytic methods were used to obtain pooled estimates of sensitivity, specificity, diagnostic odds ratio (DOR) and receiver operating characteristic (ROC) curves. The study also evaluated the clinical utility of DWI in preoperative assessment of deep myometrial invasion. Results Seven studies enrolling a total of 320 individuals met the study inclusion criteria. The summary area under the ROC curve was 0.91. There was no evidence of publication bias (P = 0.90, bias coefficient analysis). Sensitivity and specificity of DWI for detection of deep myometrial invasion across all studies were 0.90 and 0.89, respectively. Positive and negative likelihood ratios with DWI were 8 and 0.11 respectively. In patients with high pre-test probabilities, DWI enabled confirmation of deep myometrial invasion; in patients with low pre-test probabilities, DWI enabled exclusion of deep myometrial invasion. The worst case scenario (pre-test probability, 50%) post-test probabilities were 89% and 10% for positive and negative DWI results, respectively. Conclusion DWI has high sensitivity and specificity for detecting deep myometrial invasion and more importantly can reliably rule out deep myometrial invasion. Therefore, it would be worthwhile to add a DWI sequence to the standard MRI protocols in preoperative evaluation of endometrial cancer in order to detect deep myometrial invasion, which along with other poor prognostic factors like age, tumor grade, and LVSI would be useful in stratifying high risk groups thereby helping in the tailoring of surgical approach in patient with low risk of endometrial carcinoma. PMID:25608571
2011-01-01
Background Readthrough fusions across adjacent genes in the genome, or transcription-induced chimeras (TICs), have been estimated using expressed sequence tag (EST) libraries to involve 4-6% of all genes. Deep transcriptional sequencing (RNA-Seq) now makes it possible to study the occurrence and expression levels of TICs in individual samples across the genome. Methods We performed single-end RNA-Seq on three human prostate adenocarcinoma samples and their corresponding normal tissues, as well as brain and universal reference samples. We developed two bioinformatics methods to specifically identify TIC events: a targeted alignment method using artificial exon-exon junctions within 200,000 bp from adjacent genes, and genomic alignment allowing splicing within individual reads. We performed further experimental verification and characterization of selected TIC and fusion events using quantitative RT-PCR and comparative genomic hybridization microarrays. Results Targeted alignment against artificial exon-exon junctions yielded 339 distinct TIC events, including 32 gene pairs with multiple isoforms. The false discovery rate was estimated to be 1.5%. Spliced alignment to the genome was less sensitive, finding only 18% of those found by targeted alignment in 33-nt reads and 59% of those in 50-nt reads. However, spliced alignment revealed 30 cases of TICs with intervening exons, in addition to distant inversions, scrambled genes, and translocations. Our findings increase the catalog of observed TIC gene pairs by 66%. We verified 6 of 6 predicted TICs in all prostate samples, and 2 of 5 predicted novel distant gene fusions, both private events among 54 prostate tumor samples tested. Expression of TICs correlates with that of the upstream gene, which can explain the prostate-specific pattern of some TIC events and the restriction of the SLC45A3-ELK4 e4-e2 TIC to ERG-negative prostate samples, as confirmed in 20 matched prostate tumor and normal samples and 9 lung cancer cell lines. Conclusions Deep transcriptional sequencing and analysis with targeted and spliced alignment methods can effectively identify TIC events across the genome in individual tissues. Prostate and reference samples exhibit a wide range of TIC events, involving more genes than estimated previously using ESTs. Tissue specificity of TIC events is correlated with expression patterns of the upstream gene. Some TIC events, such as MSMB-NCOA4, may play functional roles in cancer. PMID:21261984
Dong, Yibo; Yuan, Qianhua; Wang, Feng; Li, Weimin; Jiang, Ying; Jia, Shirong; Pei, XinWu
2013-01-01
Background MicroRNAs (miRNAs) is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing) to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. Results Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2) and one flowering stage (CWR-F2) were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5′-RACE in vivo, and were negatively regulated by miRNAs. Conclusions This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and lays a foundation for further study of phase change and flowering in O. rufipogon. Complicated regulatory networks mediated by multiple miRNAs regulate the expression of flowering genes that control the induction of flowering. PMID:24386120
Using pyrosequencing to shed light on deep mine microbial ecology
Edwards, Robert A; Rodriguez-Brito, Beltran; Wegley, Linda; Haynes, Matthew; Breitbart, Mya; Peterson, Dean M; Saar, Martin O; Alexander, Scott; Alexander, E Calvin; Rohwer, Forest
2006-01-01
Background Contrasting biological, chemical and hydrogeological analyses highlights the fundamental processes that shape different environments. Generating and interpreting the biological sequence data was a costly and time-consuming process in defining an environment. Here we have used pyrosequencing, a rapid and relatively inexpensive sequencing technology, to generate environmental genome sequences from two sites in the Soudan Mine, Minnesota, USA. These sites were adjacent to each other, but differed significantly in chemistry and hydrogeology. Results Comparisons of the microbes and the subsystems identified in the two samples highlighted important differences in metabolic potential in each environment. The microbes were performing distinct biochemistry on the available substrates, and subsystems such as carbon utilization, iron acquisition mechanisms, nitrogen assimilation, and respiratory pathways separated the two communities. Although the correlation between much of the microbial metabolism occurring and the geochemical conditions from which the samples were isolated could be explained, the reason for the presence of many pathways in these environments remains to be determined. Despite being physically close, these two communities were markedly different from each other. In addition, the communities were also completely different from other microbial communities sequenced to date. Conclusion We anticipate that pyrosequencing will be widely used to sequence environmental samples because of the speed, cost, and technical advantages. Furthermore, subsystem comparisons rapidly identify the important metabolisms employed by the microbes in different environments. PMID:16549033
Investigation of a Canine Parvovirus Outbreak using Next Generation Sequencing.
Parker, Jayme; Murphy, Molly; Hueffer, Karsten; Chen, Jack
2017-08-29
Canine parvovirus (CPV) outbreaks can have a devastating effect in communities with dense dog populations. The interior region of Alaska experienced a CPV outbreak in the winter of 2016 leading to the further investigation of the virus due to reports of increased morbidity and mortality occurring at dog mushing kennels in the area. Twelve rectal-swab specimens from dogs displaying clinical signs consistent with parvoviral-associated disease were processed using next-generation sequencing (NGS) methodologies by targeting RNA transcripts, and therefore detecting only replicating virus. All twelve specimens demonstrated the presence of the CPV transcriptome, with read depths ranging from 2.2X - 12,381X, genome coverage ranging from 44.8-96.5%, and representation of CPV sequencing reads to those of the metagenome background ranging from 0.0015-6.7%. Using the data generated by NGS, the presence of newly evolved, yet known, strains of both CPV-2a and CPV-2b were identified and grouped geographically. Deep-sequencing data provided additional diagnostic information in terms of investigating novel CPV in this outbreak. NGS data in addition to limited serological data provided strong diagnostic evidence that this outbreak most likely arose from unvaccinated or under-vaccinated canines, not from a novel CPV strain incapable of being neutralized by current vaccination efforts.
Horner, David S; Lefkimmiatis, Konstantinos; Reyes, Aurelio; Gissi, Carmela; Saccone, Cecilia; Pesole, Graziano
2007-01-01
Background Phylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires) have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires) is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious. Results We have sequenced and performed extensive evolutionary analyses on the mitochondrial genome of the scaly-tailed flying squirrel Anomalurus sp., an enigmatic rodent whose phylogenetic affinities have been obscure and extensively debated. Our phylogenetic analyses of the coding regions of available complete mitochondrial genome sequences from Euarchontoglires suggest that Anomalurus is a sister taxon to the Hystricognathi, and that this clade represents the most basal divergence among sampled Rodentia. Bayesian dating methods incorporating a relaxed molecular clock provide divergence-time estimates which are consistently in agreement with the fossil record and which indicate a rapid radiation within Glires around 60 million years ago. Conclusion Taken together, the data presented provide a working hypothesis as to the phylogenetic placement of Anomalurus, underline the utility of mitochondrial sequences in the resolution of even relatively deep divergences and go some way to explaining the difficulty of conclusively resolving higher-level relationships within Glires with available data and methodologies. PMID:17288612
Levin, Mattias; King, Jasmine J.; Glanville, Jacob; Jackson, Katherine J. L.; Looney, Timothy J.; Hoh, Ramona A.; Mari, Adriano; Andersson, Morgan; Greiff, Lennart; Fire, Andrew Z.; Boyd, Scott D.; Ohlin, Mats
2016-01-01
Background Specific immunotherapy (SIT) is the only treatment with proven long-term curative potential in allergic disease. Allergen-specific IgE is the causative agent of allergic disease, and antibodies contribute to SIT, but the effects of SIT on aeroallergen-specific B cell repertoires are not well understood. Objective To characterize the IgE sequences expressed by allergen-specific B cells, and track the fate of these B cell clones during SIT. Methods We have used high-throughput antibody gene sequencing and identification of allergen-specific IgE using combinatorial antibody fragment library technology to analyze immunoglobulin repertoires of blood and nasal mucosa of aeroallergen-sensitized individuals before and during the first year of subcutaneous SIT. Results Of 52 distinct allergen-specific IgE heavy chains from eight allergic donors, 37 were also detected by high-throughput antibody gene sequencing of blood, nasal mucosa, or both sample types. The allergen-specific clones had increased persistence, higher likelihood of belonging to clones expressing other switched isotypes, and possibly larger clone size than the rest of the IgE repertoire. Clone members in nasal tissue showed close mutational relationships. Conclusion Combining functional binding studies, deep antibody repertoire sequencing, and information on clinical outcomes in larger studies may in the future aid assessment of SIT mechanisms and efficacy. PMID:26559321
Gibson, Richard M.; Meyer, Ashley M.; Winner, Dane; Archer, John; Feyertag, Felix; Ruiz-Mateos, Ezequiel; Leal, Manuel; Robertson, David L.; Schmotzer, Christine L.
2014-01-01
With 29 individual antiretroviral drugs available from six classes that are approved for the treatment of HIV-1 infection, a combination of different phenotypic and genotypic tests is currently needed to monitor HIV-infected individuals. In this study, we developed a novel HIV-1 genotypic assay based on deep sequencing (DeepGen HIV) to simultaneously assess HIV-1 susceptibilities to all drugs targeting the three viral enzymes and to predict HIV-1 coreceptor tropism. Patient-derived gag-p2/NCp7/p1/p6/pol-PR/RT/IN- and env-C2V3 PCR products were sequenced using the Ion Torrent Personal Genome Machine. Reads spanning the 3′ end of the Gag, protease (PR), reverse transcriptase (RT), integrase (IN), and V3 regions were extracted, truncated, translated, and assembled for genotype and HIV-1 coreceptor tropism determination. DeepGen HIV consistently detected both minority drug-resistant viruses and non-R5 HIV-1 variants from clinical specimens with viral loads of ≥1,000 copies/ml and from B and non-B subtypes. Additional mutations associated with resistance to PR, RT, and IN inhibitors, previously undetected by standard (Sanger) population sequencing, were reliably identified at frequencies as low as 1%. DeepGen HIV results correlated with phenotypic (original Trofile, 92%; enhanced-sensitivity Trofile assay [ESTA], 80%; TROCAI, 81%; and VeriTrop, 80%) and genotypic (population sequencing/Geno2Pheno with a 10% false-positive rate [FPR], 84%) HIV-1 tropism test results. DeepGen HIV (83%) and Trofile (85%) showed similar concordances with the clinical response following an 8-day course of maraviroc monotherapy (MCT). In summary, this novel all-inclusive HIV-1 genotypic and coreceptor tropism assay, based on deep sequencing of the PR, RT, IN, and V3 regions, permits simultaneous multiplex detection of low-level drug-resistant and/or non-R5 viruses in up to 96 clinical samples. This comprehensive test, the first of its class, will be instrumental in the development of new antiretroviral drugs and, more importantly, will aid in the treatment and management of HIV-infected individuals. PMID:24468782
NASA Technical Reports Server (NTRS)
Herbert, Timothy D.; Dhondt, Steven
1988-01-01
A number of South Atlantic sites cored by the Deep Sea Drilling Project (DSDP) recovered late Cretaceous and early Tertiary sediments with alternating light-dark, high-low carbonate content. The sedimentary oscillations were turned into time series by digitizing color photographs of core segments at a resolution of about 5 points/cm. Spectral analysis of these records indicates prominent periodicity at 25 to 35 cm in the Cretaceous intervals, and about 15 cm in the early Tertiary sediments. The absolute period of the cycles that is determined from paleomagnetic calibration at two sites is 20,000 to 25,000 yr, and almost certainly corresponds to the period of the earth's precessional cycle. These sequences therefore contain an internal chronometer to measure events across the K/T extinction boundary at this scale of resolution. The orbital metronome was used to address several related questions: the position of the K/T boundary within magnetic chron 29R, the fluxes of biogenic and detrital material to the deep sea immediately before and after the K/T event, the duration of the Sr anomaly, and the level of background climatic variability in the latest Cretaceous time. The carbonate/color cycles that were analyzed contain primary records of ocean carbonate productivity and chemistry, as evidenced by bioturbational mixing of adjacent beds and the weak lithification of the rhythmic sequences. It was concluded that sedimentary sequences that contain orbital cyclicity are capable of providing resolution of dramatic events in earth history with much greater precision than obtainable through radiometric methods. The data show no evidence for a gradual climatic deterioration prior to the K/T extinction event, and argue for a geologically rapid revolution at this horizon.
Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae
2011-01-01
Background Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore, mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the implications of the robust transcriptional response to anaerobic growth. Results We determined that 198 chromosomal genes were differentially expressed (~10% of the genome) in response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive to iron and/or oxidative stress. Conclusions Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous studies would suggest. Many new targets for future research have been uncovered, and the results derived from this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been overlooked. PMID:21251255
Dendrites, deep learning, and sequences in the hippocampus.
Bhalla, Upinder S
2017-10-12
The hippocampus places us both in time and space. It does so over remarkably large spans: milliseconds to years, and centimeters to kilometers. This works for sensory representations, for memory, and for behavioral context. How does it fit in such wide ranges of time and space scales, and keep order among the many dimensions of stimulus context? A key organizing principle for a wide sweep of scales and stimulus dimensions is that of order in time, or sequences. Sequences of neuronal activity are ubiquitous in sensory processing, in motor control, in planning actions, and in memory. Against this strong evidence for the phenomenon, there are currently more models than definite experiments about how the brain generates ordered activity. The flip side of sequence generation is discrimination. Discrimination of sequences has been extensively studied at the behavioral, systems, and modeling level, but again physiological mechanisms are fewer. It is against this backdrop that I discuss two recent developments in neural sequence computation, that at face value share little beyond the label "neural." These are dendritic sequence discrimination, and deep learning. One derives from channel physiology and molecular signaling, the other from applied neural network theory - apparently extreme ends of the spectrum of neural circuit detail. I suggest that each of these topics has deep lessons about the possible mechanisms, scales, and capabilities of hippocampal sequence computation. © 2017 Wiley Periodicals, Inc.
De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish.
Lan, Yi; Sun, Jin; Xu, Ting; Chen, Chong; Tian, Renmao; Qiu, Jian-Wen; Qian, Pei-Yuan
2018-05-24
High hydrostatic pressure and low temperatures make the deep sea a harsh environment for life forms. Actin organization and microtubules assembly, which are essential for intracellular transport and cell motility, can be disrupted by high hydrostatic pressure. High hydrostatic pressure can also damage DNA. Nucleic acids exposed to low temperatures can form secondary structures that hinder genetic information processing. To study how deep-sea creatures adapt to such a hostile environment, one of the most straightforward ways is to sequence and compare their genes with those of their shallow-water relatives. We captured an individual of the fish species Aldrovandia affinis, which is a typical deep-sea inhabitant, from the Okinawa Trough at a depth of 1550 m using a remotely operated vehicle (ROV). We sequenced its transcriptome and analyzed its molecular adaptation. We obtained 27,633 protein coding sequences using an Illumina platform and compared them with those of several shallow-water fish species. Analysis of 4918 single-copy orthologs identified 138 positively selected genes in A. affinis, including genes involved in microtubule regulation. Particularly, functional domains related to cold shock as well as DNA repair are exposed to positive selection pressure in both deep-sea fish and hadal amphipod. Overall, we have identified a set of positively selected genes related to cytoskeleton structures, DNA repair and genetic information processing, which shed light on molecular adaptation to the deep sea. These results suggest that amino acid substitutions of these positively selected genes may contribute crucially to the adaptation of deep-sea animals. Additionally, we provide a high-quality transcriptome of a deep-sea fish for future deep-sea studies.
Sohlberg, Elina; Bomberg, Malin; Miettinen, Hanna; Nyyssönen, Mari; Salavirta, Heikki; Vikman, Minna; Itävaara, Merja
2015-01-01
The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS) gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes, and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community.
Clonal evolution of acute myeloid leukemia highlighted by latest genome sequencing studies.
Zhang, Xuehong; Lv, Dekang; Zhang, Yu; Liu, Quentin; Li, Zhiguang
2016-09-06
Decades of years might be required for an initiated cell to become a fully-pledged, metastasized tumor. DNA mutations are accumulated during this process including background mutations that emerge scholastically, as well as driver mutations that selectively occur in a handful of cancer genes and confer the cell a growth advantage over its neighbors. A clone of tumor cells could be superseded by another clone that acquires new mutations and grows more aggressively. Tumor evolutional patterns have been studied for years using conventional approaches that focus on the investigation of a single or a couple of genes. Latest deep sequencing technology enables a global view of tumor evolution by deciphering almost all genome aberrations in a tumor. Tumor clones and the fate of each clone during tumor evolution can be depicted with the help of the concept of variant allele frequency. Here, we summarize the new insights of cancer evolutional progression in acute myeloid leukemia. Cancer evolution is currently thought to start from a clone that has accumulated the requisite somatically-acquired genetic aberrations through a series of increasingly disordered clinical and pathological phases, eventually leading to malignant transformation [1-3]. The observations in invasive colorectal cancer that usually emerges from an antecedent benign adenomatous polyp and in cervical cancer that proceeds through intraepithelial neoplasia support the idea of stepwise or linear cancerous progression [3-5]. Genetically, such progression is achieved by successive waves of clonal expansion during which cells acquire novel genomic alterations including single nucleotide variants (SNVs), small insertions and deletions (indels), and/or copy number variations (CNVs) [6]. The latest improvement in sequencing technology has allowed the deciphering of the whole exome or genome in different types of tumor and normal tissue pairs, providing detailed catalogue about genome aberrations during tumor initiation and progression, which have been reviewed in several papers [7-10]. Here, we focus on demonstrating the cancer clonal evolution pattern revealed by recent deep sequencing studies of samples from acute myeloid leukemia (AML) patients.
Huang, Shunmou; Yang, Hongli; Zhan, Gaomiao; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong
2012-01-01
Background Single nucleotide polymorphisms (SNPs) are an important class of genetic marker for target gene mapping. As of yet, there is no rapid and effective method to identify SNPs linked with agronomic traits in rapeseed and other crop species. Methodology/Principal Findings We demonstrate a novel method for identifying SNP markers in rapeseed by deep sequencing a representative library and performing bulk segregant analysis. With this method, SNPs associated with rapeseed pod shatter-resistance were discovered. Firstly, a reduced representation of the rapeseed genome was used. Genomic fragments ranging from 450–550 bp were prepared from the susceptible bulk (ten F2 plants with the silique shattering resistance index, SSRI <0.10) and the resistance bulk (ten F2 plants with SSRI >0.90), and also Solexa sequencing-produced 90 bp reads. Approximately 50 million of these sequence reads were assembled into contigs to a depth of 20-fold coverage. Secondly, 60,396 ‘simple SNPs’ were identified, and the statistical significance was evaluated using Fisher's exact test. There were 70 associated SNPs whose –log10 p value over 16 were selected to be further analyzed. The distribution of these SNPs appeared a tight cluster, which consisted of 14 associated SNPs within a 396 kb region on chromosome A09. Our evidence indicates that this region contains a major quantitative trait locus (QTL). Finally, two associated SNPs from this region were mapped on a major QTL region. Conclusions/Significance 70 associated SNPs were discovered and a major QTL for rapeseed pod shatter-resistance was found on chromosome A09 using our novel method. The associated SNP markers were used for mapping of the QTL, and may be useful for improving pod shatter-resistance in rapeseed through marker-assisted selection and map-based cloning. This approach will accelerate the discovery of major QTLs and the cloning of functional genes for important agronomic traits in rapeseed and other crop species. PMID:22529909
Ultra-deep mutant spectrum profiling: improving sequencing accuracy using overlapping read pairs.
Chen-Harris, Haiyin; Borucki, Monica K; Torres, Clinton; Slezak, Tom R; Allen, Jonathan E
2013-02-12
High throughput sequencing is beginning to make a transformative impact in the area of viral evolution. Deep sequencing has the potential to reveal the mutant spectrum within a viral sample at high resolution, thus enabling the close examination of viral mutational dynamics both within- and between-hosts. The challenge however, is to accurately model the errors in the sequencing data and differentiate real viral mutations, particularly those that exist at low frequencies, from sequencing errors. We demonstrate that overlapping read pairs (ORP) -- generated by combining short fragment sequencing libraries and longer sequencing reads -- significantly reduce sequencing error rates and improve rare variant detection accuracy. Using this sequencing protocol and an error model optimized for variant detection, we are able to capture a large number of genetic mutations present within a viral population at ultra-low frequency levels (<0.05%). Our rare variant detection strategies have important implications beyond viral evolution and can be applied to any basic and clinical research area that requires the identification of rare mutations.
2013-01-01
Background Next-generation-sequencing (NGS) technologies combined with a classic DNA barcoding approach have enabled fast and credible measurement for biodiversity of mixed environmental samples. However, the PCR amplification involved in nearly all existing NGS protocols inevitably introduces taxonomic biases. In the present study, we developed new Illumina pipelines without PCR amplifications to analyze terrestrial arthropod communities. Results Mitochondrial enrichment directly followed by Illumina shotgun sequencing, at an ultra-high sequence volume, enabled the recovery of Cytochrome c Oxidase subunit 1 (COI) barcode sequences, which allowed for the estimation of species composition at high fidelity for a terrestrial insect community. With 15.5 Gbp Illumina data, approximately 97% and 92% were detected out of the 37 input Operational Taxonomic Units (OTUs), whether the reference barcode library was used or not, respectively, while only 1 novel OTU was found for the latter. Additionally, relatively strong correlation between the sequencing volume and the total biomass was observed for species from the bulk sample, suggesting a potential solution to reveal relative abundance. Conclusions The ability of the new Illumina PCR-free pipeline for DNA metabarcoding to detect small arthropod specimens and its tendency to avoid most, if not all, false positives suggests its great potential in biodiversity-related surveillance, such as in biomonitoring programs. However, further improvement for mitochondrial enrichment is likely needed for the application of the new pipeline in analyzing arthropod communities at higher diversity. PMID:23587339
NASA Astrophysics Data System (ADS)
Chen, Xinyuan; Song, Li; Yang, Xiaokang
2016-09-01
Video denoising can be described as the problem of mapping from a specific length of noisy frames to clean one. We propose a deep architecture based on Recurrent Neural Network (RNN) for video denoising. The model learns a patch-based end-to-end mapping between the clean and noisy video sequences. It takes the corrupted video sequences as the input and outputs the clean one. Our deep network, which we refer to as deep Recurrent Neural Networks (deep RNNs or DRNNs), stacks RNN layers where each layer receives the hidden state of the previous layer as input. Experiment shows (i) the recurrent architecture through temporal domain extracts motion information and does favor to video denoising, and (ii) deep architecture have large enough capacity for expressing mapping relation between corrupted videos as input and clean videos as output, furthermore, (iii) the model has generality to learned different mappings from videos corrupted by different types of noise (e.g., Poisson-Gaussian noise). By training on large video databases, we are able to compete with some existing video denoising methods.
deepTools2: a next generation web server for deep-sequencing data analysis.
Ramírez, Fidel; Ryan, Devon P; Grüning, Björn; Bhardwaj, Vivek; Kilpert, Fabian; Richter, Andreas S; Heyne, Steffen; Dündar, Friederike; Manke, Thomas
2016-07-08
We present an update to our Galaxy-based web server for processing and visualizing deeply sequenced data. Its core tool set, deepTools, allows users to perform complete bioinformatic workflows ranging from quality controls and normalizations of aligned reads to integrative analyses, including clustering and visualization approaches. Since we first described our deepTools Galaxy server in 2014, we have implemented new solutions for many requests from the community and our users. Here, we introduce significant enhancements and new tools to further improve data visualization and interpretation. deepTools continue to be open to all users and freely available as a web service at deeptools.ie-freiburg.mpg.de The new deepTools2 suite can be easily deployed within any Galaxy framework via the toolshed repository, and we also provide source code for command line usage under Linux and Mac OS X. A public and documented API for access to deepTools functionality is also available. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Park, Gyeong-Moon; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan; Gyeong-Moon Park; Yong-Ho Yoo; Deok-Hwa Kim; Jong-Hwan Kim; Yoo, Yong-Ho; Park, Gyeong-Moon; Kim, Jong-Hwan; Kim, Deok-Hwa
2018-06-01
Robots are expected to perform smart services and to undertake various troublesome or difficult tasks in the place of humans. Since these human-scale tasks consist of a temporal sequence of events, robots need episodic memory to store and retrieve the sequences to perform the tasks autonomously in similar situations. As episodic memory, in this paper we propose a novel Deep adaptive resonance theory (ART) neural model and apply it to the task performance of the humanoid robot, Mybot, developed in the Robot Intelligence Technology Laboratory at KAIST. Deep ART has a deep structure to learn events, episodes, and even more like daily episodes. Moreover, it can retrieve the correct episode from partial input cues robustly. To demonstrate the effectiveness and applicability of the proposed Deep ART, experiments are conducted with the humanoid robot, Mybot, for performing the three tasks of arranging toys, making cereal, and disposing of garbage.
Wu, Jieying; Gao, Weimin; Zhang, Weiwen; Meldrum, Deirdre R
2011-01-01
Limitation in sample quality and quantity is one of the big obstacles for applying metatranscriptomic technologies to explore gene expression and functionality of microbial communities in natural environments. In this study, several amplification methods were evaluated for whole-transcriptome amplification of deep-sea microbial samples, which are of low cell density and high impurity. The best amplification method was identified and incorporated into a complete protocol to isolate and amplify deep-sea microbial samples. In the protocol, total RNA was first isolated by a modified method combining Trizol (Invitrogen, CA) and RNeasy (QIAGEN, CA) method, amplified with a WT-Ovation™ Pico RNA Amplification System (NuGEN, CA), and then converted to double-strand DNA from single-strand cDNA with a WT-Ovation™ Exon Module (NuGEN, CA). The products from the whole-transcriptome amplification of deep-sea microbial samples were assessed first through random clone library sequencing. The BLAST search results showed that marine-based sequences are dominant in the libraries, consistent with the ecological source of the samples. The products were then used for next-generation Roche GS FLX Titanium sequencing to obtain metatranscriptome data. Preliminary analysis of the metatranscriptomic data showed good sequencing quality. Although the protocol was designed and demonstrated to be effective for deep-sea microbial samples, it should be applicable to similar samples from other extreme environments in exploring community structure and functionality of microbial communities. Copyright © 2010 Elsevier B.V. All rights reserved.
Zeng, Cong; Thomas, Leighton J; Kelly, Michelle; Gardner, Jonathan P A
2016-05-01
The complete mitochondrial genome of a New Zealand specimen of the deep-sea sponge Poecillastra laminaris (Sollas, 1886) (Astrophorida, Vulcanellidae), from the Colville Ridge, New Zealand, was sequenced using the 454 Life Science pyrosequencing system. To identify homologous mitochondrial sequences, the 454 reads were mapped to the complete mitochondrial genome sequence of Geodia neptuni (GeneBank No. NC_006990). The P. laminaris genome is 18,413 bp in length and includes 14 protein-coding genes, 24 transfer RNA genes and 2 ribosomal RNA genes. Gene order resembled that of other demosponges. The base composition of the genome is A (29.1%), T (35.2%), C (14.0%) and G (21.7%). This is the second published mitogenome for a sponge of the order Astrophorida and will be useful in future phylogenetic analysis of deep-sea sponges.
Wang, Duolin; Zeng, Shuai; Xu, Chunhui; Qiu, Wangren; Liang, Yanchun; Joshi, Trupti; Xu, Dong
2017-12-15
Computational methods for phosphorylation site prediction play important roles in protein function studies and experimental design. Most existing methods are based on feature extraction, which may result in incomplete or biased features. Deep learning as the cutting-edge machine learning method has the ability to automatically discover complex representations of phosphorylation patterns from the raw sequences, and hence it provides a powerful tool for improvement of phosphorylation site prediction. We present MusiteDeep, the first deep-learning framework for predicting general and kinase-specific phosphorylation sites. MusiteDeep takes raw sequence data as input and uses convolutional neural networks with a novel two-dimensional attention mechanism. It achieves over a 50% relative improvement in the area under the precision-recall curve in general phosphorylation site prediction and obtains competitive results in kinase-specific prediction compared to other well-known tools on the benchmark data. MusiteDeep is provided as an open-source tool available at https://github.com/duolinwang/MusiteDeep. xudong@missouri.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
SNPs of bovine HGF gene and their association with growth traits in Nanyang cattle.
Cai, Hanfang; Lan, Xianyong; Li, Aimin; Zhou, Yang; Sun, Jiajie; Lei, Chuzhao; Zhang, Chunlei; Chen, Hong
2013-10-01
Hepatocyte growth factor (HGF) is one of the multifunctional cell factors that regulates cellular proliferation, motility and morphogenesis in mammalians. And its medical research has deep significance. In this paper, polymorphisms of HGF gene were investigated in 1433 health and irrelated Chinese cattle by PCR-RFLP and DNA sequencing approach. Ten novel Single nucleotide polymorphisms (SNPs) were identified, which included one missense mutation, g.72801G>A in the coding region, and the others in the intron. Association analysis between four of them, g.288T>C, g.72801G>A, g.77172G>T, and g.77408T>G, and growth traits in Nanyang, were performed. The results indicated that SNPs within bovine HGF gene were significantly associated with growth traits. Phylogenetic analysis showed that the genetic background of Caoyuan Red cattle was different from the others in the tested breeds. The findings will provide a background for application of bovine HGF gene in the selection program in Chinese cattle. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau
NASA Astrophysics Data System (ADS)
Nagano, Yuriko; Miura, Toshiko; Nishi, Shinro; Lima, Andre O.; Nakayama, Cristina; Pellizari, Vivian H.; Fujikura, Katsunori
2017-12-01
We investigated the fungal diversity in a total of 20 deep-sea sediment samples (of which 14 samples were associated with natural asphalt seeps and 6 samples were not associated) collected from two different sites at the Sao Paulo Plateau off Brazil by Ion Torrent PGM targeting ITS region of ribosomal RNA. Our results suggest that diverse fungi (113 operational taxonomic units (OTUs) based on clustering at 97% sequence similarity assigned into 9 classes and 31 genus) are present in deep-sea sediment samples collected at the Sao Paulo Plateau, dominated by Ascomycota (74.3%), followed by Basidiomycota (11.5%), unidentified fungi (7.1%), and sequences with no affiliation to any organisms in the public database (7.1%). However, it was revealed that only three species, namely Penicillium sp., Cadophora malorum and Rhodosporidium diobovatum, were dominant, with the majority of OTUs remaining a minor community. Unexpectedly, there was no significant difference in major fungal community structure between the asphalt seep and non-asphalt seep sites, despite the presence of mass hydrocarbon deposits and the high amount of macro organisms surrounding the asphalt seeps. However, there were some differences in the minor fungal communities, with possible asphalt degrading fungi present specifically in the asphalt seep sites. In contrast, some differences were found between the two different sampling sites. Classification of OTUs revealed that only 47 (41.6%) fungal OTUs exhibited >97% sequence similarity, in comparison with pre-existing ITS sequences in public databases, indicating that a majority of deep-sea inhabiting fungal taxa still remain undescribed. Although our knowledge on fungi and their role in deep-sea environments is still limited and scarce, this study increases our understanding of fungal diversity and community structure in deep-sea environments.
2011-01-01
Background Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift. Results Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. PMID:21489281
Coykendall, D.K.; Johnson, S.B.; Karl, S.A.; Lutz, R.A.; Vrijenhoek, R.C.
2011-01-01
Background: Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galpagos Rift. Results: Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions: Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. ?? 2011 Coykendall et al; licensee BioMed Central Ltd.
LookSeq: a browser-based viewer for deep sequencing data.
Manske, Heinrich Magnus; Kwiatkowski, Dominic P
2009-11-01
Sequencing a genome to great depth can be highly informative about heterogeneity within an individual or a population. Here we address the problem of how to visualize the multiple layers of information contained in deep sequencing data. We propose an interactive AJAX-based web viewer for browsing large data sets of aligned sequence reads. By enabling seamless browsing and fast zooming, the LookSeq program assists the user to assimilate information at different levels of resolution, from an overview of a genomic region to fine details such as heterogeneity within the sample. A specific problem, particularly if the sample is heterogeneous, is how to depict information about structural variation. LookSeq provides a simple graphical representation of paired sequence reads that is more revealing about potential insertions and deletions than are conventional methods.
A deeper look at the GD1 stream: density variations and wiggles
NASA Astrophysics Data System (ADS)
de Boer, T. J. L.; Belokurov, V.; Koposov, S. E.; Ferrarese, L.; Erkal, D.; Côté, P.; Navarro, J. F.
2018-06-01
Using deep photometric data from Canada-France-Hawaii Telescope/Megacam, we study the morphology and density of the GD-1 stream, one of the longest and coldest stellar streams in the Milky Way. Our deep data recovers the lower main sequence of the stream with unprecedented quality, clearly separating it from Milky Way foreground and background stars. An analysis of the distance to different parts of the stream shows that GD-1 lies at a heliocentric distance between 8 and 10 kpc, with only a shallow gradient across 45° on the sky. Matched filter maps of the stream density show clear density variations, such as deviations from a single orbital track and tentative evidence for stream fanning. We also detect a clear underdensity in the middle of the stream track at φ1 = -45° surrounded by overdense stream segments on either side. This location is a promising candidate for the elusive missing progenitor of the GD-1 stream. We conclude that the GD-1 stream has clearly been disturbed by interactions with the Milky Way disc or other subhaloes.
2015-01-01
Nematodes inhabiting benthic deep-sea ecosystems account for >90% of the total metazoan abundances and they have been hypothesised to be hyper-diverse, but their biodiversity is still largely unknown. Metabarcoding could facilitate the census of biodiversity, especially for those tiny metazoans for which morphological identification is difficult. We compared, for the first time, different DNA extraction procedures based on the use of two commercial kits and a previously published laboratory protocol and tested their suitability for sequencing analyses of 18S rDNA of marine nematodes. We also investigated the reliability of Roche 454 sequencing analyses for assessing the biodiversity of deep-sea nematode assemblages previously morphologically identified. Finally, intra-genomic variation in 18S rRNA gene repeats was investigated by Illumina MiSeq in different deep-sea nematode morphospecies to assess the influence of polymorphisms on nematode biodiversity estimates. Our results indicate that the two commercial kits should be preferred for the molecular analysis of biodiversity of deep-sea nematodes since they consistently provide amplifiable DNA suitable for sequencing. We report that the morphological identification of deep-sea nematodes matches the results obtained by metabarcoding analysis only at the order-family level and that a large portion of Operational Clustered Taxonomic Units (OCTUs) was not assigned. We also show that independently from the cut-off criteria and bioinformatic pipelines used, the number of OCTUs largely exceeds the number of individuals and that 18S rRNA gene of different morpho-species of nematodes displayed intra-genomic polymorphisms. Our results indicate that metabarcoding is an important tool to explore the diversity of deep-sea nematodes, but still fails in identifying most of the species due to limited number of sequences deposited in the public databases, and in providing quantitative data on the species encountered. These aspects should be carefully taken into account before using metabarcoding in quantitative ecological research and monitoring programmes of marine biodiversity. PMID:26701112
Dell'Anno, Antonio; Carugati, Laura; Corinaldesi, Cinzia; Riccioni, Giulia; Danovaro, Roberto
2015-01-01
Nematodes inhabiting benthic deep-sea ecosystems account for >90% of the total metazoan abundances and they have been hypothesised to be hyper-diverse, but their biodiversity is still largely unknown. Metabarcoding could facilitate the census of biodiversity, especially for those tiny metazoans for which morphological identification is difficult. We compared, for the first time, different DNA extraction procedures based on the use of two commercial kits and a previously published laboratory protocol and tested their suitability for sequencing analyses of 18S rDNA of marine nematodes. We also investigated the reliability of Roche 454 sequencing analyses for assessing the biodiversity of deep-sea nematode assemblages previously morphologically identified. Finally, intra-genomic variation in 18S rRNA gene repeats was investigated by Illumina MiSeq in different deep-sea nematode morphospecies to assess the influence of polymorphisms on nematode biodiversity estimates. Our results indicate that the two commercial kits should be preferred for the molecular analysis of biodiversity of deep-sea nematodes since they consistently provide amplifiable DNA suitable for sequencing. We report that the morphological identification of deep-sea nematodes matches the results obtained by metabarcoding analysis only at the order-family level and that a large portion of Operational Clustered Taxonomic Units (OCTUs) was not assigned. We also show that independently from the cut-off criteria and bioinformatic pipelines used, the number of OCTUs largely exceeds the number of individuals and that 18S rRNA gene of different morpho-species of nematodes displayed intra-genomic polymorphisms. Our results indicate that metabarcoding is an important tool to explore the diversity of deep-sea nematodes, but still fails in identifying most of the species due to limited number of sequences deposited in the public databases, and in providing quantitative data on the species encountered. These aspects should be carefully taken into account before using metabarcoding in quantitative ecological research and monitoring programmes of marine biodiversity.
Takai, Ken; Horikoshi, Koki
1999-01-01
Molecular phylogenetic analysis of a naturally occurring microbial community in a deep-subsurface geothermal environment indicated that the phylogenetic diversity of the microbial population in the environment was extremely limited and that only hyperthermophilic archaeal members closely related to Pyrobaculum were present. All archaeal ribosomal DNA sequences contained intron-like sequences, some of which had open reading frames with repeated homing-endonuclease motifs. The sequence similarity analysis and the phylogenetic analysis of these homing endonucleases suggested the possible phylogenetic relationship among archaeal rRNA-encoded homing endonucleases. PMID:10584021
Correlation between low level fluctuations in the x ray background and faint galaxies
NASA Technical Reports Server (NTRS)
Tolstoy, Eline; Griffiths, R. E.
1993-01-01
A correlation between low-level x-ray fluctuations in the cosmic x-ray background flux and the large numbers of galaxies found in deep optical imaging, to m(sub v) is less than or equal to 24 - 26, is desired. These (faint) galaxies by their morphology and color in deep multi-color CCD images and plate material were optically identified. Statistically significant correlations between these galaxies and low-level x-ray fluctuations at the same positions in multiple deep Einstein HRI observations in PAVO and in a ROSAT PSPC field were searched for. Our aim is to test the hypothesis that faint 'star burst' galaxies might contribute significantly to the cosmic x-ray background (at approximately 1 keV).
NASA Astrophysics Data System (ADS)
Yakimov, Michail M.; Cono, Violetta La; Denaro, Renata
2009-05-01
The autotrophic and ammonia-oxidizing crenarchaeal assemblage at offshore site located in the deep Mediterranean (Tyrrhenian Sea, depth 3000 m) water was studied by PCR amplification of the key functional genes involved in energy (ammonia mono-oxygenase alpha subunit, amoA) and central metabolism (acetyl-CoA carboxylase alpha subunit, accA). Using two recently annotated genomes of marine crenarchaeons, an initial set of primers targeting archaeal accA-like genes was designed. Approximately 300 clones were analyzed, of which 100% of amoA library and almost 70% of accA library were unambiguously related to the corresponding genes from marine Crenarchaeota. Even though the acetyl-CoA carboxylase is phylogenetically not well conserved and the remaining clones were affiliated to various bacterial acetyl-CoA/propionyl-CoA carboxylase genes, the pool of archaeal sequences was applied for development of quantitative PCR analysis of accA-like distribution using TaqMan ® methodolgy. The archaeal accA gene fragments, together with alignable gene fragments from the Sargasso Sea and North Pacific Subtropical Gyre (ALOHA Station) metagenome databases, were analyzed by multiple sequence alignment. Two accA-like sequences, found in ALOHA Station at the depth of 4000 m, formed a deeply branched clade with 64% of all archaeal Tyrrhenian clones. No close relatives for residual 36% of clones, except of those recovered from Eastern Mediterranean, was found, suggesting the existence of a specific lineage of the crenarchaeal accA genes in deep Mediterranean water. Alignment of Mediterranean amoA sequences defined four cosmopolitan phylotypes of Crenarchaeota putative ammonia mono-oxygenase subunit A gene occurring in the water sample from the 3000 m depth. Without exception all phylotypes fell into Deep Marine Group I cluster that contain the vast majority of known sequences recovered from global deep-sea environment. Remarkably, three phylotypes accounted for 91% of all Mediterranean amoA clones and corresponded to the sequences retrieved from the less deep compartments of the world's ocean, most likely reflecting the higher temperature at the depth of the Mediterranean Sea. In order to verify whether these phylotypes might represent important Crenarchaeota in the functioning of the Mediterranean bathypelagic ecosystem, expression of crenarchaeal amoA gene was monitored by direct RNA retrieval and following analysis of amoA-related mRNA transcripts. Surprisingly, all mRNA-derived sequences formed a tight monophyletic group, which fell into large Shallow Marine Group I cluster with sequences retrieved from shallow (up to 200 m) waters, sediments and corals. This group was not detected in DNA-based clone library, obviously, due to an overwhelming dominance of the Deep Marine Group I. The failure to recover the amoA transcripts, related to Deep Marine Group I of Crenarchaeota, was unanticipated and likely resulted from the physiology of these strongly adapted deep-sea organisms. As far as all seawater samples were treated on-board under atmospheric pressure conditions and sunlight, the decompression and/or photoinhibition likely affected their metabolic activity, followed by the strong decay of gene expression.
Lu, Zen H; Brown, Alexander; Wilson, Alison D; Calvert, Jay G; Balasch, Monica; Fuentes-Utrilla, Pablo; Loecherbach, Julia; Turner, Frances; Talbot, Richard; Archibald, Alan L; Ait-Ali, Tahar
2014-03-04
Porcine Reproductive and Respiratory Syndrome (PRRS) is a disease of major economic impact worldwide. The etiologic agent of this disease is the PRRS virus (PRRSV). Increasing evidence suggest that microevolution within a coexisting quasispecies population can give rise to high sequence heterogeneity in PRRSV. We developed a pipeline based on the ultra-deep next generation sequencing approach to first construct the complete genome of a European PRRSV, strain Olot/9, cultured on macrophages and then capture the rare variants representative of the mixed quasispecies population. Olot/91 differs from the reference Lelystad strain by about 5% and a total of 88 variants, with frequencies as low as 1%, were detected in the mixed population. These variants included 16 non-synonymous variants concentrated in the genes encoding structural and nonstructural proteins; including Glycoprotein 2a and 5. Using an ultra-deep sequencing methodology, the complete genome of Olot/91 was constructed without any prior knowledge of the sequence. Rare variants that constitute minor fractions of the heterogeneous PRRSV population could successfully be detected to allow further exploration of microevolutionary events.
Wang, Ruijia; Nambiar, Ram; Zheng, Dinghai
2018-01-01
Abstract PolyA_DB is a database cataloging cleavage and polyadenylation sites (PASs) in several genomes. Previous versions were based mainly on expressed sequence tags (ESTs), which had a limited amount and could lead to inaccurate PAS identification due to the presence of internal A-rich sequences in transcripts. Here, we present an updated version of the database based solely on deep sequencing data. First, PASs are mapped by the 3′ region extraction and deep sequencing (3′READS) method, ensuring unequivocal PAS identification. Second, a large volume of data based on diverse biological samples increases PAS coverage by 3.5-fold over the EST-based version and provides PAS usage information. Third, strand-specific RNA-seq data are used to extend annotated 3′ ends of genes to obtain more thorough annotations of alternative polyadenylation (APA) sites. Fourth, conservation information of PAS across mammals sheds light on significance of APA sites. The database (URL: http://www.polya-db.org/v3) currently holds PASs in human, mouse, rat and chicken, and has links to the UCSC genome browser for further visualization and for integration with other genomic data. PMID:29069441
Deep whole-genome sequencing of 90 Han Chinese genomes.
Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen
2017-09-01
Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency < 5%), including 5 813 503 single nucleotide polymorphisms, 1 169 199 InDels, and 17 927 structural variants. Using deep sequencing data, we have built a greatly expanded spectrum of genetic variation for the Han Chinese genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000 Genomes Project, as well as to other human genome projects. © The Authors 2017. Published by Oxford University Press.
Optimization of conditions to sequence long cDNAs from viruses
USDA-ARS?s Scientific Manuscript database
Fourth generation sequencing with the Minion nanopore sequencer provides opportunity to obtain deep coverage and long read for single molecules. This will benefit studies on RNA viruses. In the past, Sanger, Illumina, and Ion Torrent sequencing have been utilized to study RNA viruses. Both technique...
SNP discovery through de novo deep sequencing using the next generation of DNA sequencers
USDA-ARS?s Scientific Manuscript database
The production of high volumes of DNA sequence data using new technologies has permitted more efficient identification of single nucleotide polymorphisms in vertebrate genomes. This chapter presented practical methodology for production and analysis of DNA sequence data for SNP discovery....
MRI markers of small vessel disease in lobar and deep hemispheric intracerebral hemorrhage.
Smith, Eric E; Nandigam, Kaveer R N; Chen, Yu-Wei; Jeng, Jed; Salat, David; Halpin, Amy; Frosch, Matthew; Wendell, Lauren; Fazen, Louis; Rosand, Jonathan; Viswanathan, Anand; Greenberg, Steven M
2010-09-01
MRI evidence of small vessel disease is common in intracerebral hemorrhage (ICH). We hypothesized that ICH caused by cerebral amyloid angiopathy (CAA) or hypertensive vasculopathy would have different distributions of MRI T2 white matter hyperintensity (WMH) and microbleeds. Data were analyzed from 133 consecutive patients with primary supratentorial ICH and adequate MRI sequences. CAA was diagnosed using the Boston criteria. WMH segmentation was performed using a validated semiautomated method. WMH and microbleeds were compared according to site of symptomatic hematoma origin (lobar versus deep) or by pattern of hemorrhages, including both hematomas and microbleeds, on MRI gradient recalled echo sequence (grouped as lobar only-probable CAA, lobar only-possible CAA, deep hemispheric only, or mixed lobar and deep hemorrhages). Patients with lobar and deep hemispheric hematoma had similar median normalized WMH volumes (19.5 cm versus 19.9 cm(3), P=0.74) and prevalence of >or=1 microbleed (54% versus 52%, P=0.99). The supratentorial WMH distribution was similar according to hemorrhage location category; however, the prevalence of brain stem T2 hyperintensity was lower in lobar hematoma versus deep hematoma (54% versus 70%, P=0.004). Mixed ICH was common (23%). Patients with mixed ICH had large normalized WMH volumes and a posterior distribution of cortical hemorrhages similar to that seen in CAA. WMH distribution is largely similar between CAA-related and non-CAA-related ICH. Mixed lobar and deep hemorrhages are seen on MRI gradient recalled echo sequence in up to one fourth of patients; in these patients, both hypertension and CAA may be contributing to the burden of WMH.
Deep Sequencing Analysis of Apple Infecting Viruses in Korea
Cho, In-Sook; Igori, Davaajargal; Lim, Seungmo; Choi, Gug-Seoun; Hammond, John; Lim, Hyoun-Sub; Moon, Jae Sun
2016-01-01
Deep sequencing has generated 52 contigs derived from five viruses; Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple green crinkle associated virus (AGCaV), and Apricot latent virus (ApLV) were identified from eight apple samples showing small leaves and/or growth retardation. Nucleotide (nt) sequence identity of the assembled contigs was from 68% to 99% compared to the reference sequences of the five respective viral genomes. Sequences of ASPV and ASGV were the most abundantly represented by the 52 contigs assembled. The presence of the five viruses in the samples was confirmed by RT-PCR using specific primers based on the sequences of each assembled contig. All five viruses were detected in three of the samples, whereas all samples had mixed infections with at least two viruses. The most frequently detected virus was ASPV, followed by ASGV, ApLV, ACLSV, and AGCaV which were withal found in mixed infections in the tested samples. AGCaV was identified in assembled contigs ID 1012480 and 93549, which showed 82% and 78% nt sequence identity with ORF1 of AGCaV isolate Aurora-1. ApLV was identified in three assembled contigs, ID 65587, 1802365, and 116777, which showed 77%, 78%, and 76% nt sequence identity respectively with ORF1 of ApLV isolate LA2. Deep sequencing assay was shown to be a valuable and powerful tool for detection and identification of known and unknown virome in infected apple trees, here identifying ApLV and AGCaV in commercial orchards in Korea for the first time. PMID:27721694
Deep sequencing approaches for the analysis of prokaryotic transcriptional boundaries and dynamics.
James, Katherine; Cockell, Simon J; Zenkin, Nikolay
2017-05-01
The identification of the protein-coding regions of a genome is straightforward due to the universality of start and stop codons. However, the boundaries of the transcribed regions, conditional operon structures, non-coding RNAs and the dynamics of transcription, such as pausing of elongation, are non-trivial to identify, even in the comparatively simple genomes of prokaryotes. Traditional methods for the study of these areas, such as tiling arrays, are noisy, labour-intensive and lack the resolution required for densely-packed bacterial genomes. Recently, deep sequencing has become increasingly popular for the study of the transcriptome due to its lower costs, higher accuracy and single nucleotide resolution. These methods have revolutionised our understanding of prokaryotic transcriptional dynamics. Here, we review the deep sequencing and data analysis techniques that are available for the study of transcription in prokaryotes, and discuss the bioinformatic considerations of these analyses. Copyright © 2017 Elsevier Inc. All rights reserved.
Insertion sequences enrichment in extreme Red sea brine pool vent.
Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania
2017-03-01
Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world's largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.
Kretova, Olga V; Chechetkin, Vladimir R; Fedoseeva, Daria M; Kravatsky, Yuri V; Sosin, Dmitri V; Alembekov, Ildar R; Gorbacheva, Maria A; Gashnikova, Natalya M; Tchurikov, Nickolai A
2017-02-01
Any method for silencing the activity of the HIV-1 retrovirus should tackle the extremely high variability of HIV-1 sequences and mutational escape. We studied sequence variability in the vicinity of selected RNA interference (RNAi) targets from isolates of HIV-1 subtype A in Russia, and we propose that using artificial RNAi is a potential alternative to traditional antiretroviral therapy. We prove that using multiple RNAi targets overcomes the variability in HIV-1 isolates. The optimal number of targets critically depends on the conservation of the target sequences. The total number of targets that are conserved with a probability of 0.7-0.8 should exceed at least 2. Combining deep sequencing and multitarget RNAi may provide an efficient approach to cure HIV/AIDS.
DeepLoc: prediction of protein subcellular localization using deep learning.
Almagro Armenteros, José Juan; Sønderby, Casper Kaae; Sønderby, Søren Kaae; Nielsen, Henrik; Winther, Ole
2017-11-01
The prediction of eukaryotic protein subcellular localization is a well-studied topic in bioinformatics due to its relevance in proteomics research. Many machine learning methods have been successfully applied in this task, but in most of them, predictions rely on annotation of homologues from knowledge databases. For novel proteins where no annotated homologues exist, and for predicting the effects of sequence variants, it is desirable to have methods for predicting protein properties from sequence information only. Here, we present a prediction algorithm using deep neural networks to predict protein subcellular localization relying only on sequence information. At its core, the prediction model uses a recurrent neural network that processes the entire protein sequence and an attention mechanism identifying protein regions important for the subcellular localization. The model was trained and tested on a protein dataset extracted from one of the latest UniProt releases, in which experimentally annotated proteins follow more stringent criteria than previously. We demonstrate that our model achieves a good accuracy (78% for 10 categories; 92% for membrane-bound or soluble), outperforming current state-of-the-art algorithms, including those relying on homology information. The method is available as a web server at http://www.cbs.dtu.dk/services/DeepLoc. Example code is available at https://github.com/JJAlmagro/subcellular_localization. The dataset is available at http://www.cbs.dtu.dk/services/DeepLoc/data.php. jjalma@dtu.dk. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Xiong, Dapeng; Zeng, Jianyang; Gong, Haipeng
2017-09-01
Residue-residue contacts are of great value for protein structure prediction, since contact information, especially from those long-range residue pairs, can significantly reduce the complexity of conformational sampling for protein structure prediction in practice. Despite progresses in the past decade on protein targets with abundant homologous sequences, accurate contact prediction for proteins with limited sequence information is still far from satisfaction. Methodologies for these hard targets still need further improvement. We presented a computational program DeepConPred, which includes a pipeline of two novel deep-learning-based methods (DeepCCon and DeepRCon) as well as a contact refinement step, to improve the prediction of long-range residue contacts from primary sequences. When compared with previous prediction approaches, our framework employed an effective scheme to identify optimal and important features for contact prediction, and was only trained with coevolutionary information derived from a limited number of homologous sequences to ensure robustness and usefulness for hard targets. Independent tests showed that 59.33%/49.97%, 64.39%/54.01% and 70.00%/59.81% of the top L/5, top L/10 and top 5 predictions were correct for CASP10/CASP11 proteins, respectively. In general, our algorithm ranked as one of the best methods for CASP targets. All source data and codes are available at http://166.111.152.91/Downloads.html . hgong@tsinghua.edu.cn or zengjy321@tsinghua.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Rath, Matthias; Jenssen, Sönke E; Schwefel, Konrad; Spiegler, Stefanie; Kleimeier, Dana; Sperling, Christian; Kaderali, Lars; Felbor, Ute
2017-09-01
Cerebral cavernous malformations (CCM) are vascular lesions of the central nervous system that can cause headaches, seizures and hemorrhagic stroke. Disease-associated mutations have been identified in three genes: CCM1/KRIT1, CCM2 and CCM3/PDCD10. The precise proportion of deep-intronic variants in these genes and their clinical relevance is yet unknown. Here, a long-range PCR (LR-PCR) approach for target enrichment of the entire genomic regions of the three genes was combined with next generation sequencing (NGS) to screen for coding and non-coding variants. NGS detected all six CCM1/KRIT1, two CCM2 and four CCM3/PDCD10 mutations that had previously been identified by Sanger sequencing. Two of the pathogenic variants presented here are novel. Additionally, 20 stringently selected CCM index cases that had remained mutation-negative after conventional sequencing and exclusion of copy number variations were screened for deep-intronic mutations. The combination of bioinformatics filtering and transcript analyses did not reveal any deep-intronic splice mutations in these cases. Our results demonstrate that target enrichment by LR-PCR combined with NGS can be used for a comprehensive analysis of the entire genomic regions of the CCM genes in a research context. However, its clinical utility is limited as deep-intronic splice mutations in CCM1/KRIT1, CCM2 and CCM3/PDCD10 seem to be rather rare. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Musculoskeletal MRI findings of juvenile localized scleroderma.
Eutsler, Eric P; Horton, Daniel B; Epelman, Monica; Finkel, Terri; Averill, Lauren W
2017-04-01
Juvenile localized scleroderma comprises a group of autoimmune conditions often characterized clinically by an area of skin hardening. In addition to superficial changes in the skin and subcutaneous tissues, juvenile localized scleroderma may involve the deep soft tissues, bones and joints, possibly resulting in functional impairment and pain in addition to cosmetic changes. There is literature documenting the spectrum of findings for deep involvement of localized scleroderma (fascia, muscles, tendons, bones and joints) in adults, but there is limited literature for the condition in children. We aimed to document the spectrum of musculoskeletal magnetic resonance imaging (MRI) findings of both superficial and deep juvenile localized scleroderma involvement in children and to evaluate the utility of various MRI sequences for detecting those findings. Two radiologists retrospectively evaluated 20 MRI studies of the extremities in 14 children with juvenile localized scleroderma. Each imaging sequence was also given a subjective score of 0 (not useful), 1 (somewhat useful) or 2 (most useful for detecting the findings). Deep tissue involvement was detected in 65% of the imaged extremities. Fascial thickening and enhancement were seen in 50% of imaged extremities. Axial T1, axial T1 fat-suppressed (FS) contrast-enhanced and axial fluid-sensitive sequences were rated most useful. Fascial thickening and enhancement were the most commonly encountered deep tissue findings in extremity MRIs of children with juvenile localized scleroderma. Because abnormalities of the skin, subcutaneous tissues and fascia tend to run longitudinally in an affected limb, axial T1, axial fluid-sensitive and axial T1-FS contrast-enhanced sequences should be included in the imaging protocol.
Dissecting enzyme function with microfluidic-based deep mutational scanning.
Romero, Philip A; Tran, Tuan M; Abate, Adam R
2015-06-09
Natural enzymes are incredibly proficient catalysts, but engineering them to have new or improved functions is challenging due to the complexity of how an enzyme's sequence relates to its biochemical properties. Here, we present an ultrahigh-throughput method for mapping enzyme sequence-function relationships that combines droplet microfluidic screening with next-generation DNA sequencing. We apply our method to map the activity of millions of glycosidase sequence variants. Microfluidic-based deep mutational scanning provides a comprehensive and unbiased view of the enzyme function landscape. The mapping displays expected patterns of mutational tolerance and a strong correspondence to sequence variation within the enzyme family, but also reveals previously unreported sites that are crucial for glycosidase function. We modified the screening protocol to include a high-temperature incubation step, and the resulting thermotolerance landscape allowed the discovery of mutations that enhance enzyme thermostability. Droplet microfluidics provides a general platform for enzyme screening that, when combined with DNA-sequencing technologies, enables high-throughput mapping of enzyme sequence space.
USDA-ARS?s Scientific Manuscript database
The complete genome sequence of a Southern tomato virus (STV) isolate on tomato plants in a seed production field in Bangladesh was obtained for the first time using next generation sequencing. The identified isolate STV_BD-13 shares high degree of sequence identity (99%) with several known STV isol...
USDA-ARS?s Scientific Manuscript database
Complete genome sequence of a double-stranded RNA (dsRNA) virus, southern tomato virus (STV), on tomatoes in China, was elucidated using small RNAs deep sequencing. The identified STV_CN12 shares 99% sequence identity to other isolates from Mexico, France, Spain, and U.S. This is the first report ...
Deep whole-genome sequencing of 100 southeast Asian Malays.
Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying
2013-01-10
Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Deep Whole-Genome Sequencing of 100 Southeast Asian Malays
Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying
2013-01-01
Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies. PMID:23290073
AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling.
Wang, Sheng; Sun, Siqi; Xu, Jinbo
2016-09-01
Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC.
AUC-Maximized Deep Convolutional Neural Fields for Protein Sequence Labeling
Wang, Sheng; Sun, Siqi
2017-01-01
Deep Convolutional Neural Networks (DCNN) has shown excellent performance in a variety of machine learning tasks. This paper presents Deep Convolutional Neural Fields (DeepCNF), an integration of DCNN with Conditional Random Field (CRF), for sequence labeling with an imbalanced label distribution. The widely-used training methods, such as maximum-likelihood and maximum labelwise accuracy, do not work well on imbalanced data. To handle this, we present a new training algorithm called maximum-AUC for DeepCNF. That is, we train DeepCNF by directly maximizing the empirical Area Under the ROC Curve (AUC), which is an unbiased measurement for imbalanced data. To fulfill this, we formulate AUC in a pairwise ranking framework, approximate it by a polynomial function and then apply a gradient-based procedure to optimize it. Our experimental results confirm that maximum-AUC greatly outperforms the other two training methods on 8-state secondary structure prediction and disorder prediction since their label distributions are highly imbalanced and also has similar performance as the other two training methods on solvent accessibility prediction, which has three equally-distributed labels. Furthermore, our experimental results show that our AUC-trained DeepCNF models greatly outperform existing popular predictors of these three tasks. The data and software related to this paper are available at https://github.com/realbigws/DeepCNF_AUC. PMID:28884168
Modeling genome coverage in single-cell sequencing
Daley, Timothy; Smith, Andrew D.
2014-01-01
Motivation: Single-cell DNA sequencing is necessary for examining genetic variation at the cellular level, which remains hidden in bulk sequencing experiments. But because they begin with such small amounts of starting material, the amount of information that is obtained from single-cell sequencing experiment is highly sensitive to the choice of protocol employed and variability in library preparation. In particular, the fraction of the genome represented in single-cell sequencing libraries exhibits extreme variability due to quantitative biases in amplification and loss of genetic material. Results: We propose a method to predict the genome coverage of a deep sequencing experiment using information from an initial shallow sequencing experiment mapped to a reference genome. The observed coverage statistics are used in a non-parametric empirical Bayes Poisson model to estimate the gain in coverage from deeper sequencing. This approach allows researchers to know statistical features of deep sequencing experiments without actually sequencing deeply, providing a basis for optimizing and comparing single-cell sequencing protocols or screening libraries. Availability and implementation: The method is available as part of the preseq software package. Source code is available at http://smithlabresearch.org/preseq. Contact: andrewds@usc.edu Supplementary information: Supplementary material is available at Bioinformatics online. PMID:25107873
2011-01-01
Background Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. Results Using high-throughput Illumina RNA-seq, the transcriptome from poly (A)+ RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled into 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and quantitative real time PCR (qRT-PCR). Conclusions An extensive transcriptome dataset has been obtained from the deep sequencing of tea plant. The coverage of the transcriptome is comprehensive enough to discover all known genes of several major metabolic pathways. This transcriptome dataset can serve as an important public information platform for gene expression, genomics, and functional genomic studies in C. sinensis. PMID:21356090
The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE
2011-01-01
Background The combination of high-throughput transcript profiling and next-generation sequencing technologies is a prerequisite for genome-wide comprehensive transcriptome analysis. Our recent innovation of deepSuperSAGE is based on an advanced SuperSAGE protocol and its combination with massively parallel pyrosequencing on Roche's 454 sequencing platform. As a demonstration of the power of this combination, we have chosen the salt stress transcriptomes of roots and nodules of the third most important legume crop chickpea (Cicer arietinum L.). While our report is more technology-oriented, it nevertheless addresses a major world-wide problem for crops generally: high salinity. Together with low temperatures and water stress, high salinity is responsible for crop losses of millions of tons of various legume (and other) crops. Continuously deteriorating environmental conditions will combine with salinity stress to further compromise crop yields. As a good example for such stress-exposed crop plants, we started to characterize salt stress responses of chickpeas on the transcriptome level. Results We used deepSuperSAGE to detect early global transcriptome changes in salt-stressed chickpea. The salt stress responses of 86,919 transcripts representing 17,918 unique 26 bp deepSuperSAGE tags (UniTags) from roots of the salt-tolerant variety INRAT-93 two hours after treatment with 25 mM NaCl were characterized. Additionally, the expression of 57,281 transcripts representing 13,115 UniTags was monitored in nodules of the same plants. From a total of 144,200 analyzed 26 bp tags in roots and nodules together, 21,401 unique transcripts were identified. Of these, only 363 and 106 specific transcripts, respectively, were commonly up- or down-regulated (>3.0-fold) under salt stress in both organs, witnessing a differential organ-specific response to stress. Profiting from recent pioneer works on massive cDNA sequencing in chickpea, more than 9,400 UniTags were able to be linked to UniProt entries. Additionally, gene ontology (GO) categories over-representation analysis enabled to filter out enriched biological processes among the differentially expressed UniTags. Subsequently, the gathered information was further cross-checked with stress-related pathways. From several filtered pathways, here we focus exemplarily on transcripts associated with the generation and scavenging of reactive oxygen species (ROS), as well as on transcripts involved in Na+ homeostasis. Although both processes are already very well characterized in other plants, the information generated in the present work is of high value. Information on expression profiles and sequence similarity for several hundreds of transcripts of potential interest is now available. Conclusions This report demonstrates, that the combination of the high-throughput transcriptome profiling technology SuperSAGE with one of the next-generation sequencing platforms allows deep insights into the first molecular reactions of a plant exposed to salinity. Cross validation with recent reports enriched the information about the salt stress dynamics of more than 9,000 chickpea ESTs, and enlarged their pool of alternative transcripts isoforms. As an example for the high resolution of the employed technology that we coin deepSuperSAGE, we demonstrate that ROS-scavenging and -generating pathways undergo strong global transcriptome changes in chickpea roots and nodules already 2 hours after onset of moderate salt stress (25 mM NaCl). Additionally, a set of more than 15 candidate transcripts are proposed to be potential components of the salt overly sensitive (SOS) pathway in chickpea. Newly identified transcript isoforms are potential targets for breeding novel cultivars with high salinity tolerance. We demonstrate that these targets can be integrated into breeding schemes by micro-arrays and RT-PCR assays downstream of the generation of 26 bp tags by SuperSAGE. PMID:21320317
USDA-ARS?s Scientific Manuscript database
Over the past decade, Next Generation Sequencing (NGS) technologies, also called deep sequencing, have continued to evolve, increasing capacity and lower the cost necessary for large genome sequencing projects. The one of the advantage of NGS platforms is the possibility to sequence the samples with...
Yildirim, Özal
2018-05-01
Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Protein Solvent-Accessibility Prediction by a Stacked Deep Bidirectional Recurrent Neural Network.
Zhang, Buzhong; Li, Linqing; Lü, Qiang
2018-05-25
Residue solvent accessibility is closely related to the spatial arrangement and packing of residues. Predicting the solvent accessibility of a protein is an important step to understand its structure and function. In this work, we present a deep learning method to predict residue solvent accessibility, which is based on a stacked deep bidirectional recurrent neural network applied to sequence profiles. To capture more long-range sequence information, a merging operator was proposed when bidirectional information from hidden nodes was merged for outputs. Three types of merging operators were used in our improved model, with a long short-term memory network performing as a hidden computing node. The trained database was constructed from 7361 proteins extracted from the PISCES server using a cut-off of 25% sequence identity. Sequence-derived features including position-specific scoring matrix, physical properties, physicochemical characteristics, conservation score and protein coding were used to represent a residue. Using this method, predictive values of continuous relative solvent-accessible area were obtained, and then, these values were transformed into binary states with predefined thresholds. Our experimental results showed that our deep learning method improved prediction quality relative to current methods, with mean absolute error and Pearson's correlation coefficient values of 8.8% and 74.8%, respectively, on the CB502 dataset and 8.2% and 78%, respectively, on the Manesh215 dataset.
2013-01-01
Background Candida albicans is a ubiquitous opportunistic fungal pathogen that afflicts immunocompromised human hosts. With rare and transient exceptions the yeast is diploid, yet despite its clinical relevance the respective sequences of its two homologous chromosomes have not been completely resolved. Results We construct a phased diploid genome assembly by deep sequencing a standard laboratory wild-type strain and a panel of strains homozygous for particular chromosomes. The assembly has 700-fold coverage on average, allowing extensive revision and expansion of the number of known SNPs and indels. This phased genome significantly enhances the sensitivity and specificity of allele-specific expression measurements by enabling pooling and cross-validation of signal across multiple polymorphic sites. Additionally, the diploid assembly reveals pervasive and unexpected patterns in allelic differences between homologous chromosomes. Firstly, we see striking clustering of indels, concentrated primarily in the repeat sequences in promoters. Secondly, both indels and their repeat-sequence substrate are enriched near replication origins. Finally, we reveal an intimate link between repeat sequences and indels, which argues that repeat length is under selective pressure for most eukaryotes. This connection is described by a concise one-parameter model that explains repeat-sequence abundance in C. albicans as a function of the indel rate, and provides a general framework to interpret repeat abundance in species ranging from bacteria to humans. Conclusions The phased genome assembly and insights into repeat plasticity will be valuable for better understanding allele-specific phenomena and genome evolution. PMID:24025428
Lahuerta, Juan J.; Pepin, François; González, Marcos; Barrio, Santiago; Ayala, Rosa; Puig, Noemí; Montalban, María A.; Paiva, Bruno; Weng, Li; Jiménez, Cristina; Sopena, María; Moorhead, Martin; Cedena, Teresa; Rapado, Immaculada; Mateos, María Victoria; Rosiñol, Laura; Oriol, Albert; Blanchard, María J.; Martínez, Rafael; Bladé, Joan; San Miguel, Jesús; Faham, Malek; García-Sanz, Ramón
2014-01-01
We assessed the prognostic value of minimal residual disease (MRD) detection in multiple myeloma (MM) patients using a sequencing-based platform in bone marrow samples from 133 MM patients in at least very good partial response (VGPR) after front-line therapy. Deep sequencing was carried out in patients in whom a high-frequency myeloma clone was identified and MRD was assessed using the IGH-VDJH, IGH-DJH, and IGK assays. The results were contrasted with those of multiparametric flow cytometry (MFC) and allele-specific oligonucleotide polymerase chain reaction (ASO-PCR). The applicability of deep sequencing was 91%. Concordance between sequencing and MFC and ASO-PCR was 83% and 85%, respectively. Patients who were MRD– by sequencing had a significantly longer time to tumor progression (TTP) (median 80 vs 31 months; P < .0001) and overall survival (median not reached vs 81 months; P = .02), compared with patients who were MRD+. When stratifying patients by different levels of MRD, the respective TTP medians were: MRD ≥10−3 27 months, MRD 10−3 to 10−5 48 months, and MRD <10−5 80 months (P = .003 to .0001). Ninety-two percent of VGPR patients were MRD+. In complete response patients, the TTP remained significantly longer for MRD– compared with MRD+ patients (131 vs 35 months; P = .0009). PMID:24646471
Giudice, Valentina; Feng, Xingmin; Lin, Zenghua; Hu, Wei; Zhang, Fanmao; Qiao, Wangmin; Ibanez, Maria Del Pilar Fernandez; Rios, Olga; Young, Neal S
2018-05-01
Oligoclonal expansion of CD8 + CD28 - lymphocytes has been considered indirect evidence for a pathogenic immune response in acquired aplastic anemia. A subset of CD8 + CD28 - cells with CD57 expression, termed effector memory cells, is expanded in several immune-mediated diseases and may have a role in immune surveillance. We hypothesized that effector memory CD8 + CD28 - CD57 + cells may drive aberrant oligoclonal expansion in aplastic anemia. We found CD8 + CD57 + cells frequently expanded in the blood of aplastic anemia patients, with oligoclonal characteristics by flow cytometric Vβ usage analysis: skewing in 1-5 Vβ families and frequencies of immunodominant clones ranging from 1.98% to 66.5%. Oligoclonal characteristics were also observed in total CD8 + cells from aplastic anemia patients with CD8 + CD57 + cell expansion by T-cell receptor deep sequencing, as well as the presence of 1-3 immunodominant clones. Oligoclonality was confirmed by T-cell receptor repertoire deep sequencing of enriched CD8 + CD57 + cells, which also showed decreased diversity compared to total CD4 + and CD8 + cell pools. From analysis of complementarity-determining region 3 sequences in the CD8 + cell pool, a total of 29 sequences were shared between patients and controls, but these sequences were highly expressed in aplastic anemia subjects and also present in their immunodominant clones. In summary, expansion of effector memory CD8 + T cells is frequent in aplastic anemia and mirrors Vβ oligoclonal expansion. Flow cytometric Vβ usage analysis combined with deep sequencing technologies allows high resolution characterization of the T-cell receptor repertoire, and might represent a useful tool in the diagnosis and periodic evaluation of aplastic anemia patients. (Registered at clinicaltrials.gov identifiers: 00001620, 01623167, 00001397, 00071045, 00081523, 00961064 ). Copyright © 2018 Ferrata Storti Foundation.
Complete genome sequence of a tomato infecting tomato mottle mosaic virus in New York
USDA-ARS?s Scientific Manuscript database
Complete genome sequence of an emerging isolate of tomato mottle mosaic virus (ToMMV) infecting experimental nicotianan benthamiana plants in up-state New York was obtained using small RNA deep sequencing. ToMMV_NY-13 shared 99% sequence identity to ToMMV isolates from Mexico and Florida. Broader d...
Bidlingmaier, Scott; Ha, Kevin; Lee, Nam-Kyung; Su, Yang; Liu, Bin
2016-04-01
Although the bioactive sphingolipid ceramide is an important cell signaling molecule, relatively few direct ceramide-interacting proteins are known. We used an approach combining yeast surface cDNA display and deep sequencing technology to identify novel proteins binding directly to ceramide. We identified 234 candidate ceramide-binding protein fragments and validated binding for 20. Most (17) bound selectively to ceramide, although a few (3) bound to other lipids as well. Several novel ceramide-binding domains were discovered, including the EF-hand calcium-binding motif, the heat shock chaperonin-binding motif STI1, the SCP2 sterol-binding domain, and the tetratricopeptide repeat region motif. Interestingly, four of the verified ceramide-binding proteins (HPCA, HPCAL1, NCS1, and VSNL1) and an additional three candidate ceramide-binding proteins (NCALD, HPCAL4, and KCNIP3) belong to the neuronal calcium sensor family of EF hand-containing proteins. We used mutagenesis to map the ceramide-binding site in HPCA and to create a mutant HPCA that does not bind to ceramide. We demonstrated selective binding to ceramide by mammalian cell-produced wild type but not mutant HPCA. Intriguingly, we also identified a fragment from prostaglandin D2synthase that binds preferentially to ceramide 1-phosphate. The wide variety of proteins and domains capable of binding to ceramide suggests that many of the signaling functions of ceramide may be regulated by direct binding to these proteins. Based on the deep sequencing data, we estimate that our yeast surface cDNA display library covers ∼60% of the human proteome and our selection/deep sequencing protocol can identify target-interacting protein fragments that are present at extremely low frequency in the starting library. Thus, the yeast surface cDNA display/deep sequencing approach is a rapid, comprehensive, and flexible method for the analysis of protein-ligand interactions, particularly for the study of non-protein ligands. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Sheik, Cody S.; Reese, Brandi Kiel; Twing, Katrina I.; Sylvan, Jason B.; Grim, Sharon L.; Schrenk, Matthew O.; Sogin, Mitchell L.; Colwell, Frederick S.
2018-01-01
Earth’s subsurface environment is one of the largest, yet least studied, biomes on Earth, and many questions remain regarding what microorganisms are indigenous to the subsurface. Through the activity of the Census of Deep Life (CoDL) and the Deep Carbon Observatory, an open access 16S ribosomal RNA gene sequence database from diverse subsurface environments has been compiled. However, due to low quantities of biomass in the deep subsurface, the potential for incorporation of contaminants from reagents used during sample collection, processing, and/or sequencing is high. Thus, to understand the ecology of subsurface microorganisms (i.e., the distribution, richness, or survival), it is necessary to minimize, identify, and remove contaminant sequences that will skew the relative abundances of all taxa in the sample. In this meta-analysis, we identify putative contaminants associated with the CoDL dataset, recommend best practices for removing contaminants from samples, and propose a series of best practices for subsurface microbiology sampling. The most abundant putative contaminant genera observed, independent of evenness across samples, were Propionibacterium, Aquabacterium, Ralstonia, and Acinetobacter. While the top five most frequently observed genera were Pseudomonas, Propionibacterium, Acinetobacter, Ralstonia, and Sphingomonas. The majority of the most frequently observed genera (high evenness) were associated with reagent or potential human contamination. Additionally, in DNA extraction blanks, we observed potential archaeal contaminants, including methanogens, which have not been discussed in previous contamination studies. Such contaminants would directly affect the interpretation of subsurface molecular studies, as methanogenesis is an important subsurface biogeochemical process. Utilizing previously identified contaminant genera, we found that ∼27% of the total dataset were identified as contaminant sequences that likely originate from DNA extraction and DNA cleanup methods. Thus, controls must be taken at every step of the collection and processing procedure when working with low biomass environments such as, but not limited to, portions of Earth’s deep subsurface. Taken together, we stress that the CoDL dataset is an incredible resource for the broader research community interested in subsurface life, and steps to remove contamination derived sequences must be taken prior to using this dataset. PMID:29780369
Le, Thuy; Chiarella, Jennifer; Simen, Birgitte B; Hanczaruk, Bozena; Egholm, Michael; Landry, Marie L; Dieckhaus, Kevin; Rosen, Marc I; Kozal, Michael J
2009-06-29
It is largely unknown how frequently low-abundance HIV drug-resistant variants at levels under limit of detection of conventional genotyping (<20% of quasi-species) are present in antiretroviral-experienced persons experiencing virologic failure. Further, the clinical implications of low-abundance drug-resistant variants at time of virologic failure are unknown. Plasma samples from 22 antiretroviral-experienced subjects collected at time of virologic failure (viral load 1380 to 304,000 copies/mL) were obtained from a specimen bank (from 2004-2007). The prevalence and profile of drug-resistant mutations were determined using Sanger sequencing and ultra-deep pyrosequencing. Genotypes were interpreted using Stanford HIV database algorithm. Antiretroviral treatment histories were obtained by chart review and correlated with drug-resistant mutations. Low-abundance drug-resistant mutations were detected in all 22 subjects by deep sequencing and only in 3 subjects by Sanger sequencing. In total they accounted for 90 of 247 mutations (36%) detected by deep sequencing; the majority of these (95%) were not detected by standard genotyping. A mean of 4 additional mutations per subject were detected by deep sequencing (p<0.0001, 95%CI: 2.85-5.53). The additional low-abundance drug-resistant mutations increased a subject's genotypic resistance to one or more antiretrovirals in 17 of 22 subjects (77%). When correlated with subjects' antiretroviral treatment histories, the additional low-abundance drug-resistant mutations correlated with the failing antiretroviral drugs in 21% subjects and correlated with historical antiretroviral use in 79% subjects (OR, 13.73; 95% CI, 2.5-74.3, p = 0.0016). Low-abundance HIV drug-resistant mutations in antiretroviral-experienced subjects at time of virologic failure can increase a subject's overall burden of resistance, yet commonly go unrecognized by conventional genotyping. The majority of unrecognized resistant mutations correlate with historical antiretroviral use. Ultra-deep sequencing can provide important historical resistance information for clinicians when planning subsequent antiretroviral regimens for highly treatment-experienced patients, particularly when their prior treatment histories and longitudinal genotypes are not available.
Sheik, Cody S; Reese, Brandi Kiel; Twing, Katrina I; Sylvan, Jason B; Grim, Sharon L; Schrenk, Matthew O; Sogin, Mitchell L; Colwell, Frederick S
2018-01-01
Earth's subsurface environment is one of the largest, yet least studied, biomes on Earth, and many questions remain regarding what microorganisms are indigenous to the subsurface. Through the activity of the Census of Deep Life (CoDL) and the Deep Carbon Observatory, an open access 16S ribosomal RNA gene sequence database from diverse subsurface environments has been compiled. However, due to low quantities of biomass in the deep subsurface, the potential for incorporation of contaminants from reagents used during sample collection, processing, and/or sequencing is high. Thus, to understand the ecology of subsurface microorganisms (i.e., the distribution, richness, or survival), it is necessary to minimize, identify, and remove contaminant sequences that will skew the relative abundances of all taxa in the sample. In this meta-analysis, we identify putative contaminants associated with the CoDL dataset, recommend best practices for removing contaminants from samples, and propose a series of best practices for subsurface microbiology sampling. The most abundant putative contaminant genera observed, independent of evenness across samples, were Propionibacterium , Aquabacterium , Ralstonia , and Acinetobacter . While the top five most frequently observed genera were Pseudomonas , Propionibacterium , Acinetobacter , Ralstonia , and Sphingomonas . The majority of the most frequently observed genera (high evenness) were associated with reagent or potential human contamination. Additionally, in DNA extraction blanks, we observed potential archaeal contaminants, including methanogens, which have not been discussed in previous contamination studies. Such contaminants would directly affect the interpretation of subsurface molecular studies, as methanogenesis is an important subsurface biogeochemical process. Utilizing previously identified contaminant genera, we found that ∼27% of the total dataset were identified as contaminant sequences that likely originate from DNA extraction and DNA cleanup methods. Thus, controls must be taken at every step of the collection and processing procedure when working with low biomass environments such as, but not limited to, portions of Earth's deep subsurface. Taken together, we stress that the CoDL dataset is an incredible resource for the broader research community interested in subsurface life, and steps to remove contamination derived sequences must be taken prior to using this dataset.
Deep RNA-Seq to unlock the gene bank of floral development in Sinapis arvensis.
Liu, Jia; Mei, Desheng; Li, Yunchang; Huang, Shunmou; Hu, Qiong
2014-01-01
Sinapis arvensis is a weed with strong biological activity. Despite being a problematic annual weed that contaminates agricultural crop yield, it is a valuable alien germplasm resource. It can be utilized for broadening the genetic background of Brassica crops with desirable agricultural traits like resistance to blackleg (Leptosphaeria maculans), stem rot (Sclerotinia sclerotium) and pod shatter (caused by FRUITFULL gene). However, few genetic studies of S. arvensis were reported because of the lack of genomic resources. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive dataset for S. arvensis for the first time. We used Illumina paired-end sequencing technology to sequence the S. arvensis flower transcriptome and generated 40,981,443 reads that were assembled into 131,278 transcripts. We de novo assembled 96,562 high quality unigenes with an average length of 832 bp. A total of 33,662 full-length ORF complete sequences were identified, and 41,415 unigenes were mapped onto 128 pathways using the KEGG Pathway database. The annotated unigenes were compared against Brassica rapa, B. oleracea, B. napus and Arabidopsis thaliana. Among these unigenes, 76,324 were identified as putative homologs of annotated sequences in the public protein databases, of which 1194 were associated with plant hormone signal transduction and 113 were related to gibberellin homeostasis/signaling. Unigenes that did not match any of those sequence datasets were considered to be unique to S. arvensis. Furthermore, 21,321 simple sequence repeats were found. Our study will enhance the currently available resources for Brassicaceae and will provide a platform for future genomic studies for genetic improvement of Brassica crops.
Deep RNA-Seq to Unlock the Gene Bank of Floral Development in Sinapis arvensis
Liu, Jia; Mei, Desheng; Li, Yunchang; Huang, Shunmou; Hu, Qiong
2014-01-01
Sinapis arvensis is a weed with strong biological activity. Despite being a problematic annual weed that contaminates agricultural crop yield, it is a valuable alien germplasm resource. It can be utilized for broadening the genetic background of Brassica crops with desirable agricultural traits like resistance to blackleg (Leptosphaeria maculans), stem rot (Sclerotinia sclerotium) and pod shatter (caused by FRUITFULL gene). However, few genetic studies of S. arvensis were reported because of the lack of genomic resources. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive dataset for S. arvensis for the first time. We used Illumina paired-end sequencing technology to sequence the S. arvensis flower transcriptome and generated 40,981,443 reads that were assembled into 131,278 transcripts. We de novo assembled 96,562 high quality unigenes with an average length of 832 bp. A total of 33,662 full-length ORF complete sequences were identified, and 41,415 unigenes were mapped onto 128 pathways using the KEGG Pathway database. The annotated unigenes were compared against Brassica rapa, B. oleracea, B. napus and Arabidopsis thaliana. Among these unigenes, 76,324 were identified as putative homologs of annotated sequences in the public protein databases, of which 1194 were associated with plant hormone signal transduction and 113 were related to gibberellin homeostasis/signaling. Unigenes that did not match any of those sequence datasets were considered to be unique to S. arvensis. Furthermore, 21,321 simple sequence repeats were found. Our study will enhance the currently available resources for Brassicaceae and will provide a platform for future genomic studies for genetic improvement of Brassica crops. PMID:25192023
Li, Meng; Jain, Sunit; Baker, Brett J; Taylor, Chris; Dick, Gregory J
2014-01-01
Particulate membrane-associated hydrocarbon monooxygenases (pHMOs) are critical components of the aerobic degradation pathway for low molecular weight hydrocarbons, including the potent greenhouse gas methane. Here, we analysed pHMO gene diversity in metagenomes and metatranscriptomes of hydrocarbon-rich hydrothermal plumes in the Guaymas Basin (GB) and nearby background waters in the deep Gulf of California. Seven distinct phylogenetic groups of pHMO were present and transcriptionally active in both plume and background waters, including several that are undetectable with currently available polymerase chain reaction (PCR) primers. The seven groups of pHMOs included those related to a putative ethane oxidizing Methylococcaceae-like group, a group of the SAR324 Deltaproteobacteria, three deep-sea clades (Deep sea-1/symbiont-like, Deep sea-2/PS-80 and Deep sea-3/OPU3) within gammaproteobacterial methanotrophs, one clade related to Group Z and one unknown group. Differential abundance of pHMO gene transcripts in plume and background suggests niche differentiation between groups. Corresponding 16S rRNA genes reflected similar phylogenetic and transcriptomic abundance trends. The novelty of transcriptionally active pHMOs we recovered from a hydrocarbon-rich hydrothermal plume suggests there are significant gaps in our knowledge of the diversity and function of these enzymes in the environment. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Graphical classification of DNA sequences of HLA alleles by deep learning.
Miyake, Jun; Kaneshita, Yuhei; Asatani, Satoshi; Tagawa, Seiichi; Niioka, Hirohiko; Hirano, Takashi
2018-04-01
Alleles of human leukocyte antigen (HLA)-A DNAs are classified and expressed graphically by using artificial intelligence "Deep Learning (Stacked autoencoder)". Nucleotide sequence data corresponding to the length of 822 bp, collected from the Immuno Polymorphism Database, were compressed to 2-dimensional representation and were plotted. Profiles of the two-dimensional plots indicate that the alleles can be classified as clusters are formed. The two-dimensional plot of HLA-A DNAs gives a clear outlook for characterizing the various alleles.
Coffey, Lark L; Page, Brady L; Greninger, Alexander L; Herring, Belinda L; Russell, Richard C; Doggett, Stephen L; Haniotis, John; Wang, Chunlin; Deng, Xutao; Delwart, Eric L
2014-01-05
Viral metagenomics characterizes known and identifies unknown viruses based on sequence similarities to any previously sequenced viral genomes. A metagenomics approach was used to identify virus sequences in Australian mosquitoes causing cytopathic effects in inoculated mammalian cell cultures. Sequence comparisons revealed strains of Liao Ning virus (Reovirus, Seadornavirus), previously detected only in China, livestock-infecting Stretch Lagoon virus (Reovirus, Orbivirus), two novel dimarhabdoviruses, named Beaumont and North Creek viruses, and two novel orthobunyaviruses, named Murrumbidgee and Salt Ash viruses. The novel virus proteomes diverged by ≥ 50% relative to their closest previously genetically characterized viral relatives. Deep sequencing also generated genomes of Warrego and Wallal viruses, orbiviruses linked to kangaroo blindness, whose genomes had not been fully characterized. This study highlights viral metagenomics in concert with traditional arbovirus surveillance to characterize known and new arboviruses in field-collected mosquitoes. Follow-up epidemiological studies are required to determine whether the novel viruses infect humans. © 2013 Elsevier Inc. All rights reserved.
3' terminal diversity of MRP RNA and other human noncoding RNAs revealed by deep sequencing.
Goldfarb, Katherine C; Cech, Thomas R
2013-09-21
Post-transcriptional 3' end processing is a key component of RNA regulation. The abundant and essential RNA subunit of RNase MRP has been proposed to function in three distinct cellular compartments and therefore may utilize this mode of regulation. Here we employ 3' RACE coupled with high-throughput sequencing to characterize the 3' terminal sequences of human MRP RNA and other noncoding RNAs that form RNP complexes. The 3' terminal sequence of MRP RNA from HEK293T cells has a distinctive distribution of genomically encoded termini (including an assortment of U residues) with a portion of these selectively tagged by oligo(A) tails. This profile contrasts with the relatively homogenous 3' terminus of an in vitro transcribed MRP RNA control and the differing 3' terminal profiles of U3 snoRNA, RNase P RNA, and telomerase RNA (hTR). 3' RACE coupled with deep sequencing provides a valuable framework for the functional characterization of 3' terminal sequences of noncoding RNAs.
Zhong, Daibin; Lo, Eugenia; Wang, Xiaoming; Yewhalaw, Delenasaw; Zhou, Guofa; Atieli, Harrysone E; Githeko, Andrew; Hemming-Schroeder, Elizabeth; Lee, Ming-Chieh; Afrane, Yaw; Yan, Guiyun
2018-05-02
Parasite genetic diversity and multiplicity of infection (MOI) affect clinical outcomes, response to drug treatment and naturally-acquired or vaccine-induced immunity. Traditional methods often underestimate the frequency and diversity of multiclonal infections due to technical sensitivity and specificity. Next-generation sequencing techniques provide a novel opportunity to study complexity of parasite populations and molecular epidemiology. Symptomatic and asymptomatic Plasmodium vivax samples were collected from health centres/hospitals and schools, respectively, from 2011 to 2015 in Ethiopia. Similarly, both symptomatic and asymptomatic Plasmodium falciparum samples were collected, respectively, from hospitals and schools in 2005 and 2015 in Kenya. Finger-pricked blood samples were collected and dried on filter paper. Long amplicon (> 400 bp) deep sequencing of merozoite surface protein 1 (msp1) gene was conducted to determine multiplicity and molecular epidemiology of P. vivax and P. falciparum infections. The results were compared with those based on short amplicon (117 bp) deep sequencing. A total of 139 P. vivax and 222 P. falciparum samples were pyro-sequenced for pvmsp1 and pfmsp1, yielding a total of 21 P. vivax and 99 P. falciparum predominant haplotypes. The average MOI for P. vivax and P. falciparum were 2.16 and 2.68, respectively, which were significantly higher than that of microsatellite markers and short amplicon (117 bp) deep sequencing. Multiclonal infections were detected in 62.2% of the samples for P. vivax and 74.8% of the samples for P. falciparum. Four out of the five subjects with recurrent P. vivax malaria were found to be a relapse 44-65 days after clearance of parasites. No difference was observed in MOI among P. vivax patients of different symptoms, ages and genders. Similar patterns were also observed in P. falciparum except for one study site in Kenyan lowland areas with significantly higher MOI. The study used a novel method to evaluate Plasmodium MOI and molecular epidemiological patterns by long amplicon ultra-deep sequencing. The complexity of infections were similar among age groups, symptoms, genders, transmission settings (spatial heterogeneity), as well as over years (pre- vs. post-scale-up interventions). This study demonstrated that long amplicon deep sequencing is a useful tool to investigate multiplicity and molecular epidemiology of Plasmodium parasite infections.
Viral Linkage in HIV-1 Seroconverters and Their Partners in an HIV-1 Prevention Clinical Trial
Campbell, Mary S.; Mullins, James I.; Hughes, James P.; Celum, Connie; Wong, Kim G.; Raugi, Dana N.; Sorensen, Stefanie; Stoddard, Julia N.; Zhao, Hong; Deng, Wenjie; Kahle, Erin; Panteleeff, Dana; Baeten, Jared M.; McCutchan, Francine E.; Albert, Jan; Leitner, Thomas; Wald, Anna; Corey, Lawrence; Lingappa, Jairam R.
2011-01-01
Background Characterization of viruses in HIV-1 transmission pairs will help identify biological determinants of infectiousness and evaluate candidate interventions to reduce transmission. Although HIV-1 sequencing is frequently used to substantiate linkage between newly HIV-1 infected individuals and their sexual partners in epidemiologic and forensic studies, viral sequencing is seldom applied in HIV-1 prevention trials. The Partners in Prevention HSV/HIV Transmission Study (ClinicalTrials.gov #NCT00194519) was a prospective randomized placebo-controlled trial that enrolled serodiscordant heterosexual couples to determine the efficacy of genital herpes suppression in reducing HIV-1 transmission; as part of the study analysis, HIV-1 sequences were examined for genetic linkage between seroconverters and their enrolled partners. Methodology/Principal Findings We obtained partial consensus HIV-1 env and gag sequences from blood plasma for 151 transmission pairs and performed deep sequencing of env in some cases. We analyzed sequences with phylogenetic techniques and developed a Bayesian algorithm to evaluate the probability of linkage. For linkage, we required monophyletic clustering between enrolled partners' sequences and a Bayesian posterior probability of ≥50%. Adjudicators classified each seroconversion, finding 108 (71.5%) linked, 40 (26.5%) unlinked, and 3 (2.0%) indeterminate transmissions, with linkage determined by consensus env sequencing in 91 (84%). Male seroconverters had a higher frequency of unlinked transmissions than female seroconverters. The likelihood of transmission from the enrolled partner was related to time on study, with increasing numbers of unlinked transmissions occurring after longer observation periods. Finally, baseline viral load was found to be significantly higher among linked transmitters. Conclusions/Significance In this first use of HIV-1 sequencing to establish endpoints in a large clinical trial, more than one-fourth of transmissions were unlinked to the enrolled partner, illustrating the relevance of these methods in the design of future HIV-1 prevention trials in serodiscordant couples. A hierarchy of sequencing techniques, analysis methods, and expert adjudication contributed to the linkage determination process. PMID:21399681
2011-01-01
Background One of the key goals of oak genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of forests to increase their health and productivity. Deep-coverage large-insert genomic libraries are a crucial tool for attaining this objective. We report herein the construction of a BAC library for Quercus robur, its characterization and an analysis of BAC end sequences. Results The EcoRI library generated consisted of 92,160 clones, 7% of which had no insert. Levels of chloroplast and mitochondrial contamination were below 3% and 1%, respectively. Mean clone insert size was estimated at 135 kb. The library represents 12 haploid genome equivalents and, the likelihood of finding a particular oak sequence of interest is greater than 99%. Genome coverage was confirmed by PCR screening of the library with 60 unique genetic loci sampled from the genetic linkage map. In total, about 20,000 high-quality BAC end sequences (BESs) were generated by sequencing 15,000 clones. Roughly 5.88% of the combined BAC end sequence length corresponded to known retroelements while ab initio repeat detection methods identified 41 additional repeats. Collectively, characterized and novel repeats account for roughly 8.94% of the genome. Further analysis of the BESs revealed 1,823 putative genes suggesting at least 29,340 genes in the oak genome. BESs were aligned with the genome sequences of Arabidopsis thaliana, Vitis vinifera and Populus trichocarpa. One putative collinear microsyntenic region encoding an alcohol acyl transferase protein was observed between oak and chromosome 2 of V. vinifera. Conclusions This BAC library provides a new resource for genomic studies, including SSR marker development, physical mapping, comparative genomics and genome sequencing. BES analysis provided insight into the structure of the oak genome. These sequences will be used in the assembly of a future genome sequence for oak. PMID:21645357
Complete genome sequence of a novel genotype of squash mosaic virus
USDA-ARS?s Scientific Manuscript database
Complete genome sequence of a novel genotype of Squash mosaic virus (SqMV) infecting squash plants in Spain was obtained using deep sequencing of small ribonucleic acids and assembly. The low nucleotide sequence identities, with 87-88% on RNA1 and 84-86% on RNA2 to known SqMV isolates, suggest a new...
USDA-ARS?s Scientific Manuscript database
The complete genome sequence (6,423 nt) of an emerging Cucumber green mottle mosaic virus (CGMMV) isolate on cucumber in North America was determined through deep sequencing of sRNA and rapid amplification of cDNA ends. It shares 99% nucleotide sequence identity to the Asian genotype, but only 90% t...
Comparative transcriptomics of early dipteran development
2013-01-01
Background Modern sequencing technologies have massively increased the amount of data available for comparative genomics. Whole-transcriptome shotgun sequencing (RNA-seq) provides a powerful basis for comparative studies. In particular, this approach holds great promise for emerging model species in fields such as evolutionary developmental biology (evo-devo). Results We have sequenced early embryonic transcriptomes of two non-drosophilid dipteran species: the moth midge Clogmia albipunctata, and the scuttle fly Megaselia abdita. Our analysis includes a third, published, transcriptome for the hoverfly Episyrphus balteatus. These emerging models for comparative developmental studies close an important phylogenetic gap between Drosophila melanogaster and other insect model systems. In this paper, we provide a comparative analysis of early embryonic transcriptomes across species, and use our data for a phylogenomic re-evaluation of dipteran phylogenetic relationships. Conclusions We show how comparative transcriptomics can be used to create useful resources for evo-devo, and to investigate phylogenetic relationships. Our results demonstrate that de novo assembly of short (Illumina) reads yields high-quality, high-coverage transcriptomic data sets. We use these data to investigate deep dipteran phylogenetic relationships. Our results, based on a concatenation of 160 orthologous genes, provide support for the traditional view of Clogmia being the sister group of Brachycera (Megaselia, Episyrphus, Drosophila), rather than that of Culicomorpha (which includes mosquitoes and blackflies). PMID:23432914
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renner, J.; Farbin, A.; Vidal, J. Muñoz
Here, we investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the usemore » of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.« less
Comprehensive discovery of noncoding RNAs in acute myeloid leukemia cell transcriptomes.
Zhang, Jin; Griffith, Malachi; Miller, Christopher A; Griffith, Obi L; Spencer, David H; Walker, Jason R; Magrini, Vincent; McGrath, Sean D; Ly, Amy; Helton, Nichole M; Trissal, Maria; Link, Daniel C; Dang, Ha X; Larson, David E; Kulkarni, Shashikant; Cordes, Matthew G; Fronick, Catrina C; Fulton, Robert S; Klco, Jeffery M; Mardis, Elaine R; Ley, Timothy J; Wilson, Richard K; Maher, Christopher A
2017-11-01
To detect diverse and novel RNA species comprehensively, we compared deep small RNA and RNA sequencing (RNA-seq) methods applied to a primary acute myeloid leukemia (AML) sample. We were able to discover previously unannotated small RNAs using deep sequencing of a library method using broader insert size selection. We analyzed the long noncoding RNA (lncRNA) landscape in AML by comparing deep sequencing from multiple RNA-seq library construction methods for the sample that we studied and then integrating RNA-seq data from 179 AML cases. This identified lncRNAs that are completely novel, differentially expressed, and associated with specific AML subtypes. Our study revealed the complexity of the noncoding RNA transcriptome through a combined strategy of strand-specific small RNA and total RNA-seq. This dataset will serve as an invaluable resource for future RNA-based analyses. Copyright © 2017 ISEH – Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network
NASA Astrophysics Data System (ADS)
Jiang, Hongkai; Li, Xingqiu; Shao, Haidong; Zhao, Ke
2018-06-01
Traditional intelligent fault diagnosis methods for rolling bearings heavily depend on manual feature extraction and feature selection. For this purpose, an intelligent deep learning method, named the improved deep recurrent neural network (DRNN), is proposed in this paper. Firstly, frequency spectrum sequences are used as inputs to reduce the input size and ensure good robustness. Secondly, DRNN is constructed by the stacks of the recurrent hidden layer to automatically extract the features from the input spectrum sequences. Thirdly, an adaptive learning rate is adopted to improve the training performance of the constructed DRNN. The proposed method is verified with experimental rolling bearing data, and the results confirm that the proposed method is more effective than traditional intelligent fault diagnosis methods.
Position-specific binding of FUS to nascent RNA regulates mRNA length
Masuda, Akio; Takeda, Jun-ichi; Okuno, Tatsuya; Okamoto, Takaaki; Ohkawara, Bisei; Ito, Mikako; Ishigaki, Shinsuke; Sobue, Gen
2015-01-01
More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. However, the underlying mechanisms remain largely elusive. CLIP-seq (cross-linking immunoprecipitation [CLIP] combined with deep sequencing) of FUS (fused in sarcoma) in neuronal cells showed that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) of RNA polymerase II (RNAP II) demonstrated that FUS stalls RNAP II and prematurely terminates transcription. When an APA site is located upstream of an FUS cluster, FUS enhances polyadenylation by recruiting CPSF160 and up-regulates the alternative short transcript. In contrast, when an APA site is located downstream from an FUS cluster, polyadenylation is not activated, and the RNAP II-suppressing effect of FUS leads to down-regulation of the alternative short transcript. CAGE-seq (cap analysis of gene expression [CAGE] combined with deep sequencing) and PolyA-seq (a strand-specific and quantitative method for high-throughput sequencing of 3' ends of polyadenylated transcripts) revealed that position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities. PMID:25995189
Miyatake, Satoko; Koshimizu, Eriko; Hayashi, Yukiko K; Miya, Kazushi; Shiina, Masaaki; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Saitsu, Hirotomo; Ogata, Kazuhiro; Nishino, Ichizo; Matsumoto, Naomichi
2014-07-01
When an expected mutation in a particular disease-causing gene is not identified in a suspected carrier, it is usually assumed to be due to germline mosaicism. We report here very-low-grade somatic mosaicism in ACTA1 in an unaffected mother of two siblings affected with a neonatal form of nemaline myopathy. The mosaicism was detected by deep resequencing using a next-generation sequencer. We identified a novel heterozygous mutation in ACTA1, c.448A>G (p.Thr150Ala), in the affected siblings. Three-dimensional structural modeling suggested that this mutation may affect polymerization and/or actin's interactions with other proteins. In this family, we expected autosomal dominant inheritance with either parent demonstrating germline or somatic mosaicism. Sanger sequencing identified no mutation. However, further deep resequencing of this mutation on a next-generation sequencer identified very-low-grade somatic mosaicism in the mother: 0.4%, 1.1%, and 8.3% in the saliva, blood leukocytes, and nails, respectively. Our study demonstrates the possibility of very-low-grade somatic mosaicism in suspected carriers, rather than germline mosaicism. Copyright © 2014 Elsevier B.V. All rights reserved.
Leda, Ana Rachel; Hunter, James; Oliveira, Ursula Castro; Azevedo, Inacio Junqueira; Sucupira, Maria Cecilia Araripe; Diaz, Ricardo Sobhie
2018-04-19
The presence of minority transmitted drug resistance mutations was assessed using ultra-deep sequencing and correlated with disease progression among recently HIV-1-infected individuals from Brazil. Samples at baseline during recent infection and 1 year after the establishment of the infection were analysed. Viral RNA and proviral DNA from 25 individuals were subjected to ultra-deep sequencing of the reverse transcriptase and protease regions of HIV-1. Viral strains carrying transmitted drug resistance mutations were detected in 9 out of the 25 patients, for all major antiretroviral classes, ranging from one to five mutations per patient. Ultra-deep sequencing detected strains with frequencies as low as 1.6% and only strains with frequencies >20% were detected by population plasma sequencing (three patients). Transmitted drug resistance strains with frequencies <14.8% did not persist upon established infection. The presence of transmitted drug resistance mutations was negatively correlated with the viral load and with CD4+ T cell count decay. Transmitted drug resistance mutations representing small percentages of the viral population do not persist during infection because they are negatively selected in the first year after HIV-1 seroconversion.
Feasibility of 3.0T pelvic MR imaging in the evaluation of endometriosis.
Manganaro, L; Fierro, F; Tomei, A; Irimia, D; Lodise, P; Sergi, M E; Vinci, V; Sollazzo, P; Porpora, M G; Delfini, R; Vittori, G; Marini, M
2012-06-01
Endometriosis represents an important clinical problem in women of reproductive age with high impact on quality of life, work productivity and health care management. The aim of this study is to define the role of 3T magnetom system MRI in the evaluation of endometriosis. Forty-six women, with transvaginal (TV) ultrasound examination positive for endometriosis, with pelvic pain, or infertile underwent an MR 3.0T examination with the following protocol: T2 weighted FRFSE HR sequences, T2 weighted FRFSE HR CUBE 3D sequences, T1 w FSE sequences, LAVA-flex sequences. Pelvic anatomy, macroscopic endometriosis implants, deep endometriosis implants, fallopian tube involvement, adhesions presence, fluid effusion in Douglas pouch, uterus and kidney pathologies or anomalies associated and sacral nervous routes were considered by two radiologists in consensus. Laparoscopy was considered the gold standard. MRI imaging diagnosed deep endometriosis in 22/46 patients, endometriomas not associated to deep implants in 9/46 patients, 15/46 patients resulted negative for endometriosis, 11 of 22 patients with deep endometriosis reported ovarian endometriosis cyst. We obtained high percentages of sensibility (96.97%), specificity (100.00%), VPP (100.00%), VPN (92.86%). Pelvic MRI performed with 3T system guarantees high spatial and contrast resolution, providing accurate information about endometriosis implants, with a good pre-surgery mapping of the lesions involving both bowels and bladder surface and recto-uterine ligaments. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
ComplexContact: a web server for inter-protein contact prediction using deep learning.
Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo
2018-05-22
ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.
Cavalier-Smith, Thomas
2015-04-01
Contradictory and confusing results can arise if sequenced 'monoprotist' samples really contain DNA of very different species. Eukaryote-wide phylogenetic analyses using five genes from the amoeboflagellate culture ATCC 50646 previously implied it was an undescribed percolozoan related to percolatean flagellates (Stephanopogon, Percolomonas). Contrastingly, three phylogenetic analyses of 18S rRNA alone, did not place it within Percolozoa, but as an isolated deep-branching excavate. I resolve that contradiction by sequence phylogenies for all five genes individually, using up to 652 taxa. Its 18S rRNA sequence (GQ377652) is near-identical to one from stained-glass windows, somewhat more distant from one from cooling-tower water, all three related to terrestrial actinocephalid gregarines Hoplorhynchus and Pyxinia. All four protein-gene sequences (Hsp90; α-tubulin; β-tubulin; actin) are from an amoeboflagellate heterolobosean percolozoan, not especially deeply branching. Contrary to previous conclusions from trees combining protein and rRNA sequences or rDNA trees including Eozoa only, this culture does not represent a major novel deep-branching eukaryote lineage distinct from Heterolobosea, and thus lacks special significance for deep eukaryote phylogeny, though the rDNA sequence is important for gregarine phylogeny. α-Tubulin trees for over 250 eukaryotes refute earlier suggestions of lateral gene transfer within eukaryotes, being largely congruent with morphology and other gene trees. Copyright © 2015. Published by Elsevier GmbH.
Virtual Investigations of an Active Deep Sea Volcano
NASA Astrophysics Data System (ADS)
Sautter, L.; Taylor, M. M.; Fundis, A.; Kelley, D. S.; Elend, M.
2013-12-01
Axial Seamount, located on the Juan de Fuca spreading ridge 300 miles off the Oregon coast, is an active volcano whose summit caldera lies 1500 m beneath the sea surface. Ongoing construction of the Regional Scale Nodes (RSN) cabled observatory by the University of Washington (funded by the NSF Ocean Observatories Initiative) has allowed for exploration of recent lava flows and active hydrothermal vents using HD video mounted on the ROVs, ROPOS and JASON II. College level oceanography/marine geology online laboratory exercises referred to as Online Concept Modules (OCMs) have been created using video and video frame-captured mosaics to promote skill development for characterizing and quantifying deep sea environments. Students proceed at their own pace through a sequence of short movies with which they (a) gain background knowledge, (b) learn skills to identify and classify features or biota within a targeted environment, (c) practice these skills, and (d) use their knowledge and skills to make interpretations regarding the environment. Part (d) serves as the necessary assessment component of the laboratory exercise. Two Axial Seamount-focused OCMs will be presented: 1) Lava Flow Characterization: Identifying a Suitable Cable Route, and 2) Assessing Hydrothermal Vent Communities: Comparisons Among Multiple Sulfide Chimneys.
The Building History of XUV disks of M83& NGC2403 with TRGB Archaeology
NASA Astrophysics Data System (ADS)
Koda, Jin
2015-06-01
We propose deep HSC g & i-band imaging of two extended ultraviolet (XUV) disks of M83 and NGC2403. These galaxies have the prototype XUV disks with the largest size ( 1 deg and 30 arcmin). The Subaru HSC permits unprecedentedly deep imaging over these gigantic XUV disks, including sufficient surrounding areas which are used for sky subtraction and statistical estimation of background contamination. This project probes the building history of the XUV disks using archeological stellar populations, especially the tip of red giant branch (TRGB) stars (age 2-14 Gyr). Their presence and distribution over the XUV disks will reveal any star formation (SF) occurring over the past 2 Gyr, 4-6 Gyr, and beyond - i.e., the epochs preceding the recent (UV-traced) state of SF. Their color depends strongly on metallicity, thus providing an additional measure of star-gas recycling during the evolution of the XUV disks. In addition, we will detect young & massive main sequence stars (<100 Myr) and He-burning stars (100-500 Myr). Comparing various generations of stars, in terms of number densities and spatial distributions, will reveal the much-unexplored SF history in the XUV disks.
Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity.
Kim, Hui Kwon; Min, Seonwoo; Song, Myungjae; Jung, Soobin; Choi, Jae Woo; Kim, Younggwang; Lee, Sangeun; Yoon, Sungroh; Kim, Hyongbum Henry
2018-03-01
We present two algorithms to predict the activity of AsCpf1 guide RNAs. Indel frequencies for 15,000 target sequences were used in a deep-learning framework based on a convolutional neural network to train Seq-deepCpf1. We then incorporated chromatin accessibility information to create the better-performing DeepCpf1 algorithm for cell lines for which such information is available and show that both algorithms outperform previous machine learning algorithms on our own and published data sets.
DSAP: deep-sequencing small RNA analysis pipeline.
Huang, Po-Jung; Liu, Yi-Chung; Lee, Chi-Ching; Lin, Wei-Chen; Gan, Richie Ruei-Chi; Lyu, Ping-Chiang; Tang, Petrus
2010-07-01
DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.
Sakai, Hiroaki; Kanamori, Hiroyuki; Arai-Kichise, Yuko; Shibata-Hatta, Mari; Ebana, Kaworu; Oono, Youko; Kurita, Kanako; Fujisawa, Hiroko; Katagiri, Satoshi; Mukai, Yoshiyuki; Hamada, Masao; Itoh, Takeshi; Matsumoto, Takashi; Katayose, Yuichi; Wakasa, Kyo; Yano, Masahiro; Wu, Jianzhong
2014-01-01
Having a deep genetic structure evolved during its domestication and adaptation, the Asian cultivated rice (Oryza sativa) displays considerable physiological and morphological variations. Here, we describe deep whole-genome sequencing of the aus rice cultivar Kasalath by using the advanced next-generation sequencing (NGS) technologies to gain a better understanding of the sequence and structural changes among highly differentiated cultivars. The de novo assembled Kasalath sequences represented 91.1% (330.55 Mb) of the genome and contained 35 139 expressed loci annotated by RNA-Seq analysis. We detected 2 787 250 single-nucleotide polymorphisms (SNPs) and 7393 large insertion/deletion (indel) sites (>100 bp) between Kasalath and Nipponbare, and 2 216 251 SNPs and 3780 large indels between Kasalath and 93-11. Extensive comparison of the gene contents among these cultivars revealed similar rates of gene gain and loss. We detected at least 7.39 Mb of inserted sequences and 40.75 Mb of unmapped sequences in the Kasalath genome in comparison with the Nipponbare reference genome. Mapping of the publicly available NGS short reads from 50 rice accessions proved the necessity and the value of using the Kasalath whole-genome sequence as an additional reference to capture the sequence polymorphisms that cannot be discovered by using the Nipponbare sequence alone. PMID:24578372
Unified Deep Learning Architecture for Modeling Biology Sequence.
Wu, Hongjie; Cao, Chengyuan; Xia, Xiaoyan; Lu, Qiang
2017-10-09
Prediction of the spatial structure or function of biological macromolecules based on their sequence remains an important challenge in bioinformatics. When modeling biological sequences using traditional sequencing models, characteristics, such as long-range interactions between basic units, the complicated and variable output of labeled structures, and the variable length of biological sequences, usually lead to different solutions on a case-by-case basis. This study proposed the use of bidirectional recurrent neural networks based on long short-term memory or a gated recurrent unit to capture long-range interactions by designing the optional reshape operator to adapt to the diversity of the output labels and implementing a training algorithm to support the training of sequence models capable of processing variable-length sequences. Additionally, the merge and pooling operators enhanced the ability to capture short-range interactions between basic units of biological sequences. The proposed deep-learning model and its training algorithm might be capable of solving currently known biological sequence-modeling problems through the use of a unified framework. We validated our model on one of the most difficult biological sequence-modeling problems currently known, with our results indicating the ability of the model to obtain predictions of protein residue interactions that exceeded the accuracy of current popular approaches by 10% based on multiple benchmarks.
Zhang, Jing; Cong, Qian; Fan, Xiao-Ling; Wang, Rongjiang; Wang, Min; Grishin, Nick V
2017-01-01
Background: Giant-Skipper butterflies from the genus Megathymus are North American endemics. These large and thick-bodied Skippers resemble moths and are unique in their life cycles. Grub-like at the later stages of development, caterpillars of these species feed and live inside yucca roots. Adults do not feed and are mostly local, not straying far from the patches of yucca plants. Methods: Pieces of muscle were dissected from the thorax of specimens and genomic DNA was extracted (also from the abdomen of a specimen collected nearly 60 years ago). Paired-end libraries were prepared and sequenced for 150bp from both ends. The mitogenomes were assembled from the reads followed by a manual gap-closing procedure and a phylogenetic tree was constructed using a maximum likelihood method from an alignment of the mitogenomes. Results: We determined mitogenome sequences of nominal subspecies of all five known species of Megathymus and Agathymus mariae to confidently root the phylogenetic tree. Pairwise sequence identity indicates the high similarity, ranging from 88-96% among coding regions for 13 proteins, 22 tRNAs and 2 rRNA, with a gene order typical for mitogenomes of Lepidoptera. Phylogenetic analysis confirms that Giant-Skippers (Megathymini) originate within the subfamily Hesperiinae and do not warrant a subfamily rank. Genus Megathymus is monophyletic and splits into two species groups. M. streckeri and M. cofaqui caterpillars feed deep in the main root system of yucca plants and deposit frass underground. M. ursus , M. beulahae and M. yuccae feed in the yucca caudex and roots near the ground, and deposit frass outside through a "tent" (a silk tube projecting from the center of yucca plant). M. yuccae and M. beulahae are sister species consistently with morphological similarities between them. Conclusions: We constructed the first DNA-based phylogeny of the genus Megathymus from their mitogenomes. The phylogeny agrees with morphological considerations.
2014-01-01
Background In order to understand the effects of FeS cluster attachment in [NiFe] hydrogenase, we undertook a study to substitute all 12 amino acid positions normally ligating the three FeS clusters in the hydrogenase small subunit. Using the hydrogenase from Alteromonas macleodii “deep ecotype” as a model, we substituted one of four amino acids (Asp, His, Asn, Gln) at each of the 12 ligating positions because these amino acids are alternative coordinating residues in otherwise conserved-cysteine positions found in a broad survey of NiFe hydrogenase sequences. We also hoped to discover an enzyme with elevated hydrogen evolution activity relative to a previously reported “G1” (H230C/P285C) improved enzyme in which the medial FeS cluster Pro and the distal FeS cluster His were each substituted for Cys. Results Among all the substitutions screened, aspartic acid substitutions were generally well-tolerated, and examination suggests that the observed deficiency in enzyme activity may be largely due to misprocessing of the small subunit of the enzyme. Alignment of hydrogenase sequences from sequence databases revealed many rare substitutions; the five substitutions present in databases that we tested all exhibited measurable hydrogen evolution activity. Select substitutions were purified and tested, supporting the results of the screening assay. Analysis of these results confirms the importance of small subunit processing. Normalizing activity to quantity of mature small subunit, indicative of total enzyme maturation, weakly suggests an improvement over the “G1” enzyme. Conclusions We have comprehensively screened 48 amino acid substitutions of the hydrogenase from A. macleodii “deep ecotype”, to understand non-canonical ligations of amino acids to FeS clusters and to improve hydrogen evolution activity of this class of hydrogenase. Our studies show that non-canonical ligations can be functional and also suggests a new limiting factor in the production of active enzyme. PMID:24934472
Bi, Yaqi; Tugume, Arthur K.; Valkonen, Jari P. T.
2012-01-01
Background Arctium species (Asteraceae) are distributed worldwide and are used as food and rich sources of secondary metabolites for the pharmaceutical industry, e.g., against avian influenza virus. RNA silencing is an antiviral defense mechanism that detects and destroys virus-derived double-stranded RNA, resulting in accumulation of virus-derived small RNAs (21–24 nucleotides) that can be used for generic detection of viruses by small-RNA deep sequencing (SRDS). Methodology/Principal Findings SRDS was used to detect viruses in the biennial wild plant species Arctium tomentosum (woolly burdock; family Asteraceae) displaying virus-like symptoms of vein yellowing and leaf mosaic in southern Finland. Assembly of the small-RNA reads resulted in contigs homologous to Alstroemeria virus X (AlsVX), a positive/single-stranded RNA virus of genus Potexvirus (family Alphaflexiviridae), or related to negative/single-stranded RNA viruses of the genus Emaravirus. The coat protein gene of AlsVX was 81% and 89% identical to the two AlsVX isolates from Japan and Norway, respectively. The deduced, partial nucleocapsid protein amino acid sequence of the emara-like virus was only 78% or less identical to reported emaraviruses and showed no variability among the virus isolates characterized. This virus—tentatively named as Woolly burdock yellow vein virus—was exclusively associated with yellow vein and leaf mosaic symptoms in woolly burdock, whereas AlsVX was detected in only one of the 52 plants tested. Conclusions/Significance These results provide novel information about natural virus infections in Acrtium species and reveal woolly burdock as the first natural host of AlsVX besides Alstroemeria (family Alstroemeriaceae). Results also revealed a new virus related to the recently emerged Emaravirus genus and demonstrated applicability of SRDS to detect negative-strand RNA viruses. SRDS potentiates virus surveys of wild plants, a research area underrepresented in plant virology, and helps reveal natural reservoirs of viruses that cause yield losses in cultivated plants. PMID:22912734
DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations.
Yuan, Yuchen; Shi, Yi; Li, Changyang; Kim, Jinman; Cai, Weidong; Han, Zeguang; Feng, David Dagan
2016-12-23
With the developments of DNA sequencing technology, large amounts of sequencing data have become available in recent years and provide unprecedented opportunities for advanced association studies between somatic point mutations and cancer types/subtypes, which may contribute to more accurate somatic point mutation based cancer classification (SMCC). However in existing SMCC methods, issues like high data sparsity, small volume of sample size, and the application of simple linear classifiers, are major obstacles in improving the classification performance. To address the obstacles in existing SMCC studies, we propose DeepGene, an advanced deep neural network (DNN) based classifier, that consists of three steps: firstly, the clustered gene filtering (CGF) concentrates the gene data by mutation occurrence frequency, filtering out the majority of irrelevant genes; secondly, the indexed sparsity reduction (ISR) converts the gene data into indexes of its non-zero elements, thereby significantly suppressing the impact of data sparsity; finally, the data after CGF and ISR is fed into a DNN classifier, which extracts high-level features for accurate classification. Experimental results on our curated TCGA-DeepGene dataset, which is a reformulated subset of the TCGA dataset containing 12 selected types of cancer, show that CGF, ISR and DNN all contribute in improving the overall classification performance. We further compare DeepGene with three widely adopted classifiers and demonstrate that DeepGene has at least 24% performance improvement in terms of testing accuracy. Based on deep learning and somatic point mutation data, we devise DeepGene, an advanced cancer type classifier, which addresses the obstacles in existing SMCC studies. Experiments indicate that DeepGene outperforms three widely adopted existing classifiers, which is mainly attributed to its deep learning module that is able to extract the high level features between combinatorial somatic point mutations and cancer types.
Pérez, Ruben; Calleros, Lucía; Marandino, Ana; Sarute, Nicolás; Iraola, Gregorio; Grecco, Sofia; Blanc, Hervé; Vignuzzi, Marco; Isakov, Ofer; Shomron, Noam; Carrau, Lucía; Hernández, Martín; Francia, Lourdes; Sosa, Katia; Tomás, Gonzalo; Panzera, Yanina
2014-01-01
Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity. PMID:25365348
Šlapeta, Jan; Saverimuttu, Stefan; Vogelnest, Larry; Sangster, Cheryl; Hulst, Frances; Rose, Karrie; Thompson, Paul; Whittington, Richard
2017-11-01
The short-beaked echidna (Tachyglossus aculeatus) and the platypus (Ornithorhynchus anatinus) are iconic egg-laying monotremes (Mammalia: Monotremata) from Australasia. The aim of this study was to demonstrate the utility of diversity profiles in disease investigations of monotremes. Using small subunit (18S) rDNA amplicon deep-sequencing we demonstrated the presence of apicomplexan parasites and confirmed by direct and cloned amplicon gene sequencing Theileria ornithorhynchi, Theileria tachyglossi, Eimeria echidnae and Cryptosporidium fayeri. Using a combination of samples from healthy and diseased animals, we show a close evolutionary relationship between species of coccidia (Eimeria) and piroplasms (Theileria) from the echidna and platypus. The presence of E. echidnae was demonstrated in faeces and tissues affected by disseminated coccidiosis. Moreover, the presence of E. echidnae DNA in the blood of echidnas was associated with atoxoplasma-like stages in white blood cells, suggesting Hepatozoon tachyglossi blood stages are disseminated E. echidnae stages. These next-generation DNA sequencing technologies are suited to material and organisms that have not been previously characterised and for which the material is scarce. The deep sequencing approach supports traditional diagnostic methods, including microscopy, clinical pathology and histopathology, to better define the status quo. This approach is particularly suitable for wildlife disease investigation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pasquale, V.; Chiozzi, P.; Verdoya, M.
2013-05-01
Temperatures recorded in wells as deep as 6 km drilled for hydrocarbon prospecting were used together with geological information to depict the thermal regime of the sedimentary sequence of the eastern sector of the Po Plain. After correction for drilling disturbance, temperature data were analyzed through an inversion technique based on a laterally constant thermal gradient model. The obtained thermal gradient is quite low within the deep carbonate unit (14 mK m- 1), while it is larger (53 mK m- 1) in the overlying impermeable formations. In the uppermost sedimentary layers, the thermal gradient is close to the regional average (21 mK m- 1). We argue that such a vertical change cannot be ascribed to thermal conductivity variation within the sedimentary sequence, but to deep groundwater flow. Since the hydrogeological characteristics (including litho-stratigraphic sequence and structural setting) hardly permit forced convection, we suggest that thermal convection might occur within the deep carbonate aquifer. The potential of this mechanism was evaluated by means of the Rayleigh number analysis. It turned out that permeability required for convection to occur must be larger than 3 10- 15 m2. The average over-heat ratio is 0.45. The lateral variation of hydrothermal regime was tested by using temperature data representing the aquifer thermal conditions. We found that thermal convection might be more developed and variable at the Ferrara High and its surroundings, where widespread fracturing may have increased permeability.
Moreira, Rebeca; Balseiro, Pablo; Planas, Josep V.; Fuste, Berta; Beltran, Sergi; Novoa, Beatriz; Figueras, Antonio
2012-01-01
Background The Manila clam (Ruditapes philippinarum) is a worldwide cultured bivalve species with important commercial value. Diseases affecting this species can result in large economic losses. Because knowledge of the molecular mechanisms of the immune response in bivalves, especially clams, is scarce and fragmentary, we sequenced RNA from immune-stimulated R. philippinarum hemocytes by 454-pyrosequencing to identify genes involved in their immune defense against infectious diseases. Methodology and Principal Findings High-throughput deep sequencing of R. philippinarum using 454 pyrosequencing technology yielded 974,976 high-quality reads with an average read length of 250 bp. The reads were assembled into 51,265 contigs and the 44.7% of the translated nucleotide sequences into protein were annotated successfully. The 35 most frequently found contigs included a large number of immune-related genes, and a more detailed analysis showed the presence of putative members of several immune pathways and processes like the apoptosis, the toll like signaling pathway and the complement cascade. We have found sequences from molecules never described in bivalves before, especially in the complement pathway where almost all the components are present. Conclusions This study represents the first transcriptome analysis using 454-pyrosequencing conducted on R. philippinarum focused on its immune system. Our results will provide a rich source of data to discover and identify new genes, which will serve as a basis for microarray construction and the study of gene expression as well as for the identification of genetic markers. The discovery of new immune sequences was very productive and resulted in a large variety of contigs that may play a role in the defense mechanisms of Ruditapes philippinarum. PMID:22536348
Han, R; Rai, A; Nakamura, M; Suzuki, H; Takahashi, H; Yamazaki, M; Saito, K
2016-01-01
Study on transcriptome, the entire pool of transcripts in an organism or single cells at certain physiological or pathological stage, is indispensable in unraveling the connection and regulation between DNA and protein. Before the advent of deep sequencing, microarray was the main approach to handle transcripts. Despite obvious shortcomings, including limited dynamic range and difficulties to compare the results from distinct experiments, microarray was widely applied. During the past decade, next-generation sequencing (NGS) has revolutionized our understanding of genomics in a fast, high-throughput, cost-effective, and tractable manner. By adopting NGS, efficiency and fruitful outcomes concerning the efforts to elucidate genes responsible for producing active compounds in medicinal plants were profoundly enhanced. The whole process involves steps, from the plant material sampling, to cDNA library preparation, to deep sequencing, and then bioinformatics takes over to assemble enormous-yet fragmentary-data from which to comb and extract information. The unprecedentedly rapid development of such technologies provides so many choices to facilitate the task, which can cause confusion when choosing the suitable methodology for specific purposes. Here, we review the general approaches for deep transcriptome analysis and then focus on their application in discovering biosynthetic pathways of medicinal plants that produce important secondary metabolites. © 2016 Elsevier Inc. All rights reserved.
Daytime adaptive optics for deep space optical communications
NASA Technical Reports Server (NTRS)
Wilson, Keith; Troy, M.; Srinivasan, M.; Platt, B.; Vilnrotter, V.; Wright, M.; Garkanian, V.; Hemmati, H.
2003-01-01
The deep space optical communications subsystem offers a higher bandwidth communications link in smaller size, lower mass, and lower power consumption subsystem than does RF. To demonstrate the benefit of this technology to deep space communications NASA plans to launch an optical telecommunications package on the 2009 Mars Telecommunications orbiter spacecraft. Current performance goals are 30-Mbps from opposition, and 1-Mbps near conjunction (-3 degrees Sun-Earth-Probe angle). Yet, near conjunction the background noise from the day sky will degrade the performance of the optical link. Spectral and spatial filtering and higher modulation formats can mitigate the effects of background sky. Narrowband spectral filters can result in loss of link margin, and higher modulation formats require higher transmitted peak powers. In contrast, spatial filtering at the receiver has the potential of being lossless while providing the required sky background rejection. Adaptive optics techniques can correct wave front aberrations caused by atmospheric turbulence and enable near-diffraction-limited performance of the receiving telescope. Such performance facilitates spatial filtering, and allows the receiver field-of-view and hence the noise from the sky background to be reduced.
Goldsmith, Dawn B.; Parsons, Rachel J.; Beyene, Damitu; Salamon, Peter
2015-01-01
Deep sequencing of the viral phoH gene, a host-derived auxiliary metabolic gene, was used to track viral diversity throughout the water column at the Bermuda Atlantic Time-series Study (BATS) site in the summer (September) and winter (March) of three years. Viral phoH sequences reveal differences in the viral communities throughout a depth profile and between seasons in the same year. Variation was also detected between the same seasons in subsequent years, though these differences were not as great as the summer/winter distinctions. Over 3,600 phoH operational taxonomic units (OTUs; 97% sequence identity) were identified. Despite high richness, most phoH sequences belong to a few large, common OTUs whereas the majority of the OTUs are small and rare. While many OTUs make sporadic appearances at just a few times or depths, a small number of OTUs dominate the community throughout the seasons, depths, and years. PMID:26157645
Nagahama, Hiroshi; Suzuki, Kengo; Shonai, Takaharu; Aratani, Kazuki; Sakurai, Yuuki; Nakamura, Manami; Sakata, Motomichi
2015-01-01
Electrodes are surgically implanted into the subthalamic nucleus (STN) of Parkinson's disease patients to provide deep brain stimulation. For ensuring correct positioning, the anatomic location of the STN must be determined preoperatively. Magnetic resonance imaging has been used for pinpointing the location of the STN. To identify the optimal imaging sequence for identifying the STN, we compared images produced with T2 star-weighted angiography (SWAN), gradient echo T2*-weighted imaging, and fast spin echo T2-weighted imaging in 6 healthy volunteers. Our comparison involved measurement of the contrast-to-noise ratio (CNR) for the STN and substantia nigra and a radiologist's interpretations of the images. Of the sequences examined, the CNR and qualitative scores were significantly higher on SWAN images than on other images (p < 0.01) for STN visualization. Kappa value (0.74) on SWAN images was the highest in three sequences for visualizing the STN. SWAN is the sequence best suited for identifying the STN at the present time.
Deep sequencing methods for protein engineering and design.
Wrenbeck, Emily E; Faber, Matthew S; Whitehead, Timothy A
2017-08-01
The advent of next-generation sequencing (NGS) has revolutionized protein science, and the development of complementary methods enabling NGS-driven protein engineering have followed. In general, these experiments address the functional consequences of thousands of protein variants in a massively parallel manner using genotype-phenotype linked high-throughput functional screens followed by DNA counting via deep sequencing. We highlight the use of information rich datasets to engineer protein molecular recognition. Examples include the creation of multiple dual-affinity Fabs targeting structurally dissimilar epitopes and engineering of a broad germline-targeted anti-HIV-1 immunogen. Additionally, we highlight the generation of enzyme fitness landscapes for conducting fundamental studies of protein behavior and evolution. We conclude with discussion of technological advances. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dutta, Sutapa; Kumawat, Giriraj; Singh, Bikram P; Gupta, Deepak K; Singh, Sangeeta; Dogra, Vivek; Gaikwad, Kishor; Sharma, Tilak R; Raje, Ranjeet S; Bandhopadhya, Tapas K; Datta, Subhojit; Singh, Mahendra N; Bashasab, Fakrudin; Kulwal, Pawan; Wanjari, K B; K Varshney, Rajeev; Cook, Douglas R; Singh, Nagendra K
2011-01-20
Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥ 18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. We developed 550 validated genic-SSR markers in pigeonpea using deep transcriptome sequencing. From these, 20 highly polymorphic markers were used to evaluate the genetic relationship among species of the genus Cajanus. A comprehensive set of genic-SSR markers was developed as an important genomic resource for diversity analysis and genetic mapping in pigeonpea.
Parkes, R John; Sellek, Gerard; Webster, Gordon; Martin, Derek; Anders, Erik; Weightman, Andrew J; Sass, Henrik
2009-01-01
Deep subseafloor sediments may contain depressurization-sensitive, anaerobic, piezophilic prokaryotes. To test this we developed the DeepIsoBUG system, which when coupled with the HYACINTH pressure-retaining drilling and core storage system and the PRESS core cutting and processing system, enables deep sediments to be handled without depressurization (up to 25 MPa) and anaerobic prokaryotic enrichments and isolation to be conducted up to 100 MPa. Here, we describe the system and its first use with subsurface gas hydrate sediments from the Indian Continental Shelf, Cascadia Margin and Gulf of Mexico. Generally, highest cell concentrations in enrichments occurred close to in situ pressures (14 MPa) in a variety of media, although growth continued up to at least 80 MPa. Predominant sequences in enrichments were Carnobacterium, Clostridium, Marinilactibacillus and Pseudomonas, plus Acetobacterium and Bacteroidetes in Indian samples, largely independent of media and pressures. Related 16S rRNA gene sequences for all of these Bacteria have been detected in deep, subsurface environments, although isolated strains were piezotolerant, being able to grow at atmospheric pressure. Only the Clostridium and Acetobacterium were obligate anaerobes. No Archaea were enriched. It may be that these sediment samples were not deep enough (total depth 1126–1527 m) to obtain obligate piezophiles. PMID:19694787
USDA-ARS?s Scientific Manuscript database
Modern day genomics holds the promise of solving the complexities of basic plant sciences, and of catalyzing practical advances in plant breeding. While contiguous, "base perfect" deep sequencing is a key module of any genome project, recent advances in parallel next generation sequencing technologi...
Schilmiller, Anthony L; Miner, Dennis P; Larson, Matthew; McDowell, Eric; Gang, David R; Wilkerson, Curtis; Last, Robert L
2010-07-01
Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces beta-caryophyllene and alpha-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells.
Schilmiller, Anthony L.; Miner, Dennis P.; Larson, Matthew; McDowell, Eric; Gang, David R.; Wilkerson, Curtis; Last, Robert L.
2010-01-01
Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces β-caryophyllene and α-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells. PMID:20431087
Optical Communications Channel Combiner
NASA Technical Reports Server (NTRS)
Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy
2012-01-01
NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.
Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents.
Burgaud, Gaëtan; Hué, Nguyen Thi Minh; Arzur, Danielle; Coton, Monika; Perrier-Cornet, Jean-Marie; Jebbar, Mohamed; Barbier, Georges
2015-11-01
Hydrostatic pressure plays a significant role in the distribution of life in the biosphere. Knowledge of deep-sea piezotolerant and (hyper)piezophilic bacteria and archaea diversity has been well documented, along with their specific adaptations to cope with high hydrostatic pressure (HHP). Recent investigations of deep-sea microbial community compositions have shown unexpected micro-eukaryotic communities, mainly dominated by fungi. Molecular methods such as next-generation sequencing have been used for SSU rRNA gene sequencing to reveal fungal taxa. Currently, a difficult but fascinating challenge for marine mycologists is to create deep-sea marine fungus culture collections and assess their ability to cope with pressure. Indeed, although there is no universal genetic marker for piezoresistance, physiological analyses provide concrete relevant data for estimating their adaptations and understanding the role of fungal communities in the abyss. The present study investigated morphological and physiological responses of fungi to HHP using a collection of deep-sea yeasts as a model. The aim was to determine whether deep-sea yeasts were able to tolerate different HHP and if they were metabolically active. Here we report an unexpected taxonomic-based dichotomic response to pressure with piezosensitve ascomycetes and piezotolerant basidiomycetes, and distinct morphological switches triggered by pressure for certain strains. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Lonardi, Stefano; Mirebrahim, Hamid; Wanamaker, Steve; Alpert, Matthew; Ciardo, Gianfranco; Duma, Denisa; Close, Timothy J
2015-09-15
As the invention of DNA sequencing in the 70s, computational biologists have had to deal with the problem of de novo genome assembly with limited (or insufficient) depth of sequencing. In this work, we investigate the opposite problem, that is, the challenge of dealing with excessive depth of sequencing. We explore the effect of ultra-deep sequencing data in two domains: (i) the problem of decoding reads to bacterial artificial chromosome (BAC) clones (in the context of the combinatorial pooling design we have recently proposed), and (ii) the problem of de novo assembly of BAC clones. Using real ultra-deep sequencing data, we show that when the depth of sequencing increases over a certain threshold, sequencing errors make these two problems harder and harder (instead of easier, as one would expect with error-free data), and as a consequence the quality of the solution degrades with more and more data. For the first problem, we propose an effective solution based on 'divide and conquer': we 'slice' a large dataset into smaller samples of optimal size, decode each slice independently, and then merge the results. Experimental results on over 15 000 barley BACs and over 4000 cowpea BACs demonstrate a significant improvement in the quality of the decoding and the final assembly. For the second problem, we show for the first time that modern de novo assemblers cannot take advantage of ultra-deep sequencing data. Python scripts to process slices and resolve decoding conflicts are available from http://goo.gl/YXgdHT; software Hashfilter can be downloaded from http://goo.gl/MIyZHs stelo@cs.ucr.edu or timothy.close@ucr.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Unique microbial community in drilling fluids from Chinese continental scientific drilling
Zhang, Gengxin; Dong, Hailiang; Jiang, Hongchen; Xu, Zhiqin; Eberl, Dennis D.
2006-01-01
Circulating drilling fluid is often regarded as a contamination source in investigations of subsurface microbiology. However, it also provides an opportunity to sample geological fluids at depth and to study contained microbial communities. During our study of deep subsurface microbiology of the Chinese Continental Scientific Deep drilling project, we collected 6 drilling fluid samples from a borehole from 2290 to 3350 m below the land surface. Microbial communities in these samples were characterized with cultivation-dependent and -independent techniques. Characterization of 16S rRNA genes indicated that the bacterial clone sequences related to Firmicutes became progressively dominant with increasing depth. Most sequences were related to anaerobic, thermophilic, halophilic or alkaliphilic bacteria. These habitats were consistent with the measured geochemical characteristics of the drilling fluids that have incorporated geological fluids and partly reflected the in-situ conditions. Several clone types were closely related to Thermoanaerobacter ethanolicus, Caldicellulosiruptor lactoaceticus, and Anaerobranca gottschalkii, an anaerobic metal-reducer, an extreme thermophile, and an anaerobic chemoorganotroph, respectively, with an optimal growth temperature of 50–68°C. Seven anaerobic, thermophilic Fe(III)-reducing bacterial isolates were obtained and they were capable of reducing iron oxide and clay minerals to produce siderite, vivianite, and illite. The archaeal diversity was low. Most archaeal sequences were not related to any known cultivated species, but rather to environmental clone sequences recovered from subsurface environments. We infer that the detected microbes were derived from geological fluids at depth and their growth habitats reflected the deep subsurface conditions. These findings have important implications for microbial survival and their ecological functions in the deep subsurface.
Cotten, Matthew; Oude Munnink, Bas; Canuti, Marta; Deijs, Martin; Watson, Simon J; Kellam, Paul; van der Hoek, Lia
2014-01-01
We have developed a full genome virus detection process that combines sensitive nucleic acid preparation optimised for virus identification in fecal material with Illumina MiSeq sequencing and a novel post-sequencing virus identification algorithm. Enriched viral nucleic acid was converted to double-stranded DNA and subjected to Illumina MiSeq sequencing. The resulting short reads were processed with a novel iterative Python algorithm SLIM for the identification of sequences with homology to known viruses. De novo assembly was then used to generate full viral genomes. The sensitivity of this process was demonstrated with a set of fecal samples from HIV-1 infected patients. A quantitative assessment of the mammalian, plant, and bacterial virus content of this compartment was generated and the deep sequencing data were sufficient to assembly 12 complete viral genomes from 6 virus families. The method detected high levels of enteropathic viruses that are normally controlled in healthy adults, but may be involved in the pathogenesis of HIV-1 infection and will provide a powerful tool for virus detection and for analyzing changes in the fecal virome associated with HIV-1 progression and pathogenesis.
Cotten, Matthew; Oude Munnink, Bas; Canuti, Marta; Deijs, Martin; Watson, Simon J.; Kellam, Paul; van der Hoek, Lia
2014-01-01
We have developed a full genome virus detection process that combines sensitive nucleic acid preparation optimised for virus identification in fecal material with Illumina MiSeq sequencing and a novel post-sequencing virus identification algorithm. Enriched viral nucleic acid was converted to double-stranded DNA and subjected to Illumina MiSeq sequencing. The resulting short reads were processed with a novel iterative Python algorithm SLIM for the identification of sequences with homology to known viruses. De novo assembly was then used to generate full viral genomes. The sensitivity of this process was demonstrated with a set of fecal samples from HIV-1 infected patients. A quantitative assessment of the mammalian, plant, and bacterial virus content of this compartment was generated and the deep sequencing data were sufficient to assembly 12 complete viral genomes from 6 virus families. The method detected high levels of enteropathic viruses that are normally controlled in healthy adults, but may be involved in the pathogenesis of HIV-1 infection and will provide a powerful tool for virus detection and for analyzing changes in the fecal virome associated with HIV-1 progression and pathogenesis. PMID:24695106
Adhikari, Badri; Hou, Jie; Cheng, Jianlin
2018-03-01
In this study, we report the evaluation of the residue-residue contacts predicted by our three different methods in the CASP12 experiment, focusing on studying the impact of multiple sequence alignment, residue coevolution, and machine learning on contact prediction. The first method (MULTICOM-NOVEL) uses only traditional features (sequence profile, secondary structure, and solvent accessibility) with deep learning to predict contacts and serves as a baseline. The second method (MULTICOM-CONSTRUCT) uses our new alignment algorithm to generate deep multiple sequence alignment to derive coevolution-based features, which are integrated by a neural network method to predict contacts. The third method (MULTICOM-CLUSTER) is a consensus combination of the predictions of the first two methods. We evaluated our methods on 94 CASP12 domains. On a subset of 38 free-modeling domains, our methods achieved an average precision of up to 41.7% for top L/5 long-range contact predictions. The comparison of the three methods shows that the quality and effective depth of multiple sequence alignments, coevolution-based features, and machine learning integration of coevolution-based features and traditional features drive the quality of predicted protein contacts. On the full CASP12 dataset, the coevolution-based features alone can improve the average precision from 28.4% to 41.6%, and the machine learning integration of all the features further raises the precision to 56.3%, when top L/5 predicted long-range contacts are evaluated. And the correlation between the precision of contact prediction and the logarithm of the number of effective sequences in alignments is 0.66. © 2017 Wiley Periodicals, Inc.
Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George
2017-06-26
We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.
Burroughs, A Maxwell; Ando, Yoshinari; de Hoon, Michiel J L; Tomaru, Yasuhiro; Nishibu, Takahiro; Ukekawa, Ryo; Funakoshi, Taku; Kurokawa, Tsutomu; Suzuki, Harukazu; Hayashizaki, Yoshihide; Daub, Carsten O
2010-10-01
Animal microRNA sequences are subject to 3' nucleotide addition. Through detailed analysis of deep-sequenced short RNA data sets, we show adenylation and uridylation of miRNA is globally present and conserved across Drosophila and vertebrates. To better understand 3' adenylation function, we deep-sequenced RNA after knockdown of nucleotidyltransferase enzymes. The PAPD4 nucleotidyltransferase adenylates a wide range of miRNA loci, but adenylation does not appear to affect miRNA stability on a genome-wide scale. Adenine addition appears to reduce effectiveness of miRNA targeting of mRNA transcripts while deep-sequencing of RNA bound to immunoprecipitated Argonaute (AGO) subfamily proteins EIF2C1-EIF2C3 revealed substantial reduction of adenine addition in miRNA associated with EIF2C2 and EIF2C3. Our findings show 3' addition events are widespread and conserved across animals, PAPD4 is a primary miRNA adenylating enzyme, and suggest a role for 3' adenine addition in modulating miRNA effectiveness, possibly through interfering with incorporation into the RNA-induced silencing complex (RISC), a regulatory role that would complement the role of miRNA uridylation in blocking DICER1 uptake.
HomozygosityMapper2012--bridging the gap between homozygosity mapping and deep sequencing.
Seelow, Dominik; Schuelke, Markus
2012-07-01
Homozygosity mapping is a common method to map recessive traits in consanguineous families. To facilitate these analyses, we have developed HomozygosityMapper, a web-based approach to homozygosity mapping. HomozygosityMapper allows researchers to directly upload the genotype files produced by the major genotyping platforms as well as deep sequencing data. It detects stretches of homozygosity shared by the affected individuals and displays them graphically. Users can interactively inspect the underlying genotypes, manually refine these regions and eventually submit them to our candidate gene search engine GeneDistiller to identify the most promising candidate genes. Here, we present the new version of HomozygosityMapper. The most striking new feature is the support of Next Generation Sequencing *.vcf files as input. Upon users' requests, we have implemented the analysis of common experimental rodents as well as of important farm animals. Furthermore, we have extended the options for single families and loss of heterozygosity studies. Another new feature is the export of *.bed files for targeted enrichment of the potential disease regions for deep sequencing strategies. HomozygosityMapper also generates files for conventional linkage analyses which are already restricted to the possible disease regions, hence superseding CPU-intensive genome-wide analyses. HomozygosityMapper is freely available at http://www.homozygositymapper.org/.
Maximum entropy methods for extracting the learned features of deep neural networks.
Finnegan, Alex; Song, Jun S
2017-10-01
New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpreting deep neural networks, however, currently remains elusive, and a critical challenge lies in understanding which meaningful features a network is actually learning. We present a general method for interpreting deep neural networks and extracting network-learned features from input data. We describe our algorithm in the context of biological sequence analysis. Our approach, based on ideas from statistical physics, samples from the maximum entropy distribution over possible sequences, anchored at an input sequence and subject to constraints implied by the empirical function learned by a network. Using our framework, we demonstrate that local transcription factor binding motifs can be identified from a network trained on ChIP-seq data and that nucleosome positioning signals are indeed learned by a network trained on chemical cleavage nucleosome maps. Imposing a further constraint on the maximum entropy distribution also allows us to probe whether a network is learning global sequence features, such as the high GC content in nucleosome-rich regions. This work thus provides valuable mathematical tools for interpreting and extracting learned features from feed-forward neural networks.
Pereiro, Patricia; Balseiro, Pablo; Romero, Alejandro; Dios, Sonia; Forn-Cuni, Gabriel; Fuste, Berta; Planas, Josep V.; Beltran, Sergi; Novoa, Beatriz; Figueras, Antonio
2012-01-01
Background Turbot (Scophthalmus maximus L.) is an important aquacultural resource both in Europe and Asia. However, there is little information on gene sequences available in public databases. Currently, one of the main problems affecting the culture of this flatfish is mortality due to several pathogens, especially viral diseases which are not treatable. In order to identify new genes involved in immune defense, we conducted 454-pyrosequencing of the turbot transcriptome after different immune stimulations. Methodology/Principal Findings Turbot were injected with viral stimuli to increase the expression level of immune-related genes. High-throughput deep sequencing using 454-pyrosequencing technology yielded 915,256 high-quality reads. These sequences were assembled into 55,404 contigs that were subjected to annotation steps. Intriguingly, 55.16% of the deduced protein was not significantly similar to any sequences in the databases used for the annotation and only 0.85% of the BLASTx top-hits matched S. maximus protein sequences. This relatively low level of annotation is possibly due to the limited information for this specie and other flatfish in the database. These results suggest the identification of a large number of new genes in turbot and in fish in general. A more detailed analysis showed the presence of putative members of several innate and specific immune pathways. Conclusions/Significance To our knowledge, this study is the first transcriptome analysis using 454-pyrosequencing for turbot. Previously, there were only 12,471 EST and less of 1,500 nucleotide sequences for S. maximus in NCBI database. Our results provide a rich source of data (55,404 contigs and 181,845 singletons) for discovering and identifying new genes, which will serve as a basis for microarray construction, gene expression characterization and for identification of genetic markers to be used in several applications. Immune stimulation in turbot was very effective, obtaining an enormous variety of sequences belonging to genes involved in the defense mechanisms. PMID:22629298
Osca, David; Templado, José; Zardoya, Rafael
2014-09-01
The complete nucleotide sequence of the mitochondrial (mt) genome of the deep-sea vent snail Ifremeria nautilei (Gastropoda: Abyssochrysoidea) was determined. The double stranded circular molecule is 15,664 pb in length and encodes for the typical 37 metazoan mitochondrial genes. The gene arrangement of the Ifremeria mt genome is most similar to genome organization of caenogastropods and differs only on the relative position of the trnW gene. The deduced amino acid sequences of the mt protein coding genes of Ifremeria mt genome were aligned with orthologous sequences from representatives of the main lineages of gastropods and phylogenetic relationships were inferred. The reconstructed phylogeny supports that Ifremeria belongs to Caenogastropoda and that it is closely related to hypsogastropod superfamilies. Results were compared with a reconstructed nuclear-based phylogeny. Moreover, a relaxed molecular-clock timetree calibrated with fossils dated the divergence of Abyssochrysoidea in the Late Jurassic-Early Cretaceous indicating a relatively modern colonization of deep-sea environments by these snails. Copyright © 2014 Elsevier B.V. All rights reserved.
A Statistical Guide to the Design of Deep Mutational Scanning Experiments
Matuszewski, Sebastian; Hildebrandt, Marcel E.; Ghenu, Ana-Hermina; Jensen, Jeffrey D.; Bank, Claudia
2016-01-01
The characterization of the distribution of mutational effects is a key goal in evolutionary biology. Recently developed deep-sequencing approaches allow for accurate and simultaneous estimation of the fitness effects of hundreds of engineered mutations by monitoring their relative abundance across time points in a single bulk competition. Naturally, the achievable resolution of the estimated fitness effects depends on the specific experimental setup, the organism and type of mutations studied, and the sequencing technology utilized, among other factors. By means of analytical approximations and simulations, we provide guidelines for optimizing time-sampled deep-sequencing bulk competition experiments, focusing on the number of mutants, the sequencing depth, and the number of sampled time points. Our analytical results show that sampling more time points together with extending the duration of the experiment improves the achievable precision disproportionately compared with increasing the sequencing depth or reducing the number of competing mutants. Even if the duration of the experiment is fixed, sampling more time points and clustering these at the beginning and the end of the experiment increase experimental power and allow for efficient and precise assessment of the entire range of selection coefficients. Finally, we provide a formula for calculating the 95%-confidence interval for the measurement error estimate, which we implement as an interactive web tool. This allows for quantification of the maximum expected a priori precision of the experimental setup, as well as for a statistical threshold for determining deviations from neutrality for specific selection coefficient estimates. PMID:27412710
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, Timothy A.; Chevalier, Aaron; Song, Yifan
2012-06-19
We show that comprehensive sequence-function maps obtained by deep sequencing can be used to reprogram interaction specificity and to leapfrog over bottlenecks in affinity maturation by combining many individually small contributions not detectable in conventional approaches. We use this approach to optimize two computationally designed inhibitors against H1N1 influenza hemagglutinin and, in both cases, obtain variants with subnanomolar binding affinity. The most potent of these, a 51-residue protein, is broadly cross-reactive against all influenza group 1 hemagglutinins, including human H2, and neutralizes H1N1 viruses with a potency that rivals that of several human monoclonal antibodies, demonstrating that computational design followedmore » by comprehensive energy landscape mapping can generate proteins with potential therapeutic utility.« less
Dissecting genetic and environmental mutation signatures with model organisms.
Segovia, Romulo; Tam, Annie S; Stirling, Peter C
2015-08-01
Deep sequencing has impacted on cancer research by enabling routine sequencing of genomes and exomes to identify genetic changes associated with carcinogenesis. Researchers can now use the frequency, type, and context of all mutations in tumor genomes to extract mutation signatures that reflect the driving mutational processes. Identifying mutation signatures, however, may not immediately suggest a mechanism. Consequently, several recent studies have employed deep sequencing of model organisms exposed to discrete genetic or environmental perturbations. These studies exploit the simpler genomes and availability of powerful genetic tools in model organisms to analyze mutation signatures under controlled conditions, forging mechanistic links between mutational processes and signatures. We discuss the power of this approach and suggest that many such studies may be on the horizon. Copyright © 2015 Elsevier Ltd. All rights reserved.
Desjardin, Dennis E; Hemmes, Don E; Perry, Brian A
2014-01-01
Pseudobaeospora wipapatiae is described as new based on material collected in alien wet habitats on the island of Hawaii. Unique features of this beautiful species include deep ruby-colored basidiomes with two-spored basidia, amyloid cheilocystidia and a hymeniderm pileipellis with abundant pileocystidia that is initially deep ruby in KOH then changes to lilac gray. Phylogenetic analysis of nuclear large ribosomal subunit sequence data suggest a close relationship between Pseudobaeospora and Tricholoma. BLAST comparisons of internal transcribed spacer and 5.8S nuclear ribosomal subunit regions sequence data reveal greatest similarity with existing sequences of Pseudobaeospora species. A comprehensive description, color photograph, illustrations of salient micromorphological features and comparisons with phenetically similar taxa are provided. © 2014 by The Mycological Society of America.
Identification of Small RNAs in Desulfovibrio vulgaris Hildenborough
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Andrew; Joachimiak, Marcin; Deutschbauer, Adam
2010-05-17
Desulfovibrio vulgaris is an anaerobic sulfate-reducing bacterium capable of facilitating the removal of toxic metals such as uranium from contaminated sites via reduction. As such, it is essential to understand the intricate regulatory cascades involved in how D. vulgaris and its relatives respond to stressors in such sites. One approach is the identification and analysis of small non-coding RNAs (sRNAs); molecules ranging in size from 20-200 nucleotides that predominantly affect gene regulation by binding to complementary mRNA in an anti-sense fashion and therefore provide an immediate regulatory response. To identify sRNAs in D. vulgaris, a bacterium that does not possessmore » an annotated hfq gene, RNA was pooled from stationary and exponential phases, nitrate exposure, and biofilm conditions. The subsequent RNA was size fractionated, modified, and converted to cDNA for high throughput transcriptomic deep sequencing. A computational approach to identify sRNAs via the alignment of seven separate Desulfovibrio genomes was also performed. From the deep sequencing analysis, 2,296 reads between 20 and 250 nt were identified with expression above genome background. Analysis of those reads limited the number of candidates to ~;;87 intergenic, while ~;;140 appeared to be antisense to annotated open reading frames (ORFs). Further BLAST analysis of the intergenic candidates and other Desulfovibrio genomes indicated that eight candidates were likely portions of ORFs not previously annotated in the D. vulgaris genome. Comparison of the intergenic and antisense data sets to the bioinformatical predicted candidates, resulted in ~;;54 common candidates. Current approaches using Northern analysis and qRT-PCR are being used toverify expression of the candidates and to further develop the role these sRNAs play in D. vulgaris regulation.« less
DeepSig: deep learning improves signal peptide detection in proteins.
Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Casadio, Rita
2018-05-15
The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. Here, we present DeepSig, an improved approach for signal peptide detection and cleavage-site prediction based on deep learning methods. Comparative benchmarks performed on an updated independent dataset of proteins show that DeepSig is the current best performing method, scoring better than other available state-of-the-art approaches on both signal peptide detection and precise cleavage-site identification. DeepSig is available as both standalone program and web server at https://deepsig.biocomp.unibo.it. All datasets used in this study can be obtained from the same website. pierluigi.martelli@unibo.it. Supplementary data are available at Bioinformatics online.
Villacreses, Javier; Rojas-Herrera, Marcelo; Sánchez, Carolina; Hewstone, Nicole; Undurraga, Soledad F.; Alzate, Juan F.; Manque, Patricio; Maracaja-Coutinho, Vinicius; Polanco, Victor
2015-01-01
Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1). High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs): ORFs 1 and 2 shares 66%–73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV), Petuvirus genus. ORF1 encodes a movement protein (MP); ORF2 a Reverse Transcriptase (RT) and a Ribonuclease H (RNase H) domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs), AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq). Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant. PMID:25855242
Hou, Weiguo; Wang, Shang; Briggs, Brandon R; Li, Gaoyuan; Xie, Wei; Dong, Hailiang
2018-01-01
Myocyanophages, a group of viruses infecting cyanobacteria, are abundant and play important roles in elemental cycling. Here we investigated the particle-associated viral communities retained on 0.2 μm filters and in sediment samples (representing ancient cyanophage communities) from four ocean and three lake locations, using high-throughput sequencing and a newly designed primer pair targeting a gene fragment (∼145-bp in length) encoding the cyanophage gp23 major capsid protein (MCP). Diverse viral communities were detected in all samples. The fragments of 142-, 145-, and 148-bp in length were most abundant in the amplicons, and most sequences (>92%) belonged to cyanophages. Additionally, different sequencing depths resulted in different diversity estimates of the viral community. Operational taxonomic units obtained from deep sequencing of the MCP gene covered the majority of those obtained from shallow sequencing, suggesting that deep sequencing exhibited a more complete picture of cyanophage community than shallow sequencing. Our results also revealed a wide geographic distribution of marine myocyanophages, i.e., higher dissimilarities of the myocyanophage communities corresponded with the larger distances between the sampling sites. Collectively, this study suggests that the newly designed primer pair can be effectively used to study the community and diversity of myocyanophage from different environments, and the high-throughput sequencing represents a good method to understand viral diversity.
Hou, Weiguo; Wang, Shang; Briggs, Brandon R.; Li, Gaoyuan; Xie, Wei; Dong, Hailiang
2018-01-01
Myocyanophages, a group of viruses infecting cyanobacteria, are abundant and play important roles in elemental cycling. Here we investigated the particle-associated viral communities retained on 0.2 μm filters and in sediment samples (representing ancient cyanophage communities) from four ocean and three lake locations, using high-throughput sequencing and a newly designed primer pair targeting a gene fragment (∼145-bp in length) encoding the cyanophage gp23 major capsid protein (MCP). Diverse viral communities were detected in all samples. The fragments of 142-, 145-, and 148-bp in length were most abundant in the amplicons, and most sequences (>92%) belonged to cyanophages. Additionally, different sequencing depths resulted in different diversity estimates of the viral community. Operational taxonomic units obtained from deep sequencing of the MCP gene covered the majority of those obtained from shallow sequencing, suggesting that deep sequencing exhibited a more complete picture of cyanophage community than shallow sequencing. Our results also revealed a wide geographic distribution of marine myocyanophages, i.e., higher dissimilarities of the myocyanophage communities corresponded with the larger distances between the sampling sites. Collectively, this study suggests that the newly designed primer pair can be effectively used to study the community and diversity of myocyanophage from different environments, and the high-throughput sequencing represents a good method to understand viral diversity.
High Class-Imbalance in pre-miRNA Prediction: A Novel Approach Based on deepSOM.
Stegmayer, Georgina; Yones, Cristian; Kamenetzky, Laura; Milone, Diego H
2017-01-01
The computational prediction of novel microRNA within a full genome involves identifying sequences having the highest chance of being a miRNA precursor (pre-miRNA). These sequences are usually named candidates to miRNA. The well-known pre-miRNAs are usually only a few in comparison to the hundreds of thousands of potential candidates to miRNA that have to be analyzed, which makes this task a high class-imbalance classification problem. The classical way of approaching it has been training a binary classifier in a supervised manner, using well-known pre-miRNAs as positive class and artificially defining the negative class. However, although the selection of positive labeled examples is straightforward, it is very difficult to build a set of negative examples in order to obtain a good set of training samples for a supervised method. In this work, we propose a novel and effective way of approaching this problem using machine learning, without the definition of negative examples. The proposal is based on clustering unlabeled sequences of a genome together with well-known miRNA precursors for the organism under study, which allows for the quick identification of the best candidates to miRNA as those sequences clustered with known precursors. Furthermore, we propose a deep model to overcome the problem of having very few positive class labels. They are always maintained in the deep levels as positive class while less likely pre-miRNA sequences are filtered level after level. Our approach has been compared with other methods for pre-miRNAs prediction in several species, showing effective predictivity of novel miRNAs. Additionally, we will show that our approach has a lower training time and allows for a better graphical navegability and interpretation of the results. A web-demo interface to try deepSOM is available at http://fich.unl.edu.ar/sinc/web-demo/deepsom/.
NASA Astrophysics Data System (ADS)
Zhao, Feng; Xu, Kuidong
2016-10-01
In comparison with the macrobenthos and prokaryotes, patterns of diversity and distribution of microbial eukaryotes in deep-sea hydrothermal vents are poorly known. The widely used high-throughput sequencing of 18S rDNA has revealed a high diversity of microeukaryotes yielded from both living organisms and buried DNA in marine sediments. More recently, cDNA surveys have been utilized to uncover the diversity of active organisms. However, both methods have never been used to evaluate the diversity of ciliates in hydrothermal vents. By using high-throughput DNA and cDNA sequencing of 18S rDNA, we evaluated the molecular diversity of ciliates, a representative group of microbial eukaryotes, from the sediments of deep-sea hydrothermal vents in the Okinawa Trough and compared it with that of an adjacent deep-sea area about 15 km away and that of an offshore area of the Yellow Sea about 500 km away. The results of DNA sequencing showed that Spirotrichea and Oligohymenophorea were the most diverse and abundant groups in all the three habitats. The proportion of sequences of Oligohymenophorea was the highest in the hydrothermal vents whereas Spirotrichea was the most diverse group at all three habitats. Plagiopyleans were found only in the hydrothermal vents but with low diversity and abundance. By contrast, the cDNA sequencing showed that Plagiopylea was the most diverse and most abundant group in the hydrothermal vents, followed by Spirotrichea in terms of diversity and Oligohymenophorea in terms of relative abundance. A novel group of ciliates, distinctly separate from the 12 known classes, was detected in the hydrothermal vents, indicating undescribed, possibly highly divergent ciliates may inhabit this environment. Statistical analyses showed that: (i) the three habitats differed significantly from one another in terms of diversity of both the rare and the total ciliate taxa, and; (ii) the adjacent deep sea was more similar to the offshore area than to the hydrothermal vents. In terms of the diversity of abundant taxa, however, there was no significant difference between the hydrothermal vents and the adjacent deep sea, both of which differed significantly from the offshore area. As abundant ciliate taxa can be found in several sampling sites, they are likely adapted to large environmental variations, while rare taxa are found in specific habitat and thus are potentially more sensitive to varying environmental conditions.
NASA Technical Reports Server (NTRS)
Luna, Michael E.; Collins, Stephen M.
2011-01-01
On November 4, 2010 the already "in-flight" Deep Impact spacecraft flew within 700km of comet 103P/Hartley 2 as part of its extended mission EPOXI, the 5th time to date any spacecraft visited a comet. In 2005, the spacecraft had previously imaged a probe impact comet Tempel 1. The EPOXI flyby marked the first time in history that two comets were explored with the same instruments on a re-used spacecraft-with hardware and software originally designed and optimized for a different mission. This made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby. As part of the spacecraft team preparations, the ADCS team had to perform thorough sequence reviews, key spacecraft activities and onboard calibrations. These activities included: review of background sequences for the initial conditions vector, sun sensor coefficients, and reaction wheel assembly (RWA) de-saturations; design and execution of 10 trajectory correction maneuvers; science calibration of the two telescope instruments; a flight demonstration of the fastest turns conducted by the spacecraft between Earth and comet point; and assessment of RWA health (given RWA problems on other spacecraft).
Role of Mitochondrial Inheritance on Prostate Cancer Outcome in African American Men. Addendum
2016-11-01
DNA sequencing technique developed by our collaborator using single amplicon long-range PCR that permits deep coverage (10,000-20,000X on average) of...the mitochondrial genome. We have sequenced 652 samples derived from frozen fully using this technology. The additional DNA samples derived from...paraffin embedded (FFPE) tissue were more challenging, but have now been sequenced . Mapping of DNA variants in our sequenced genomes to mitochondrial
INDIGO – INtegrated Data Warehouse of MIcrobial GenOmes with Examples from the Red Sea Extremophiles
Alam, Intikhab; Antunes, André; Kamau, Allan Anthony; Ba alawi, Wail; Kalkatawi, Manal; Stingl, Ulrich; Bajic, Vladimir B.
2013-01-01
Background The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes. Results We developed a data warehouse system (INDIGO) that enables the integration of annotations for exploration and analysis of newly sequenced microbial genomes. INDIGO offers an opportunity to construct complex queries and combine annotations from multiple sources starting from genomic sequence to protein domain, gene ontology and pathway levels. This data warehouse is aimed at being populated with information from genomes of pure cultures and uncultured single cells of Red Sea bacteria and Archaea. Currently, INDIGO contains information from Salinisphaera shabanensis, Haloplasma contractile, and Halorhabdus tiamatea - extremophiles isolated from deep-sea anoxic brine lakes of the Red Sea. We provide examples of utilizing the system to gain new insights into specific aspects on the unique lifestyle and adaptations of these organisms to extreme environments. Conclusions We developed a data warehouse system, INDIGO, which enables comprehensive integration of information from various resources to be used for annotation, exploration and analysis of microbial genomes. It will be regularly updated and extended with new genomes. It is aimed to serve as a resource dedicated to the Red Sea microbes. In addition, through INDIGO, we provide our Automatic Annotation of Microbial Genomes (AAMG) pipeline. The INDIGO web server is freely available at http://www.cbrc.kaust.edu.sa/indigo. PMID:24324765
Senatore, Adriano; Edirisinghe, Neranjan; Katz, Paul S.
2015-01-01
Background The sea slug Tritonia diomedea (Mollusca, Gastropoda, Nudibranchia), has a simple and highly accessible nervous system, making it useful for studying neuronal and synaptic mechanisms underlying behavior. Although many important contributions have been made using Tritonia, until now, a lack of genetic information has impeded exploration at the molecular level. Results We performed Illumina sequencing of central nervous system mRNAs from Tritonia, generating 133.1 million 100 base pair, paired-end reads. De novo reconstruction of the RNA-Seq data yielded a total of 185,546 contigs, which partitioned into 123,154 non-redundant gene clusters (unigenes). BLAST comparison with RefSeq and Swiss-Prot protein databases, as well as mRNA data from other invertebrates (gastropod molluscs: Aplysia californica, Lymnaea stagnalis and Biomphalaria glabrata; cnidarian: Nematostella vectensis) revealed that up to 76,292 unigenes in the Tritonia transcriptome have putative homologues in other databases, 18,246 of which are below a more stringent E-value cut-off of 1x10-6. In silico prediction of secreted proteins from the Tritonia transcriptome shotgun assembly (TSA) produced a database of 579 unique sequences of secreted proteins, which also exhibited markedly higher expression levels compared to other genes in the TSA. Conclusions Our efforts greatly expand the availability of gene sequences available for Tritonia diomedea. We were able to extract full length protein sequences for most queried genes, including those involved in electrical excitability, synaptic vesicle release and neurotransmission, thus confirming that the transcriptome will serve as a useful tool for probing the molecular correlates of behavior in this species. We also generated a neurosecretome database that will serve as a useful tool for probing peptidergic signalling systems in the Tritonia brain. PMID:25719197
Chambers, E. Anne; Hebert, Paul D. N.
2016-01-01
Background High rates of species discovery and loss have led to the urgent need for more rapid assessment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary identification of species based on sequence divergence. Prior DNA barcoding work on reptiles and amphibians has revealed higher biodiversity counts than previously estimated due to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes for just 14% of the North American herpetofauna, revealing the need for expanded coverage. Methodology/Principal Findings This study extends the DNA barcode reference library for North American herpetofauna, assesses the utility of this approach in aiding species delimitation, and examines the correspondence between current species boundaries and sequence clusters designated by the BIN system. Sequences were obtained from 730 specimens, representing 274 species (43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and 3%, while average congeneric sequence divergences were 16% and 14% in amphibians and reptiles, respectively. BIN assignments corresponded with current species boundaries in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%) were noted in 35% of squamate and 16% of amphibian species, and low divergences (<2%) occurred in 12% of reptiles and 23% of amphibians, patterns reflected in BIN assignments. Sequence recovery declined with specimen age, and variation in recovery success was noted among collections. Within collections, barcodes effectively flagged seven mislabeled tissues, and barcode fragments were recovered from five formalin-fixed specimens. Conclusions/Significance This study demonstrates that DNA barcodes can effectively flag errors in museum collections, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing lineages. This study is the first effort to compile a reference library of DNA barcodes for herpetofauna on a continental scale. PMID:27116180
Deep Sequencing Reveals a Divergent Ugandan cassava brown streak virus Isolate from Malawi
Winter, Stephan; Mukasa, Settumba; Tairo, Fred; Sseruwagi, Peter; Ndunguru, Joseph; Duffy, Siobain
2017-01-01
ABSTRACT Illumina sequencing of RNA from a cassava cutting from northern Malawi produced a genome of Ugandan cassava brown streak virus (UCBSV-MW-NB7_2013). Sequence comparisons revealed stronger similarity to an isolate from nearby Tanzania (93.4% pairwise nucleotide identity) than to those previously reported from Malawi (86.9 to 87.0%). PMID:28818908
USDA-ARS?s Scientific Manuscript database
The soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy but only properly oriented 66% of the sequence scaffolds. To find additional single nucleotide polymorphism (SNP) markers for additiona...
Identifying active foraminifera in the Sea of Japan using metatranscriptomic approach
NASA Astrophysics Data System (ADS)
Lejzerowicz, Franck; Voltsky, Ivan; Pawlowski, Jan
2013-02-01
Metagenetics represents an efficient and rapid tool to describe environmental diversity patterns of microbial eukaryotes based on ribosomal DNA sequences. However, the results of metagenetic studies are often biased by the presence of extracellular DNA molecules that are persistent in the environment, especially in deep-sea sediment. As an alternative, short-lived RNA molecules constitute a good proxy for the detection of active species. Here, we used a metatranscriptomic approach based on RNA-derived (cDNA) sequences to study the diversity of the deep-sea benthic foraminifera and compared it to the metagenetic approach. We analyzed 257 ribosomal DNA and cDNA sequences obtained from seven sediments samples collected in the Sea of Japan at depths ranging from 486 to 3665 m. The DNA and RNA-based approaches gave a similar view of the taxonomic composition of foraminiferal assemblage, but differed in some important points. First, the cDNA dataset was dominated by sequences of rotaliids and robertiniids, suggesting that these calcareous species, some of which have been observed in Rose Bengal stained samples, are the most active component of foraminiferal community. Second, the richness of monothalamous (single-chambered) foraminifera was particularly high in DNA extracts from the deepest samples, confirming that this group of foraminifera is abundant but not necessarily very active in the deep-sea sediments. Finally, the high divergence of undetermined sequences in cDNA dataset indicate the limits of our database and lack of knowledge about some active but possibly rare species. Our study demonstrates the capability of the metatranscriptomic approach to detect active foraminiferal species and prompt its use in future high-throughput sequencing-based environmental surveys.
NASA Astrophysics Data System (ADS)
Okay, Aral I.; Altiner, Demir
2016-10-01
The Haymana region in Central Anatolia is located in the southern part of the Pontides close to the İzmir-Ankara suture. During the Cretaceous, the region formed part of the south-facing active margin of the Eurasia. The area preserves a nearly complete record of the Cretaceous system. Shallow marine carbonates of earliest Cretaceous age are overlain by a 700-m-thick Cretaceous sequence, dominated by deep marine limestones. Three unconformity-bounded pelagic carbonate sequences of Berriasian, Albian-Cenomanian and Turonian-Santonian ages are recognized: Each depositional sequence is preceded by a period of tilting and submarine erosion during the Berriasian, early Albian and late Cenomanian, which corresponds to phases of local extension in the active continental margin. Carbonate breccias mark the base of the sequences and each carbonate sequence steps down on older units. The deep marine carbonate deposition ended in the late Santonian followed by tilting, erosion and folding during the Campanian. Deposition of thick siliciclastic turbidites started in the late Campanian and continued into the Tertiary. Unlike most forearc basins, the Haymana region was a site of deep marine carbonate deposition until the Campanian. This was because the Pontide arc was extensional and the volcanic detritus was trapped in the intra-arc basins and did not reach the forearc or the trench. The extensional nature of the arc is also shown by the opening of the Black Sea as a backarc basin in the Turonian-Santonian. The carbonate sedimentation in an active margin is characterized by synsedimentary vertical displacements, which results in submarine erosion, carbonate breccias and in the lateral discontinuity of the sequences, and differs from blanket like carbonate deposition in the passive margins.
Subsurface microbial diversity in deep-granitic-fracture water in Colorado
Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.
2008-01-01
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology. All Rights Reserved.
Subsurface Microbial Diversity in Deep-Granitic-Fracture Water in Colorado▿
Sahl, Jason W.; Schmidt, Raleigh; Swanner, Elizabeth D.; Mandernack, Kevin W.; Templeton, Alexis S.; Kieft, Thomas L.; Smith, Richard L.; Sanford, William E.; Callaghan, Robert L.; Mitton, Jeffry B.; Spear, John R.
2008-01-01
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This “Henderson candidate division” dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. PMID:17981950
High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA.
Chandrananda, Dineika; Thorne, Natalie P; Bahlo, Melanie
2015-06-17
High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data. In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome. We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but is absent in nucleosome-free mitochondrial DNA. These background signals in cell-free DNA sequencing data stem from the non-random biological cleavage of these fragments. This sequence structure can be harnessed to improve bioinformatics algorithms, in particular for CNV and structural variant detection. Descriptive measures for cell-free DNA features developed here could also be used in biomarker analysis to monitor the changes that occur during different pathological conditions.
2011-01-01
Background Common bean is an important legume crop with only a moderate number of short expressed sequence tags (ESTs) made with traditional methods. The goal of this research was to use full-length cDNA technology to develop ESTs that would overlap with the beginning of open reading frames and therefore be useful for gene annotation of genomic sequences. The library was also constructed to represent genes expressed under drought, low soil phosphorus and high soil aluminum toxicity. We also undertook comparisons of the full-length cDNA library to two previous non-full clone EST sets for common bean. Results Two full-length cDNA libraries were constructed: one for the drought tolerant Mesoamerican genotype BAT477 and the other one for the acid-soil tolerant Andean genotype G19833 which has been selected for genome sequencing. Plants were grown in three soil types using deep rooting cylinders subjected to drought and non-drought stress and tissues were collected from both roots and above ground parts. A total of 20,000 clones were selected robotically, half from each library. Then, nearly 10,000 clones from the G19833 library were sequenced with an average read length of 850 nucleotides. A total of 4,219 unigenes were identified consisting of 2,981 contigs and 1,238 singletons. These were functionally annotated with gene ontology terms and placed into KEGG pathways. Compared to other EST sequencing efforts in common bean, about half of the sequences were novel or represented the 5' ends of known genes. Conclusions The present full-length cDNA libraries add to the technological toolbox available for common bean and our sequencing of these clones substantially increases the number of unique EST sequences available for the common bean genome. All of this should be useful for both functional gene annotation, analysis of splice site variants and intron/exon boundary determination by comparison to soybean genes or with common bean whole-genome sequences. In addition the library has a large number of transcription factors and will be interesting for discovery and validation of drought or abiotic stress related genes in common bean. PMID:22118559
smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni
2012-01-01
Background MicroRNAs (miRNAs) constitute a family of small RNA (sRNA) population that regulates the gene expression and plays an important role in plant development, metabolism, signal transduction and stress response. Extensive studies on miRNAs have been performed in different plants such as Arabidopsis thaliana, Oryza sativa etc. and volume of the miRNA database, mirBASE, has been increasing on day to day basis. Stevia rebaudiana Bertoni is an important perennial herb which accumulates high concentrations of diterpene steviol glycosides which contributes to its high indexed sweetening property with no calorific value. Several studies have been carried out for understanding molecular mechanism involved in biosynthesis of these glycosides, however, information about miRNAs has been lacking in S. rebaudiana. Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs irrespective of availability of genome sequence data. Results To identify miRNAs in S. rebaudiana, sRNA library was constructed and sequenced using Illumina genome analyzer II. A total of 30,472,534 reads representing 2,509,190 distinct sequences were obtained from sRNA library. Based on sequence similarity, we identified 100 miRNAs belonging to 34 highly conserved families. Also, we identified 12 novel miRNAs whose precursors were potentially generated from stevia EST and nucleotide sequences. All novel sequences have not been earlier described in other plant species. Putative target genes were predicted for most conserved and novel miRNAs. The predicted targets are mainly mRNA encoding enzymes regulating essential plant metabolic and signaling pathways. Conclusions This study led to the identification of 34 highly conserved miRNA families and 12 novel potential miRNAs indicating that specific miRNAs exist in stevia species. Our results provided information on stevia miRNAs and their targets building a foundation for future studies to understand their roles in key stevia traits. PMID:23116282
2010-01-01
Background Papaver somniferum (opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs) with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a system with a well-defined metabolite profile facilitates an improved linkage between genes, enzymes, and pathway components. The proteome database represents the most relevant alkaloid-producing enzymes, compared with the much deeper and more complete transcriptome library. The transcript database contained full-length mRNAs encoding most alkaloid biosynthetic enzymes, which is a key requirement for the functional characterization of novel gene candidates. PMID:21083930
BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone.
Yang, Bite; Liu, Feng; Ren, Chao; Ouyang, Zhangyi; Xie, Ziwei; Bo, Xiaochen; Shu, Wenjie
2017-07-01
Enhancer elements are noncoding stretches of DNA that play key roles in controlling gene expression programmes. Despite major efforts to develop accurate enhancer prediction methods, identifying enhancer sequences continues to be a challenge in the annotation of mammalian genomes. One of the major issues is the lack of large, sufficiently comprehensive and experimentally validated enhancers for humans or other species. Thus, the development of computational methods based on limited experimentally validated enhancers and deciphering the transcriptional regulatory code encoded in the enhancer sequences is urgent. We present a deep-learning-based hybrid architecture, BiRen, which predicts enhancers using the DNA sequence alone. Our results demonstrate that BiRen can learn common enhancer patterns directly from the DNA sequence and exhibits superior accuracy, robustness and generalizability in enhancer prediction relative to other state-of-the-art enhancer predictors based on sequence characteristics. Our BiRen will enable researchers to acquire a deeper understanding of the regulatory code of enhancer sequences. Our BiRen method can be freely accessed at https://github.com/wenjiegroup/BiRen . shuwj@bmi.ac.cn or boxc@bmi.ac.cn. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Improved sensing using simultaneous deep-UV Raman and fluorescence detection-II
NASA Astrophysics Data System (ADS)
Hug, W. F.; Bhartia, R.; Sijapati, K.; Beegle, L. W.; Reid, R. D.
2014-05-01
Photon Systems in collaboration with JPL is continuing development of a new technology robot-mounted or hand-held sensor for reagentless, short-range, standoff detection and identification of trace levels chemical, biological, and explosive (CBE) materials on surfaces. This deep ultraviolet CBE sensor is the result of Army STTR and DTRA programs. The evolving 10 to 15 lb, 20 W, sensor can discriminate CBE from background clutter materials using a fusion of deep UV excited resonance Raman (RR) and laser induced native fluorescence (LINF) emissions collected is less than 1 ms. RR is a method that provides information about molecular bonds, while LINF spectroscopy is a much more sensitive method that provides information regarding the electronic configuration of target molecules. Standoff excitation of suspicious packages, vehicles, persons, and other objects that may contain hazardous materials is accomplished using excitation in the deep UV where there are four main advantages compared to near-UV, visible or near-IR counterparts. 1) Excited between 220 and 250 nm, Raman emission occur within a fluorescence-free region of the spectrum, eliminating obscuration of weak Raman signals by fluorescence from target or surrounding materials. 2) Because Raman and fluorescence occupy separate spectral regions, detection can be done simultaneously, providing an orthogonal set of information to improve both sensitivity and lower false alarm rates. 3) Rayleigh law and resonance effects increase Raman signal strength and sensitivity of detection. 4) Penetration depth into target in the deep UV is short, providing spatial/spectral separation of a target material from its background or substrate. 5) Detection in the deep UV eliminates ambient light background and enable daylight detection.
Lack of mutagens in deep-fat-fried foods obtained at the retail level.
Taylor, S L; Berg, C M; Shoptaugh, N H; Scott, V N
1982-04-01
The basic methylene chloride extract from 20 of 30 samples of foods fried in deep fat failed to elicit any mutagenic response that could be detected in the Salmonella typhimurium/mammalian microsome assay. The basic extracts of the remaining ten samples (all three chicken samples studied, two of the four potato-chip samples, one of four corn-chip samples, the sample of onion rings, two of six doughnuts, and one of three samples of french-fried potato) showed evidence of weak mutagenic activity. In these samples, amounts of the basic extract equivalent to 28.5-57 g of the original food sample were required to produce revertants at levels of 2.6-4.8 times the background level. Only two of the acidic methylene chloride extracts from the 30 samples exhibited mutagenic activity greater than 2.5 times the background reversion level, and in both cases (one corn-chip and one shrimp sample) the mutagenic response was quite weak. The basic extract of hamburgers fried in deep fat in a home-style fryer possessed higher levels of mutagenic activity (13 times the background reversion level). However, the mutagenic activity of deep-fried hamburgers is some four times lower than that of pan-fried hamburgers.
Distribution and Diversity of Microbial Eukaryotes in Bathypelagic Waters of the South China Sea.
Xu, Dapeng; Jiao, Nianzhi; Ren, Rui; Warren, Alan
2017-05-01
Little is known about the biodiversity of microbial eukaryotes in the South China Sea, especially in waters at bathyal depths. Here, we employed SSU rDNA gene sequencing to reveal the diversity and community structure across depth and distance gradients in the South China Sea. Vertically, the highest alpha diversity was found at 75-m depth. The communities of microbial eukaryotes were clustered into shallow-, middle-, and deep-water groups according to the depth from which they were collected, indicating a depth-related diversity and distribution pattern. Rhizaria sequences dominated the microeukaryote community and occurred in all samples except those from less than 50-m deep, being most abundant near the sea floor where they contributed ca. 64-97% and 40-74% of the total sequences and OTUs recovered, respectively. A large portion of rhizarian OTUs has neither a nearest named neighbor nor a nearest neighbor in the GenBank database which indicated the presence of new phylotypes in the South China Sea. Given their overwhelming abundance and richness, further phylogenetic analysis of rhizarians were performed and three new genetic clusters were revealed containing sequences retrieved from the deep waters of the South China Sea. Our results shed light on the diversity and community structure of microbial eukaryotes in this not yet fully explored area. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.
Vernick, Kenneth D.
2017-01-01
Metavisitor is a software package that allows biologists and clinicians without specialized bioinformatics expertise to detect and assemble viral genomes from deep sequence datasets. The package is composed of a set of modular bioinformatic tools and workflows that are implemented in the Galaxy framework. Using the graphical Galaxy workflow editor, users with minimal computational skills can use existing Metavisitor workflows or adapt them to suit specific needs by adding or modifying analysis modules. Metavisitor works with DNA, RNA or small RNA sequencing data over a range of read lengths and can use a combination of de novo and guided approaches to assemble genomes from sequencing reads. We show that the software has the potential for quick diagnosis as well as discovery of viruses from a vast array of organisms. Importantly, we provide here executable Metavisitor use cases, which increase the accessibility and transparency of the software, ultimately enabling biologists or clinicians to focus on biological or medical questions. PMID:28045932
Copeland, Alex; Gu, Wei; Yasawong, Montri; Lapidus, Alla; Lucas, Susan; Deshpande, Shweta; Pagani, Ioanna; Tapia, Roxanne; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Pan, Chongle; Brambilla, Evelyne-Marie; Rohde, Manfred; Tindall, Brian J.; Sikorski, Johannes; Göker, Markus; Detter, John C.; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Woyke, Tanja
2012-01-01
Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1T was the first isolate within the phylum “Thermus-Deinococcus” to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1T is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:22675595
Brain Tumor Segmentation Using Deep Belief Networks and Pathological Knowledge.
Zhan, Tianming; Chen, Yi; Hong, Xunning; Lu, Zhenyu; Chen, Yunjie
2017-01-01
In this paper, we propose an automatic brain tumor segmentation method based on Deep Belief Networks (DBNs) and pathological knowledge. The proposed method is targeted against gliomas (both low and high grade) obtained in multi-sequence magnetic resonance images (MRIs). Firstly, a novel deep architecture is proposed to combine the multi-sequences intensities feature extraction with classification to get the classification probabilities of each voxel. Then, graph cut based optimization is executed on the classification probabilities to strengthen the spatial relationships of voxels. At last, pathological knowledge of gliomas is applied to remove some false positives. Our method was validated in the Brain Tumor Segmentation Challenge 2012 and 2013 databases (BRATS 2012, 2013). The performance of segmentation results demonstrates our proposal providing a competitive solution with stateof- the-art methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Eyles, Nicholas; Mullins, Henry T.; Hine, Albert C.
1991-09-01
This paper presents the first detailed data regarding the newly discovered deep infill of Okanagan Lake. Okanagan Lake (50°00'N, 119°30'W) is 120 km long, ˜ 3-5 km wide and occupies a glacially overdeepened bedrock basin in the southern interior of British Columbia. This basin, and other elongate lakes of the region (e.g. Shuswap, Kootenay, Kalamalka, Canim and Mahood lakes), mark the site of westward flowing ice streams within successive Cordilleran ice sheets. An air gun seismic survey of Okanagan Lake shows that the bedrock floor is nearly 650 m below sea-level, more than 2000 m below the rim of the surrounding plateau. The maximum thickness of Pleistocene sediment in Okanagan Lake basin approaches 800 m. Forty-six seismic reflection traverses and an axial profile show a relatively simple stratigraphy composed of three seismic sequences argued to be no older than the last glacial cycle (< 30 ka). A discontinuous basal unit (sequence I) characterized by large-scale diffractions, and up to 460 m thick, infills the narrow, V-shaped bedrock floor of the basin and is interpreted as a boulder gravel deposited by subglacial meltwaters. Overlying seismic sequence II is composed of two sub-sequences. Sub-sequence IIa is a chaotic to massive facies up to 736 m thick. Lakeshore exposures close to where this unit reaches lake level show deformed and chaotically-bedded glaciolacustrine silts containing gravel lens and large ice-rafted boulders. The surface topography of this sub-sequence is irregular and in general mimics the form of the underlying bedrock as a result of compaction. This sequence passes laterally into stratified facies (sub-sequence IIb) at the northern end of the basin. Seismic sequence II appears to record rapid ice-proximal dumping of glaciolacustrine silt as the Okanagan glacier backwasted upvalley in a deep lake. A thin (60 m max.) laminated seismic sequence (III) drapes the hummocky surface of sequence II and represents postglacial sedimentation from fan-deltas. The extreme thickness of sequences I and II in Okanagan Lake reflects the focussing of large volumes of meltwater and sediment into the basin during deglaciation; pre-existing sediments that pre-date the last glacial cycle appear to have been completely eroded. Glaciological conditions during sedimentation may have been similar to marine-based outlet glaciers calving in deep water in fiord basins. In contrast to marine settings where ice bergs are free to disperse, large volumes of dead ice were trapped within the basin; structural evidence for sedimentation around dead ice blocks has been previously used to argue that the Cordilleran Ice Sheet downwasted in situ. We emphasize in contrast, the trapping of dead ice left behind by rapidly calving lake-based outlet glaciers.
Bahama Banks, Tongue of the Ocean, Bahamas
1993-01-19
STS054-152-102 (13-19 Jan. 1993) --- This is a south-looking, wide angle view of the northern Bahamas, featuring the islands (from mid-foreground toward background) of Eleuthera, New Providence, and Andros. The northern shore of Cuba can be seen in the background. The resort city of Nassau occupies much of eastern New Providence. The Bahamas host some very distinctive features -- the deep blue channels and the shallow, light blue platforms, feathery sand bars at the edges of the deep water sounds, and colorful lakes and tidal channels like seen on Andros Island.
From biomedicine to natural history research: EST resources for ambystomatid salamanders
Putta, Srikrishna; Smith, Jeramiah J; Walker, John A; Rondet, Mathieu; Weisrock, David W; Monaghan, James; Samuels, Amy K; Kump, Kevin; King, David C; Maness, Nicholas J; Habermann, Bianca; Tanaka, Elly; Bryant, Susan V; Gardiner, David M; Parichy, David M; Voss, S Randal
2004-01-01
Background Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum) and Eastern tiger salamander (A. tigrinum tigrinum), species with deep and diverse research histories. Results Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human – Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. Conclusions Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research. PMID:15310388
Wu, Jing Qin; Wang, Xi; Beveridge, Natalie J.; Tooney, Paul A.; Scott, Rodney J.; Carr, Vaughan J.; Cairns, Murray J.
2012-01-01
Background While hybridization based analysis of the cortical transcriptome has provided important insight into the neuropathology of schizophrenia, it represents a restricted view of disease-associated gene activity based on predetermined probes. By contrast, sequencing technology can provide un-biased analysis of transcription at nucleotide resolution. Here we use this approach to investigate schizophrenia-associated cortical gene expression. Methodology/Principal Findings The data was generated from 76 bp reads of RNA-Seq, aligned to the reference genome and assembled into transcripts for quantification of exons, splice variants and alternative promoters in postmortem superior temporal gyrus (STG/BA22) from 9 male subjects with schizophrenia and 9 matched non-psychiatric controls. Differentially expressed genes were then subjected to further sequence and functional group analysis. The output, amounting to more than 38 Gb of sequence, revealed significant alteration of gene expression including many previously shown to be associated with schizophrenia. Gene ontology enrichment analysis followed by functional map construction identified three functional clusters highly relevant to schizophrenia including neurotransmission related functions, synaptic vesicle trafficking, and neural development. Significantly, more than 2000 genes displayed schizophrenia-associated alternative promoter usage and more than 1000 genes showed differential splicing (FDR<0.05). Both types of transcriptional isoforms were exemplified by reads aligned to the neurodevelopmentally significant doublecortin-like kinase 1 (DCLK1) gene. Conclusions This study provided the first deep and un-biased analysis of schizophrenia-associated transcriptional diversity within the STG, and revealed variants with important implications for the complex pathophysiology of schizophrenia. PMID:22558445
Joint deep shape and appearance learning: application to optic pathway glioma segmentation
NASA Astrophysics Data System (ADS)
Mansoor, Awais; Li, Ien; Packer, Roger J.; Avery, Robert A.; Linguraru, Marius George
2017-03-01
Automated tissue characterization is one of the major applications of computer-aided diagnosis systems. Deep learning techniques have recently demonstrated impressive performance for the image patch-based tissue characterization. However, existing patch-based tissue classification techniques struggle to exploit the useful shape information. Local and global shape knowledge such as the regional boundary changes, diameter, and volumetrics can be useful in classifying the tissues especially in scenarios where the appearance signature does not provide significant classification information. In this work, we present a deep neural network-based method for the automated segmentation of the tumors referred to as optic pathway gliomas (OPG) located within the anterior visual pathway (AVP; optic nerve, chiasm or tracts) using joint shape and appearance learning. Voxel intensity values of commonly used MRI sequences are generally not indicative of OPG. To be considered an OPG, current clinical practice dictates that some portion of AVP must demonstrate shape enlargement. The method proposed in this work integrates multiple sequence magnetic resonance image (T1, T2, and FLAIR) along with local boundary changes to train a deep neural network. For training and evaluation purposes, we used a dataset of multiple sequence MRI obtained from 20 subjects (10 controls, 10 NF1+OPG). To our best knowledge, this is the first deep representation learning-based approach designed to merge shape and multi-channel appearance data for the glioma detection. In our experiments, mean misclassification errors of 2:39% and 0:48% were observed respectively for glioma and control patches extracted from the AVP. Moreover, an overall dice similarity coefficient of 0:87+/-0:13 (0:93+/-0:06 for healthy tissue, 0:78+/-0:18 for glioma tissue) demonstrates the potential of the proposed method in the accurate localization and early detection of OPG.
Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass
Nuccio, Erin E.; Anderson-Furgeson, James; Estera, Katerina Y.; ...
2016-05-09
The interface between roots and soil, known as the rhizosphere, is a dynamic habitat in the soil ecosystem. Unraveling the factors that control rhizosphere community assembly is a key starting point for understanding the diversity of plant-microbial interactions that occur in soil. The goals of this study were to determine how environmental factors shape rhizosphere microbial communities, such as local soil characteristics and the regional climate, and to determine the relative influence of the rhizosphere on microbial community assembly compared to the pressures imposed by the local and regional environment. We identified the bacteria present in the soil immediately adjacentmore » to the roots of wild oat (Avena spp.) in three California grasslands using deep Illumina 16S sequencing. Rhizosphere communities were more similar to each other than to the surrounding soil communities from which they were derived, despite the fact that the grasslands studied were separated by hundreds of kilometers. The rhizosphere was the dominant factor structuring bacterial community composition (38% variance explained), and was comparable in magnitude to the combined local and regional effects (22% and 21%, respectively). Rhizosphere communities were most influenced by factors related to the regional climate (soil moisture and temperature), while background soil communities were more influenced by soil characteristics (pH, CEC, exchangeable cations, clay content). The Avena core microbiome was strongly phylogenetically clustered according to the metrics NRI and NTI, which indicates that selective processes likely shaped these communities. Furthermore, 17% of these taxa were not detectable in the background soil, even with a robust sequencing depth of approximately 70,000 sequences per sample. In conclusion, these results support the hypothesis that roots select less abundant or possibly rare populations in the soil microbial community, which appear to be lineages of bacteria that have made a physiological tradeoff for rhizosphere competence at the expense of their competitiveness in non-rhizosphere soil.« less
Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuccio, Erin E.; Anderson-Furgeson, James; Estera, Katerina Y.
The interface between roots and soil, known as the rhizosphere, is a dynamic habitat in the soil ecosystem. Unraveling the factors that control rhizosphere community assembly is a key starting point for understanding the diversity of plant-microbial interactions that occur in soil. The goals of this study were to determine how environmental factors shape rhizosphere microbial communities, such as local soil characteristics and the regional climate, and to determine the relative influence of the rhizosphere on microbial community assembly compared to the pressures imposed by the local and regional environment. We identified the bacteria present in the soil immediately adjacentmore » to the roots of wild oat (Avena spp.) in three California grasslands using deep Illumina 16S sequencing. Rhizosphere communities were more similar to each other than to the surrounding soil communities from which they were derived, despite the fact that the grasslands studied were separated by hundreds of kilometers. The rhizosphere was the dominant factor structuring bacterial community composition (38% variance explained), and was comparable in magnitude to the combined local and regional effects (22% and 21%, respectively). Rhizosphere communities were most influenced by factors related to the regional climate (soil moisture and temperature), while background soil communities were more influenced by soil characteristics (pH, CEC, exchangeable cations, clay content). The Avena core microbiome was strongly phylogenetically clustered according to the metrics NRI and NTI, which indicates that selective processes likely shaped these communities. Furthermore, 17% of these taxa were not detectable in the background soil, even with a robust sequencing depth of approximately 70,000 sequences per sample. In conclusion, these results support the hypothesis that roots select less abundant or possibly rare populations in the soil microbial community, which appear to be lineages of bacteria that have made a physiological tradeoff for rhizosphere competence at the expense of their competitiveness in non-rhizosphere soil.« less
Plant MicroRNA Prediction by Supervised Machine Learning Using C5.0 Decision Trees.
Williams, Philip H; Eyles, Rod; Weiller, Georg
2012-01-01
MicroRNAs (miRNAs) are nonprotein coding RNAs between 20 and 22 nucleotides long that attenuate protein production. Different types of sequence data are being investigated for novel miRNAs, including genomic and transcriptomic sequences. A variety of machine learning methods have successfully predicted miRNA precursors, mature miRNAs, and other nonprotein coding sequences. MirTools, mirDeep2, and miRanalyzer require "read count" to be included with the input sequences, which restricts their use to deep-sequencing data. Our aim was to train a predictor using a cross-section of different species to accurately predict miRNAs outside the training set. We wanted a system that did not require read-count for prediction and could therefore be applied to short sequences extracted from genomic, EST, or RNA-seq sources. A miRNA-predictive decision-tree model has been developed by supervised machine learning. It only requires that the corresponding genome or transcriptome is available within a sequence window that includes the precursor candidate so that the required sequence features can be collected. Some of the most critical features for training the predictor are the miRNA:miRNA(∗) duplex energy and the number of mismatches in the duplex. We present a cross-species plant miRNA predictor with 84.08% sensitivity and 98.53% specificity based on rigorous testing by leave-one-out validation.
miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments.
Hackenberg, Michael; Sturm, Martin; Langenberger, David; Falcón-Pérez, Juan Manuel; Aransay, Ana M
2009-07-01
Next-generation sequencing allows now the sequencing of small RNA molecules and the estimation of their expression levels. Consequently, there will be a high demand of bioinformatics tools to cope with the several gigabytes of sequence data generated in each single deep-sequencing experiment. Given this scene, we developed miRanalyzer, a web server tool for the analysis of deep-sequencing experiments for small RNAs. The web server tool requires a simple input file containing a list of unique reads and its copy numbers (expression levels). Using these data, miRanalyzer (i) detects all known microRNA sequences annotated in miRBase, (ii) finds all perfect matches against other libraries of transcribed sequences and (iii) predicts new microRNAs. The prediction of new microRNAs is an especially important point as there are many species with very few known microRNAs. Therefore, we implemented a highly accurate machine learning algorithm for the prediction of new microRNAs that reaches AUC values of 97.9% and recall values of up to 75% on unseen data. The web tool summarizes all the described steps in a single output page, which provides a comprehensive overview of the analysis, adding links to more detailed output pages for each analysis module. miRanalyzer is available at http://web.bioinformatics.cicbiogune.es/microRNA/.
Detection of microRNAs in color space.
Marco, Antonio; Griffiths-Jones, Sam
2012-02-01
Deep sequencing provides inexpensive opportunities to characterize the transcriptional diversity of known genomes. The AB SOLiD technology generates millions of short sequencing reads in color-space; that is, the raw data is a sequence of colors, where each color represents 2 nt and each nucleotide is represented by two consecutive colors. This strategy is purported to have several advantages, including increased ability to distinguish sequencing errors from polymorphisms. Several programs have been developed to map short reads to genomes in color space. However, a number of previously unexplored technical issues arise when using SOLiD technology to characterize microRNAs. Here we explore these technical difficulties. First, since the sequenced reads are longer than the biological sequences, every read is expected to contain linker fragments. The color-calling error rate increases toward the 3(') end of the read such that recognizing the linker sequence for removal becomes problematic. Second, mapping in color space may lead to the loss of the first nucleotide of each read. We propose a sequential trimming and mapping approach to map small RNAs. Using our strategy, we reanalyze three published insect small RNA deep sequencing datasets and characterize 22 new microRNAs. A bash shell script to perform the sequential trimming and mapping procedure, called SeqTrimMap, is available at: http://www.mirbase.org/tools/seqtrimmap/ antonio.marco@manchester.ac.uk Supplementary data are available at Bioinformatics online.
NASA Technical Reports Server (NTRS)
Kyte, Frank T.; Gersonde, Rainer
2003-01-01
Background The impact of the Eltanin asteroid into the Bellingshausen Sea (2.15 Ma) is the only known impact in a deep-ocean (approx. 5 km) basin. In 1995, Polarstern expedition ANT XII/4 made the first geological survey of the suspected impact region. Three sediment cores sampled around the San Martin seamounts (approx. 57.5 S, 91 W) contained well-preserved impact deposits. Sediments of Eocene age and younger were ripped up and redeposited by the impact. The depositional sequence produced by the impact has three units: a chaotic assemblage of sediment fragments up to 50 cm, followed by laminated sands deposited as a turbulent flow, and finally silts and clays that accumulated from dispersed sediments in the water column. The meteoritic impact ejecta, which is composed of shock-melted asteroidal materials and unmelted meteorites, settled through the water column and concentrated near the top of the laminated sands.
A Statistical Guide to the Design of Deep Mutational Scanning Experiments.
Matuszewski, Sebastian; Hildebrandt, Marcel E; Ghenu, Ana-Hermina; Jensen, Jeffrey D; Bank, Claudia
2016-09-01
The characterization of the distribution of mutational effects is a key goal in evolutionary biology. Recently developed deep-sequencing approaches allow for accurate and simultaneous estimation of the fitness effects of hundreds of engineered mutations by monitoring their relative abundance across time points in a single bulk competition. Naturally, the achievable resolution of the estimated fitness effects depends on the specific experimental setup, the organism and type of mutations studied, and the sequencing technology utilized, among other factors. By means of analytical approximations and simulations, we provide guidelines for optimizing time-sampled deep-sequencing bulk competition experiments, focusing on the number of mutants, the sequencing depth, and the number of sampled time points. Our analytical results show that sampling more time points together with extending the duration of the experiment improves the achievable precision disproportionately compared with increasing the sequencing depth or reducing the number of competing mutants. Even if the duration of the experiment is fixed, sampling more time points and clustering these at the beginning and the end of the experiment increase experimental power and allow for efficient and precise assessment of the entire range of selection coefficients. Finally, we provide a formula for calculating the 95%-confidence interval for the measurement error estimate, which we implement as an interactive web tool. This allows for quantification of the maximum expected a priori precision of the experimental setup, as well as for a statistical threshold for determining deviations from neutrality for specific selection coefficient estimates. Copyright © 2016 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Aravena, M.; Decarli, R.; Walter, F.; Da Cunha, E.; Bauer, F. E.; Carilli, C. L.; Daddi, E.; Elbaz, D.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Assef, R. J.; Bell, E.; Bertoldi, F.; Bacon, R.; Bouwens, R.; Cortes, P.; Cox, P.; Gónzalez-López, J.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Le Le Fèvre, O.; Magnelli, B.; Ota, K.; Popping, G.; Sheth, K.; van der Werf, P.; Wagg, J.
2016-12-01
We present an analysis of a deep (1σ = 13 μJy) cosmological 1.2 mm continuum map based on ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field. In the 1 arcmin2 covered by ASPECS we detect nine sources at \\gt 3.5σ significance at 1.2 mm. Our ALMA-selected sample has a median redshift of z=1.6+/- 0.4, with only one galaxy detected at z > 2 within the survey area. This value is significantly lower than that found in millimeter samples selected at a higher flux density cutoff and similar frequencies. Most galaxies have specific star formation rates (SFRs) similar to that of main-sequence galaxies at the same epoch, and we find median values of stellar mass and SFRs of 4.0× {10}10 {M}⊙ and ˜ 40 {M}⊙ yr-1, respectively. Using the dust emission as a tracer for the interstellar medium (ISM) mass, we derive depletion times that are typically longer than 300 Myr, and we find molecular gas fractions ranging from ˜0.1 to 1.0. As noted by previous studies, these values are lower than those using CO-based ISM estimates by a factor of ˜2. The 1 mm number counts (corrected for fidelity and completeness) are in agreement with previous studies that were typically restricted to brighter sources. With our individual detections only, we recover 55% ± 4% of the extragalactic background light (EBL) at 1.2 mm measured by the Planck satellite, and we recover 80% ± 7% of this EBL if we include the bright end of the number counts and additional detections from stacking. The stacked contribution is dominated by galaxies at z˜ 1{--}2, with stellar masses of (1-3) × 1010 M {}⊙ . For the first time, we are able to characterize the population of galaxies that dominate the EBL at 1.2 mm.
An introduction to deep learning on biological sequence data: examples and solutions.
Jurtz, Vanessa Isabell; Johansen, Alexander Rosenberg; Nielsen, Morten; Almagro Armenteros, Jose Juan; Nielsen, Henrik; Sønderby, Casper Kaae; Winther, Ole; Sønderby, Søren Kaae
2017-11-15
Deep neural network architectures such as convolutional and long short-term memory networks have become increasingly popular as machine learning tools during the recent years. The availability of greater computational resources, more data, new algorithms for training deep models and easy to use libraries for implementation and training of neural networks are the drivers of this development. The use of deep learning has been especially successful in image recognition; and the development of tools, applications and code examples are in most cases centered within this field rather than within biology. Here, we aim to further the development of deep learning methods within biology by providing application examples and ready to apply and adapt code templates. Given such examples, we illustrate how architectures consisting of convolutional and long short-term memory neural networks can relatively easily be designed and trained to state-of-the-art performance on three biological sequence problems: prediction of subcellular localization, protein secondary structure and the binding of peptides to MHC Class II molecules. All implementations and datasets are available online to the scientific community at https://github.com/vanessajurtz/lasagne4bio. skaaesonderby@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Saghatelyan, Ani; Poghosyan, Lianna
2015-01-01
The 2,379,636-bp draft genome sequence of Thermus scotoductus strain K1, isolated from geothermal spring outlet located in the Karvachar region in Nagorno Karabakh is presented. Strain K1 shares about 80% genome sequence similarity with T. scotoductus strain SA-01, recovered from a deep gold mine in South Africa. PMID:26564055
Brewer, Michael S; Swafford, Lynn; Spruill, Chad L; Bond, Jason E
2013-01-01
Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect. As such, these data are likely inappropriate for investigating such ancient relationships.
NASA Technical Reports Server (NTRS)
Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.;
2002-01-01
We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l approximately 200 (right arrow) 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l approximately 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000-3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma 8 is approximately greater than 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.
Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34
Anderson, Iain J.; DasSarma, Priya; Lucas, Susan; ...
2016-09-10
Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. We report here the complete genome sequence of H. lacusprofundi type strain ACAM 34 and its annotation. In conclusion, this genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.
Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iain J.; DasSarma, Priya; Lucas, Susan
Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. We report here the complete genome sequence of H. lacusprofundi type strain ACAM 34 and its annotation. In conclusion, this genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.
Wei, Ran; Yan, Yue-Hong; Harris, AJ; Kang, Jong-Soo; Shen, Hui; Zhang, Xian-Chun
2017-01-01
Abstract The eupolypods II ferns represent a classic case of evolutionary radiation and, simultaneously, exhibit high substitution rate heterogeneity. These factors have been proposed to contribute to the contentious resolutions among clades within this fern group in multilocus phylogenetic studies. We investigated the deep phylogenetic relationships of eupolypod II ferns by sampling all major families and using 40 plastid genomes, or plastomes, of which 33 were newly sequenced with next-generation sequencing technology. We performed model-based analyses to evaluate the diversity of molecular evolutionary rates for these ferns. Our plastome data, with more than 26,000 informative characters, yielded good resolution for deep relationships within eupolypods II and unambiguously clarified the position of Rhachidosoraceae and the monophyly of Athyriaceae. Results of rate heterogeneity analysis revealed approximately 33 significant rate shifts in eupolypod II ferns, with the most heterogeneous rates (both accelerations and decelerations) occurring in two phylogenetically difficult lineages, that is, the Rhachidosoraceae–Aspleniaceae and Athyriaceae clades. These observations support the hypothesis that rate heterogeneity has previously constrained the deep phylogenetic resolution in eupolypods II. According to the plastome data, we propose that 14 chloroplast markers are particularly phylogenetically informative for eupolypods II both at the familial and generic levels. Our study demonstrates the power of a character-rich plastome data set and high-throughput sequencing for resolving the recalcitrant lineages, which have undergone rapid evolutionary radiation and dramatic changes in substitution rates. PMID:28854625
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
Wang, Sheng; Sun, Siqi; Li, Zhen; Zhang, Renyu; Xu, Jinbo
2017-01-01
Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then. http://raptorx.uchicago.edu/ContactMap/.
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model
Li, Zhen; Zhang, Renyu
2017-01-01
Motivation Protein contacts contain key information for the understanding of protein structure and function and thus, contact prediction from sequence is an important problem. Recently exciting progress has been made on this problem, but the predicted contacts for proteins without many sequence homologs is still of low quality and not very useful for de novo structure prediction. Method This paper presents a new deep learning method that predicts contacts by integrating both evolutionary coupling (EC) and sequence conservation information through an ultra-deep neural network formed by two deep residual neural networks. The first residual network conducts a series of 1-dimensional convolutional transformation of sequential features; the second residual network conducts a series of 2-dimensional convolutional transformation of pairwise information including output of the first residual network, EC information and pairwise potential. By using very deep residual networks, we can accurately model contact occurrence patterns and complex sequence-structure relationship and thus, obtain higher-quality contact prediction regardless of how many sequence homologs are available for proteins in question. Results Our method greatly outperforms existing methods and leads to much more accurate contact-assisted folding. Tested on 105 CASP11 targets, 76 past CAMEO hard targets, and 398 membrane proteins, the average top L long-range prediction accuracy obtained by our method, one representative EC method CCMpred and the CASP11 winner MetaPSICOV is 0.47, 0.21 and 0.30, respectively; the average top L/10 long-range accuracy of our method, CCMpred and MetaPSICOV is 0.77, 0.47 and 0.59, respectively. Ab initio folding using our predicted contacts as restraints but without any force fields can yield correct folds (i.e., TMscore>0.6) for 203 of the 579 test proteins, while that using MetaPSICOV- and CCMpred-predicted contacts can do so for only 79 and 62 of them, respectively. Our contact-assisted models also have much better quality than template-based models especially for membrane proteins. The 3D models built from our contact prediction have TMscore>0.5 for 208 of the 398 membrane proteins, while those from homology modeling have TMscore>0.5 for only 10 of them. Further, even if trained mostly by soluble proteins, our deep learning method works very well on membrane proteins. In the recent blind CAMEO benchmark, our fully-automated web server implementing this method successfully folded 6 targets with a new fold and only 0.3L-2.3L effective sequence homologs, including one β protein of 182 residues, one α+β protein of 125 residues, one α protein of 140 residues, one α protein of 217 residues, one α/β of 260 residues and one α protein of 462 residues. Our method also achieved the highest F1 score on free-modeling targets in the latest CASP (Critical Assessment of Structure Prediction), although it was not fully implemented back then. Availability http://raptorx.uchicago.edu/ContactMap/ PMID:28056090
All about the Human Genome Project (HGP)
... CSER), and Genome Sequencing Informatics Tools (GS-IT) Comparative Genomics Background information prepared for the media on ... other species to the human sequence. Background on Comparative Genomic Analysis New Process to Prioritize Animal Genomes ...
Draft Genome Sequence of Aldehyde-Degrading Strain Halomonas axialensis ACH-L-8
Ye, Jun; Ren, Chong; Shan, Xiexie
2016-01-01
Halomonas axialensis ACH-L-8, a deep-sea strain isolated from the South China Sea, has the ability to degrade aldehydes. Here, we present an annotated draft genome sequence of this species, which could provide fundamental molecular information on the aldehydes-degrading mechanism. PMID:27081145
USDA-ARS?s Scientific Manuscript database
Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...
Slack, J.F.; Grenne, Tor; Bekker, A.; Rouxel, O.J.; Lindberg, P.A.
2007-01-01
A current model for the evolution of Proterozoic deep seawater composition involves a change from anoxic sulfide-free to sulfidic conditions 1.8??Ga. In an earlier model the deep ocean became oxic at that time. Both models are based on the secular distribution of banded iron formation (BIF) in shallow marine sequences. We here present a new model based on rare earth elements, especially redox-sensitive Ce, in hydrothermal silica-iron oxide sediments from deeper-water, open-marine settings related to volcanogenic massive sulfide (VMS) deposits. In contrast to Archean, Paleozoic, and modern hydrothermal iron oxide sediments, 1.74 to 1.71??Ga hematitic chert (jasper) and iron formation in central Arizona, USA, show moderate positive to small negative Ce anomalies, suggesting that the redox state of the deep ocean then was at a transitional, suboxic state with low concentrations of dissolved O2 but no H2S. The presence of jasper and/or iron formation related to VMS deposits in other volcanosedimentary sequences ca. 1.79-1.69??Ga, 1.40??Ga, and 1.24??Ga also reflects oxygenated and not sulfidic deep ocean waters during these time periods. Suboxic conditions in the deep ocean are consistent with the lack of shallow-marine BIF ??? 1.8 to 0.8??Ga, and likely limited nutrient concentrations in seawater and, consequently, may have constrained biological evolution. ?? 2006 Elsevier B.V. All rights reserved.
An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets
2010-01-01
Background The data produced by an Illumina flow cell with all eight lanes occupied, produces well over a terabyte worth of images with gigabytes of reads following sequence alignment. The ability to translate such reads into meaningful annotation is therefore of great concern and importance. Very easily, one can get flooded with such a great volume of textual, unannotated data irrespective of read quality or size. CASAVA, a optional analysis tool for Illumina sequencing experiments, enables the ability to understand INDEL detection, SNP information, and allele calling. To not only extract from such analysis, a measure of gene expression in the form of tag-counts, but furthermore to annotate such reads is therefore of significant value. Findings We developed TASE (Tag counting and Analysis of Solexa Experiments), a rapid tag-counting and annotation software tool specifically designed for Illumina CASAVA sequencing datasets. Developed in Java and deployed using jTDS JDBC driver and a SQL Server backend, TASE provides an extremely fast means of calculating gene expression through tag-counts while annotating sequenced reads with the gene's presumed function, from any given CASAVA-build. Such a build is generated for both DNA and RNA sequencing. Analysis is broken into two distinct components: DNA sequence or read concatenation, followed by tag-counting and annotation. The end result produces output containing the homology-based functional annotation and respective gene expression measure signifying how many times sequenced reads were found within the genomic ranges of functional annotations. Conclusions TASE is a powerful tool to facilitate the process of annotating a given Illumina Solexa sequencing dataset. Our results indicate that both homology-based annotation and tag-count analysis are achieved in very efficient times, providing researchers to delve deep in a given CASAVA-build and maximize information extraction from a sequencing dataset. TASE is specially designed to translate sequence data in a CASAVA-build into functional annotations while producing corresponding gene expression measurements. Achieving such analysis is executed in an ultrafast and highly efficient manner, whether the analysis be a single-read or paired-end sequencing experiment. TASE is a user-friendly and freely available application, allowing rapid analysis and annotation of any given Illumina Solexa sequencing dataset with ease. PMID:20598141
Curriculum Handbook--Project D.E.E.P. Developing Exceptional Educational Potential.
ERIC Educational Resources Information Center
Badgley, Lynn Schiffer
The guide presents curriculum objectives of Project DEEP (Developing Exceptional Educational Potential), a resource room approach to the education of gifted elementary pupils. The first part of the handbook provides information on the background and foundation of a gifted curriculum (including such topics as student identification and needed…
2011-01-01
Background The family Pteropodidae comprises bats commonly known as megabats or Old World fruit bats. Molecular phylogenetic studies of pteropodids have provided considerable insight into intrafamilial relationships, but these studies have included only a fraction of the extant diversity (a maximum of 26 out of the 46 currently recognized genera) and have failed to resolve deep relationships among internal clades. Here we readdress the systematics of pteropodids by applying a strategy to try to resolve ancient relationships within Pteropodidae, while providing further insight into subgroup membership, by 1) increasing the taxonomic sample to 42 genera; 2) increasing the number of characters (to >8,000 bp) and nuclear genomic representation; 3) minimizing missing data; 4) controlling for sequence bias; and 5) using appropriate data partitioning and models of sequence evolution. Results Our analyses recovered six principal clades and one additional independent lineage (consisting of a single genus) within Pteropodidae. Reciprocal monophyly of these groups was highly supported and generally congruent among the different methods and datasets used. Likewise, most relationships within these principal clades were well resolved and statistically supported. Relationships among the 7 principal groups, however, were poorly supported in all analyses. This result could not be explained by any detectable systematic bias in the data or incongruence among loci. The SOWH test confirmed that basal branches' lengths were not different from zero, which points to closely-spaced cladogenesis as the most likely explanation for the poor resolution of the deep pteropodid relationships. Simulations suggest that an increase in the amount of sequence data is likely to solve this problem. Conclusions The phylogenetic hypothesis generated here provides a robust framework for a revised cladistic classification of Pteropodidae into subfamilies and tribes and will greatly contribute to the understanding of character evolution and biogeography of pteropodids. The inability of our data to resolve the deepest relationships of the major pteropodid lineages suggests an explosive diversification soon after origin of the crown pteropodids. Several characteristics of pteropodids are consistent with this conclusion, including high species diversity, great morphological diversity, and presence of key innovations in relation to their sister group. PMID:21961908
Insights into metazoan evolution from alvinella pompejana cDNAs
2010-01-01
Background Alvinella pompejana is a representative of Annelids, a key phylum for evo-devo studies that is still poorly studied at the sequence level. A. pompejana inhabits deep-sea hydrothermal vents and is currently known as one of the most thermotolerant Eukaryotes in marine environments, withstanding the largest known chemical and thermal ranges (from 5 to 105°C). This tube-dwelling worm forms dense colonies on the surface of hydrothermal chimneys and can withstand long periods of hypo/anoxia and long phases of exposure to hydrogen sulphides. A. pompejana specifically inhabits chimney walls of hydrothermal vents on the East Pacific Rise. To survive, Alvinella has developed numerous adaptations at the physiological and molecular levels, such as an increase in the thermostability of proteins and protein complexes. It represents an outstanding model organism for studying adaptation to harsh physicochemical conditions and for isolating stable macromolecules resistant to high temperatures. Results We have constructed four full length enriched cDNA libraries to investigate the biology and evolution of this intriguing animal. Analysis of more than 75,000 high quality reads led to the identification of 15,858 transcripts and 9,221 putative protein sequences. Our annotation reveals a good coverage of most animal pathways and networks with a prevalence of transcripts involved in oxidative stress resistance, detoxification, anti-bacterial defence, and heat shock protection. Alvinella proteins seem to show a slow evolutionary rate and a higher similarity with proteins from Vertebrates compared to proteins from Arthropods or Nematodes. Their composition shows enrichment in positively charged amino acids that might contribute to their thermostability. The gene content of Alvinella reveals that an important pool of genes previously considered to be specific to Deuterostomes were in fact already present in the last common ancestor of the Bilaterian animals, but have been secondarily lost in model invertebrates. This pool is enriched in glycoproteins that play a key role in intercellular communication, hormonal regulation and immunity. Conclusions Our study starts to unravel the gene content and sequence evolution of a deep-sea annelid, revealing key features in eukaryote adaptation to extreme environmental conditions and highlighting the proximity of Annelids and Vertebrates. PMID:21080938
Asymmetric purine-pyrimidine distribution in cellular small RNA population of papaya
2012-01-01
Background The small RNAs (sRNA) are a regulatory class of RNA mainly represented by the 21 and 24-nucleotide size classes. The cellular sRNAs are processed by RNase III family enzyme dicer (Dicer like in plant) from a self-complementary hairpin loop or other type of RNA duplexes. The papaya genome has been sequenced, but its microRNAs and other regulatory RNAs are yet to be analyzed. Results We analyzed the genomic features of the papaya sRNA population from three sRNA deep sequencing libraries made from leaves, flowers, and leaves infected with Papaya Ringspot Virus (PRSV). We also used the deep sequencing data to annotate the micro RNA (miRNA) in papaya. We identified 60 miRNAs, 24 of which were conserved in other species, and 36 of which were novel miRNAs specific to papaya. In contrast to the Chargaff’s purine-pyrimidine equilibrium, cellular sRNA was significantly biased towards a purine rich population. Of the two purine bases, higher frequency of adenine was present in 23nt or longer sRNAs, while 22nt or shorter sRNAs were over represented by guanine bases. However, this bias was not observed in the annotated miRNAs in plants. The 21nt species were expressed from fewer loci but expressed at higher levels relative to the 24nt species. The highly expressed 21nt species were clustered in a few isolated locations of the genome. The PRSV infected leaves showed higher accumulation of 21 and 22nt sRNA compared to uninfected leaves. We observed higher accumulation of miRNA* of seven annotated miRNAs in virus-infected tissue, indicating the potential function of miRNA* under stressed conditions. Conclusions We have identified 60 miRNAs in papaya. Our study revealed the asymmetric purine-pyrimidine distribution in cellular sRNA population. The 21nt species of sRNAs have higher expression levels than 24nt sRNA. The miRNA* of some miRNAs shows higher accumulation in PRSV infected tissues, suggesting that these strands are not totally functionally redundant. The findings open a new avenue for further investigation of the sRNA silencing pathway in plants. PMID:23216749
The dynamics of genome replication using deep sequencing
Müller, Carolin A.; Hawkins, Michelle; Retkute, Renata; Malla, Sunir; Wilson, Ray; Blythe, Martin J.; Nakato, Ryuichiro; Komata, Makiko; Shirahige, Katsuhiko; de Moura, Alessandro P.S.; Nieduszynski, Conrad A.
2014-01-01
Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology. PMID:24089142
Danielsson, Frida; Wiking, Mikaela; Mahdessian, Diana; Skogs, Marie; Ait Blal, Hammou; Hjelmare, Martin; Stadler, Charlotte; Uhlén, Mathias; Lundberg, Emma
2013-01-04
One of the major challenges of a chromosome-centric proteome project is to explore in a systematic manner the potential proteins identified from the chromosomal genome sequence, but not yet characterized on a protein level. Here, we describe the use of RNA deep sequencing to screen human cell lines for RNA profiles and to use this information to select cell lines suitable for characterization of the corresponding gene product. In this manner, the subcellular localization of proteins can be analyzed systematically using antibody-based confocal microscopy. We demonstrate the usefulness of selecting cell lines with high expression levels of RNA transcripts to increase the likelihood of high quality immunofluorescence staining and subsequent successful subcellular localization of the corresponding protein. The results show a path to combine transcriptomics with affinity proteomics to characterize the proteins in a gene- or chromosome-centric manner.
Deep sequencing reveals persistence of cell-associated mumps vaccine virus in chronic encephalitis.
Morfopoulou, Sofia; Mee, Edward T; Connaughton, Sarah M; Brown, Julianne R; Gilmour, Kimberly; Chong, W K 'Kling'; Duprex, W Paul; Ferguson, Deborah; Hubank, Mike; Hutchinson, Ciaran; Kaliakatsos, Marios; McQuaid, Stephen; Paine, Simon; Plagnol, Vincent; Ruis, Christopher; Virasami, Alex; Zhan, Hong; Jacques, Thomas S; Schepelmann, Silke; Qasim, Waseem; Breuer, Judith
2017-01-01
Routine childhood vaccination against measles, mumps and rubella has virtually abolished virus-related morbidity and mortality. Notwithstanding this, we describe here devastating neurological complications associated with the detection of live-attenuated mumps virus Jeryl Lynn (MuV JL5 ) in the brain of a child who had undergone successful allogeneic transplantation for severe combined immunodeficiency (SCID). This is the first confirmed report of MuV JL5 associated with chronic encephalitis and highlights the need to exclude immunodeficient individuals from immunisation with live-attenuated vaccines. The diagnosis was only possible by deep sequencing of the brain biopsy. Sequence comparison of the vaccine batch to the MuV JL5 isolated from brain identified biased hypermutation, particularly in the matrix gene, similar to those found in measles from cases of SSPE. The findings provide unique insights into the pathogenesis of paramyxovirus brain infections.
Saghatelyan, Ani; Poghosyan, Lianna; Panosyan, Hovik; Birkeland, Nils-Kåre
2015-11-12
The 2,379,636-bp draft genome sequence of Thermus scotoductus strain K1, isolated from geothermal spring outlet located in the Karvachar region in Nagorno Karabakh is presented. Strain K1 shares about 80% genome sequence similarity with T. scotoductus strain SA-01, recovered from a deep gold mine in South Africa. Copyright © 2015 Saghatelyan et al.
Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing
Matochko, Wadim L.; Derda, Ratmir
2013-01-01
Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N × 1 frequency vector n = ||ni||, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N × N matrix and a stochastic sampling operator (S a). The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of S a and use them to define the sequencing operator (S e q). Sequencing without any bias and errors is S e q = S a IN, where IN is a N × N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (C E N), which describes elimination or statistically significant downsampling, of specific reads during the sequencing process. PMID:24416071
Samad, Abdul Fatah A; Nazaruddin, Nazaruddin; Murad, Abdul Munir Abdul; Jani, Jaeyres; Zainal, Zamri; Ismail, Ismanizan
2018-03-01
In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor ( P . minor ) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P . minor may develop and update the current public miRNA database.
Poly(A)-tag deep sequencing data processing to extract poly(A) sites.
Wu, Xiaohui; Ji, Guoli; Li, Qingshun Quinn
2015-01-01
Polyadenylation [poly(A)] is an essential posttranscriptional processing step in the maturation of eukaryotic mRNA. The advent of next-generation sequencing (NGS) technology has offered feasible means to generate large-scale data and new opportunities for intensive study of polyadenylation, particularly deep sequencing of the transcriptome targeting the junction of 3'-UTR and the poly(A) tail of the transcript. To take advantage of this unprecedented amount of data, we present an automated workflow to identify polyadenylation sites by integrating NGS data cleaning, processing, mapping, normalizing, and clustering. In this pipeline, a series of Perl scripts are seamlessly integrated to iteratively map the single- or paired-end sequences to the reference genome. After mapping, the poly(A) tags (PATs) at the same genome coordinate are grouped into one cleavage site, and the internal priming artifacts removed. Then the ambiguous region is introduced to parse the genome annotation for cleavage site clustering. Finally, cleavage sites within a close range of 24 nucleotides and from different samples can be clustered into poly(A) clusters. This procedure could be used to identify thousands of reliable poly(A) clusters from millions of NGS sequences in different tissues or treatments.
Crespo, Bibiana G; Wallhead, Philip J; Logares, Ramiro; Pedrós-Alió, Carlos
2016-01-01
High-throughput sequencing (HTS) techniques have suggested the existence of a wealth of species with very low relative abundance: the rare biosphere. We attempted to exhaustively map this rare biosphere in two water samples by performing an exceptionally deep pyrosequencing analysis (~500,000 final reads per sample). Species data were derived by a 97% identity criterion and various parametric distributions were fitted to the observed counts. Using the best-fitting Sichel distribution we estimate a total species richness of 1,568-1,669 (95% Credible Interval) and 5,027-5,196 for surface and deep water samples respectively, implying that 84-89% of the total richness in those two samples was sequenced, and we predict that a quadrupling of the present sequencing effort would suffice to observe 90% of the total richness in both samples. Comparing the HTS results with a culturing approach we found that most of the cultured taxa were not obtained by HTS, despite the high sequencing effort. Culturing therefore remains a useful tool for uncovering marine bacterial diversity, in addition to its other uses for studying the ecology of marine bacteria.
Browning, J.V.; Miller, K.G.; McLaughlin, P.P.; Edwards, L.E.; Kulpecz, A.A.; Powars, D.S.; Wade, B.S.; Feigenson, M.D.; Wright, J.D.
2009-01-01
The Eyreville core holes provide the first continuously cored record of postimpact sequences from within the deepest part of the central Chesapeake Bay impact crater. We analyzed the upper Eocene to Pliocene postimpact sediments from the Eyreville A and C core holes for lithology (semiquantitative measurements of grain size and composition), sequence stratigraphy, and chronostratigraphy. Age is based primarily on Sr isotope stratigraphy supplemented by biostratigraphy (dinocysts, nannofossils, and planktonic foraminifers); age resolution is approximately ??0.5 Ma for early Miocene sequences and approximately ??1.0 Ma for younger and older sequences. Eocene-lower Miocene sequences are subtle, upper middle to lower upper Miocene sequences are more clearly distinguished, and upper Miocene- Pliocene sequences display a distinct facies pattern within sequences. We recognize two upper Eocene, two Oligocene, nine Miocene, three Pliocene, and one Pleistocene sequence and correlate them with those in New Jersey and Delaware. The upper Eocene through Pleistocene strata at Eyreville record changes from: (1) rapidly deposited, extremely fi ne-grained Eocene strata that probably represent two sequences deposited in a deep (>200 m) basin; to (2) highly dissected Oligocene (two very thin sequences) to lower Miocene (three thin sequences) with a long hiatus; to (3) a thick, rapidly deposited (43-73 m/Ma), very fi ne-grained, biosiliceous middle Miocene (16.5-14 Ma) section divided into three sequences (V5-V3) deposited in middle neritic paleoenvironments; to (4) a 4.5-Ma-long hiatus (12.8-8.3 Ma); to (5) sandy, shelly upper Miocene to Pliocene strata (8.3-2.0 Ma) divided into six sequences deposited in shelf and shoreface environments; and, last, to (6) a sandy middle Pleistocene paralic sequence (~400 ka). The Eyreville cores thus record the fi lling of a deep impact-generated basin where the timing of sequence boundaries is heavily infl uenced by eustasy. ?? 2009 The Geological Society of America.
Wu, Shuang; Nakamoto, Shingo; Kanda, Tatsuo; Jiang, Xia; Nakamura, Masato; Miyamura, Tatsuo; Shirasawa, Hiroshi; Sugiura, Nobuyuki; Takahashi-Nakaguchi, Azusa; Gonoi, Tohru; Yokosuka, Osamu
2014-01-01
Hepatitis A virus (HAV) is a causative agent of acute viral hepatitis for which an effective vaccine has been developed. Here we describe ultra-deep pyrosequences (UDPSs) of HAV 5'-untranslated region (5'UTR) among cases of the same outbreak, which arose from a single source, associated with a revolving sushi bar. We determined the reference sequence from HAV-derived clone from an attendant by the Sanger method. Sixteen UDPSs from this outbreak and one from another sporadic case were compared with this reference. Nucleotide errors yielded a UDPS error rate of < 1%. This study confirmed that nucleotide substitutions of this region are transition mutations in outbreak cases, that insertion was observed only in non-severe cases, and that these nucleotide substitutions were different from those of the sporadic case. Analysis of UDPSs detected low-prevalence HAV variations in 5'UTR, but no specific mutations associated with severity in these outbreak cases. To our surprise, HAV strains in this outbreak conserved HAV IRES sequence even if we performed analysis of UDPSs. UDPS analysis of HAV 5'UTR gave us no association between the disease severity of hepatitis A and HAV 5'UTR substitutions. It might be more interesting to perform ultra-deep sequencing of full length HAV genome in order to reveal possible unknown genomic determinants associated with disease severity. Further studies will be needed. PMID:24396287
Saha, Prakash; Modarai, Bijan; Smith, Alberto; Botnar, René M.
2014-01-01
Background Deep vein thrombosis remains a major health problem necessitating accurate diagnosis. Thrombolysis is associated with significant morbidity and is effective only for the treatment of unorganized thrombus. We tested the feasibility of in vivo magnetization transfer (MT) and diffusion-weighted magnetic resonance imaging to detect thrombus organization in a murine model of deep vein thrombosis. Methods and Results Deep vein thrombosis was induced in the inferior vena cava of male BALB/C mice. Magnetic resonance imaging was performed at days 1, 7, 14, 21, and 28 after thrombus induction using MT, diffusion-weighted, inversion-recovery, and T1-mapping protocols. Delayed enhancement and T1 mapping were repeated 2 hours after injection of a fibrin contrast agent. Finally, excised thrombi were used for histology. We found that MT and diffusion-weighted imaging can detect histological changes associated with thrombus aging. MT rate (MTR) maps and percentage of MT rate (%MTR) allowed visualization and quantification of the thrombus protein content, respectively. The %MTR increased with thrombus organization and was significantly higher at days 14, 21, and 28 after thrombus induction (days 1, 7, 14, 21, 28: %MTR=2483±451, 2079±1210, 7029±2490, 10 295±4356, 32 994±25 449; Panova<0.05). There was a significant positive correlation between the %MTR and the histological protein content of the thrombus (r=0.70; P<0.05). The apparent diffusion coefficient was lower in erythrocyte-rich and collagen-rich thrombus (0.72±0.10 and 0.69±0.05 [×10−3 mm2/s]). Thrombus at days 7 and 14 had the highest apparent diffusion coefficient values (0.95±0.09 and 1.10±0.18 [×10−3 mm2/s]). Conclusions MT and diffusion-weighted magnetic resonance imaging sequences are promising for the staging of thrombus composition and could be useful in guiding medical intervention. PMID:23564561
Deep learning of mutation-gene-drug relations from the literature.
Lee, Kyubum; Kim, Byounggun; Choi, Yonghwa; Kim, Sunkyu; Shin, Wonho; Lee, Sunwon; Park, Sungjoon; Kim, Seongsoon; Tan, Aik Choon; Kang, Jaewoo
2018-01-25
Molecular biomarkers that can predict drug efficacy in cancer patients are crucial components for the advancement of precision medicine. However, identifying these molecular biomarkers remains a laborious and challenging task. Next-generation sequencing of patients and preclinical models have increasingly led to the identification of novel gene-mutation-drug relations, and these results have been reported and published in the scientific literature. Here, we present two new computational methods that utilize all the PubMed articles as domain specific background knowledge to assist in the extraction and curation of gene-mutation-drug relations from the literature. The first method uses the Biomedical Entity Search Tool (BEST) scoring results as some of the features to train the machine learning classifiers. The second method uses not only the BEST scoring results, but also word vectors in a deep convolutional neural network model that are constructed from and trained on numerous documents such as PubMed abstracts and Google News articles. Using the features obtained from both the BEST search engine scores and word vectors, we extract mutation-gene and mutation-drug relations from the literature using machine learning classifiers such as random forest and deep convolutional neural networks. Our methods achieved better results compared with the state-of-the-art methods. We used our proposed features in a simple machine learning model, and obtained F1-scores of 0.96 and 0.82 for mutation-gene and mutation-drug relation classification, respectively. We also developed a deep learning classification model using convolutional neural networks, BEST scores, and the word embeddings that are pre-trained on PubMed or Google News data. Using deep learning, the classification accuracy improved, and F1-scores of 0.96 and 0.86 were obtained for the mutation-gene and mutation-drug relations, respectively. We believe that our computational methods described in this research could be used as an important tool in identifying molecular biomarkers that predict drug responses in cancer patients. We also built a database of these mutation-gene-drug relations that were extracted from all the PubMed abstracts. We believe that our database can prove to be a valuable resource for precision medicine researchers.
Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Jeanneret, Nicole; Regenspurg, Simona; Li, Po-E; Lo, Chien-Chi; McMurry, Kim; Gleasner, Cheryl D.; Vuyisich, Momchilo; Chain, Patrick S.
2015-01-01
The genome of strain GS3372 is the first publicly available strain of Aeribacillus pallidus. This endospore-forming thermophilic strain was isolated from a deep geothermal reservoir. The availability of this genome can contribute to the clarification of the taxonomy of the closely related Anoxybacillus, Geobacillus, and Aeribacillus genera. PMID:26316637
The complete genome of klassevirus – a novel picornavirus in pediatric stool
Greninger, Alexander L; Runckel, Charles; Chiu, Charles Y; Haggerty, Thomas; Parsonnet, Julie; Ganem, Donald; DeRisi, Joseph L
2009-01-01
Background Diarrhea kills 2 million children worldwide each year, yet an etiological agent is not found in approximately 30–50% of cases. Picornaviral genera such as enterovirus, kobuvirus, cosavirus, parechovirus, hepatovirus, teschovirus, and cardiovirus have all been found in human and animal diarrhea. Modern technologies, especially deep sequencing, allow rapid, high-throughput screening of clinical samples such as stool for new infectious agents associated with human disease. Results A pool of 141 pediatric gastroenteritis samples that were previously found to be negative for known diarrheal viruses was subjected to pyrosequencing. From a total of 937,935 sequence reads, a collection of 849 reads distantly related to Aichi virus were assembled and found to comprise 75% of a novel picornavirus genome. The complete genome was subsequently cloned and found to share 52.3% nucleotide pairwise identity and 38.9% amino acid identity to Aichi virus. The low level of sequence identity suggests a novel picornavirus genus which we have designated klassevirus. Blinded screening of 751 stool specimens from both symptomatic and asymptomatic individuals revealed a second positive case of klassevirus infection, which was subsequently found to be from the index case's 11-month old twin. Conclusion We report the discovery of human klassevirus 1, a member of a novel picornavirus genus, in stool from two infants from Northern California. Further characterization and epidemiological studies will be required to establish whether klasseviruses are significant causes of human infection. PMID:19538752
Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing
Wang, Wei; Wang, Yejun; Zhang, Qing; Qi, Yan; Guo, Dianjing
2009-01-01
Background Glandular trichomes produce a wide variety of commercially important secondary metabolites in many plant species. The most prominent anti-malarial drug artemisinin, a sesquiterpene lactone, is produced in glandular trichomes of Artemisia annua. However, only limited genomic information is currently available in this non-model plant species. Results We present a global characterization of A. annua glandular trichome transcriptome using 454 pyrosequencing. Sequencing runs using two normalized cDNA collections from glandular trichomes yielded 406,044 expressed sequence tags (average length = 210 nucleotides), which assembled into 42,678 contigs and 147,699 singletons. Performing a second sequencing run only increased the number of genes identified by ~30%, indicating that massively parallel pyrosequencing provides deep coverage of the A. annua trichome transcriptome. By BLAST search against the NCBI non-redundant protein database, putative functions were assigned to over 28,573 unigenes, including previously undescribed enzymes likely involved in sesquiterpene biosynthesis. Comparison with ESTs derived from trichome collections of other plant species revealed expressed genes in common functional categories across different plant species. RT-PCR analysis confirmed the expression of selected unigenes and novel transcripts in A. annua glandular trichomes. Conclusion The presence of contigs corresponding to enzymes for terpenoids and flavonoids biosynthesis suggests important metabolic activity in A. annua glandular trichomes. Our comprehensive survey of genes expressed in glandular trichome will facilitate new gene discovery and shed light on the regulatory mechanism of artemisinin metabolism and trichome function in A. annua. PMID:19818120
Prevention and treatment of deep vein thrombosis and pulmonary embolism in critically ill patients.
Yang, Jack C
2005-01-01
Deep vein thrombosis and pulmonary embolism remain common problems in the intensive care unit, with limb- and life-threatening complications that are potentially preventable. The intensive care unit clinician is called on to be vigilant with diagnosis and facile with prevention and treatment of thromboembolic disease (venous thromboembolism). This article reviews background, current options, and recommendations regarding the occurrence of deep vein thrombosis and pulmonary embolism in the intensive care unit population.
Bacterial community diversity of the deep-sea octocoral Paramuricea placomus.
Kellogg, Christina A; Ross, Steve W; Brooke, Sandra D
2016-01-01
Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus . Samples from five colonies of P. placomus were collected from Baltimore Canyon (379-382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68-90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas , which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.
Bacterial community diversity of the deep-sea octocoral Paramuricea placomus
Kellogg, Christina A.; Ross, Steve W.; Brooke, Sandra D.
2016-01-01
Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomuscolonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomusdoes not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.
Edgar, Robyn; Veerapaneni, Ram S.; D’Elia, Tom; Morris, Paul F.; Rogers, Scott O.
2013-01-01
Lake Vostok, the 7th largest (by volume) and 4th deepest lake on Earth, is covered by more than 3,700 m of ice, making it the largest subglacial lake known. The combination of cold, heat (from possible hydrothermal activity), pressure (from the overriding glacier), limited nutrients and complete darkness presents extreme challenges to life. Here, we report metagenomic/metatranscriptomic sequence analyses from four accretion ice sections from the Vostok 5G ice core. Two sections accreted in the vicinity of an embayment on the southwestern end of the lake, and the other two represented part of the southern main basin. We obtained 3,507 unique gene sequences from concentrates of 500 ml of 0.22 µm-filtered accretion ice meltwater. Taxonomic classifications (to genus and/or species) were possible for 1,623 of the sequences. Species determinations in combination with mRNA gene sequence results allowed deduction of the metabolic pathways represented in the accretion ice and, by extension, in the lake. Approximately 94% of the sequences were from Bacteria and 6% were from Eukarya. Only two sequences were from Archaea. In general, the taxa were similar to organisms previously described from lakes, brackish water, marine environments, soil, glaciers, ice, lake sediments, deep-sea sediments, deep-sea thermal vents, animals and plants. Sequences from aerobic, anaerobic, psychrophilic, thermophilic, halophilic, alkaliphilic, acidophilic, desiccation-resistant, autotrophic and heterotrophic organisms were present, including a number from multicellular eukaryotes. PMID:23843994
Shtarkman, Yury M; Koçer, Zeynep A; Edgar, Robyn; Veerapaneni, Ram S; D'Elia, Tom; Morris, Paul F; Rogers, Scott O
2013-01-01
Lake Vostok, the 7(th) largest (by volume) and 4(th) deepest lake on Earth, is covered by more than 3,700 m of ice, making it the largest subglacial lake known. The combination of cold, heat (from possible hydrothermal activity), pressure (from the overriding glacier), limited nutrients and complete darkness presents extreme challenges to life. Here, we report metagenomic/metatranscriptomic sequence analyses from four accretion ice sections from the Vostok 5G ice core. Two sections accreted in the vicinity of an embayment on the southwestern end of the lake, and the other two represented part of the southern main basin. We obtained 3,507 unique gene sequences from concentrates of 500 ml of 0.22 µm-filtered accretion ice meltwater. Taxonomic classifications (to genus and/or species) were possible for 1,623 of the sequences. Species determinations in combination with mRNA gene sequence results allowed deduction of the metabolic pathways represented in the accretion ice and, by extension, in the lake. Approximately 94% of the sequences were from Bacteria and 6% were from Eukarya. Only two sequences were from Archaea. In general, the taxa were similar to organisms previously described from lakes, brackish water, marine environments, soil, glaciers, ice, lake sediments, deep-sea sediments, deep-sea thermal vents, animals and plants. Sequences from aerobic, anaerobic, psychrophilic, thermophilic, halophilic, alkaliphilic, acidophilic, desiccation-resistant, autotrophic and heterotrophic organisms were present, including a number from multicellular eukaryotes.
Wang, Chen; Han, Jian; Liu, Chonghuai; Kibet, Korir Nicholas; Kayesh, Emrul; Shangguan, Lingfei; Li, Xiaoying; Fang, Jinggui
2012-03-29
MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved miRNAs, indicating that specific miRNAs exist in Amur grape. These results show that a number of regulatory miRNAs exist in Amur grape and play an important role in Amur grape growth, development, and response to abiotic or biotic stress.
2014-01-01
Background Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. Conclusions Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies. PMID:24533922
Téllez-Sosa, Juan; Rodríguez, Mario Henry; Gómez-Barreto, Rosa E.; Valdovinos-Torres, Humberto; Hidalgo, Ana Cecilia; Cruz-Hervert, Pablo; Luna, René Santos; Carrillo-Valenzo, Erik; Ramos, Celso; García-García, Lourdes; Martínez-Barnetche, Jesús
2013-01-01
Background Influenza viruses display a high mutation rate and complex evolutionary patterns. Next-generation sequencing (NGS) has been widely used for qualitative and semi-quantitative assessment of genetic diversity in complex biological samples. The “deep sequencing” approach, enabled by the enormous throughput of current NGS platforms, allows the identification of rare genetic viral variants in targeted genetic regions, but is usually limited to a small number of samples. Methodology and Principal Findings We designed a proof-of-principle study to test whether redistributing sequencing throughput from a high depth-small sample number towards a low depth-large sample number approach is feasible and contributes to influenza epidemiological surveillance. Using 454-Roche sequencing, we sequenced at a rather low depth, a 307 bp amplicon of the neuraminidase gene of the Influenza A(H1N1) pandemic (A(H1N1)pdm) virus from cDNA amplicons pooled in 48 barcoded libraries obtained from nasal swab samples of infected patients (n = 299) taken from May to November, 2009 pandemic period in Mexico. This approach revealed that during the transition from the first (May-July) to second wave (September-November) of the pandemic, the initial genetic variants were replaced by the N248D mutation in the NA gene, and enabled the establishment of temporal and geographic associations with genetic diversity and the identification of mutations associated with oseltamivir resistance. Conclusions NGS sequencing of a short amplicon from the NA gene at low sequencing depth allowed genetic screening of a large number of samples, providing insights to viral genetic diversity dynamics and the identification of genetic variants associated with oseltamivir resistance. Further research is needed to explain the observed replacement of the genetic variants seen during the second wave. As sequencing throughput rises and library multiplexing and automation improves, we foresee that the approach presented here can be scaled up for global genetic surveillance of influenza and other infectious diseases. PMID:23843978
Using small RNA (sRNA) deep sequencing to understand global virus distribution in plants
USDA-ARS?s Scientific Manuscript database
Small RNAs (sRNAs), a class of regulatory RNAs, have been used to serve as the specificity determinants of suppressing gene expression in plants and animals. Next generation sequencing (NGS) uncovered the sRNA landscape in most organisms including their associated microbes. In the current study, w...
Fatal Metacestode Infection in Bornean Orangutan Caused by Unknown Versteria Species
Gendron-Fitzpatrick, Annette; Deering, Kathleen M.; Wallace, Roberta S.; Clyde, Victoria L.; Lauck, Michael; Rosen, Gail E.; Bennett, Andrew J.; Greiner, Ellis C.; O’Connor, David H.
2014-01-01
A captive juvenile Bornean orangutan (Pongo pygmaeus) died from an unknown disseminated parasitic infection. Deep sequencing of DNA from infected tissues, followed by gene-specific PCR and sequencing, revealed a divergent species within the newly proposed genus Versteria (Cestoda: Taeniidae). Versteria may represent a previously unrecognized risk to primate health. PMID:24377497
USDA-ARS?s Scientific Manuscript database
The phylogeny of Amaryllidaceae tribe Hippeastreae was inferred using chloroplast (3’ycf1, ndhF, trnL-F) and nuclear (ITS rDNA) sequence data under maximum parsimony and maximum likelihood frameworks. Network analyses were applied to resolve conflicting signals among data sets and putative scenarios...
The partial 16S rDNA gene sequences of two thermophilic archaeal strains, TY and TYS, previously isolated from the Guaymas Basin hydrothermal vent site were determined. Lipid analyses and a comparative analysis performed with 16S rDNA sequences of similar thermophilic species sho...
Analysis of alterative cleavage and polyadenylation by 3′ region extraction and deep sequencing
Hoque, Mainul; Ji, Zhe; Zheng, Dinghai; Luo, Wenting; Li, Wencheng; You, Bei; Park, Ji Yeon; Yehia, Ghassan; Tian, Bin
2012-01-01
Alternative cleavage and polyadenylation (APA) leads to mRNA isoforms with different coding sequences (CDS) and/or 3′ untranslated regions (3′UTRs). Using 3′ Region Extraction And Deep Sequencing (3′READS), a method which addresses the internal priming and oligo(A) tail issues that commonly plague polyA site (pA) identification, we comprehensively mapped pAs in the mouse genome, thoroughly annotating 3′ ends of genes and revealing over five thousand pAs (~8% of total) flanked by A-rich sequences, which have hitherto been overlooked. About 79% of mRNA genes and 66% of long non-coding RNA (lncRNA) genes have APA; but these two gene types have distinct usage patterns for pAs in introns and upstream exons. Promoter-distal pAs become relatively more abundant during embryonic development and cell differentiation, a trend affecting pAs in both 3′-most exons and upstream regions. Upregulated isoforms generally have stronger pAs, suggesting global modulation of the 3′ end processing activity in development and differentiation. PMID:23241633
Microbes in deep marine sediments viewed through amplicon sequencing and metagenomics
NASA Astrophysics Data System (ADS)
Biddle, J.; Leon, Z. R.; Russell, J. A., III; Martino, A. J.
2016-12-01
Nearly twenty percent of microbial biomass on Earth can be found in the marine subsurface. The majority of this is concentrated on continental margins, which have been investigated by scientific drilling. On the Costa Rica Margin, Iberian Margin and Peru Margins, sediment samples have been investigated through DNA extraction followed by amplicon and metagenomic sequencing. Overall samples show a high degree of microbial diversity, including many lineages of newly defined groups. In this talk, metagenome assembled genomes of unusual lineages will be presented, including their relationships to shallower relatives. From Costa Rica, in particular, we have retrieved deep relatives of Lokiarchaeota and Thorarchaeota, as well as other deeply branching archaeal relatives. We discuss their genome similarities to both other archaea and eukaryotes. From the Iberian Margin, relatives of Atribacteria and Aerophobetes will be discussed. Finally, we will detail the knowledge lost or gained depending on whether samples are studied via amplicon sequencing or total metagenomics, as studies in other environments have shown that up to 15% of microbial diversity is ignored when samples are studied via amplicon sequencing alone.
Li, Chenghua; Feng, Weida; Qiu, Lihua; Xia, Changge; Su, Xiurong; Jin, Chunhua; Zhou, Tingting; Zeng, Yuan; Li, Taiwu
2012-08-01
MicroRNAs (miRNAs) constitute a family of small RNA species which have been demonstrated to be one of key effectors in mediating host-pathogen interaction. In this study, two haemocytes miRNA libraries were constructed with deep sequenced by illumina Hiseq2000 from healthy (L1) and skin ulceration syndrome Apostichopus japonicus (L2). The high throughput solexa sequencing resulted in 9,579,038 and 7,742,558 clean data from L1 and L2, respectively. Sequences analysis revealed that 40 conserved miRNAs were found in both libraries, in which let-7 and mir-125 were speculated to be clustered together and expressed accordingly. Eighty-six miRNA candidates were also identified by reference genome search and stem-loop structure prediction. Importantly, mir-31 and mir-2008 displayed significant differential expression between the two libraries according to FPKM model, which might be considered as promising targets for elucidating the intrinsic mechanism of skin ulceration syndrome outbreak in the species. Copyright © 2012 Elsevier Ltd. All rights reserved.
Analysis of deep learning methods for blind protein contact prediction in CASP12.
Wang, Sheng; Sun, Siqi; Xu, Jinbo
2018-03-01
Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX-Contact server, which is an early implementation of our deep learning method for contact prediction. On a set of 38 free-modeling target domains with a median family size of around 58 effective sequences, our server obtained an average top L/5 long- and medium-range contact accuracy of 47% and 44%, respectively (L = length). A complete implementation has an average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact prediction as a pixel-level image labeling problem and simultaneously predicts all residue pairs of a protein using a combination of two deep residual neural networks, taking as input the residue conservation information, predicted secondary structure and solvent accessibility, contact potential, and coevolution information. Our approach differs from existing methods mainly in (1) formulating contact prediction as a pixel-level image labeling problem instead of an image-level classification problem; (2) simultaneously predicting all contacts of an individual protein to make effective use of contact occurrence patterns; and (3) integrating both one-dimensional and two-dimensional deep convolutional neural networks to effectively learn complex sequence-structure relationship including high-order residue correlation. This paper discusses the RaptorX-Contact pipeline, both contact prediction and contact-based folding results, and finally the strength and weakness of our method. © 2017 Wiley Periodicals, Inc.
Diversity and Biogeography of Bathyal and Abyssal Seafloor Bacteria
Bienhold, Christina; Zinger, Lucie; Boetius, Antje; Ramette, Alban
2016-01-01
The deep ocean floor covers more than 60% of the Earth’s surface, and hosts diverse bacterial communities with important functions in carbon and nutrient cycles. The identification of key bacterial members remains a challenge and their patterns of distribution in seafloor sediment yet remain poorly described. Previous studies were either regionally restricted or included few deep-sea sediments, and did not specifically test biogeographic patterns across the vast oligotrophic bathyal and abyssal seafloor. Here we define the composition of this deep seafloor microbiome by describing those bacterial operational taxonomic units (OTU) that are specifically associated with deep-sea surface sediments at water depths ranging from 1000–5300 m. We show that the microbiome of the surface seafloor is distinct from the subsurface seafloor. The cosmopolitan bacterial OTU were affiliated with the clades JTB255 (class Gammaproteobacteria, order Xanthomonadales) and OM1 (Actinobacteria, order Acidimicrobiales), comprising 21% and 7% of their respective clades, and about 1% of all sequences in the study. Overall, few sequence-abundant bacterial types were globally dispersed and displayed positive range-abundance relationships. Most bacterial populations were rare and exhibited a high degree of endemism, explaining the substantial differences in community composition observed over large spatial scales. Despite the relative physicochemical uniformity of deep-sea sediments, we identified indicators of productivity regimes, especially sediment organic matter content, as factors significantly associated with changes in bacterial community structure across the globe. PMID:26814838
Diverse deep-sea fungi from the South China Sea and their antimicrobial activity.
Zhang, Xiao-Yong; Zhang, Yun; Xu, Xin-Ya; Qi, Shu-Hua
2013-11-01
We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84-92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics' discovery and further increase the pool of fungi available for natural bioactive product screening.
High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean.
Xu, Wei; Pang, Ka-Lai; Luo, Zhu-Hua
2014-11-01
Knowledge about the presence and ecological significance of bacteria and archaea in the deep-sea environments has been well recognized, but the eukaryotic microorganisms, such as fungi, have rarely been reported. The present study investigated the composition and abundance of fungal community in the deep-sea sediments of the Pacific Ocean. In this study, a total of 1,947 internal transcribed spacer (ITS) regions of fungal rRNA gene clones were recovered from five sediment samples at the Pacific Ocean (water depths ranging from 5,017 to 6,986 m) using three different PCR primer sets. There were 16, 17, and 15 different operational taxonomic units (OTUs) identified from fungal-universal, Ascomycota-, and Basidiomycota-specific clone libraries, respectively. Majority of the recovered sequences belonged to diverse phylotypes of Ascomycota (25 phylotypes) and Basidiomycota (18 phylotypes). The multiple primer approach totally recovered 27 phylotypes which showed low similarities (≤97 %) with available fungal sequences in the GenBank, suggesting possible new fungal taxa occurring in the deep-sea environments or belonging to taxa not represented in the GenBank. Our results also recovered high fungal LSU rRNA gene copy numbers (3.52 × 10(6) to 5.23 × 10(7)copies/g wet sediment) from the Pacific Ocean sediment samples, suggesting that the fungi might be involved in important ecological functions in the deep-sea environments.
Govindarajan, Subramaniam S.; Qi, Feng; Li, Jian-Liang; Sahoo, Malaya K.
2017-01-01
ABSTRACT Paenibacillus sp. strain KS1 was isolated from an epiphyte, Tillandsia usneoides (Spanish moss), in central Florida, USA. Here, we report a draft genome sequence of this strain, which consists of a total of 398 contigs spanning 6,508,195 bp, with a G+C content of 46.5% and comprising 5,401 predicted coding sequences. PMID:28153888
Xiao, Bingbing; Niu, Xiaoxi; Han, Na; Wang, Ben; Du, Pengcheng; Na, Risu; Chen, Chen; Liao, Qinping
2016-06-02
Bacterial vaginosis (BV) is a highly prevalent disease in women, and increases the risk of pelvic inflammatory disease. It has been given wide attention because of the high recurrence rate. Traditional diagnostic methods based on microscope providing limited information on the vaginal microbiota increase the difficulty in tracing the development of the disease in bacteria resistance condition. In this study, we used deep-sequencing technology to observe dynamic variation of the vaginal microbiota at three major time points during treatment, at D0 (before treatment), D7 (stop using the antibiotics) and D30 (the 30-day follow-up visit). Sixty-five patients with BV were enrolled (48 were cured and 17 were not cured), and their bacterial composition of the vaginal microbiota was compared. Interestingly, we identified 9 patients might be recurrence. We also introduced a new measurement point of D7, although its microbiota were significantly inhabited by antibiotic and hard to be observed by traditional method. The vaginal microbiota in deep-sequencing-view present a strong correlation to the final outcome. Thus, coupled with detailed individual bioinformatics analysis and deep-sequencing technology, we may illustrate a more accurate map of vaginal microbial to BV patients, which provide a new opportunity to reduce the rate of recurrence of BV.
Brouilette, Scott; Kuersten, Scott; Mein, Charles; Bozek, Monika; Terry, Anna; Dias, Kerith-Rae; Bhaw-Rosun, Leena; Shintani, Yasunori; Coppen, Steven; Ikebe, Chiho; Sawhney, Vinit; Campbell, Niall; Kaneko, Masahiro; Tano, Nobuko; Ishida, Hidekazu; Suzuki, Ken; Yashiro, Kenta
2012-10-01
Deep sequencing of single cell-derived cDNAs offers novel insights into oncogenesis and embryogenesis. However, traditional library preparation for RNA-seq analysis requires multiple steps with consequent sample loss and stochastic variation at each step significantly affecting output. Thus, a simpler and better protocol is desirable. The recently developed hyperactive Tn5-mediated library preparation, which brings high quality libraries, is likely one of the solutions. Here, we tested the applicability of hyperactive Tn5-mediated library preparation to deep sequencing of single cell cDNA, optimized the protocol, and compared it with the conventional method based on sonication. This new technique does not require any expensive or special equipment, which secures wider availability. A library was constructed from only 100 ng of cDNA, which enables the saving of precious specimens. Only a few steps of robust enzymatic reaction resulted in saved time, enabling more specimens to be prepared at once, and with a more reproducible size distribution among the different specimens. The obtained RNA-seq results were comparable to the conventional method. Thus, this Tn5-mediated preparation is applicable for anyone who aims to carry out deep sequencing for single cell cDNAs. Copyright © 2012 Wiley Periodicals, Inc.
Guo, Feng; Wang, Zhi-Ping; Yu, Ke; Zhang, T.
2015-01-01
Foaming of activated sludge (AS) causes adverse impacts on wastewater treatment operation and hygiene. In this study, we investigated the microbial communities of foam, foaming AS and non-foaming AS in a sewage treatment plant via deep-sequencing of the taxonomic marker genes 16S rRNA and mycobacterial rpoB and a metagenomic approach. In addition to Actinobacteria, many genera (e.g., Clostridium XI, Arcobacter, Flavobacterium) were more abundant in the foam than in the AS. On the other hand, deep-sequencing of rpoB did not detect any obligate pathogenic mycobacteria in the foam. We found that unknown factors other than the abundance of Gordonia sp. could determine the foaming process, because abundance of the same species was stable before and after a foaming event over six months. More interestingly, although the dominant Gordonia foam former was the closest with G. amarae, it was identified as an undescribed Gordonia species by referring to the 16S rRNA gene, gyrB and, most convincingly, the reconstructed draft genome from metagenomic reads. Our results, based on metagenomics and deep sequencing, reveal that foams are derived from diverse taxa, which expands previous understanding and provides new insight into the underlying complications of the foaming phenomenon in AS. PMID:25560234
Oasis 2: improved online analysis of small RNA-seq data.
Rahman, Raza-Ur; Gautam, Abhivyakti; Bethune, Jörn; Sattar, Abdul; Fiosins, Maksims; Magruder, Daniel Sumner; Capece, Vincenzo; Shomroni, Orr; Bonn, Stefan
2018-02-14
Small RNA molecules play important roles in many biological processes and their dysregulation or dysfunction can cause disease. The current method of choice for genome-wide sRNA expression profiling is deep sequencing. Here we present Oasis 2, which is a new main release of the Oasis web application for the detection, differential expression, and classification of small RNAs in deep sequencing data. Compared to its predecessor Oasis, Oasis 2 features a novel and speed-optimized sRNA detection module that supports the identification of small RNAs in any organism with higher accuracy. Next to the improved detection of small RNAs in a target organism, the software now also recognizes potential cross-species miRNAs and viral and bacterial sRNAs in infected samples. In addition, novel miRNAs can now be queried and visualized interactively, providing essential information for over 700 high-quality miRNA predictions across 14 organisms. Robust biomarker signatures can now be obtained using the novel enhanced classification module. Oasis 2 enables biologists and medical researchers to rapidly analyze and query small RNA deep sequencing data with improved precision, recall, and speed, in an interactive and user-friendly environment. Oasis 2 is implemented in Java, J2EE, mysql, Python, R, PHP and JavaScript. It is freely available at https://oasis.dzne.de.
Liu, Tong; Hu, John; Zuo, Yuhu; Jin, Yazhong; Hou, Jumei
2016-04-01
Deep sequencing of small RNAs is a useful tool to identify novel small RNAs that may be involved in fungal growth and pathogenesis. In this study, we used HiSeq deep sequencing to identify 747,487 unique small RNAs from Curvularia lunata. Among these small RNAs were 1012 microRNA-like RNAs (milRNAs), which are similar to other known microRNAs, and 48 potential novel milRNAs without homologs in other organisms have been identified using the miRBase© database. We used quantitative PCR to analyze the expression of four of these milRNAs from C. lunata at different developmental stages. The analysis revealed several changes associated with germinating conidia and mycelial growth, suggesting that these milRNAs may play a role in pathogen infection and mycelial growth. A total of 8334 target mRNAs for the 1012 milRNAs that were identified, and 256 target mRNAs for the 48 novel milRNAs were predicted by computational analysis. These target mRNAs of milRNAs were also performed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. To our knowledge, this study is the first report of C. lunata's milRNA profiles. This information will provide a better understanding of pathogen development and infection mechanism.
Wilson, M R; Zimmermann, L L; Crawford, E D; Sample, H A; Soni, P R; Baker, A N; Khan, L M; DeRisi, J L
2017-03-01
Solid organ transplant patients are vulnerable to suffering neurologic complications from a wide array of viral infections and can be sentinels in the population who are first to get serious complications from emerging infections like the recent waves of arboviruses, including West Nile virus, Chikungunya virus, Zika virus, and Dengue virus. The diverse and rapidly changing landscape of possible causes of viral encephalitis poses great challenges for traditional candidate-based infectious disease diagnostics that already fail to identify a causative pathogen in approximately 50% of encephalitis cases. We present the case of a 14-year-old girl on immunosuppression for a renal transplant who presented with acute meningoencephalitis. Traditional diagnostics failed to identify an etiology. RNA extracted from her cerebrospinal fluid was subjected to unbiased metagenomic deep sequencing, enhanced with the use of a Cas9-based technique for host depletion. This analysis identified West Nile virus (WNV). Convalescent serum serologies subsequently confirmed WNV seroconversion. These results support a clear clinical role for metagenomic deep sequencing in the setting of suspected viral encephalitis, especially in the context of the high-risk transplant patient population. © 2016 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of American Society of Transplant Surgeons.
A deep learning framework for causal shape transformation.
Lore, Kin Gwn; Stoecklein, Daniel; Davies, Michael; Ganapathysubramanian, Baskar; Sarkar, Soumik
2018-02-01
Recurrent neural network (RNN) and Long Short-term Memory (LSTM) networks are the common go-to architecture for exploiting sequential information where the output is dependent on a sequence of inputs. However, in most considered problems, the dependencies typically lie in the latent domain which may not be suitable for applications involving the prediction of a step-wise transformation sequence that is dependent on the previous states only in the visible domain with a known terminal state. We propose a hybrid architecture of convolution neural networks (CNN) and stacked autoencoders (SAE) to learn a sequence of causal actions that nonlinearly transform an input visual pattern or distribution into a target visual pattern or distribution with the same support and demonstrated its practicality in a real-world engineering problem involving the physics of fluids. We solved a high-dimensional one-to-many inverse mapping problem concerning microfluidic flow sculpting, where the use of deep learning methods as an inverse map is very seldom explored. This work serves as a fruitful use-case to applied scientists and engineers in how deep learning can be beneficial as a solution for high-dimensional physical problems, and potentially opening doors to impactful advance in fields such as material sciences and medical biology where multistep topological transformations is a key element. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Davies, T. A.
1976-01-01
Described are the background, operation, and findings of the work of the deep sea drilling vessel Glomar Challenger, which has taken 8,638 core samples from 573 holes at 392 sites on the floor of the Earth's oceans. (SL)
Evidence for a persistent microbial seed bank throughout the global ocean
Gibbons, Sean M.; Caporaso, J. Gregory; Pirrung, Meg; Field, Dawn; Knight, Rob; Gilbert, Jack A.
2013-01-01
Do bacterial taxa demonstrate clear endemism, like macroorganisms, or can one site’s bacterial community recapture the total phylogenetic diversity of the world’s oceans? Here we compare a deep bacterial community characterization from one site in the English Channel (L4-DeepSeq) with 356 datasets from the International Census of Marine Microbes (ICoMM) taken from around the globe (ranging from marine pelagic and sediment samples to sponge-associated environments). At the L4-DeepSeq site, increasing sequencing depth uncovers greater phylogenetic overlap with the global ICoMM data. This site contained 31.7–66.2% of operational taxonomic units identified in a given ICoMM biome. Extrapolation of this overlap suggests that 1.93 × 1011 sequences from the L4 site would capture all ICoMM bacterial phylogenetic diversity. Current technology trends suggest this limit may be attainable within 3 y. These results strongly suggest the marine biosphere maintains a previously undetected, persistent microbial seed bank. PMID:23487761
Zhang, De-Chao; Liu, Yan-Xia; Li, Xin-Zheng
2015-09-01
Deep sea ferromanganese (FeMn) nodules contain metallic mineral resources and have great economic potential. In this study, a combination of culture-dependent and culture-independent (16S rRNA genes clone library and pyrosequencing) methods was used to investigate the bacterial diversity in FeMn nodules from Jiaolong Seamount, the South China Sea. Eleven bacterial strains including some moderate thermophiles were isolated. The majority of strains belonged to the phylum Proteobacteria; one isolate belonged to the phylum Firmicutes. A total of 259 near full-length bacterial 16S rRNA gene sequences in a clone library and 67,079 valid reads obtained using pyrosequencing indicated that members of the Gammaproteobacteria dominated, with the most abundant bacterial genera being Pseudomonas and Alteromonas. Sequence analysis indicated the presence of many organisms whose closest relatives are known manganese oxidizers, iron reducers, hydrogen-oxidizing bacteria and methylotrophs. This is the first reported investigation of bacterial diversity associated with deep sea FeMn nodules from the South China Sea.
Zhu, Yuan O; Aw, Pauline P K; de Sessions, Paola Florez; Hong, Shuzhen; See, Lee Xian; Hong, Lewis Z; Wilm, Andreas; Li, Chen Hao; Hue, Stephane; Lim, Seng Gee; Nagarajan, Niranjan; Burkholder, William F; Hibberd, Martin
2017-10-27
Viral populations are complex, dynamic, and fast evolving. The evolution of groups of closely related viruses in a competitive environment is termed quasispecies. To fully understand the role that quasispecies play in viral evolution, characterizing the trajectories of viral genotypes in an evolving population is the key. In particular, long-range haplotype information for thousands of individual viruses is critical; yet generating this information is non-trivial. Popular deep sequencing methods generate relatively short reads that do not preserve linkage information, while third generation sequencing methods have higher error rates that make detection of low frequency mutations a bioinformatics challenge. Here we applied BAsE-Seq, an Illumina-based single-virion sequencing technology, to eight samples from four chronic hepatitis B (CHB) patients - once before antiviral treatment and once after viral rebound due to resistance. With single-virion sequencing, we obtained 248-8796 single-virion sequences per sample, which allowed us to find evidence for both hard and soft selective sweeps. We were able to reconstruct population demographic history that was independently verified by clinically collected data. We further verified four of the samples independently through PacBio SMRT and Illumina Pooled deep sequencing. Overall, we showed that single-virion sequencing yields insight into viral evolution and population dynamics in an efficient and high throughput manner. We believe that single-virion sequencing is widely applicable to the study of viral evolution in the context of drug resistance and host adaptation, allows differentiation between soft or hard selective sweeps, and may be useful in the reconstruction of intra-host viral population demographic history.
Deep Packet/Flow Analysis using GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Qian; Wu, Wenji; DeMar, Phil
Deep packet inspection (DPI) faces severe performance challenges in high-speed networks (40/100 GE) as it requires a large amount of raw computing power and high I/O throughputs. Recently, researchers have tentatively used GPUs to address the above issues and boost the performance of DPI. Typically, DPI applications involve highly complex operations in both per-packet and per-flow data level, often in real-time. The parallel architecture of GPUs fits exceptionally well for per-packet network traffic processing. However, for stateful network protocols such as TCP, their data stream need to be reconstructed in a per-flow level to deliver a consistent content analysis. Sincemore » the flow-centric operations are naturally antiparallel and often require large memory space for buffering out-of-sequence packets, they can be problematic for GPUs, whose memory is normally limited to several gigabytes. In this work, we present a highly efficient GPU-based deep packet/flow analysis framework. The proposed design includes a purely GPU-implemented flow tracking and TCP stream reassembly. Instead of buffering and waiting for TCP packets to become in sequence, our framework process the packets in batch and uses a deterministic finite automaton (DFA) with prefix-/suffix- tree method to detect patterns across out-of-sequence packets that happen to be located in different batches. In conclusion, evaluation shows that our code can reassemble and forward tens of millions of packets per second and conduct a stateful signature-based deep packet inspection at 55 Gbit/s using an NVIDIA K40 GPU.« less
Demopoulos, Amanda W.J.; Bourque, Jill R.; Frometa, Janessy
2014-01-01
Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350–500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm−2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher’s α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L. pertusa may influence the macrofaunal community structure beyond the edges of the reef. This study represents the first assessment of L. pertusa-associated sediment communities in the GOM and provides baseline data that can help define the role of transition zones, from deep reefs to soft sediments, in shaping macrofaunal community structure and maintaining biodiversity; this information can help guide future conservation and management activities.
Metagenomic Analysis of Viral Communities in (Hado)Pelagic Sediments
Yoshida, Mitsuhiro; Takaki, Yoshihiro; Eitoku, Masamitsu; Nunoura, Takuro; Takai, Ken
2013-01-01
In this study, we analyzed viral metagenomes (viromes) in the sedimentary habitats of three geographically and geologically distinct (hado)pelagic environments in the northwest Pacific; the Izu-Ogasawara Trench (water depth = 9,760 m) (OG), the Challenger Deep in the Mariana Trench (10,325 m) (MA), and the forearc basin off the Shimokita Peninsula (1,181 m) (SH). Virus abundance ranged from 106 to 1011 viruses/cm3 of sediments (down to 30 cm below the seafloor [cmbsf]). We recovered viral DNA assemblages (viromes) from the (hado)pelagic sediment samples and obtained a total of 37,458, 39,882, and 70,882 sequence reads by 454 GS FLX Titanium pyrosequencing from the virome libraries of the OG, MA, and SH (hado)pelagic sediments, respectively. Only 24−30% of the sequence reads from each virome library exhibited significant similarities to the sequences deposited in the public nr protein database (E-value <10−3 in BLAST). Among the sequences identified as potential viral genes based on the BLAST search, 95−99% of the sequence reads in each library were related to genes from single-stranded DNA (ssDNA) viral families, including Microviridae, Circoviridae, and Geminiviridae. A relatively high abundance of sequences related to the genetic markers (major capsid protein [VP1] and replication protein [Rep]) of two ssDNA viral groups were also detected in these libraries, thereby revealing a high genotypic diversity of their viruses (833 genotypes for VP1 and 2,551 genotypes for Rep). A majority of the viral genes predicted from each library were classified into three ssDNA viral protein categories: Rep, VP1, and minor capsid protein. The deep-sea sedimentary viromes were distinct from the viromes obtained from the oceanic and fresh waters and marine eukaryotes, and thus, deep-sea sediments harbor novel viromes, including previously unidentified ssDNA viruses. PMID:23468952
Metagenomic analysis of viral communities in (hado)pelagic sediments.
Yoshida, Mitsuhiro; Takaki, Yoshihiro; Eitoku, Masamitsu; Nunoura, Takuro; Takai, Ken
2013-01-01
In this study, we analyzed viral metagenomes (viromes) in the sedimentary habitats of three geographically and geologically distinct (hado)pelagic environments in the northwest Pacific; the Izu-Ogasawara Trench (water depth = 9,760 m) (OG), the Challenger Deep in the Mariana Trench (10,325 m) (MA), and the forearc basin off the Shimokita Peninsula (1,181 m) (SH). Virus abundance ranged from 10(6) to 10(11) viruses/cm(3) of sediments (down to 30 cm below the seafloor [cmbsf]). We recovered viral DNA assemblages (viromes) from the (hado)pelagic sediment samples and obtained a total of 37,458, 39,882, and 70,882 sequence reads by 454 GS FLX Titanium pyrosequencing from the virome libraries of the OG, MA, and SH (hado)pelagic sediments, respectively. Only 24-30% of the sequence reads from each virome library exhibited significant similarities to the sequences deposited in the public nr protein database (E-value <10(-3) in BLAST). Among the sequences identified as potential viral genes based on the BLAST search, 95-99% of the sequence reads in each library were related to genes from single-stranded DNA (ssDNA) viral families, including Microviridae, Circoviridae, and Geminiviridae. A relatively high abundance of sequences related to the genetic markers (major capsid protein [VP1] and replication protein [Rep]) of two ssDNA viral groups were also detected in these libraries, thereby revealing a high genotypic diversity of their viruses (833 genotypes for VP1 and 2,551 genotypes for Rep). A majority of the viral genes predicted from each library were classified into three ssDNA viral protein categories: Rep, VP1, and minor capsid protein. The deep-sea sedimentary viromes were distinct from the viromes obtained from the oceanic and fresh waters and marine eukaryotes, and thus, deep-sea sediments harbor novel viromes, including previously unidentified ssDNA viruses.
Li, Guo; Liu, Yong; Liu, Chao; Su, Zhongwu; Ren, Shuling; Wang, Yunyun; Deng, Tengbo; Huang, Donghai; Tian, Yongquan; Qiu, Yuanzheng
2016-09-06
Radioresistance is one of the major factors limiting the therapeutic efficacy and prognosis of patients with nasopharyngeal carcinoma (NPC). Accumulating evidence has suggested that aberrant expression of long noncoding RNAs (lncRNAs) contributes to cancer progression. Therefore, here we identified lncRNAs associated with radioresistance in NPC. The differential expression profiles of lncRNAs associated with NPC radioresistance were constructed by next-generation deep sequencing by comparing radioresistant NPC cells with their parental cells. LncRNA-related mRNAs were predicted and analyzed using bioinformatics algorithms compared with the mRNA profiles related to radioresistance obtained in our previous study. Several lncRNAs and associated mRNAs were validated in established NPC radioresistant cell models and NPC tissues. By comparison between radioresistant CNE-2-Rs and parental CNE-2 cells by next-generation deep sequencing, a total of 781 known lncRNAs and 2054 novel lncRNAs were annotated. The top five upregulated and downregulated known/novel lncRNAs were detected using quantitative real-time reverse transcription-polymerase chain reaction, and 7/10 known lncRNAs and 3/10 novel lncRNAs were demonstrated to have significant differential expression trends that were the same as those predicted by deep sequencing. From the prediction process, 13 pairs of lncRNAs and their associated genes were acquired, and the prediction trends of three pairs were validated in both radioresistant CNE-2-Rs and 6-10B-Rs cell lines, including lncRNA n373932 and SLITRK5, n409627 and PRSS12, and n386034 and RIMKLB. LncRNA n373932 and its related SLITRK5 showed dramatic expression changes in post-irradiation radioresistant cells and a negative expression correlation in NPC tissues (R = -0.595, p < 0.05). Our study provides an overview of the expression profiles of radioresistant lncRNAs and potentially related mRNAs, which will facilitate future investigations into the function of lncRNAs in NPC radioresistance.
Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China
NASA Astrophysics Data System (ADS)
Lin, W.; Gan, H.
2017-12-01
Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.
Yu, Lan; Bennett, James T.; Wynn, Julia; Carvill, Gemma L.; Cheung, Yee Him; Shen, Yufeng; Mychaliska, George B.; Azarow, Kenneth S.; Crombleholme, Timothy M.; Chung, Dai H.; Potoka, Douglas; Warner, Brad W.; Bucher, Brian; Lim, Foong-Yen; Pietsch, John; Stolar, Charles; Aspelund, Gudrun; Arkovitz, Marc S.; Mefford, Heather; Chung, Wendy K.
2014-01-01
Background Congenital diaphragmatic hernia (CDH) is a common birth defect affecting 1 in 3,000 births. It is characterized by herniation of abdominal viscera through an incompletely formed diaphragm. Although chromosomal anomalies and mutations in several genes have been implicated, the cause for most patients is unknown. Methods We used whole exome sequencing in two families with CDH and congenital heart disease, and identified mutations in GATA6 in both. Results In the first family, we identified a de novo missense mutation (c.1366C>T, p.R456C) in a sporadic CDH patient with tetralogy of Fallot. In the second, a nonsense mutation (c.712G>T, p.G238*) was identified in two siblings with CDH and a large ventricular septal defect. The G238* mutation was inherited from their mother, who was clinically affected with congenital absence of the pericardium, patent ductus arteriosus, and intestinal malrotation. Deep sequencing of blood and saliva derived DNA from the mother suggested somatic mosaicism as an explanation for her milder phenotype, with only approximately 15% mutant alleles. To determine the frequency of GATA6 mutations in CDH, we sequenced the gene in 378 patients with CDH. We identified one additional de novo mutation (c.1071delG, p.V358Cfs34*). Conclusions Mutations in GATA6 have been previously associated with pancreatic agenesis and congenital heart disease. We conclude that, in addition to the heart and the pancreas, GATA6 is involved in development of two additional organs, the diaphragm and the pericardium. In addition we have shown that de novo mutations can contribute to the development of CDH, a common birth defect. PMID:24385578
2010-01-01
Background Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum. Results A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (Illumina® Solexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme. Conclusions This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. PMID:20846421
2013-01-01
Background Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. Results To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48’909 unique sequences including splice variants, representing approximately 24’450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10’597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11’270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. Conclusions We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events. PMID:23530871
2014-01-01
Background Helicobacter pylori is well known for its relationship with the occurrence of several severe gastric diseases. The mechanisms of pathogenesis triggered by H. pylori are less well known. In this study, we report the genome sequence and genomic characterizations of H. pylori strain HLJ039 that was isolated from a patient with gastric cancer in the Chinese province of Heilongjiang, where there is a high incidence of gastric cancer. To investigate potential genomic features that may be involved in pathogenesis of carcinoma, the genome was compared to three previously sequenced genomes in this area. Result We obtained 42 contigs with a total length of 1,611,192 bp and predicted 1,687 coding sequences. Compared to strains isolated from gastritis and ulcers in this area, 10 different regions were identified as being unique for HLJ039; they mainly encoded type II restriction-modification enzyme, type II m6A methylase, DNA-cytosine methyltransferase, DNA methylase, and hypothetical proteins. A unique 547-bp fragment sharing 93% identity with a hypothetical protein of Helicobacter cinaedi ATCC BAA-847 was not present in any other previous H. pylori strains. Phylogenetic analysis based on core genome single nucleotide polymorphisms shows that HLJ039 is defined as hspEAsia subgroup, which belongs to the hpEastAsia group. Conclusion DNA methylations, variations of the genomic regions involved in restriction and modification systems, are the “hot” regions that may be related to the mechanism of H. pylori-induced gastric cancer. The genome sequence will provide useful information for the deep mining of potential mechanisms related to East Asian gastric cancer. PMID:24565107
Soler, Vincent José; Tran-Viet, Khanh-Nhat; Galiacy, Stéphane D; Limviphuvadh, Vachiranee; Klemm, Thomas Patrick; St Germain, Elizabeth; Fournié, Pierre R; Guillaud, Céline; Maurer-Stroh, Sebastian; Hawthorne, Felicia; Suarez, Cyrielle; Kantelip, Bernadette; Afshari, Natalie A; Creveaux, Isabelle; Luo, Xiaoyan; Meng, Weihua; Calvas, Patrick; Cassagne, Myriam; Arné, Jean-Louis; Rozen, Steven G; Malecaze, François; Young, Terri L
2014-01-01
Background Corneal intraepithelial dyskeratosis is an extremely rare condition. The classical form, affecting Native American Haliwa-Saponi tribe members, is called hereditary benign intraepithelial dyskeratosis (HBID). Herein, we present a new form of corneal intraepithelial dyskeratosis for which we identified the causative gene by using deep sequencing technology. Methods and results A seven member Caucasian French family with two corneal intraepithelial dyskeratosis affected individuals (6-year-old proband and his mother) was ascertained. The proband presented with bilateral complete corneal opacification and dyskeratosis. Palmoplantar hyperkeratosis and laryngeal dyskeratosis were associated with the phenotype. Histopathology studies of cornea and vocal cord biopsies showed dyskeratotic keratinisation. Quantitative PCR ruled out 4q35 duplication, classically described in HBID cases. Next generation sequencing with mean coverage of 50× using the Illumina Hi Seq and whole exome capture processing was performed. Sequence reads were aligned, and screened for single nucleotide variants and insertion/deletion calls. In-house pipeline filtering analyses and comparisons with available databases were performed. A novel missense mutation M77T was discovered for the gene NLRP1 which maps to chromosome 17p13.2. This was a de novo mutation in the proband’s mother, following segregation in the family, and not found in 738 control DNA samples. NLRP1 expression was determined in adult corneal epithelium. The amino acid change was found to destabilise significantly the protein structure. Conclusions We describe a new corneal intraepithelial dyskeratosis and how we identified its causative gene. The NLRP1 gene product is implicated in inflammation, autoimmune disorders, and caspase mediated apoptosis. NLRP1 polymorphisms are associated with various diseases. PMID:23349227
Genome-wide characterization of microRNA in foxtail millet (Setaria italica)
2013-01-01
Background MicroRNAs (miRNAs) are a class of short non-coding, endogenous RNAs that play key roles in many biological processes in both animals and plants. Although many miRNAs have been identified in a large number of organisms, the miRNAs in foxtail millet (Setaria italica) have, until now, been poorly understood. Results In this study, two replicate small RNA libraries from foxtail millet shoots were sequenced, and 40 million reads representing over 10 million unique sequences were generated. We identified 43 known miRNAs, 172 novel miRNAs and 2 mirtron precursor candidates in foxtail millet. Some miRNA*s of the known and novel miRNAs were detected as well. Further, eight novel miRNAs were validated by stem-loop RT-PCR. Potential targets of the foxtail millet miRNAs were predicted based on our strict criteria. Of the predicted target genes, 79% (351) had functional annotations in InterPro and GO analyses, indicating the targets of the miRNAs were involved in a wide range of regulatory functions and some specific biological processes. A total of 69 pairs of syntenic miRNA precursors that were conserved between foxtail millet and sorghum were found. Additionally, stem-loop RT-PCR was conducted to confirm the tissue-specific expression of some miRNAs in the four tissues identified by deep-sequencing. Conclusions We predicted, for the first time, 215 miRNAs and 447 miRNA targets in foxtail millet at a genome-wide level. The precursors, expression levels, miRNA* sequences, target functions, conservation, and evolution of miRNAs we identified were investigated. Some of the novel foxtail millet miRNAs and miRNA targets were validated experimentally. PMID:24330712
HLA Diversity in the 1000 Genomes Dataset
Gourraud, Pierre-Antoine; Khankhanian, Pouya; Cereb, Nezih; Yang, Soo Young; Feolo, Michael; Maiers, Martin; D. Rioux, John; Hauser, Stephen; Oksenberg, Jorge
2014-01-01
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies. PMID:24988075
HLA diversity in the 1000 genomes dataset.
Gourraud, Pierre-Antoine; Khankhanian, Pouya; Cereb, Nezih; Yang, Soo Young; Feolo, Michael; Maiers, Martin; Rioux, John D; Hauser, Stephen; Oksenberg, Jorge
2014-01-01
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies.
Snellings, André; Sagher, Oren; Anderson, David J.; Aldridge, J. Wayne
2016-01-01
Object A wavelet-based measure was developed to quantitatively assess neural background activity taken during surgical neurophysiological recordings to localize the boundaries of the subthalamic nucleus during target localization for deep brain stimulator implant surgery. Methods Neural electrophysiological data was recorded from 14 patients (20 tracks, n = 275 individual recording sites) with dopamine-sensitive idiopathic Parkinson’s disease during the target localization portion of deep brain stimulator implant surgery. During intraoperative recording the STN was identified based upon audio and visual monitoring of neural firing patterns, kinesthetic tests, and comparisons between neural behavior and known characteristics of the target nucleus. The quantitative wavelet-based measure was applied off-line using MATLAB software to measure the magnitude of the neural background activity, and the results of this analysis were compared to the intraoperative conclusions. Wavelet-derived estimates were compared to power spectral density measures. Results The wavelet-derived background levels were significantly higher in regions encompassed by the clinically estimated boundaries of the STN than in surrounding regions (STN: 225 ± 61 μV vs. ventral to STN: 112 ± 32 μV, and dorsal to STN: 136 ± 66 μV). In every track, the absolute maximum magnitude was found within the clinically identified STN. The wavelet-derived background levels provided a more consistent index with less variability than power spectral density. Conclusions The wavelet-derived background activity assessor can be calculated quickly, requires no spike sorting, and can be reliably used to identify the STN with very little subjective interpretation required. This method may facilitate rapid intraoperative identification of subthalamic nucleus borders. PMID:19344225
Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat
2014-01-01
Background Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution ‘nullisomic-tetrasomic’ lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. Results We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. Conclusions We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution. PMID:24726045
Association of gut microbiota with post-operative clinical course in Crohn’s disease
2013-01-01
Background The gut microbiome is altered in Crohn’s disease. Although individual taxa have been correlated with post-operative clinical course, global trends in microbial diversity have not been described in this context. Methods We collected mucosal biopsies from the terminal ileum and ascending colon during surgery and post-operative colonoscopy in 6 Crohn’s patients undergoing ileocolic resection (and 40 additional Crohn’s and healthy control patients undergoing either surgery or colonoscopy). Using next-generation sequencing technology, we profiled the gut microbiota in order to identify changes associated with remission or recurrence of inflammation. Results We performed 16S ribosomal profiling using 101 base-pair single-end sequencing on the Illumina GAIIx platform with deep coverage, at an average depth of 1.3 million high quality reads per sample. At the time of surgery, Crohn’s patients who would remain in remission were more similar to controls and more species-rich than Crohn’s patients with subsequent recurrence. Patients remaining in remission also exhibited greater stability of the microbiota through time. Conclusions These observations permitted an association of gut microbial profiles with probability of recurrence in this limited single-center study. These results suggest that profiling the gut microbiota may be useful in guiding treatment of Crohn’s patients undergoing surgery. PMID:23964800
Oral Microbiome of Deep and Shallow Dental Pockets In Chronic Periodontitis
Ge, Xiuchun; Rodriguez, Rafael; Trinh, My; Gunsolley, John; Xu, Ping
2013-01-01
We examined the subgingival bacterial biodiversity in untreated chronic periodontitis patients by sequencing 16S rRNA genes. The primary purpose of the study was to compare the oral microbiome in deep (diseased) and shallow (healthy) sites. A secondary purpose was to evaluate the influences of smoking, race and dental caries on this relationship. A total of 88 subjects from two clinics were recruited. Paired subgingival plaque samples were taken from each subject, one from a probing site depth >5 mm (deep site) and the other from a probing site depth ≤3mm (shallow site). A universal primer set was designed to amplify the V4–V6 region for oral microbial 16S rRNA sequences. Differences in genera and species attributable to deep and shallow sites were determined by statistical analysis using a two-part model and false discovery rate. Fifty-one of 170 genera and 200 of 746 species were found significantly different in abundances between shallow and deep sites. Besides previously identified periodontal disease-associated bacterial species, additional species were found markedly changed in diseased sites. Cluster analysis revealed that the microbiome difference between deep and shallow sites was influenced by patient-level effects such as clinic location, race and smoking. The differences between clinic locations may be influenced by racial distribution, in that all of the African Americans subjects were seen at the same clinic. Our results suggested that there were influences from the microbiome for caries and periodontal disease and these influences are independent. PMID:23762384
Li, S; Dumdei, E J; Blunt, J W; Munro, M H; Robinson, W T; Pannell, L K
1998-06-26
The structure, stereochemistry, and conformation of theonellapeptolide IIIe (1), a new 36-membered ring cyclic peptolide from the New Zealand deep-water sponge Lamellomorpha strongylata, is described. The sequence of the cytotoxic peptolide was determined through a combination of NMR and MS-MS techniques and confirmed by X-ray crystal structure analysis, which, with chiral HPLC, established the absolute stereochemistry.
Fusarium musae as cause of superficial and deep-seated human infections.
Esposto, M C; Prigitano, A; Tortorano, A M
2016-12-01
BLAST analysis in GenBank of 60 Fusarium verticillioides clinical isolates using the sequence of translation elongation factor 1-alpha allowed the identification of four F. musae confirming that this species is not a rare etiology of superficial and deep infections and that its habitat is not restricted to banana fruits. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Jeanneret, Nicole; Regenspurg, Simona; Li, Po-E; Lo, Chien-Chi; Johnson, Shannon; McMurry, Kim; Gleasner, Cheryl D; Vuyisich, Momchilo; Chain, Patrick S; Junier, Pilar
2015-08-27
The genome of strain GS3372 is the first publicly available strain of Aeribacillus pallidus. This endospore-forming thermophilic strain was isolated from a deep geothermal reservoir. The availability of this genome can contribute to the clarification of the taxonomy of the closely related Anoxybacillus, Geobacillus, and Aeribacillus genera. Copyright © 2015 Filippidou et al.
Ries, David; Holtgräwe, Daniela; Viehöver, Prisca; Weisshaar, Bernd
2016-03-15
The combination of bulk segregant analysis (BSA) and next generation sequencing (NGS), also known as mapping by sequencing (MBS), has been shown to significantly accelerate the identification of causal mutations for species with a reference genome sequence. The usual approach is to cross homozygous parents that differ for the monogenic trait to address, to perform deep sequencing of DNA from F2 plants pooled according to their phenotype, and subsequently to analyze the allele frequency distribution based on a marker table for the parents studied. The method has been successfully applied for EMS induced mutations as well as natural variation. Here, we show that pooling genetically diverse breeding lines according to a contrasting phenotype also allows high resolution mapping of the causal gene in a crop species. The test case was the monogenic locus causing red vs. green hypocotyl color in Beta vulgaris (R locus). We determined the allele frequencies of polymorphic sequences using sequence data from two diverging phenotypic pools of 180 B. vulgaris accessions each. A single interval of about 31 kbp among the nine chromosomes was identified which indeed contained the causative mutation. By applying a variation of the mapping by sequencing approach, we demonstrated that phenotype-based pooling of diverse accessions from breeding panels and subsequent direct determination of the allele frequency distribution can be successfully applied for gene identification in a crop species. Our approach made it possible to identify a small interval around the causative gene. Sequencing of parents or individual lines was not necessary. Whenever the appropriate plant material is available, the approach described saves time compared to the generation of an F2 population. In addition, we provide clues for planning similar experiments with regard to pool size and the sequencing depth required.
Global Patterns of Bacterial Beta-Diversity in Seafloor and Seawater Ecosystems
Zinger, Lucie; Amaral-Zettler, Linda A.; Fuhrman, Jed A.; Horner-Devine, M. Claire; Huse, Susan M.; Welch, David B. Mark; Martiny, Jennifer B. H.; Sogin, Mitchell; Boetius, Antje; Ramette, Alban
2011-01-01
Background Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems. Methodology/Principal Findings The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global ocean's surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities. Conclusions/Significance This first synthesis of global bacterial distribution across different ecosystems of the World's oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed. PMID:21931760
2012-01-01
Background Yellow lupin (Lupinus luteus L.) is a minor legume crop characterized by its high seed protein content. Although grown in several temperate countries, its orphan condition has limited the generation of genomic tools to aid breeding efforts to improve yield and nutritional quality. In this study, we report the construction of 454-expresed sequence tag (EST) libraries, carried out comparative studies between L. luteus and model legume species, developed a comprehensive set of EST-simple sequence repeat (SSR) markers, and validated their utility on diversity studies and transferability to related species. Results Two runs of 454 pyrosequencing yielded 205 Mb and 530 Mb of sequence data for L1 (young leaves, buds and flowers) and L2 (immature seeds) EST- libraries. A combined assembly (L1L2) yielded 71,655 contigs with an average contig length of 632 nucleotides. L1L2 contigs were clustered into 55,309 isotigs. 38,200 isotigs translated into proteins and 8,741 of them were full length. Around 57% of L. luteus sequences had significant similarity with at least one sequence of Medicago, Lotus, Arabidopsis, or Glycine, and 40.17% showed positive matches with all of these species. L. luteus isotigs were also screened for the presence of SSR sequences. A total of 2,572 isotigs contained at least one EST-SSR, with a frequency of one SSR per 17.75 kbp. Empirical evaluation of the EST-SSR candidate markers resulted in 222 polymorphic EST-SSRs. Two hundred and fifty four (65.7%) and 113 (30%) SSR primer pairs were able to amplify fragments from L. hispanicus and L. mutabilis DNA, respectively. Fifty polymorphic EST-SSRs were used to genotype a sample of 64 L. luteus accessions. Neighbor-joining distance analysis detected the existence of several clusters among L. luteus accessions, strongly suggesting the existence of population subdivisions. However, no clear clustering patterns followed the accession’s origin. Conclusion L. luteus deep transcriptome sequencing will facilitate the further development of genomic tools and lupin germplasm. Massive sequencing of cDNA libraries will continue to produce raw materials for gene discovery, identification of polymorphisms (SNPs, EST-SSRs, INDELs, etc.) for marker development, anchoring sequences for genome comparisons and putative gene candidates for QTL detection. PMID:22920992
Ka-band (32 GHz) allocations for deep space
NASA Technical Reports Server (NTRS)
Degroot, N. F.
1987-01-01
At the 1979 World Administrative Conference, two new bands were allocated for deep space telecommunications: 31.8 to 32.3 GHz, space-to-Earth, and 34.2 to 34.7 GHz, Earth-to-space. These bands provide opportunity for further development of the Deep Space Network and its support of deep space research. The history of the process by which JPL/NASA developed the rationale, technical background, and statement of requirement for the bands are discussed. Based on this work, United States proposals to the conference included the bands, and subsequent U.S. and NASA participation in the conference led to successful allocations for deep space telecommunications in the 30 GHz region of the spectrum. A detailed description of the allocations is included.
Deep Extragalactic X-Ray Surveys
NASA Astrophysics Data System (ADS)
Brandt, W. N.; Hasinger, G.
2005-09-01
Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from deep surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for deep extragalactic X-ray surveys.
Lata, Pushpa; Govindarajan, Subramaniam S; Qi, Feng; Li, Jian-Liang; Sahoo, Malaya K
2017-02-02
Paenibacillus sp. strain KS1 was isolated from an epiphyte, Tillandsia usneoides (Spanish moss), in central Florida, USA. Here, we report a draft genome sequence of this strain, which consists of a total of 398 contigs spanning 6,508,195 bp, with a G+C content of 46.5% and comprising 5,401 predicted coding sequences. Copyright © 2017 Lata et al.
Xiang, Yu; Bernardy, Mike; Bhagwat, Basdeo; Wiersma, Paul A; DeYoung, Robyn; Bouthillier, Michel
2015-02-01
Strawberry decline disease, probably caused by synergistic reactions of mixed virus infections, threatens the North American strawberry industry. Deep sequencing of strawberry plant samples from eastern Canada resulted in the identification of a new virus genome resembling poleroviruses in sequence and genome structure. Phylogenetic analysis suggests that it is a new member of the genus Polerovirus, family Luteoviridae. The virus is tentatively named "strawberry polerovirus 1" (SPV1).
Tarn, Jonathan; Peoples, Logan M; Hardy, Kevin; Cameron, James; Bartlett, Douglas H
2016-01-01
Relatively few studies have described the microbial populations present in ultra-deep hadal environments, largely as a result of difficulties associated with sampling. Here we report Illumina-tag V6 16S rRNA sequence-based analyses of the free-living and particle-associated microbial communities recovered from locations within two of the deepest hadal sites on Earth, the Challenger Deep (10,918 meters below surface-mbs) and the Sirena Deep (10,667 mbs) within the Mariana Trench, as well as one control site (Ulithi Atoll, 761 mbs). Seawater samples were collected using an autonomous lander positioned ~1 m above the seafloor. The bacterial populations within the Mariana Trench bottom water samples were dissimilar to other deep-sea microbial communities, though with overlap with those of diffuse flow hydrothermal vents and deep-subsurface locations. Distinct particle-associated and free-living bacterial communities were found to exist. The hadal bacterial populations were also markedly different from one another, indicating the likelihood of different chemical conditions at the two sites. In contrast to the bacteria, the hadal archaeal communities were more similar to other less deep datasets and to each other due to an abundance of cosmopolitan deep-sea taxa. The hadal communities were enriched in 34 bacterial and 4 archaeal operational taxonomic units (OTUs) including members of the Gammaproteobacteria, Epsilonproteobacteria, Marinimicrobia, Cyanobacteria, Deltaproteobacteria, Gemmatimonadetes, Atribacteria, Spirochaetes, and Euryarchaeota. Sequences matching cultivated piezophiles were notably enriched in the Challenger Deep, especially within the particle-associated fraction, and were found in higher abundances than in other hadal studies, where they were either far less prevalent or missing. Our results indicate the importance of heterotrophy, sulfur-cycling, and methane and hydrogen utilization within the bottom waters of the deeper regions of the Mariana Trench, and highlight novel community features of these extreme habitats.
Tarn, Jonathan; Peoples, Logan M.; Hardy, Kevin; Cameron, James; Bartlett, Douglas H.
2016-01-01
Relatively few studies have described the microbial populations present in ultra-deep hadal environments, largely as a result of difficulties associated with sampling. Here we report Illumina-tag V6 16S rRNA sequence-based analyses of the free-living and particle-associated microbial communities recovered from locations within two of the deepest hadal sites on Earth, the Challenger Deep (10,918 meters below surface-mbs) and the Sirena Deep (10,667 mbs) within the Mariana Trench, as well as one control site (Ulithi Atoll, 761 mbs). Seawater samples were collected using an autonomous lander positioned ~1 m above the seafloor. The bacterial populations within the Mariana Trench bottom water samples were dissimilar to other deep-sea microbial communities, though with overlap with those of diffuse flow hydrothermal vents and deep-subsurface locations. Distinct particle-associated and free-living bacterial communities were found to exist. The hadal bacterial populations were also markedly different from one another, indicating the likelihood of different chemical conditions at the two sites. In contrast to the bacteria, the hadal archaeal communities were more similar to other less deep datasets and to each other due to an abundance of cosmopolitan deep-sea taxa. The hadal communities were enriched in 34 bacterial and 4 archaeal operational taxonomic units (OTUs) including members of the Gammaproteobacteria, Epsilonproteobacteria, Marinimicrobia, Cyanobacteria, Deltaproteobacteria, Gemmatimonadetes, Atribacteria, Spirochaetes, and Euryarchaeota. Sequences matching cultivated piezophiles were notably enriched in the Challenger Deep, especially within the particle-associated fraction, and were found in higher abundances than in other hadal studies, where they were either far less prevalent or missing. Our results indicate the importance of heterotrophy, sulfur-cycling, and methane and hydrogen utilization within the bottom waters of the deeper regions of the Mariana Trench, and highlight novel community features of these extreme habitats. PMID:27242695
Evolutionary process of deep-sea bathymodiolus mussels.
Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro
2010-04-27
Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular to intracellular symbiotic states in whale carcasses. The estimated evolutionary time suggests that the mytilid ancestors were able to exploit whales during adaptation to the deep sea.
Woo, Hannah L.; O’Dell, Kaela B.; Utturkar, Sagar; McBride, Kathryn R.; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, T. B. K.; Ngan, Chew Yee; Daum, Chris; Shapiro, Nicole; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Woyke, Tanja; Brown, Steven D.
2016-01-01
Thalassospira sp. strain KO164 was isolated from eastern Mediterranean seawater and sediment laboratory microcosms enriched on insoluble organosolv lignin under oxic conditions. The near-complete genome sequence presented here will facilitate analyses into this deep-ocean bacterium’s ability to degrade recalcitrant organics such as lignin. PMID:27881538
Woo, Hannah L.; O’Dell, Kaela B.; Utturkar, Sagar; ...
2016-11-23
We isolated Thalassospirasp. strain KO164 from eastern Mediterranean seawater and sediment laboratory microcosms enriched on insoluble organosolv lignin under oxic conditions. Furthermore, an analysis of the deep-ocean bacterium’s ability to degrade recalcitrant organics such as lignin near-complete genome sequence, will be presented here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Hannah L.; O’Dell, Kaela B.; Utturkar, Sagar
We isolated Thalassospirasp. strain KO164 from eastern Mediterranean seawater and sediment laboratory microcosms enriched on insoluble organosolv lignin under oxic conditions. Furthermore, an analysis of the deep-ocean bacterium’s ability to degrade recalcitrant organics such as lignin near-complete genome sequence, will be presented here.
Draft Genome Sequence of the Spore-Forming Probiotic Strain Bacillus coagulans Unique IS-2
Upadrasta, Aditya; Pitta, Swetha
2016-01-01
Bacillus coagulans Unique IS-2 is a potential spore-forming probiotic that is commercially available on the market. The draft genome sequence presented here provides deep insight into the beneficial features of this strain for its safe use as a probiotic for various human and animal health applications. PMID:27103709
Deep Sequencing Reveals the Complete Genome Sequence of Sweet potato virus G from East Timor
Maina, Solomon; Edwards, Owain R.; Barbetti, Martin J.; de Almeida, Luis; Ximenes, Abel
2016-01-01
We present the first complete Sweet potato virus G (SPVG) genome from sweet potato in East Timor and compare it with seven complete SPVG genomes from South Korea (three), Taiwan (two), Argentina (one), and the United States (one). It most resembles the genomes from the United States and South Korea. PMID:27609925
Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy
Matkovich, Scot J.; Dorn, Gerald W.
2018-01-01
Summary MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicates purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses. PMID:25836573
Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy.
Matkovich, Scot J; Dorn, Gerald W
2015-01-01
MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicate purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses.
Shahinas, Dea; Silverman, Michael; Sittler, Taylor; Chiu, Charles; Kim, Peter; Allen-Vercoe, Emma; Weese, Scott; Wong, Andrew; Low, Donald E.; Pillai, Dylan R.
2012-01-01
ABSTRACT Fecal microbiome transplantation by low-volume enema is an effective, safe, and inexpensive alternative to antibiotic therapy for patients with chronic relapsing Clostridium difficile infection (CDI). We explored the microbial diversity of pre- and posttransplant stool specimens from CDI patients (n = 6) using deep sequencing of the 16S rRNA gene. While interindividual variability in microbiota change occurs with fecal transplantation and vancomycin exposure, in this pilot study we note that clinical cure of CDI is associated with an increase in diversity and richness. Genus- and species-level analysis may reveal a cocktail of microorganisms or products thereof that will ultimately be used as a probiotic to treat CDI. PMID:23093385
Mason, Olivia U; Hazen, Terry C; Borglin, Sharon; Chain, Patrick S G; Dubinsky, Eric A; Fortney, Julian L; Han, James; Holman, Hoi-Ying N; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M; Tringe, Susannah G; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M; Jansson, Janet K
2012-09-01
The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.
Han, Yucui; Lv, Peng; Hou, Shenglin; Li, Suying; Ji, Guisu; Ma, Xue; Du, Ruiheng; Liu, Guoqing
2015-01-01
Sorghum is one of the most promising bioenergy crops. Stem juice yield, together with stem sugar concentration, determines sugar yield in sweet sorghum. Bulked segregant analysis (BSA) is a gene mapping technique for identifying genomic regions containing genetic loci affecting a trait of interest that when combined with deep sequencing could effectively accelerate the gene mapping process. In this study, a dry stem sorghum landrace was characterized and the stem water controlling locus, qSW6, was fine mapped using QTL analysis and the combined BSA and deep sequencing technologies. Results showed that: (i) In sorghum variety Jiliang 2, stem water content was around 80% before flowering stage. It dropped to 75% during grain filling with little difference between different internodes. In landrace G21, stem water content keeps dropping after the flag leaf stage. The drop from 71% at flowering time progressed to 60% at grain filling time. Large differences exist between different internodes with the lowest (51%) at the 7th and 8th internodes at dough stage. (ii) A quantitative trait locus (QTL) controlling stem water content mapped on chromosome 6 between SSR markers Ch6-2 and gpsb069 explained about 34.7-56.9% of the phenotypic variation for the 5th to 10th internodes, respectively. (iii) BSA and deep sequencing analysis narrowed the associated region to 339 kb containing 38 putative genes. The results could help reveal molecular mechanisms underlying juice yield of sorghum and thus to improve total sugar yield.
Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D.; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario
2016-01-01
The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma. Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines. We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK. Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%. Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression. Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants. In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression. PMID:27009842
Lasorsa, Vito Alessandro; Formicola, Daniela; Pignataro, Piero; Cimmino, Flora; Calabrese, Francesco Maria; Mora, Jaume; Esposito, Maria Rosaria; Pantile, Marcella; Zanon, Carlo; De Mariano, Marilena; Longo, Luca; Hogarty, Michael D; de Torres, Carmen; Tonini, Gian Paolo; Iolascon, Achille; Capasso, Mario
2016-04-19
The spectrum of somatic mutation of the most aggressive forms of neuroblastoma is not completely determined. We sought to identify potential cancer drivers in clinically aggressive neuroblastoma.Whole exome sequencing was conducted on 17 germline and tumor DNA samples from high-risk patients with adverse events within 36 months from diagnosis (HR-Event3) to identify somatic mutations and deep targeted sequencing of 134 genes selected from the initial screening in additional 48 germline and tumor pairs (62.5% HR-Event3 and high-risk patients), 17 HR-Event3 tumors and 17 human-derived neuroblastoma cell lines.We revealed 22 significantly mutated genes, many of which implicated in cancer progression. Fifteen genes (68.2%) were highly expressed in neuroblastoma supporting their involvement in the disease. CHD9, a cancer driver gene, was the most significantly altered (4.0% of cases) after ALK.Other genes (PTK2, NAV3, NAV1, FZD1 and ATRX), expressed in neuroblastoma and involved in cell invasion and migration were mutated at frequency ranged from 4% to 2%.Focal adhesion and regulation of actin cytoskeleton pathways, were frequently disrupted (14.1% of cases) thus suggesting potential novel therapeutic strategies to prevent disease progression.Notably BARD1, CHEK2 and AXIN2 were enriched in rare, potentially pathogenic, germline variants.In summary, whole exome and deep targeted sequencing identified novel cancer genes of clinically aggressive neuroblastoma. Our analyses show pathway-level implications of infrequently mutated genes in leading neuroblastoma progression.
Human Splice-Site Prediction with Deep Neural Networks.
Naito, Tatsuhiko
2018-04-18
Accurate splice-site prediction is essential to delineate gene structures from sequence data. Several computational techniques have been applied to create a system to predict canonical splice sites. For classification tasks, deep neural networks (DNNs) have achieved record-breaking results and often outperformed other supervised learning techniques. In this study, a new method of splice-site prediction using DNNs was proposed. The proposed system receives an input sequence data and returns an answer as to whether it is splice site. The length of input is 140 nucleotides, with the consensus sequence (i.e., "GT" and "AG" for the donor and acceptor sites, respectively) in the middle. Each input sequence model is applied to the pretrained DNN model that determines the probability that an input is a splice site. The model consists of convolutional layers and bidirectional long short-term memory network layers. The pretraining and validation were conducted using the data set tested in previously reported methods. The performance evaluation results showed that the proposed method can outperform the previous methods. In addition, the pattern learned by the DNNs was visualized as position frequency matrices (PFMs). Some of PFMs were very similar to the consensus sequence. The trained DNN model and the brief source code for the prediction system are uploaded. Further improvement will be achieved following the further development of DNNs.
Diverse molecular signatures for ribosomally ‘active’ Perkinsea in marine sediments
2014-01-01
Background Perkinsea are a parasitic lineage within the eukaryotic superphylum Alveolata. Recent studies making use of environmental small sub-unit ribosomal RNA gene (SSU rDNA) sequencing methodologies have detected a significant diversity and abundance of Perkinsea-like phylotypes in freshwater environments. In contrast only a few Perkinsea environmental sequences have been retrieved from marine samples and only two groups of Perkinsea have been cultured and morphologically described and these are parasites of marine molluscs or marine protists. These two marine groups form separate and distantly related phylogenetic clusters, composed of closely related lineages on SSU rDNA trees. Here, we test the hypothesis that Perkinsea are a hitherto under-sampled group in marine environments. Using 454 diversity ‘tag’ sequencing we investigate the diversity and distribution of these protists in marine sediments and water column samples taken from the Deep Chlorophyll Maximum (DCM) and sub-surface using both DNA and RNA as the source template and sampling four European offshore locations. Results We detected the presence of 265 sequences branching with known Perkinsea, the majority of them recovered from marine sediments. Moreover, 27% of these sequences were sampled from RNA derived cDNA libraries. Phylogenetic analyses classify a large proportion of these sequences into 38 cluster groups (including 30 novel marine cluster groups), which share less than 97% sequence similarity suggesting this diversity encompasses a range of biologically and ecologically distinct organisms. Conclusions These results demonstrate that the Perkinsea lineage is considerably more diverse than previously detected in marine environments. This wide diversity of Perkinsea-like protists is largely retrieved in marine sediment with a significant proportion detected in RNA derived libraries suggesting this diversity represents ribosomally ‘active’ and intact cells. Given the phylogenetic range of hosts infected by known Perkinsea parasites, these data suggest that Perkinsea either play a significant but hitherto unrecognized role as parasites in marine sediments and/or members of this group are present in the marine sediment possibly as part of the ‘seed bank’ microbial community. PMID:24779375
Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology.
Otto, Thomas D; Sanders, Mandy; Berriman, Matthew; Newbold, Chris
2010-07-15
The accuracy of reference genomes is important for downstream analysis but a low error rate requires expensive manual interrogation of the sequence. Here, we describe a novel algorithm (Iterative Correction of Reference Nucleotides) that iteratively aligns deep coverage of short sequencing reads to correct errors in reference genome sequences and evaluate their accuracy. Using Plasmodium falciparum (81% A + T content) as an extreme example, we show that the algorithm is highly accurate and corrects over 2000 errors in the reference sequence. We give examples of its application to numerous other eukaryotic and prokaryotic genomes and suggest additional applications. The software is available at http://icorn.sourceforge.net
Deep learning on temporal-spectral data for anomaly detection
NASA Astrophysics Data System (ADS)
Ma, King; Leung, Henry; Jalilian, Ehsan; Huang, Daniel
2017-05-01
Detecting anomalies is important for continuous monitoring of sensor systems. One significant challenge is to use sensor data and autonomously detect changes that cause different conditions to occur. Using deep learning methods, we are able to monitor and detect changes as a result of some disturbance in the system. We utilize deep neural networks for sequence analysis of time series. We use a multi-step method for anomaly detection. We train the network to learn spectral and temporal features from the acoustic time series. We test our method using fiber-optic acoustic data from a pipeline.
Sivadas, A; Salleh, M Z; Teh, L K; Scaria, V
2017-10-01
Expanding the scope of pharmacogenomic research by including multiple global populations is integral to building robust evidence for its clinical translation. Deep whole-genome sequencing of diverse ethnic populations provides a unique opportunity to study rare and common pharmacogenomic markers that often vary in frequency across populations. In this study, we aim to build a diverse map of pharmacogenetic variants in South East Asian (SEA) Malay population using deep whole-genome sequences of 100 healthy SEA Malay individuals. We investigated the allelic diversity of potentially deleterious pharmacogenomic variants in SEA Malay population. Our analysis revealed 227 common and 466 rare potentially functional single nucleotide variants (SNVs) in 437 pharmacogenomic genes involved in drug metabolism, transport and target genes, including 74 novel variants. This study has created one of the most comprehensive maps of pharmacogenetic markers in any population from whole genomes and will hugely benefit pharmacogenomic investigations and drug dosage recommendations in SEA Malays.
Rapid Fine Conformational Epitope Mapping Using Comprehensive Mutagenesis and Deep Sequencing*
Kowalsky, Caitlin A.; Faber, Matthew S.; Nath, Aritro; Dann, Hailey E.; Kelly, Vince W.; Liu, Li; Shanker, Purva; Wagner, Ellen K.; Maynard, Jennifer A.; Chan, Christina; Whitehead, Timothy A.
2015-01-01
Knowledge of the fine location of neutralizing and non-neutralizing epitopes on human pathogens affords a better understanding of the structural basis of antibody efficacy, which will expedite rational design of vaccines, prophylactics, and therapeutics. However, full utilization of the wealth of information from single cell techniques and antibody repertoire sequencing awaits the development of a high throughput, inexpensive method to map the conformational epitopes for antibody-antigen interactions. Here we show such an approach that combines comprehensive mutagenesis, cell surface display, and DNA deep sequencing. We develop analytical equations to identify epitope positions and show the method effectiveness by mapping the fine epitope for different antibodies targeting TNF, pertussis toxin, and the cancer target TROP2. In all three cases, the experimentally determined conformational epitope was consistent with previous experimental datasets, confirming the reliability of the experimental pipeline. Once the comprehensive library is generated, fine conformational epitope maps can be prepared at a rate of four per day. PMID:26296891
Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer
Hong, Matthew K. H.; Macintyre, Geoff; Wedge, David C.; ...
2015-04-01
Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones,more » even years after removal of the prostate. As a result, analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.« less
NASA Technical Reports Server (NTRS)
Woese, C. R.; Achenbach, L.; Rouviere, P.; Mandelco, L.
1991-01-01
A major and too little recognized source of artifact in phylogenetic analysis of molecular sequence data is compositional difference among sequences. The problem becomes particularly acute when alignments contain ribosomal RNAs from both mesophilic and thermophilic species. Among prokaryotes the latter are considerably higher in G + C content than the former, which often results in artificial clustering of thermophilic lineages and their being placed artificially deep in phylogenetic trees. In this communication we review archaeal phylogeny in the light of this consideration, focusing in particular on the phylogenetic position of the sulfate reducing species Archaeoglobus fulgidus, using both 16S rRNA and 23S rRNA sequences. The analysis shows clearly that the previously reported deep branching of the A. fulgidus lineage (very near the base of the euryarchaeal side of the archaeal tree) is incorrect, and that the lineage actually groups with a previously recognized unit that comprises the Methanomicrobiales and extreme halophiles.
Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer.
Hong, Matthew K H; Macintyre, Geoff; Wedge, David C; Van Loo, Peter; Patel, Keval; Lunke, Sebastian; Alexandrov, Ludmil B; Sloggett, Clare; Cmero, Marek; Marass, Francesco; Tsui, Dana; Mangiola, Stefano; Lonie, Andrew; Naeem, Haroon; Sapre, Nikhil; Phal, Pramit M; Kurganovs, Natalie; Chin, Xiaowen; Kerger, Michael; Warren, Anne Y; Neal, David; Gnanapragasam, Vincent; Rosenfeld, Nitzan; Pedersen, John S; Ryan, Andrew; Haviv, Izhak; Costello, Anthony J; Corcoran, Niall M; Hovens, Christopher M
2015-04-01
Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones, even years after removal of the prostate. Analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.
Deep intronic GPR143 mutation in a Japanese family with ocular albinism
Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei
2015-01-01
Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease. PMID:26061757
Deep intronic GPR143 mutation in a Japanese family with ocular albinism.
Naruto, Takuya; Okamoto, Nobuhiko; Masuda, Kiyoshi; Endo, Takao; Hatsukawa, Yoshikazu; Kohmoto, Tomohiro; Imoto, Issei
2015-06-10
Deep intronic mutations are often ignored as possible causes of human disease. Using whole-exome sequencing, we analysed genomic DNAs of a Japanese family with two male siblings affected by ocular albinism and congenital nystagmus. Although mutations or copy number alterations of coding regions were not identified in candidate genes, the novel intronic mutation c.659-131 T > G within GPR143 intron 5 was identified as hemizygous in affected siblings and as heterozygous in the unaffected mother. This mutation was predicted to create a cryptic splice donor site within intron 5 and activate a cryptic acceptor site at 41nt upstream, causing the insertion into the coding sequence of an out-of-frame 41-bp pseudoexon with a premature stop codon in the aberrant transcript, which was confirmed by minigene experiments. This result expands the mutational spectrum of GPR143 and suggests the utility of next-generation sequencing integrated with in silico and experimental analyses for improving the molecular diagnosis of this disease.
Protein model discrimination using mutational sensitivity derived from deep sequencing.
Adkar, Bharat V; Tripathi, Arti; Sahoo, Anusmita; Bajaj, Kanika; Goswami, Devrishi; Chakrabarti, Purbani; Swarnkar, Mohit K; Gokhale, Rajesh S; Varadarajan, Raghavan
2012-02-08
A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout. Copyright © 2012 Elsevier Ltd. All rights reserved.
UCSC genome browser: deep support for molecular biomedical research.
Mangan, Mary E; Williams, Jennifer M; Lathe, Scott M; Karolchik, Donna; Lathe, Warren C
2008-01-01
The volume and complexity of genomic sequence data, and the additional experimental data required for annotation of the genomic context, pose a major challenge for display and access for biomedical researchers. Genome browsers organize this data and make it available in various ways to extract useful information to advance research projects. The UCSC Genome Browser is one of these resources. The official sequence data for a given species forms the framework to display many other types of data such as expression, variation, cross-species comparisons, and more. Visual representations of the data are available for exploration. Data can be queried with sequences. Complex database queries are also easily achieved with the Table Browser interface. Associated tools permit additional query types or access to additional data sources such as images of in situ localizations. Support for solving researcher's issues is provided with active discussion mailing lists and by providing updated training materials. The UCSC Genome Browser provides a source of deep support for a wide range of biomedical molecular research (http://genome.ucsc.edu).
Detection of non-coding RNA in bacteria and archaea using the DETR'PROK Galaxy pipeline.
Toffano-Nioche, Claire; Luo, Yufei; Kuchly, Claire; Wallon, Claire; Steinbach, Delphine; Zytnicki, Matthias; Jacq, Annick; Gautheret, Daniel
2013-09-01
RNA-seq experiments are now routinely used for the large scale sequencing of transcripts. In bacteria or archaea, such deep sequencing experiments typically produce 10-50 million fragments that cover most of the genome, including intergenic regions. In this context, the precise delineation of the non-coding elements is challenging. Non-coding elements include untranslated regions (UTRs) of mRNAs, independent small RNA genes (sRNAs) and transcripts produced from the antisense strand of genes (asRNA). Here we present a computational pipeline (DETR'PROK: detection of ncRNAs in prokaryotes) based on the Galaxy framework that takes as input a mapping of deep sequencing reads and performs successive steps of clustering, comparison with existing annotation and identification of transcribed non-coding fragments classified into putative 5' UTRs, sRNAs and asRNAs. We provide a step-by-step description of the protocol using real-life example data sets from Vibrio splendidus and Escherichia coli. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
2010-01-01
Background The subclass Enoplia (Phylum Nematoda) is purported to be the earliest branching clade amongst all nematode taxa, yet the deep phylogeny of this important lineage remains elusive. Free-living marine species within the order Enoplida play prominent roles in marine ecosystems, but previous molecular phylogenies have provided only the briefest evolutionary insights; this study aimed to firmly resolve internal relationships within the hyper-diverse but poorly understood Enoplida. In addition, we revisited the molecular framework of the Nematoda using a rigorous phylogenetic approach in order to investigate patterns of early splits amongst the oldest lineages (Dorylaimia and Enoplia). Results Morphological identifications, nuclear gene sequences (18S and 28S rRNA), and mitochondrial gene sequences (cox1) were obtained from marine Enoplid specimens representing 37 genera. The 18S gene was used to resolve deep splits within the Enoplia and evaluate the branching order of major clades in the nematode tree; multiple phylogenetic methods and rigorous empirical tests were carried out to assess tree topologies under different parameters and combinations of taxa. Significantly increased taxon sampling within the Enoplida resulted in a well-supported, robust phylogenetic topology of this group, although the placement of certain clades was not fully resolved. Our analysis could not unequivocally confirm the earliest splits in the nematode tree, and outgroup choice significantly affected the observed branching order of the Dorylaimia and Enoplia. Both 28S and cox1 were too variable to infer deep phylogeny, but provided additional insight at lower taxonomic levels. Conclusions Analysis of internal relationships reveals that the Enoplia is split into two main clades, with groups consisting of terrestrial (Triplonchida) and primarily marine fauna (Enoplida). Five independent lineages were recovered within the Enoplida, containing a mixture of marine and terrestrial species; clade structure suggests that habitat transitions have occurred at least four times within this group. Unfortunately, we were unable to obtain a consistent or well-supported topology amongst early-branching nematode lineages. It appears unlikely that single-gene phylogenies using the conserved 18S gene will be useful for confirming the branching order at the base of the nematode tree-future efforts will require multi-gene analyses or phylogenomic methods. PMID:21073704
Deep-Earth reactor: nuclear fission, helium, and the geomagnetic field.
Hollenbach, D F; Herndon, J M
2001-09-25
Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having (3)He/(4)He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power.
Bromberg, Yana; Yachdav, Guy; Ofran, Yanay; Schneider, Reinhard; Rost, Burkhard
2009-05-01
The rapidly increasing quantity of protein sequence data continues to widen the gap between available sequences and annotations. Comparative modeling suggests some aspects of the 3D structures of approximately half of all known proteins; homology- and network-based inferences annotate some aspect of function for a similar fraction of the proteome. For most known protein sequences, however, there is detailed knowledge about neither their function nor their structure. Comprehensive efforts towards the expert curation of sequence annotations have failed to meet the demand of the rapidly increasing number of available sequences. Only the automated prediction of protein function in the absence of homology can close the gap between available sequences and annotations in the foreseeable future. This review focuses on two novel methods for automated annotation, and briefly presents an outlook on how modern web software may revolutionize the field of protein sequence annotation. First, predictions of protein binding sites and functional hotspots, and the evolution of these into the most successful type of prediction of protein function from sequence will be discussed. Second, a new tool, comprehensive in silico mutagenesis, which contributes important novel predictions of function and at the same time prepares for the onset of the next sequencing revolution, will be described. While these two new sub-fields of protein prediction represent the breakthroughs that have been achieved methodologically, it will then be argued that a different development might further change the way biomedical researchers benefit from annotations: modern web software can connect the worldwide web in any browser with the 'Deep Web' (ie, proprietary data resources). The availability of this direct connection, and the resulting access to a wealth of data, may impact drug discovery and development more than any existing method that contributes to protein annotation.
An Anatomy of a Seismic Sequence in a Deep Gold Mine
NASA Astrophysics Data System (ADS)
Gibowicz, S. J.
1997-12-01
An unusual swarm-like seismic sequence occurred in April 1993 at the Western Deep Levels gold mine, South Africa. Altogether 199 events with moment magnitude from -0.5 to 3.1 were recorded and located by the mine seismic network. The sequence lasted 12 days and was composed in fact of four main shock-aftershocks sequences, closely following each other in space and time. The events were confined to a volume of rock extending to 670 m in the N-S, 630 m in the E-W, and 390 m in the vertical directions. The first sequence lasted 179 hours and the second only 13 hours, being interrupted by the third sequence which lasted 31 hours, being in turn interrupted by the fourth sequence. The parameter p, describing the rate of occurrence of aftershocks, ranged from 0.7 to 1. The first sequence is characterized by the lowest value of the fractal correlation dimension D = 1.75 and the second by the highest value of D = 2.4, whereas the third and fourth sequences are characterized by the middle value of D = 1.9.¶The corner frequencies of P and S waves are in close proximity and range from 14 to 220 Hz. A display of source parameters as a function of time shows that the four main shocks are most distinctly marked by their source radius. For 46 events a moment tensor inversion was performed. In most cases the double-couple component is dominant, ranging from 60 to 90 percent of the solution. The double-couple solutions correspond to the same number of normal and reverse faults and oblique-slip focal mechanisms. An analysis of space distribution of P, T and B axes reveals that the distribution of B axes is the most regular.
Compilation of Reprints Number 63.
1986-03-01
Michel Be6, Stephen H1. Johnson, and E.F. Chiburis PRELIMINARY SEISMIC REFRACTION RESULTS USING A BOREHOLE SEISMOMETER IN DEEP SEA DRILLING PROJECT HOLE...refraction data with wells drilled on land and offshore reflection profiles permits tentative identification of geologic sequences on the basis of...PERIOD CO’VEAEO PRELIMINARY SEISMIC REFRACTION RESULTS USING A Rern BOREHOLE SEISMOMETER IN DEEP SEA DRILLING ~ rn PROJECT HOLE 395A 6.PERFORMING ORG
Water mass dynamics shape Ross Sea protist communities in mesopelagic and bathypelagic layers
NASA Astrophysics Data System (ADS)
Zoccarato, Luca; Pallavicini, Alberto; Cerino, Federica; Fonda Umani, Serena; Celussi, Mauro
2016-12-01
Deep-sea environments host the largest pool of microbes and represent the last largely unexplored and poorly known ecosystems on Earth. The Ross Sea is characterized by unique oceanographic dynamics and harbors several water masses deeply involved in cooling and ventilation of deep oceans. In this study the V9 region of the 18S rDNA was targeted and sequenced with the Ion Torrent high-throughput sequencing technology to unveil differences in protist communities (>2 μm) correlated with biogeochemical properties of the water masses. The analyzed samples were significantly different in terms of environmental parameters and community composition outlining significant structuring effects of temperature and salinity. Overall, Alveolata (especially Dinophyta), Stramenopiles and Excavata groups dominated mesopelagic and bathypelagic layers, and protist communities were shaped according to the biogeochemistry of the water masses (advection effect and mixing events). Newly-formed High Salinity Shelf Water (HSSW) was characterized by high relative abundance of phototrophic organisms that bloom at the surface during the austral summer. Oxygen-depleted Circumpolar Deep Water (CDW) showed higher abundance of Excavata, common bacterivores in deep water masses. At the shelf-break, Antarctic Bottom Water (AABW), formed by the entrainment of shelf waters in CDW, maintained the eukaryotic genetic signature typical of both parental water masses.
Röthig, Till; Yum, Lauren K.; Kremb, Stephan G.; Roik, Anna; Voolstra, Christian R.
2017-01-01
Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L−1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment. PMID:28303925
Röthig, Till; Yum, Lauren K; Kremb, Stephan G; Roik, Anna; Voolstra, Christian R
2017-03-17
Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L -1 ) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.
Kumar, S; Gadagkar, S R
2000-12-01
The neighbor-joining (NJ) method is widely used in reconstructing large phylogenies because of its computational speed and the high accuracy in phylogenetic inference as revealed in computer simulation studies. However, most computer simulation studies have quantified the overall performance of the NJ method in terms of the percentage of branches inferred correctly or the percentage of replications in which the correct tree is recovered. We have examined other aspects of its performance, such as the relative efficiency in correctly reconstructing shallow (close to the external branches of the tree) and deep branches in large phylogenies; the contribution of zero-length branches to topological errors in the inferred trees; and the influence of increasing the tree size (number of sequences), evolutionary rate, and sequence length on the efficiency of the NJ method. Results show that the correct reconstruction of deep branches is no more difficult than that of shallower branches. The presence of zero-length branches in realized trees contributes significantly to the overall error observed in the NJ tree, especially in large phylogenies or slowly evolving genes. Furthermore, the tree size does not influence the efficiency of NJ in reconstructing shallow and deep branches in our simulation study, in which the evolutionary process is assumed to be homogeneous in all lineages.
NASA Astrophysics Data System (ADS)
Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen
2016-05-01
Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.
Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu
2016-11-23
The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.
Archaeal Diversity in Waters from Deep South African Gold Mines
Takai, Ken; Moser, Duane P.; DeFlaun, Mary; Onstott, Tullis C.; Fredrickson, James K.
2001-01-01
A culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold mines was performed by performing a PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with a sequencing analysis of archaeal rDNA clone libraries. The water samples used represented various environments, including deep fissure water, mine service water, and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied with the source of water. The archaeal communities in the deep gold mine environments exhibited great phylogenetic diversity; the majority of the members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to environmental rDNA clones from surface soil (soil clones) and marine environments (marine group I [MGI]). Other clones exhibited intermediate phylogenetic affiliation between soil clones and MGI in the Crenarchaeota. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences that exhibited novel phylogeny, including a novel lineage of Euryarchaeota. These results suggest that deep South African gold mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including the newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea are reevaluated. PMID:11722932
A deep insight into the sialotranscriptome of the mosquito, Psorophora albipes
2013-01-01
Background Psorophora mosquitoes are exclusively found in the Americas and have been associated with transmission of encephalitis and West Nile fever viruses, among other arboviruses. Mosquito salivary glands represent the final route of differentiation and transmission of many parasites. They also secrete molecules with powerful pharmacologic actions that modulate host hemostasis, inflammation, and immune response. Here, we employed next generation sequencing and proteome approaches to investigate for the first time the salivary composition of a mosquito member of the Psorophora genus. We additionally discuss the evolutionary position of this mosquito genus into the Culicidae family by comparing the identity of its secreted salivary compounds to other mosquito salivary proteins identified so far. Results Illumina sequencing resulted in 13,535,229 sequence reads, which were assembled into 3,247 contigs. All families were classified according to their in silico-predicted function/ activity. Annotation of these sequences allowed classification of their products into 83 salivary protein families, twenty (24.39%) of which were confirmed by our subsequent proteome analysis. Two protein families were deorphanized from Aedes and one from Ochlerotatus, while four protein families were described as novel to Psorophora genus because they had no match with any other known mosquito salivary sequence. Several protein families described as exclusive to Culicines were present in Psorophora mosquitoes, while we did not identify any member of the protein families already known as unique to Anophelines. Also, the Psorophora salivary proteins had better identity to homologs in Aedes (69.23%), followed by Ochlerotatus (8.15%), Culex (6.52%), and Anopheles (4.66%), respectively. Conclusions This is the first sialome (from the Greek sialo = saliva) catalog of salivary proteins from a Psorophora mosquito, which may be useful for better understanding the lifecycle of this mosquito and the role of its salivary secretion in arboviral transmission. PMID:24330624
Liu, Dan; Wang, Qianqian; Ruan, Zengliang; He, Qian; Zhang, Liming
2015-01-01
Background Jellyfish contain diverse toxins and other bioactive components. However, large-scale identification of novel toxins and bioactive components from jellyfish has been hampered by the low efficiency of traditional isolation and purification methods. Results We performed de novo transcriptome sequencing of the tentacle tissue of the jellyfish Cyanea capillata. A total of 51,304,108 reads were obtained and assembled into 50,536 unigenes. Of these, 21,357 unigenes had homologues in public databases, but the remaining unigenes had no significant matches due to the limited sequence information available and species-specific novel sequences. Functional annotation of the unigenes also revealed general gene expression profile characteristics in the tentacle of C. capillata. A primary goal of this study was to identify putative toxin transcripts. As expected, we screened many transcripts encoding proteins similar to several well-known toxin families including phospholipases, metalloproteases, serine proteases and serine protease inhibitors. In addition, some transcripts also resembled molecules with potential toxic activities, including cnidarian CfTX-like toxins with hemolytic activity, plancitoxin-1, venom toxin-like peptide-6, histamine-releasing factor, neprilysin, dipeptidyl peptidase 4, vascular endothelial growth factor A, angiotensin-converting enzyme-like and endothelin-converting enzyme 1-like proteins. Most of these molecules have not been previously reported in jellyfish. Interestingly, we also characterized a number of transcripts with similarities to proteins relevant to several degenerative diseases, including Huntington’s, Alzheimer’s and Parkinson’s diseases. This is the first description of degenerative disease-associated genes in jellyfish. Conclusion We obtained a well-categorized and annotated transcriptome of C. capillata tentacle that will be an important and valuable resource for further understanding of jellyfish at the molecular level and information on the underlying molecular mechanisms of jellyfish stinging. The findings of this study may also be used in comparative studies of gene expression profiling among different jellyfish species. PMID:26551022
2010-01-01
Background Molecular characterization of collagen-VI related myopathies currently relies on standard sequencing, which yields a detection rate approximating 75-79% in Ullrich congenital muscular dystrophy (UCMD) and 60-65% in Bethlem myopathy (BM) patients as PCR-based techniques tend to miss gross genomic rearrangements as well as copy number variations (CNVs) in both the coding sequence and intronic regions. Methods We have designed a custom oligonucleotide CGH array in order to investigate the presence of CNVs in the coding and non-coding regions of COL6A1, A2, A3, A5 and A6 genes and a group of genes functionally related to collagen VI. A cohort of 12 patients with UCMD/BM negative at sequencing analysis and 2 subjects carrying a single COL6 mutation whose clinical phenotype was not explicable by inheritance were selected and the occurrence of allelic and genetic heterogeneity explored. Results A deletion within intron 1A of the COL6A2 gene, occurring in compound heterozygosity with a small deletion in exon 28, previously detected by routine sequencing, was identified in a BM patient. RNA studies showed monoallelic transcription of the COL6A2 gene, thus elucidating the functional effect of the intronic deletion. No pathogenic mutations were identified in the remaining analyzed patients, either within COL6A genes, or in genes functionally related to collagen VI. Conclusions Our custom CGH array may represent a useful complementary diagnostic tool, especially in recessive forms of the disease, when only one mutant allele is detected by standard sequencing. The intronic deletion we identified represents the first example of a pure intronic mutation in COL6A genes. PMID:20302629
Identifying Canadian Freshwater Fishes through DNA Barcodes
Hubert, Nicolas; Hanner, Robert; Holm, Erling; Mandrak, Nicholas E.; Taylor, Eric; Burridge, Mary; Watkinson, Douglas; Dumont, Pierre; Curry, Allen; Bentzen, Paul; Zhang, Junbin; April, Julien; Bernatchez, Louis
2008-01-01
Background DNA barcoding aims to provide an efficient method for species-level identifications using an array of species specific molecular tags derived from the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene. The efficiency of the method hinges on the degree of sequence divergence among species and species-level identifications are relatively straightforward when the average genetic distance among individuals within a species does not exceed the average genetic distance between sister species. Fishes constitute a highly diverse group of vertebrates that exhibit deep phenotypic changes during development. In this context, the identification of fish species is challenging and DNA barcoding provide new perspectives in ecology and systematics of fishes. Here we examined the degree to which DNA barcoding discriminate freshwater fish species from the well-known Canadian fauna, which currently encompasses nearly 200 species, some which are of high economic value like salmons and sturgeons. Methodology/Principal Findings We bi-directionally sequenced the standard 652 bp “barcode” region of COI for 1360 individuals belonging to 190 of the 203 Canadian freshwater fish species (95%). Most species were represented by multiple individuals (7.6 on average), the majority of which were retained as voucher specimens. The average genetic distance was 27 fold higher between species than within species, as K2P distance estimates averaged 8.3% among congeners and only 0.3% among concpecifics. However, shared polymorphism between sister-species was detected in 15 species (8% of the cases). The distribution of K2P distance between individuals and species overlapped and identifications were only possible to species group using DNA barcodes in these cases. Conversely, deep hidden genetic divergence was revealed within two species, suggesting the presence of cryptic species. Conclusions/Significance The present study evidenced that freshwater fish species can be efficiently identified through the use of DNA barcoding, especially the species complex of small-sized species, and that the present COI library can be used for subsequent applications in ecology and systematics. PMID:22423312
Liu, Jinlin; Jia, Zhijuan; Li, Sha; Li, Yan; You, Qiang; Zhang, Chunyan; Zheng, Xiaotong; Xiong, Guomei; Zhao, Jin; Qi, Chao; Yang, Jihong
2016-09-15
The chemical and biological compositions of deep-sea sediments are interesting because of the underexplored diversity when it comes to bioprospecting. The special geographical location and climates make Arctic Ocean a unique ocean area containing an abundance of microbial resources. A metagenomic library was constructed based on the deep-sea sediments of Arctic Ocean. Part of insertion fragments of this library were sequenced. A chitin deacetylase gene, cdaYJ, was identified and characterized. A metagenomic library with 2750 clones was obtained and ten clones were sequenced. Results revealed several interesting genes, including a chitin deacetylase coding sequence, cdaYJ. The CdaYJ is homologous to some known chitin deacetylases and contains conserved chitin deacetylase active sites. CdaYJ protein exhibits a long N-terminal and a relative short C-terminal. Phylogenetic analysis revealed that CdaYJ showed highest homology to CDAs from Alphaproteobacteria. The cdaYJ gene was subcloned into the pET-28a vector and the recombinant CdaYJ (rCdaYJ) was expressed in Escherichia coli BL21 (DE3). rCdaYJ showed a molecular weight of 43kDa, and exhibited deacetylation activity by using p-nitroacetanilide as substrate. The optimal pH and temperature of rCdaYJ were tested as pH7.4 and 28°C, respectively. The construction of metagenomic library of the Arctic deep-sea sediments provides us an opportunity to look into the microbial communities and exploiting valuable gene resources. A chitin deacetylase CdaYJ was identified from the library. It showed highest deacetylation activity under slight alkaline and low temperature conditions. CdaYJ might be a candidate chitin deacetylase that possesses industrial and pharmaceutical potentials. Copyright © 2016 Elsevier B.V. All rights reserved.
A deep learning pipeline for Indian dance style classification
NASA Astrophysics Data System (ADS)
Dewan, Swati; Agarwal, Shubham; Singh, Navjyoti
2018-04-01
In this paper, we address the problem of dance style classification to classify Indian dance or any dance in general. We propose a 3-step deep learning pipeline. First, we extract 14 essential joint locations of the dancer from each video frame, this helps us to derive any body region location within the frame, we use this in the second step which forms the main part of our pipeline. Here, we divide the dancer into regions of important motion in each video frame. We then extract patches centered at these regions. Main discriminative motion is captured in these patches. We stack the features from all such patches of a frame into a single vector and form our hierarchical dance pose descriptor. Finally, in the third step, we build a high level representation of the dance video using the hierarchical descriptors and train it using a Recurrent Neural Network (RNN) for classification. Our novelty also lies in the way we use multiple representations for a single video. This helps us to: (1) Overcome the RNN limitation of learning small sequences over big sequences such as dance; (2) Extract more data from the available dataset for effective deep learning by training multiple representations. Our contributions in this paper are three-folds: (1) We provide a deep learning pipeline for classification of any form of dance; (2) We prove that a segmented representation of a dance video works well with sequence learning techniques for recognition purposes; (3) We extend and refine the ICD dataset and provide a new dataset for evaluation of dance. Our model performs comparable or better in some cases than the state-of-the-art on action recognition benchmarks.
Genome-wide prediction of cis-regulatory regions using supervised deep learning methods.
Li, Yifeng; Shi, Wenqiang; Wasserman, Wyeth W
2018-05-31
In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in the human genome is critical for understanding gene regulation and assessing the impact of genetic variation on phenotype. The developments of high-throughput sequencing and machine learning technologies make it possible to predict cis-regulatory regions genome wide. Based on rich data resources such as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian Genome (FANTOM) projects, we introduce DECRES based on supervised deep learning approaches for the identification of enhancer and promoter regions in the human genome. Due to their ability to discover patterns in large and complex data, the introduction of deep learning methods enables a significant advance in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized cell lines, we identify key experimental features that contribute to the predictive performance. Applying DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of which 40,000 are supported by bidirectional transcription data), and 26,000 candidate promoters (0.6% of the genome). The predicted annotations of cis-regulatory regions will provide broad utility for genome interpretation from functional genomics to clinical applications. The DECRES model demonstrates potentials of deep learning technologies when combined with high-throughput sequencing data, and inspires the development of other advanced neural network models for further improvement of genome annotations.
NASA Astrophysics Data System (ADS)
Bar Or, I.; Ben-Dov, E.; Kushmaro, A.; Eckert, W.; Sivan, O.
2014-06-01
Microbial methane oxidation process (methanotrophy) is the primary control on the emission of the greenhouse gas methane (CH4) to the atmosphere. In terrestrial environments, aerobic methanotrophic bacteria are mainly responsible for oxidizing the methane. In marine sediments the coupling of the anaerobic oxidation of methane (AOM) with sulfate reduction, often by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria, was found to consume almost all the upward diffusing methane. Recently, we showed geochemical evidence for AOM driven by iron reduction in Lake Kinneret (LK) (Israel) deep sediments and suggested that this process can be an important global methane sink. The goal of the present study was to link the geochemical gradients found in the porewater (chemical and isotope profiles) with possible changes in microbial community structure. Specifically, we examined the possible shift in the microbial community in the deep iron-driven AOM zone and its similarity to known sulfate driven AOM populations. Screening of archaeal 16S rRNA gene sequences revealed Thaumarchaeota and Euryarchaeota as the dominant phyla in the sediment. Thaumarchaeota, which belongs to the family of copper containing membrane-bound monooxgenases, increased with depth while Euryarchaeota decreased. This may indicate the involvement of Thaumarchaeota, which were discovered to be ammonia oxidizers but whose activity could also be linked to methane, in AOM in the deep sediment. ANMEs sequences were not found in the clone libraries, suggesting that iron-driven AOM is not through sulfate. Bacterial 16S rRNA sequences displayed shifts in community diversity with depth. Proteobacteria and Chloroflexi increased with depth, which could be connected with their different dissimilatory anaerobic processes. The observed changes in microbial community structure suggest possible direct and indirect mechanisms for iron-driven AOM in deep sediments.
Detection of Bacillus anthracis DNA in Complex Soil and Air Samples Using Next-Generation Sequencing
Be, Nicholas A.; Thissen, James B.; Gardner, Shea N.; McLoughlin, Kevin S.; Fofanov, Viacheslav Y.; Koshinsky, Heather; Ellingson, Sally R.; Brettin, Thomas S.; Jackson, Paul J.; Jaing, Crystal J.
2013-01-01
Bacillus anthracis is the potentially lethal etiologic agent of anthrax disease, and is a significant concern in the realm of biodefense. One of the cornerstones of an effective biodefense strategy is the ability to detect infectious agents with a high degree of sensitivity and specificity in the context of a complex sample background. The nature of the B. anthracis genome, however, renders specific detection difficult, due to close homology with B. cereus and B. thuringiensis. We therefore elected to determine the efficacy of next-generation sequencing analysis and microarrays for detection of B. anthracis in an environmental background. We applied next-generation sequencing to titrated genome copy numbers of B. anthracis in the presence of background nucleic acid extracted from aerosol and soil samples. We found next-generation sequencing to be capable of detecting as few as 10 genomic equivalents of B. anthracis DNA per nanogram of background nucleic acid. Detection was accomplished by mapping reads to either a defined subset of reference genomes or to the full GenBank database. Moreover, sequence data obtained from B. anthracis could be reliably distinguished from sequence data mapping to either B. cereus or B. thuringiensis. We also demonstrated the efficacy of a microbial census microarray in detecting B. anthracis in the same samples, representing a cost-effective and high-throughput approach, complementary to next-generation sequencing. Our results, in combination with the capacity of sequencing for providing insights into the genomic characteristics of complex and novel organisms, suggest that these platforms should be considered important components of a biosurveillance strategy. PMID:24039948
Deep Whole-Genome Sequencing to Detect Mixed Infection of Mycobacterium tuberculosis
Gan, Mingyu; Liu, Qingyun; Yang, Chongguang; Gao, Qian; Luo, Tao
2016-01-01
Mixed infection by multiple Mycobacterium tuberculosis (MTB) strains is associated with poor treatment outcome of tuberculosis (TB). Traditional genotyping methods have been used to detect mixed infections of MTB, however, their sensitivity and resolution are limited. Deep whole-genome sequencing (WGS) has been proved highly sensitive and discriminative for studying population heterogeneity of MTB. Here, we developed a phylogenetic-based method to detect MTB mixed infections using WGS data. We collected published WGS data of 782 global MTB strains from public database. We called homogeneous and heterogeneous single nucleotide variations (SNVs) of individual strains by mapping short reads to the ancestral MTB reference genome. We constructed a phylogenomic database based on 68,639 homogeneous SNVs of 652 MTB strains. Mixed infections were determined if multiple evolutionary paths were identified by mapping the SNVs of individual samples to the phylogenomic database. By simulation, our method could specifically detect mixed infections when the sequencing depth of minor strains was as low as 1× coverage, and when the genomic distance of two mixed strains was as small as 16 SNVs. By applying our methods to all 782 samples, we detected 47 mixed infections and 45 of them were caused by locally endemic strains. The results indicate that our method is highly sensitive and discriminative for identifying mixed infections from deep WGS data of MTB isolates. PMID:27391214
Dhahbi, Joseph M; Spindler, Stephen R; Atamna, Hani; Yamakawa, Amy; Guerrero, Noel; Boffelli, Dario; Mote, Patricia; Martin, David I K
2013-02-01
MicroRNAs (miRNAs) function to modulate gene expression, and through this property they regulate a broad spectrum of cellular processes. They can circulate in blood and thereby mediate cell-to-cell communication. Aging involves changes in many cellular processes that are potentially regulated by miRNAs, and some evidence has implicated circulating miRNAs in the aging process. In order to initiate a comprehensive assessment of the role of circulating miRNAs in aging, we have used deep sequencing to characterize circulating miRNAs in the serum of young mice, old mice, and old mice maintained on calorie restriction (CR). Deep sequencing identifies a set of novel miRNAs, and also accurately measures all known miRNAs present in serum. This analysis demonstrates that the levels of many miRNAs circulating in the mouse are increased with age, and that the increases can be antagonized by CR. The genes targeted by this set of age-modulated miRNAs are predicted to regulate biological processes directly relevant to the manifestations of aging including metabolic changes, and the miRNAs themselves have been linked to diseases associated with old age. This finding implicates circulating miRNAs in the aging process, raising questions about their tissues of origin, their cellular targets, and their functional role in metabolic changes that occur with aging.
Xiao, Bingbing; Niu, Xiaoxi; Han, Na; Wang, Ben; Du, Pengcheng; Na, Risu; Chen, Chen; Liao, Qinping
2016-01-01
Bacterial vaginosis (BV) is a highly prevalent disease in women, and increases the risk of pelvic inflammatory disease. It has been given wide attention because of the high recurrence rate. Traditional diagnostic methods based on microscope providing limited information on the vaginal microbiota increase the difficulty in tracing the development of the disease in bacteria resistance condition. In this study, we used deep-sequencing technology to observe dynamic variation of the vaginal microbiota at three major time points during treatment, at D0 (before treatment), D7 (stop using the antibiotics) and D30 (the 30-day follow-up visit). Sixty-five patients with BV were enrolled (48 were cured and 17 were not cured), and their bacterial composition of the vaginal microbiota was compared. Interestingly, we identified 9 patients might be recurrence. We also introduced a new measurement point of D7, although its microbiota were significantly inhabited by antibiotic and hard to be observed by traditional method. The vaginal microbiota in deep-sequencing-view present a strong correlation to the final outcome. Thus, coupled with detailed individual bioinformatics analysis and deep-sequencing technology, we may illustrate a more accurate map of vaginal microbial to BV patients, which provide a new opportunity to reduce the rate of recurrence of BV. PMID:27253522
NASA Astrophysics Data System (ADS)
Ravara, Ascensão; Ramos, Diana; Teixeira, Marcos A. L.; Costa, Filipe O.; Cunha, Marina R.
2017-03-01
The polychaetes of the order Phyllodocida (excluding Nereidiformia and Phyllodociformia incertae sedis) collected from deep-sea habitats of the Iberian margin (Bay of Biscay, Horseshoe continental rise, Gulf of Cadiz and Alboran Sea), and Atlantic seamounts (Gorringe Bank, Atlantis and Nameless) are reported herein. Thirty-six species belonging to seven families - Acoetidae, Pholoidae, Polynoidae, Sigalionidae, Glyceridae, Goniadidae and Phyllodocidae, were identified. Amended descriptions and/or new illustrations are given for the species Allmaniella setubalensis, Anotochaetonoe michelbhaudi, Lepidasthenia brunnea and Polynoe sp. Relevant taxonomical notes are provided for other seventeen species. Allmaniella setubalensis, Anotochaetonoe michelbhaudi, Harmothoe evei, Eumida longicirrata and Glycera noelae, previously known only from their type localities were found in different deep-water places of the studied areas and constitute new records for the Iberian margin. The geographic distributions and the bathymetric range of thirteen and fifteen species, respectively, are extended. The morphology-based biodiversity inventory was complemented with DNA sequences of the mitochondrial barcode region (COI barcodes) providing a molecular tag for future reference. Twenty new sequences were obtained for nine species in the families Acoetidae, Glyceridae and Polynoidae and for three lineages within the Phylodoce madeirensis complex (Phyllodocidae). A brief analysis of the newly obtained sequences and publicly available COI barcode data for the genera herein reported, highlighted several cases of unclear taxonomic assignments, which need further study.
Woo, Hannah L; O'Dell, Kaela B; Utturkar, Sagar; McBride, Kathryn R; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Daum, Chris; Shapiro, Nicole; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Woyke, Tanja; Brown, Steven D; Hazen, Terry C
2016-11-23
Thalassospira sp. strain KO164 was isolated from eastern Mediterranean seawater and sediment laboratory microcosms enriched on insoluble organosolv lignin under oxic conditions. The near-complete genome sequence presented here will facilitate analyses into this deep-ocean bacterium's ability to degrade recalcitrant organics such as lignin. Copyright © 2016 Woo et al.
Whole-Genome Characterization of Prunus necrotic ringspot virus Infecting Sweet Cherry in China
2018-01-01
ABSTRACT Prunus necrotic ringspot virus (PNRSV) causes yield loss in most cultivated stone fruits, including sweet cherry. Using a small RNA deep-sequencing approach combined with end-genome sequence cloning, we identified the complete genomes of all three PNRSV strands from PNRSV-infected sweet cherry trees and compared them with those of two previously reported isolates. PMID:29496825
Ibrahim, Wisam; Abadeh, Mohammad Saniee
2017-05-21
Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lau, Shun; Liem, Arief Darmanegara; Nie, Youyan
2008-01-01
Background: The expectancy-value and achievement goal theories are arguably the two most dominant theories of achievement motivation in the contemporary literature. However, very few studies have examined how the constructs derived from both theories are related to deep learning. Moreover, although there is evidence demonstrating the links between…
Role of Color Flow Ultrasound in Detection of Deep Venous Thrombosis
ERIC Educational Resources Information Center
Mohammed, Shelan Hakeem; AL-Najjar, Salwa A.
2016-01-01
Background: Deep vein thrombosis (DVT) of lower limbs is one of the most causes for the majority of death caused by pulmonary embolism. Many medical and surgical disorders are complicated by DVT. Most venous thrombi are clinically silent. B-mode and color Doppler imaging is needed for early diagnosis of DVT to prevent complications and squeal of…
NASA Astrophysics Data System (ADS)
Deka, Gitanjal; Nishida, Kentaro; Mochizuki, Kentaro; Ding, Hou-Xian; Fujita, Katsumasa; Chu, Shi-Wei
2018-03-01
Recently, many resolution enhancing techniques are demonstrated, but most of them are severely limited for deep tissue applications. For example, wide-field based localization techniques lack the ability of optical sectioning, and structured light based techniques are susceptible to beam distortion due to scattering/aberration. Saturated excitation (SAX) microscopy, which relies on temporal modulation that is less affected when penetrating into tissues, should be the best candidate for deep-tissue resolution enhancement. Nevertheless, although fluorescence saturation has been successfully adopted in SAX, it is limited by photobleaching, and its practical resolution enhancement is less than two-fold. Recently, we demonstrated plasmonic SAX which provides bleaching-free imaging with three-fold resolution enhancement. Here we show that the three-fold resolution enhancement is sustained throughout the whole working distance of an objective, i.e., 200 μm, which is the deepest super-resolution record to our knowledge, and is expected to extend into deeper tissues. In addition, SAX offers the advantage of background-free imaging by rejecting unwanted scattering background from biological tissues. This study provides an inspirational direction toward deep-tissue super-resolution imaging and has the potential in tumor monitoring and beyond.
Sanford Underground Research Facility - The United State's Deep Underground Research Facility
NASA Astrophysics Data System (ADS)
Vardiman, D.
2012-12-01
The 2.5 km deep Sanford Underground Research Facility (SURF) is managed by the South Dakota Science and Technology Authority (SDSTA) at the former Homestake Mine site in Lead, South Dakota. The US Department of Energy currently supports the development of the facility using a phased approach for underground deployment of experiments as they obtain an advanced design stage. The geology of the Sanford Laboratory site has been studied during the 125 years of operations at the Homestake Mine and more recently as part of the preliminary geotechnical site investigations for the NSF's Deep Underground Science and Engineering Laboratory project. The overall geology at DUSEL is a well-defined stratigraphic sequence of schist and phyllites. The three major Proterozoic units encountered in the underground consist of interbedded schist, metasediments, and amphibolite schist which are crosscut by Tertiary rhyolite dikes. Preliminary geotechnical site investigations included drift mapping, borehole drilling, borehole televiewing, in-situ stress analysis, laboratory analysis of core, mapping and laser scanning of new excavations, modeling and analysis of all geotechnical information. The investigation was focused upon the determination if the proposed site rock mass could support the world's largest (66 meter diameter) deep underground excavation. While the DUSEL project has subsequently been significantly modified, these data are still available to provide a baseline of the ground conditions which may be judiciously extrapolated throughout the entire Proterozoic rock assemblage for future excavations. Recommendations for facility instrumentation and monitoring were included in the preliminary design of the DUSEL project design and include; single and multiple point extensometers, tape extensometers and convergence measurements (pins), load cells and pressure cells, smart cables, inclinometers/Tiltmeters, Piezometers, thermistors, seismographs and accelerometers, scanners (laser/LIDAR), surveying instruments, and surveying benchmarks and optical survey points. Currently an array of single and multipoint extensometers monitors the Davis Campus. A facility-wide micro seismic monitoring system is anticipated to be deployed during the latter half of 2012. This system is designed to monitor minor events initiated within the historical mined out portions of the facility. The major science programs for the coming five years consist of the MAJORANA DEMONSTRATOR (MJD) neutrinoless double beta decay experiment; the Large Underground Xenon (LUX) dark matter search, the Center for Ultralow Background Experiments at DUSEL (CUBED), numerous geoscience installations, Long-Baseline Neutrino Experiment (LBNE), a nuclear astrophysics program involving a low energy underground particle accelerator, second and third generation dark matter experiments, and additional low background counting facilities. The Sanford Lab facility is an active, U.S. based, deep underground research facility dedicated to science, affording the science community the opportunity to conduct unprecedented scientific research in a broad range of physics, biology and geoscience fields at depth. SURF is actively interested in hosting additional research collaborations and provides resources for full facility design, cost estimation, excavation, construction and support management services.
Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume.
Dick, Gregory J; Tebo, Bradley M
2010-05-01
Hydrothermal plumes are hot spots of microbial biogeochemistry in the deep ocean, yet little is known about the diversity or ecology of microorganisms inhabiting plumes. Recent biogeochemical evidence shows that Mn(II) oxidation in the Guaymas Basin (GB) hydrothermal plume is microbially mediated and suggests that the plume microbial community is distinct from deep-sea communities. Here we use a molecular approach to compare microbial diversity in the GB plume and in background deep seawater communities, and cultivation to identify Mn(II)-oxidizing bacteria from plumes and sediments. Despite dramatic differences in Mn(II) oxidation rates between plumes and background seawater, microbial diversity and membership were remarkably similar. All bacterial clone libraries were dominated by Gammaproteobacteria and archaeal clone libraries were dominated by Crenarchaeota. Two lineages, both phylogenetically related to methanotrophs and/or methylotrophs, were consistently over-represented in the plume. Eight Mn(II)-oxidizing bacteria were isolated, but none of these or previously identified Mn(II) oxidizers were abundant in clone libraries. Taken together with Mn(II) oxidation rates measured in laboratory cultures and in the field, these results suggest that Mn(II) oxidation in the GB hydrothermal plume is mediated by genome-level dynamics (gene content and/or expression) of microorganisms that are indigenous and abundant in the deep sea but have yet to be unidentified as Mn(II) oxidizers.
Identification and characterization of microRNAs in white and brown alpaca skin
2012-01-01
Background MicroRNAs (miRNAs) are small, non-coding 21–25 nt RNA molecules that play an important role in regulating gene expression. Little is known about the expression profiles and functions of miRNAs in skin and their role in pigmentation. Alpacas have more than 22 natural coat colors, more than any other fiber producing species. To better understand the role of miRNAs in control of coat color we performed a comprehensive analysis of miRNA expression profiles in skin of white versus brown alpacas. Results Two small RNA libraries from white alpaca (WA) and brown alpaca (BA) skin were sequenced with the aid of Illumina sequencing technology. 272 and 267 conserved miRNAs were obtained from the WA and BA skin libraries, respectively. Of these conserved miRNAs, 35 and 13 were more abundant in WA and BA skin, respectively. The targets of these miRNAs were predicted and grouped based on Gene Ontology and KEGG pathway analysis. Many predicted target genes for these miRNAs are involved in the melanogenesis pathway controlling pigmentation. In addition to the conserved miRNAs, we also obtained 22 potentially novel miRNAs from the WA and BA skin libraries. Conclusion This study represents the first comprehensive survey of miRNAs expressed in skin of animals of different coat colors by deep sequencing analysis. We discovered a collection of miRNAs that are differentially expressed in WA and BA skin. The results suggest important potential functions of miRNAs in coat color regulation. PMID:23067000
Private genome analysis through homomorphic encryption
2015-01-01
Background The rapid development of genome sequencing technology allows researchers to access large genome datasets. However, outsourcing the data processing o the cloud poses high risks for personal privacy. The aim of this paper is to give a practical solution for this problem using homomorphic encryption. In our approach, all the computations can be performed in an untrusted cloud without requiring the decryption key or any interaction with the data owner, which preserves the privacy of genome data. Methods We present evaluation algorithms for secure computation of the minor allele frequencies and χ2 statistic in a genome-wide association studies setting. We also describe how to privately compute the Hamming distance and approximate Edit distance between encrypted DNA sequences. Finally, we compare performance details of using two practical homomorphic encryption schemes - the BGV scheme by Gentry, Halevi and Smart and the YASHE scheme by Bos, Lauter, Loftus and Naehrig. Results The approach with the YASHE scheme analyzes data from 400 people within about 2 seconds and picks a variant associated with disease from 311 spots. For another task, using the BGV scheme, it took about 65 seconds to securely compute the approximate Edit distance for DNA sequences of size 5K and figure out the differences between them. Conclusions The performance numbers for BGV are better than YASHE when homomorphically evaluating deep circuits (like the Hamming distance algorithm or approximate Edit distance algorithm). On the other hand, it is more efficient to use the YASHE scheme for a low-degree computation, such as minor allele frequencies or χ2 test statistic in a case-control study. PMID:26733152
Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids
NASA Astrophysics Data System (ADS)
Jungbluth, Sean P.; Amend, Jan P.; Rappé, Michael S.
2017-03-01
The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two metagenomes from borehole observatories located 311 meters apart and, using binning tools, retrieved 98 genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria, and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic subseafloor biosphere, and provide a dataset available for further interrogation.
Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids.
Jungbluth, Sean P; Amend, Jan P; Rappé, Michael S
2017-03-28
The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two metagenomes from borehole observatories located 311 meters apart and, using binning tools, retrieved 98 genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria, and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic subseafloor biosphere, and provide a dataset available for further interrogation.
Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids
Jungbluth, Sean P.; Amend, Jan P.; Rappé, Michael S.
2017-01-01
The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two metagenomes from borehole observatories located 311 meters apart and, using binning tools, retrieved 98 genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria, and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic subseafloor biosphere, and provide a dataset available for further interrogation. PMID:28350381
Using Deep Learning Model for Meteorological Satellite Cloud Image Prediction
NASA Astrophysics Data System (ADS)
Su, X.
2017-12-01
A satellite cloud image contains much weather information such as precipitation information. Short-time cloud movement forecast is important for precipitation forecast and is the primary means for typhoon monitoring. The traditional methods are mostly using the cloud feature matching and linear extrapolation to predict the cloud movement, which makes that the nonstationary process such as inversion and deformation during the movement of the cloud is basically not considered. It is still a hard task to predict cloud movement timely and correctly. As deep learning model could perform well in learning spatiotemporal features, to meet this challenge, we could regard cloud image prediction as a spatiotemporal sequence forecasting problem and introduce deep learning model to solve this problem. In this research, we use a variant of Gated-Recurrent-Unit(GRU) that has convolutional structures to deal with spatiotemporal features and build an end-to-end model to solve this forecast problem. In this model, both the input and output are spatiotemporal sequences. Compared to Convolutional LSTM(ConvLSTM) model, this model has lower amount of parameters. We imply this model on GOES satellite data and the model perform well.
NASA Astrophysics Data System (ADS)
Song, Tianyu; Kam, Pooi-Yuen
2016-02-01
Since atmospheric turbulence and pointing errors cause signal intensity fluctuations and the background radiation surrounding the free-space optical (FSO) receiver contributes an undesired noisy component, the receiver requires accurate channel state information (CSI) and background information to adjust the detection threshold. In most previous studies, for CSI acquisition, pilot symbols were employed, which leads to a reduction of spectral and energy efficiency; and an impractical assumption that the background radiation component is perfectly known was made. In this paper, we develop an efficient and robust sequence receiver, which acquires the CSI and the background information implicitly and requires no knowledge about the channel model information. It is robust since it can automatically estimate the CSI and background component and detect the data sequence accordingly. Its decision metric has a simple form and involves no integrals, and thus can be easily evaluated. A Viterbi-type trellis-search algorithm is adopted to improve the search efficiency, and a selective-store strategy is adopted to overcome a potential error floor problem as well as to increase the memory efficiency. To further simplify the receiver, a decision-feedback symbol-by-symbol receiver is proposed as an approximation of the sequence receiver. By simulations and theoretical analysis, we show that the performance of both the sequence receiver and the symbol-by-symbol receiver, approach that of detection with perfect knowledge of the CSI and background radiation, as the length of the window for forming the decision metric increases.
Automated analysis of high-content microscopy data with deep learning.
Kraus, Oren Z; Grys, Ben T; Ba, Jimmy; Chong, Yolanda; Frey, Brendan J; Boone, Charles; Andrews, Brenda J
2017-04-18
Existing computational pipelines for quantitative analysis of high-content microscopy data rely on traditional machine learning approaches that fail to accurately classify more than a single dataset without substantial tuning and training, requiring extensive analysis. Here, we demonstrate that the application of deep learning to biological image data can overcome the pitfalls associated with conventional machine learning classifiers. Using a deep convolutional neural network (DeepLoc) to analyze yeast cell images, we show improved performance over traditional approaches in the automated classification of protein subcellular localization. We also demonstrate the ability of DeepLoc to classify highly divergent image sets, including images of pheromone-arrested cells with abnormal cellular morphology, as well as images generated in different genetic backgrounds and in different laboratories. We offer an open-source implementation that enables updating DeepLoc on new microscopy datasets. This study highlights deep learning as an important tool for the expedited analysis of high-content microscopy data. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Measure Guideline. Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musunuru, S.; Pettit, B.
2015-04-30
This Measure Guideline describes a deep energy enclosure retrofit solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits might adversely affect the durability of the wall. This guideline includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.
Xu, Chang; Nezami Ranjbar, Mohammad R; Wu, Zhong; DiCarlo, John; Wang, Yexun
2017-01-03
Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing, researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using benchtop sequencers. Molecular barcoding (or indexing) provides a unique solution for reducing sequencing artifacts analytically. Although different molecular barcoding schemes have been reported in recent literature, most variant calling has been done on limited targets, using simple custom scripts. The analytical performance of barcode-aware variant calling can be significantly improved by incorporating advanced statistical models. We present here a highly efficient, simple and scalable enrichment protocol that integrates molecular barcodes in multiplex PCR amplification. In addition, we developed smCounter, an open source, generic, barcode-aware variant caller based on a Bayesian probabilistic model. smCounter was optimized and benchmarked on two independent read sets with SNVs and indels at 5 and 1% allele fractions. Variants were called with very good sensitivity and specificity within coding regions. We demonstrated that we can accurately detect somatic mutations with allele fractions as low as 1% in coding regions using our enrichment protocol and variant caller.
Blake, Jonathon; Riddell, Andrew; Theiss, Susanne; Gonzalez, Alexis Perez; Haase, Bettina; Jauch, Anna; Janssen, Johannes W. G.; Ibberson, David; Pavlinic, Dinko; Moog, Ute; Benes, Vladimir; Runz, Heiko
2014-01-01
Balanced chromosome abnormalities (BCAs) occur at a high frequency in healthy and diseased individuals, but cost-efficient strategies to identify BCAs and evaluate whether they contribute to a phenotype have not yet become widespread. Here we apply genome-wide mate-pair library sequencing to characterize structural variation in a patient with unclear neurodevelopmental disease (NDD) and complex de novo BCAs at the karyotype level. Nucleotide-level characterization of the clinically described BCA breakpoints revealed disruption of at least three NDD candidate genes (LINC00299, NUP205, PSMD14) that gave rise to abnormal mRNAs and could be assumed as disease-causing. However, unbiased genome-wide analysis of the sequencing data for cryptic structural variation was key to reveal an additional submicroscopic inversion that truncates the schizophrenia- and bipolar disorder-associated brain transcription factor ZNF804A as an equally likely NDD-driving gene. Deep sequencing of fluorescent-sorted wild-type and derivative chromosomes confirmed the clinically undetected BCA. Moreover, deep sequencing further validated a high accuracy of mate-pair library sequencing to detect structural variants larger than 10 kB, proposing that this approach is powerful for clinical-grade genome-wide structural variant detection. Our study supports previous evidence for a role of ZNF804A in NDD and highlights the need for a more comprehensive assessment of structural variation in karyotypically abnormal individuals and patients with neurocognitive disease to avoid diagnostic deception. PMID:24625750
Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C. Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B.; Nauck, Markus; Kaminski, Wolfgang E.
2017-01-01
The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its “a” determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the “a” determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of “a” determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated. PMID:28472040
Avramenko, Russell W; Redman, Elizabeth M; Lewis, Roy; Yazwinski, Thomas A; Wasmuth, James D; Gilleard, John S
2015-01-01
Parasitic helminth infections have a considerable impact on global human health as well as animal welfare and production. Although co-infection with multiple parasite species within a host is common, there is a dearth of tools with which to study the composition of these complex parasite communities. Helminth species vary in their pathogenicity, epidemiology and drug sensitivity and the interactions that occur between co-infecting species and their hosts are poorly understood. We describe the first application of deep amplicon sequencing to study parasitic nematode communities as well as introduce the concept of the gastro-intestinal "nemabiome". The approach is analogous to 16S rDNA deep sequencing used to explore microbial communities, but utilizes the nematode ITS-2 rDNA locus instead. Gastro-intestinal parasites of cattle were used to develop the concept, as this host has many well-defined gastro-intestinal nematode species that commonly occur as complex co-infections. Further, the availability of pure mono-parasite populations from experimentally infected cattle allowed us to prepare mock parasite communities to determine, and correct for, species representation biases in the sequence data. We demonstrate that, once these biases have been corrected, accurate relative quantitation of gastro-intestinal parasitic nematode communities in cattle fecal samples can be achieved. We have validated the accuracy of the method applied to field-samples by comparing the results of detailed morphological examination of L3 larvae populations with those of the sequencing assay. The results illustrate the insights that can be gained into the species composition of parasite communities, using grazing cattle in the mid-west USA as an example. However, both the technical approach and the concept of the 'nemabiome' have a wide range of potential applications in human and veterinary medicine. These include investigations of host-parasite and parasite-parasite interactions during co-infection, parasite epidemiology, parasite ecology and the response of parasite populations to both drug treatments and control programs.
Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-Suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B; Nauck, Markus; Kaminski, Wolfgang E
2017-01-01
The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its "a" determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the "a" determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of "a" determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated.
NASA Astrophysics Data System (ADS)
Houatmia, Faten; Khomsi, Sami; Bédir, Mourad
2015-11-01
The Sisseb El Alem-Enfidha basin is located in the northeastern Tunisia, It is borded by Nadhour - Saouaf syncline to the north, Kairouan plain to the south, the Mediterranean Sea to the east and Tunisian Atlassic "dorsale" to the west. Oligocene and Miocene deltaic deposits present the main potential deep aquifers in this basin with high porosity (25%-30%). The interpretation of twenty seismic reflection profiles, calibrated by wire line logging data of twelve oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of Oligo-Miocene sandstones reservoirs and their distribution in raised structures and subsurface depressions. Miocene seismostratigraphy analysis from Ain Ghrab Formation (Langhian) to the Segui Formation (Quaternary) showed five third-order seismic sequence deposits and nine extended lenticular sandy bodies reservoirs limited by toplap and downlap surfaces unconformities, Oligocene deposits presented also five third- order seismic sequences with five extended lenticular sandy bodies reservoirs. The Depth and the thickness maps of these sequence reservoir packages exhibited the structuring of this basin in sub-basins characterized by important lateral and vertical geometric and thichness variations. Petroleum wells wire line logging correlation with clay volume calculation showed an heterogeneous multilayer reservoirs of Oligocene and Miocene formed by the arrangement of fourteen sandstone bodies being able to be good reservoirs, separated by impermeable clay packages and affected by faults. Reservoirs levels correspond mainly to the lower system tract (LST) of sequences. Intensive fracturing by deep seated faults bounding the different sub-basins play a great role for water surface recharge and inter-layer circulations between affected reservoirs. The total pore volume of the Oligo-Miocene reservoir sandy bodies in the study area, is estimated to about 4 × 1012 m3 and equivalent to 4 × 109 m3 of deep water reserves.
Microbial community structure in three deep-sea carbonate crusts.
Heijs, S K; Aloisi, G; Bouloubassi, I; Pancost, R D; Pierre, C; Sinninghe Damsté, J S; Gottschal, J C; van Elsas, J D; Forney, L J
2006-10-01
Carbonate crusts in marine environments can act as sinks for carbon dioxide. Therefore, understanding carbonate crust formation could be important for understanding global warming. In the present study, the microbial communities of three carbonate crust samples from deep-sea mud volcanoes in the eastern Mediterranean were characterized by sequencing 16S ribosomal RNA (rRNA) genes amplified from DNA directly retrieved from the samples. In combination with the mineralogical composition of the crusts and lipid analyses, sequence data were used to assess the possible role of prokaryotes in crust formation. Collectively, the obtained data showed the presence of highly diverse communities, which were distinct in each of the carbonate crusts studied. Bacterial 16S rRNA gene sequences were found in all crusts and the majority was classified as alpha-, gamma-, and delta- Proteobacteria. Interestingly, sequences of Proteobacteria related to Halomonas and Halovibrio sp., which can play an active role in carbonate mineral formation, were present in all crusts. Archaeal 16S rRNA gene sequences were retrieved from two of the crusts studied. Several of those were closely related to archaeal sequences of organisms that have previously been linked to the anaerobic oxidation of methane (AOM). However, the majority of archaeal sequences were not related to sequences of organisms known to be involved in AOM. In combination with the strongly negative delta 13C values of archaeal lipids, these results open the possibility that organisms with a role in AOM may be more diverse within the Archaea than previously suggested. Different communities found in the crusts could carry out similar processes that might play a role in carbonate crust formation.
Tang, Kai; Lin, Dan; Zheng, Qiang; Liu, Keshao; Yang, Yujie; Han, Yu; Jiao, Nianzhi
2017-06-27
Marine phages are spectacularly diverse in nature. Dozens of roseophages infecting members of Roseobacter clade bacteria were isolated and characterized, exhibiting a very high degree of genetic diversity. In the present study, the induction of two temperate bacteriophages, namely, vB_ThpS-P1 and vB_PeaS-P1, was performed in Roseobacter clade bacteria isolated from the deep-sea water, Thiobacimonas profunda JLT2016 and Pelagibaca abyssi JLT2014, respectively. Two novel phages in morphological, genomic and proteomic features were presented, and their phylogeny and evolutionary relationships were explored by bioinformatic analysis. Electron microscopy showed that the morphology of the two phages were similar to that of siphoviruses. Genome sequencing indicated that the two phages were similar in size, organization, and content, thereby suggesting that these shared a common ancestor. Despite the presence of Mu-like phage head genes, the phages are more closely related to Rhodobacter phage RC1 than Mu phages in terms of gene content and sequence similarity. Based on comparative genomic and phylogenetic analysis, we propose a Mu-like head phage group to allow for the inclusion of Mu-like phages and two newly phages. The sequences of the Mu-like head phage group were widespread, occurring in each investigated metagenomes. Furthermore, the horizontal exchange of genetic material within the Mu-like head phage group might have involved a gene that was associated with phage phenotypic characteristics. This study is the first report on the complete genome sequences of temperate phages that infect deep-sea roseobacters, belonging to the Mu-like head phage group. The Mu-like head phage group might represent a small but ubiquitous fraction of marine viral diversity.
Verde, Ignazio; Jenkins, Jerry; Dondini, Luca; Micali, Sabrina; Pagliarani, Giulia; Vendramin, Elisa; Paris, Roberta; Aramini, Valeria; Gazza, Laura; Rossini, Laura; Bassi, Daniele; Troggio, Michela; Shu, Shengqiang; Grimwood, Jane; Tartarini, Stefano; Dettori, Maria Teresa; Schmutz, Jeremy
2017-03-11
The availability of the peach genome sequence has fostered relevant research in peach and related Prunus species enabling the identification of genes underlying important horticultural traits as well as the development of advanced tools for genetic and genomic analyses. The first release of the peach genome (Peach v1.0) represented a high-quality WGS (Whole Genome Shotgun) chromosome-scale assembly with high contiguity (contig L50 214.2 kb), large portions of mapped sequences (96%) and high base accuracy (99.96%). The aim of this work was to improve the quality of the first assembly by increasing the portion of mapped and oriented sequences, correcting misassemblies and improving the contiguity and base accuracy using high-throughput linkage mapping and deep resequencing approaches. Four linkage maps with 3,576 molecular markers were used to improve the portion of mapped and oriented sequences (from 96.0% and 85.6% of Peach v1.0 to 99.2% and 98.2% of v2.0, respectively) and enabled a more detailed identification of discernible misassemblies (10.4 Mb in total). The deep resequencing approach fixed 859 homozygous SNPs (Single Nucleotide Polymorphisms) and 1347 homozygous indels. Moreover, the assembled NGS contigs enabled the closing of 212 gaps with an improvement in the contig L50 of 19.2%. The improved high quality peach genome assembly (Peach v2.0) represents a valuable tool for the analysis of the genetic diversity, domestication, and as a vehicle for genetic improvement of peach and related Prunus species. Moreover, the important phylogenetic position of peach and the absence of recent whole genome duplication (WGD) events make peach a pivotal species for comparative genomics studies aiming at elucidating plant speciation and diversification processes.
Chen, Ping; Zhang, Limin; Guo, Xiaoxuan; Dai, Xin; Liu, Li; Xi, Lijun; Wang, Jian; Song, Lei; Wang, Yuezhu; Zhu, Yaxin; Huang, Li; Huang, Ying
2016-01-01
The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling. PMID:27621725
NASA Astrophysics Data System (ADS)
Gan, Wen-Cong; Shu, Fu-Wen
Quantum many-body problem with exponentially large degrees of freedom can be reduced to a tractable computational form by neural network method [G. Carleo and M. Troyer, Science 355 (2017) 602, arXiv:1606.02318.] The power of deep neural network (DNN) based on deep learning is clarified by mapping it to renormalization group (RG), which may shed lights on holographic principle by identifying a sequence of RG transformations to the AdS geometry. In this paper, we show that any network which reflects RG process has intrinsic hyperbolic geometry, and discuss the structure of entanglement encoded in the graph of DNN. We find the entanglement structure of DNN is of Ryu-Takayanagi form. Based on these facts, we argue that the emergence of holographic gravitational theory is related to deep learning process of the quantum-field theory.
Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field
Hollenbach, D. F.; Herndon, J. M.
2001-01-01
Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having 3He/4He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power. PMID:11562483
NASA Astrophysics Data System (ADS)
Coianiz, Lisa; Ben-Avraham, Zvi; Lazar, Michael
2017-04-01
During the late Quaternary a series of lakes occupied the Dead Sea tectonic basin. The sediments that accumulated within these lakes preserved the environmental history (tectonic and climatic) of the basin and its vicinity. Most of the information on these lakes was deduced from exposures along the marginal terraces of the modern Dead Sea, e.g. the exposures of the last glacial Lake Lisan and Holocene Dead Sea. The International Continental Drilling Program (ICDP) project conducted in the Dead Sea during 2010-2011 recovered several cores that were drilled in the deep depocenter of the lake (water depth of 300 m) and at the margin (depth of 3 m offshore Ein Gedi spa). New high resolution logging data combined with a detailed lithological description and published age models for the deep 5017-1-A borehole were used to establish a sequence stratigraphic framework for the Lakes Amora, Samra, Lisan and Zeelim strata. This study presents a stratigraphic timescale for reconstructing the last ca 225 ka. It provides a context within which the timing of key sequence surfaces identified in the distal part of the basin can be mapped on a regional and stratigraphic time frame. In addition, it permitted the examination of depositional system tracts and related driving mechanisms controlling their formation. The sequence stratigraphic model developed for the Northern Dead Sea Basin is based on the identification of sequence bounding surfaces including: sequence boundary (SB), transgressive surface (TS) and maximum flooding surface (MFS). They enabled the division of depositional sequences into a Lowstand systems tracts (LST), Transgressive systems tracts (TST) and Highstand systems tracts (HST), which can be interpreted in terms of relative lake level changes. The analysis presented here show that system tract stacking patterns defined for the distal 5017-1-A borehole can be correlated to the proximal part of the basin, and widely support the claim that changes in relative lake levels were synchronous across the northern Dead Sea, although differences do exist. These discrepancies can possibly be explained in part by the tectonic nature of the basin. Within the 5017-1-A section, the interpreted changes in depositional environments derived primarily from the gamma ray log patterns show a good correlation in time with sequence-chronostratigraphic framework, extracted lake level curves and paleohydrological records of other areas worldwide. Sequence stratigraphic analysis presented here allows for a detailed, high resolution examination of the sedimentary sequences in the Northern Dead Sea Basin together with an independent proxy that is an indirect indicator of changes in relative lake level.
ERIC Educational Resources Information Center
Blom, Sarah; Severiens, Sabine
2008-01-01
In order to examine and explain differences in self-regulated (SR) deep learning of successful immigrant and non-immigrant students we investigated a population of 650 high track 10th grade students in Amsterdam, of which 39% had an immigrant background. By means of a questionnaire based on the MSLQ of Pintrich and De Groot (1990) the students…
ERIC Educational Resources Information Center
Aharony, Noa
2006-01-01
Background: The learning context is learning English in an Internet environment. The examination of this learning process was based on the Biggs and Moore's teaching-learning model (Biggs & Moore, 1993). Aim: The research aims to explore the use of the deep and surface strategies in an Internet environment among EFL students who come from…
Oberto, Jacques; Gaudin, Marie; Cossu, Matteo; Gorlas, Aurore; Slesarev, Alexeï; Marguet, Evelyne; Forterre, Patrick
2014-03-27
Thermococcus nautili 30-1 (formerly Thermococcus nautilus), an anaerobic hyperthermophilic marine archaeon, was isolated in 1999 from a deep-sea hydrothermal vent during the Amistad campaign. Here, we present the complete sequence of T. nautili, which is able to produce membrane vesicles containing plasmid DNA. This property makes T. nautili a model organism to study horizontal gene transfer.
USDA-ARS?s Scientific Manuscript database
Vitamin E is essential for humans and thus must be a component of a healthy diet. Among the cereal grains, hexaploid oats (Avena sativa L.) have high vitamin E content. To date, no gene sequences in the vitamin E biosynthesis pathway have been reported for oats. Using deep sequencing and orthology-g...
Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Wakazuki, Sachiko; Kishimoto, Noriaki; Kobayashi, Tohru
2016-03-10
Here we report the complete genome sequence of Microcella alkaliphila JAM-AC0309, which was newly isolated from the deep subseafloor core sediment from offshore of the Shimokita Peninsula of Japan. An array of genes related to utilization of xylan in this bacterium was identified by whole genome analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Whole-Genome Characterization of Prunus necrotic ringspot virus Infecting Sweet Cherry in China.
Wang, Jiawei; Zhai, Ying; Zhu, Dongzi; Liu, Weizhen; Pappu, Hanu R; Liu, Qingzhong
2018-03-01
Prunus necrotic ringspot virus (PNRSV) causes yield loss in most cultivated stone fruits, including sweet cherry. Using a small RNA deep-sequencing approach combined with end-genome sequence cloning, we identified the complete genomes of all three PNRSV strands from PNRSV-infected sweet cherry trees and compared them with those of two previously reported isolates. Copyright © 2018 Wang et al.
Wu, Nicholas C.; Young, Arthur P.; Al-Mawsawi, Laith Q.; Olson, C. Anders; Feng, Jun; Qi, Hangfei; Luan, Harding H.; Li, Xinmin; Wu, Ting-Ting
2014-01-01
ABSTRACT Viral proteins often display several functions which require multiple assays to dissect their genetic basis. Here, we describe a systematic approach to screen for loss-of-function mutations that confer a fitness disadvantage under a specified growth condition. Our methodology was achieved by genetically monitoring a mutant library under two growth conditions, with and without interferon, by deep sequencing. We employed a molecular tagging technique to distinguish true mutations from sequencing error. This approach enabled us to identify mutations that were negatively selected against, in addition to those that were positively selected for. Using this technique, we identified loss-of-function mutations in the influenza A virus NS segment that were sensitive to type I interferon in a high-throughput fashion. Mechanistic characterization further showed that a single substitution, D92Y, resulted in the inability of NS to inhibit RIG-I ubiquitination. The approach described in this study can be applied under any specified condition for any virus that can be genetically manipulated. IMPORTANCE Traditional genetics focuses on a single genotype-phenotype relationship, whereas high-throughput genetics permits phenotypic characterization of numerous mutants in parallel. High-throughput genetics often involves monitoring of a mutant library with deep sequencing. However, deep sequencing suffers from a high error rate (∼0.1 to 1%), which is usually higher than the occurrence frequency for individual point mutations within a mutant library. Therefore, only mutations that confer a fitness advantage can be identified with confidence due to an enrichment in the occurrence frequency. In contrast, it is impossible to identify deleterious mutations using most next-generation sequencing techniques. In this study, we have applied a molecular tagging technique to distinguish true mutations from sequencing errors. It enabled us to identify mutations that underwent negative selection, in addition to mutations that experienced positive selection. This study provides a proof of concept by screening for loss-of-function mutations on the influenza A virus NS segment that are involved in its anti-interferon activity. PMID:24965464
Piezophilic Bacteria Isolated from Sediment of the Shimokita Coalbed, Japan
NASA Astrophysics Data System (ADS)
Fang, J.; Kato, C.; Hori, T.; Morono, Y.; Inagaki, F.
2013-12-01
The Earth is a cold planet as well as pressured planet, hosting both the surface biosphere and the deep biosphere. Pressure ranges over four-orders of magnitude in the surface biosphere and probably more in the deep biosphere. Pressure is an important thermodynamic property of the deep biosphere that affects microbial physiology and biochemistry. Bacteria that require high-pressure conditions for optimal growth are called piezophilic bacteria. Subseafloor marine sediments are one of the most extensive microbial habitats on Earth. Marine sediments cover more than two-thirds of the Earth's surface, and represent a major part of the deep biosphere. Owing to its vast size and intimate connection with the surface biosphere, particularly the oceans, the deep biosphere has enormous potential for influencing global-scale biogeochemical processes, including energy, climate, carbon and nutrient cycles. Therefore, studying piezophilic bacteria of the deep biosphere has important implications in increasing our understanding of global biogeochemical cycles, the interactions between the biosphere and the geosphere, and the evolution of life. Sediment samples were obtained during IODP Expedition 337, from 1498 meters below sea floor (mbsf) (Sample 6R-3), 1951~1999 mbsf (19R-1~25R-3; coalbed mix), and 2406 mbsf (29R-7). The samples were mixed with MB2216 growth medium and cultivated under anaerobic conditions at 35 MPa (megapascal) pressure. Growth temperatures were adjusted to in situ environmental conditions, 35°C for 6R-3, 45°C for 19R-1~25R-3, and 55°C for 29R-7. The cultivation was performed three times, for 30 days each time. Microbial cells were obtained and the total DNA was extracted. At the same time, isolation of microbes was also performed under anaerobic conditions. Microbial communities in the coalbed sediment were analyzed by cloning, sequencing, and terminal restriction fragment length polymorphism (t-RFLP) of 16S ribosomal RNA genes. From the partial 16S rRNA gene sequences, we have identified abundant Alkalibacterium sp. in 6R-3 and 29R-7 at the first HP cultivation. We also identified Haloactibacillus sp. in 6R-3 and Anoxybacillus related sp. in 19R-1~25R-3 at the third HP cultivation. These microorganisms are likely piezophiles and play an important role in degradation of sedimentary organic matter and production of microbial metabolites sustaining the deep microbial ecosystem in the Shimokita Coalbed. The complete 16S sequencing and isolation of piezophiles are now ongoing.
Matsumura, Emilyn E; Coletta-Filho, Helvecio D; Nouri, Shahideh; Falk, Bryce W; Nerva, Luca; Oliveira, Tiago S; Dorta, Silvia O; Machado, Marcos A
2017-04-24
Citrus sudden death (CSD) has caused the death of approximately four million orange trees in a very important citrus region in Brazil. Although its etiology is still not completely clear, symptoms and distribution of affected plants indicate a viral disease. In a search for viruses associated with CSD, we have performed a comparative high-throughput sequencing analysis of the transcriptome and small RNAs from CSD-symptomatic and -asymptomatic plants using the Illumina platform. The data revealed mixed infections that included Citrus tristeza virus (CTV) as the most predominant virus, followed by the Citrus sudden death-associated virus (CSDaV), Citrus endogenous pararetrovirus (CitPRV) and two putative novel viruses tentatively named Citrus jingmen-like virus (CJLV), and Citrus virga-like virus (CVLV). The deep sequencing analyses were sensitive enough to differentiate two genotypes of both viruses previously associated with CSD-affected plants: CTV and CSDaV. Our data also showed a putative association of the CSD-symptomatic plants with a specific CSDaV genotype and a likely association with CitPRV as well, whereas the two putative novel viruses showed to be more associated with CSD-asymptomatic plants. This is the first high-throughput sequencing-based study of the viral sequences present in CSD-affected citrus plants, and generated valuable information for further CSD studies.
Castro, Rosario; Navelsaker, Sofie; Krasnov, Aleksei; Du Pasquier, Louis; Boudinot, Pierre
2017-10-01
During the last decades, gene and cDNA cloning identified TCR and Ig genes across vertebrates; genome sequencing of TCR and Ig loci in many species revealed the different organizations selected during evolution under the pressure of generating diverse repertoires of Ag receptors. By detecting clonotypes over a wide range of frequency, deep sequencing of Ig and TCR transcripts provides a new way to compare the structure of expressed repertoires in species of various sizes, at different stages of development, with different physiologies, and displaying multiple adaptations to the environment. In this review, we provide a short overview of the technologies currently used to produce global description of immune repertoires, describe how they have already been used in comparative immunology, and we discuss the future potential of such approaches. The development of these methodologies in new species holds promise for new discoveries concerning particular adaptations. As an example, understanding the development of adaptive immunity across metamorphosis in frogs has been made possible by such approaches. Repertoire sequencing is now widely used, not only in basic research but also in the context of immunotherapy and vaccination. Analysis of fish responses to pathogens and vaccines has already benefited from these methods. Finally, we also discuss potential advances based on repertoire sequencing of multigene families of immune sensors and effectors in invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Some New Windows into Terrestrial Deep Subsurface Microbial Ecosystems
NASA Astrophysics Data System (ADS)
Moser, D. P.
2011-12-01
Over the past several years, our group has surveyed the microbial ecology and biogeochemistry of a range of fracture rock subsurface ecosystems via deep mine boreholes in South Africa, the United States, and Canada; and boreholes from surface or deeply-sourced natural springs of the U.S. Great Basin. Collectively, these mostly unexplored habitats represent a wide range of geologic provinces, host rock types, aquatic chemistries, and the vast potential for biogeographic isolation. Thus, patterns of microbial diversity are of interest from the perspective of filling a fundamental knowledge gap; and while not necessarily expected, the detection of closely related microorganisms from geographically isolated settings would be noteworthy. Across these sample sets, microbial communities were invariably very low in biomass (e.g. 10e3 - 10e4 cells per mL) and dominated by deeply-branching bacterial lineages, particularly from the phyla Firmicutes and Nitrospira. In several cases, the Firmicutes have shown very close phylogenetic affiliations to lineages detected at divergent locations. For example, one abundant lineage from a new artesian well drilled into the Furnace Creek Fault of Death Valley, CA bears a very close phylogenetic relatedness to environmental DNA sequences (SSU rRNA gene) detected in one of the world's deepest mines (Tau Tona of South Africa) and what was North America's deepest gold mine (Homestake of South Dakota). Several radioactive wells from the Nevada National Security Site have produced rRNA gene sequences very close (e.g. greater than 99% identity) to that of Desulforudis audaxviator, a rarely detected microorganism thought to subsist as a single species ecosystem on the products of radiochemical reactions in deep crustal rocks from the South African Witwatersrand Basin. These sequences, along with more distantly related sequences from the marine subsurface (ridge flank basalt and mud volcanoes) and groundwater in Europe, hint at a role in certain hydrogen-rich subsurface settings for this group. Likewise, patterns of archaeal diversity across many of our Great Basin sites suggest shared deep lineages, particularly with the phylum, Thaumarchaeota. Here we will explore the possible significance of these patterns of diversity and discuss future research plans involving high throughput molecular techniques.
2012-01-01
Background The entire evolutionary history of life can be studied using myriad sequences generated by genomic research. This includes the appearance of the first cells and of superkingdoms Archaea, Bacteria, and Eukarya. However, the use of molecular sequence information for deep phylogenetic analyses is limited by mutational saturation, differential evolutionary rates, lack of sequence site independence, and other biological and technical constraints. In contrast, protein structures are evolutionary modules that are highly conserved and diverse enough to enable deep historical exploration. Results Here we build phylogenies that describe the evolution of proteins and proteomes. These phylogenetic trees are derived from a genomic census of protein domains defined at the fold family (FF) level of structural classification. Phylogenomic trees of FF structures were reconstructed from genomic abundance levels of 2,397 FFs in 420 proteomes of free-living organisms. These trees defined timelines of domain appearance, with time spanning from the origin of proteins to the present. Timelines are divided into five different evolutionary phases according to patterns of sharing of FFs among superkingdoms: (1) a primordial protein world, (2) reductive evolution and the rise of Archaea, (3) the rise of Bacteria from the common ancestor of Bacteria and Eukarya and early development of the three superkingdoms, (4) the rise of Eukarya and widespread organismal diversification, and (5) eukaryal diversification. The relative ancestry of the FFs shows that reductive evolution by domain loss is dominant in the first three phases and is responsible for both the diversification of life from a universal cellular ancestor and the appearance of superkingdoms. On the other hand, domain gains are predominant in the last two phases and are responsible for organismal diversification, especially in Bacteria and Eukarya. Conclusions The evolution of functions that are associated with corresponding FFs along the timeline reveals that primordial metabolic domains evolved earlier than informational domains involved in translation and transcription, supporting the metabolism-first hypothesis rather than the RNA world scenario. In addition, phylogenomic trees of proteomes reconstructed from FFs appearing in each of the five phases of the protein world show that trees reconstructed from ancient domain structures were consistently rooted in archaeal lineages, supporting the proposal that the archaeal ancestor is more ancient than the ancestors of other superkingdoms. PMID:22284070
2013-01-01
Background MicroRNAs (miRNAs) are an abundant class of endogenous small RNA molecules that downregulate gene expression at the posttranscriptional level. They play important roles in multiple biological processes by regulating genes that control developmental timing, growth, stem cell division and apoptosis by binding to the mRNA of target genes. Despite the position Atlantic salmon (Salmo salar) has as an economically important domesticated animal, there has been little research on miRNAs in this species. Knowledge about miRNAs and their target genes may be used to control health and to improve performance of economically important traits. However, before their biological function can be unravelled they must be identified and annotated. The aims of this study were to identify and characterize miRNA genes in Atlantic salmon by deep sequencing analysis of small RNA libraries from nine different tissues. Results A total of 180 distinct mature miRNAs belonging to 106 families of evolutionary conserved miRNAs, and 13 distinct novel mature miRNAs were discovered and characterized. The mature miRNAs corresponded to 521 putative precursor sequences located at unique genome locations. About 40% of these precursors were part of gene clusters, and the majority of the Salmo salar gene clusters discovered were conserved across species. Comparison of expression levels in samples from different tissues applying DESeq indicated that there were tissue specific expression differences in three conserved and one novel miRNA. Ssa-miR 736 was detected in heart tissue only, while two other clustered miRNAs (ssa-miR 212 and132) seems to be at a higher expression level in brain tissue. These observations correlate well with their expected functions as regulators of signal pathways in cardiac and neuronal cells, respectively. Ssa-miR 8163 is one of the novel miRNAs discovered and its function remains unknown. However, differential expression analysis using DESeq suggests that this miRNA is enriched in liver tissue and the precursor was mapped to intron 7 of the transferrin gene. Conclusions The identification and annotation of evolutionary conserved and novel Salmo salar miRNAs as well as the characterization of miRNA gene clusters provide biological knowledge that will greatly facilitate further functional studies on miRNAs in this species. PMID:23865519
Wu, Xiaofen; Pedersen, Karsten; Edlund, Johanna; Eriksson, Lena; Åström, Mats; Andersson, Anders F; Bertilsson, Stefan; Dopson, Mark
2017-03-23
Deep terrestrial biosphere waters are separated from the light-driven surface by the time required to percolate to the subsurface. Despite biofilms being the dominant form of microbial life in many natural environments, they have received little attention in the oligotrophic and anaerobic waters found in deep bedrock fractures. This study is the first to use community DNA sequencing to describe biofilm formation under in situ conditions in the deep terrestrial biosphere. In this study, flow cells were attached to boreholes containing either "modern marine" or "old saline" waters of different origin and degree of isolation from the light-driven surface of the earth. Using 16S rRNA gene sequencing, we showed that planktonic and attached populations were dissimilar while gene frequencies in the metagenomes suggested that hydrogen-fed, carbon dioxide- and nitrogen-fixing populations were responsible for biofilm formation across the two aquifers. Metagenome analyses further suggested that only a subset of the populations were able to attach and produce an extracellular polysaccharide matrix. Initial biofilm formation is thus likely to be mediated by a few bacterial populations which were similar to Epsilonproteobacteria, Deltaproteobacteria, Betaproteobacteria, Verrucomicrobia, and unclassified bacteria. Populations potentially capable of attaching to a surface and to produce extracellular polysaccharide matrix for attachment were identified in the terrestrial deep biosphere. Our results suggest that the biofilm populations were taxonomically distinct from the planktonic community and were enriched in populations with a chemolithoautotrophic and diazotrophic metabolism coupling hydrogen oxidation to energy conservation under oligotrophic conditions.
Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi
2016-06-15
Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5'-end processing and 3'-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA004502. yasu@bio.keio.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Winnowing DNA for rare sequences: highly specific sequence and methylation based enrichment.
Thompson, Jason D; Shibahara, Gosuke; Rajan, Sweta; Pel, Joel; Marziali, Andre
2012-01-01
Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue.
Draft Genome Sequence of Pseudomonas pachastrellae Strain CCUG 46540T, a Deep-Sea Bacterium.
Gomila, Margarita; Mulet, Magdalena; Lalucat, Jorge; García-Valdés, Elena
2017-04-06
Pseudomonas pachastrellae strain CCUG 46540 T (KMM 330 T ) was isolated from a deep-sea sponge specimen collected in the Philippine Sea at a depth of 750 m. The draft genome has an estimated size of 4.0 Mb, exhibits a G+C content of 61.2 mol%, and is predicted to encode 3,592 proteins, including pathways for the degradation of aromatic compounds. Copyright © 2017 Gomila et al.
Draft Genome Sequence of Pseudomonas pachastrellae Strain CCUG 46540T, a Deep-Sea Bacterium
2017-01-01
ABSTRACT Pseudomonas pachastrellae strain CCUG 46540T (KMM 330T) was isolated from a deep-sea sponge specimen collected in the Philippine Sea at a depth of 750 m. The draft genome has an estimated size of 4.0 Mb, exhibits a G+C content of 61.2 mol%, and is predicted to encode 3,592 proteins, including pathways for the degradation of aromatic compounds. PMID:28385850
Measure Guideline: Deep Energy Enclosure Retrofit for Interior Insulation of Masonry Walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musunuru, S.; Pettit, B.
2015-04-01
This Measure Guideline describes a deep energy enclosure retrofit (DEER) solution for insulating mass masonry buildings from the interior. It describes the retrofit assembly, technical details, and installation sequence for retrofitting masonry walls. Interior insulation of masonry retrofits has the potential to adversely affect the durability of the wall; this document includes a review of decision criteria pertinent to retrofitting masonry walls from the interior and the possible risk of freeze-thaw damage.